

EFFICIENT HEVC AND VVC VIDEO COMPRESSION HARDWARE DESIGNS

by

HOSSEIN MAHDAVI

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

Sabancı University

December 2023

EFFICIENT HEVC AND VVC VIDEO COMPRESSION HARDWARE DESIGNS

DATE OF APPROVAL: 29/12/2023

© HOSSEIN MAHDAVI 2023

All Rights Reserved

IV

1 ABSTRACT

EFFICIENT HEVC AND VVC VIDEO COMPRESSION HARDWARE DESIGNS

HOSSEIN MAHDAVI

Electronics Engineering, PhD Thesis, 2023

Thesis Supervisor: Assist. Prof. Dr. Murat Kaya Yapıcı

Thesis Co-Advisor: Prof. Dr. İlker Hamzaoğlu

Keywords: HEVC, VVC, Fractional Interpolation, 2D Transform, HLS, Affine Motion

Estimation

Digital video usage has significantly increased in recent years. Since both the

spatial and temporal resolutions of videos increased, new video compression standards

such as High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) are

developed to achieve higher compression efficiency. VVC has higher compression

efficiency than HEVC at the cost of higher computational complexity. Approximate

computing can be used to reduce the computational complexity of error tolerant

applications such as video compression. Dedicated hardware implementations are

required for real time video compression.

In this thesis, we propose efficient exact HEVC and VVC hardware

implementations. To reduce the computational complexity of HEVC and VVC

algorithms, we propose approximate VVC fractional interpolation (FI) filters, HEVC

two-dimensional (2D) discrete cosine transform (DCT) using approximate constant

multiplication, and approximate VVC affine motion estimation (AME). We propose

efficient approximate HEVC and VVC hardware implementations using approximate

algorithms and approximate hardware.

V

In this thesis, approximate VVC FI filters are proposed. The proposed

approximate filters reduce computational complexity of VVC FI at the expense of very

small quality loss. Three VVC FI hardware implementing the proposed approximate

VVC FI filters are also proposed. A novel VVC FI hardware using memory based

constant multiplication is proposed. A new technique called decomposed coefficients is

proposed for implementing HEVC FI (HFI) and VVC FI (VFI). The proposed technique

decomposes the coefficients of FIR filters such that the number of additions is reduced.

A new approximate constant multiplication technique is used to propose a HEVC 2D

DCT hardware, in which common constant multiplications are calculated once so that

the number of multiplications is reduced. The first FPGA implementations of VVC FI

and HEVC fractional motion estimation (FME) using an HLS tool in the literature are

proposed. Novel FPGA implementations of HEVC DCT algorithm using an HLS tool

are proposed. An approximate VVC AME hardware is proposed using a proposed

approximate absolute difference (AD) hardware, approximate adder tree, and sub-

sampling.

VI

2 ÖZET

VERİMLİ HEVC VE VVC VİDEO SIKIŞTIRMA DONANIM TASARIMLARI

HOSSEIN MAHDAVI

Elektronik Müh., Doktora Tezi, 2023

Tez Danışmanı: Yard. Doç. Dr. Murat Kaya Yapıcı

Tez Yardımcı Danışmanı: Prof. Dr. İlker Hamzaoğlu

Anahtar Kelimeler: HEVC, VVC, Kesirli İnterpolasyon, 2D Dönüşüm, HLS, Afin

Hareket Tahmini

Son yıllarda dijital video kullanımı çok arttı. Videoların hem uzamsal hem de

zamansal çözünürlükleri arttığı için, daha yüksek sıkıştırma verimliliği elde etmek için,

Yüksek Verimli Video Kodlama (HEVC) ve Çok Yönlü Video Kodlama (VVC) gibi

yeni video sıkıştırma standartları geliştirildi. VVC daha yüksek hesaplama karmaşıklığı

pahasına HEVC'den daha yüksek sıkıştırma verimliliğine sahiptir. Yaklaşık hesaplama,

video sıkıştırma gibi hataya dayanıklı uygulamaların hesaplama karmaşıklığını

azaltmak için kullanılabilir. Gerçek zamanlı video sıkıştırma için özel donanım

gerçeklemeleri gerekmektedir.

Bu tezde, verimli tam doğru HEVC ve VVC donanım gerçeklemeleri öneriyoruz.

HEVC ve VVC algoritmalarının hesaplama karmaşıklığını azaltmak için, yaklaşık VVC

kesirli interpolasyon (FI) filtreleri, yaklaşık sabit çarpma kullanan HEVC iki boyutlu

(2D) ayrık kosinüs dönüşümü (DCT) ve yaklaşık VVC afin hareket tahmini (AME)

öneriyoruz. Yaklaşık algoritmalar ve yaklaşık donanım kullanarak verimli yaklaşık

HEVC ve VVC donanım gerçeklemeleri öneriyoruz.

Bu tezde yaklaşık VVC FI filtreleri önerildi. Önerilen yaklaşık filtreler, çok küçük

bir kalite kaybı pahasına VVC FI'nın hesaplama karmaşıklığını azaltmaktadır. Önerilen

VII

yaklaşık VVC FI filtrelerini gerçekleyen üç VVC FI donanımı da önerildi. Bellek

tabanlı sabit çarpma kullanan yeni bir VVC FI donanımı önerildi. HEVC FI (HFI) ve

VVC FI'nı (VFI) gerçeklemek için ayrıştırılmış katsayılar adlı yeni bir teknik önerildi.

Önerilen teknik, FIR filtrelerinin katsayılarını toplama sayısını azaltacak şekilde

ayrıştırmaktadır. Yeni bir yaklaşık sabit çarpma tekniği kullanılarak çarpma sayısını

azaltacak şekilde ortak sabit çarpmaları bir defa hesaplayan HEVC 2D DCT donanımı

önerildi. Literatürdeki bir HLS yazılımı kullanılarak VVC FI ve HEVC kesirli hareket

tahmininin (FME) ilk FPGA gerçeklemeleri önerildi. HEVC DCT algoritmasının HLS

yazılımı kullanılarak yeni FPGA gerçeklemeleri önerildi. Önerilen bir yaklaşık mutlak

fark (AD) donanımı, yaklaşık toplayıcı ağacı ve alt örnekleme kullanılarak yaklaşık bir

VVC AME donanımı önerildi.

VIII

ACKNOWLEDGEMENT

I am sincerely grateful to my advisor, Dr. Murat Kaya Yapıcı, for all his

unconditional support. It was a great honor for me to work under his supervision.

I would like to thank my co-advisor, Dr. İlker Hamzaoğlu. I would appreciate all

his skills, support, advice, and life lessons throughout my studies and research. I have

been honored and privileged to work under his supervision and guidance.

I want to thank my thesis committee members Dr. Hüseyin Özkan, Dr. Onur

Varol, Dr. H. Fatih Uğurdağ, and Dr. Hasan F. Ateş for their invaluable feedback.

My thanks also go to the previous members of “System-on-Chip Design and Test

Lab”, Berke Ayrancıoğlu, Waqar Ahmad, and Hasan Azgın for their friendship and

support.

My acknowledgements also go to Sabanci University for supporting me with

scholarship throughout my studies.

Last but not least, my deepest gratitude to my beloved wife, Arghavan, for her

constant support, encouragement, and patience.

IX

To my parents and siblings

To my beloved wife Arghavan

X

3 TABLE OF CONTENTS

ABSTRACT .. IV

ÖZET .. VI

ACKNOWLEDGEMENT .. VIII

TABLE OF CONTENTS .. X

LIST OF FIGURES .. XIII

LIST OF TABLES ... XV

LIST OF ABBREVIATIONS ... XVII

1 CHAPTER I INTRODUCTION ... 1

 1.1 HEVC Video Compression Standard.. 2

 1.2 VVC Video Compression Standard .. 4

 1.3 Thesis Contributions ... 4

 1.4 Thesis Organization .. 6

2 CHAPTER II APPROXIMATE AND EXACT VERSATILE VIDEO CODING

FRACTIONAL INTERPOLATION FILTERS AND THEIR HARDWARE

IMPLEMENTATIONS ... 7

 2.1 VVC Fractional Interpolation ... 9

 2.2 Proposed Approximate VVC Fractional Interpolation Filters 10

 2.3 Proposed Approximate VVC Fractional Interpolation Hardware 12

 2.4 Implementation Results of the Proposed Approximate VVC FI Hardware 21

 2.5 Proposed VVC FI Hardware Using Memory Based Constant Multiplication 23

 2.6 Implementation Results of the Proposed VVC FI Hardware Using Memory

Based Constant Multiplication .. 30

XI

3 CHAPTER III NOVEL DECOMPOSED COEFFICIENTS BASED HEVC

AND VVC FRACTIONAL INTERPOLATION HARDWARE 32

 3.1 Fractional Interpolation FIR Filters .. 34

 3.2 Proposed HEVC FI Hardware .. 35

 3.3 Proposed VVC FI Hardware ... 39

 3.4 Proposed Approximate VFI Hardware DCF1... 43

 3.5 Proposed Approximate VFI Hardware DCF2... 45

 3.6 Comparison of Number of Adders .. 47

 3.7 Implementation Results .. 48

4 CHAPTER IV A NOVEL APPROXIMATE HIGH EFFICIENCY VIDEO

CODING DCT HARDWARE .. 51

 4.1 Approximate Constant Multiplier and Approximate HEVC DCT Hardware

[21] .. 53

 4.2 Proposed Approximate HEVC DCT ... 58

 4.3 Implementation Results .. 63

5 CHAPTER V FPGA IMPLEMENTATION OF VIDEO COMPRESSION

ALGORITHMS USING HIGH-LEVEL SYNTHESIS .. 66

 5.1 VVC FI HLS Implementations ... 68

 5.2 HEVC FME HLS Implementation.. 72

 5.3 HEVC 2D DCT HLS Implementations .. 75

6 CHAPTER VI VVC AFFINE MOTION ESTIMATION HARDWARE 78

 6.1 VVC Affine Motion Estimation.. 79

 6.2 Proposed VVC Affine Motion Estimation Hardware ... 84

 6.3 Implementation Results .. 90

7 CHAPTER VII CONCLUSIONS AND FUTURE WORK 92

 6.2.1 Proposed Approximate AD hardware .. 84

 6.2.2 Approximate Adder Tree ... 88

 6.2.3 Sub-Sampling ... 89

XII

8 BIBLIOGRAPHY ... 95

XIII

LIST OF FIGURES

Figure 1.1 HEVC Encoder Block Diagram .. 3

Figure 2.1 Integer pixels and fractional pixels in VVC standard 10

Figure 2.2 Approximate baseline VVC FI hardware for implementing F1 filter (BF1)

 .. 13

Figure 2.3 Filter datapaths hardware in BF1 hardware. ... 13

Figure 2.4 Scheduling of BF1, MCMF1, BF2, MCMF2 hardware. 14

Figure 2.5 Proposed approximate MCM VVC FI hardware for implementing F1

filter (MCMF1) .. 15

Figure 2.6 MD1, MD2, and OD in MCMF1 hardware. ... 16

Figure 2.7 Filter datapaths hardware in BF2 hardware. ... 18

Figure 2.8 Proposed VVC FI hardware using memory based constant multiplication

 .. 24

Figure 2.9 Implementation of -3A with addition and shift operations. 26

Figure 2.10 Implementation of constant multiplications with addition and shift

operations (a) 5A (b) -7A (c) 13A (d) -15A (e) -19A (f) 31A. 28

Figure 3.1 Integer pixels, HIPs, VIPs, HVIPs in HEVC FI. 35

Figure 3.2 Sub-Expressions datapaths in the proposed HEVC FI hardware.............. 38

Figure 3.3 Proposed HEVC FI hardware. .. 39

Figure 3.4 Proposed VVC FI Hardware ... 42

Figure 3.5 Common sub-expression datapaths in the proposed VVC FI hardware. .. 42

Figure 3.6 Common sub-expression datapaths in DCF1 hardware. 45

Figure 3.7 Common sub-expression datapaths in DCF2 hardware. 47

Figure 4.1 Examples of approximate constant multiplication 54

Figure 4.2 Approximate constant multiplication hardware proposed in [21] 55

Figure 4.3 HEVC 2D DCT hardware [12] ... 57

Figure 4.4 Average percentage error (%) for the constants [21] 58

Figure 4.5 Average percentage error (%) for the constants in the proposed hardware.

