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1 ABSTRACT 
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Estimation 

 

 

Digital video usage has significantly increased in recent years. Since both the 

spatial and temporal resolutions of videos increased, new video compression standards 

such as High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) are 

developed to achieve higher compression efficiency. VVC has higher compression 

efficiency than HEVC at the cost of higher computational complexity. Approximate 

computing can be used to reduce the computational complexity of error tolerant 

applications such as video compression. Dedicated hardware implementations are 

required for real time video compression. 

In this thesis, we propose efficient exact HEVC and VVC hardware 

implementations. To reduce the computational complexity of HEVC and VVC 

algorithms, we propose approximate VVC fractional interpolation (FI) filters, HEVC 

two-dimensional (2D) discrete cosine transform (DCT) using approximate constant 

multiplication, and approximate VVC affine motion estimation (AME). We propose 

efficient approximate HEVC and VVC hardware implementations using approximate 

algorithms and approximate hardware. 
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In this thesis, approximate VVC FI filters are proposed. The proposed 

approximate filters reduce computational complexity of VVC FI at the expense of very 

small quality loss. Three VVC FI hardware implementing the proposed approximate 

VVC FI filters are also proposed. A novel VVC FI hardware using memory based 

constant multiplication is proposed. A new technique called decomposed coefficients is 

proposed for implementing HEVC FI (HFI) and VVC FI (VFI). The proposed technique 

decomposes the coefficients of FIR filters such that the number of additions is reduced. 

A new approximate constant multiplication technique is used to propose a HEVC 2D 

DCT hardware, in which common constant multiplications are calculated once so that 

the number of multiplications is reduced. The first FPGA implementations of VVC FI 

and HEVC fractional motion estimation (FME) using an HLS tool in the literature are 

proposed. Novel FPGA implementations of HEVC DCT algorithm using an HLS tool 

are proposed. An approximate VVC AME hardware is proposed using a proposed 

approximate absolute difference (AD) hardware, approximate adder tree, and sub-

sampling.  
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2 ÖZET 

 

VERİMLİ HEVC VE VVC VİDEO SIKIŞTIRMA DONANIM TASARIMLARI 
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Son yıllarda dijital video kullanımı çok arttı. Videoların hem uzamsal hem de 

zamansal çözünürlükleri arttığı için, daha yüksek sıkıştırma verimliliği elde etmek için, 

Yüksek Verimli Video Kodlama (HEVC) ve Çok Yönlü Video Kodlama (VVC) gibi 

yeni video sıkıştırma standartları geliştirildi. VVC daha yüksek hesaplama karmaşıklığı 

pahasına HEVC'den daha yüksek sıkıştırma verimliliğine sahiptir. Yaklaşık hesaplama, 

video sıkıştırma gibi hataya dayanıklı uygulamaların hesaplama karmaşıklığını 

azaltmak için kullanılabilir. Gerçek zamanlı video sıkıştırma için özel donanım 

gerçeklemeleri gerekmektedir. 

Bu tezde, verimli tam doğru HEVC ve VVC donanım gerçeklemeleri öneriyoruz. 

HEVC ve VVC algoritmalarının hesaplama karmaşıklığını azaltmak için, yaklaşık VVC 

kesirli interpolasyon (FI) filtreleri, yaklaşık sabit çarpma kullanan HEVC iki boyutlu 

(2D) ayrık kosinüs dönüşümü (DCT) ve yaklaşık VVC afin hareket tahmini (AME) 

öneriyoruz. Yaklaşık algoritmalar ve yaklaşık donanım kullanarak verimli yaklaşık 

HEVC ve VVC donanım gerçeklemeleri öneriyoruz. 

Bu tezde yaklaşık VVC FI filtreleri önerildi. Önerilen yaklaşık filtreler, çok küçük 

bir kalite kaybı pahasına VVC FI'nın hesaplama karmaşıklığını azaltmaktadır. Önerilen 
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yaklaşık VVC FI filtrelerini gerçekleyen üç VVC FI donanımı da önerildi. Bellek 

tabanlı sabit çarpma kullanan yeni bir VVC FI donanımı önerildi. HEVC FI (HFI) ve 

VVC FI'nı (VFI) gerçeklemek için ayrıştırılmış katsayılar adlı yeni bir teknik önerildi. 

Önerilen teknik, FIR filtrelerinin katsayılarını toplama sayısını azaltacak şekilde 

ayrıştırmaktadır. Yeni bir yaklaşık sabit çarpma tekniği kullanılarak çarpma sayısını 

azaltacak şekilde ortak sabit çarpmaları bir defa hesaplayan HEVC 2D DCT donanımı 

önerildi. Literatürdeki bir HLS yazılımı kullanılarak VVC FI ve HEVC kesirli hareket 

tahmininin (FME) ilk FPGA gerçeklemeleri önerildi. HEVC DCT algoritmasının HLS 

yazılımı kullanılarak yeni FPGA gerçeklemeleri önerildi. Önerilen bir yaklaşık mutlak 

fark (AD) donanımı, yaklaşık toplayıcı ağacı ve alt örnekleme kullanılarak yaklaşık bir 

VVC AME donanımı önerildi.  
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1 CHAPTER I      

 

INTRODUCTION 

 

 

Uncompressed video sequences produce an enormous amount of data, and the 

widespread use of video has steadily increased. Furthermore, the production of video 

content has shifted away from exclusive professional studios to personal production, 

real-time video chat, remote home monitoring, and even always-on wearable cameras. 

Hence, video traffic is the main load on communication networks and data storage in 

spite of the significant developments in video compression standards [1]. Digital video 

content now comprises around 80% of all the internet traffic. Mobile internet video 

traffic is also growing dramatically [2]. 

Video compression standards exploit temporal and spatial redundancy for 

achieving compression. Intra-frame prediction exploits the spatial redundancy between 

adjacent blocks in a frame, whereas motion-compensated prediction exploits the 

extensive temporal redundancy between frames. In either case, the resultant prediction 

error, which is derived from the difference between the original block and its prediction, 

is transmitted using transform coding. Transform coding comprises decorrelating linear 

transform, scalar quantization of the transform coefficients and entropy coding. 

ITU and ISO recently developed Versatile Video Coding (VVC) standard [3]-[8]. 

VVC has higher compression efficiency than High Efficiency Video Coding (HEVC) 

standard. However, it has higher computational complexity than HEVC [9]-[14]. 

Approximate computing can be used to reduce the computational complexity of error 
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tolerant applications such as video compression. Dedicated hardware implementations 

are required for real time video compression. 

In this thesis, we propose efficient exact HEVC and VVC hardware 

implementations. To reduce the computational complexity of HEVC and VVC 

algorithms, we propose approximate VVC fractional interpolation (FI) filters, HEVC 

two-dimensional (2D) discrete cosine transform (DCT) using approximate constant 

multiplication, and approximate VVC affine motion estimation (AME). We propose 

efficient approximate HEVC and VVC hardware implementations using approximate 

algorithms and approximate hardware. 

 

1.1 HEVC Video Compression Standard 

High efficiency video coding (HEVC) achieves 50% more compression than 

H.264 at the cost of higher computational complexity [15]. Figure 1.1 shows the top-

level block diagram of an HEVC encoder. An HEVC encoder has a forward path and a 

reconstruction path. The forward path is utilized to encode a video frame using intra and 

inter predictions and to generate the bit stream after the transform and quantization 

process.  

In the encoding process, the frame is divided into coding units (CU), which can 

vary in size from 8×8, 16×16, 32×32, to 64×64 pixels. Every CU is encoded in either 

intra or inter mode determined by the mode decision. Both intra and inter prediction 

methods employ prediction unit (PU) partitioning within the CUs. PU sizes vary from 

4×4 to 64×64. Mode decision decides whether a PU is encoded in intra or inter mode 

according to video quality and bit-rate. After mode decision decides the prediction 

mode, the predicted block is subtracted from the original block, resulting in the residual 

block. Subsequently, the residual block is transformed by DCT / discrete sine transform 

(DST) and quantized. Transform unit (TU) sizes vary from 4×4 to 32×32. Lastly, the 

encoded bitstream is generated by entropy coder. 
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Figure 1.1 HEVC Encoder Block Diagram 

 

The reconstruction path in the encoder guarantees that both encoder and decoder 

utilize identical reference frames for intra and inter prediction since a decoder never 

receives original images. It starts with inverse quantization and inverse transform. The 

coefficients of quantized transform are inverse quantized and inverse transformed to 

form the reconstructed residual block. Because quantization is a lossy operation, the 

reconstructed residual block is not identical to the original residual block. The 

reconstructed residual block is added to the predicted block to generate the 

reconstructed frame. Then, deblocking filter (DBF) decreases the effects of blocking 

artifacts in the reconstructed frame. 

 Intra prediction predicts the pixels of a block from the pixels in neighboring 

blocks that have already been encoded and reconstructed. In HEVC, intra PU sizes vary 

from 4×4 to 64×64 for the luminance component. Intra prediction for a PU can have up 

to 35 modes [16]. 

 Inter prediction predicts the pixels of a block in the current frame from the 

pixels in the previous frames blocks that have already been encoded and reconstructed. 

In HEVC, inter PU sizes vary from 8×4/4×8 to 64×64. HEVC inter prediction utilizes 

integer pixel motion estimation and fractional (sub-pixel) motion estimation. First, 

integer pixel motion estimation is done for an inter PU. Then, fractional (sub-pixel) 

motion estimation is done for the same inter PU. In HEVC, two different 7-tap and one 

8-tap finite impulse response (FIR) filters are used for fractional interpolations. 

In HEVC, integer based DCT is used. TUs are square-shaped with sizes from 4×4 

to 32×32. HEVC also uses DST for the 4×4 intra prediction.  
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1.2 VVC Video Compression Standard 

VVC standard has better coding efficiency than HEVC at the cost of much higher 

computational complexity. VVC has a similar top-level block diagram to HEVC. In 

VVC, the main blocks of HEVC are improved to achieve better compression at the cost 

of higher computational complexity.  

VVC intra prediction is similar to HEVC intra prediction. In VVC, angular intra 

prediction has 65 modes. Moreover, 4-tap cubic and 4-tap gaussian filters are used in 

angular intra prediction modes of VVC.  

VVC inter prediction uses the same two-stage search as HEVC. VVC utilizes 

seven 8-tap and eight 7-tap FIR filters for fractional interpolation.  

In VVC, integer based DCT is used similar to HEVC. However, VVC utilizes an 

adaptive multiple transform (AMT) method. VVC TU sizes vary from 4×4 to 64×64 

[17]. 

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar 

to HEVC with some improvements. 

 

1.3 Thesis Contributions 

Fractional interpolation (FI) is a computationally complex algorithm used in the 

HEVC and VVC video encoder and decoder. FI accounts for 25% and 50% of the 

HEVC encoder and decoder complexity, respectively. In this thesis, approximate VVC 

FI filters are proposed [18]. The proposed approximate VVC FI filters reduce 

computational complexity of VVC FI at the expense of very small quality loss. Three 

VVC FI hardware implementing the proposed approximate VVC FI filters are also 

proposed. The proposed approximate VVC FI hardware have higher speed, smaller 

area, and up to 51% lower power consumption than the exact VVC FI hardware. 

Therefore, they can be used in consumer electronics devices requiring high speed, small 

area, low power consuming VVC encoder hardware. 

A novel VVC FI hardware using memory based constant multiplication is 

proposed [19]. The proposed hardware stores pre-computed products of an input pixel 

with multiple constant coefficients in memory. It implements multiplications with 

constant coefficients using these pre-computed products. Several optimizations are 
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proposed to reduce memory size. The proposed VVC FI hardware can process 49 full 

HD (1920×1080) video frames per second (fps). It has up to 9.4% less power 

consumption than VVC FI hardware in the literature. 

In this thesis, a novel technique is proposed for implementing HEVC FI [20]. It is 

also used for VVC FI. The proposed technique decomposes the coefficients of FIR 

filters such that the number of additions is reduced. In this thesis, an HEVC FI 

hardware, a VVC FI hardware, and two approximate VVC FI hardware are designed 

and implemented using the proposed technique. The proposed HEVC FI hardware has 

higher performance, less area, and less power consumption than the best HEVC FI 

hardware in the literature. The proposed VVC FI hardware has higher performance, less 

area, and less power consumption than the best VVC FI hardware in the literature. The 

proposed two approximate VVC FI hardware have the same performance, less area, and 

less power consumption than the best approximate VVC FI hardware in the literature. 

In this thesis, an approximate constant multiplication technique, which has been 

proposed in [21], is used to propose an HEVC 2D DCT for all transform unit (TU) 

sizes. We use the approximate constant multiplication for multiplications with only the 

DCT coefficients that do not cause high average percentage error. There are some 

common constant multiplications that are calculated once so that the number of 

multiplications is reduced. The proposed approximate HEVC DCT hardware, in the 

worst case, can process 76 QFHD (3840×2160) frames per second. 

High-level synthesis (HLS) is used to increase productivity. In this thesis, we 

propose the first HLS implementations of VVC FI algorithm in the literature [22]. Three 

different C++ codes are developed based on the software implementation of VVC FI in 

the VVC test model software encoder (VTM) [23]. All these C++ codes are synthesized 

to Verilog RTL using Xilinx Vivado HLS tool. The Verilog RTL codes are 

implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado tool. The best proposed 

VVC FI HLS implementation can process 62 full HD (1920×1080) video frames per 

second. We propose the first HEVC fractional motion estimation (FME) HLS 

implementations by developing two different C++ codes based on the HEVC reference 

software encoder (HM) [24]. We propose novel HEVC 2D DCT HLS implementations 

by developing two different C++ codes based on the HEVC reference software encoder 

(HM) [24]. 

VVC uses affine motion estimation (AME) which considers rotation, zooming, 

and shearing motions of blocks during block matching motion estimation (ME). AME 
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achieves higher video compression than translational ME at the cost of much more 

computational complexity. In this thesis, an approximate VVC AME hardware is 

proposed using a proposed approximate absolute difference (AD) hardware, 

approximate adder tree, and sub-sampling. The proposed approximate AD hardware 

reduces the bit length of each AD value from 8 to 5. A new approximate adder tree is 

proposed to decrease the bit length of the adders. To further reduce the computational 

complexity of VVC AME, sub-sampling is used. 

 

1.4 Thesis Organization 

The rest of the thesis is organized as follows.  

Chapter II explains VVC FI. It presents the proposed approximate VVC FI filters. 

MCMF1, BF2 and MCMF2 hardware designs are explained, and their implementation 

results are presented. The proposed VVC FI hardware using memory based constant 

multiplication is described and its implementation results are given. 

Chapter III explains the proposed decomposed coefficients technique for 

implementing FI hardware. It describes the proposed exact and approximate HEVC and 

VVC FI hardware using the proposed technique. 

Chapter IV explains the approximate constant multiplier proposed in [21]. It 

explains the proposed approximate HEVC DCT using the approximate constant 

multiplier and gives the experimental results. 

Chapter V explains the first FPGA implementations of VVC FI algorithm using 

an HLS tool in the literature. It describes the first FPGA implementations of HEVC 

FME algorithm using an HLS tool in the literature. It describes novel FPGA 

implementations of HEVC 2D DCT algorithm using an HLS tool. 

Chapter VI explains the VVC AME. It explains the proposed approximate 

absolute difference hardware, approximate adder tree, and sub-sampling that are used in 

the proposed approximate VVC AME hardware. It gives the implementation results. 

Chapter VII presents conclusions and future work. 
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2 CHAPTER II    

 

APPROXIMATE AND EXACT VERSATILE VIDEO CODING FRACTIONAL 

INTERPOLATION FILTERS AND THEIR HARDWARE 

IMPLEMENTATIONS 

 

VVC fractional interpolation (FI) has higher computational complexity than 

HEVC FI. HEVC FI uses 3 different (one 8-tap, two 7-tap) finite impulse response 

(FIR) filters. HEVC FI interpolates 15 fractional pixels (3 horizontal half pixels, 3 

vertical half pixels, 9 quarter pixels) for every integer pixel. Each FIR filter is used to 

interpolate 5 fractional pixels. VVC FI uses 15 different (seven 8-tap, eight 7-tap) FIR 

filters. VVC FI interpolates 255 fractional pixels (15 horizontal half pixels, 15 vertical 

half pixels, 225 quarter pixels) for every integer pixel. Each FIR filter is used to 

interpolate 17 fractional pixels.  

An approximate VVC FI filter (F1) and its baseline hardware (BF1) are 

proposed in [25]. In this thesis, we propose a more efficient hardware for implementing 

F1 (MCMF1) using common offset values and Hcub multiplierless constant 

multiplication (MCM) technique [26]. In this thesis, we propose another approximate 

VVC FI filter (F2), its baseline hardware (BF2), and a more efficient hardware for 

implementing F2 (MCMF2) using common offset values and Hcub MCM technique 

[26]. 

F1 and F2 approximate VVC FI filters reduce computational complexity of 

VVC FI at the expense of very small quality loss. F2 filter causes slightly more quality 

loss than F1 filter.  
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MCMF1, BF2 and MCMF2 approximate VVC FI hardware are implemented 

using Verilog HDL. Verilog RTL codes are implemented to a 28 nm FPGA. The FPGA 

implementations are verified on an FPGA board. 

F2 approximate VVC FI filters are proposed and used for fractional motion 

estimation. Fractional motion estimation is done in two steps. First, fractional 

interpolation is performed. Then, search operation is performed using the interpolated 

fractional pixels. The proposed approximate VVC FI filters are used in the fractional 

interpolation step. 

There is no approximate VVC FI filter in the literature for fractional motion 

estimation. VVC standard uses an adaptive motion vector resolution (AMVR) scheme 

for coding motion vector differences with different precision. Alternative half-sample 

interpolation filters for the AMVR scheme are proposed in [27]. These filters are not 

proposed and used for fractional motion estimation. 

Exact VVC FI hardware are proposed in [28] and [29]. BF1, MCMF1, BF2 and 

MCMF2 approximate VVC FI hardware are proposed for fractional motion estimation. 

They calculate 255 fractional pixels (FPs) for every integer pixel. Since exact VVC FI 

hardware proposed in [28] calculates 1 fractional pixel for every integer pixel, it can 

only be used for fractional motion compensation. Since exact VVC FI hardware 

proposed in [29] calculates 255 FPs for every integer pixel, it can be used for fractional 

motion estimation. 

The proposed approximate VVC FI hardware have higher speed, smaller area, 

and up to 51% lower power consumption than the exact VVC FI hardware proposed in 

[29]. BF1 and MCMF1 hardware can process 47 full HD (1920×1080) video frames per 

second. BF2 and MCMF2 hardware can process 49 full HD (1920×1080) video frames 

per second. BF2 and MCMF2 hardware have higher speed, smaller area and lower 

power consumption than BF1 and MCMF1 hardware. However, they have slightly 

worse rate-distortion performance than BF1 and MCMF1 hardware.  

The proposed approximate VVC FI hardware can be used in a VVC encoder 

hardware to perform fractional interpolation. VVC encoder hardware is expected to be 

used in consumer electronics devices requiring real time video encoding with high 

compression efficiency. VVC encoder hardware can be integrated into a System-on-

Chip used in consumer electronics devices as a hardware accelerator connected to the 

on-chip bus. 
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Several HEVC FI hardware are proposed in the literature [30]-[33]. 

Approximate HEVC FI filters are proposed in [34]. BF1, MCMF1, BF2 and MCMF2 

hardware are compared with them. 

In this thesis, we also propose a new VVC FI hardware using memory based 

constant multiplication for all prediction unit (PU) sizes. The proposed hardware stores 

pre-computed products of an input pixel with multiple constant coefficients in memory. 

Multiplications with constant coefficients are implemented using these pre-computed 

products. Several optimizations are proposed to decrease memory size. 

 

2.1 VVC Fractional Interpolation 

VVC FI uses seven 8-tap and eight 7-tap FIR filters. Coefficients of the first 

nine FIR filters are shown in Table 2.1. P-3,…,P4 represent input pixels, and their sub-

indices represent indices of coefficients. F8 FIR filter equation is shown in (2.1). 

 

Table 2.1  Coefficients of VVC FI FIR Filters  

FIR Filters P-3 P-2 P-1 P0 P1 P2 P3 P4 

F1 0 1 -3 63 4 -2 1 0 

F2 -1 2 -5 62 8 -3 1 0 

F3 -1 3 -8 60 13 -4 1 0 

F4 -1 4 -10 58 17 -5 1 0 

F5 -1 4 -11 52 26 -8 3 -1 

F6 -1 3 -9 47 31 -10 4 -1 

F7 -1 4 -11 45 34 -10 4 -1 

F8 -1 4 -11 40 40 -11 4 -1 

F9 -1 4 -10 34 45 -11 4 -1 

 

𝐹8 = (
−𝑃−3 + 4 × 𝑃−2 − 11 × 𝑃−1 + 40 × 𝑃0

+ 40 × 𝑃1 − 11 × 𝑃2 + 4 × 𝑃3 − 𝑃4
) ≫ 6              (2.1) 

 

As can be seen in the table, the coefficients of F9 and F7 FIR filters are 

symmetric. Similarly, the coefficients of F10 and F6, F11 and F5, F12 and F4, F13 and F3, 

F14 and F2, F15 and F1 are symmetric. Therefore, the coefficients of F10, F11, F12, F13, F14 

and F15 are not shown in the table. 

Integer pixels and FPs are shown in Figure 2.1. There are 15 horizontal half 

pixels and 15 vertical half pixels between two adjacent horizontal and vertical integer 

pixels, respectively. They are interpolated from closest integer pixels using fifteen FIR 
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filters F1, F2, …, F14, F15. There are 225 quarter pixels between adjacent horizontal and 

vertical half pixels. They are interpolated from the closest horizontal half pixels using 

fifteen FIR filters F1, F2, …, F14, F15. 

 

F₁
F₂
F₃
F₄
F₅
F₆
F₇
F₈
F₉
F₁₀
F₁₁
F₁₂
F₁₃
F₁₄
F₁₅

Integer Pixel Quarter PixelHorizontal Half Pixel Vertical Half Pixel
 

Figure 2.1 Integer pixels and fractional pixels in VVC standard 

 

2.2 Proposed Approximate VVC Fractional Interpolation Filters 

The approximate VVC FI F1 FIR filter is proposed in [25].  The coefficients of 

these fourteen 3-tap FIR filters and one 4-tap FIR filter are shown in Table 2.2. 

Small coefficients of VVC FI FIR filters have less effect on their results. The 

values of adjacent pixels are similar because of spatial correlation. Therefore, 

coefficients of F1 FIR filters are determined by assuming that pixels multiplied with 

small coefficients are similar. For example, for VVC FI FIR filter F2 shown in Table 

2.1, if the values of pixels (P-3, P-2, P-1) multiplied with first three coefficients (-1, 2, -5) 
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are the same, the result of F2 filter can be calculated by multiplying one pixel with -4 (-

1+2-5 = -4).  

In this thesis, we propose another approximate VVC FI filter (F2). The 

coefficients of F2 FIR filters (fourteen 3-tap and one 4-tap) are shown in Table 2.3. 

These coefficients are determined by replacing most of the coefficients of F1 FIR filters 

with closest 2n values. Therefore, multiplications with most of the coefficients of F2 

FIR filters are performed using only shift operations. This reduces the number of adders 

required to implement the multiplications. 

