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Abstract—This paper studies an auxiliary particle filter with
variational inference for jointly estimating the system mode, the
state and the measurement noise covariance matrix of jump
Markov systems. The joint posterior distribution of the system
mode, the state and the noise covariance matrix is marginalized
out with respect to the system mode. The marginalized posterior
distribution of the mode is then approximated by using an
auxiliary particle filter, and the state and noise covariance
matrix conditionally on each particle of the mode variable are
updated using variational Bayesian inference. A simulation study
is conducted to compare the proposed method with state-of-the-
art approaches for a target tracking scenario.

I. INTRODUCTION

Jump Markov systems (JMSs) have been widely investi-
gated in the literature, especially for state-space models that
are conditionally linear Gaussian models, i.e., jump Markov
linear systems (JMLSs). In these systems, a finite-state Markov
chain switches between different modes with an appropriate
transition probability matrix (TPM). Many algorithms have
been proposed to solve this state estimation problem, mainly
based on Gaussian mixture approximations, such as the gen-
eralized pseudo-Bayes algorithm [1], the interacting multiple
model (IMM) algorithm [2], [3], and the sequential Monte
Carlo (SMC) algorithm [4]–[6]. In general, these approaches
assume that the measurement noise covariance matrix is
accurately known. However, in realistic contexts, changing
environments result in outliers corrupting the measurements or
different sensor functioning conditions. Thus the measurement
noise covariance matrix can be unknown and evolve slowly
during a long time interval, leading to degradations in state
estimates for jump Markov systems.

Regarding the state estimation problem of JMSs with un-
known measurement noise parameters, the IMM with vari-
ational Bayesian (VB) inference was studied for the joint
estimation of the state and measurement noise covariance
matrix of jump Markov systems, where VB inference was
employed to derive mode-conditioned estimates and mode-
likelihood functions in the framework of IMM [7]–[9]. An
improved version of the IMM algorithm with variational infer-
ence was proposed in [10] to calculate all unknown variables

according to the weighted Kullback-Leibler (KL) average of
mode-conditional estimates.

This paper studies an auxiliary particle filter (APF) with
VB inference (APF-VB) for jointly estimating the system
mode variable, the state and the measurement noise covariance
matrix of a JMLS. In order to reduce the dimension of the
sampling space, the proposed approach marginalizes out the
state and the noise covariance matrix from the joint posterior
distribution of interest. The posterior distribution of the JMLS
mode sequence is then approximated by using an APF. The
joint posterior distribution of the state and the noise covariance
matrix conditionally on each particle of this APF is finally
handled by using VB inference.

The paper is organized as follows: Section II formulates the
joint estimation problem for JMLS. Section III studies the APF
with VB inference proposed to estimate the JMLS unknown
parameters. The performance of the proposed approach is
evaluated in Section IV using a target tracking scenario.
Conclusions are finally reported in Section V.

II. PROBLEM FORMULATION

In this paper, we consider a discrete-time JMLS involving
a hidden state process {xt ∈ Rdx}t≥1 and the measurement
process {yt ∈ Rdy}t≥1 for some dx > 0 and dy > 0. In a
JMLS, the evolution of the state and the measurement variables
depend on the system mode and are defined by the following
state and measurement equations:

x0|r1 ∼ fr1(x0), xt|(xt−1, rt) ∼ frt−1,rt(xt|xt−1), (1a)
yt|(xt, rt) ∼ grt(yt|xt), (1b)

for t ≥ 1, where rt ∈ K = {1, . . . ,K} is a discrete
variable indicating the system mode at time t. The discrete-
time process {rt}t≥1 is generally assumed to be a first-
order homogeneous finite state Markov chain, with initial and
transition probabilities defined by