 .. 58

Figure 4.6 Exact multiplications required in the proposed first 4×4 datapath 61

Figure 4.7 Exact multiplications required in the proposed second 4×4 datapath 62

Figure 4.8 Exact multiplications required in the proposed 8×8 datapath 62

Figure 4.9 Exact multiplications required in the proposed 16×16 datapath 63

Figure 5.1 Part of the C++ codes performing HHPs interpolation............................. 69

XIV

Figure 5.2 Part of the calculation function in C++ codes of VVC-FI-MCM-HLS 69

Figure 5.3 Fractional search locations .. 73

Figure 5.4 HEVC FME HLS implementation HEVC-FME-DC-HLS 74

Figure 6.1 The 6-parameter affine model with three motion vectors. 79

Figure 6.2 AME of 4×4 sub-blocks in a 16×16 block. ... 80

Figure 6.3 VVC affine motion estimation hardware proposed in [74]. 81

Figure 6.4 MV1 locations in the VVC AME hardware proposed in [74]. 82

Figure 6.5 (a) LAD_2 hardware, (b) Two least significant bits of absolute difference

in the LAD_2 hardware. ... 84

Figure 6.6 Karnaugh maps for AD[4] in the proposed approximate AD hardware. .. 85

Figure 6.7 Karnaugh maps for (a) AD[1] and (b) AD[0] in the proposed approximate

AD hardware. ... 86

Figure 6.8 The proposed approximate AD hardware. .. 87

Figure 6.9 The approximate adder used in stage 4 of the proposed adder tree 88

Figure 6.10 The proposed approximate adder tree ... 89

Figure 6.11 Sub-sampling in a 4×4 sub-block used in proposed VVC AME (2) 90

XV

LIST OF TABLES

Table 2.1 Coefficients of VVC FI FIR Filters .. 9

Table 2.2 Coefficients of Proposed Approximate F1 FIR Filters 11

Table 2.3 Coefficients of Proposed Approximate F2 FIR Filters 11

Table 2.4 BD-Rate and BD-PSNR Results ... 12

Table 2.5 Coefficients of Proposed Approximate F1 FIR Filters with Offset 15

Table 2.6 Constant Multiplications in F1 FIR Filters .. 16

Table 2.7 Coefficients of Proposed Approximate F2 FIR Filters with Offset 19

Table 2.8 Constant Multiplications in F2 FIR Filters .. 20

Table 2.9 Implementation Results of the Proposed Approximate VVC FI Hardware

 .. 22

Table 2.10 Power Consumption Results of Proposed Approximate VVC FI Hardware

 .. 22

Table 2.11 Comparison of the Proposed Hardware with HEVC FI Hardware 23

Table 2.12 Coefficients of VVC FI FIR Filters with Offset [29] 25

Table 2.13 Constant Coefficient Multiplications for Input Pixels 25

Table 2.14 Implementation Results of the Proposed Memory Based VVC FI

Hardware .. 31

Table 2.15 Power Consumption of the Proposed Memory Based VVC FI Hardware

 .. 31

Table 3.1 Common Sub-Expressions in the Proposed HEVC FI Hardware 37

Table 3.2 Decomposed Coefficients in Proposed VVC FI Hardware 40

Table 3.3 Common Sub-Expressions in the Proposed VVC FI Hardware 41

Table 3.4 Approximate F1 FIR Filters with Offset Used in DCF1 43

Table 3.5 Common Sub-Expressions in DCF1 Hardware ... 44

Table 3.6 Approximate F2 FIR Filters with Offset Used in DCF2 45

Table 3.7 Common Sub-Expressions in DCF2 Hardware ... 46

Table 3.8 Number of Adders in HFI and VFI Hardware ... 47

Table 3.9 Implementation Results of HEVC FI Hardware .. 49

Table 3.10 Power Consumption of HEVC FI Hardware (mW) 49

Table 3.11 ASIC Implementation Results of HEVC FI Hardware 49

Table 3.12 Implementation Results of VVC FI Hardware ... 50

Table 3.13 Power Consumption of VVC FI Hardware (mW) 50

Table 4.1 Approximate Constant Multiplication .. 56

Table 4.2 Constant Multiplications Used in the Proposed Hardware 60

XVI

Table 4.3 BD-Rate and BD-PSNR Results .. 61

Table 4.4 FPGA Implementation Comparison ... 65

Table 4.5 Power Consumption Comparison .. 65

Table 4.6 Comparison with HEVC DCT Hardware .. 65

Table 5.1 FPGA Implementation Results of the Proposed VVC-FI-MUL-HLS 71

Table 5.2 FPGA Implementation Results of the Proposed VVC-FI-ASH-HLS 71

Table 5.3 FPGA Implementation Results of the Proposed VVC-FI-MCM-HLS 71

Table 5.4 VVC FI Hardware Comparison ... 72

Table 5.5 FPGA Implementation Results of the Proposed HEVC-FME-MUL-HLS 75

Table 5.6 FPGA Implementation Results of the Proposed HEVC-FME-DC-HLS ... 75

Table 5.7 HEVC FME Hardware Comparison .. 75

Table 5.8 FPGA Implementation Results of the Proposed HEVC-DCT-MUL-HLS 77

Table 5.9 FPGA Implementation Results of the Proposed HEVC-DCT-MCM-HLS77

Table 5.10 HEVC DCT Hardware Comparison ... 77

Table 6.1 D[4:2] in the Proposed Approximate AD Hardware 85

Table 6.2 Truth Table for AD[1:0] in the LAD_2 Hardware 86

Table 6.3 Implementation Results .. 91

Table 6.4 Number of frames per second (fps) .. 91

XVII

LIST OF ABBREVIATIONS

AD Absolute Difference

AME Affine Motion Estimation

ALF Adaptive Loop Filter

AMT Adaptive Multiple Transform

ASIC Application Specific Integrated Circuits

BRAM Block Ram

CABAC Context Adaptive Binary Arithmetic Coding

CU Coding Unit

DBF Deblocking Filter

DSP Digital Signal Processor

DCT Discrete Cosine Transform

DST Discrete Sine Transform

FI Fractional Interpolation

FIR Finite Impulse Response

FHD Full High Definition

FPGA Field Programmable Gate Array

HD High Definition

HEVC High Efficiency Video Coding

HLS High-Level Synthesis

HM HEVC Test Model

IDCT Inverse Discrete Cosine Transform

IDST Inverse Discrete Sine Transform

JEM Joint Exploration Test Model

JCT-VC Joint Collaborative Team on Video Coding

MV Motion Vector

MCM Multiple Constant Multiplication

PSNR Peak Signal to Noise Ratio

XVIII

PU Prediction Unit

SAD Sum of Absolute Differences

QFHD Quad Full HD

QP Quantization Parameter

SAO Sample Adaptive Offset

TU Transform Unit

VCD Value Change Dump

VVC Versatile Video Coding

1

1 CHAPTER I

INTRODUCTION

Uncompressed video sequences produce an enormous amount of data, and the

widespread use of video has steadily increased. Furthermore, the production of video

content has shifted away from exclusive professional studios to personal production,

real-time video chat, remote home monitoring, and even always-on wearable cameras.

Hence, video traffic is the main load on communication networks and data storage in

spite of the significant developments in video compression standards [1]. Digital video

content now comprises around 80% of all the internet traffic. Mobile internet video

traffic is also growing dramatically [2].

Video compression standards exploit temporal and spatial redundancy for

achieving compression. Intra-frame prediction exploits the spatial redundancy between

adjacent blocks in a frame, whereas motion-compensated prediction exploits the

extensive temporal redundancy between frames. In either case, the resultant prediction

error, which is derived from the difference between the original block and its prediction,

is transmitted using transform coding. Transform coding comprises decorrelating linear

transform, scalar quantization of the transform coefficients and entropy coding.

ITU and ISO recently developed Versatile Video Coding (VVC) standard [3]-[8].

VVC has higher compression efficiency than High Efficiency Video Coding (HEVC)

standard. However, it has higher computational complexity than HEVC [9]-[14].

Approximate computing can be used to reduce the computational complexity of error

2

tolerant applications such as video compression. Dedicated hardware implementations

are required for real time video compression.

In this thesis, we propose efficient exact HEVC and VVC hardware

implementations. To reduce the computational complexity of HEVC and VVC

algorithms, we propose approximate VVC fractional interpolation (FI) filters, HEVC

two-dimensional (2D) discrete cosine transform (DCT) using approximate constant

multiplication, and approximate VVC affine motion estimation (AME). We propose

efficient approximate HEVC and VVC hardware implementations using approximate

algorithms and approximate hardware.

1.1 HEVC Video Compression Standard

High efficiency video coding (HEVC) achieves 50% more compression than

H.264 at the cost of higher computational complexity [15]. Figure 1.1 shows the top-

level block diagram of an HEVC encoder. An HEVC encoder has a forward path and a

reconstruction path. The forward path is utilized to encode a video frame using intra and

inter predictions and to generate the bit stream after the transform and quantization

process.

In the encoding process, the frame is divided into coding units (CU), which can

vary in size from 8×8, 16×16, 32×32, to 64×64 pixels. Every CU is encoded in either

intra or inter mode determined by the mode decision. Both intra and inter prediction

methods employ prediction unit (PU) partitioning within the CUs. PU sizes vary from

4×4 to 64×64. Mode decision decides whether a PU is encoded in intra or inter mode

according to video quality and bit-rate. After mode decision decides the prediction

mode, the predicted block is subtracted from the original block, resulting in the residual

block. Subsequently, the residual block is transformed by DCT / discrete sine transform

(DST) and quantized. Transform unit (TU) sizes vary from 4×4 to 32×32. Lastly, the

encoded bitstream is generated by entropy coder.

3

Figure 1.1 HEVC Encoder Block Diagram

The reconstruction path in the encoder guarantees that both encoder and decoder

utilize identical reference frames for intra and inter prediction since a decoder never

receives original images. It starts with inverse quantization and inverse transform. The

coefficients of quantized transform are inverse quantized and inverse transformed to

form the reconstructed residual block. Because quantization is a lossy operation, the

reconstructed residual block is not identical to the original residual block. The

reconstructed residual block is added to the predicted block to generate the

reconstructed frame. Then, deblocking filter (DBF) decreases the effects of blocking

artifacts in the reconstructed frame.

 Intra prediction predicts the pixels of a block from the pixels in neighboring

blocks that have already been encoded and reconstructed. In HEVC, intra PU sizes vary

from 4×4 to 64×64 for the luminance component. Intra prediction for a PU can have up

to 35 modes [16].

 Inter prediction predicts the pixels of a block in the current frame from the

pixels in the previous frames blocks that have already been encoded and reconstructed.

In HEVC, inter PU sizes vary from 8×4/4×8 to 64×64. HEVC inter prediction utilizes

integer pixel motion estimation and fractional (sub-pixel) motion estimation. First,

integer pixel motion estimation is done for an inter PU. Then, fractional (sub-pixel)

motion estimation is done for the same inter PU. In HEVC, two different 7-tap and one

8-tap finite impulse response (FIR) filters are used for fractional interpolations.