Table 2.2  Coefficients of Proposed Approximate F1 FIR Filters  

F1 FIR Filters P-1 P0 P1 P2 

F1F1 -2 63 3 0 

F1F2 -4 62 6 0 

F1F3 -6 60 10 0 

F1F4 -7 58 13 0 

F1F5 -8 52 20 0 

F1F6 -7 47 24 0 

F1F7 -8 45 27 0 

F1F8 -8 40 40 -8 

F1F9 0 27 45 -8 

F1F10 0 24 47 -7 

F1F11 0 20 52 -8 

F1F12 0 13 58 -7 

F1F13 0 10 60 -6 

F1F14 0 6 62 -4 

F1F15 0 3 63 -2 

 

Table 2.3  Coefficients of Proposed Approximate F2 FIR Filters  

F2 FIR Filters P-1 P0 P1 P2 

F2F1 -2 64 2 0 

F2F2 -4 64 4 0 

F2F3 -8 64 8 0 

F2F4 -8 56 16 0 

F2F5 -8 56 16 0 

F2F6 -8 40 32 0 

F2F7 -8 40 32 0 

F2F8 -8 40 40 -8 

F2F9 0 32 40 -8 

F2F10 0 32 40 -8 

F2F11 0 16 56 -8 

F2F12 0 16 56 -8 

F2F13 0 8 64 -8 

F2F14 0 4 64 -4 

F2F15 0 2 64 -2 
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VVC FI filter used for fractional motion estimation in VVC test model software 

encoder [23] is replaced with the proposed approximate VVC FI filters F1 and F2. First 

ten frames of several test videos [35] are coded with low delay P test configuration 

using VVC test model software encoder with VVC FI FIR filters, F1 FIR filters and F2 

FIR filters. 

BD-Rate and BD-PSNR results are shown in Table 2.4. F1 and F2 filters reduce 

computational complexity of VVC FI at the expense of very small PSNR loss and bit 

rate increase. F1 filter has slightly better rate-distortion performance than F2 filter. 

 

Table 2.4  BD-Rate and BD-PSNR Results 

 F1 Filter F2 Filter 

Video BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB) 

2560×1600 
People on Street 1.59 -0.059 1.99 -0.074 

Traffic 0.42 -0.011 0.54 -0.024 

1920×1080 

Tennis 0.52 -0.015 0.44 -0.013 

Kimono 0.03 -0.001 0.20 -0.006 

Basketball Drive 2.49 -0.047 2.80 -0.053 

Park Scene 2.26 -0.073 2.61 -0.084 

1280×720 

Vidyo1 0.85 -0.033 1.03 -0.039 

Vidyo4 0.23 -0.006 0.65 -0.020 

Kristen and Sara 1.62 -0.055 2.36 -0.081 

Four People 0.69 -0.027 0.87 -0.036 

Average 1.07 -0.032 1.35 -0.043 

 

2.3 Proposed Approximate VVC Fractional Interpolation Hardware 

We proposed an approximate baseline VVC FI hardware for implementing F1 

filter (BF1) in [25]. In this thesis, we propose a more efficient hardware for 

implementing F1 filter (MCMF1) using common offset values and Hcub MCM 

technique. In this thesis, we propose an approximate baseline VVC FI hardware for 

implementing F2 filter (BF2). We also propose more efficient hardware for 

implementing F2 filter (MCMF2) using common offset values and Hcub MCM 

technique.    

Proposed BF1 hardware is shown in Figure 2.2. Interconnects boxes represent 

interconnects in BF1 hardware. They are used to simplify drawing interconnects in the 

figure. BF1 hardware implements multiplications with filter coefficients using adders 

and shifters. It has 8 filter datapaths hardware. As shown in Figure 2.3, 15 F1 FIR filters 

are implemented using 15 parallel datapaths in one filter datapaths hardware. C, D, E, F 
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inputs represent the pixels given to each filter datapaths. For example, P-1, P0, P1, P2 are 

given to Filter Datapaths 4 as inputs C, D, E, F, respectively. BF1 hardware interpolates 

8×15 FPs in a clock cycle using 15 integer pixels or 15 horizontal half pixels. 

 

 

Figure 2.2 Approximate baseline VVC FI hardware for implementing F1 filter (BF1) 
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Figure 2.3 Filter datapaths hardware in BF1 hardware. 
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Since 255 FPs should be interpolated for every integer pixel, 64×255 FPs should 

be interpolated for an 8×8 PU. As shown in Figure 2.4, BF1 hardware interpolates FPs 

for an 8×8 PU in 147 clock cycles. It has 4 pipeline stages. It interpolates 8×15×15 

horizontal half pixels, which will be used to interpolate quarter pixels, in 15 clock 

cycles and stores them into the transpose memories. It interpolates 8×8×15 vertical half 

pixels in 8 clock cycles. It interpolates 8×8×255 quarter pixels in 8×15 clock cycles 

using the horizontal half pixels in the transpose memories. 

 

 

Figure 2.4 Scheduling of BF1, MCMF1, BF2, MCMF2 hardware. 

 

BF1 hardware uses 30 Block RAMs (BRAM) as shown in Figure 2.2. It uses 15 

BRAMs as transpose memories (TP BRAM) for storing the horizontal half pixels which 

are used to interpolate quarter pixels. It uses 15 BRAMs as output memories (OUTPUT 

BRAM) for storing output FPs. 

Proposed MCMF1 hardware is shown in Figure 2.5. Interconnects boxes 

represent interconnects in MCMF1 hardware. They are used to simplify drawing 

interconnects in the figure. 

MCMF1 hardware interpolates 8×15 FPs in parallel using 15 integer pixels or 

15 horizontal half pixels in a clock cycle. It calculates three common offset values 

shown in Table 2.5 for 15 F1 FIR filters to reduce number of constant multiplications. 

These offset values are calculated in offset datapath (OD) using input pixels. 

Since common offset values are used, each F1 FIR filter should be calculated 

using the coefficients shown in Table 2.5, and the result should be added with the 

required common offset value. As an example, offset 1 (O1) equation and the first F1 

FIR filter with offset (F1OF1) equation are shown in (2.2) and (2.3), respectively. 

 

𝑂1 = (−8 × 𝑃−1 + 64 × 𝑃0 + 8 × 𝑃1)                         (2.2) 

𝐹1𝑂𝐹1 = (6 × 𝑃−1 − 𝑃0 − 5 × 𝑃1 + 𝑂1) ≫ 6                         (2.3) 
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Figure 2.5 Proposed approximate MCM VVC FI hardware for implementing F1 filter 

(MCMF1) 

 

Table 2.5  Coefficients of Proposed Approximate F1 FIR Filters with Offset 

 
Coefficients 

 

 

Required 

Offset 

P-1 P0 P1 P2 

Offsets 

O1 -8 64 8 0 

O2 0 8 64 -8 

O3 -8 8 8 -8 

F1 FIR Filters 

with Offset 

F1OF1 6 -1 -5 0 O1 

F1OF2 4 -2 -2 0 O1 

F1OF3 2 -4 2 0 O1 

F1OF4 1 -6 5 0 O1 

F1OF5 0 -12 12 0 O1 

F1OF6 1 -17 16 0 O1 

F1OF7 0 -19 19 0 O1 

F1OF8 0 32 32 0 O3 

F1OF9 0 19 -19 0 O2 

F1OF10 0 16 -17 1 O2 

F1OF11 0 12 -12 0 O2 

F1OF12 0 5 -6 1 O2 

F1OF13 0 2 -4 2 O2 

F1OF14 0 -2 -2 4 O2 

F1OF15 0 -5 -1 6 O2 

 

As can be seen in Table 2.5, each input pixel should be multiplied with multiple 

constant coefficients. The constant multiplications of each input pixel when F1 FIR 

filters are calculated with and without using common offset values are shown in Table 

2.6. In the table, P-4 to P6 represent input pixels for FIR filters.  
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Table 2.6 Constant Multiplications in F1 FIR Filters 

 Input Pixel Constants Datapath Calculated Products 

Without Offset 

P-4, P6 1,2,4,6,7,8 MD1 3,7 

P-3 ... P5 

1,2,3,4,6,7,8,10,  

13,20,24,27,40, 45,47,52, 

58,60,62,63 

MD2 
3,5,7,13,15,27,29,31, 

45,47,63 

With Offset 

P-4, P6 1,2,4,6 MD1 3 

P-3 … P5 
1,2,4,5,6,12, 

16,17,19,32 
MD2 3,5,17,19 

 

Proposed MCMF1 hardware uses Hcub MCM technique [26] for implementing 

multiplications with multiple constant coefficients to reduce the number of adders. As 

shown in Table 2.6, since constant coefficients of input pixels (P-4, P6) and (P-3 … P5) 

are different, two different MCM datapaths, MD1 and MD2, are used. 

When the common offset values are used, the number of calculated products in 

MD1 is reduced from 2 to 1 and number of calculated products in MD2 is reduced from 

11 to 4. Therefore, MCMF1 hardware uses the common offset values. 

MD1, MD2 and OD in MCMF1 hardware are shown in Figure 2.6. MD1 takes 

pixel Px as input, and it calculates 3×Px using adder and shifter. MD2 takes pixel Px as 

input, and it calculates 3×Px, 5×Px, 17×Px, 19×Px using adders and shifters. Since 

MCMF1 hardware interpolates 8×15 FPs in parallel, OD calculates 8 sets of three 

common offset values using adders and shifters. Each set of three offset values is used 

for interpolating 15 FPs. 
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Figure 2.6 MD1, MD2, and OD in MCMF1 hardware. 

 

As it can be seen in Table 2.5, there are common sub-expressions in F1 FIR 

filters with offset. The sub-expression (-2×P0 -2×P1) is common in FIR filters F1OF2 
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and F1OF14. The sub-expression (-12×P0 +12×P1) in FIR filter F1OF5 is negated version 

of the sub-expression (12×P0-12×P1) in FIR filter F1OF11. The sub-expression (-

19×P0+19×P1) in FIR filter F1OF7 is negated version of the sub-expression (19×P0-

19×P1) in FIR filter F1OF9. The common sub-expressions in F1 FIR filters with offset 

are calculated once in common datapath (CD) and the results are used in corresponding 

F1 FIR filters with offset.  

MCMF1 hardware interpolates 8×15 FPs in parallel in a clock cycle. 15 FPs for 

an input pixel are interpolated using 15 F1 FIR filters shown in Table 2.5. There are 

common sub-expressions in F1 FIR filters with offset used for interpolating FPs for 

adjacent input pixels. FIR filter F1OF13 equation for each input pixel, i.e. (2×P0-

4×P1+2×P2), is the same as FIR filter F1OF3 equation for the adjacent input pixel. 

Negated version of the sub-expression (-6×P1+P2) in FIR filter F1OF12 equation for 

each input pixel exists in FIR filter F1OF1 equation for the adjacent input pixel. 

Negated version of the sub-expression (-P1+6×P2) in FIR filter F1OF15 equation for 

each input pixel exists in FIR filter F1OF4 equation for the adjacent input pixel. All 

these common sub-expressions are also calculated once in CD and their results are used 

in corresponding FIR filters. 

As shown in Figure 2.5, after results of MD1, MD2, CD and OD are generated, 

adder trees calculate FPs by adding these results. As shown in Figure 2.4, MCMF1 

hardware interpolates the FPs for an 8×8 PU in 147 clock cycles same as BF1 hardware. 

MCMF1 hardware uses 30 Block RAMs (BRAM) as shown in Figure 2.5. It 

uses 15 BRAMs as transpose memories (TP BRAM) for storing the horizontal half 

pixels which are used to interpolate quarter pixels. It uses 15 BRAMs as output 

memories (OUTPUT BRAM) for storing output FPs. 

Proposed BF2 hardware is similar to BF1 hardware shown in Figure 2.2. BF2 

hardware also has 8 filter datapaths hardware. However, BF2 filter datapaths hardware 

is different than BF1 filter datapaths hardware. 15 F1 FIR filters are implemented using 

15 parallel datapaths in one BF1 filter datapaths hardware. However, as shown in 

Figure 2.7, 11 F2 FIR filters are implemented using 11 parallel datapaths in one BF2 

filter datapaths hardware. C, D, E, F inputs represent the pixels given to each filter 

datapaths. For example, P-1, P0, P1, P2 are given to Filter Datapaths 4 as inputs C, D, E, 

F, respectively.  
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Figure 2.7 Filter datapaths hardware in BF2 hardware. 

As shown in Table 2.3, F2 FIR filters F2F5, F2F7, F2F10, F2F12 are the same as 

F2 FIR filters F2F4, F2F6, F2F9, F2F11, respectively. Therefore, BF2 hardware only 

calculates FIR filters F2F5, F2F7, F2F10, F2F12 and their results are used for FIR filters 

F2F4, F2F6, F2F9, F2F11, respectively.   

Most of the coefficients of F2 FIR filters are 2n values. Multiplications with 

these coefficients are performed using only shift operations. Therefore, BF2 filter 

datapaths hardware has less adders than BF1 filter datapaths hardware.  

As shown in Figure 2.4, BF2 hardware interpolates the FPs for an 8×8 PU in 

147 clock cycles same as BF1 hardware. BF2 hardware uses 15 BRAMs as transpose 

memories (TP BRAM) for storing the horizontal half pixels which are used to 

interpolate quarter pixels. However, since it calculates 11 FIR filters, it uses 11 BRAMs 

as output memories (OUTPUT BRAM) for storing output FPs. 

Proposed MCMF2 hardware is similar to MCMF1 hardware shown in Figure 

2.5. MD1 and OD in MCMF2 and MCMF1 hardware are the same. MCMF1 hardware 

has 2 MD1 and 9 MD2. However, MCMF2 hardware has 11 MD1, and it does not have 

any MD2. CD in MCMF2 hardware is different than the CD in MCMF1 hardware. 
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Adder trees in MCMF2 and MCMF1 hardware are also different. 

MCMF2 hardware interpolates 8×15 FPs in parallel using 15 integer pixels or 

15 horizontal half pixels in a clock cycle. It calculates three common offset values 

shown in Table 2.7 for 15 F2 FIR filters to reduce number of constant multiplications. 

These offset values are calculated in OD using input pixels.  

 

Table 2.7 Coefficients of Proposed Approximate F2 FIR Filters with Offset 

 
Coefficients 

 

 

Required 

Offset 

P-1 P0 P1 P2 

Offsets 

O1 -8 64 8 0 

O2 0 8 64 -8 

O3 -8 8 8 -8 

F2 FIR Filters 

with Offset 

F2OF1 6 0 -6 0 O1 

F2OF2 4 0 -4 0 O1 

F2OF3 0 0 0 0 O1 

F2OF4 0 -8 8 0 O1 

F2OF5 0 -8 8 0 O1 

F2OF6 0 -24 24 0 O1 

F2OF7 0 -24 24 0 O1 

F2OF8 0 32 32 0 O3 

F2OF9 0 24 -24 0 O2 

F2OF10 0 24 -24 0 O2 

F2OF11 0 8 -8 0 O2 

F2OF12 0 8 -8 0 O2 

F2OF13 0 0 0 0 O2 

F2OF14 0 -4 0 4 O2 

F2OF15 0 -6 0 6 O2 

 

Since common offset values are used, each F2 FIR filter should be calculated 

using the coefficients shown in Table 2.7, and the result should be added with the 

required common offset value. As shown in Table 2.7, FIR filters F2OF4, F2OF6, 

F2OF9, F2OF11 are the same as FIR filters F2OF5, F2OF7, F2OF10, F2OF12, 

respectively. Therefore, MCMF2 hardware only calculates FIR filters F2OF4, F2OF6, 

F2OF9, F2OF11, and their results are used for FIR filters F2OF5, F2OF7, F2OF10, 

F2OF12, respectively.   

As it can be seen in Table 2.7, each input pixel should be multiplied with 

multiple constant coefficients. The constant multiplications of each input pixel when F2 

FIR filters are calculated with and without using common offset values are shown in 

Table 2.8. In the table, P-4 to P6 represent input pixels for FIR filters.  
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Table 2.8 Constant Multiplications in F2 FIR Filters 

 Input Pixel Constants Datapath 
Calculated 

Products 

Without Offset 

P-4, P6 2,4,8 MD1 - 

P-3 ... P5 
2,4,8,16, 

32,40,56,64 
MD2 5,7 

With Offset 
P-4, P6 4,6 MD1 3 

P-3 … P5 4,6,8,24,32 MD1 3 

 

Proposed MCMF2 hardware uses Hcub MCM technique [26] for implementing 

multiplications with multiple constant coefficients to reduce the number of adders. As 

shown in Table 2.8, when the common offset values are used, products calculated for 

input pixels (P-4, P6) and (P-3 … P5) are the same. Therefore, MCMF2 hardware uses 

only MD1 MCM datapath. It does not use MD2 MCM datapath.  

As can be seen in Table 2.7, there are common sub-expressions in F2 FIR filters 

with offset. The sub-expression (-8×P0+8×P1) in FIR filter F2OF4 is negated version of 

the sub-expression (8×P0-8×P1) in FIR filter F2OF11. The sub-expression (-

24×P0+24×P1) in FIR filter F2OF6 is negated version of the sub-expression (24×P0-

24×P1) in FIR filter F2OF9. The common sub-expressions in F2 FIR filters with offset 

are calculated once in CD and the results are used in corresponding F2 FIR filters with 

offset. 

MCMF2 hardware interpolates 8×15 FPs in parallel in a clock cycle. 15 FPs for 

an input pixel are interpolated using 11 F2 FIR filters shown in Table 2.7. There are 

common sub-expressions in F2 FIR filters with offset used for interpolating FPs for 

adjacent input pixels. Negated version of the sub-expression (-6×P0+6×P2) in FIR filter 

F2OF15 equation for each input pixel exists in FIR filter F2OF1 equation for the adjacent 

input pixel. Negated version of the sub-expression (-4×P0+4×P2) in FIR filter F2OF14 

equation for each input pixel exists in FIR filter F2OF2 equation for the adjacent input 

pixel. All these common sub-expressions are also calculated once in CD and their 

results are used in corresponding FIR filters. 

After results of MD1, MD2, CD and OD are generated, adder trees calculate FPs 

by adding these results. As shown in Figure 2.4, MCMF2 hardware interpolates the FPs 

for an 8×8 PU in 147 clock cycles same as MCMF1 hardware.  

MCMF2 hardware uses 15 BRAMs as transpose memories (TP BRAM) for 

storing the horizontal half pixels which are used to interpolate quarter pixels. However, 
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since it calculates 11 FIR filters, it uses 11 BRAMs as output memories (OUTPUT 

BRAM) for storing output FPs. 

 

2.4 Implementation Results of the Proposed Approximate VVC FI Hardware 

Proposed BF1, MCMF1, BF2, MCMF2 approximate VVC FI hardware are 

implemented using Verilog HDL. Verilog RTL codes are implemented to a 28 nm 

FPGA. The FPGA implementations are verified with post implementation timing 

simulations. The simulation results matched the results of a software implementation of 

the proposed approximate VVC FI filters F1 and F2. 

Power consumptions of the FPGA implementations are estimated using a gate 

level power estimation tool. Post implementation timing simulations are performed for 

one frame of full HD (1920×1080) video sequences Tennis (T) and Kimono (K) at 100 

MHz [35]. For each FPGA implementation, signal activities of its post implementation 

timing simulation are stored into a value change dump (VCD) file, and its power 

consumption is estimated using this VCD file. 

Implementation results of the FPGA implementations are shown in Table 2.9. In 

the table, they are also compared with implementation results of the exact VVC FI 

baseline and MCM hardware proposed in [29]. The proposed approximate VVC FI 

hardware are similar to the exact VVC FI hardware proposed in [29]. However, since 

the proposed approximate VVC FI FIR filters are different than the exact VVC FI FIR 

filters, their MCM datapaths, adder trees, common datapath and offset datapath are 

different. Since they implement the proposed approximate VVC FI FIR filters, the 

proposed BF1, MCMF1, BF2, MCMF2 hardware are smaller and faster than the exact 

VVC FI hardware proposed in [29].  

BF2 and MCMF2 hardware are smaller and faster than BF1 and MCMF1 

hardware. However, they have slightly worse rate-distortion performance than BF1 and 

MCMF1 hardware. MCMF1 hardware is smaller than BF1 hardware. MCMF2 

hardware is smaller than BF2 hardware. 

Power consumptions of the FPGA implementations are shown in Table 2.10. In 

the table, they are also compared with power consumptions of the exact VVC FI 

baseline and MCM hardware proposed in [29]. Since they implement the proposed 

approximate VVC FI FIR filters, the proposed BF1, MCMF1, BF2, MCMF2 hardware 

have lower power consumption than the exact VVC FI hardware proposed in [29]. 
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MCMF1 and MCMF2 hardware has up to 44% and 51% lower power consumption than 

the exact VVC FI MCM hardware proposed in [29], respectively. MCMF2 hardware 

has lower power consumption than MCMF1 hardware. However, MCMF2 hardware 

has slightly worse rate-distortion performance than MCMF1 hardware. MCMF1 

hardware has lower power consumption than BF1 hardware. MCMF2 hardware has 

lower power consumption than BF2 hardware. 

 

Table 2.9 Implementation Results of the Proposed Approximate VVC FI Hardware 

 

Exact 

Baseline 

VVC FI [29] 

Exact MCM 

VVC FI 

[29] 

Proposed 

BF1 [25] 

Proposed 

MCMF1 

Proposed 

BF2 

Proposed 

MCMF2 

FPGA 28 nm 28 nm 28 nm 28 nm 28 nm 28 nm 

Slices 5205 3718 3083 2636 2397 2205 

DFFs 6408 3461 3515 3290 2279 2114 

LUTs 16334 11599 9313 7973 6974 6357 

BRAMs 30 30 30 30 30 30 

Max. Freq. 

(MHz) 
208 200 227 227 236 236 

Frames per 

Second 

42  

1920×1080 

40  

1920×1080 

47  

1920×1080 

47  

1920×1080 

49  

1920×1080 

49  

1920×1080 

 

Table 2.10 Power Consumption Results of Proposed Approximate VVC FI Hardware 

 
Exact Baseline 

VVC FI [29] 

Exact MCM 

VVC FI [29] 

Proposed 

BF1 [25] 

Proposed 

MCMF1 

Proposed 

BF2 

Proposed 

MCMF2 

Video T K T K T K T K T K T K 

Clock (mW) 52 52 27 27 26 26 23 23 16 16 16 16 

Signal (mW) 162 218 144 193 76 107 58 83 61 82 60 82 

Logic (mW) 141 194 109 151 60 90 42 64 38 54 33 48 

BRAM (mW) 93 95 93 94 94 95 88 89 81 82 76 77 

Total (mW) 448 559 373 465 256 318 211 259 196 234 185 223 

Reduction (%) 

Compared to [29] 
--- --- --- --- 31% 31% 43% 44% 47% 49% 49% 51% 

 

MCMF1 and MCMF2 hardware are compared with several HEVC FI hardware 

in the literature in Table 2.11. The results shown as “---" are not reported in the 

corresponding paper. Since VVC FI algorithm is different than HEVC FI algorithm, 

MCMF1 and MCMF2 hardware are different than the HEVC FI hardware. Since VVC 

FI has higher computational complexity than HEVC FI, implementation results of 

MCMF1 and MCMF2 hardware are worse than implementation results of the HEVC FI 

hardware.  
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Table 2.11 Comparison of the Proposed Hardware with HEVC FI Hardware 

 [30] [31] [32] [33] 
Filter 1 

[34] 

Filter 2 

[34] 

Proposed 

MCMF1 

Proposed 

MCMF2 

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC VVC 

FPGA 40 nm 65 nm 40 nm 65 nm 40 nm 40 nm 28 nm 28 nm 

Slices 1557 --- --- 2181 834 731 2636 2205 

LUTs 3929 28486 24202 5017 2008 1567 7973 6357 

Freq. 

(MHz) 
200 120 200 283 278 278 227 236 

fps 
30 

3840×2160 
--- 

60 

1920×1080 

30 

2560×1600 

45 

3840×2160 

45 

3840×2160 

47 

1920×1080 

49 

1920×1080 

Power 93 mW --- 171 mW 89 mW 88 mW 80 mW 237 mW 207 mW 

 

 

2.5 Proposed VVC FI Hardware Using Memory Based Constant Multiplication 

In this thesis, a novel VVC FI hardware using memory based constant 

multiplication for all prediction unit (PU) sizes is proposed. Memory based constant 

multiplication is an efficient computation technique [36], [37]. The proposed hardware 

stores pre-computed products of an input pixel with multiple constant coefficients in 

memory. It implements multiplications with constant coefficients using these pre-

computed products. Several optimizations are proposed to reduce memory size. 

