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Abstract—Automated fiber placement (AFP) technology, while
highly beneficial, is susceptible to defects that compromise the
final product’s mechanical integrity. Traditional manual inspec-
tion methods are labor-intensive, error-prone, and result in
significant downtime. This study introduces an innovative frame-
work for AFP process inspection and quality assessment using
thermal imaging, machine learning algorithms, and computer
vision techniques. The system comprises defect detection, defect
segmentation, and quality assessment components. By providing
real-time feedback, it offers qualitative defect attributes (shape,
size, and location) and a novel quantitative defect impact metric.
An active knowledge-driven decision support system (AFP-DSS)
aids operator maintenance and repair decisions. Experimental
validation shows the defect detection component achieving 96.4%
accuracy with a 2.8% false negative rate, and the defect seg-
mentation component attaining 93.2% mean pixel accuracy and
a mean Intersection over Union (IoU) score of 0.72. Operating
in real-time, the system effectively reduces machine downtime,
enhances production quality, and improves the economic viability
of AFP technology.

Index Terms—automated fiber placement, thermographic
inspection, quality assessment, defect detection and segmentation,
decision support system, computer vision, machine learning.

I. BACKGROUND AND RELATED WORK

Automated Fiber Placement (AFP) technology has trans-
formed composite material construction, evolving from tradi-
tional methods like hand lay-up (HLU) and automated tape
lay-up (ATL) to achieve greater speed and precision. AFP
involves the precise, layer-by-layer placement of fibers into a
mold, enhancing structural integrity and production efficiency,
particularly in the aerospace industry. Recent studies highlight
that AFP technology accounts for approximately 50% of all
aerospace composite construction, underscoring its significant
impact [1].

Despite its advantages, AFP is prone to defects such as
gaps, overlaps, missing tows, tow splices, and foreign bodies,
which can compromise the mechanical strength and reliability
of the final product. Unresolved defects not only deviate
from design requirements but also elevate the risk of part
failure [2]. Additionally, AFP systems face productivity and
cost challenges due to high downtime associated with quality
inspection and defect repair cycles. A recent survey revealed
that AFP systems may spend up to 42% of their work time
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on inspection tasks compared to only 19% on actual lay-up,
highlighting the need for an automated solution [3].

Manual inspection in AFP processes is time-consuming,
labor-intensive, and prone to human error, necessitating fre-
quent interruptions for defect detection and correction. Missed
defects during manual inspection can lead to significant chal-
lenges during post-curing stages. An automatic in-process
monitoring and inspection module promises to address these
issues by enabling real-time inspection and quality assessment,
thereby improving productivity and reducing costs.

Various technologies have been explored for AFP moni-
toring but often are limited to off-process applications [4].
Machine vision systems, especially thermal imaging, show
promise in in-situ inspection by enhancing visibility during
AFP’s preheating step [5]. Studies confirm that thermography-
based AFP monitoring outperforms traditional methods like
profilometry and visible inspection [6]. Machine learning (ML)
has also improved defect detection and segmentation accuracy
in AFP monitoring [7]. Despite these advances, data scarcity
and solution reliability remain challenges. Hybrid approaches
combining computer vision and ML techniques show promise
in addressing these issues. For instance, integrating classical
algorithms with deep learning networks has proven effective
in segmenting and clustering defect points [8].

Despite technological progress, there is no comprehensive
end-to-end quality assessment and process inspection system
for AFP. This study introduces an innovative automatic moni-
toring and quality inspection system for AFP processes, utiliz-
ing thermal imaging and ML algorithms alongside computer
vision techniques. The system includes three main compo-
nents: defect detection, defect segmentation, and quality as-
sessment. It lays the foundations for an active decision support
system by providing real-time feedback, including qualitative
defect attributes—such as shape, size, and location—and a
novel quantitative defect impact evaluation metric. Addition-
ally, a dynamic knowledge base with alert/recommendation
pairs is included, offering continuous improvement in decision
support based on expert insights and real-time data. The
proposed solution aims to reduce machine downtime, enhance
production efficiency, and improve the economic viability of
AFP technology.