πrt−1rt := P(rt = k|rt−1 = l),
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for all k, l ∈ K and t > 1. The state and measurement
equations of the JMLS studied in this paper are:

xt = A (rt)xt−1 +wt−1, (2a)
yt = H (rt)xt + νt, (2b)

where t = 1, . . . , T denotes the tth time instant, wt and νt are
the process and measurement noises distributed according to
zero-mean Gaussian distributions with covariance matrices Qt

and Σt, i.e., wt ∼ N (0,Qt) and νt ∼ N (0,Σt), A (rt) and
H (rt) are the system and measurement matrices associated
with the rtth system mode that are assumed to be known.
Accordingly, frt−1,rt(xt|xt−1) and grt(yt|xt) in (1) can be
expressed for t ≥ 1 as:

frt−1,rt(xt|xt−1) := N (xt;A (rt)xt−1,Qt) , (3a)
grt(yt|xt) := N (yt;H (rt)xt,Σt) . (3b)

In some practical applications, a changing environment re-
sults in outliers corrupting the measurements or in different
sensor functioning conditions. In order to take into account
these changing environments, this paper proposes to consider
an unknown measurement noise covariance matrix Σt. The
measurement noise covariance matrix Σt is supposed to be a
diagonal matrix independent of the system mode rt, denoted
as Σt = diag

[
σ2
t,1, . . . , σ

2
t,dy

]
. The diagonal elements of

this matrix are assigned independent inverse gamma prior
distributions leading to:

p(σ2
t,1, . . . , σ

2
t,dy

) =

dy∏
j=1

IG
(
σ2
t,j ;αt,j , βt,j

)
, (4)

where αt,j > 1 and βt,j > 0 are the unknown shape and scale
parameters of these inverse gamma distributions. Since it is not
straightforward to choose a dynamical model p(Σt|Σt−1), we
propose to assume the following dynamics for the shape and
scale parameters:

α−
t,j = ραt−1,j , β

−
t,j = ρβt−1,j , (5)

where αt−1,j and βt−1,j (for j = 1, . . . , dy) are the parameters
of the inverse gamma distributions at time t−1 and ρ ∈ (0, 1]
is a forgetting factor. This strategy was used successfully in
[11] for recursive noise adaptive Kalman filtering. Assuming
that the distribution of the measurement noise covariance
matrix elements is maintained for different time instants, we
specifically consider the following predictive distribution for
the noise covariance matrix elements:

p
(
σ2
t,1, . . . , σ

2
t,dy

|y1:t−1

)
=

dy∏
j=1

IG
(
σ2
t,j ;α

−
t,j , β

−
t,j

)
. (6)

The aim of this work is to infer the hidden state vector xt,
the unknown measurement noise covariance matrix Σt and the
mode sequence r1:t of the JMLS, leading to the joint posterior
distribution of all unknown variables given the measurement
sequence y1:t = {y1, . . . ,yt}, denoted as p (xt,Σt, r1:t|y1:t),
which is studied in the next section.

III. AN AUXILIARY PARTICLE FILTER WITH VB INFERENCE
FOR JMLS WITH UNKNOWN MEASUREMENT NOISE

COVARIANCE MATRIX

Following the concept of the marginalized particle filter
[12], the joint posterior distribution of the state, the unknown
measurement noise covariance and system mode variables can
be factorized as follows:

p (xt,Σt, r1:t|y1:t) = p (xt,Σt|r1:t,y1:t) p (r1:t|y1:t) , (7)

where xt and Σt have been marginalized out in the second
term of the right hand side of (7). This paper proposes
to approximate p (r1:t|y1:t) by using an empirical density
following the principle of particle filters

p (r1:t|y1:t) ≈
N∑
i=1

ω
(i)
t δ

(
r1:t − r

(i)
1:t

)
, (8)

where N is the number of particles, δ (·) is the Dirac delta
function, r(i)1:t is the ith particle path and ω

(i)
t is the corre-

sponding weight at the tth time instant. Substituting (8) into
(7), the following result is obtained:

p (xt,Σt, r1:t, |y1:t) ≈
N∑
i=1

ωi
tp

(
xt,Σt|r(i)1:t,y1:t

)
δ
(
r1:t − r

(i)
1:t

)
,

(9)
where p

(
xt,Σt|r(i)1:t,y1:t

)
is the joint posterior distribution

of xt and Σt for the ith particle path of the mode variable.