In HEVC, integer based DCT is used. TUs are square-shaped with sizes from 4×4

to 32×32. HEVC also uses DST for the 4×4 intra prediction.

4

1.2 VVC Video Compression Standard

VVC standard has better coding efficiency than HEVC at the cost of much higher

computational complexity. VVC has a similar top-level block diagram to HEVC. In

VVC, the main blocks of HEVC are improved to achieve better compression at the cost

of higher computational complexity.

VVC intra prediction is similar to HEVC intra prediction. In VVC, angular intra

prediction has 65 modes. Moreover, 4-tap cubic and 4-tap gaussian filters are used in

angular intra prediction modes of VVC.

VVC inter prediction uses the same two-stage search as HEVC. VVC utilizes

seven 8-tap and eight 7-tap FIR filters for fractional interpolation.

In VVC, integer based DCT is used similar to HEVC. However, VVC utilizes an

adaptive multiple transform (AMT) method. VVC TU sizes vary from 4×4 to 64×64

[17].

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar

to HEVC with some improvements.

1.3 Thesis Contributions

Fractional interpolation (FI) is a computationally complex algorithm used in the

HEVC and VVC video encoder and decoder. FI accounts for 25% and 50% of the

HEVC encoder and decoder complexity, respectively. In this thesis, approximate VVC

FI filters are proposed [18]. The proposed approximate VVC FI filters reduce

computational complexity of VVC FI at the expense of very small quality loss. Three

VVC FI hardware implementing the proposed approximate VVC FI filters are also

proposed. The proposed approximate VVC FI hardware have higher speed, smaller

area, and up to 51% lower power consumption than the exact VVC FI hardware.

Therefore, they can be used in consumer electronics devices requiring high speed, small

area, low power consuming VVC encoder hardware.

A novel VVC FI hardware using memory based constant multiplication is

proposed [19]. The proposed hardware stores pre-computed products of an input pixel

with multiple constant coefficients in memory. It implements multiplications with

constant coefficients using these pre-computed products. Several optimizations are

5

proposed to reduce memory size. The proposed VVC FI hardware can process 49 full

HD (1920×1080) video frames per second (fps). It has up to 9.4% less power

consumption than VVC FI hardware in the literature.

In this thesis, a novel technique is proposed for implementing HEVC FI [20]. It is

also used for VVC FI. The proposed technique decomposes the coefficients of FIR

filters such that the number of additions is reduced. In this thesis, an HEVC FI

hardware, a VVC FI hardware, and two approximate VVC FI hardware are designed

and implemented using the proposed technique. The proposed HEVC FI hardware has

higher performance, less area, and less power consumption than the best HEVC FI

hardware in the literature. The proposed VVC FI hardware has higher performance, less

area, and less power consumption than the best VVC FI hardware in the literature. The

proposed two approximate VVC FI hardware have the same performance, less area, and

less power consumption than the best approximate VVC FI hardware in the literature.

In this thesis, an approximate constant multiplication technique, which has been

proposed in [21], is used to propose an HEVC 2D DCT for all transform unit (TU)

sizes. We use the approximate constant multiplication for multiplications with only the

DCT coefficients that do not cause high average percentage error. There are some

common constant multiplications that are calculated once so that the number of

multiplications is reduced. The proposed approximate HEVC DCT hardware, in the

worst case, can process 76 QFHD (3840×2160) frames per second.

High-level synthesis (HLS) is used to increase productivity. In this thesis, we

propose the first HLS implementations of VVC FI algorithm in the literature [22]. Three

different C++ codes are developed based on the software implementation of VVC FI in

the VVC test model software encoder (VTM) [23]. All these C++ codes are synthesized

to Verilog RTL using Xilinx Vivado HLS tool. The Verilog RTL codes are

implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado tool. The best proposed

VVC FI HLS implementation can process 62 full HD (1920×1080) video frames per

second. We propose the first HEVC fractional motion estimation (FME) HLS

implementations by developing two different C++ codes based on the HEVC reference

software encoder (HM) [24]. We propose novel HEVC 2D DCT HLS implementations

by developing two different C++ codes based on the HEVC reference software encoder

(HM) [24].

VVC uses affine motion estimation (AME) which considers rotation, zooming,

and shearing motions of blocks during block matching motion estimation (ME). AME

6

achieves higher video compression than translational ME at the cost of much more

computational complexity. In this thesis, an approximate VVC AME hardware is

proposed using a proposed approximate absolute difference (AD) hardware,

approximate adder tree, and sub-sampling. The proposed approximate AD hardware

reduces the bit length of each AD value from 8 to 5. A new approximate adder tree is

proposed to decrease the bit length of the adders. To further reduce the computational

complexity of VVC AME, sub-sampling is used.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II explains VVC FI. It presents the proposed approximate VVC FI filters.

MCMF1, BF2 and MCMF2 hardware designs are explained, and their implementation

results are presented. The proposed VVC FI hardware using memory based constant

multiplication is described and its implementation results are given.

Chapter III explains the proposed decomposed coefficients technique for

implementing FI hardware. It describes the proposed exact and approximate HEVC and

VVC FI hardware using the proposed technique.

Chapter IV explains the approximate constant multiplier proposed in [21]. It

explains the proposed approximate HEVC DCT using the approximate constant

multiplier and gives the experimental results.

Chapter V explains the first FPGA implementations of VVC FI algorithm using

an HLS tool in the literature. It describes the first FPGA implementations of HEVC

FME algorithm using an HLS tool in the literature. It describes novel FPGA

implementations of HEVC 2D DCT algorithm using an HLS tool.

Chapter VI explains the VVC AME. It explains the proposed approximate

absolute difference hardware, approximate adder tree, and sub-sampling that are used in

the proposed approximate VVC AME hardware. It gives the implementation results.

Chapter VII presents conclusions and future work.

7

2 CHAPTER II

APPROXIMATE AND EXACT VERSATILE VIDEO CODING FRACTIONAL

INTERPOLATION FILTERS AND THEIR HARDWARE

IMPLEMENTATIONS

VVC fractional interpolation (FI) has higher computational complexity than

HEVC FI. HEVC FI uses 3 different (one 8-tap, two 7-tap) finite impulse response

(FIR) filters. HEVC FI interpolates 15 fractional pixels (3 horizontal half pixels, 3

vertical half pixels, 9 quarter pixels) for every integer pixel. Each FIR filter is used to

interpolate 5 fractional pixels. VVC FI uses 15 different (seven 8-tap, eight 7-tap) FIR

filters. VVC FI interpolates 255 fractional pixels (15 horizontal half pixels, 15 vertical

half pixels, 225 quarter pixels) for every integer pixel. Each FIR filter is used to

interpolate 17 fractional pixels.

An approximate VVC FI filter (F1) and its baseline hardware (BF1) are

proposed in [25]. In this thesis, we propose a more efficient hardware for implementing

F1 (MCMF1) using common offset values and Hcub multiplierless constant

multiplication (MCM) technique [26]. In this thesis, we propose another approximate

VVC FI filter (F2), its baseline hardware (BF2), and a more efficient hardware for

implementing F2 (MCMF2) using common offset values and Hcub MCM technique

[26].

F1 and F2 approximate VVC FI filters reduce computational complexity of

VVC FI at the expense of very small quality loss. F2 filter causes slightly more quality

loss than F1 filter.

8

MCMF1, BF2 and MCMF2 approximate VVC FI hardware are implemented

using Verilog HDL. Verilog RTL codes are implemented to a 28 nm FPGA. The FPGA

implementations are verified on an FPGA board.

F2 approximate VVC FI filters are proposed and used for fractional motion

estimation. Fractional motion estimation is done in two steps. First, fractional

interpolation is performed. Then, search operation is performed using the interpolated

fractional pixels. The proposed approximate VVC FI filters are used in the fractional

interpolation step.

There is no approximate VVC FI filter in the literature for fractional motion

estimation. VVC standard uses an adaptive motion vector resolution (AMVR) scheme

for coding motion vector differences with different precision. Alternative half-sample

interpolation filters for the AMVR scheme are proposed in [27]. These filters are not

proposed and used for fractional motion estimation.

Exact VVC FI hardware are proposed in [28] and [29]. BF1, MCMF1, BF2 and

MCMF2 approximate VVC FI hardware are proposed for fractional motion estimation.

They calculate 255 fractional pixels (FPs) for every integer pixel. Since exact VVC FI

hardware proposed in [28] calculates 1 fractional pixel for every integer pixel, it can

only be used for fractional motion compensation. Since exact VVC FI hardware

proposed in [29] calculates 255 FPs for every integer pixel, it can be used for fractional

motion estimation.

The proposed approximate VVC FI hardware have higher speed, smaller area,

and up to 51% lower power consumption than the exact VVC FI hardware proposed in

[29]. BF1 and MCMF1 hardware can process 47 full HD (1920×1080) video frames per

second. BF2 and MCMF2 hardware can process 49 full HD (1920×1080) video frames

per second. BF2 and MCMF2 hardware have higher speed, smaller area and lower

power consumption than BF1 and MCMF1 hardware. However, they have slightly

worse rate-distortion performance than BF1 and MCMF1 hardware.

The proposed approximate VVC FI hardware can be used in a VVC encoder

hardware to perform fractional interpolation. VVC encoder hardware is expected to be

used in consumer electronics devices requiring real time video encoding with high

compression efficiency. VVC encoder hardware can be integrated into a System-on-

Chip used in consumer electronics devices as a hardware accelerator connected to the

on-chip bus.

9

Several HEVC FI hardware are proposed in the literature [30]-[33].

Approximate HEVC FI filters are proposed in [34]. BF1, MCMF1, BF2 and MCMF2

hardware are compared with them.

In this thesis, we also propose a new VVC FI hardware using memory based

constant multiplication for all prediction unit (PU) sizes. The proposed hardware stores

pre-computed products of an input pixel with multiple constant coefficients in memory.

Multiplications with constant coefficients are implemented using these pre-computed

products. Several optimizations are proposed to decrease memory size.

2.1 VVC Fractional Interpolation

VVC FI uses seven 8-tap and eight 7-tap FIR filters. Coefficients of the first

nine FIR filters are shown in Table 2.1. P-3,…,P4 represent input pixels, and their sub-

indices represent indices of coefficients. F8 FIR filter equation is shown in (2.1).

Table 2.1 Coefficients of VVC FI FIR Filters

FIR Filters P-3 P-2 P-1 P0 P1 P2 P3 P4

F1 0 1 -3 63 4 -2 1 0

F2 -1 2 -5 62 8 -3 1 0

F3 -1 3 -8 60 13 -4 1 0

F4 -1 4 -10 58 17 -5 1 0

F5 -1 4 -11 52 26 -8 3 -1

F6 -1 3 -9 47 31 -10 4 -1

F7 -1 4 -11 45 34 -10 4 -1

F8 -1 4 -11 40 40 -11 4 -1

F9 -1 4 -10 34 45 -11 4 -1

𝐹8 = (
−𝑃−3 + 4 × 𝑃−2 − 11 × 𝑃−1 + 40 × 𝑃0

+ 40 × 𝑃1 − 11 × 𝑃2 + 4 × 𝑃3 − 𝑃4
) ≫ 6 (2.1)

As can be seen in the table, the coefficients of F9 and F7 FIR filters are

symmetric. Similarly, the coefficients of F10 and F6, F11 and F5, F12 and F4, F13 and F3,

F14 and F2, F15 and F1 are symmetric. Therefore, the coefficients of F10, F11, F12, F13, F14

and F15 are not shown in the table.

Integer pixels and FPs are shown in Figure 2.1. There are 15 horizontal half

pixels and 15 vertical half pixels between two adjacent horizontal and vertical integer

pixels, respectively. They are interpolated from closest integer pixels using fifteen FIR

10

filters F1, F2, …, F14, F15. There are 225 quarter pixels between adjacent horizontal and

vertical half pixels. They are interpolated from the closest horizontal half pixels using

fifteen FIR filters F1, F2, …, F14, F15.