II. DATA DESCRIPTION AND EXPERIMENTAL SETUP

A. Data Acquisition

The experiments were conducted using a Coriolis C1 AFP
machine. A FLIR A655sc thermal camera captured images at
640 × 480 pixels and 50 frames per second. A spatial calibra-
tion was carried out to correct for any distortions introduced by
the camera and lens. Positioned using a previously developed
in-situ vision system [9], the camera’s images were streamed
to a workstation equipped with an Intel Xeon W-2275 14-core
CPU and an NVIDIA Quadro RTX 5000 GPU for processing.

Experiments were conducted under various process and
environmental conditions, as outlined in Table I. The data
acquisition frequency was preset based on lay-up speed using
a trigger mechanism. At the standard lay-up speed, the acqui-
sition rate was set to 5 Hz, corresponding to a pitch size of
α = 12 mm. For real-time operation, the maximum allowable
processing time for the entire pipeline is τ = 200 ms.

B. Preprocessing and Database Overview

Due to the lack of publicly available thermal imaging
databases for AFP process defects, we utilized a previously
constructed in-house database and followed the same pre-
processing pipeline as described in [10]. This database was
developed from experiments conducted under various acquisi-
tion conditions and process parameters. While this provides a
comprehensive dataset, potential challenges include new sce-
narios due to variability in material properties, environmental
conditions, and equipment calibration. To address these chal-
lenges, the dynamic structure of our system enables continuous
enrichment of the database with new lay-up instances, thereby
increasing its robustness and applicability.

The database is categorized into two main classes: Healthy
lay-up (H) and Defective lay-up (D). The Defective class
is further divided into five distinct subclasses: Gaps (G),
Overlaps (O), Missing Tows (MT), Tow Splices (TS), and
Foreign Bodies (FB). To enrich the database, domain-specific
augmentation techniques were applied, resulting in a total of
5,000 manually labeled images. This includes 2,500 images for
the Healthy class and 500 images for each defect subclass. A
key contribution of this study is conducting new experiments
to increase real data, enhancing the model’s reliability.

TABLE I
AFP PROCESS AND ENVIRONMENT PARAMETERS

Parameter Type Value(s)/Interval
Material temperature 20◦ – 28◦C
Tool surface temperature 32◦ – 50◦C
Ambient temperature 19◦ – 24◦ C
Compaction pressure 3 – 6 bar
Number of layers 1 – 6
Number of tows 4
Lay-up angles 0◦ , 45◦ , 90◦

Nominal lay-up speed 0.25 m/s
Prepreg material Thermoset
Tow width 6.35 mm
Tow thickness 160 µm

III. METHODOLOGICAL FRAMEWORK

A. System Architecture

The proposed system architecture consists of three main
components divided into two blocks: operational and decision
support. The operational block handles automated inspection
and analysis, while the decision support block processes
findings for high-level quality assessments, aiding maintenance
and repair decisions.

Designed for real-time operation and efficiency, the oper-
ational block first tests a lay-up for defects and proceeds
to the computationally intensive defect segmentation only
if defects are detected, conserving resources and facilitating
smoother operation. We adopt an integrated approach, utilizing
a combination of machine learning algorithms and computer
vision techniques to optimize performance and efficiency.
The decision support component integrates findings from the
detection and segmentation modules, presenting them in a
real-time process monitoring stream and generating informed
decisions based on an alert/recommendation knowledge base.

The architecture and flow of the system are illustrated in
Fig. 1. Initially, a test thermal image is preprocessed, added
to the database, and fed into the operational block. The defect
detection component automates the manual detection process,
reducing machine downtime. Each input image is classified as
’healthy’ or ’defective’.

If a lay-up is flagged as ’defective’, the subsequent defect
characterization component is activated and an advanced de-
fect segmentation algorithm is employed to classify the defect
region at the pixel level, extracting features such as shape, size,
and location. These outputs are then used to evaluate lay-up
quality, assess the defect’s impact, and assist the decision of
the operator.