The proposed VVC FI hardware interpolates 255 fractional pixels for each 

integer pixel. Therefore, it can be used for fractional motion estimation. It is 

implemented using Verilog HDL. It, in the worst case, can process 49 full HD 

(1920×1080) video frames per second. It has up to 9.4% less power consumption than 

VVC FI hardware in the literature. 

VVC FI hardware proposed in [29] uses a common offset value and Hcub 

multiplierless constant multiplication (MCM) algorithm [26] to reduce number of 

additions. It interpolates 255 fractional pixels for each integer pixel. VVC FI hardware 

proposed in [28] interpolates one fractional pixel for each integer pixel. Therefore, it 

can only be used for fractional motion compensation. 

Approximate VVC FI hardware proposed in [25] interpolates 255 fractional 

pixels for each integer pixel. It has smaller area and lower power consumption than the 

VVC FI hardware proposed in [29]. However, since it is an approximate VVC FI 

hardware, it has worse rate-distortion performance than the VVC FI hardware proposed 

in [29].  



24 

 

HEVC FI hardware proposed in [38] uses memory based constant 

multiplication. However, none of the VVC FI hardware in the literature uses memory 

based constant multiplication. 

The proposed VVC FI hardware for all PU sizes is shown in Figure 2.8. The 

splitters represent wire interconnections. They are used to simplify drawing 

interconnects in the figure. In the proposed hardware, all fractional pixels (half pixels 

and quarter pixels) are interpolated for the luma component of an 8×8 PU. For larger 

PU sizes, the PU is decomposed into 8×8 blocks, and the blocks are interpolated 

separately. 
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Figure 2.8 Proposed VVC FI hardware using memory based constant multiplication 

 

The proposed hardware interpolates fractional pixels using the common offset 

value proposed in [29]. When this common offset value is used, coefficients shown in 

Table 2.12 should be used for VVC FI FIR filters [29]. 

Since coefficients of FIR filters F9 to F15 are symmetric with coefficients of FIR 

filters 𝐹7 to 𝐹1, their coefficients are not shown in Table 2.12. Sub-expression (𝐴−3 −

3𝐴−2) is common for FIR filters 𝐹1, 𝐹12, 𝐹13, 𝐹14, and 𝐹15. Sub-expression (𝐴4 − 3𝐴3) 

is common for FIR filters 𝐹1, 𝐹2, 𝐹3, 𝐹4, and 𝐹15. 
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Table 2.12 Coefficients of VVC FI FIR Filters with Offset [29] 

FIR Filters 
Coefficients 

A-3 A-2 A-1 A0 A1 A2 A3 A4 

Offset -1 4 -8 32 32 -8 4 -1 

F1 1 -3 5 31 -28 6 -3 1 

F2 0 -2 3 30 -24 5 -3 1 

F3 0 -1 0 28 -19 4 -3 1 
F4 0 0 -2 26 -15 3 -3 1 

F5 0 0 -3 20 -6 0 -1 0 
F6 0 -1 -1 15 -1 -2 0 0 

F7 0 0 -3 13 2 -2 0 0 
F8 0 0 -3 8 8 -3 0 0 

 

Same as the hardware proposed in [29], the proposed hardware calculates the 

offset values in Offset datapath using input pixels. It calculates the common sub-

expressions once in C1 datapath and uses the results in corresponding equations. 

The proposed hardware interpolates 8×15 fractional pixels in parallel using 15 

integer pixels or 15 horizontal half pixels in each clock cycle. 15 input pixels 

𝐴−6 , … , 𝐴8 should be multiplied with multiple constant coefficients during the 

interpolation of 8×15 fractional pixels. The constant coefficient multiplications 

necessary for each input pixel are shown in Table 2.13. 

 

Table 2.13 Constant Coefficient Multiplications for Input Pixels 

Input Pixel Constant Coefficient Multiplications Hardware Stored Products 

A-6 1 --- --- 

A-5 -1, -2, -3 MEM1 -3 

A-4 -1, -2, ±3, 4, 5, 6 MEM2 -3, 5 

A-3,…, A5 
-1, 2, -6, 8, 13, ±15, -19, 20, 

-24, 26, ±28, 30, 31 
MEM3 

-3, 5, -7, 13, 

-15, -19, 31 

A6 -1, -2, ±3, 4, 5, 6 MEM2 -3, 5 
A7 -1, -2, -3 MEM1 -3 

A8 1 --- --- 

 

In the proposed hardware, memory based constant multiplication technique is 

used for implementing constant coefficient multiplications. As it can be seen in Table 

2.13, constant coefficients for input pixels “𝐴−5 , 𝐴7”, “𝐴−4 , 𝐴6”, and “𝐴−3, … , 𝐴5” are 

different. Therefore, three memories, MEM1, MEM2, and MEM3, are used for storing 

pre-computed products of an input pixel with multiple constant coefficients. Since 

multiplications with the coefficients that are powers of 2 are calculated using shift 

operation, there is no need to pre-compute and store multiplications with them. 

Therefore, for input pixel 𝐴, only the constant multiplication −3𝐴 is stored in MEM1, 
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and only the constant multiplications −3𝐴 and 5𝐴 are stored in MEM2. 6𝐴 is calculated 

from −3𝐴 using shift operation.  

For input pixels 𝐴−3, … , 𝐴5, seven constant multiplications −3𝐴, 5𝐴, −7𝐴, 13𝐴, 

−15𝐴, −19𝐴, and 31𝐴 are stored in MEM3. 20𝐴, −24𝐴, 26𝐴, ±28𝐴, and 30𝐴 are 

calculated from 5𝐴, −3𝐴, 13𝐴, −7𝐴, and −15𝐴, respectively, using shift operations. 

After constant coefficient multiplications are performed by memory based constant 

multiplication technique, the fractional pixels are calculated using adder trees. 

The proposed hardware uses 8-bit unsigned input pixel 𝐴 as the address of the 

memories MEM1, MEM2, and MEM3. MEM1 stores one constant multiplication −3𝐴 

in each address. MEM2 and MEM3 store two and seven constant multiplications in 

each address, respectively. Therefore, MEM1, MEM2, and MEM3 store 28 × 1, 28 × 2, 

and 28 × 7 constant multiplications, respectively. Multiplication of an 8-bit unsigned 

input pixel with constant coefficients −3, 5, −7, 13, −15, −19, and 31 are 11 bits, 11 

bits, 12 bits, 12 bits, 13 bits, 14 bits, and 13 bits, respectively. Therefore, in each 

address of MEM1, MEM2, and MEM3 11 bits, 11+11=22 bits, and 

11+11+12+12+13+14+13=86 bits should be stored, respectively. We propose several 

optimizations to reduce the sizes of these memories. 

−3𝐴 can be implemented with addition and shift operations as shown in 

equation (2.4) and Figure 2.9. As shown in Figure 2.9, the least significant two bits of 

−3𝐴 are equal to the least significant two bits of 𝐴. There is no need to store these two 

bits in memories. As shown in Figure 2.9, the third least significant bit of −3𝐴 can be 

calculated by adding 1, 𝐴[0]̅̅ ̅̅ ̅̅ , and 𝐴[2]. The result of this 1-bit addition sum = −3𝐴[2] 

and carry-out = carry[2] are shown in equations (2.5) and (2.6), respectively. 
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Figure 2.9 Implementation of -3A with addition and shift operations. 
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−3𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 2)                                  (2.4) 

−3𝐴[2] = 1^𝐴[0]̅̅ ̅̅ ̅̅ ^𝐴[2] = 𝐴[0]^𝐴[2]                            (2.5) 

𝑐𝑎𝑟𝑟𝑦[2] = (1&𝐴[0]̅̅ ̅̅ ̅̅ ) | (𝐴[2]&(1^𝐴[0]̅̅ ̅̅ ̅̅ )) = 𝐴[0]̅̅ ̅̅ ̅̅  |(𝐴[2]&𝐴[0]) = 𝐴[0]̅̅ ̅̅ ̅̅ |𝐴[2]   (2.6) 

 

−3𝐴[3] can be calculated by adding 𝐴[1]̅̅ ̅̅ ̅̅ , 𝐴[3] and carry[2] as shown in 

equation (2.7). 

 

−3𝐴[3] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[3]^𝑐𝑎𝑟𝑟𝑦[2] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[3]^(𝐴[0]̅̅ ̅̅ ̅̅  | 𝐴[2])            (2.7) 

 

For an 8-bit A, i.e. 0 ≤ 𝐴 ≤ 255, −3𝐴[9] = 0 only for 𝐴 = 0 and 171 ≤ 𝐴 ≤

255, i.e. 𝐴 = 00000000 and 10101011 ≤ 𝐴 ≤ 11111111. By representing the ranges 

10101011 ≤ 𝐴 ≤ 10111111 with 

𝐴[7]&𝐴[6]̅̅ ̅̅ ̅̅ &𝐴[5]&(𝐴[4] |(𝐴[3]&(𝐴[2] |(𝐴[1]&𝐴[0])))) and 11000000 ≤ 𝐴 ≤

11111111 with 𝐴[7]&𝐴[6], −3𝐴[9] can be calculated as shown in equation (2.8). 

Since 𝐴 is an unsigned number, −3𝐴 is always negative. Therefore, its sign bit, i.e. 

−3𝐴[10], is always 1. Therefore, in each address of MEM1, only 5 bits 

−3𝐴[8] , … , −3𝐴[4] are stored instead of 11 bits. The other bits are obtained from 𝐴 as 

explained. 

 

−3𝐴[9] = 

(𝐴[7]&𝐴[6]) |  (𝐴[7]&𝐴[6]̅̅ ̅̅ ̅̅ &𝐴[5]& (𝐴[4] | (𝐴[3]&(𝐴[2] | (𝐴[1]&𝐴[0])))) | (𝐴[7]̅̅ ̅̅ ̅̅ &𝐴[6]̅̅ ̅̅ ̅̅ & … &𝐴[0]̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

= 𝐴[7]& (𝐴[6] | (𝐴[5]& (𝐴[4] | (𝐴[3]&(𝐴[2] | (𝐴[1]&𝐴[0]))))))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

&(𝐴[7] | 𝐴[6] |… | 𝐴[0]) 

(2.8) 

 

5A, −7A, 13A, −15A, −19A, and 31A can be implemented with addition and 

shift operations as shown in equations (2.9)-(2.14) and Figure 2.10.  

 

5𝐴 = (𝐴 ≪ 2) + 𝐴                                    (2.9) 

−7𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 3)                               (2.10) 

13𝐴 = (𝐴 ≪ 3) + 5𝐴                                          (2.11) 

−15𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 4)                               (2.12) 

−19𝐴 = 13𝐴 + ((𝐴̅ + 1) ≪ 5)                             (2.13) 

31𝐴 = (𝐴 ≪ 4) + 15𝐴                                        (2.14) 
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Figure 2.10 Implementation of constant multiplications with addition and shift 

operations (a) 5A (b) -7A (c) 13A (d) -15A (e) -19A (f) 31A. 

 

As shown in equations (2.15), to calculate 31𝐴[5] six least significant bits of 

15𝐴 should first be calculated by calculating two’s complement of −15𝐴. 

For an 8-bit A, i.e. 0 ≤ 𝐴 ≤ 255, 5𝐴[10] = 1 only for 205 ≤ 𝐴 ≤ 255, i.e. 

11001101 ≤ 𝐴 ≤ 11111111, −7𝐴[10] = 1 only for 1 ≤ 𝐴 ≤ 146, i.e. 00000001 ≤

𝐴 ≤ 10010010, 13𝐴[11] = 1 only for 158 ≤ 𝐴 ≤ 255, i.e. 10011110 ≤ 𝐴 ≤

11111111, −15𝐴[11] = 1 only for 1 ≤ 𝐴 ≤ 136, i.e. 00000001 ≤ 𝐴 ≤ 10001000, 

−19𝐴[12] = 1 only for 1≤ 𝐴 ≤ 215, i.e. 00000001 ≤ 𝐴 ≤ 11010111, 31𝐴[12] = 1 

only for 133≤ 𝐴 ≤ 255, i.e. 10000101 ≤ 𝐴 ≤ 11111111, resulting in equations 
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(2.16)-(2.21). Since 𝐴 is an unsigned number, −7𝐴, −15𝐴, and −19𝐴 are always 

negative. Therefore, their sign bits, i.e. −7𝐴[11], −15𝐴[12], and −19𝐴[13], are 

always 1. 

 

                                          5𝐴[3]  = 𝐴[3]^𝐴[1]^(𝐴[0]&𝐴[2]) 

 

                                        −7𝐴[4]  = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[4]^(𝐴[0]̅̅ ̅̅ ̅̅  | 𝐴[3]) 

 

                                       13𝐴[4]  = 5𝐴[4]^𝐴[1]^(𝐴[0]&5𝐴[3]) 

 

                                       −15𝐴[5] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[5]^(𝐴[0]̅̅ ̅̅ ̅̅  | 𝐴[4]) 

 

                                                −19𝐴[5] = 𝐴[0]^13𝐴[5] 
 

                                   −19𝐴[6] = 𝐴[1]̅̅ ̅̅ ̅̅ ^13𝐴[6]^(𝐴[0]̅̅ ̅̅ ̅̅  | 13𝐴[5]) 

 

                                     31𝐴[5]  = 15𝐴[5]^𝐴[1]^(𝐴[0]&15𝐴[4]) 

(2.15) 

 

 

5𝐴[10]  = 𝐴[7]&𝐴[6]&(𝐴[5] | 𝐴[4] | (𝐴[3]&𝐴[2]&(𝐴[1] | 𝐴[0])))      (2.16) 

−7𝐴[10] =  (𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) | 

 (𝐴[7]&𝐴[6] | 𝐴[5] | (𝐴[4]&(𝐴[3] | 𝐴[2] | (𝐴[1]&𝐴[0])))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)           (2.17) 

13𝐴[11]    = 𝐴[7]&(𝐴[6] | 𝐴[5] | (𝐴[4]&𝐴[3]&𝐴[2]&𝐴[1]))         (2.18) 

−15𝐴[11] =

(𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) | 𝐴[6] | 𝐴[5] | 𝐴[4] |(𝐴[3]&(𝐴[2] | 𝐴[1] | 𝐴[0]))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (2.19) 

−19𝐴[12] = 

(𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) | (𝐴[7]& 𝐴[6]&(𝐴[5] |(𝐴[4]&𝐴[3]))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )      (2.20) 

31𝐴[12]     = 𝐴[7]&(𝐴[6] | 𝐴[5] | 𝐴[4] | 𝐴[3] | (𝐴[2]&(𝐴[1] | 𝐴[0])))     (2.21) 

 

Therefore, it is necessary to store only six bits 5𝐴[9] , … , 5𝐴[4], five bits 

−7𝐴[9] , … , −7𝐴[5], six bits 13𝐴[10] , … , 13𝐴[5], five bits −15𝐴[10] , … ,

−15𝐴[6], five bits −19𝐴[11], … , −19𝐴[7], and six bits 31𝐴[11] , … , 31𝐴[6] in the 

memories. 

Therefore, 5+6=11 bits are stored in each address of MEM2 instead of 22 bits, 

and 5+6+5+6+5+5+6=38 bits are stored in each address of MEM3 instead of 86 bits.  
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As shown in Figure 2.8, the proposed hardware uses 30 Block RAMs (BRAM). 

It uses 15 BRAMs as output memories (OUT MEM) to store fractional pixels and 15 

BRAMs as transpose memories (TR MEM) to store horizontal half pixels required for 

interpolating quarter pixels. Each BRAM address stores eight interpolated pixels. 

First, it takes 15 clock cycles to interpolate 8×15×15 horizontal half pixels 

required for interpolating quarter pixels. After all horizontal half pixels are calculated 

and stored in the transpose BRAMs in 15 clock cycles, 15 pixels required for 

interpolating quarter pixels can always be read in one clock cycle from 15 different 

transpose BRAMs. Then, it takes 8 clock cycles to interpolate 8×8×15 vertical half 

pixels. Finally, in 8×15 clock cycles, 8×8×255 quarter pixels are interpolated using 

horizontal half pixels. There are four pipeline stages in the proposed hardware. 

Therefore, the proposed hardware interpolates all the fractional pixels for an 8×8 PU in 

147 clock cycles. 

 

2.6 Implementation Results of the Proposed VVC FI Hardware Using Memory 

Based Constant Multiplication 

The proposed VVC FI hardware using memory based constant multiplication for 

all PU sizes is implemented using Verilog HDL. The Verilog RTL code is verified with 

RTL simulations.  

The proposed hardware is compared with the VVC FI hardware proposed in 

[29]. To have a fair comparison, Verilog RTL codes of both hardware are synthesized 

and implemented to the same Xilinx XC7VX330T-3FFG1157 FPGA using Xilinx 

Vivado 2017.4. Both FPGA implementations are verified with post implementation 

timing simulations. 

Implementation results are shown in Table 2.14. The proposed VVC FI 

hardware works at 235 MHz, and it can process 49 full HD (1920×1080) video frames 

per second. The proposed VVC FI hardware has less DFFs but more LUTs and slices 

than the VVC FI hardware proposed in [29]. 

Power consumptions of both FPGA implementations are estimated for Tennis 

and Kimono full HD (1920×1080) videos [35] using Xilinx Vivado. To estimate power 

consumption of an FPGA implementation, its post implementation timing simulation is 

done at 100 MHz using Mentor Graphics QuestaSim for one frame of each video 
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sequence, and signal activities are stored in a SAIF file. Xilinx Vivado estimates power 

consumption of that FPGA implementation using this SAIF file.  

Power consumption results are shown in Table 2.15. The proposed VVC FI 

hardware has up to 9.4% less power consumption than the VVC FI hardware proposed 

in [29]. 

 

Table 2.14 Implementation Results of the Proposed Memory Based VVC FI Hardware 

 [29] Proposed VVC FI Hardware 

FPGA Xilinx Virtex7 Xilinx Virtex7 

Slices 3121 3348 

DFFs  3589 3525 

LUTs 10731 11842 

BRAMs 30 30 

Max. Freq. (MHz) 219 235 

Frames per Second 
46 

1920×1080 

49 

1920×1080 

 

Table 2.15 Power Consumption of the Proposed Memory Based VVC FI Hardware 

 [29] Proposed VVC FI Hardware 

Video Tennis Kimono Tennis Kimono 

Clock (mW) 25 25 29 29 

Signal (mW) 172 238 160 220 

Logic (mW) 203 288 169 237 

BRAM (mW) 137 138 137 138 

Total (mW) 537 689 495 624 

Power Reduction Compared to [29] --- --- 7.8% 9.4% 
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3 CHAPTER III    

 

NOVEL DECOMPOSED COEFFICIENTS BASED HEVC AND VVC 

FRACTIONAL INTERPOLATION HARDWARE 

 

Motion estimation (ME) is the most computationally complex part of HEVC and 

VVC video encoders. ME consists of integer ME and fractional ME. Fractional ME 

requires interpolation of fractional pixels. Fractional interpolation (FI) is one of the 

most computationally intensive parts of HEVC and VVC video encoders and decoders. 

On average, one fourth of the HEVC encoder complexity and 50% of the HEVC 

decoder complexity are caused by FI. 

In HEVC fractional interpolation (HFI), 3 horizontally interpolated pixels 

(HIPs), 3 vertically interpolated pixels (VIPs), 9 horizontally and vertically interpolated 

pixels (HVIPs) are interpolated for every integer pixel (IP). In VVC fractional 

interpolation (VFI), 15 HIPs, 15 VIPs, 225 HVIPs are interpolated for every IP. Hence, 

VFI has much higher computational complexity than HFI. Therefore, it is required to 

develop HFI hardware and VFI hardware to implement HFI and VFI in real-time, 

respectively. 

In this thesis, we propose novel decomposed coefficients technique for 

implementing HFI, and we propose HFI hardware using the proposed technique. The 

decomposed coefficients technique reduces the number of additions by decomposing 

the coefficients of the FIR filters. We apply the decomposed coefficients technique to 
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exact and approximate VFI algorithms, and we propose exact VFI hardware and 

approximate VFI hardware using the proposed technique. 

The proposed FI hardware are implemented using Verilog HDL. The proposed 

HFI hardware has higher performance, less area, and less power consumption than the 

best HFI hardware in the literature. It can process 50 quad full HD (QFHD) 

(3840×2160) video frames per second (fps). The proposed VFI hardware has higher 

performance, less area, and less power consumption than the best VFI hardware in the 

literature. It can process 48 full HD (FHD) (1920×1080) video fps. The proposed 

approximate VFI hardware have the same performance, less area, and less power 

consumption than the best approximate VFI hardware in the literature. They can process 

49 and 52 full HD (1920×1080) video fps. 

Several HFI hardware [30]-[33], [38], [39] and several VFI hardware [18], [22], 

[25], [28], [29] are proposed in the literature.  

The HFI hardware proposed by Kalali and Hamzaoglu [30] uses the Hcub 

multiplierless constant multiplication (MCM) algorithm. It calculates common sub-

expressions in filter equations only once. Hence, the number and size of the adders, and 

adder tree depth are reduced. The HFI hardware proposed by Lung and Shen [31] uses a 

new data reuse technique and a highly parallel architecture to improve throughput. The 

HFI hardware proposed by Pastuszak and Trochimiuk [32] has 2 parallel datapaths for 

IP and fractional pixel (FP) motion estimation which share the same memories. The HFI 

hardware proposed by Diniz et al. [33] uses a reconfigurable datapath which can 

process different filter types.  

The HFI hardware proposed by Mert et al. [38] uses memory-based constant 

multiplication. The multiplications of an input pixel with multiple constant coefficients 

of FIR filters are pre-calculated and stored in memory. A high-level synthesis (HLS) 

based hardware implementation of HFI is proposed by Sjövall et al. [39]. It has higher 

performance than manual HFI hardware implementation at the cost of much larger area. 

The VFI hardware proposed by Mert et al. [29] implements 15 FIR filters in 

parallel. It calculates 255 FPs for every IP. The exact VFI hardware proposed by Mert 

et al. [29] uses Hcub MCM algorithm and calculates a common offset for all the 

equations of 15 FIR filters. It also calculates common sub-expressions once and uses 

their results in different equations. The coefficients of offset and filters in this hardware 

are shown in Table II. Since the coefficients of filters F9 to F15 are symmetric with the 

coefficients of filters F7 to F1, they are not shown in the table. 
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The VFI hardware proposed by Azgin et al. [28] can only be used for motion 

compensation. It calculates 1 FP for every IP. The approximate VFI hardware proposed 

by Azgin et al. [25] and Mahdavi et al. [18] include 14 3-tap and one 4-tap FIR filters. 

They have less area and power consumption than the exact VFI hardware at the expense 

of a very small quality loss. The approximate VFI hardware proposed by Mahdavi et al. 

[18] uses common offset values and Hcub MCM algorithm. 

Small coefficients of VFI FIR filters have less effect on the filter result. Due to 

spatial correlation, neighboring pixels have similar values. Two approximate VFI FIR 

filters, F1 and F2, are proposed by Mahdavi et al. [18]. Approximate VFI F1 FIR filters 

are proposed by assuming that the pixels multiplied with smaller coefficients are 

similar. Approximate VFI F2 FIR filters are proposed by substituting most of the 

coefficients in F1 with the closest 2n values. Hence, most of the multiplications of F2 

FIR filters are implemented using only shift operations.  

MCMF1 and MCMF2 hardware are also proposed by Mahdavi et al. [18] for 

implementing the approximate VFI F1 and F2 FIR filters, respectively. Both MCMF1 

and MCMF2 hardware use Hcub MCM algorithm and calculate 3 common offsets (O1, 

O2, O3). The coefficients of offsets and filters in MCMF1 and MCMF2 hardware are 

shown in Table 2.5 and Table 2.7, respectively. In Table 2.7, F2 FIR filters F2OF4, 

F2OF6, F2OF9, F2OF11 are the same as F2OF5, F2OF7, F2OF10, F2OF12, respectively. 