F₁
F₂
F₃
F₄
F₅
F₆
F₇
F₈
F₉
F₁₀
F₁₁
F₁₂
F₁₃
F₁₄
F₁₅

Integer Pixel Quarter PixelHorizontal Half Pixel Vertical Half Pixel

Figure 2.1 Integer pixels and fractional pixels in VVC standard

2.2 Proposed Approximate VVC Fractional Interpolation Filters

The approximate VVC FI F1 FIR filter is proposed in [25]. The coefficients of

these fourteen 3-tap FIR filters and one 4-tap FIR filter are shown in Table 2.2.

Small coefficients of VVC FI FIR filters have less effect on their results. The

values of adjacent pixels are similar because of spatial correlation. Therefore,

coefficients of F1 FIR filters are determined by assuming that pixels multiplied with

small coefficients are similar. For example, for VVC FI FIR filter F2 shown in Table

2.1, if the values of pixels (P-3, P-2, P-1) multiplied with first three coefficients (-1, 2, -5)

11

are the same, the result of F2 filter can be calculated by multiplying one pixel with -4 (-

1+2-5 = -4).

In this thesis, we propose another approximate VVC FI filter (F2). The

coefficients of F2 FIR filters (fourteen 3-tap and one 4-tap) are shown in Table 2.3.

These coefficients are determined by replacing most of the coefficients of F1 FIR filters

with closest 2n values. Therefore, multiplications with most of the coefficients of F2

FIR filters are performed using only shift operations. This reduces the number of adders

required to implement the multiplications.

Table 2.2 Coefficients of Proposed Approximate F1 FIR Filters

F1 FIR Filters P-1 P0 P1 P2

F1F1 -2 63 3 0

F1F2 -4 62 6 0

F1F3 -6 60 10 0

F1F4 -7 58 13 0

F1F5 -8 52 20 0

F1F6 -7 47 24 0

F1F7 -8 45 27 0

F1F8 -8 40 40 -8

F1F9 0 27 45 -8

F1F10 0 24 47 -7

F1F11 0 20 52 -8

F1F12 0 13 58 -7

F1F13 0 10 60 -6

F1F14 0 6 62 -4

F1F15 0 3 63 -2

Table 2.3 Coefficients of Proposed Approximate F2 FIR Filters

F2 FIR Filters P-1 P0 P1 P2

F2F1 -2 64 2 0

F2F2 -4 64 4 0

F2F3 -8 64 8 0

F2F4 -8 56 16 0

F2F5 -8 56 16 0

F2F6 -8 40 32 0

F2F7 -8 40 32 0

F2F8 -8 40 40 -8

F2F9 0 32 40 -8

F2F10 0 32 40 -8

F2F11 0 16 56 -8

F2F12 0 16 56 -8

F2F13 0 8 64 -8

F2F14 0 4 64 -4

F2F15 0 2 64 -2

12

VVC FI filter used for fractional motion estimation in VVC test model software

encoder [23] is replaced with the proposed approximate VVC FI filters F1 and F2. First

ten frames of several test videos [35] are coded with low delay P test configuration

using VVC test model software encoder with VVC FI FIR filters, F1 FIR filters and F2

FIR filters.

BD-Rate and BD-PSNR results are shown in Table 2.4. F1 and F2 filters reduce

computational complexity of VVC FI at the expense of very small PSNR loss and bit

rate increase. F1 filter has slightly better rate-distortion performance than F2 filter.

Table 2.4 BD-Rate and BD-PSNR Results

 F1 Filter F2 Filter

Video BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

2560×1600
People on Street 1.59 -0.059 1.99 -0.074

Traffic 0.42 -0.011 0.54 -0.024

1920×1080

Tennis 0.52 -0.015 0.44 -0.013

Kimono 0.03 -0.001 0.20 -0.006

Basketball Drive 2.49 -0.047 2.80 -0.053

Park Scene 2.26 -0.073 2.61 -0.084

1280×720

Vidyo1 0.85 -0.033 1.03 -0.039

Vidyo4 0.23 -0.006 0.65 -0.020

Kristen and Sara 1.62 -0.055 2.36 -0.081

Four People 0.69 -0.027 0.87 -0.036

Average 1.07 -0.032 1.35 -0.043

2.3 Proposed Approximate VVC Fractional Interpolation Hardware

We proposed an approximate baseline VVC FI hardware for implementing F1

filter (BF1) in [25]. In this thesis, we propose a more efficient hardware for

implementing F1 filter (MCMF1) using common offset values and Hcub MCM

technique. In this thesis, we propose an approximate baseline VVC FI hardware for

implementing F2 filter (BF2). We also propose more efficient hardware for

implementing F2 filter (MCMF2) using common offset values and Hcub MCM

technique.

Proposed BF1 hardware is shown in Figure 2.2. Interconnects boxes represent

interconnects in BF1 hardware. They are used to simplify drawing interconnects in the

figure. BF1 hardware implements multiplications with filter coefficients using adders

and shifters. It has 8 filter datapaths hardware. As shown in Figure 2.3, 15 F1 FIR filters

are implemented using 15 parallel datapaths in one filter datapaths hardware. C, D, E, F

13

inputs represent the pixels given to each filter datapaths. For example, P-1, P0, P1, P2 are

given to Filter Datapaths 4 as inputs C, D, E, F, respectively. BF1 hardware interpolates

8×15 FPs in a clock cycle using 15 integer pixels or 15 horizontal half pixels.

Figure 2.2 Approximate baseline VVC FI hardware for implementing F1 filter (BF1)

<<1

<<6

<<1

+

+

+ +
-

+

C

D

E

F1F₁
+

-

<<2

<<6

<<2

+

+

+ +
-

+

C

D

E

F1F₂
+

-<<1

<<1

<<6

<<3

+

+

+ +
-

+

C

D

E

F1F₃
+

-<<2

<<1

<<2

<<1
+

<<1

<<6

<<1

+

+

+ +
-

+

F

E

D

F1F₁₅
+

-

C D E F

F1F₁ F1F₂ F1F₃ F1F₁₅

Figure 2.3 Filter datapaths hardware in BF1 hardware.

TP
BRAM

1

TP
BRAM

2

TP
BRAM

3

TP
BRAM

4

TP
BRAM

5

TP
BRAM

6

TP
BRAM

7

TP
BRAM

9

TP
BRAM

10

TP
BRAM

11

TP
BRAM

12

TP
BRAM

13

TP
BRAM

14

TP
BRAM

15

TP
BRAM

8

Integer Pixels
Registers

OUTPUT
BRAM

1

OUTPUT
BRAM

2

OUTPUT
BRAM

3

OUTPUT
BRAM

4

OUTPUT
BRAM

5

OUTPUT
BRAM

6

OUTPUT
BRAM

7

OUTPUT
BRAM

8

OUTPUT
BRAM

9

OUTPUT
BRAM

10

OUTPUT
BRAM

11

OUTPUT
BRAM

12

OUTPUT
BRAM

13

OUTPUT
BRAM

14

OUTPUT
BRAM

15

Filter
Datapaths

1

Filter
Datapaths

2

Filter
Datapaths

3

Filter
Datapaths

4

Filter
Datapaths

5

Filter
Datapaths

6

Filter
Datapaths

7

Filter
Datapaths

8

Interconnects

MUX
In

te
rc

o
n

n
ec

ts

14

Since 255 FPs should be interpolated for every integer pixel, 64×255 FPs should

be interpolated for an 8×8 PU. As shown in Figure 2.4, BF1 hardware interpolates FPs

for an 8×8 PU in 147 clock cycles. It has 4 pipeline stages. It interpolates 8×15×15

horizontal half pixels, which will be used to interpolate quarter pixels, in 15 clock

cycles and stores them into the transpose memories. It interpolates 8×8×15 vertical half

pixels in 8 clock cycles. It interpolates 8×8×255 quarter pixels in 8×15 clock cycles

using the horizontal half pixels in the transpose memories.

Figure 2.4 Scheduling of BF1, MCMF1, BF2, MCMF2 hardware.

BF1 hardware uses 30 Block RAMs (BRAM) as shown in Figure 2.2. It uses 15

BRAMs as transpose memories (TP BRAM) for storing the horizontal half pixels which

are used to interpolate quarter pixels. It uses 15 BRAMs as output memories (OUTPUT

BRAM) for storing output FPs.

Proposed MCMF1 hardware is shown in Figure 2.5. Interconnects boxes

represent interconnects in MCMF1 hardware. They are used to simplify drawing

interconnects in the figure.

MCMF1 hardware interpolates 8×15 FPs in parallel using 15 integer pixels or

15 horizontal half pixels in a clock cycle. It calculates three common offset values

shown in Table 2.5 for 15 F1 FIR filters to reduce number of constant multiplications.

These offset values are calculated in offset datapath (OD) using input pixels.

Since common offset values are used, each F1 FIR filter should be calculated

using the coefficients shown in Table 2.5, and the result should be added with the

required common offset value. As an example, offset 1 (O1) equation and the first F1

FIR filter with offset (F1OF1) equation are shown in (2.2) and (2.3), respectively.

𝑂1 = (−8 × 𝑃−1 + 64 × 𝑃0 + 8 × 𝑃1) (2.2)

𝐹1𝑂𝐹1 = (6 × 𝑃−1 − 𝑃0 − 5 × 𝑃1 + 𝑂1) ≫ 6 (2.3)

Integer Pixels
(15 Cycles)

Integer
Pixels

(8 Cycles)

Horizontal Half Pixels
(120 Cycles)

Horizontal
Half Pixels
(15 Cycles)

Vertical
Half Pixels
(8 Cycles)

Quarter Pixels
(120 Cycles)

Clock Cycle

Memory Read

Interpolation

Memory Write

Horizontal
Half Pixels

(15 Cycles)

Vertical
Half Pixels

(8 Cycles)

Quarter Pixels
(120 Cycles)

14714314201 5

15

Figure 2.5 Proposed approximate MCM VVC FI hardware for implementing F1 filter

(MCMF1)

Table 2.5 Coefficients of Proposed Approximate F1 FIR Filters with Offset

Coefficients

Required

Offset

P-1 P0 P1 P2

Offsets

O1 -8 64 8 0

O2 0 8 64 -8

O3 -8 8 8 -8

F1 FIR Filters

with Offset

F1OF1 6 -1 -5 0 O1

F1OF2 4 -2 -2 0 O1

F1OF3 2 -4 2 0 O1

F1OF4 1 -6 5 0 O1

F1OF5 0 -12 12 0 O1

F1OF6 1 -17 16 0 O1

F1OF7 0 -19 19 0 O1

F1OF8 0 32 32 0 O3

F1OF9 0 19 -19 0 O2

F1OF10 0 16 -17 1 O2

F1OF11 0 12 -12 0 O2

F1OF12 0 5 -6 1 O2

F1OF13 0 2 -4 2 O2

F1OF14 0 -2 -2 4 O2

F1OF15 0 -5 -1 6 O2

As can be seen in Table 2.5, each input pixel should be multiplied with multiple

constant coefficients. The constant multiplications of each input pixel when F1 FIR

filters are calculated with and without using common offset values are shown in Table