The synergistic integration of these system components
forms the foundation of the Automated Fiber Placement pro-
cess decision support system (AFP-DSS). This comprehensive
approach ensures precise identification, characterization, and
evaluation of defects, enabling timely, well-informed decision-
making for enhanced AFP process monitoring and quality
inspection. The following subsections delve into the technical
specifics of each component, illustrating their crucial roles in
improving overall quality and addressing the research problem.

B. Enhanced Defect Detection

This component classifies lay-up status by detecting defects
in a binary classification setup. Building on our previous
work [10], we introduce three key enhancements: temperature
normalization before Gabor filter extraction, adoption of a non-
linear kernel in the Support Vector Machine (SVM) classifier,
and training on a richer dataset with a higher percentage of
original defective instances. These enhancements are shown to
improve detection accuracy, robustness, and generalizability.

1) Temperature Normalization: While preprocessing en-
sures spatial alignment, temporal alignment challenges re-
main, affecting performance and interpretability. Previously
deposited regions exhibit higher temperatures, resulting in a



Fig. 1. A schematic diagram illustrating the architecture of the proposed thermal inspection and quality assessment framework.

gradient pattern due to varying heat exposure durations. To
mitigate this, we calculate the average temperature across the
width of each course and subtract it from the preprocessed
image, achieving both spatial and temporal alignment. Fig.
2 shows the impact of this step with more distinct defect
manifestations. Post-normalization, the enhanced visual clarity
facilitates efficient process monitoring and easier database
labeling. This step also improves the overall performance
of the operational block components. Gabor filters are then
applied for feature extraction, creating feature vectors used as
input for the SVM classifier.

2) RBF-Kernel Based SVM Classifier: The SVM imple-
mentation adopts a soft-margin approach to handle non-
linearly separable data. The kernel trick allows the SVM to
operate in a higher-dimensional space without explicit trans-
formation, enhancing efficiency. Despite the relatively high
computational cost, we employ a Radial Basis Function (RBF)
kernel due to its superior capability in managing nonlinear
feature relationships and its exceptional performance in image-
based classification tasks [11]. The RBF kernel equation is
presented below:

K(xi,xj) = exp
(
−γ∥xi − xj∥2

)
(1)

In this equation, xi and xj are feature vectors, and γ is the
kernel’s control parameter, which adjusts the complexity of the

Fig. 2. Temperature normalization: (a) raw thermal image of flawless lay-up,
(b) temperature-normalized version showing relative temperature differences
from the average.

decision boundary. The designed soft-margin SVM, employing
an RBF kernel, is trained on feature vectors extracted from the
temperature-normalized database images.

The RBF kernel enhances the classifier’s ability to address
non-linear relationships, thereby improving its overall classi-
fication accuracy. As the manufacturing process evolves, new
training data can be effortlessly added to the database, demon-
strating a key benefit of learning-based methods. To achieve
optimal performance, a grid search technique is employed for
parameter tuning. After optimization, the model is prepared to
classify real-time images as either ’Defective’ or ’Healthy’.

C. Defect Segmentation and Localization

Upon detecting a defect, the segmentation algorithm iso-
lates defective region pixels from the healthy background in
real-time. Previous studies used various approaches for AFP
defect segmentation, including masking, thresholding, region
growing, watershed, clustering, and graph-based algorithms
[12]. We developed an active contours segmentation algorithm
using Gabor texture features as seeds, enhancing performance
without additional computational burden since these features
are applied in both detection and segmentation.

1) Seed Initialization with Texture Features: As an initial
step, we compute the mean image of healthy lay-up instances
from our temperature-normalized database and subtract it from
defective images. This normalization reduces eliminate static
biases and consistent background variations, enhancing defect
identification and isolation. The selection of seed features
in the active contours algorithm can range from edge pixels
(edgels) to more advanced image features, and this choice is
closely linked to the algorithm’s performance. Gabor filters
have been found to outperform other feature types in fabric-
based defect detection and segmentation applications, making
them the feature extraction method of choice for our proposed
algorithm [13]. Gabor filters are considered a simplified yet
effective model that approximates human texture perception.