Hence, in MCMF2 hardware, only F2OF4, F2OF6, F2OF9, F2OF11 are calculated, and 

their results are also used for F2OF5, F2OF7, F2OF10, F2OF12, respectively.  

An HLS based hardware implementation of VFI is proposed by Hamzaoglu et 

al. [22]. It has higher performance than manual VFI hardware implementation at the 

expense of much larger area. 

 

3.1 Fractional Interpolation FIR Filters 

In HFI, one 8-tap and two 7-tap FIR filters are used. These 3 FIR filters type A, 

type B, type C are shown in equations (3.1), (3.2), and (3.3), respectively. The value of 

shift1 is determined based on bit depth of the pixel. Figure 3.1 shows IPs “Ax,y”, HIPs 

“ax,y, bx,y, cx,y”, VIPs “dx,y, hx,y, nx,y”, and HVIPs “ex,y, fx,y, gx,y, 𝑖x,y, jx,y, kx,y, px,y, qx,y, 

rx,y” in a prediction unit (PU). The nearest IPs in horizontal direction are used for 

interpolating HIPs (a, b, c) and the nearest IPs in vertical direction are used for 

interpolating VIPs (d, h, n). The HVIPs are interpolated from the nearest HIPs. 
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Figure 3.1 Integer pixels, HIPs, VIPs, HVIPs in HEVC FI. 

 

In VFI, 8 7-tap and 7 8-tap FIR filters are used. Table 2.1 shows the coefficients 

of these FIR filters. In VFI, there are 15 HIPs between 2 neighboring horizontal IPs and 

15 VIPs between 2 neighboring vertical IPs. The HIPs and VIPs are interpolated from 

nearest IPs using 15 FIR filters. The HVIPs are interpolated from nearest HIPs using 15 

FIR filters. 

 

3.2 Proposed HEVC FI Hardware 

In this thesis, a novel technique is proposed, which reduces number of additions 

by decomposing coefficients of the FIR filters used for HEVC FI. Decomposition of the 

coefficients in type A, type B and type C FIR filters are shown in equations (3.9), 

(3.10), and (3.11), respectively where common sub-expressions are highlighted with 

different colors. Although the number of coefficients increases, more common sub-

expressions are obtained which reduces the number of additions. 

In the proposed HEVC FI hardware, 8 type A FIR filters, 8 type B FIR filters 

and 8 type C FIR filters are calculated in parallel in each clock cycle. Therefore, 24 

fractional pixels in the same row or column are interpolated in each clock cycle using 

15 integer pixels or 15 horizontal half-pixels in the same row or column. 
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For example, 𝑎−3,0, … , 𝑎0,0, … , 𝑎4,0 , 𝑏−3,0, … , 𝑏0,0, … , 𝑏4,0 , 𝑐−3,0, … , 𝑐0,0, … , 𝑐4,0 

horizontal half-pixels in row 0 are interpolated using 𝐴−6,0, … , 𝐴0,0, … , 𝐴8,0 integer 

pixels in row 0. FIR filters used in HEVC standard to interpolate 8 of these 24 half-

pixels are shown in equations (3.1)-(3.8).  

 

𝑎0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 10𝐴−1,0 + 58𝐴0,0

+17𝐴1,0 − 5𝐴2,0 + 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1               (3.1) 

𝑏0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 11𝐴−1,0 + 40𝐴0,0

+40𝐴1,0 − 11𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1               (3.2) 

 𝑐0,0 = (
𝐴−2,0 − 5𝐴−1,0 + 17𝐴0,0 + 58𝐴1,0

−10𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1                   (3.3) 

𝑎1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 10𝐴0,0 + 58𝐴1,0

+17𝐴2,0 − 5𝐴3,0 + 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1                (3.4) 

𝑏1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 11𝐴0,0 + 40𝐴1,0

+40𝐴2,0 − 11𝐴3,0 + 4𝐴4,0 − 𝐴5,0
)  ≫ 𝑆ℎ𝑖𝑓𝑡1                (3.5) 

𝑏−1,0 = (
−𝐴−4,0 + 4𝐴−3,0 − 11𝐴−2,0 + 40𝐴−1,0

+40𝐴0,0 − 11𝐴1,0 + 4𝐴2,0 − 𝐴3,0
)   ≫ 𝑆ℎ𝑖𝑓𝑡1             (3.6) 

𝑐−1,0 = (
𝐴−3,0 − 5𝐴−2,0 + 17𝐴−1,0 + 58𝐴0,0

−10𝐴1,0 + 4𝐴2,0 − 𝐴3,0
)   ≫ 𝑆ℎ𝑖𝑓𝑡1               (3.7) 

𝑐2,0 = (
𝐴0,0 − 5𝐴1,0 + 17𝐴2,0 + 58𝐴3,0

−10𝐴4,0 + 4𝐴5,0 − 𝐴6,0
)    ≫ 𝑆ℎ𝑖𝑓𝑡1                   (3.8) 

 

The same FIR filters with decomposed coefficients are shown in equations (3.9)-

(3.16). 

𝑎0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 10𝐴−1,0 + 40𝐴0,0 + 18𝐴0,0 + 18𝐴1,0

−𝐴1,0 − 𝐴2,0 − 4𝐴2,0 + 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1  (3.9) 

𝑏0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 𝐴−1,0 − 10𝐴−1,0 + 40𝐴0,0

+40𝐴1,0 − 10𝐴2,0 − 𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1      (3.10) 

𝑐0,0 = (
𝐴−2,0 − 4𝐴−1,0 − 𝐴−1,0 − 𝐴0,0 + 18𝐴0,0 + 18𝐴1,0

+40𝐴1,0 − 10𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1    (3.11) 

𝑎1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 10𝐴0,0 + 40𝐴1,0 + 18𝐴1,0 + 18𝐴2,0

−𝐴2,0 − 𝐴3,0 − 4𝐴3,0 + 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1  (3.12) 

𝑏1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 𝐴0,0 − 10𝐴0,0 + 40𝐴1,0 + 40𝐴2,0

−10𝐴3,0 − 𝐴3,0 + 4𝐴4,0 − 𝐴5,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1     (3.13) 

𝑏−1,0 = (
−𝐴−4,0 + 4𝐴−3,0 − 𝐴−2,0 − 10𝐴−2,0 + 40𝐴−1,0 + 40𝐴0,0

−10𝐴1,0 − 𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1   (3.14) 

𝑐−1,0 = (
𝐴−3,0 − 4𝐴−2,0 − 𝐴−2,0 − 𝐴−1,0 + 18𝐴−1,0 + 18𝐴0,0

+40𝐴0,0 − 10𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1     (3.15) 
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𝑐2,0 = (
𝐴0,0 − 4𝐴1,0 − 𝐴1,0 − 𝐴2,0 + 18𝐴2,0 + 18𝐴3,0

+40𝐴3,0 − 10𝐴4,0 + 4𝐴5,0 − 𝐴6,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1        (3.16) 

 

The sub-expressions in equations (3.9)-(3.11) that are common with the sub-

expressions in equations (3.9)-(3.16) are highlighted with different colors. Some 

common sub-expressions are negated versions of each other. For example, negated 

version of the sub-expression “𝐴−2,0 − 4𝐴−1,0” in equation (3.11), i.e. “−𝐴−2,0 +

4𝐴−1,0”, exists in equations (3.12) and (3.13). Therefore, it can be calculated only once, 

and its result can be used in equations (3.12) and (3.13) by negating it. 

The FIR filters in equations (3.9)-(3.16) with decomposed coefficients have more 

common sub-expressions than the FIR filters in equations (3.1)-(3.8) with original 

coefficients. There are even more common sub-expressions in all 24 FIR filters with 

decomposed coefficients which are used to interpolate 24 fractional pixels in parallel in 

each clock cycle. All these common sub-expressions and the number of adders used to 

implement them are shown in Table 3.1.  

 

Table 3.1 Common Sub-Expressions in the Proposed HEVC FI Hardware 

General form Sub-expressions Adders 

-Ax-1 ,0+4×Ax,0 -A-6,0+4×A-5,0 , -A-5,0+4×A-4,0 , … , -A3,0+4×A4,0 10 

-10×Ax-1 ,0+40×Ax,0 -10×A-4,0+40×A-3,0 , -10×A-3,0+40×A-2,0 , … , -10×A3,0+40×A4,0 8 

4×Ax-1 ,0-Ax,0 4×A-2,0-A-1,0 , 4×A-1,0-A0,0 , … , 4×A7,0-A8,0 10 

40×Ax-1 ,0-10×Ax,0 40×A-2,0-10×A-1,0 , 40×A-1,0-10×A0,0 , … , 40×A5,0-10×A6,0 8 

Ax-1 ,0+Ax,0 A-4 ,0+A-3,0 , A-3 ,0+A-2,0 , … , A5 ,0+A6,0 10 

18×Ax-1 ,0+18×Ax,0 18×A-3,0+18×A-2,0 , 18×A-2 ,0+18×A-1,0 , …, 18×A4 ,0+18×A5,0 8 

Total adders  54 

 

Figure 3.2 shows the proposed datapaths for implementing all sub-expressions 

including common sub-expressions shown in Table 3.1. Since the common sub-

expressions are calculated only once, they reduce the number of adders used in the 

proposed HEVC FI hardware. In addition, as shown in Figure 3.2, first the sub-

expressions shown in rows 1, 3, 5 in Table 3.1 are calculated. Then, using the results of 

these sub-expressions, the sub-expressions shown in rows 2, 4, 6 in Table 3.1 are 

calculated. This also reduces the number of adders used in the proposed hardware. 
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Figure 3.2 Sub-Expressions datapaths in the proposed HEVC FI hardware. 

 

Adder trees are used to add the results of sub-expressions shown in Figure 3.2 

for calculating FIR filters. There are also common sub-expressions in the adder trees. 

Common sub-expression “-A-3,0 +4×A-2,0 -10×A-1,0 +40×A0,0” exists in equations (3.9) 

and (3.10). Therefore, it is calculated only once, and its result is used in (3.9) and 

(3.10). One adder is used to calculate this sub-expression by adding the common sub-

expressions “-A-3,0 +4×A-2,0” and “-10×A-1,0 +40×A0,0”. Common sub-expression 

“40×A1,0 -10×A2,0 +4×A3,0 -A4,0” exists in equations (3.10) and (3.11). Therefore, it is 

calculated only once, and its result is used in (3.10) and (3.11). One adder is used to 

calculate this sub-expression by adding the common sub-expressions “40×A1,0 -

10×A2,0” and “4×A3,0 -A4,0”. 

To calculate (3.9), three adders are used in adder trees to add the results of “-A-

3,0 +4×A-2,0 -10×A-1,0 +40×A0,0”, “18×A0,0 +18×A1,0”, “-A1,0 -A2,0”, and “-4×A2,0 +A3,0”. 

To calculate (3.10), two adders are used in adder trees to add the results of “-A-3,0 

+4×A-2,0 -10×A-1,0 +40×A0,0”, “-A-1,0 -A2,0”, “40×A1,0 -10×A2,0 +4×A3,0 -A4,0”. To 

calculate (3.11), three adders are used in adder trees to add the results of “A-2,0 -4×A-

1,0”, “-A-1,0 -A0,0”, “18×A0,0 +18×A1,0”, and “40×A1,0 -10×A2,0 +4×A3,0 -A4,0”. 

Therefore, 10 adders are used in adder trees to interpolate 3 FPs. 80 adders are used in 

adder trees to interpolate 3×8 = 24 FPs in each CC. 

Figure 3.3 shows the proposed HFI hardware for all PU sizes. The splitters 

represent interconnects in the proposed hardware. They are used to simplify the figure. 

In Figure 3.3, Sub-Expressions block represent the sub-expression datapaths shown in 

Figure 3.2.  
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Figure 3.3 Proposed HEVC FI hardware. 

 

The proposed hardware interpolates all fractional pixels for luma component of 

an 8×8 PU. The larger PU sizes are decomposed into 8×8 blocks and these 8×8 blocks 

are interpolated separately. 

First, 8×15 horizontal a, b, c half-pixels are interpolated in 15 clock cycles, and 

they are stored into transpose memories A, B, C, respectively. Then, 8×8 vertical d, h, n 

half-pixels are interpolated in 8 clock cycles. Finally, 9×8×8 quarter-pixels are 

interpolated in 24 clock cycles using the half-pixels in transpose memories A, B, C. 

There are three pipeline stages in the proposed hardware. Therefore, all fractional pixels 

for an 8×8 PU are interpolated in 50 clock cycles. 

 

3.3 Proposed VVC FI Hardware 

In the proposed VFI hardware, FIR filter coefficients are decomposed to other 

coefficients in the forms of powers of 2 as shown in Table 3.2. A-3 to A4 represent the 

input pixels. The proposed VFI hardware also uses the common offset proposed by 

Mert et al. [29].  
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Table 3.2 Decomposed Coefficients in Proposed VVC FI Hardware 

 A-3 A-2 A-1 A0 A1 A2 A3 A4 

Offset -1 4 -8 32 32 -8 4 -1 

F1 1 1-4 4+1 -1+32 -32+4 2+4 -4+1 1 
F2 0 -2 2+1 -2+32 -32+8 1+4 -4+1 1 

F3 0 -1 0 32-4 -4-16+1 4 -4+1 1 
F4 0 0 -2 2+8+16 -16+1 -1+4 -4+1 1 

F5 0 0 1-4 16+4 -4-2 0 -1 0 

F6 0 -1 -1 16-1 -1 -2 0 0 
F7 0 0 -1-2 8+4+1 2 -2 0 0 

F8 0 0 -1-2 8 8 -2-1 0 0 
F9 0 0 -2 2 1+4+8 -2-1 0 0 

F10 0 0 -2 -1 -1+16 -1 -1 0 

F11 0 -1 0 -2-4 16+4 -4+1 0 0 
F12 1 1-4 4-1 1-16 16+8+2 -2 0 0 

F13 1 1-4 4 1-16-4 -4+32 0 -1 0 
F14 1 1-4 4+1 8-32 32-2 1+2 -2 0 

F15 1 1-4 4+2 4-32 32-1 1+4 -4+1 1 

 

In the proposed VFI hardware, 8×15 FPs are interpolated in parallel in each CC 

using 15 IPs or 15 HIPs and 8 sets of 15 FIR filters with decomposed coefficients. 

There are more common sub-expressions in these 8×15 FIR filters.  

Table 3.3 shows all the common sub-expressions in the proposed VFI hardware, 

and the number of adders used to implement them. In each row, for each common sub-

expression general form, all specific sub-expressions, which are negated or shifted 

versions of each other, are shown. For example, in the second row, “8×A-2 -2×A-1” and 

“32×A-2 -8×A-1” are obtained by shifting “4×A-2 -A-1” 1 bit and 3 bits to the left, 

respectively. 

Adder trees are used to add the results of sub-expressions for calculating the 

proposed VFI FIR filters. There are also common sub-expressions in the adder trees. 

Common sub-expression “4×A2 -4×A3 +A3 +A4”, denoted by CA, is calculated using 1 

adder which adds the results of common sub-expressions “4×A2 -4×A3” and “A3 +A4”. 

Common sub-expression “A-3 +A-2 -4×A-2 +4×A-1”, denoted by CB, is calculated using 1 

adder which adds the results of “A-3 +A-2” and “-4×A-2 +4×A-1”. Common sub-

expression “-2×A-1 +2×A0 +A1 -A2”, denoted by CC, is calculated using 1 adder which 

adds the results of “-2×A-1 +2×A0” and “A1 -A2”. Common sub-expression “-A-1 +A0 

+2×A1 -2×A2”, denoted by CD, is calculated using 1 adder which adds the results of “-

A-1 +A0” and “2×A1 -2×A2”. Common sub-expression “-2×A-1 +8×A0 +8×A1 -2×A2”, 

denoted by CO, is calculated using 1 adder which adds the results of “-2×A-1 +8×A0” 

and “8×A1 -2×A2”. 
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Table 3.3 Common Sub-Expressions in the Proposed VVC FI Hardware 

General form Sub-expressions Adders 

-Ax-2+4×Ax-1 

A-6-4×A-5 , A-5-4×A-4 , … , A4-4×A5 

-2×A-4+8×A-3 , -2×A-3+8×A-2 , … , -2×A4+8×A5 

-4×A-4+16×A-3 , -4×A-3+16×A-2 , … , -4×A4+16×A5 

-8×A-4+32×A-3 , -8×A-3+32×A-2 , … , -8×A3+32×A4 

11 

4×Ax-1-Ax 

4×A-3-A-2 , 4×A-2-A-1 , … , 4×A7-A8 

8×A-3-2×A-2 , 8×A-2-2×A-1 , …, 8×A5-2×A6 

32×A-2-8×A-1 , 32×A-2-8×A-1 , …, 32×A5-8×A6 

11 

Ax-2+Ax-1 
A-6+A-5 , A-5+A-4 , … , A7+A8 

-4×A-3-4×A-2 , -4×A-2-4×A-1 , … , -4×A4-4×A5 
14 

Ax-1-Ax 

A-2 -A-1 , A-1-A0 , … , A5-A6 

-A-4+A-3 , -A-3+A-2 , … , -A3+A4 

-2×A-5+2×A-4 , -2×A-4+2×A-3 , … , -2×A3+2×A4 

2×A-2-2×A-1 , 2×A-1-2×A0 , … , 2×A6 -2×A7 

-4×A-5+4×A-4 , -4×A-4+4×A-3 , … , -4×A2+4×A3 

4×A-3-4×A-2 ,  4×A-2-4×A-1 , … , 4×A6 -4×A7 

16×A-3-16×A-2 , 16×A-2-16×A-1 , … , 16×A4-16×A5 

-16×A-3+16×A-2 , -16×A-2+16×A-1 , … , -16×A4+16×A5 

32×A-3-32×A-2 , 32×A-2-32×A-1 , … , 32×A4-32×A5 

-32×A-3+32×A-2 , -32×A-2+32×A-1 , … , -32×A4+32×A5 

12 

Ax-3+Ax 
A-4+A-1 , A-3+A0 , … , A3+A6 

-A-4-A-1 , -A-3-A0 , … , -A3-A6 
8 

Ax-3-Ax 
A-3 -A0 , A-2-A1 , … , A4-A7 

-A-5+A-2 , -A-4+A-1 , … , -A2+A5 
10 

Ax-4-Ax 
A-4-A0 , A-3-A1 , … , A3-A7 

-A-5+A-1 , -A-4+A0 , … , -A2+A6 
9 

-Ax-3-Ax-2-Ax-1-Ax -A-5-A-4-A-3-A-2 , -A-4-A-3-A-2-A-1 , … , -A4-A5-A6-A7 10 

-4×Ax-2+16×Ax-1+4×Ax-1-4×Ax 
-4×A-4+16×A-3+4×A-3-4×A-2 , … , 

-4×A4+16×A5+4×A5-4×A6 
9 

Total adders  94 

 

Offset is calculated using 2 adders which add “CO<< 2”, “-A3 +4×A-2”, and 

“4×A3 -A4”. Common sub-expression denoted by CE is calculated using 1 adder which 

adds CA and Offset. Common sub-expression denoted by CF is calculated using 1 adder 

which adds CB and Offset. Common sub-expression denoted by CG is calculated using 2 

adders which add CA, CB, and Offset. Common sub-expressions CA, CB, CC, CD, CO, CE, 

CF, CG are calculated only once and their results are used in different FIR filters. For 

example, CG is used in FIR filters F1 and F15. To calculate F1, 4 adders are used in adder 

trees which add CG, “-A0 +4×A1”, “32×A0 -32×A1”, A-1, “A2<< 1”. Similarly, FIR 

filters F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15 are calculated using 4, 4, 3, 

3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4 adders, respectively. Therefore, 61 adders are used in adder 

trees for calculating Offset and FIR filters to interpolate 15 FPs.  

Figure 3.4 shows the proposed VFI hardware for all PU sizes. The splitters 

represent interconnects in the proposed hardware. TR MEM and OUT MEM are the 
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transpose memories and output memories, respectively. Sub-Expressions block 

calculates all common sub-expressions shown in Table 3.3. 
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Figure 3.4 Proposed VVC FI Hardware 

Figure 3.5 shows the proposed datapaths used in the Sub-Expressions block. 

Common sub-expressions “-Ax-3 -Ax-2 -Ax-1 -Ax” and “-4×Ax-2 +16×Ax-1 +4×Ax-1 -4×Ax” 

are calculated using other common sub-expressions. Hence, only 1 extra adder is used 

for implementing each of them. 
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Figure 3.5 Common sub-expression datapaths in the proposed VVC FI hardware. 
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8×15×15 HIPs are interpolated in 15 CCs and stored in transpose memories. 

8×8×15 VIPs are interpolated in 8 CCs. 8×8×225 HVIPs are interpolated in 8×15 CCs 

using HIPs. There are 4 pipeline stages in the proposed hardware. Hence, all the FPs for 

an 8×8 PU are interpolated in 147 CCs.  

 

3.4 Proposed Approximate VFI Hardware DCF1 

In the proposed hardware, the coefficients of F1 FIR filters are decomposed into 

other coefficients in the forms of powers of 2 as shown in Table 3.4. Hence, it is called 

Decomposed Coefficients of F1 (DCF1) hardware. The coefficients of common sub-

expressions are shown with the same color in the table.  

 

Table 3.4 Approximate F1 FIR Filters with Offset Used in DCF1 

 A-1 A0 A1 A2 Required Offset 

Offsets 
Off1 -8 64 8 0  
Off2 0 8 64 -8  
Off3 -8 8 8 -8  

FIR Filters with 

Offset Used in 

DCF1 

F1OF1 2+4 -1 -1-4 0 Off1 

F1OF2 4 -2 -2 0 Off1 
F1OF3 2 -2-2 2 0 Off1 

F1OF4 1 -1-1-4 4+1 0 Off1 
F1OF5 0 -8-4 4+8 0 Off1 

F1OF6 1 -1-16 16 0 Off1 

F1OF7 0 -1-2-16 16+2+1 0 Off1 
F1OF8 0 32 32 0 Off3 

F1OF9 0 1+2+16 -16-2-1 0 Off2 
F1OF10 0 16 -16-1 1 Off2 

F1OF11 0 4+8 -8-4 0 Off2 
F1OF12 0 1+4 -4-1-1 1 Off2 

F1OF13 0 2 -2-2 2 Off2 

F1OF14 0 -2 -2 4 Off2 
F1OF15 0 -4-1 -1 4+2 Off2 

 

In DCF1 hardware, 8×15 FPs are interpolated in parallel in each CC using 15 IPs 

or 15 HIPs and 8 sets of 15 F1 FIR filters with decomposed coefficients. There are more 

common sub-expressions in these 8×15 FIR filters. Table 3.5 shows all the common sub-

expressions in DCF1 hardware, and the number of adders used to implement them.  