2.6. In the table, P-4 to P6 represent input pixels for FIR filters.

TP
BRAM

1

TP
BRAM

2

TP
BRAM

3

TP
BRAM

4

TP
BRAM

5

TP
BRAM

6

TP
BRAM

7

TP
BRAM

9

TP
BRAM

10

TP
BRAM

11

TP
BRAM

12

TP
BRAM

13

TP
BRAM

14

TP
BRAM

15

TP
BRAM

8

MD2 MD2MD1 MD2 MD2 MD2 MD2 MD2 MD2 MD2 MD1

Interconnects

CD OD

Integer Pixels
Registers

OUTPUT
BRAM

1

OUTPUT
BRAM

2

OUTPUT
BRAM

3

OUTPUT
BRAM

4

OUTPUT
BRAM

5

OUTPUT
BRAM

6

OUTPUT
BRAM

7

OUTPUT
BRAM

8

OUTPUT
BRAM

9

OUTPUT
BRAM

10

OUTPUT
BRAM

11

OUTPUT
BRAM

12

OUTPUT
BRAM

13

OUTPUT
BRAM

14

OUTPUT
BRAM

15

Adder
Tree

1

Adder
Tree

2

Adder
Tree

3

Adder
Tree

4

Adder
Tree

6

Adder
Tree

7

Adder
Tree

8

Interconnects

MUX

Adder
Tree

5
In

te
rc

o
nn

ec
ts

16

Table 2.6 Constant Multiplications in F1 FIR Filters

 Input Pixel Constants Datapath Calculated Products

Without Offset

P-4, P6 1,2,4,6,7,8 MD1 3,7

P-3 ... P5

1,2,3,4,6,7,8,10,

13,20,24,27,40, 45,47,52,

58,60,62,63

MD2
3,5,7,13,15,27,29,31,

45,47,63

With Offset

P-4, P6 1,2,4,6 MD1 3

P-3 … P5
1,2,4,5,6,12,

16,17,19,32
MD2 3,5,17,19

Proposed MCMF1 hardware uses Hcub MCM technique [26] for implementing

multiplications with multiple constant coefficients to reduce the number of adders. As

shown in Table 2.6, since constant coefficients of input pixels (P-4, P6) and (P-3 … P5)

are different, two different MCM datapaths, MD1 and MD2, are used.

When the common offset values are used, the number of calculated products in

MD1 is reduced from 2 to 1 and number of calculated products in MD2 is reduced from

11 to 4. Therefore, MCMF1 hardware uses the common offset values.

MD1, MD2 and OD in MCMF1 hardware are shown in Figure 2.6. MD1 takes

pixel Px as input, and it calculates 3×Px using adder and shifter. MD2 takes pixel Px as

input, and it calculates 3×Px, 5×Px, 17×Px, 19×Px using adders and shifters. Since

MCMF1 hardware interpolates 8×15 FPs in parallel, OD calculates 8 sets of three

common offset values using adders and shifters. Each set of three offset values is used

for interpolating 15 FPs.

<<2

+

Pᵪ

3Pᵪ

MD1

<<2

Pᵪ

3Pᵪ

MD2

+
19Pᵪ

<<4

+
17Pᵪ

+

5Pᵪ

-

OD
P₅ P₃ P₄ P₆

<<6

<<3

- <<6

<<3

-

+
Offset1

+
Offset3

+
Offset2 = 0...7

ᵡ ᵡ ᵡ ᵡ

ᵡ

Figure 2.6 MD1, MD2, and OD in MCMF1 hardware.

As it can be seen in Table 2.5, there are common sub-expressions in F1 FIR

filters with offset. The sub-expression (-2×P0 -2×P1) is common in FIR filters F1OF2

17

and F1OF14. The sub-expression (-12×P0 +12×P1) in FIR filter F1OF5 is negated version

of the sub-expression (12×P0-12×P1) in FIR filter F1OF11. The sub-expression (-

19×P0+19×P1) in FIR filter F1OF7 is negated version of the sub-expression (19×P0-

19×P1) in FIR filter F1OF9. The common sub-expressions in F1 FIR filters with offset

are calculated once in common datapath (CD) and the results are used in corresponding

F1 FIR filters with offset.

MCMF1 hardware interpolates 8×15 FPs in parallel in a clock cycle. 15 FPs for

an input pixel are interpolated using 15 F1 FIR filters shown in Table 2.5. There are

common sub-expressions in F1 FIR filters with offset used for interpolating FPs for

adjacent input pixels. FIR filter F1OF13 equation for each input pixel, i.e. (2×P0-

4×P1+2×P2), is the same as FIR filter F1OF3 equation for the adjacent input pixel.

Negated version of the sub-expression (-6×P1+P2) in FIR filter F1OF12 equation for

each input pixel exists in FIR filter F1OF1 equation for the adjacent input pixel.

Negated version of the sub-expression (-P1+6×P2) in FIR filter F1OF15 equation for

each input pixel exists in FIR filter F1OF4 equation for the adjacent input pixel. All

these common sub-expressions are also calculated once in CD and their results are used

in corresponding FIR filters.

As shown in Figure 2.5, after results of MD1, MD2, CD and OD are generated,

adder trees calculate FPs by adding these results. As shown in Figure 2.4, MCMF1

hardware interpolates the FPs for an 8×8 PU in 147 clock cycles same as BF1 hardware.

MCMF1 hardware uses 30 Block RAMs (BRAM) as shown in Figure 2.5. It

uses 15 BRAMs as transpose memories (TP BRAM) for storing the horizontal half

pixels which are used to interpolate quarter pixels. It uses 15 BRAMs as output

memories (OUTPUT BRAM) for storing output FPs.

Proposed BF2 hardware is similar to BF1 hardware shown in Figure 2.2. BF2

hardware also has 8 filter datapaths hardware. However, BF2 filter datapaths hardware

is different than BF1 filter datapaths hardware. 15 F1 FIR filters are implemented using

15 parallel datapaths in one BF1 filter datapaths hardware. However, as shown in

Figure 2.7, 11 F2 FIR filters are implemented using 11 parallel datapaths in one BF2

filter datapaths hardware. C, D, E, F inputs represent the pixels given to each filter

datapaths. For example, P-1, P0, P1, P2 are given to Filter Datapaths 4 as inputs C, D, E,

F, respectively.

18

<<6

<<1
+

C

D

E
F2F₁

F2F₂

<<3

<<6 +

C

D

E

F2F₄
+

-<<3

<<4

C D E F

F2F₁ F2F₂ F2F₃ F2F₁₅

+
<<1 -

+

<<6

<<2
+

C

D

E

+
<<2 -

+

<<6

<<3
+

C

D

E

+
<<3 -

+ F2F₃

+
+

F2F₅

<<6

<<1
+

F

E

D
F2F₁₅

+
<<1 -

+

F2F₄ F2F₅

Figure 2.7 Filter datapaths hardware in BF2 hardware.

As shown in Table 2.3, F2 FIR filters F2F5, F2F7, F2F10, F2F12 are the same as

F2 FIR filters F2F4, F2F6, F2F9, F2F11, respectively. Therefore, BF2 hardware only

calculates FIR filters F2F5, F2F7, F2F10, F2F12 and their results are used for FIR filters

F2F4, F2F6, F2F9, F2F11, respectively.

Most of the coefficients of F2 FIR filters are 2n values. Multiplications with

these coefficients are performed using only shift operations. Therefore, BF2 filter

datapaths hardware has less adders than BF1 filter datapaths hardware.

As shown in Figure 2.4, BF2 hardware interpolates the FPs for an 8×8 PU in

147 clock cycles same as BF1 hardware. BF2 hardware uses 15 BRAMs as transpose

memories (TP BRAM) for storing the horizontal half pixels which are used to

interpolate quarter pixels. However, since it calculates 11 FIR filters, it uses 11 BRAMs

as output memories (OUTPUT BRAM) for storing output FPs.

Proposed MCMF2 hardware is similar to MCMF1 hardware shown in Figure

2.5. MD1 and OD in MCMF2 and MCMF1 hardware are the same. MCMF1 hardware

has 2 MD1 and 9 MD2. However, MCMF2 hardware has 11 MD1, and it does not have

any MD2. CD in MCMF2 hardware is different than the CD in MCMF1 hardware.

19

Adder trees in MCMF2 and MCMF1 hardware are also different.

MCMF2 hardware interpolates 8×15 FPs in parallel using 15 integer pixels or

15 horizontal half pixels in a clock cycle. It calculates three common offset values

shown in Table 2.7 for 15 F2 FIR filters to reduce number of constant multiplications.

These offset values are calculated in OD using input pixels.

Table 2.7 Coefficients of Proposed Approximate F2 FIR Filters with Offset

Coefficients

Required

Offset

P-1 P0 P1 P2

Offsets

O1 -8 64 8 0

O2 0 8 64 -8

O3 -8 8 8 -8

F2 FIR Filters

with Offset

F2OF1 6 0 -6 0 O1

F2OF2 4 0 -4 0 O1

F2OF3 0 0 0 0 O1

F2OF4 0 -8 8 0 O1

F2OF5 0 -8 8 0 O1

F2OF6 0 -24 24 0 O1

F2OF7 0 -24 24 0 O1

F2OF8 0 32 32 0 O3

F2OF9 0 24 -24 0 O2

F2OF10 0 24 -24 0 O2

F2OF11 0 8 -8 0 O2

F2OF12 0 8 -8 0 O2

F2OF13 0 0 0 0 O2

F2OF14 0 -4 0 4 O2

F2OF15 0 -6 0 6 O2

Since common offset values are used, each F2 FIR filter should be calculated

using the coefficients shown in Table 2.7, and the result should be added with the

required common offset value. As shown in Table 2.7, FIR filters F2OF4, F2OF6,

F2OF9, F2OF11 are the same as FIR filters F2OF5, F2OF7, F2OF10, F2OF12,

respectively. Therefore, MCMF2 hardware only calculates FIR filters F2OF4, F2OF6,

F2OF9, F2OF11, and their results are used for FIR filters F2OF5, F2OF7, F2OF10,

F2OF12, respectively.

As it can be seen in Table 2.7, each input pixel should be multiplied with

multiple constant coefficients. The constant multiplications of each input pixel when F2

FIR filters are calculated with and without using common offset values are shown in

Table 2.8. In the table, P-4 to P6 represent input pixels for FIR filters.

20

Table 2.8 Constant Multiplications in F2 FIR Filters

 Input Pixel Constants Datapath
Calculated

Products

Without Offset

P-4, P6 2,4,8 MD1 -

P-3 ... P5
2,4,8,16,

32,40,56,64
MD2 5,7

With Offset
P-4, P6 4,6 MD1 3

P-3 … P5 4,6,8,24,32 MD1 3

Proposed MCMF2 hardware uses Hcub MCM technique [26] for implementing

multiplications with multiple constant coefficients to reduce the number of adders. As

shown in Table 2.8, when the common offset values are used, products calculated for

input pixels (P-4, P6) and (P-3 … P5) are the same. Therefore, MCMF2 hardware uses

only MD1 MCM datapath. It does not use MD2 MCM datapath.

As can be seen in Table 2.7, there are common sub-expressions in F2 FIR filters

with offset. The sub-expression (-8×P0+8×P1) in FIR filter F2OF4 is negated version of

the sub-expression (8×P0-8×P1) in FIR filter F2OF11. The sub-expression (-

24×P0+24×P1) in FIR filter F2OF6 is negated version of the sub-expression (24×P0-

24×P1) in FIR filter F2OF9. The common sub-expressions in F2 FIR filters with offset

are calculated once in CD and the results are used in corresponding F2 FIR filters with

offset.

MCMF2 hardware interpolates 8×15 FPs in parallel in a clock cycle. 15 FPs for

an input pixel are interpolated using 11 F2 FIR filters shown in Table 2.7. There are

common sub-expressions in F2 FIR filters with offset used for interpolating FPs for

adjacent input pixels. Negated version of the sub-expression (-6×P0+6×P2) in FIR filter

F2OF15 equation for each input pixel exists in FIR filter F2OF1 equation for the adjacent

input pixel. Negated version of the sub-expression (-4×P0+4×P2) in FIR filter F2OF14

equation for each input pixel exists in FIR filter F2OF2 equation for the adjacent input

pixel. All these common sub-expressions are also calculated once in CD and their

results are used in corresponding FIR filters.