2) Active Contours Evolution: The active contours algo-
rithm begins with an initial contour that iteratively evolves to
enclose the defective region. Compared to other image seg-
mentation techniques, active contours, when initialized with
appropriate seeds, demonstrate superior performance. This
approach was successfully validated in segmenting thermal



images of a uniform specimen [14], and is extended in
this work to the more complex task of defect segmentation
in AFP thermal lay-up images. By utilizing Gabor texture
features to initialize the algorithm instead of using random
seeds, we ensure enhanced segmentation accuracy and faster
convergence. During each iteration, the active contour deforms
based on forces derived from image features, including Gabor
features, and internal constraints that maintain contour smooth-
ness, thereby minimizing an energy function. This function
is designed to balance maintaining a smooth contour with
accurately fitting the defective region.

Our proposed active contours algorithm employs the Chan-
Vese region-based energy model, as detailed in [15]. Although
the algorithm is computationally intensive, the use of precom-
puted feature vectors for initialization and the relatively low
resolution of the images help mitigate these computational
demands. As the contour converges, the defective region is
precisely isolated from the background and labeled accord-
ingly.

D. Quality Assessment and Decision Support System

The primary objective of this component is to evaluate
defective lay-ups, assessing defects from multiple perspectives
and presenting results in a meaningful format. Instead of
extracting new characteristics, it processes findings into a
high-level format for AFP quality assessment. We establish
an active knowledge-driven decision support system (AFP-
DSS) that generates maintenance and repair suggestions. This
DSS uses expert knowledge, rules, and heuristics to support
decision-making by matching the current situation to a prede-
fined knowledge base. Each lay-up configuration is linked to
an alert or recommendation pair based on expert insights [16].

The defect segmentation algorithm extracts critical spa-
tial information about the defect region, including shape,
size, and location. We introduce a novel numerical metric
based on this spatial information for defect impact evalu-
ation. This framework supports both qualitative and quan-
titative evaluation, enabling the development of a robust
alert/recommendation knowledge base. Emphasizing inter-
pretability and transparency, the AFP-DSS presents its outputs
in real-time through a user-friendly interface.

1) Quantitative Assessment Metric: We propose a novel
metric to assess the local impact of defects, defined as the
ratio of defect pixels to the total pixels within the affected
horizontal lay-up area. This definition is tailored to the specific
nature of AFP production, where defects primarily affect the
cross-sectional direction. This metric categorizes defects by
severity, tracks trends over time, and prioritizes defects for
repair. Larger defect areas are critical as they significantly
compromise structural integrity. To enhance accuracy, pixel-
wise area evaluations are converted to real-world coordi-
nates using camera calibration. This metric is central to the
alert/recommendation knowledge base, aligning with qualita-
tive results from other system components to comprehensively
evaluate the lay-up status and ensure robust production quality
assessment.

Fig. 3. Normalized confusion matrix for SVM test set classification results.

IV. RESULTS AND DISCUSSION

A. Defect Detection Results and Evaluation

The classifier model’s performance was evaluated following
the described enhancements. The updated database was di-
vided into training (80%), validation (10%), and testing (10%)
subsets for model training and optimization. During training
and validation, a grid search algorithm determined the optimal
model parameters. Emphasis was placed on achieving high
recall (sensitivity) due to the critical impact of undetected
defects on production quality. No overfitting was observed
when comparing training and test dataset performances; thus,
our analysis focuses on the test set’s performance. Test set
results are shown in a confusion matrix (Fig. 3), juxtaposing
predicted and actual class labels, with ’Defective’ as positive
and ’Healthy’ as negative.