Block diagram of DCF1 hardware is similar to the block diagram of the proposed 

VFI hardware shown in Figure 3.4. Their Sub-Expressions and Adder Tree blocks are 

different. Figure 3.6 shows the proposed datapaths used in the Sub-Expressions block of 

DCF1 hardware. Some common sub-expressions are calculated using the results of other 

common sub-expressions. 
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Table 3.5 Common Sub-Expressions in DCF1 Hardware 

General form Sub-expressions Adders 

-Ax-1+Ax 

-A-3+A-2 , -A-2+A-1 , … , -A5+A6 

-2×A-3+2×A-2 , -2×A-2+2×A-1 , … , -2×A5+2×A6 

-4×A-3+4×A-2 , -4×A-2+4×A-1 , … , -4×A4+4×A5 

-8×A-3+8×A-2 , -8×A-2+8×A-1 , … , -8×A4+8×A5 

-16×A-3+16×A-2 , -16×A-2+16×A-1 , … ,  

-16×A4+16×A5 

A-4-A-3 , A-3-A-2 , … , A4-A5 

2×A-4-2×A-3 , 2×A-3-2×A-2 , … , 2×A4-2×A5 

4×A-3-4×A-2 , 4×A-2-4×A-1 , … , 4×A4-4×A5 

8×A-3-8×A-2 , 8×A-2-8×A-1 , … , 8×A4-8×A5 

16×A-3-16×A-2 , 16×A-2-16×A-1 , … ,  

16×A4-16×A5 

10 

-Ax-2+Ax 

-4×A-3+4×A-1 , -4×A-2+4×A0 , … , -4×A4+4×A6 

-8×A-4+8×A-2 , -8×A-3+8×A-1 , … , -8×A3+8×A5 

4×A-4-4×A-2 , 4×A-3-4×A-1 , … , 4×A3-4×A5 

8×A-3-8×A-1 , 8×A-2-8×A0 , … , 8×A4-8×A6 

9 

Ax-1+Ax 

-A-3-A-2 , -A-2-A-1 , … , -A4-A5 

-2×A-3-2×A-2 , -2×A-2-2×A-1 , … , -2×A4-2×A5 

32×A-3+32×A-2 , 32×A-2+32×A-1 , … , 

32×A4+32×A5 

8 

Ax-2 -Ax-1 -Ax-1+Ax 
A-4 -A-3 -A-3+A-2 , A-3 -A-2 -A-1+A0 , … , 

 A3 -A4 -A5 +A6 
9 

2×Ax-2-Ax-1-Ax 

2×A-4-A-3-A-2 , 2×A-3-A-2-A-1 , … , 2×A3-A4-A5 

4×A-4-2×A-3-2×A-2 , 4×A-3-2×A-2-2×A-1 ,… , 

4×A3-2×A4-2×A5 

8 

-Ax-2-Ax-1+2×Ax 

-A-3-A-2+ 2×A-1  , -A-2-A-1+ 2×A0  , … ,  

-A4-A5+ 2×A6  

-2×A-3-2×A-2+4×A-1  , -2×A-2-2×A-1+ 4×A0 ,…, 

-2×A4-2×A5+ 4×A6  

8 

2×Ax-1+Ax-1-2×Ax-Ax 

2×A-3+A-3-2×A-2-A-2 , … , 2×A4+A4-2×A5-A5  

-2×A-3-A-3+2×A-2+A-2  , … , -2×A4-A4+2×A5+A5  

8×A-3+4×A-3-8×A-2-4×A-2 , … ,  

8×A4+4×A4-8×A5-4×A5  

-8×A-3-4×A-3+8×A-2+4×A-2  , … ,  

-8×A4-4×A4+8×A5+4×A5  

8 

16×Ax-1+2×Ax-1+Ax-1-16×Ax-2×Ax-Ax 
16×A-3+2×A-3+A-3-16×A-2-2×A-2-A-2 , … , 

16×A4+2×A4+A4-16×A5-2×A5-A5  
8 

Total adders  68 

 

Interpolation order and number of pipeline stages in DCF1 hardware are the same 

as the proposed VFI hardware. Hence, DCF1 hardware interpolates all the FPs for an 

8×8 PU in 147 CCs.  
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Figure 3.6 Common sub-expression datapaths in DCF1 hardware. 

 

3.5 Proposed Approximate VFI Hardware DCF2 

In the proposed hardware, the coefficients of F2 FIR filters are decomposed into 

other coefficients in the forms of powers of 2 as shown in Table 3.6. Hence, it is called 

Decomposed Coefficients of F2 (DCF2) hardware.  

 

Table 3.6 Approximate F2 FIR Filters with Offset Used in DCF2 

 A-1 A0 A1 A2 Required 

Offset 

Required 

Final Shift 

Offsets 
Off1 -1 8 1 0   
Off2 0 1 8 -1   

Off3 -1 1 1 -1   

FIR Filters with 

Offset Used in 

DCF2 

F2OF1 2+1 0 -2-1 0 Off1 << 2 >>5 

F2OF2 1 0 -1 0 Off1 << 1 >>4 
F2OF3 0 0 0 0 Off1 >>3 

F2OF4 0 -1 1 0 Off1 >>3 

F2OF6 0 -2-1 2+1 0 Off1 >>3 
F2OF8 0 4 4 0 Off3 >>3 

F2OF9 0 2+1 -2-1 0 Off2 >>3 
F2OF11 0 1 -1 0 Off2 >>3 

F2OF13 0 0 0 0 Off2 >>3 
F2OF14 0 -1 0 1 Off2 << 1 >>4 

F2OF15 0 -2-1 0 2+1 Off2 << 2 >>5 

 

The coefficients are decomposed in such a way that the adder sizes are also 

reduced. For example, for F2OF4 FIR filter, instead of implementing [(8×A1 -8×A0) 

+O1] >> 6 in Table 2.7 where O1 = -8×A-1 +64×A0 +8×A1, we implement [(A1- A0) 

+Off1] >> 3 where Off1 = -A-1 +8×A0 +A1.  
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F2 FIR filters F2OF4, F2OF6, F2OF9, F2OF11 are the same as F2OF5, F2OF7, 

F2OF10, F2OF12, respectively. Hence, in DCF2 hardware, only FIR filters F2OF4, 

F2OF6, F2OF9, F2OF11 are calculated, and their results are also used for F2OF5, F2OF7, 

F2OF10, F2OF12, respectively. 

In DCF2 hardware, 8×15 FPs are interpolated in parallel in each CC using 15 IPs 

or 15 HIPs and 8 sets of 11 F2 FIR filters with decomposed coefficients. There are more 

common sub-expressions in these 8×11 FIR filters. Table 3.7 shows all the common 

sub-expressions in DCF2 hardware, and the number of adders used to implement them.  

 

Table 3.7 Common Sub-Expressions in DCF2 Hardware 

General form Sub-expressions Adders 

Ax-2-Ax 

A-4-A-2 , A-3-A-1 , … , A4-A6 

2×A-4-2×A-2 , 2×A-3-2×A-1 , … , 2×A4-2×A6 

-A-4+A-2 , -A-3+A-1 , … , -A4+A6 

9 

-Ax-1+Ax 

-A-3+A-2 , -A-2+A-1 , … , -A4+A5 

-2×A-3+2×A-2 , -2×A-2+2×A-1 , … , -2×A4+2×A5 

A-3-A-2 , A-2-A-1 , … , A4-A5 

2×A-3-2×A-2 , 2×A-2-2×A-1 , … , 2×A4-2×A5 

8 

-2×Ax-1-Ax-1+2×Ax+Ax 
-2×A-3-A-3+2×A-2+A-2 , … , -2×A4-A4+2×A5+A5 

2×A-3+A-3-2×A-2-A-2 , … , 2×A4+A4-2×A5-A5 
8 

-2×Ax-2-Ax-2+2×Ax+Ax 
-2×A-4-A-4+2×A-2+A-2 , … , -2×A4-A4+2×A6+A6 

2×A-4+A-4-2×A-2-A-2 , … , 2×A4+A4-2×A6-A6 
9 

Total adders  34 

 

Block diagram of DCF2 hardware is similar to the block diagram of the 

proposed VFI hardware shown in Figure 3.4. Their Sub-Expressions block, Adder Tree 

block, and the numbers of OUT MEMs are different. DCF2 hardware uses 11 OUT 

MEMs because the F2 FIR filters F2OF5, F2OF7, F2OF10, F2OF12 are the same as other 

F2 FIR filters so their results are not calculated and stored. Figure 3.7 shows the 

proposed datapaths used in the Sub-Expressions block of DCF2 hardware. Some 

common sub-expressions are calculated using the results of other common sub-

expressions.  

Interpolation order and number of pipeline stages in DCF2 are the same as the 

proposed VFI hardware. Hence, DCF2 hardware interpolates all the FPs for an 8×8 PU 

in 147 CCs. 
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Figure 3.7 Common sub-expression datapaths in DCF2 hardware. 

 

3.6 Comparison of Number of Adders 

Table 3.8 shows the number of adders used in the proposed HFI and VFI 

hardware and the best HFI and VFI hardware in the literature. 

 

Table 3.8 Number of Adders in HFI and VFI Hardware 

 Number of Adders Reduction 

HFI 
Kalali and Hamzaoglu [30] 176 - 

Proposed HEVC FI 142 19.3% 

Exact VFI 
Mert et al. [29] 633 - 

Proposed Exact VVC FI 582 8.0% 

Approximate VFI 

Mahdavi et al. MCMF1 [18] 341 - 

Proposed DCF1 260 23.7% 

Mahdavi et al. MCMF2 [18] 158 - 

Proposed DCF2 138 12.6% 

 

The proposed HFI hardware uses 54 adders to calculate common sub-

expressions as shown in Table 3.1. It uses 8 adders to calculate the 8 sub-expressions 

that are not common in the FIR filters such as “-A-1,0 -A2,0” in (3.10), and it uses 80 

adders in adder trees. Hence, it uses 142 adders. HFI hardware proposed by Kalali and 

Hamzaoglu [30] uses 176 adders. Hence, the proposed HFI hardware uses 19.3% less 

adders than the one proposed by Kalali and Hamzaoglu [30].  

In the proposed VFI hardware, to interpolate 8×15 FPs, in addition to the 94 

adders used to calculate common sub-expressions shown in Table 3.3, 8×61 = 488 

adders are used in adder trees. Hence, it uses 94 + 488 = 582 adders. The VFI hardware 

proposed by Mert et al. [29] uses 633 adders; 69 adders in MCM blocks, 34 adders for 

realizing the common sub-expressions, 42 adders for common offsets, and 488 adders 
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for adder trees. Hence, the proposed VFI hardware uses 8% less adders than the one 

proposed by Mert et al. [29]. 

DCF1 hardware uses 68 adders to calculate common sub-expressions as shown 

in Table 3.5. To interpolate 15 FPs, 24 adders are used in adder trees for calculating 

offsets and FIR filters. Hence, to interpolate 8×15 FPs, DCF1 hardware uses 68 + 8×24 

= 260 adders. The MCMF1 hardware proposed by Mahdavi et al. [18] uses 341 adders; 

38 adders in MCM blocks, 62 adders for common sub-expressions, 33 adders to 

calculate the offsets, and 208 adders in adder trees. Hence, DCF1 uses 23.7% less 

adders than MCMF1. 

DCF2 hardware uses 34 adders to calculate common sub-expressions as shown 

in Table 3.7. To interpolate 15 FPs, 13 adders are used in adder trees for calculating 

offsets and FIR filters. Hence, to interpolate 8×15 FPs, DCF2 hardware uses 34 + 8×13 

= 138 adders. The MCMF2 hardware proposed by Mahdavi et al. [18] uses 158 adders; 

11 adders in MCM blocks, 42 adders for common sub-expressions, 33 adders to 

calculate the offsets, and 72 adders in adder trees. Hence, DCF2 uses 12.6% less adders 

than MCMF2. 

 

3.7 Implementation Results 

All the proposed HFI and VFI hardware are implemented using Verilog HDL. In 

this thesis, original HFI hardware and VFI hardware are also designed using adders and 

shifters for comparison, and they are implemented using Verilog HDL. Verilog RTL 

codes of all the proposed and original FI hardware are synthesized, placed and routed to 

a 28 nm FPGA. To have a fair comparison, Verilog RTL codes of the hardware 

proposed by Kalali and Hamzaoglu [30], Mert et al. [38], Mert et al. [29], and Mahdavi 

et al. [18] are synthesized, placed and routed to the same 28 nm FPGA. The FPGA 

implementations are verified with post place and route simulations.  

The implementation results of HFI hardware are shown in Table 3.9. The power 

consumption results are shown in Table 3.9 and Table 3.10. The results shown as “---” 

have not been reported in the corresponding papers. The proposed HFI hardware has 

less area and less power consumption than the HFI hardware in the literature.  

The proposed HFI hardware has higher performance than the manual HFI 

hardware implementations proposed in [25], [28], [29], [32], and [38]. Although the 

HFI HLS implementation proposed by Lung and Shen [29] and Sjövall et al. [39] have 
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higher performance than the proposed HFI hardware, they use more than 10 times 

LUTs. 

Table 3.9 Implementation Results of HEVC FI Hardware 

 
Original 

Hardware 
[30] [31] [32] [33] [38] [39] 

Proposed 

HEVC 

FI 

FPGA (nm) 40 28 65 40 65 28 40 28 

Slices 1669 1349 --- --- --- 1370 --- 1196 

FFs 3448 3892 --- --- 2550 3909 --- 3747 

LUTs 4110 2863 28486 26944 5017 3345 27100 2510 

36K BRAM 3 3 --- --- 2 3.5 --- 3 

Max. Freq. 

(MHz) 
200 230 120 200 283 244 313 323 

fps 
30 

QFHD 

36 

QFHD 
--- 

60 

FHD 

30 

2560×1600 

37 

QFHD 

99 

QFHD 

50 

QFHD 

Throughput 

(M FPs/Second) 
3840 4478 18720 1866 1843 4603 12317 6220 

Power (mW) 152 196 --- 171 89 210 --- 83 

 

Table 3.10 Power Consumption of HEVC FI Hardware (mW) 

 [30] [38] Proposed 

Video T K T K T K 

Clock 11 11 9 9 11 11 

Signal 143 226 144 225 35 51 

Logic 26 39 25 37 21 31 

BRAM 16 16 32 33 16 16 

Total 196 292 210 304 83 109 

 

The Verilog RTL code of the proposed HFI hardware is also synthesized using 

90 nm standard cell library. The gate count of the resulting ASIC implementation is 

calculated as 52278, including on-chip memories, based on a 2-input NAND gate area. 

The power consumption result is reported by the synthesis tool. Table 3.11 shows the 

ASIC implementation results of HFI hardware. The proposed HFI hardware is more 

efficient than the existing HFI hardware. 

 

Table 3.11 ASIC Implementation Results of HEVC FI Hardware 

 [32] [30] [38] 
Proposed 

HEVC FI 

Technology (nm) 90 90 90 90 

Gate Count 265458 55738 57457 52278 

Max. Freq. (MHz) 400 120 117 153 

fps (Frames/Second) 30 QFHD 74 FHD 72 FHD 94 FHD 

Throughput (M FPs/Second) 3732 2301 2239 2936 

Power Consumption (mW) 30.2 20.5 21.6 23.1 
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The implementation and power consumption results of VFI hardware on the 

same 28 nm FPGA are shown in Table 3.12 and Table 3.13, respectively. Power 

consumptions of all FPGA implementations are estimated using a gate level power 

estimation tool for 1 frame of 1920×1080 Tennis (T) video and 1920×1080 Kimono (K) 

video at 100 MHz [35].  

Table 3.12 Implementation Results of VVC FI Hardware 

 
Original 

Hardware 
[29] [22] 

Proposed 

VVC FI 

MCMF1 

[18] 

Proposed 

DCF1 

MCMF2 

[18] 

Proposed 

DCF2 

Exact (E) 

/Approx. (A) 
E E E E A A A A 

Slices 5205 3121 15319 2970 2047 1934 2001 1851 

FFs 6408 3589 37450 4167 3394 3089 2326 2272 

LUTs 16334 10731 39047 9951 7112 6467 6725 6493 

36K BRAM 30 30 30 30 30 30 26 26 

Freq. (MHz) 208 219 150 230 237.5 237.5 246.9 249.3 

Clock 

Cycles 

(8×8 PU) 

147 147 74 147 147 147 147 147 

fps 
43 

FHD 

46 

FHD 

62 

FHD 

48 

FHD 

49 

FHD 

49 

FHD 

51 

FHD 

52 

FHD 

Throughput 

(M FPs/Sec) 
23092 24323 32783 25380 25909 25909 26967 27495 

 

Table 3.13 Power Consumption of VVC FI Hardware (mW) 

 [29] 
Proposed 

VFI 

MCMF1 

[18] 

Proposed 

DCF1 

MCMF2 

[18] 

Proposed 

DCF2 

Video T K T K T K T K T K T K 

Clock 25 25 27 27 22 22 20 20 17 16 17 17 

Signal 172 238 174 238 60 83 53 73 65 87 59 76 

Logic 203 288 185 253 58 82 48 65 56 77 47 62 

BRAM 137 138 137 138 134 138 134 138 111 114 111 114 

Total 537 689 523 656 274 325 255 296 249 294 234 269 

 

The proposed exact VFI hardware has higher performance, less area, and up to 

4.78% less power consumption than the best exact manual VFI hardware proposed by 

Mert et al. [29]. Although the VFI HLS implementation proposed by Hamzaoglu et al. 

[22] has higher performance than the proposed VFI hardware, its area is 4 times larger.  

The proposed approximate VFI hardware DCF1 and DCF2 have the same 

performance, less area, and up to 8.92% and 8.50% less power consumption than the 

approximate VFI hardware MCMF1 and MCMF2 proposed by Mahdavi et al. [18], 

respectively. The rate-distortion performance of DCF1 hardware and DCF2 hardware 

are the same as the rate-distortion performance of MCMF1 hardware and MCMF2 

hardware, respectively. 
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4 CHAPTER IV 

 

A NOVEL APPROXIMATE HIGH EFFICIENCY VIDEO CODING DCT 

HARDWARE 

 

Both the HEVC and H.264 standards use discrete cosine transform (DCT) / 

inverse discrete cosine transform (IDCT). H.264 standard utilizes only 4×4 and 8×8 

transform unit (TU) sizes for DCT/IDCT. HEVC standard utilizes 4×4, 8×8, 16×16, and 

32×32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy compaction. 

However, they exponentially increase computational complexity. Moreover, HEVC 

standard exploits discrete sine transform (DST) / inverse discrete sine transform (IDST) 

for 4×4 intra prediction in particular cases. 

DCT and DST have high computational complexity. DCT and DST account for 

11% of the computational complexity of an HEVC video encoder. They account for 

25% of the computational complexity of an all intra HEVC video encoder. 

Approximate computing enables designing faster, smaller area and lower power 

consuming hardware compared to accurate hardware by trading off speed, area, and 

power consumption with quality [18], [40]-[44]. Hence, it is used for error tolerant 

applications with high computational complexity. Various approximate circuits are 

proposed in the literature [45]-[49]. Several approximate adders and multipliers are also 

proposed in the literature [21], [50]-[52].  

This chapter of the thesis is an extended version of [21], where a new 

approximate constant multiplication technique is proposed to implement the constant 
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multiplication in HEVC DCT. In [21], all the multiplications in HEVC DCT are 

implemented by using the proposed approximate constant multiplication hardware. In 

this thesis, the approximate constant multiplication is used for multiplication with only 

the DCT coefficients which do not cause high average percentage error. In the proposed 

approximate HEVC DCT hardware, there are some common constant multiplications 

that are calculated once and their results are used in multiple DCT equations. Hcub 

multiplierless constant multiplication (MCM) technique [26] is utilized to implement 

constant multiplications in the proposed hardware.  

Two instances of one dimensional (1D) DCT are used in [53] to explore the 2D 

DCT using its separability property for proposing a low-cost and high-throughput 

HEVC 16×16 2D DCT hardware. The variable-size HEVC 2D DCT hardware proposed 

in [54] allows multiple DCT sizes to share and reuse hardware resources. The HEVC 

2D DCT hardware proposed in [55] uses the maximum circuit reuse during 

computation. In [56], a new CORDIC-based DCT hardware is proposed using matrix 

decomposition, resource sharing and merging.  

In [12], a computation and energy reduction technique for HEVC DCT and a 

low energy HEVC 2D DCT hardware are proposed. This technique decreases the 

computational complexity of HEVC DCT at the cost of a reduction in peak-signal-to-

noise-ratio (PSNR) and increase in bitrate by calculating only some of the pre-

determined low frequency coefficients of TUs and assuming that the rest are zero. 

Several approximate HEVC DCT hardware are proposed in the literature [57]-

[59], [14]. In [57], multiplierless 4-point DCT implementations are proposed to be used 

in an approximate HEVC DCT hardware. These implementations include approximate 

adders and subtractors which are made using cartesian genetic programming. In [58], a 

flexible HEVC 2D DCT implementation is proposed, which can calculate 4 distinct 

approximations ranging from the complete DCT to the Walsh-Hadamard transform. 

This is done by selectively skipping some rotations. In [59], an 8×8 orthogonal 

approximation of HEVC DCT is proposed and used to obtain approximate transforms 

for other TU sizes. This approximation method exploits the neighboring pixels 

correlation in images such that the odd basis vectors of the DCT kernel are quantized by 

considering their signs and positions rather than their values. In [14], an algorithm to 

compute the necessary minimum number of low-frequency DCT-output/IDCT-input 

coefficients for 4, 8, 16, and 32-point DCT/IDCT in HEVC is proposed. It causes a 

slight reduction in PSNR and increase in bitrate. A flexible transpose memory 
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architecture supporting all the HEVC TU sizes and an efficient 2D DCT/IDCT 

hardware are proposed in [14]. 

 

4.1 Approximate Constant Multiplier and Approximate HEVC DCT Hardware 

[21] 

An approximate constant multiplication technique is proposed in [21]. It 

achieves reduction in complexity of constant multiplication by manipulating variable 

multiplicand and constant multiplier. The constant multiplication is converted to a 

multiplication with a smaller constant, concatenation, and constant shift operation.  

Multiplication of an m bit variable M with n bit constant N is shown in equation 

(4.1). Constant multiplier (N) is manipulated as shown in equation (4.2). Any constant 

integer N can be written as shown in (4.2). The proposed technique uses the values y 

and z that minimize NN. Most significant bits (MSBs) and least significant bits (LSBs) 

of variable multiplicand (M) are split as shown in equation (4.3) using the z value 

obtained from equation (4.2). Then, manipulated versions of M and N are multiplied as 

shown in equations (4.4)-(4.9). Equation (4.9) implements exact constant multiplication. 

The symbols “×”, “«”, and “{,}” represent multiplication, left shift, and concatenation 

operations, respectively. 

 

                       NMR =                                                         (4.1) 

)21(2 NNN zy +=                                             (4.2) 

   0:1:12 −+−= zMzmMM z                                         (4.3) 

                          )21(2 NNMNM zy +=                                         (4.4) 

)2(2 NNMMNM zy +=                                        (4.5) 

     )20:1:12(2 NNMzMzmMNM zzy +−+−=                           (4.6) 

    )0:1):1(2(2 −+−+= zMzmMNNMNM zy                           (4.7) 

  ( )   0:1,:12 −−+= zMzmMNNMNM y                          (4.8) 

 ( )    yzMzmMNNMNM −−+= 0:1,:1                       (4.9) 

 

The manipulated exact multiplication shown in equation (4.9) requires 

multiplication of variable multiplicand (M) with a constant (NN) smaller than the 
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constant multiplier (N), an addition, a concatenation, and a constant shift operation. 

Addition operation in equation (4.9) is eliminated to achieve the proposed approximate 

constant multiplication equation shown in equation (4.10).  

 

      ( )    yzMNNMNM −= 0:1,                             (4.10) 

 

Concatenation and constant shift operations use no hardware resources. So, the 

proposed approximate technique decreases multiplication with constant N to 

multiplication with a smaller constant NN. Computational complexity reduction 

depends on the values of constants N and NN. In the best case, NN is 1 and constant 

multiplication is removed. In the worst case, NN is one bit smaller than N.  

Figure 4.1 shows three examples of approximate constant multiplication. These 

examples illustrate that constant NN is much smaller than constant N. Hence, the 

proposed approximation technique decreases bit length of constant multiplication. It 

also eliminates addition operation. In the example M×80, because NN is 1, constant 

multiplication is also eliminated. Thus, approximate constant multiplication hardware 

implementing the proposed approximation technique performs M×80 without using any 

hardware resources. 