After results of MD1, MD2, CD and OD are generated, adder trees calculate FPs

by adding these results. As shown in Figure 2.4, MCMF2 hardware interpolates the FPs

for an 8×8 PU in 147 clock cycles same as MCMF1 hardware.

MCMF2 hardware uses 15 BRAMs as transpose memories (TP BRAM) for

storing the horizontal half pixels which are used to interpolate quarter pixels. However,

21

since it calculates 11 FIR filters, it uses 11 BRAMs as output memories (OUTPUT

BRAM) for storing output FPs.

2.4 Implementation Results of the Proposed Approximate VVC FI Hardware

Proposed BF1, MCMF1, BF2, MCMF2 approximate VVC FI hardware are

implemented using Verilog HDL. Verilog RTL codes are implemented to a 28 nm

FPGA. The FPGA implementations are verified with post implementation timing

simulations. The simulation results matched the results of a software implementation of

the proposed approximate VVC FI filters F1 and F2.

Power consumptions of the FPGA implementations are estimated using a gate

level power estimation tool. Post implementation timing simulations are performed for

one frame of full HD (1920×1080) video sequences Tennis (T) and Kimono (K) at 100

MHz [35]. For each FPGA implementation, signal activities of its post implementation

timing simulation are stored into a value change dump (VCD) file, and its power

consumption is estimated using this VCD file.

Implementation results of the FPGA implementations are shown in Table 2.9. In

the table, they are also compared with implementation results of the exact VVC FI

baseline and MCM hardware proposed in [29]. The proposed approximate VVC FI

hardware are similar to the exact VVC FI hardware proposed in [29]. However, since

the proposed approximate VVC FI FIR filters are different than the exact VVC FI FIR

filters, their MCM datapaths, adder trees, common datapath and offset datapath are

different. Since they implement the proposed approximate VVC FI FIR filters, the

proposed BF1, MCMF1, BF2, MCMF2 hardware are smaller and faster than the exact

VVC FI hardware proposed in [29].

BF2 and MCMF2 hardware are smaller and faster than BF1 and MCMF1

hardware. However, they have slightly worse rate-distortion performance than BF1 and

MCMF1 hardware. MCMF1 hardware is smaller than BF1 hardware. MCMF2

hardware is smaller than BF2 hardware.

Power consumptions of the FPGA implementations are shown in Table 2.10. In

the table, they are also compared with power consumptions of the exact VVC FI

baseline and MCM hardware proposed in [29]. Since they implement the proposed

approximate VVC FI FIR filters, the proposed BF1, MCMF1, BF2, MCMF2 hardware

have lower power consumption than the exact VVC FI hardware proposed in [29].

22

MCMF1 and MCMF2 hardware has up to 44% and 51% lower power consumption than

the exact VVC FI MCM hardware proposed in [29], respectively. MCMF2 hardware

has lower power consumption than MCMF1 hardware. However, MCMF2 hardware

has slightly worse rate-distortion performance than MCMF1 hardware. MCMF1

hardware has lower power consumption than BF1 hardware. MCMF2 hardware has

lower power consumption than BF2 hardware.

Table 2.9 Implementation Results of the Proposed Approximate VVC FI Hardware

Exact

Baseline

VVC FI [29]

Exact MCM

VVC FI

[29]

Proposed

BF1 [25]

Proposed

MCMF1

Proposed

BF2

Proposed

MCMF2

FPGA 28 nm 28 nm 28 nm 28 nm 28 nm 28 nm

Slices 5205 3718 3083 2636 2397 2205

DFFs 6408 3461 3515 3290 2279 2114

LUTs 16334 11599 9313 7973 6974 6357

BRAMs 30 30 30 30 30 30

Max. Freq.

(MHz)
208 200 227 227 236 236

Frames per

Second

42

1920×1080

40

1920×1080

47

1920×1080

47

1920×1080

49

1920×1080

49

1920×1080

Table 2.10 Power Consumption Results of Proposed Approximate VVC FI Hardware

Exact Baseline

VVC FI [29]

Exact MCM

VVC FI [29]

Proposed

BF1 [25]

Proposed

MCMF1

Proposed

BF2

Proposed

MCMF2

Video T K T K T K T K T K T K

Clock (mW) 52 52 27 27 26 26 23 23 16 16 16 16

Signal (mW) 162 218 144 193 76 107 58 83 61 82 60 82

Logic (mW) 141 194 109 151 60 90 42 64 38 54 33 48

BRAM (mW) 93 95 93 94 94 95 88 89 81 82 76 77

Total (mW) 448 559 373 465 256 318 211 259 196 234 185 223

Reduction (%)

Compared to [29]
--- --- --- --- 31% 31% 43% 44% 47% 49% 49% 51%

MCMF1 and MCMF2 hardware are compared with several HEVC FI hardware

in the literature in Table 2.11. The results shown as “---" are not reported in the

corresponding paper. Since VVC FI algorithm is different than HEVC FI algorithm,

MCMF1 and MCMF2 hardware are different than the HEVC FI hardware. Since VVC

FI has higher computational complexity than HEVC FI, implementation results of

MCMF1 and MCMF2 hardware are worse than implementation results of the HEVC FI

hardware.

23

Table 2.11 Comparison of the Proposed Hardware with HEVC FI Hardware

 [30] [31] [32] [33]
Filter 1

[34]

Filter 2

[34]

Proposed

MCMF1

Proposed

MCMF2

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC VVC

FPGA 40 nm 65 nm 40 nm 65 nm 40 nm 40 nm 28 nm 28 nm

Slices 1557 --- --- 2181 834 731 2636 2205

LUTs 3929 28486 24202 5017 2008 1567 7973 6357

Freq.

(MHz)
200 120 200 283 278 278 227 236

fps
30

3840×2160

60

1920×1080

30

2560×1600

45

3840×2160

45

3840×2160

47

1920×1080

49

1920×1080

Power 93 mW --- 171 mW 89 mW 88 mW 80 mW 237 mW 207 mW

2.5 Proposed VVC FI Hardware Using Memory Based Constant Multiplication

In this thesis, a novel VVC FI hardware using memory based constant

multiplication for all prediction unit (PU) sizes is proposed. Memory based constant

multiplication is an efficient computation technique [36], [37]. The proposed hardware

stores pre-computed products of an input pixel with multiple constant coefficients in

memory. It implements multiplications with constant coefficients using these pre-

computed products. Several optimizations are proposed to reduce memory size.

The proposed VVC FI hardware interpolates 255 fractional pixels for each

integer pixel. Therefore, it can be used for fractional motion estimation. It is

implemented using Verilog HDL. It, in the worst case, can process 49 full HD

(1920×1080) video frames per second. It has up to 9.4% less power consumption than

VVC FI hardware in the literature.

VVC FI hardware proposed in [29] uses a common offset value and Hcub

multiplierless constant multiplication (MCM) algorithm [26] to reduce number of

additions. It interpolates 255 fractional pixels for each integer pixel. VVC FI hardware

proposed in [28] interpolates one fractional pixel for each integer pixel. Therefore, it

can only be used for fractional motion compensation.

Approximate VVC FI hardware proposed in [25] interpolates 255 fractional

pixels for each integer pixel. It has smaller area and lower power consumption than the

VVC FI hardware proposed in [29]. However, since it is an approximate VVC FI

hardware, it has worse rate-distortion performance than the VVC FI hardware proposed

in [29].

24

HEVC FI hardware proposed in [38] uses memory based constant

multiplication. However, none of the VVC FI hardware in the literature uses memory

based constant multiplication.

The proposed VVC FI hardware for all PU sizes is shown in Figure 2.8. The

splitters represent wire interconnections. They are used to simplify drawing

interconnects in the figure. In the proposed hardware, all fractional pixels (half pixels

and quarter pixels) are interpolated for the luma component of an 8×8 PU. For larger

PU sizes, the PU is decomposed into 8×8 blocks, and the blocks are interpolated

separately.

MUX

Adder
Tree
#1

Adder
Tree
#8

Adder
Tree
#7

Adder
Tree
#1

Adder
Tree
#6

Adder
Tree
#5

Adder
Tree
#1

Adder
Tree
#4

Adder
Tree
#3

Adder
Tree
#1

Adder
Tree
#2

Adder
Tree
#1

OUT
MEM

#1

Splitter #3

OUT
MEM

#2

OUT
MEM

#3

OUT
MEM

#4

OUT
MEM

#5

OUT
MEM

#6

OUT
MEM

#7

OUT
MEM

#8

OUT
MEM

#9

OUT
MEM
#10

OUT
MEM
#11

OUT
MEM
#12

OUT
MEM
#13

OUT
MEM
#14

OUT
MEM
#15

TR
MEM

#1

TR
MEM

#2

TR
MEM

#3

TR
MEM

#4

TR
MEM

#5

TR
MEM

#6

TR
MEM

#7

TR
MEM

#8

TR
MEM

#9

TR
MEM
#10

TR
MEM
#11

TR
MEM
#12

TR
MEM
#13

TR
MEM
#14

TR
MEM
#15

Splitter #2

Integer Pixels

Splitter #1

C1 Offset

MEM1 MEM2 MEM3 MEM3 MEM3 MEM3 MEM3 MEM3 MEM3 MEM3 MEM3 MEM2 MEM1

A ₄ A ₆ A ₅ A ₃ A ₂ A ₁ A₁ A₀ A₂ A₃ A₄ A₅ A₆ A₇ A₈

A ₆, ₅, ,₈

Figure 2.8 Proposed VVC FI hardware using memory based constant multiplication

The proposed hardware interpolates fractional pixels using the common offset

value proposed in [29]. When this common offset value is used, coefficients shown in

Table 2.12 should be used for VVC FI FIR filters [29].

Since coefficients of FIR filters F9 to F15 are symmetric with coefficients of FIR

filters 𝐹7 to 𝐹1, their coefficients are not shown in Table 2.12. Sub-expression (𝐴−3 −

3𝐴−2) is common for FIR filters 𝐹1, 𝐹12, 𝐹13, 𝐹14, and 𝐹15. Sub-expression (𝐴4 − 3𝐴3)

is common for FIR filters 𝐹1, 𝐹2, 𝐹3, 𝐹4, and 𝐹15.

25

Table 2.12 Coefficients of VVC FI FIR Filters with Offset [29]

FIR Filters
Coefficients

A-3 A-2 A-1 A0 A1 A2 A3 A4

Offset -1 4 -8 32 32 -8 4 -1

F1 1 -3 5 31 -28 6 -3 1

F2 0 -2 3 30 -24 5 -3 1

F3 0 -1 0 28 -19 4 -3 1
F4 0 0 -2 26 -15 3 -3 1

F5 0 0 -3 20 -6 0 -1 0
F6 0 -1 -1 15 -1 -2 0 0

F7 0 0 -3 13 2 -2 0 0
F8 0 0 -3 8 8 -3 0 0

Same as the hardware proposed in [29], the proposed hardware calculates the

offset values in Offset datapath using input pixels. It calculates the common sub-

expressions once in C1 datapath and uses the results in corresponding equations.

The proposed hardware interpolates 8×15 fractional pixels in parallel using 15

integer pixels or 15 horizontal half pixels in each clock cycle. 15 input pixels

𝐴−6 , … , 𝐴8 should be multiplied with multiple constant coefficients during the

interpolation of 8×15 fractional pixels. The constant coefficient multiplications

necessary for each input pixel are shown in Table 2.13.