The performance of the enhanced model was assessed
using accuracy, precision, recall, and F1-score. The model
parameters and performance metrics are shown in Table II.
The enhanced model achieved classification accuracies of
97.2% for defective and 95.6% for healthy lay-up classes.
Minimizing false negative rate is vital, as misclassifying a
defective instance endangers part’s mechanical integrity. With
a false negative rate of 2.8%, the model reliably detects
most defects. Additionally, the low false positive rate of 4.4%
reduces unnecessary machine stops, minimizing downtime and
costs.

The model achieved a high test accuracy of 96.4% and an
F1-score of 96.43%, highlighting its strong predictive perfor-
mance in distinguishing defective from healthy lay-ups. Al-
though the percentage improvements might seem incremental,
it is crucial to highlight that these results were obtained using
a significantly richer database. This substantial improvement
in data quality enhances the credibility and reliability of the
results, underscoring the robustness of the enhanced model
in practical applications. Misclassifications likely arise from
similarities in features between different entities in the images,
such as the width of hotter regions distinguishing gaps from
tow boundaries. Incorporating a conditional statement into the
system could mitigate this confusion.

The SVM model is efficient, with most of the processing
load in the feature extraction step, resulting in an average total
processing time of 72.7 ms. Although the Gabor filter bank is
pre-generated and reused, convolving each filter with the lay-
up image consumes considerable runtime. However, the time
requirements remain acceptable since these features are reused



in the defect segmentation component. The algorithm’s aver-
age execution time per image is 89.7ms, making it suitable for
real-time AFP process monitoring. Overall, the SVM model
demonstrates robust generalization and efficiency, providing
reliable classification for AFP lay-up status monitoring.

B. Defect Segmentation Performance

The effectiveness of the defect segmentation and localiza-
tion algorithm is critical for accurate processing. We evaluate
its performance using pixel-wise accuracy (PA%) and intersec-
tion over union (IoU) metrics: PA% measures the percentage
of correctly classified pixels compared to the ground truth,
while IoU measures the overlap between the predicted seg-
mentation and the ground truth:

PA% =

(
TP + TN

TP + TN + FP + FN

)
× 100 (2)

IoU =
|S ∩G|
|S ∪G|

(3)

Here TP denotes true positives, TN true negatives, FP false
positives, and FN is false negative. In the IoU formula, |S∩G|
represents the intersection of the predicted segmentation and
the ground truth, while |S ∪G| represents their union.

We first demonstrate the algorithm’s performance on a
selected example, showcasing initialization and contour evolu-
tion, and later evaluate its mean accuracy using the mentioned
metrics and execution time. Foreign bodies and tow splices,
due to their similar thermal characteristics and complex
shapes, are particularly challenging to segment. To rigorously
assess the algorithm, we present a case study focusing on
a lay-up image featuring a foreign body. This scenario tests
the algorithm’s ability to segment and localize defects amidst
image noise, providing a comprehensive evaluation of its real-
world effectiveness.

The active contours algorithm with texture feature seeds
was applied to the same case study for comparison. Fig. 4
illustrates key frames of the active contour’s evolution. The
seed at the first iteration i = 1 includes three clusters of pixels
at the defect edges, along with a sleeve of outlier pixels at the
middle tow boundary. After 10 iterations, defective regions
expand while outliers shrink and disappear. The texture-guided
evolution effectively addresses noise due to its synthetic func-
tion, where both local and global forces act on the contour. The
algorithm concludes at iteration 25, successfully converging to
the defective region. In the final masked result, the algorithm
isolates the defective region from the background (Fig. 4c).

TABLE II
SVM MODEL OPTIMIZED PARAMETERS AND PERFORMANCE EVALUATION.

Model Parameters Performance Metrics
Kernel constant (γ) 2−5 Test accuracy 96.4 %
Penalty term (C) 2−3 F1-score 96.43%
Feature extraction 72.7 ms Precision 97.2 %
SVM prediction 17.0 ms Recall 95.67%
Total time 89.7 ms

Fig. 4. Active contours with texture features: (a) initial seed mask at i = 1;
(b) intermediate contour at i = 10; (c) final convergence at i = 25, isolating
the defect region.