 

13 = 2⁰ × (1 + 2² × 3) 

M × 13 = {(M × 3), M[1:0]} << 0 

R = M × 13
Constant 

Multiplication

Constant 

Manipulation

Approximate 

Multiplication

Requires (m × 4) 

bits  mult iplier

Requires (m × 2) 

bits  mult iplier

Exact 

Multiplication
M × 13 = {(M × 3 + M[m-1:2])

                         , M[1:0]} << 0 

38 = 2¹ × (1 + 2¹ × 9) 

M × 38 = {(M × 9), M[0:0]} << 1 

R = M × 38

Requires (m × 6) 

bits  mult iplier

Requires (m × 4) 

bits  multiplier

M × 38 = {(M × 9 + M[m-1:1])

                         , M[0:0]} << 1 

80 = 2⁴ × (1 + 2² × 1) 

M × 80 = {(M × 1), M[1:0]} << 4 

R = M × 80

Requires (m × 7) 

bits  mult iplier

Does not Require 

any multiplier

M × 80 = {(M × 1 + M[m-1:2])

                         , M[1:0]} << 4 

 

Figure 4.1 Examples of approximate constant multiplication 

 

Figure 4.2 shows the approximate constant multiplication hardware proposed in 

[21]. The symbols “m” and “nn” denote bit lengths of input variable (M) and 

manipulated constant (NN), respectively. Because NN is always smaller than N, the 

proposed approximation technique decreases area and increases performance of 

constant multiplication hardware. 
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× 

M×NN M[z-1:0]

NN

M

M[z-1:0]

m×nn bits mult.

<< y

 

Figure 4.2 Approximate constant multiplication hardware proposed in [21] 

 

The proposed approximate constant multiplication requires pre-determined 

constant multiplication, concatenation, and constant shift operations. These operations 

are different for each constant N. They should be determined for implementation of the 

datapath required for performing the approximate constant multiplication. 

A python based datapath generator is used to determine constant multiplication, 

concatenation, and constant shift operations for an input variable and constants. If a 

constant is a power of 2, a constant shift operation is used to implement this constant 

multiplication. If a constant is a power of 2 multiple of another constant, this constant 

multiplication is also implemented with only a constant shift operation. The proposed 

approximate constant multiplication technique is used to implement the rest of constant 

multiplications. 

HEVC uses DCT-II for transform operations. It uses 4×4, 8×8, 16×16, and 

32×32 TU sizes. HEVC performs two-dimensional (2D) transform operation by 

applying 1D transforms in vertical and horizontal directions. The coefficients in HEVC 

1D transform matrices are derived from DCT basis functions. However, integer 

coefficients are used for simplicity. The HEVC DCT algorithm includes 29 different 

constant multiplication operations. As an example, equation (4.11) shows the 4×4 DCT 

matrix used in HEVC. 

           𝐷𝐶𝑇_4 × 4𝐻𝐸𝑉𝐶 =  [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

]                      (4.11) 

 

 

Table 4.1 shows 29 different constants (N values) used in HEVC 2D DCT 

matrices. NN, y, and z values are determined to manipulate these constants as in 

equation (4.2). The corresponding approximate constant multiplication equations in the 

form of equation (4.10) are also shown in Table 4.1.  
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In Table 4.1, M is input variable and m is its bit length. Multiplications with 

constants 4 and 64 are exactly implemented using constant shift operations. 

Multiplication with an identical constant in the approximate constant multiplication 

equations is implemented once and the result is used in all equations. As an example, 

multiplication with 3 is implemented once whose result is used for multiplications with 

constants 13, 25, and 50.  

 

Table 4.1 Approximate Constant Multiplication 

N 

Size of Exact 

Multiplication 

(bits) 

NN 

Size of 

Approximate 

Multiplication 

(bits) 

y z Approximate Multiplication 

4 - - - - - M << 2 

9 m × 4 1 - 0 3 {M, M[2:0]} 

13 m × 4 3 m × 2 0 2 {(M × 3), M[1:0]} 

18 m × 5 1 - 1 3 {M, M[2:0]} << 1 

22 m × 5 5 m × 3 1 1 {(M × 5), M[0:0]} << 1 

25 m × 5 3 m × 2 0 3 {(M × 3), M[2:0]} 

31 m × 5 15 m × 4 0 1 {(M × 15), M[0:0]} 

36 m × 6 1 - 2 3 {M, M[2:0]} << 2 

38 m × 6 9 m × 4 1 1 {(M × 9), M[0:0]} << 1 

43 m × 6 21 m × 5 0 1 {(M × 21), M[0:0]} 

46 m × 6 11 m × 4 1 1 {(M × 11), M[0:0]} << 1 

50 m × 6 3 m × 2 1 3 {(M × 3), M[2:0]} << 1 

54 m × 6 13 m × 4 1 1 {(M × 13), M[0:0]} << 1 

57 m × 6 7 m × 3 0 3 {(M × 7), M[2:0]} 

61 m × 6 15 m × 4 0 2 {(M × 15), M[1:0]} 

64 - - - - - M << 6 

67 m × 7 33 m × 6 0 1 {(M × 33), M[0:0]} 

70 m × 7 17 m × 5 1 1 {(M × 17), M[0:0]} << 1 

73 m × 7 9 m × 4 0 3 {(M × 9), M[2:0]} 

75 m × 7 37 m × 6 0 1 {(M × 37), M[0:0]} 

78 m × 7 19 m × 5 1 1 {(M × 19), M[0:0]} << 1 

80 m × 7 1 - 4 2 {M, M[1:0]} << 4 

82 m × 7 5 m × 3 1 3 {(M × 5), M[2:0]} << 1 

83 m × 7 41 m × 6 0 1 {(M × 41), M[0:0]} 

85 m × 7 21 m × 5 0 2 {(M × 21), M[1:0]} 

87 m × 7 43 m × 6 0 1 {(M × 43), M[0:0]} 

88 m × 7 5 m × 3 3 1 {(M × 5), M[0:0]} << 3 

89 m × 7 11 m × 4 0 3 {(M × 11), M[2:0]} 

90 m × 7 11 m × 4 1 2 {(M × 11), M[1:0]} << 1 

 

Figure 4.3 shows the HEVC 2D DCT hardware presented in [12], which is 

selected to apply the proposed approximate constant multiplication technique. In [21], 
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all the 29 different constant multiplication operations used in HEVC 2D DCT are 

implemented using the proposed approximate constant multiplication technique 

regardless of their average percentage error. 

 

FO
R

W
A

R
D

 T
R

A
N

SF
O

R
M

 I
N

P
U

T 
SP

LI
TT

ER 4x4 C. D.

4x4 C. D.

8x8 COLUMN 
DATAPATH

16x16 COLUMN 
DATAPATH

C
O

LU
M

N
 C

LI
P

TRANSPOSE 
MEMORY

O
U

T
P

U
T

 M
EM

O
R

Y

3
2

X
3

2
 B

U
T

T
E

R
FL

Y

1
6

X
1

6
 B

U
T

T
E

R
FL

Y
R

E
G

IS
T

E
R

S

R
E

G
.

R
.

O
U

T
P

U
T

 M
U

LT
IP

LE
X

E
R

4x4 R. D.

4x4 R. D.

8x8 ROW 
DATAPATH

16x16 ROW
DATAPATH

R
O

W
 C

LI
P

3
2

X
3

2
 B

U
T

T
E

R
FL

Y

1
6

X
1

6
 B

U
T

T
E

R
FL

Y
R

E
G

IS
T

E
R

S

R
E

G
.

R
.

O
U

T
P

U
T

 M
U

LT
IP

LE
X

E
R

8
X

8
 B

.

8
x8

 B
.

 

Figure 4.3 HEVC 2D DCT hardware [12] 

 

Error produced by the proposed approximate constant multiplier is different for 

each constant. Errors produced for the constants used in HEVC 2D DCT are calculated 

as follows. Equations (4.12)-(4.14) show the calculation of average percentage error for 

a constant N. Input variable bit length is taken as eight bits. The constant is multiplied 

with all possible values of the input variable, i.e., 0 to 255, using both the exact 

multiplier and the proposed approximate constant multiplier. Error for the input variable 

value k (Ek) is obtained by calculating the absolute difference between the exact 

multiplication result and the approximate multiplication result as shown in equation 

(4.12). Equation (4.13) shows the percentage error calculation for the input variable 

value k (PEk). Average percentage error for the constant N is obtained by calculating 

average of percentage errors for all possible values of input variable, i.e., 0 to 255, as 

shown in equation (4.14). 
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Figure 4.4 shows the average percentage errors for the constants used in HEVC 

2D DCT proposed in [21]. The proposed approximate constant multiplier causes very 

small errors for most of the constants. 

 

 

Figure 4.4 Average percentage error (%) for the constants [21] 

 

 

Figure 4.5 Average percentage error (%) for the constants in the proposed hardware. 

 

4.2 Proposed Approximate HEVC DCT 

In the proposed approximate HEVC DCT, to decrease quality loss, the 

approximate constant multiplication technique, proposed in [21], is applied only to the 

constant multiplications that do not cause high average percentage error. So, 

multiplications with N = 9, 18, 36, 80 are performed using exact constant 

multiplication.  
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Some of the constant multiplications are performed once and their results are 

used in different equations so that the number of multiplications is reduced. Also, more 

common constant multiplications are calculated without any approximation, resulting in 

further reduction in quality loss. For example, there is no need for an approximate 

calculation of M×43 because 43 is also used as NN for M×87. Therefore, instead of 

using approximate constant multiplication, M×43 is performed using exact constant 

multiplication, and its result is also used in approximate calculation of M×87. 

M×13 is performed using exact constant multiplication and its result is also used 

in the approximate calculation of M×54 whose NN is 13. M×19 is performed using 

exact constant multiplication. Its result is shifted one bit to the left to obtain M×38 and 

used in the approximate calculation of M×78 whose NN is 19. M×11 is performed using 

exact constant multiplication and its result is shifted one bit and three bits to the left to 

obtain M×22 and M×88, respectively. It is also used in the approximate calculation of 

M×46 whose NN is 11. 

Table 4.2 shows the 29 different constants (N values) used in HEVC 2D DCT 

matrices. The type of multiplication performed for each constant in the proposed HEVC 

2D DCT is given in the table. For the approximate multiplications, NN, y, and z values 

are determined as shown in equation (4.2) to manipulate the constants. These values and 

the corresponding approximate constant multiplication equations in the form of 

equation (4.10) are also shown in Table 4.2. In the table, M is the input variable.  

Figure 4.5 shows the average percentage errors for the constants used in the 

proposed HEVC 2D DCT. The proposed HEVC 2D DCT hardware performs both 

approximate and exact multiplications. Therefore, it has much less average percentage 

errors than the approximate constant multiplications in [21].  

The proposed constant multiplications are integrated into DCT operations 

performed by HEVC HM reference software encoder 15.0 [24]. Their impact on rate-

distortion performance is determined for several videos [35]. Their first 10 frames are 

coded with all intra configuration and quantization parameters (QP) 22, 27, 32, 37 using 

HEVC HM 15.0 [24] with and without the proposed constant multiplications. 

The BD-Rate and BD-PSNR values [60] for the HEVC DCT hardware proposed 

in [12], [21], and the proposed approximate HEVC DCT are given in Table 4.3. The 

proposed approximate HEVC DCT reduces the computational complexity at the cost of 

slight reduction in PSNR and slight increase in bitrate, but it has much better rate-

distortion performance than the HEVC DCT hardware proposed [12] and [21].  
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Table 4.2 Constant Multiplications Used in the Proposed Hardware 

N 
Type of Multiplication 

(Exact/ Approximate) 
NN y z Approximate Multiplication 

4 Exact - - - - 

9 Exact - - - - 

13 Exact - - - - 

18 Exact - - - - 

22 Exact - - - - 

25 Approximate 3 0 3 {(M × 3), M[2:0]} 

31 Approximate 15 0 1 {(M × 15), M[0:0]} 

36 Exact - - - - 

38 Exact - - - - 

43 Exact - - - - 

46 Approximate 11 1 1 {(M × 11), M[0:0]} << 1 

50 Approximate 3 1 3 {(M × 3), M[2:0]} << 1 

54 Approximate 13 1 1 {(M × 13), M[0:0]} << 1 

57 Approximate 7 0 3 {(M × 7), M[2:0]} 

61 Approximate 15 0 2 {(M × 15), M[1:0]} 

64 Exact - - - - 

67 Approximate 33 0 1 {(M × 33), M[0:0]} 

70 Approximate 17 1 1 {(M × 17), M[0:0]} << 1 

73 Approximate 9 0 3 {(M × 9), M[2:0]} 

75 Approximate 37 0 1 {(M × 37), M[0:0]} 

78 Approximate 19 1 1 {(M × 19), M[0:0]} << 1 

80 Exact - - - - 

82 Approximate 5 1 3 {(M × 5), M[2:0]} << 1 

83 Approximate 41 0 1 {(M × 41), M[0:0]} 

85 Approximate 21 0 2 {(M × 21), M[1:0]} 

87 Approximate 43 0 1 {(M × 43), M[0:0]} 

88 Exact - - - - 

89 Approximate 11 0 3 {(M × 11), M[2:0]} 

90 Approximate 11 1 2 {(M × 11), M[1:0]} << 1 

 

The proposed approximate HEVC 2D DCT hardware is implemented using the 

HEVC 2D DCT hardware architecture proposed in [12]. Each HEVC 1D DCT includes 

two different 4×4 datapaths, an 8×8 datapath, and a 16×16 datapath. These datapaths 

support 4×4, 8×8, 16×16, and 32×32 TUs. In the proposed hardware, each datapath first 

calculates the exact constant multiplications and the results are used either directly or as 

NN multiplication results to obtain approximate constant multiplications. The exact 

constant multiplications used in the proposed approximate HEVC 2D DCT hardware 

are implemented using Hcub multiplierless constant multiplication (MCM) technique 

[26].  
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Table 4.3 BD-Rate and BD-PSNR Results 

 [12] [21] Proposed 

Video 
BD-Rate 

(%) 

BD-PSNR 

(dB) 

BD-Rate 

(%) 

BD-PSNR 

(dB) 

BD-Rate 

(%) 

BD-PSNR 

(dB) 

2560×1600 People on Street 1.89 -0.10 2.37 -0.13 0.96 -0.05 

2560×1600 Traffic 1.76 -0.09 2.64 -0.14 0.94 -0.05 

1920×1080 Tennis 2.32 -0.06 3.15 -0.09 0.75 -0.02 

1920×1080 Basketball Drive 4.06 -0.13 1.86 -0.04 0.31 -0.008 

1920×1080 Park Scene 2.52 -0.10 2.12 -0.09 0.69 -0.029 

1280×720 Vidyo1 2.09 -0.09 1.99 -0.09 0.58 -0.029 

1280×720 Vidyo4 2.85 -0.12 1.91 -0.08 0.55 -0.02 

1280×720 Kristen and Sara 2.25 -0.11 1.71 -0.08 0.72 -0.03 

832×480 Party Scene 0.61 -0.05 0.20 -0.01 0.17 -0.01 

832×480 Race Horses 1.58 -0.10 1.01 -0.06 0.36 -0.02 

832×480 Basketball Drill 0.44 -0.02 0.56 -0.02 0.08 -0.003 

Average 2.03 -0.08 1.77 -0.07 0.55 -0.02 

 

In the first 4×4 datapath, three constant multiplications with 36, 83, and 64 are 

performed. M×64 is implemented exactly by constant shift operations. M×36 is 

implemented using exact constant multiplication since its approximate multiplication 

generates high average error. M×83 is approximately calculated using M×41 as shown 

in Table 4.2. Figure 4.6 shows the implementation of the exact constant multiplications 

M×36 and M×41 in the proposed first 4×4 datapath using MCM technique. 

M

+

<< 3 << 5

M×41

+
<< 2

M×36

<< 6

M×64  

Figure 4.6 Exact multiplications required in the proposed first 4×4 datapath 

 

In the second 4×4 datapath, four constant multiplications with 18, 50, 75, and 89 

are performed. In the proposed datapath, M×18 is implemented using exact 

multiplication since its approximate multiplication generates high average error. M×50, 

M×75, and M×89 are approximately calculated using M×3, M×37, and M×11, 

respectively, as shown in Table 4.2. Figure 4.7 shows the implementation of the exact 

constant multiplications M×18, M×3, M×37, M×11 in the proposed second 4×4 

datapath using MCM technique. 
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M

+

<< 2 << 3

M×11

+

-+

M×3

+

M×18

<< 1

+

M×37

<< 2

 

Figure 4.7 Exact multiplications required in the proposed second 4×4 datapath 

In the 8×8 datapath, eight constant multiplications with 9, 25, 43, 57, 70, 80, 87, 

and 90 are performed. In the proposed datapath, M×9 and M×80 are implemented using 

exact constant multiplications since their approximate multiplications generate high 

average error. M×43 is also implemented using exact constant multiplication because its 

exact result is required in the approximate calculation of M×87. M×25, M×57, M×70, 

M×87, and M×90 are approximately calculated using M×3, M×7, M×17, M×43, and 

M×11, respectively, as shown in Table 4.2. Figure 4.8 shows the implementation of the 

exact constant multiplications M×9, M×80, M×43, M×3, M×7, M×11, and M×17 in the 

proposed 8×8 datapath using MCM technique. 

M

+

<< 2

-+

M×3

<< 3

M×11

+

+

<< 4

-+

M×43

+

<< 2

<< 4

M×80

+

<< 3

M×9

+

M×7

- +

M×17

+

<< 4

 

Figure 4.8 Exact multiplications required in the proposed 8×8 datapath 

 

In the 16×16 datapath, 15 constant multiplications with 4, 13, 22, 31, 38, 46, 54, 

61, 67, 73, 78, 82, 85, 88, and 90 are performed. M×4 is implemented exactly by 

constant shift operations. In the proposed datapath, M×13, M×22, M×38, and M×88 are 

implemented using exact constant multiplications, because their approximate 

multiplications generate high average error and the shifted values of their exact results 
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are required in approximate calculations of other constant multiplications. M×38 is 

obtained by one-bit shift to the left of M×19 result which is exactly calculated for 

approximate calculation of M×78. M×22 and M×88 are respectively obtained by one-bit 

and three-bit shifts to the left of the M×11 result which is exactly calculated for 

approximate calculations of M×46 and M×90. The exact result of M×13 is required in 

the approximate calculation of M×54. M×31, M×46, M×54, M×61, M×67, M×73, 

M×78, M×82, M×85, and M×90 are approximately calculated using M×15, M×11, 

M×13, M×15, M×33, M×9, M×19, M×5, M×21, and M×11, respectively, as shown in 

Table 4.2. Figure 4.9 shows the implementation of the exact constant multiplications 

M×13, M×22, M×38, M×88, M×5, M×9, M×11, M×15, M×19, M×21, and M×33 in the 

proposed 16×16 datapath using MCM algorithm. 

M

+

<< 3

- +

M×9

+

M×15

<< 4

+

<< 2

M×5

+

<< 2

M×19

+ -

+

M×21

+

M×11

+ -

<< 3

+

M×13

M×33

+

<< 5

<< 1

M×38

<< 3

M×88

<< 1

M×22

M×4

 

Figure 4.9 Exact multiplications required in the proposed 16×16 datapath 

 

4.3 Implementation Results 

We implemented 5 different HEVC 2D DCT hardware using the HEVC 2D 

DCT hardware architecture proposed in [12]. The only difference between them is the 

multipliers used to implement constant multiplications in HEVC DCT. The first 

hardware (Orig_Mult) uses exact multipliers. The second hardware (Orig_MCM) 

performs the multiplications exactly using the MCM algorithm. The third hardware uses 

the approximate constant multipliers proposed in [21]. The fourth hardware (21_MCM) 

uses the MCM algorithm to implement the approximate constant multipliers proposed 
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in [21]. The fifth hardware, our proposed hardware, uses MCM algorithm to implement 

the proposed constant multiplications shown in Table 4.2.  

All these HEVC DCT hardware support 4×4, 8×8, 16×16, and 32×32 TUs. They 

perform 2D DCT in the same number of clock cycles. They perform 2D DCT by first 

applying 1D DCT on the columns of a TU, and then applying 1D DCT on the rows of 

the TU. Transpose memory is used for storing the coefficients of 1D column DCT. 

These stored coefficients are used as inputs for 1D row DCT.  

All HEVC DCT hardware are implemented using Verilog HDL. Verilog RTL 

codes are implemented to a 28 nm FPGA. FPGA implementations are verified with post 

implementation timing simulations. Post place and route simulation results matched the 

results of HEVC DCT software implementation. Table 4.4 shows the FPGA 

implementation results. 

The proposed approximate HEVC 2D DCT hardware has higher performance, 

less LUTs, less DFFs, less Slices, and no DSP block, compared to the approximate 

HEVC 2D DCT hardware proposed in [21]. To make a fair comparison, we compared 

the proposed hardware with the fourth hardware (21_MCM) using MCM algorithm to 

implement the approximate constant multipliers proposed in [21]. As it can be seen in 

Table 4.4, the proposed hardware has higher performance and less area than the 

21_MCM hardware. 

Power consumptions of all HEVC DCT hardware are estimated using Xilinx 

Vivado 2020.1 for transforming six 4×4 TUs, four 8×8 TUs, four 16×16 TUs, five 

32×32 TUs. To estimate power consumption of an FPGA implementation, timing 

simulation of its placed and routed netlist is done at 25 MHz using Mentor Graphics 

QuestaSim. Switching activities in this timing simulation are stored in a switching 

activity interchange format (SAIF) file. This SAIF file is used by Vivado 2020.1 to 

estimate power consumption of the FPGA implementation. Table 4.5 shows the power 

consumption results. The proposed hardware has less power consumption than the one 

in [21]. 

The comparison of the proposed approximate HEVC 2D DCT hardware with the 

exact and approximate HEVC DCT hardware in the literature is shown in Table 4.6. 

The results shown as “---” have not been reported in the corresponding papers. [57] and 

[58] are excluded in the comparison because they have not reported FPGA 

implementation results. In [54] and [55], throughput values are reported as 361 

Mpixels/sec and 52 Mpixels/sec, respectively, which are equivalent with 43 and 6 Quad 



65 

 

Full HD (QFHD) frames per second. The proposed approximate HEVC 2D DCT 

hardware is faster and has less area than the HEVC 2D DCT hardware in the literature. 

The proposed approximate hardware, in the worst case, can process 76 QFHD 

(3840×2160) frames per second. 

 

Table 4.4 FPGA Implementation Comparison 

 Orig_Mult Orig_MCM [21] 21_MCM Proposed 

FPGA 28 nm 28 nm 28 nm 28 nm 28 nm 

LUT 28050 32203 27887 27426 27294 

DFF 11652 11695 11702 11682 11667 

Slice 8397 9058 8163 7755 7746 

BRAM 32 32 32 32 32 

DSP Block 368 0 108 0 0 

Frequency (MHz) 148.3 158.2 156.7 158.2 158.7 

 

Table 4.5 Power Consumption Comparison 

 Orig_Mult Orig_MCM [21] 21_MCM Proposed 

Clock (mW) 19 16 18 16 17 

Signal (mW) 254 362 248 267 266 

Logic (mW) 227 340 229 235 246 

BRAM (mW) 25 25 25 25 25 

DSP (mW) 176 0 48 0 0 

Total (mW) 701 743 568 543 554 

 

Table 4.6 Comparison with HEVC DCT Hardware 

 [53] [54] [55] [12] [59] [14] [21] Proposed 

Approximate(A) 

/ Exact (E) 
E E E A A A A A 

Transform 2D 

DCT 

2D DCT 2D DCT 2D DCT 1D DCT 2D 

DCT/IDCT 

2D DCT 2D DCT 

TU Size 16 4,8,16,32 4,8,16,32 4,8,16,32 32 4,8,16,32 4,8,16,32 4,8,16,32 

FPGA 65 nm 28 nm 65 nm 40 nm 45 nm 40 nm 28 nm 28 nm 

LUT 16002 5.6 K 54305 35555 1776 30701 27887 27294 

DFF --- --- 15607 11230 --- 10965 11702 11667 

Slice --- --- --- 10080 --- 8924 8163 7746 

BRAM --- --- --- 32 --- 16 32 32 

DSP Block --- 128 384 0 --- 0 108 0 

Frequency (MHz) 27 177 90 100 --- 104 156 158 

fps 
35 

QFHD 

43 

QFHD 

6 

QFHD 

48 

QFHD 
--- --- 

75 

QFHD 

76 

QFHD 
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5 CHAPTER V  

 

FPGA IMPLEMENTATION OF VIDEO COMPRESSION ALGORITHMS 

USING HIGH-LEVEL SYNTHESIS 

 

 

High-level synthesis (HLS) is used to increase productivity [61], [62]. HLS tool 

takes the behavioral description of the application, such as C++ code, and automatically 

generates an RTL description [63]-[65].  