A. An auxiliary particle filtering for the mode variable se-
quence r1:t

According to Bayes’ rule, p (r1:t|y1:t) satisfies the following
recursion:

p (r1:t|y1:t) =
p (yt|rt,y1:t−1) p (r1:t|y1:t−1)

p (yt|y1:t−1)

=
p (yt|rt,y1:t−1)πrt−1rt

p (yt|y1:t−1)
p (r1:t−1|y1:t−1) ,

(10)
where p (r1:t|y1:t−1) = πrt−1rtp (r1:t−1|y1:t−1). According
to the sequential importance sampling resampling (SISR)
method, the particle weights satisfy:

ω
(i)
t ∝ ω

(i)
t−1

p
(
yt|r(i)t ,y1:t−1

)
π
r
(i)
t−1r

(i)
t

q
(
r
(i)
t |r(i)1:t−1,y1:t

) , (11)

where i = 1, . . . , N , q
(
rt|r(i)1:t−1,y1:t

)
denotes the optimal

importance function introduced in [13]:

q
(
rt|r(i)1:t−1,y1:t

)
=
p (yt|rt,y1:t−1)πr(i)t−1rt

p
(
yt|r(i)1:t−1,y1:t−1

) , (12)

and the associated importance weight for the ith parti-
cle is proportional to the predictive likelihood ω

(i)
t ∝

ω
(i)
t−1p(yt|r(i)1:t−1,y1:t−1). Note that the importance weight ωt

does not depend on rt. In the APF, the resampling/selection
can be performed before extending trajectories, thus selecting
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the most promising trajectories before extension. Accordingly,
the importance weight in (11) can be rewritten as:

ω
(i)
t ∝ ω

(i)
t−1p(yt|r(i)1:t−1,y1:t−1)

×
p
(
yt|r(i)t ,y1:t−1

)
π
r
(i)
t−1r

(i)
t

p
(
yt|r(i)1:t−1,y1:t−1

)
q
(
r
(i)
t |r(i)1:t−1,y1:t

) . (13)

Furthermore, for i = 1, . . . , N , λ(i)t can be calculated for
implementing an auxiliary variable resampling, i.e.,

λ
(i)
t ∝ ω

(i)
t−1p(yt|r(i)1:t−1,y1:t−1), (14)

with
∑N

i=1 λ
(i)
t = 1. The resampling procedure is imple-

mented by multiplying/discarding particles r(1:N)
1:t−1 with respect

to high/low weights λ(1:N)
t , obtaining N new particles r̃(1:N)

1:t−1 .
Then, r̃(i)t can be generated according to q(rt|r̃(i)1:t−1,y1:t).

The conditional density p(yt|r(i)1:t−1,y1:t−1) (14) can be
obtained by marginalization:

p
(
yt|r(i)1:t−1,y1:t−1

)
=

∑
rt∈K

π
r
(i)
t−1rt

∫∫
grt(yt|xt,Σt)

× p(xt|i, rt,y1:t−1)p(Σt|i,y1:t−1)dxtdΣt,
(15)

where p (xt|i, rt,y1:t−1) is the predicted probability density
function (pdf) of the state xt (associated with the rtth mode)
for the ith particle at time t defined by:

p (xt|i, rt,y1:t−1) = N
(
xt;m

−,(i)
t,rt ,P

−,(i)
t,rt

)
, (16)

with
m

−,(i)
t,rt = A (rt)m

(i)
t−1,

P
−,(i)
t,rt = A (rt)P

(i)
t−1A

T (rt) +Qt−1,
(17)

where m
(i)
t−1 and P

(i)
t−1 (for i = 1, . . . , N ) are the mean and

covariance of the state at time t − 1. By replacing (16) into
(15), the integral in (15) can be written as:∫

N (yt;H(rt)m
−,(i)
t,rt , H(rt)P

−,(i)
t,rt HT(rt) +Σt)