Table 2.13 Constant Coefficient Multiplications for Input Pixels

Input Pixel Constant Coefficient Multiplications Hardware Stored Products

A-6 1 --- ---

A-5 -1, -2, -3 MEM1 -3

A-4 -1, -2, ±3, 4, 5, 6 MEM2 -3, 5

A-3,…, A5
-1, 2, -6, 8, 13, ±15, -19, 20,

-24, 26, ±28, 30, 31
MEM3

-3, 5, -7, 13,

-15, -19, 31

A6 -1, -2, ±3, 4, 5, 6 MEM2 -3, 5
A7 -1, -2, -3 MEM1 -3

A8 1 --- ---

In the proposed hardware, memory based constant multiplication technique is

used for implementing constant coefficient multiplications. As it can be seen in Table

2.13, constant coefficients for input pixels “𝐴−5 , 𝐴7”, “𝐴−4 , 𝐴6”, and “𝐴−3, … , 𝐴5” are

different. Therefore, three memories, MEM1, MEM2, and MEM3, are used for storing

pre-computed products of an input pixel with multiple constant coefficients. Since

multiplications with the coefficients that are powers of 2 are calculated using shift

operation, there is no need to pre-compute and store multiplications with them.

Therefore, for input pixel 𝐴, only the constant multiplication −3𝐴 is stored in MEM1,

26

and only the constant multiplications −3𝐴 and 5𝐴 are stored in MEM2. 6𝐴 is calculated

from −3𝐴 using shift operation.

For input pixels 𝐴−3, … , 𝐴5, seven constant multiplications −3𝐴, 5𝐴, −7𝐴, 13𝐴,

−15𝐴, −19𝐴, and 31𝐴 are stored in MEM3. 20𝐴, −24𝐴, 26𝐴, ±28𝐴, and 30𝐴 are

calculated from 5𝐴, −3𝐴, 13𝐴, −7𝐴, and −15𝐴, respectively, using shift operations.

After constant coefficient multiplications are performed by memory based constant

multiplication technique, the fractional pixels are calculated using adder trees.

The proposed hardware uses 8-bit unsigned input pixel 𝐴 as the address of the

memories MEM1, MEM2, and MEM3. MEM1 stores one constant multiplication −3𝐴

in each address. MEM2 and MEM3 store two and seven constant multiplications in

each address, respectively. Therefore, MEM1, MEM2, and MEM3 store 28 × 1, 28 × 2,

and 28 × 7 constant multiplications, respectively. Multiplication of an 8-bit unsigned

input pixel with constant coefficients −3, 5, −7, 13, −15, −19, and 31 are 11 bits, 11

bits, 12 bits, 12 bits, 13 bits, 14 bits, and 13 bits, respectively. Therefore, in each

address of MEM1, MEM2, and MEM3 11 bits, 11+11=22 bits, and

11+11+12+12+13+14+13=86 bits should be stored, respectively. We propose several

optimizations to reduce the sizes of these memories.

−3𝐴 can be implemented with addition and shift operations as shown in

equation (2.4) and Figure 2.9. As shown in Figure 2.9, the least significant two bits of

−3𝐴 are equal to the least significant two bits of 𝐴. There is no need to store these two

bits in memories. As shown in Figure 2.9, the third least significant bit of −3𝐴 can be

calculated by adding 1, 𝐴[0]̅̅ ̅̅ ̅̅ , and 𝐴[2]. The result of this 1-bit addition sum = −3𝐴[2]

and carry-out = carry[2] are shown in equations (2.5) and (2.6), respectively.

00

A
[0

]

A
[1

]

A
[0

]

-3
xA

[3
]

-3
xA

[9
]

-3
xA

[1
0]

1

A[0]

Ā[0]Ā[1]Ā[2]Ā[3]Ā[4]Ā[5]Ā[6]Ā[7]

A[1]A[2]A[3]A[4]A[5]A[6]A[7]

A
[2

]

Figure 2.9 Implementation of -3A with addition and shift operations.

27

−3𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 2) (2.4)

−3𝐴[2] = 1^𝐴[0]̅̅ ̅̅ ̅̅ ^𝐴[2] = 𝐴[0]^𝐴[2] (2.5)

𝑐𝑎𝑟𝑟𝑦[2] = (1&𝐴[0]̅̅ ̅̅ ̅̅) | (𝐴[2]&(1^𝐴[0]̅̅ ̅̅ ̅̅)) = 𝐴[0]̅̅ ̅̅ ̅̅ |(𝐴[2]&𝐴[0]) = 𝐴[0]̅̅ ̅̅ ̅̅ |𝐴[2] (2.6)

−3𝐴[3] can be calculated by adding 𝐴[1]̅̅ ̅̅ ̅̅ , 𝐴[3] and carry[2] as shown in

equation (2.7).

−3𝐴[3] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[3]^𝑐𝑎𝑟𝑟𝑦[2] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[3]^(𝐴[0]̅̅ ̅̅ ̅̅ | 𝐴[2]) (2.7)

For an 8-bit A, i.e. 0 ≤ 𝐴 ≤ 255, −3𝐴[9] = 0 only for 𝐴 = 0 and 171 ≤ 𝐴 ≤

255, i.e. 𝐴 = 00000000 and 10101011 ≤ 𝐴 ≤ 11111111. By representing the ranges

10101011 ≤ 𝐴 ≤ 10111111 with

𝐴[7]&𝐴[6]̅̅ ̅̅ ̅̅ &𝐴[5]&(𝐴[4] |(𝐴[3]&(𝐴[2] |(𝐴[1]&𝐴[0])))) and 11000000 ≤ 𝐴 ≤

11111111 with 𝐴[7]&𝐴[6], −3𝐴[9] can be calculated as shown in equation (2.8).

Since 𝐴 is an unsigned number, −3𝐴 is always negative. Therefore, its sign bit, i.e.

−3𝐴[10], is always 1. Therefore, in each address of MEM1, only 5 bits

−3𝐴[8] , … , −3𝐴[4] are stored instead of 11 bits. The other bits are obtained from 𝐴 as

explained.

−3𝐴[9] =

(𝐴[7]&𝐴[6]) | (𝐴[7]&𝐴[6]̅̅ ̅̅ ̅̅ &𝐴[5]& (𝐴[4] | (𝐴[3]&(𝐴[2] | (𝐴[1]&𝐴[0])))) | (𝐴[7]̅̅ ̅̅ ̅̅ &𝐴[6]̅̅ ̅̅ ̅̅ & … &𝐴[0]̅̅ ̅̅ ̅̅)
̅̅ ̅

= 𝐴[7]& (𝐴[6] | (𝐴[5]& (𝐴[4] | (𝐴[3]&(𝐴[2] | (𝐴[1]&𝐴[0]))))))
̅̅ ̅

&(𝐴[7] | 𝐴[6] |… | 𝐴[0])

(2.8)

5A, −7A, 13A, −15A, −19A, and 31A can be implemented with addition and

shift operations as shown in equations (2.9)-(2.14) and Figure 2.10.

5𝐴 = (𝐴 ≪ 2) + 𝐴 (2.9)

−7𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 3) (2.10)

13𝐴 = (𝐴 ≪ 3) + 5𝐴 (2.11)

−15𝐴 = 𝐴 + ((𝐴̅ + 1) ≪ 4) (2.12)

−19𝐴 = 13𝐴 + ((𝐴̅ + 1) ≪ 5) (2.13)

31𝐴 = (𝐴 ≪ 4) + 15𝐴 (2.14)

28

00

5
A

[0
]=

A
[0

]

5
A

[1
]=

A
[1

]

5
A

[2
]=

A
[0

] Ʌ
 A

[2
]

5
A

[3
]

5
A

[9
]

5
A

[1
0

]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

00
-7

A
[0

]=
A

[0
]

-7
A

[1
]=

A
[1

]

-7
A

[2
]=

A
[2

]

-7
A

[1
0

]

-7
A

[1
1]

1

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

00

1
3

A
[0

]=
5

A
[0

]=
A

[0
]

1
3

A
[1

]=
5

A
[1

]=
A

[1
]

1
3

A
[2

]=
5

A
[2

]=
A

[0
] Ʌ

 A
[2

]

1
3A

[1
0

]

1
3

A
[1

1
]

00

-1
5

A
[0

]=
A

[0
]

-1
5

A
[1

]=
A

[1
]

-1
5

A
[2

]=
A

[2
]

-1
5

A
[3

]=
A

[3
]

-1
5

A
[1

1
]

-1
5

A
[1

2
]

1

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

00

-1
9A

[5
]=

1
3A

[0
]=

A
[0

]

-1
9

A
[1

]=
1

3
A

[1
]=

A
[1

]

-1
9

A
[2

]=
1

3
A

[2
]=

A
[0

] Ʌ
 A

[2
]

-1
9

A
[1

2]

-1
9A

[1
3

]

1

13A
[0]

00

3
1A

[0
]=

1
5A

[0
]

3
1

A
[1

]=
1

5
A

[1
]

3
1

A
[2

]=
1

5
A

[0
]

3
1A

[3
]=

1
5

A
[3

]

3
1

A
[1

1
]

3
1

A
[1

2
]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7] 0

-7
A

[4
]

-7
A

[3
]=

A
[0

] Ʌ
 A

[3
]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7] 0

1
3A

[3
]=

A
[0

] Ʌ
 5

A
[3

]

0

-1
5

A
[4

]=
A

[0
] Ʌ

 A
[4

]

-1
5A

[5
]

-1
9

A
[5

]

-1
9

A
[4

]=
1

3
A

[4
]

-1
9

A
[3

]=
1

3
A

[3
]=

A
[0

] Ʌ
 5

A
[3

]

0

000 00

3
1A

[4
]=

1
5A

[4
] Ʌ

 A
[0

]

3
1A

[5
]

(a) (b)

(c) (d)

(e) (f)

13A
[1]

13A
[2]

13A
[3]

13A
[4]

13A
[5]

13A
[6]

13A
[7]

15A
[0]

15A
[1]

15A
[2]

15A
[3]

15A
[4]

15A
[5]

15A
[6]

15A
[7]

5A
[0]

5A
[1]

5A
[2]

5A
[3]

5A
[4]

5A
[5]

5A
[6]

5A
[7]

1
3

A
[4

]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

Figure 2.10 Implementation of constant multiplications with addition and shift

operations (a) 5A (b) -7A (c) 13A (d) -15A (e) -19A (f) 31A.

As shown in equations (2.15), to calculate 31𝐴[5] six least significant bits of

15𝐴 should first be calculated by calculating two’s complement of −15𝐴.

For an 8-bit A, i.e. 0 ≤ 𝐴 ≤ 255, 5𝐴[10] = 1 only for 205 ≤ 𝐴 ≤ 255, i.e.

11001101 ≤ 𝐴 ≤ 11111111, −7𝐴[10] = 1 only for 1 ≤ 𝐴 ≤ 146, i.e. 00000001 ≤

𝐴 ≤ 10010010, 13𝐴[11] = 1 only for 158 ≤ 𝐴 ≤ 255, i.e. 10011110 ≤ 𝐴 ≤

11111111, −15𝐴[11] = 1 only for 1 ≤ 𝐴 ≤ 136, i.e. 00000001 ≤ 𝐴 ≤ 10001000,

−19𝐴[12] = 1 only for 1≤ 𝐴 ≤ 215, i.e. 00000001 ≤ 𝐴 ≤ 11010111, 31𝐴[12] = 1

only for 133≤ 𝐴 ≤ 255, i.e. 10000101 ≤ 𝐴 ≤ 11111111, resulting in equations

29

(2.16)-(2.21). Since 𝐴 is an unsigned number, −7𝐴, −15𝐴, and −19𝐴 are always

negative. Therefore, their sign bits, i.e. −7𝐴[11], −15𝐴[12], and −19𝐴[13], are

always 1.