We propose the first FPGA implementations of VVC FI algorithm using an HLS 

tool in the literature. In this thesis, we also propose the first FPGA implementations of 

HEVC fractional motion estimation (FME) algorithm using an HLS tool in the 

literature. We also propose novel FPGA implementations of HEVC two-dimensional 

(2D) discrete cosine transform (DCT) algorithm using an HLS tool.  

As the first VVC FI HLS implementations [22], three different C++ codes are 

developed based on the VVC test model software encoder (VTM) [23]. In these C++ 

codes, called VVC-FI-MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-HLS, 

constant multiplications are implemented with multiplication operations, addition and 

shift operations, and Hcub multiplierless constant multiplication (MCM) algorithm [26], 

respectively. 

As the first HEVC FME HLS implementations, two different C++ codes are 

developed based on the HEVC reference software encoder (HM) [24]. In these C++ 

codes, called HEVC-FME-MUL-HLS and HEVC-FME-DC-HLS, constant 
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multiplications are implemented with multiplication operations and decomposed 

coefficients technique [20], respectively.  

As novel HEVC 2D DCT HLS implementations, two different C++ codes are 

developed based on the HEVC reference software encoder (HM) [24]. In these C++ 

codes, called HEVC-DCT-MUL-HLS and HEVC-DCT-MCM-HLS, constant 

multiplications are implemented with multiplication operations and Hcub MCM 

algorithm [26], respectively. 

All the C++ codes are synthesized to Verilog RTL using Xilinx Vivado HLS 

tool. The Verilog RTL codes are implemented to Xilinx Virtex-7 FPGA using Xilinx 

Vivado tool. The best proposed VVC FI HLS implementation can process 62 full HD 

(1920×1080) video frames per second (fps). The best proposed HEVC FME HLS 

implementation supports all the prediction unit (PU) sizes and can process 23 full HD 

fps. The best HEVC 2D DCT HLS implementation supports all the transform unit (TU) 

sizes and can process 65 full HD fps. 

We proposed the first HLS implementation of VVC FI algorithm in [22]. There 

is no other HLS implementation of VVC FI algorithm in the literature.  

There are several HEVC FME hardware in the literature. But there is no HLS 

implementation of HEVC FME algorithm in the literature. In [66], a highly parallel 

HEVC FME hardware is proposed for the 8×8 PU size. In [67], an HEVC FME 

hardware with a scalable search pattern is proposed. In [68], an HEVC FME hardware 

is proposed using the sum of absolute differences (SAD) values of neighboring search 

locations (SLs) to calculate SAD values of fractional SLs. It decreases computational 

complexity at the cost of quality loss. In [69], low-power and memory-aware 

approximate hardware is proposed for HEVC FME. 

In [53], two instances of one-dimensional (1D) DCT are used to propose a low-

cost and high-throughput HEVC 16×16 2D DCT hardware. In [12], a computation and 

energy reduction technique for HEVC 2D DCT is proposed. This technique decreases 

the computational complexity of HEVC DCT at the cost of a reduction in peak-signal-

to-noise-ratio (PSNR) and increase in bitrate. In [14], an algorithm to compute the 

minimum number of low-frequency DCT-output/IDCT-input coefficients in HEVC is 

proposed. It causes a slight reduction in PSNR and increase in bitrate. The HEVC 2D 

DCT hardware proposed in [55] uses the maximum circuit reuse during computation. In 

[70], HLS implementations of HEVC 2D IDCT are proposed.  
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5.1 VVC FI HLS Implementations 

Coefficients of the VVC FI FIR filters are given in Table 2.1. In the C++ code 

of VVC-FI-MUL-HLS, multiplication operations are used to implement constant 

multiplications. In the VVC-FI-ASH-HLS, addition and shift operations are used to 

implement constant multiplications. In the VVC-FI-MCM-HLS, constant 

multiplications are implemented using MCM algorithm [26]. These C++ codes are 

synthesized to Verilog RTL using Xilinx Vivado HLS tool.  

15×15 integer pixels are used for FI of an 8×8 prediction unit (PU). In VVC-FI-

MCM-HLS, Hcub MCM algorithm multiplies a single input with multiple constants 

such that the number of adders and their bit size decrease. VVC-FI-MCM-HLS 

calculates a common offset for 15 different FIR filter equations to decrease the number 

of constant multiplications. It also calculates common sub-expressions in several FIR 

filter equations once and uses the results in corresponding equations. 

In the C++ codes, we use two functions called calculation and filter. In all the 

HLS implementations VVC-FI-MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-

HLS, filter function is the same. It takes 15 rows of 15 integer pixels as inputs.  A for 

loop with 15 iterations is used in filter function for HHPs interpolation. Figure 5.1 

shows a part of this for loop. In each iteration, the input pixels, which are later used for 

VHPs interpolation, are stored into temp_ver arrays. One row of 15 integer pixels is 

given to calculation function which interpolates 8×15 HHPs in parallel. In 15 iterations, 

using 15 rows of 15 integer pixels, 8×15×15 HHPs are interpolated and stored into 

hpa1[8], …, hpa15[8] arrays.  

In filter function, there are 16 for loops with 8 iterations including one for loop 

used for interpolating 8×8×15 VHPs using integer pixels, and 15 for loops used for 

interpolating 8×8×225 QPs using HHPs. The QPs interpolated in each iteration are 

stored into qp1[8], …, qp15[8] arrays. Memories outˍmem1[136], …, outˍmem15[136] 

are used for storing all the output fractional pixels. We used a rotating addressing 

scheme to store the HHPs into transpose memories trˍmem1[15], …, trˍmem15[15]. 

However, Xilinx Vivado HLS tool did not recognize it. So, there is no difference 

between the HLS implementations with and without rotating addressing scheme. 
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Figure 5.1 Part of the C++ codes performing HHPs interpolation 

 

Calculation function takes 15 integer pixels or 15 HHPs as inputs temp14, 

temp13, …, temp0. It calculates 8 sets of 15 FIR filter (F1,…,F15) equations. Thus, 8×15 

fractional pixels are interpolated in parallel. For each HLS implementations VVC-FI-

MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-HLS, calculation function is 

written depending on how constant multiplications are implemented in that HLS 

implementation. Part of the calculation function in C++ codes of VVC-FI-MCM-HLS 

implementation, which calculates FIR filter F5 denoted as hpa5[0], is shown in Figure 

5.2. The common sub-expressions and offset value shown in Figure 5.2 are calculated 

only once and used for calculating other FIR filters as well. 

 

 

Figure 5.2 Part of the calculation function in C++ codes of VVC-FI-MCM-HLS 
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HLS tool generates Verilog RTL code based on default behavior, constraints, 

and optimization directives. We used several optimization directives to improve 

performance of the proposed HLS implementations.  

In the Xilinx Vivado HLS tool, a library is provided to design bit-accurate 

models in C++ codes [71]. As shown in Figure 5.2, ap_uint<> bit accurate data type is 

used in the proposed HLS implementations to reduce adder bit widths and therefore 

hardware area.  

Using array partition (APAR) directive, the large arrays are partitioned into 

distinct registers to improve access to data and remove block RAM bottleneck. We 

applied APAR directive to hpa1[8], …, hpa15[8], trˍmem1[15], …, trˍmem15[15], 

qp1[8], …, qp15[8]. 

Pipeline (PIPE) directive uses pipelining which improves performance. We 

apply PIPE directive to the proposed HLS implementations in two ways which are 

denoted as PIPE(1) and PIPE(2). In PIPE(1), PIPE directive is applied only to the for 

loops. In PIPE(2), in addition to the for loops, PIPE directive is also applied to the 

calculation function.  

UNROLL directive unrolls the loops so that iterations are implemented in 

parallel. In the proposed HLS implementations, the for loop with 15 iterations is 

unrolled 15 times and the for loops with 8 iterations are unrolled 8 times.  

The Verilog RTL codes generated by Xilinx Vivado HLS tool for the C++ codes 

are verified with RTL simulations. The Verilog RTL codes are implemented to Xilinx 

Virtex-7 FPGA using Xilinx Vivado 2020.1. The FPGA implementations are verified 

with post place and route simulations.  

Table 5.1 shows FPGA implementation results of VVC-FI-MUL-HLS. The 

multiplication operations are mapped to DSP48 blocks. Array partition (APAR), 

pipeline (PIPE(1) and PIPE(2)), and UNROLL directives are applied to VVC-FI-MUL-

HLS. 

Table 5.2 shows FPGA implementation results of VVC-FI-ASH-HLS. Array 

partition (APAR), pipeline (PIPE(1) and PIPE(2)), and UNROLL directives are applied 

to VVC-FI-ASH-HLS. It has better performance than VVC-FI-MUL-HLS. 

Table 5.3 shows FPGA implementation results of VVC-FI-MCM-HLS. Among 

the three proposed VVC FI HLS implementations, VVC-FI-MCM-HLS has the best 

performance with acceptable hardware area because of using Hcub MCM algorithm, 
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common offset, and common sub-expressions. Array partition (APAR), pipeline 

(PIPE(1) and PIPE(2)), and UNROLL are applied to VVC-FI-MCM-HLS.  

 

Table 5.1 FPGA Implementation Results of the Proposed VVC-FI-MUL-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(8×8 PU) 

fps 

FHD 

No optimization 19740 41948 13124 30.5 74 130.7 2159 1 

APAR 16334 35909 11166 15.5 73 119.1 811 4 

APAR-PIPE(1) 17265 38482 10560 15.5 66 259.7 379 21 

APAR-UNROLL 50784 40072 16537 30 292 83 215 11 

APAR-UNROLL-

PIPE(1) 
50784 40072 16537 30 292 83 215 11 

APAR-UNROLL-

PIPE(2) 
53019 36696 17049 30 300 88.5 73 37 

 

Table 5.2 FPGA Implementation Results of the Proposed VVC-FI-ASH-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(8×8 PU) 

fps 

FHD 

No optimization 19470 41156 14958 30.5 0 135.1 2159 1 

APAR 15774 35645 11985 15.5 0 142.9 954 4 

APAR-PIPE(1) 15580 37166 11118 15.5 0 183.5 345 16 

APAR-UNROLL 48711 45099 19271 30 0 122 214 17 

APAR-UNROLL-

PIPE(1) 
48711 45099 19271 30 0 122 214 17 

APAR-UNROLL-

PIPE(2) 
49687 41380 19094 30 0 124.2 74 51 

 

Table 5.3 FPGA Implementation Results of the Proposed VVC-FI-MCM-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(8×8 PU) 

fps 

FHD 

No optimization 16549 40264 13614 30.5 0 145.8 2016 2 

APAR 12891 33528 10523 15.5 0 166.7 811 6 

APAR-PIPE(1) 14071 35299 9965 15.5 0 178.6 345 15 

APAR-UNROLL 37242 41911 15933 30 0 157.5 214 22 

APAR-UNROLL-

PIPE(1) 
37242 41911 15933 30 0 157.5 214 22 

APAR-UNROLL-

PIPE(2) 
39047 37450 15319 30 0 150.4 74 62 

 

In the proposed HLS implementations with APAR-UNROLL-PIPE(2), in 

addition to the for loops, pipelining is also applied to the calculation function. This 

significantly improved the performance. 

In Table 5.4, the best proposed VVC MCM HLS implementation (VVC-FI-

MCM-HLS with APAR-UNROLL-PIPE(2)) is compared with manual VVC FI 

hardware implementations proposed in [29] and [19]. To have a fair comparison, these 
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handwritten Verilog RTL codes are implemented to Xilinx Virtex-7 FPGA using Xilinx 

Vivado 2020.1. The proposed VVC-FI-MCM-HLS implementation has higher 

performance than [29] and [19] at the cost of larger area.  

 

Table 5.4 VVC FI Hardware Comparison 

 [29] [19] VVC-FI-MCM-HLS 

LUT 10569 11125 39047 

FF 3591 3521 37450 

Slice 3079 3308 15319 

BRAM 30 30 30 

Frequency (MHz) 225.7 235 150.3 

Clock Cycles (8×8 PU) 147 147 74 

FHD (1920×1080) fps 47 49 62 

 

5.2 HEVC FME HLS Implementation 

FME is done after integer motion estimation. In HEVC reference software 

encoder (HM) [24], FME is done in two stages. As shown in Figure 5.3, in stage 1, 

eight fractional SLs around the best integer SL are searched. In stage 2, eight fractional 

SLs around the best fractional SL found in stage 1 are searched. HEVC FME first 

interpolates the fractional pixels required for fractional SLs using three different FIR 

filters. In Figure 5.3, HHPs a, b, c and VHPs d, h, n are interpolated using the nearest 

integer pixels in horizontal and vertical directions, respectively. QPs e, i, p and f, j, q 

and g, k, r are interpolated using the nearest a HHPs, b HHPs, and c HHPs, respectively. 

HEVC FME then calculates the sum of absolute difference (SAD) values for each 

fractional SL and determines the best fractional SL with the minimum SAD value. 

Two HEVC FME HLS implementations HEVC-FME-MUL-HLS and HEVC-

FME-DC-HLS are proposed. In the C++ codes, we use four functions called FI, 

SAD_adders, SAD_8×8, and FME. HEVC-FME-MUL-HLS and HEVC-FME-DC-HLS 

differ only in FI function and are the same in the other functions. In the C++ code of 

HEVC-FME-MUL-HLS, multiplication operations are used to implement the constant 

multiplications in FI function. In the HEVC-FME-DC-HLS, decomposed coefficients 

technique [20] is used to implement the constant multiplications in FI function. These 

C++ codes are synthesized to Verilog RTL using Xilinx Vivado HLS tool. 
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Figure 5.3 Fractional search locations 

Figure 5.4 shows the HEVC-FME-DC-HLS. It takes 72 rows of 72 integer 

pixels as search area, 64 rows of 64 integer pixels as current block, PU size, and best 

SAD of integer SLs as input. SAD_8×8 function calculates the SADs of eight fractional 

SLs for an 8×8 PU by calling FI and SAD_adders functions. FI function takes 16 

integer pixels as input and calculates 3×9 fractional pixels using 3 FIR filters. FI 

function in the HEVC-FME-DC-HLS decomposes coefficients of FIR filters to decrease 

number of additions by using decomposed coefficients technique [20]. SAD_8×8 

function calls FI function 51 times (16 for HHPs + 8 for VHPs + 27 for QPs) to 

calculate all the fractional pixels required for FME of an 8×8 PU. Then, SAD_8×8 calls 

SAD_adders function to calculate 8 SADs for 8 fractional SLs. In stage 1, eight 

fractional SLs around the best integer SL are searched. Eight parallel SAD calculation 

hardware are used to calculate SAD values of these 8 SLs in parallel. Appropriate 

current block pixels, HHPs, VHPs, and QPs are given to SAD_adders function for the 

SAD calculations. If the PU size is 8×8, FME function compares the SADs of eight 

fractional SLs to determine the SL with minimum SAD value in stage 1. In stage 2, 

eight fractional SLs around the best fractional SL found in stage 1 are searched. The 

same hardware used in stage 1 is used for FI and SAD calculation in stage 2. 

Comparison hardware determines the best SAD and its location.   

If PU size is larger than 8×8, it is divided to 8×8 PUs. In each stage, FME 

function adds up the SADs corresponding to the eight SLs in each of the 8×8 PUs to 

obtain the SADs of eight SLs in the main PU. Then, comparison hardware determines 

the best SAD and its location. To calculate SADs for 4×8 and 8×4 PUs, zero is assigned 

to the fractional pixels that do not exist in these small PUs. So, the proposed HLS 

implementations support FME for all the 24 different PU sizes in HEVC FME.  
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Figure 5.4 HEVC FME HLS implementation HEVC-FME-DC-HLS 

 

To improve performance of the proposed HEVC FME HLS implementations, in 

addition to bit-accurate models in C++ codes, we apply UNROLL directive to the for 

loops and pipeline (PIPE) directive in two ways. In PIPE(1), PIPE directive is applied 

only to the for loops. In PIPE(2), in addition to the for loops, PIPE is also applied to the 

functions. The for loops are used to divide the large input arrays of a large PU to 

smaller arrays corresponding to smaller 8×8 PUs. 

The Verilog RTL codes generated by Xilinx Vivado HLS tool are verified with 

RTL simulations and then implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado 

2020.1. The FPGA implementations are verified with post place and route simulations.  

Table 5.5 and Table 5.6 show FPGA implementation results of HEVC-FME-

MUL-HLS and HEVC-FME-DC-HLS, respectively. UNROLL, PIPE(1), and PIPE(2) 

directives are applied. The multiplication operations in HEVC-FME-MUL-HLS are 

mapped to DSP48 blocks.  

In Table 5.7, the best proposed HEVC FME HLS implementation (HEVC-FME-

DC-HLS with UNROLL-PIPE(2)) is compared with manual HEVC FME hardware 

implementations proposed in [66], [67] and [68]. The values shown as “---” have not 

been reported in [67]. Because the hardware proposed in [69] is approximate, it is 
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excluded in comparison. The hardware proposed in [66] supports only 8×8 PUs. The 

proposed HEVC-FME-DC-HLS has much better area than [67] at the cost of lower 

performance. The hardware proposed in [68] has better implementation results at the 

cost of quality loss. However, FME in our proposed HLS implementations is done 

without any approximation and quality loss. 

 

Table 5.5 FPGA Implementation Results of the Proposed HEVC-FME-MUL-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(8×4 or 4×8 

PUs) 

FHD 

fps 

No optimization 119381 33697 39281 0 525 114 416 4 

PIPE(1) 120724 33768 39555 0 525 119 260 7 

UNROLL-PIPE(1) 115684 23486 34486 20 405 66 66 15 

UNROLL-PIPE(2) 54990 37043 19998 20 90 99 76 20 

 

Table 5.6 FPGA Implementation Results of the Proposed HEVC-FME-DC-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(8×4 or 4×8 

PUs) 

FHD 

fps 

No optimization 70902 19592 22196 0 0 119 411 4 

PIPE(1) 70912 19645 22389 0 0 116 255 7 

UNROLL-PIPE(1) 115237 24193 39841 20 0 55 66 13 

UNROLL-PIPE(2) 49341 34600 18081 20 0 113 75 23 

 

Table 5.7 HEVC FME Hardware Comparison 

 [66] [67] [68] HEVC-FME-DC-HLS 

FPGA 28 nm 40 nm 40 nm 28 nm 

LUT 17888 130306 5200 49341 

FF 17946 --- 3794 34600 

Slice 5742 --- 1814 18081 

Frequency (MHz) 97 200 142 113 

Supported PU sizes 8×8 All All All 

FHD (1920×1080) fps 55 128 76 23 

 

5.3 HEVC 2D DCT HLS Implementations 

HEVC uses DCT-II for transform operations. It uses 4×4, 8×8, 16×16, and 

32×32 TU sizes. HEVC performs 2D transform operation by first performing 1D 

column transform and then performing 1D row transform. The coefficients in HEVC 

1D transform matrices are derived from DCT basis functions. However, integer 

coefficients are used for simplicity.  
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Two HEVC 2D DCT HLS implementations HEVC-DCT-MUL-HLS and 

HEVC-DCT-MCM-HLS are proposed. In the C++ codes, we use three functions called 

DCT_col, DCT_row, and DCT_2D. In the C++ code of HEVC-DCT-MUL-HLS, 

multiplication operations are used to implement constant multiplications. In the HEVC-

DCT-MCM-HLS, Hcub MCM algorithm [26] is used to implement constant 

multiplications. These C++ codes are synthesized to Verilog RTL using Xilinx Vivado 

HLS tool. 

In DCT_2D function, we use two for loops with iterations of TU size. The first 

for loop performs 1D column transform by calling DCT_col function and storing its 

outputs in a transpose memory in each iteration. The second for loop performs 1D row 

transform by applying the relevant data from the transpose memory to the DCT_row 

function in each iteration. 

The Verilog RTL codes generated by Xilinx Vivado HLS tool are verified with 

RTL simulations and then implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado 

2020.1. The FPGA implementations are verified with post place and route simulations.  

Table 5.8 and Table 5.9 show FPGA implementation results of HEVC-DCT-

MUL-HLS and HEVC-DCT-MCM-HLS, respectively. To improve performance of the 

proposed HEVC DCT HLS implementations, in addition to bit-accurate models in C++ 

codes, pipeline (PIPE), INLINE, and resource (RES) directives are applied. We apply 

PIPE to the for loops.  

We apply INLINE directive to the functions DCT_col and DCT_row. Function 

inlining removes the function hierarchy. Inlining a function may improve area by 

allowing the components within the function to be better shared or optimized with the 

logic in the calling function [71]. 

Resource (RES) directive is used to specify which resource will be used to 

implement a variable such as an array, arithmetic operation or function argument. In 

HEVC-DCT-MUL-HLS, we apply RES to specify DSP blocks to be used to implement 

multiplication operations. In both HEVC-DCT-MUL-HLS and HEVC-DCT-MCM-

HLS, we apply RES to specify BRAMs to implement the input arrays.  

In Table 5.10, the best proposed HEVC DCT HLS implementation (HEVC-

DCT-MCM-HLS with INLINE-PIPE-RES) is compared with the manual HEVC DCT 

hardware implementations proposed in [53], [12], [14], [55] and [70]. The values shown 

as “---” have not been reported. The proposed HEVC-DCT-MCM-HLS has better area 

and performance than the HLS implementation proposed in [70] and manual HEVC 
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DCT hardware proposed in [55]. The hardware proposed in [12] and [14] are 

approximate hardware. The hardware proposed in [53] performs HEVC 2D DCT for 

only 16×16 TUs. 

 

Table 5.8 FPGA Implementation Results of the Proposed HEVC-DCT-MUL-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(4×4 for TU) 

FHD 

fps 

No optimization 20813 23663 7442 0 535 192 71 20 

INLINE 20095 21834 7832 0 537 188 59 24 

PIPE 20138 23720 7831 0 535 188 51 28 

INLINE-PIPE 21515 22730 8064 0 540 172 22 60 

INLINE-PIPE-RES 20931 23119 8341 0 540 181 22 63 

 

Table 5.9 FPGA Implementation Results of the Proposed HEVC-DCT-MCM-HLS 

 LUTs FFs Slices BRAMs DSP48 
Freq 

(MHz) 

Clock Cycles 

(4×4 for TU) 

FHD 

fps 

No optimization 36247 28491 12108 0 0 181 75 18 

INLINE 36667 27777 12073 0 0 187 59 24 

PIPE 35652 29020 11871 0 0 187 53 27 

INLINE-PIPE 37627 29289 12393 0 0 167 21 61 

INLINE-PIPE-RES 37491 29374 12893 0 0 177 21 65 

 

Table 5.10 HEVC DCT Hardware Comparison 

 [53] [12] [14] [55] [70] 
HEVC-DCT-

MCM-HLS 

HLS / Manual Manual Manual Manual Manual HLS HLS 

Approximate(A) 

/ Exact (E) 
E A A E E E 

Transform 2D DCT 2D DCT 2D DCT/IDCT 2D DCT 2D IDCT 2D DCT 

TU size 16 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 

FPGA 65 nm 40 nm 40 nm 65 nm 40 nm 28 nm 

LUT 16002 35555 30701 54305 50566 37491 

FF --- 11230 10965 15607 34955 29374 

Slice --- 10080 8924 --- 14944 12893 

BRAM --- 32 16 --- 13 0 

DSP blocks --- 0 0 384 0 0 

Freq. (MHz) 27 100 104 90 208 177 

fps 35 QFHD 48 QFHD --- 6 QFHD 54 FHD 65 FHD 
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6 CHAPTER VI  

 

VVC AFFINE MOTION ESTIMATION HARDWARE 

 

 

Inter prediction is a vital part of video coding, which aims to find a similar block 

in the reference frames to decrease the temporal redundancy. Motion estimation (ME) 

and motion compensation are the main tools of inter prediction. The basic motion model 

of the conventional block-based ME in HEVC is translational motion model. However, 

the motion of an object may happen in different forms such as rotation and zooming. 