× p(Σt|i,y1:t−1)dΣt.
(18)

It is difficult to obtain an analytic solution for the above inte-
gral. Using the unimodality of the inverse gamma distribution,
we propose to approximate p(Σt|i,y1:t−1) by using its first-
moment, i.e.,

p(Σt|i,y1:t−1) ≈ δ
(
Σt −

〈
Σ

−,(i)
t

〉)
(19)

with〈
Σ

−,(i)
t

〉
Σt

=

∫
Σt p(Σt|i,y1:t−1)dΣt

= diag
[
β
−,(i)
t,1 /(α

−,(i)
t,1 − 1), . . . , β

−,(i)
t,dy

/(α
−,(i)
t,dy

− 1)
]
.

(20)
where ⟨·⟩a =

∫
(·) q(a)da denotes the expectation with respect

to the distribution of a. After substituting (19) into (18), one

obtains:

ψrt(yt;r
(i)
t−1,y1:t−1) :=

N (yt;H(rt)m
−,(i)
t,rt , H(rt)P

−,(i)
t,rt HT(rt) +

〈
Σ

−,(i)
t

〉
),

(21)
which leads to the following approximation:

p(yt|r(i)1:t−1,y1:t−1) ≈
∑
rt∈K

π
r
(i)
t−1rt

ψrt(yt; r
(i)
t−1,y1:t−1).

(22)
In addition to yielding accurate auxiliary weights, the approx-
imation of the predictive likelihood in (21) also provides an
importance function for rt, i.e.,

q(rt|r̃(i)1:t−1,y1:t) ∝ π
r̃
(i)
t−1rt

ψrt(yt; r̃
(i)
t−1,y1:t−1). (23)

Accordingly, the importance weight in (13) can be updated as:

ω
(i)
t ∝

π
r̃
(i)
t−1r̃

(i)
t
ψrt(yt; r̃

(i)
t−1,y1:t−1)∑

rt∈K πr(i)t−1rt
ψrt(yt; r

(i)
t−1,y1:t−1)

, (24)

where r̃(i)t ∼ π
r̃
(i)
t−1rt

ψrt(yt; r̃
(i)
t−1,y1:t−1) for i = 1, . . . , N .

B. VB approximation for the joint distribution of xt and Σt

Since it is difficult to calculate the conditional distribution
p
(
xt,Σt|r(i)t ,y1:t

)
in closed form, we propose to use an

approximation resulting from VB inference [14]. The target
posterior density of (xt,Σt) associated with the rtth mode
at time t is defined by p(xt,Σt|rt,y1:t) and the correspond-
ing VB approximation density is denoted as qVB (xt,Σt).
We propose to factorize qVB using single-variable factors
[15], i.e., qVB (xt,Σt) := q1(xt)q2 (Σt), where q1 (xt) =

N (xt;mt,Pt) and q2 (Σt) =
∏dy

j=1 IG
(
σ2
t,j ;αt,j , βt,j

)
.

According to VB inference, the logarithm of the marginal
likelihood ln p (yt|rt,y1:t−1) can be defined by using the
following identity

ln p
(
yt|rt,y1:t−1

)
= L+KL [qVB (xt,Σt) , p (xt,Σt|rt,y1:t)]

(25)

with

L =

∫∫
qVB (xt,Σt) ln

p (yt,xt,Σt|rt,y1:t−1)

qVB (xt,Σt)
dxtdΣt

(26)
and

KL

[
qVB (xt,Σt) , p (xt,Σt|rt,y1:t)