Although the shaded region contains a few peripheral pixels,
introducing a slight positive bias in the defect area percentage
metric values, this conservative approach minimizes the risk of
false detection, ensuring system reliability. Thus, the algorithm
is deliberately tuned for accurate yet conservative results.

Accurately comparing the performance of our algorithm
with related studies is challenging in the absence of publicly
available datasets for benchmarking, especially given the dif-
ferences in methodologies across studies. However, we can
provide a contextual evaluation of our model’s performance
using results from similar studies with relatively close condi-
tions. For example, [17] reported a mean segmentation IoU
of 0.708 on 44 data instances where the evaluated defect area
was defined as a bounding box around the defect. Similarly,
[18] utilized deep learning to pixel-wise segment defect areas
directly from point clouds of 43 lay-up images acquired using
a laser profilometer, achieving a mean IoU of 0.776.

Our developed algorithm’s accuracy was evaluated using
on 100 ground truth labeled images per defect class. The
algorithm’s mean PA% is 93.2%, and IoU score is 0.72,
indicating superior performance and high reliability in the
thermography-based defect segmentation domain. It requires
an average of 62.5 ms for 25 iterations. Despite higher
computational demands, the active contours algorithm is pre-
ferred for its closed region identification and robustness. While
limited to single-defect scenarios, it is sufficient for binary
defect detection. Proper initialization, merging, and splitting
techniques can extend its applicability to complex lay-ups.

C. AFP-DSS: A Case Study Evaluation

The developed AFP-DSS significantly enhances quality
assessment and operator decision support in three key ways.
Firstly, it derives a novel quantitative defect impact evaluation
metric from the outcomes of system algorithms. Secondly, it
features a continually expanding knowledge base, offering an
evolving library of alert/recommendation pairs that cover an
increasing range of manufacturing scenarios. Lastly, all results
are presented to the operator in real-time through a graphical



user interface (GUI), facilitating automated thermal inspection
and quality assessment of the lay-up.

We use a proof-of-concept illustration to rigorously evaluate
the AFP-DSS within a realistic AFP production context,
thereby assessing the system’s practicality and effectiveness
(Fig. 5). The input is preprocessed and is then flagged as
’Defective’ by the SVM classifier within the automated defect
detection component. The defect region is subsequently seg-
mented using the active contours algorithm, and the resultant
region is highlighted on the image with a transparent mask. A
bounding box provides location information about the defect
on the lay-up image. Finally, the defect area percentage value
is computed and presented for the system to find the best
matching alert/recommendation pair in knowledge base.

The system combines qualitative attributes (defect shape,
size, and location) with a quantitative defect impact evaluation.
This feedback aids operators in assessing lay-up quality and
making informed decisions. In this case study, a defect area
percentage of 29.77% prompted the system to suggest halting
the process and removing the foreign body. For narrower
gaps, the recommendation might involve managing the defect
while allowing the machine to continue, knowing that certain
gaps and overlaps are corrected during the autoclave post-
process. This approach significantly reduces time and effort
for AFP process monitoring and quality inspection, enhancing
efficiency and reliability. The system’s average execution time
is 152.2 ms, meeting the real-time operation criterion of
τ = 200 ms per frame. Performance is expected to improve
with hardware upgrades and optimized algorithms.

V. CONCLUSIONS AND FUTURE WORK

This study presents a novel framework for automated in-
spection and quality assessment of AFP systems, utilizing
thermal imaging, machine learning, and computer vision. The
system achieves high accuracy in defect detection and segmen-
tation, reducing machine downtime and enhancing efficiency.

Future work will enhance the decision support system (DSS)
by enriching the knowledge base and integrating machine
learning, transforming it into a data-driven intelligent DSS

Fig. 5. Visual representation of the outcomes of the hybrid AFP process
monitoring and quality inspection framework on a test case.

(AFP-IDSS). Additionally, we aim to extend the framework
to handle variable stiffness and non-planar manufacturing
processes.
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