In VVC, affine motion estimation (AME) is used which considers rotation, 

zooming, and shearing of blocks during block matching ME. AME achieves higher 

compression than translational ME at the cost of much more computational complexity 

[72], [73]. 

In this thesis, to reduce the computational complexity of VVC AME, an 

approximate VVC AME hardware is proposed using a proposed approximate absolute 

difference (AD) hardware, approximate adder tree, and sub-sampling. The proposed 

approximate AD hardware reduces the bit length of each AD value from 8 to 5. A new 

approximate adder tree is proposed to decrease the bit length of the adders. To further 

reduce the computational complexity of VVC AME, sub-sampling is used. 
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6.1 VVC Affine Motion Estimation 

AME has two modes. 4-parameter AME utilizes two motion vectors and 6-

parameter AME utilizes three motion vectors. 4-parameter AME takes zoom and 

rotation into account. Equations (6.1) and (6.2) show formulas of 4-parameter AME. 6-

parameter AME takes zoom, rotation, and shear into account. Equations (6.3) and (6.4) 

show the formulas of 6-parameter AME. Figure 6.1 shows 6-parameter AME model 

with three motion vectors. 

Translational ME has the most computational complexity in video coding. AME 

is more computationally complex than translational ME. To decrease computational 

complexity, VVC performs AME on 4×4 sub-blocks instead of pixels. For higher 

spatial video resolutions, the importance of each 4×4 sub-block is reduced, which lets 

us apply AME on sub-blocks instead of pixels with negligible quality loss.  

 

𝑚𝑣𝑥 =
𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑥

                          (6.1) 

𝑚𝑣𝑦 =
𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑦

                          (6.2) 

 

𝑚𝑣𝑥 =
𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥−𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑥

                          (6.3) 

𝑚𝑣𝑦 =
𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦−𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑦

                          (6.4) 
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Figure 6.1 The 6-parameter affine model with three motion vectors. 
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In translational ME, a motion vector is calculated for every block, then all the 

pixels within that block are shifted to the location indicated by that motion vector 

regardless of their positions within the block. Whereas, in AME, new locations of pixels 

are calculated based on their locations within the block.  

Figure 6.2 shows AME of 4×4 sub-blocks in a 16×16 block where the affine 

motion vectors are shown with the black arrows, and four of 16 calculated translational 

motion vectors are shown with the colored arrows. In AME, affine motion vectors are 

used to calculate translational motion vectors for the center points of the sub-blocks.  

 

 

Figure 6.2 AME of 4×4 sub-blocks in a 16×16 block. 

 

Since AME uses 2 or 3 motion vectors per block, the number of search locations 

increases exponentially. For instance, for a 128×128 search window, there are 16384 

mv0 search locations; while for each mv0, 16384 mv1 search locations exist, and for 

each mv1, 16384 mv2 search locations exist. Thus, for a 6-parameter full-search AME, 

4.3×1012 SAD values need to be calculated. It is not feasible to calculate them. Hence, 

approximate AME algorithms are required such as using full search for mv0 while 

searching just pre-determined search locations for mv1 and mv2 [72].  

In [74], a VVC AME hardware is proposed to perform 4-parameter AME. It is 

the first VVC AME FPGA implementation in the literature. The hardware proposed in 

[74] uses a new pixel storage method that considerably decreases the computational 

complexity and the number of BRAM read operations. In the hardware proposed in 

[74], fixed search window size is 128×128 and block sizes are 16×16, 32×32 or 64×64. 

The block size is given to the hardware as input. The user determines the trade-off 
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between compression and speed by selecting the block size [75]. The hardware 

proposed in [74] searches all the mv0 search locations in the 128×128 search window, 

i.e., 4096 mv0 search locations for 64×64 block size, 9216 mv0 search locations for 

32×32 block size, and 12544 mv0 search locations for 16×16 block size. It searches just 

eight pre-determined mv1 search locations. Thus, the hardware proposed in [74] 

searches 32768, 73728, or 100352 search locations. 

The hardware proposed in [74] has two copies of the VVC AME hardware 

shown in Figure 6.3, which work in parallel. Each copy consists of a translational 

motion vector calculation component in the control module, multiplexers to select 

pixels utilizing the motion vectors, 64×64 processing units for absolute difference (AD) 

calculation and an adder tree. After start signal, the search window pixels are read from 

off-chip memory and written to BRAMs. 64 pixels are read in a clock cycle. The 64 

pixels are concatenated and written to a single location in BRAMs. Because the search 

window size is 128×128, 128 rows are stored to every BRAM. Thus, 256 clock cycles 

are required to store the search window pixels in BRAMs. Then, the current block 

pixels are read in 64, 16, or 4 clock cycles based on the block size. Next, in one clock 

cycle, one row of search window (128 pixels) is read from BRAMs and stored to 

registers. Previous and next rows are also required for SAD calculations because the 

affine motion vectors can point upwards and downwards. After reading the required 

pixels, SAD calculation begins. 
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Figure 6.3 VVC affine motion estimation hardware proposed in [74]. 

In the hardware proposed in [74], based on the translational motion vectors 

calculated by the control module, proper pixels are sent to the 64×64 processing units 
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for AD calculation and AD results are added up by the adder tree. Eight mv1 search 

locations are searched for each mv0. Figure 6.4 shows seven mv1 search locations. The 

8th mv1 search location is the upper right corner of the block. Each of the copies of the 

hardware shown in Figure 6.3 performs motion vector and SAD calculations four times. 

The smallest SAD and the corresponding motion vector are stored in the registers to be 

compared with the SAD values that will be calculated later.  

The hardware proposed in [74] uses a new pixel storage method. After SAD 

calculations for a mv0 search location and eight mv1 search locations are completed, 

instead of incrementing mv0𝑥, the search window pixels in the registers are shifted by 

one to the left. Also, after SAD calculations for a row is completed, instead of 

incrementing mv0𝑦, the search window pixels in the registers are shifted up and a new 

row is read from the BRAMs. After all the SAD calculations are completed, the 

smallest SAD and the related motion vector are sent to the output. This process is 

repeated for each block.  

 

 

Figure 6.4 MV1 locations in the VVC AME hardware proposed in [74]. 

 

This pixel storage method uses a large number of registers. However, it has 

three advantages. First, it considerably decreases the number of BRAM read operations. 

Second, it removes complex address generation for BRAMs. Third, it notably simplifies 

calculation of translational motion vectors from affine motion vectors. This method 

performs left and up shifts that can be considered as moving the search window instead 

of the current block. Thus, mv0 value does not change. Since the first mv0 is considered 

as (0,0), AME formulae are converted to equations (6.5) and (6.6) for 4-parameter AME 

and equations (6.7) and (6.8) for 6-parameter AME, which decreases the hardware area. 
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𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦

𝑤
𝑦                                          (6.5) 

𝑚𝑣𝑦 =
𝑚𝑣1𝑦

𝑤
𝑥 −
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𝑤
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𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥

𝑤
𝑦                                           (6.7) 

𝑚𝑣𝑦 =
𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦

𝑤
𝑦                                           (6.8) 

 

Hardware friendly interweaved prediction for affine motion compensation is 

presented in [76]. In [77], a hardware architecture for the VVC affine motion 

compensation (MC) is proposed. In [78], two new hardware architectures for the VVC 

affine MC are developed. These proposed architectures process the 4×4 subblocks, 

generating the interpolated samples for the affine MC process of the VVC standard and 

generating four interpolated samples in parallel. In the hardware proposed in [79], four 

4×4 subblocks are reconstructed in parallel, where the MCM technique is used to 

replace the multipliers with sum and shifts in the SMV generator and interpolation 

filters. In [80], a simplified AME algorithm and its ASIC hardware implementation are 

proposed. 

In [74], low error approximate absolute difference (LAD_X) hardware is 

proposed. LAD_2 hardware and its two least significant bits (LSBs) are shown in 

Figure 6.5. LAD_X hardware comprises a subtractor, XOR gates, an adder, and OR 

gates. First, the difference (D) is obtained by subtracting inputs A and B. The sign bit of 

the difference (D[8]) is XOR’ed with the other eight bits of the difference (D[7:0]). 

Then, the sign bit (D[8]) is added to the least significant 𝑋 bits. Therefore, instead of 

calculating 2’s complement of the entire difference, 2’s complement of its least 

significant 𝑋 bits is calculated. This restricts carry propagation in the addition operation. 

Lastly, the MSB of the addition result (ECN[2]) is OR’ed with the other bits of the 

addition result.  
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Figure 6.5 (a) LAD_2 hardware, (b) Two least significant bits of absolute difference in 

the LAD_2 hardware. 

 

6.2 Proposed VVC Affine Motion Estimation Hardware 

An approximate 4-parameter VVC AME hardware is proposed using a new 

approximate absolute difference (AD) hardware, approximate adder tree, and sub-

sampling.  

 

6.2.1 Proposed Approximate AD hardware 

The pixels in a video are 8-bit integers in the range [0-255]. Sum of absolute 

differences (SAD) is a distortion metric which is commonly used in block matching ME 

and AME. The search location with the minimum SAD is selected as the best search 

location. To design the proposed approximate AD hardware, we assume that the AD 

value of the best search location is smaller than 32. 

The proposed approximate AD hardware comprises a subtractor and some logic 

gates. The inputs of the hardware are two 8-bit unsigned integers shown as A[7:0] and 

B[7:0], and its output is a 5-bit unsigned integer shown as AD[4:0]. First, the inputs A 

and B are subtracted and the result is shown as D[8:0]. If |D| < 32, AD[4:2] is equal to 

XOR of D[8] (sign bit of the difference) with D[4:2] as shown in Table 6.1. If |D| > 32, 
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we make AD[4:0] as large as possible so AD[4:2] is as shown in Table 6.1. The cases 

corresponding to |D| > 32 are not expected to be the best search location in ME and 

AME. Therefore, this approximation does not cause much quality loss. 

Figure 6.6 shows the Karnaugh maps for AD[4]. Accordingly, AD[4] is obtained 

as shown in equation (6.9) which is simplified as shown in equation (6.10). 

 

Table 6.1 D[4:2] in the Proposed Approximate AD Hardware 

 D[8] D[7] D[6] D[5] AD[4] AD[3] AD[2] 

|D| < 32 0 0 0 0 D[4] D[3] D[2] 

|D| > 32 

0 

. 

. 

. 

1 

0 

. 

. 

. 

1 

0 

. 

. 

. 

1 

1 

. 

. 

. 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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|D| < 32 1 1 1 1 𝐷[4]̅̅ ̅̅ ̅̅  𝐷[3]̅̅ ̅̅ ̅̅  𝐷[2]̅̅ ̅̅ ̅̅  
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Figure 6.6 Karnaugh maps for AD[4] in the proposed approximate AD hardware. 

 

𝐴𝐷[4] =  𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[4] + 𝐷[8]̅̅ ̅̅ ̅̅ . 𝐷[7]̅̅ ̅̅ ̅̅ . 𝐷[6]̅̅ ̅̅ ̅̅ . 𝐷[5]̅̅ ̅̅ ̅̅ . 𝐷[4]̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          (6.9) 

𝐴𝐷[4] =  𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[4]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[4])  (6.10) 

 

Similarly, AD[3] and AD[2] are obtained as shown in equations (6.11) and (6.12), 

respectively. 

 

𝐴𝐷[3] =  𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[3])  (6.11) 

𝐴𝐷[2] =  𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[2])  (6.12) 
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In the proposed approximate AD hardware, the two least significant bits of the 

absolute difference (AD[1:0]) are implemented similar to the LAD_2 hardware shown 

in Figure 6.5 so that the carry propagation of addition with 1 is restricted to only two 

bits. The hardware shown in Figure 6.5 is simplified using the truth table shown in 

Table 6.2. 

Table 6.2 Truth Table for AD[1:0] in the LAD_2 Hardware 

D[8] D[1:0] EC[1:0] ECN[2:0] AD[1:0] 

0 00 00 000 00 

0 01 01 001 01 

0 10 10 010 10 

0 11 11 011 11 

1 00 11 100 11 

1 01 10 011 11 

1 10 01 010 10 

1 11 00 001 01 

 

Figure 6.7 shows the Karnaugh maps for AD[1]. Accordingly, AD[1] is obtained 

as shown in equation (6.13) which is simplified as shown in equation (6.14). Similarly, 

AD[0] is obtained as shown in equation (6.15). 
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(a) (b)  

Figure 6.7 Karnaugh maps for (a) AD[1] and (b) AD[0] in the proposed approximate 

AD hardware. 

 

𝐴𝐷[1] =  𝐷[8]. 𝐷[1]̅̅ ̅̅ ̅̅ + 𝐷[8]̅̅ ̅̅ ̅̅ . 𝐷[1] + 𝐷[1]. 𝐷[0]̅̅ ̅̅ ̅̅                       (6.13) 

𝐴𝐷[1] = (𝐷[8] ⊕ 𝐷[1]) + 𝐷[1]. 𝐷[0]̅̅ ̅̅ ̅̅                               (6.14) 

𝐴𝐷[0] = 𝐷[0] + 𝐷[8]. 𝐷[1]̅̅ ̅̅ ̅̅                                       (6.15) 

  

Figure 6.8 shows the proposed approximate AD hardware using equations 

(6.10), (6.11), (6.12), (6.14), and (6.15). In the cases that the absolute difference of two 

pixels A and B in the best search location is smaller than 32 (|A-B| < 32), the proposed 

approximate AD hardware has very low error. In the cases that the absolute difference 
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of two pixels A and B in the best search location is larger than 32 (|A-B| > 32), although 

the AD for these two pixels may not have low error, the SAD value can still have low 

error.  
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Figure 6.8 The proposed approximate AD hardware. 

 

In ME and AME, the best search location is found using a distortion metric such 

as SAD. If some of the AD results have large errors, the SAD values can still have low 

error especially because large number of AD results are added in the adder tree to 

obtain the SAD value. For example, for the 64×64 block size, 4096 AD results are 

added to obtain the SAD value. Even though some of the AD results are calculated 

inaccurately, the best search location can still be found. Therefore, the proposed 

approximate AD hardware can be used for ME and AME. In the proposed approximate 

AD hardware, bit length of each AD is reduced from 8 to 5 which reduces area of both 

AD hardware and adder tree. 
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6.2.2 Approximate Adder Tree 

In the VVC AME hardware proposed in [74], each AD is an 8-bit value and 

there are 12 stages in the adder tree, therefore the SAD bit length is 20.  

In the proposed approximate VVC AME hardware, approximate adders are used 

in some of the stages in the adder tree to further decrease the bit length of the adders. 

Figure 6.9 shows the proposed approximate adder that is used in stage 4 of the adder 

tree, in which A[7:0] and B[7:0] are inputs and AS[7:0] is output. In the proposed 

approximate adder, the most significant bit (MSB) is removed. But before its removal, it 

is OR’ed with the three bits which have less significance than the MSB. Therefore, if 

the addition result is large such that MSB is one, before removing the MSB, we make 

the three less significant bits “111” and keep the rest of the bits as they are. This keeps 

the addition result large enough so that it does not affect the AME predictions much. In 

ME and AME, accuracy in calculation of the minimum SAD is much more important 

than the large SAD values. AD values used to calculate the minimum SAD 

corresponding to the best search location are not very large so that removal of MSB in 

some stages of adder tree does not cause much error. 

In the proposed approximate VVC AME hardware, using the proposed 

approximate AD hardware, each AD is a 5-bit value and there are 12 stages in the adder 

tree. The proposed approximate adders are used in stages 4, 7, and 10 as shown with red 

color in Figure 6.10. In addition to the 3-bit reduction in bit length by using the 

proposed approximate AD hardware, there are three 1-bit reductions in bit length by 

using the proposed adder tree. Therefore, the SAD bit length in the proposed 

approximate VVC AME hardware is reduced from 20 to 14. 

 

A+B

8 8

9

A[7:0] B[7:0]

S[8:0]

1 3 5
S[8] S[7:5] S[4:0]

AS[4:0]AS[7:5]  

Figure 6.9 The approximate adder used in stage 4 of the proposed adder tree 
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Figure 6.10 The proposed approximate adder tree 

 

6.2.3 Sub-Sampling 

Sub-sampling method is used in the second proposed approximate VVC AME 

hardware (proposed VVC AME (2)) to improve the performance and reduce the 

hardware area. In the proposed approximate hardware, only four of the pixels are used 

to calculate the SAD of a 4×4 sub-block instead of all the 16 pixels in the sub-block. In 
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Figure 6.11, the pixels that are used for SAD calculation in a 4×4 sub-block are shown 

as red squares. Using this sub-sampling, the bit length of the sub-block SAD and the 

output SAD become 7 and 12, respectively. The number of stages in the adder tree is 

reduced to 10. The proposed approximate adders are used in stages 4, 7, and 9 of the 

adder tree.  

 

 

Figure 6.11 Sub-sampling in a 4×4 sub-block used in proposed VVC AME (2) 

 

6.3 Implementation Results 

We proposed two approximate VVC AME hardware (1) and (2). In both 

hardware, the pixel storage method proposed in [74] is used. Eight AME search 

locations are searched as in [74]. In proposed hardware (1), the proposed approximate 

AD hardware and proposed adder tree are used. In proposed hardware (2), in addition to 

the proposed approximate AD hardware and proposed adder tree, the sub-sampling 

method is also used. 

Both proposed approximate VVC AME hardware are implemented using 

Verilog HDL. Verilog RTL codes are synthesized, placed and routed to a Virtex 7 

FPGA using Xilinx Vivado 2020.1. In Table 6.3, the implementation results of the 

proposed hardware are compared to [74] which is the only FPGA implementation of the 

VVC AME in the literature. Proposed approximate VVC AME hardware (1) has 5% 

higher frequency and 7%, 20%, and 7% less LUT, FF, and BRAM, respectively, than 

the one in [74]. Proposed approximate VVC AME hardware (2) has 79% higher 

frequency and 71%, 57%, and 7% less LUT, FF, and BRAM, respectively, than the one 

in [74]. No DSP blocks are used in proposed hardware (2), because the multiplications 

in equations (6.5) and (6.6) are implemented with only adders and shifters. 
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Table 6.3 Implementation Results 

 Frequency (MHz) LUT FF BRAM DSP 

[74] 125.786 655741 252982 16 1920 

Proposed VVC AME hardware (1) 131.579 610268 203680 15 1920 

Proposed VVC AME hardware (2) 225.734 186392 106733 15 0 

 

VVC AME in the proposed hardware is performed in 50188, 36876, and 16396 

clock cycles for the blocks with 16×16, 32×32, and 64×64 sizes, respectively. Table 6.4 

shows the frames per second (fps) of the proposed hardware for HD and FHD video 

resolutions. In the table, in hybrid case, 40% of the frame is processed with 64×64 block 

size, 35% of the frame is processed with 32×32 block size and 25% of the frame is 

processed with 16×16 block size. Both proposed hardware have higher performance 

than the one in [74]. 

 

Table 6.4 Number of frames per second (fps) 

Block Size 
[74] Proposed hardware (1) Proposed hardware (2) 

HD FHD HD FHD HD FHD 

64×64 32.5 fps 15 fps 35.6 fps 15.8 fps 61.1 fps 27.1 fps 

32×32 3.7 fps 1.6 fps 3.9 fps 1.7 fps 6.8 fps 3.0 fps 

16×16 0.65 fps 0.29 fps 0.72 fps 0.32 fps 1.25 fps 0.55 fps 

Hybrid 2 fps 0.91 fps 2.25 fps 1.76 fps 3.87 fps 3.02 fps 
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7 CHAPTER VII  

 

CONCLUSIONS AND FUTURE WORK 

 

 

In this thesis, approximate F2 VVC FI filters and VVC FI hardware implementing 

approximate F1 and F2 filters (MCMF1, BF2, MCMF2) are proposed. The proposed 

approximate VVC FI filters reduce computational complexity of VVC FI at the expense 

of very small quality loss. F2 filter causes slightly more quality loss than F1 filter. The 

proposed approximate VVC FI hardware have higher speed, smaller area, and up to 

51% lower power consumption than the exact VVC FI hardware. Since VVC FI has 

higher computational complexity than HEVC FI, implementation results of the HEVC 

FI hardware are better than implementation results of the proposed approximate VVC 

FI hardware at the expense of lower quality. BF2 and MCMF2 hardware have higher 

speed, smaller area and lower power consumption than BF1 and MCMF1 hardware. 

However, they have slightly worse rate-distortion performance than BF1 and MCMF1 

hardware. Therefore, MCMF1 hardware can be used in consumer electronics devices 

requiring high speed, small area, low power consumption and high quality. MCMF2 

hardware can be used in consumer electronics devices requiring higher speed, smaller 

area, lower power consumption and slightly lower quality. Moreover, a novel VVC FI 

hardware using memory based constant multiplication for all PU sizes is proposed. 

Several optimizations are proposed to reduce memory size. The proposed VVC FI 

hardware can process 49 full HD (1920×1080) video frames per second. It has up to 

9.4% less power consumption than VVC FI hardware in the literature. 
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In this thesis, decomposed coefficients technique is proposed for implementing 

HFI and VFI. Exact HFI hardware, exact VFI hardware, and approximate VFI hardware 

DCF1 and DCF2 are designed and implemented using the proposed technique. The 

proposed exact HFI and exact VFI hardware have higher performance, less area, and 

less power consumption than the best exact HFI and exact VFI hardware, respectively. 

The proposed approximate VFI hardware have the same performance, less area, and less 

power consumption than the best approximate VFI hardware. Therefore, the proposed 

hardware can be used in consumer electronics products which require real-time HEVC 

and VVC video encoder and decoder. 

In this thesis, a new approximate constant multiplication technique is used to 

propose a new approximate HEVC 2D DCT for all transform unit (TU) sizes. In the 

proposed hardware, the approximate constant multiplication is used for multiplications 

with only the DCT coefficients that do not cause high average percentage error. So, it 

has less quality loss than the existing approximate HEVC 2D DCT hardware. In the 

proposed hardware, there are some common constant multiplications that are calculated 

once so that the number of multiplications is reduced. The proposed approximate 

HEVC 2D DCT hardware has less area, less power consumption, and higher 

performance than the existing HEVC 2D DCT hardware. 

In this thesis, the first FPGA implementations of VVC FI and HEVC FME 

algorithms using an HLS tool in the literature are proposed. Novel FPGA 

implementations of HEVC 2D DCT algorithm using an HLS tool are proposed. The 

best proposed VVC FI HLS implementation can process 62 full HD video fps. It has 

higher performance than the manual VVC FI hardware implementations at the cost of 

larger area. The best proposed HEVC FME HLS implementation supports all the PU 

sizes, and in the worst case, can process 23 full HD video fps.  The best proposed 

HEVC 2D DCT HLS implementation, in the worst case, can process 65 full HD fps.  

In this thesis, we proposed an approximate VVC AME hardware using proposed 

approximate AD hardware, approximate adder tree, and sub-sampling. Using the 

proposed approximate hardware reduces VVC AME hardware area and improves its 

performance. Sub-sampling is used to further reduce the area and improve the 

performance. The proposed approximate VVC AME hardware has higher performance 

and smaller area than the best VVC AME hardware in the literature.   
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As future work, new VVC 2D DCT hardware can be proposed using the 

approximate constant multiplication method that is used in the proposed HEVC 2D 

DCT hardware. The proposed decomposed coefficients technique can be applied to 

VVC AME. Instead of full search algorithm, fast search algorithms can be used for 

VVC AME to achieve higher performance with smaller area.   
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