]
=

∫∫
qVB (xt,Σt) ln

qVB (xt,Σt)

p (xt,Σt|rt,y1:t)
dxtdΣt,

(27)
where L is a variational objective function used in varia-
tional inference, KL [qVB (xt,Σt) , p (xt,Σt|rt,y1:t)] is the
KL divergence between the true posterior and its approx-
imation. Since the KL divergence is non-negative, mini-
mizing the KL divergence can be achieved by maximizing
the variational objective function L [16]. Accordingly, max-
imizing L can be achieved by computing expectations of
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ln p (yt,xt,Σt|rt,y1:t−1) with respect to q1 (xt) and q2 (Σt)
in turn, i.e.,

ln q1 (xt) ∝
∫
q2 (Σt) ln p (yt,xt,Σt|rt,y1:t−1) dΣt, (28)

ln q2 (Σt) ∝
∫
q1 (xt) ln p (yt,xt,Σt|rt,y1:t−1) dxt. (29)

By evaluating the integrals in (28) and (29), the parameters
mt, Pt, αt,j and βt,j for q1(xt) and q2(Σt) can be updated
according to the following equations,

mt = m−
t,rt +Kt,rt

(
yt −H(rt)m

−
t,rt

)
, (30)

Pt = P−
t,rt −Kt,rtH(rt)P

−
t,rt , (31)

αt,j = α−
t,j +

1

2
, (32)

βt,j = β−
t,j +

1

2

{
[yt −H(rt)mt]

2
j +

[
H(rt)PtH

T(rt)
]
jj

}
,

(33)

where j = 1, . . . , dy , [·]j denotes the jth element of a vector,
[·]jj is the jth diagonal element of a matrix and Kt,rt is
defined as follows:

Kt,rt = P−
t,rtH

T(rt)
(
H(rt)P

−
t,rtH

T(rt) + Σ̂t

)−1

(34)

with
Σ̂t = diag

[
βt,1/αt,1, . . . , βt,dy

/αt,dy

]
. (35)

Thus p (xt,Σt|r1:t,y1:t) can be approximated by iteratively
calculating (30)-(33) until an iteration stopping rule is satisfied.
Finally, the proposed APF-VB algorithm for JMLS with
unknown measurement noise covariance matrix is summarized
in Alg. 1.

IV. SIMULATION RESULTS

The proposed APF-VB algorithm is evaluated using a
simplified illustrative example of a moving target with Markov
switching acceleration considered in [17], [18]. The state and
measurement equations of this example are defined by:

xt = Axt−1 + Γ(at + ωt),

yt = Hxt + νt,
(36)

with

A =

(
1 ∆
0 1

)
, Γ =

(
∆2

2
∆

)
, H = [1, 0],

where t = 1, . . . , T , the simulation time is T = 300, ∆ = 1
is the sampling period, the 2D state xt = (pt, vt)

T includes
the target position in m and the velocity in m/s, and at
denotes the acceleration in m/s2. Three different values of
the acceleration are considered, i.e., a1 = −10, a2 = 0
and a3 = 10. The switching between the three models is
governed by a first-order homogeneous Markov chain with
known transition probabilities πkk = 0.9 and πkl = 0.05
(k ̸= l) for k, l ∈ {1, 2, 3}. The process and measurement
noises are defined by ωt ∼ N (0, 0.1) and νt ∼ N (0, σ2

t )
with a time-varying variance σ2

t , whose evolution is displayed
in Fig. 1. The proposed approach is compared to the IMM
studied [3], the efficient particle filter studied in [6] and IMM

Algorithm 1: APF with VB inference for JMLS - a
single time step

Input: Particles from time t− 1: r(1:N)
1:t−1 ; Variational

inference parameters for the particles at time
t− 1: m(1:N)

t−1 , P (1:N)
t−1 , {α(1:N)

t−1,j , β
(1:N)
t−1,j }

dy

j=1.
Output: Particles for time t: r̃(1:N)

t ; Variational
inference for the particles at time t: m(1:N)

t ,
P

(1:N)
t {α(1:N)

t,j , β
(1:N)
t,j }dy

j=1.
for i = 1, . . . , N do

Compute {m−,(i)
t,k ,P

−,(i)
t,k }Kk=1, {α−,(i)

t,j , β
−,(i)
t,j }dy

j=1

by using (17) and (5), respectively.
Compute λ(i)t by using (22) and normalize
λ̃
(i)
t = λ(i)/

∑N
i=1(λ

(i)).

Multiply/discard particles r(1:N)
1:t−1 , m(1:N)

t−1 , P (1:N)
t−1 ,

{α(1:N)
t−1,j , β

(1:N)
t−1,j }

dy

j=1 with respect to high/low weights
λ̃
(1:N)
t to obtain N particles r̃(1:N)

1:t−1 , m̃(1:N)
t−1 , P̃ (1:N)

t−1 ,
{α̃(1:N)

t−1,j , β̃
(1:N)
t−1,j }

dy

j=1with equal weights.
for i = 1, . . . , N do

Sample r̃(i)t according to (23).
repeat

Update m̃
(i)
t , P̃ (i)

t according to (30) and (31).
Update {α̃(i)

t,j , β̃
(i)
t,j}

dy

j=1 according to (32) and
(33).

until convergence;

Compute ω(i)
t according to (24) and normalize

ω̃
(i)
t = ω

(i)
t /

∑N
i=1 ω

(i)
t

with variational Bayes (IMM-VB) [9]. We assume here that
the efficient particle filter and the IMM know the measurement
noise variance, which corresponds to an ideal situation. The
forgetting factor, maximum number of iterations and stopping
threshold in VB inference for the APF-VB and the IMM-
VB are set to 0.9, 3 and 0.01, respectively. The number of
particles used in the particle filter is 200 and Nm = 100
Monte Carlo runs have been generate to compute the root
mean square errors (RMSEs) of the estimates defined by√
(Nm)

−1 ∑Nm

m=1 ∥x̂t (m)− xt∥2, where x̂t (m) is the mth
state estimate.

Fig. 1 displays the estimates of the noise variances obtained
with the proposed approach and IMM-VB. The means of
the noise variance estimates were also computed, which are
compared to the true values of the variances. The proposed
approach APF-VB provides a better performance than IMM-
VB for tracking the variance changes. Fig. 2 displays the RM-
SEs of state estimates obtained with different approaches. The
proposed approach provides smoother estimates than the other
methods, which results in better state estimation accuracy. It
seems that a particle filter combined with VB iterations better
estimates the state vector and the noise variance conditionally
on the particles associated with the system mode rt when
the system mode of the JMLS switches. Finally, the runtimes
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(a) IMM-VB [9]
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Fig. 1: Estimates of the measurement noise variances obtained
with the IMM-VB [9] and the APF-VB. Noise variance
estimates for 100 MC simulation runs: gray dash-dotted lines;
Means of the noise variance estimates (100 MC simulation
runs): black solid line; True values: red dashed line.
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(a) IMM [3]
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Fig. 2: RMSEs of the state estimates for different approaches.

TABLE I: Runtime of different approaches.

Approaches Runtime of 100 MC simulations (in s)
IMM 5.32

Efficient particle filter 85.9
IMM-VB 10.2
APF-VB 145.5

of 100 MC simulations obtained with different approaches
are reported in Table I. This table allows the additional
computational complexity of APF-VB (with respect to IMM-
VB) to be evaluated. Although variational inference is used
to approximate the joint posterior distribution of xt and Σt

for both APF-VB and IMM-VB, the VB step in the proposed
approach is implemented conditionally on the particles of the
system mode rt, which are generated according to the APF.
This strategy allows a better estimation performance for APF-
VB at the price of a higher computational cost.

V. CONCLUSIONS

An auxiliary particle filter with variational inference was
investigated for obtaining the joint posterior distribution of
the system mode, the state and the measurement noise covari-
ance matrix of a jump Markov linear system. The proposed
approach was compared to three algorithms of the state-of-
the-art, namely IMM, IMM with variational inference, and
the efficient particle filter, providing accurate estimates of the
state and measurement noise variance at the price of a higher
computational cost. Our future work will be devoted to imple-
menting the proposed approach for jump Markov systems with
unknown process and measurement noise covariance matrices.
Applying the proposed approach for jump Markov nonlinear
systems is also under investigation.
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