 5𝐴[3] = 𝐴[3]^𝐴[1]^(𝐴[0]&𝐴[2])

 −7𝐴[4] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[4]^(𝐴[0]̅̅ ̅̅ ̅̅ | 𝐴[3])

 13𝐴[4] = 5𝐴[4]^𝐴[1]^(𝐴[0]&5𝐴[3])

 −15𝐴[5] = 𝐴[1]̅̅ ̅̅ ̅̅ ^𝐴[5]^(𝐴[0]̅̅ ̅̅ ̅̅ | 𝐴[4])

 −19𝐴[5] = 𝐴[0]^13𝐴[5]

 −19𝐴[6] = 𝐴[1]̅̅ ̅̅ ̅̅ ^13𝐴[6]^(𝐴[0]̅̅ ̅̅ ̅̅ | 13𝐴[5])

 31𝐴[5] = 15𝐴[5]^𝐴[1]^(𝐴[0]&15𝐴[4])

(2.15)

5𝐴[10] = 𝐴[7]&𝐴[6]&(𝐴[5] | 𝐴[4] | (𝐴[3]&𝐴[2]&(𝐴[1] | 𝐴[0]))) (2.16)

−7𝐴[10] = (𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) |

 (𝐴[7]&𝐴[6] | 𝐴[5] | (𝐴[4]&(𝐴[3] | 𝐴[2] | (𝐴[1]&𝐴[0])))
̅̅ ̅

) (2.17)

13𝐴[11] = 𝐴[7]&(𝐴[6] | 𝐴[5] | (𝐴[4]&𝐴[3]&𝐴[2]&𝐴[1])) (2.18)

−15𝐴[11] =

(𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) | 𝐴[6] | 𝐴[5] | 𝐴[4] |(𝐴[3]&(𝐴[2] | 𝐴[1] | 𝐴[0]))̅̅ (2.19)

−19𝐴[12] =

(𝐴[7]̅̅ ̅̅ ̅̅ &(𝐴[6] | 𝐴[5] |… | 𝐴[0])) | (𝐴[7]& 𝐴[6]&(𝐴[5] |(𝐴[4]&𝐴[3]))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) (2.20)

31𝐴[12] = 𝐴[7]&(𝐴[6] | 𝐴[5] | 𝐴[4] | 𝐴[3] | (𝐴[2]&(𝐴[1] | 𝐴[0]))) (2.21)

Therefore, it is necessary to store only six bits 5𝐴[9] , … , 5𝐴[4], five bits

−7𝐴[9] , … , −7𝐴[5], six bits 13𝐴[10] , … , 13𝐴[5], five bits −15𝐴[10] , … ,

−15𝐴[6], five bits −19𝐴[11], … , −19𝐴[7], and six bits 31𝐴[11] , … , 31𝐴[6] in the

memories.

Therefore, 5+6=11 bits are stored in each address of MEM2 instead of 22 bits,

and 5+6+5+6+5+5+6=38 bits are stored in each address of MEM3 instead of 86 bits.

30

As shown in Figure 2.8, the proposed hardware uses 30 Block RAMs (BRAM).

It uses 15 BRAMs as output memories (OUT MEM) to store fractional pixels and 15

BRAMs as transpose memories (TR MEM) to store horizontal half pixels required for

interpolating quarter pixels. Each BRAM address stores eight interpolated pixels.

First, it takes 15 clock cycles to interpolate 8×15×15 horizontal half pixels

required for interpolating quarter pixels. After all horizontal half pixels are calculated

and stored in the transpose BRAMs in 15 clock cycles, 15 pixels required for

interpolating quarter pixels can always be read in one clock cycle from 15 different

transpose BRAMs. Then, it takes 8 clock cycles to interpolate 8×8×15 vertical half

pixels. Finally, in 8×15 clock cycles, 8×8×255 quarter pixels are interpolated using

horizontal half pixels. There are four pipeline stages in the proposed hardware.

Therefore, the proposed hardware interpolates all the fractional pixels for an 8×8 PU in

147 clock cycles.

2.6 Implementation Results of the Proposed VVC FI Hardware Using Memory

Based Constant Multiplication

The proposed VVC FI hardware using memory based constant multiplication for

all PU sizes is implemented using Verilog HDL. The Verilog RTL code is verified with

RTL simulations.

The proposed hardware is compared with the VVC FI hardware proposed in

[29]. To have a fair comparison, Verilog RTL codes of both hardware are synthesized

and implemented to the same Xilinx XC7VX330T-3FFG1157 FPGA using Xilinx

Vivado 2017.4. Both FPGA implementations are verified with post implementation

timing simulations.

Implementation results are shown in Table 2.14. The proposed VVC FI

hardware works at 235 MHz, and it can process 49 full HD (1920×1080) video frames

per second. The proposed VVC FI hardware has less DFFs but more LUTs and slices

than the VVC FI hardware proposed in [29].

Power consumptions of both FPGA implementations are estimated for Tennis

and Kimono full HD (1920×1080) videos [35] using Xilinx Vivado. To estimate power

consumption of an FPGA implementation, its post implementation timing simulation is

done at 100 MHz using Mentor Graphics QuestaSim for one frame of each video

31

sequence, and signal activities are stored in a SAIF file. Xilinx Vivado estimates power

consumption of that FPGA implementation using this SAIF file.

Power consumption results are shown in Table 2.15. The proposed VVC FI

hardware has up to 9.4% less power consumption than the VVC FI hardware proposed

in [29].

Table 2.14 Implementation Results of the Proposed Memory Based VVC FI Hardware

 [29] Proposed VVC FI Hardware

FPGA Xilinx Virtex7 Xilinx Virtex7

Slices 3121 3348

DFFs 3589 3525

LUTs 10731 11842

BRAMs 30 30

Max. Freq. (MHz) 219 235

Frames per Second
46

1920×1080

49

1920×1080

Table 2.15 Power Consumption of the Proposed Memory Based VVC FI Hardware

 [29] Proposed VVC FI Hardware

Video Tennis Kimono Tennis Kimono

Clock (mW) 25 25 29 29

Signal (mW) 172 238 160 220

Logic (mW) 203 288 169 237

BRAM (mW) 137 138 137 138

Total (mW) 537 689 495 624

Power Reduction Compared to [29] --- --- 7.8% 9.4%

32

3 CHAPTER III

NOVEL DECOMPOSED COEFFICIENTS BASED HEVC AND VVC

FRACTIONAL INTERPOLATION HARDWARE

Motion estimation (ME) is the most computationally complex part of HEVC and

VVC video encoders. ME consists of integer ME and fractional ME. Fractional ME

requires interpolation of fractional pixels. Fractional interpolation (FI) is one of the

most computationally intensive parts of HEVC and VVC video encoders and decoders.

On average, one fourth of the HEVC encoder complexity and 50% of the HEVC

decoder complexity are caused by FI.

In HEVC fractional interpolation (HFI), 3 horizontally interpolated pixels

(HIPs), 3 vertically interpolated pixels (VIPs), 9 horizontally and vertically interpolated

pixels (HVIPs) are interpolated for every integer pixel (IP). In VVC fractional

interpolation (VFI), 15 HIPs, 15 VIPs, 225 HVIPs are interpolated for every IP. Hence,

VFI has much higher computational complexity than HFI. Therefore, it is required to

develop HFI hardware and VFI hardware to implement HFI and VFI in real-time,

respectively.

In this thesis, we propose novel decomposed coefficients technique for

implementing HFI, and we propose HFI hardware using the proposed technique. The

decomposed coefficients technique reduces the number of additions by decomposing

the coefficients of the FIR filters. We apply the decomposed coefficients technique to

33

exact and approximate VFI algorithms, and we propose exact VFI hardware and

approximate VFI hardware using the proposed technique.

The proposed FI hardware are implemented using Verilog HDL. The proposed

HFI hardware has higher performance, less area, and less power consumption than the

best HFI hardware in the literature. It can process 50 quad full HD (QFHD)

(3840×2160) video frames per second (fps). The proposed VFI hardware has higher

performance, less area, and less power consumption than the best VFI hardware in the

literature. It can process 48 full HD (FHD) (1920×1080) video fps. The proposed

approximate VFI hardware have the same performance, less area, and less power

consumption than the best approximate VFI hardware in the literature. They can process

49 and 52 full HD (1920×1080) video fps.

Several HFI hardware [30]-[33], [38], [39] and several VFI hardware [18], [22],

[25], [28], [29] are proposed in the literature.

The HFI hardware proposed by Kalali and Hamzaoglu [30] uses the Hcub

multiplierless constant multiplication (MCM) algorithm. It calculates common sub-

expressions in filter equations only once. Hence, the number and size of the adders, and

adder tree depth are reduced. The HFI hardware proposed by Lung and Shen [31] uses a

new data reuse technique and a highly parallel architecture to improve throughput. The

HFI hardware proposed by Pastuszak and Trochimiuk [32] has 2 parallel datapaths for

IP and fractional pixel (FP) motion estimation which share the same memories. The HFI

hardware proposed by Diniz et al. [33] uses a reconfigurable datapath which can

process different filter types.

The HFI hardware proposed by Mert et al. [38] uses memory-based constant

multiplication. The multiplications of an input pixel with multiple constant coefficients

of FIR filters are pre-calculated and stored in memory. A high-level synthesis (HLS)

based hardware implementation of HFI is proposed by Sjövall et al. [39]. It has higher

performance than manual HFI hardware implementation at the cost of much larger area.

The VFI hardware proposed by Mert et al. [29] implements 15 FIR filters in

parallel. It calculates 255 FPs for every IP. The exact VFI hardware proposed by Mert

et al. [29] uses Hcub MCM algorithm and calculates a common offset for all the

equations of 15 FIR filters. It also calculates common sub-expressions once and uses

their results in different equations. The coefficients of offset and filters in this hardware

are shown in Table II. Since the coefficients of filters F9 to F15 are symmetric with the

coefficients of filters F7 to F1, they are not shown in the table.

34

The VFI hardware proposed by Azgin et al. [28] can only be used for motion

compensation. It calculates 1 FP for every IP. The approximate VFI hardware proposed

by Azgin et al. [25] and Mahdavi et al. [18] include 14 3-tap and one 4-tap FIR filters.

They have less area and power consumption than the exact VFI hardware at the expense

of a very small quality loss. The approximate VFI hardware proposed by Mahdavi et al.

[18] uses common offset values and Hcub MCM algorithm.

Small coefficients of VFI FIR filters have less effect on the filter result. Due to

spatial correlation, neighboring pixels have similar values. Two approximate VFI FIR

filters, F1 and F2, are proposed by Mahdavi et al. [18]. Approximate VFI F1 FIR filters

are proposed by assuming that the pixels multiplied with smaller coefficients are

similar. Approximate VFI F2 FIR filters are proposed by substituting most of the

coefficients in F1 with the closest 2n values. Hence, most of the multiplications of F2

FIR filters are implemented using only shift operations.

MCMF1 and MCMF2 hardware are also proposed by Mahdavi et al. [18] for

implementing the approximate VFI F1 and F2 FIR filters, respectively. Both MCMF1

and MCMF2 hardware use Hcub MCM algorithm and calculate 3 common offsets (O1,

O2, O3). The coefficients of offsets and filters in MCMF1 and MCMF2 hardware are

shown in Table 2.5 and Table 2.7, respectively. In Table 2.7, F2 FIR filters F2OF4,

F2OF6, F2OF9, F2OF11 are the same as F2OF5, F2OF7, F2OF10, F2OF12, respectively.

Hence, in MCMF2 hardware, only F2OF4, F2OF6, F2OF9, F2OF11 are calculated, and

their results are also used for F2OF5, F2OF7, F2OF10, F2OF12, respectively.

An HLS based hardware implementation of VFI is proposed by Hamzaoglu et

al. [22]. It has higher performance than manual VFI hardware implementation at the

expense of much larger area.

3.1 Fractional Interpolation FIR Filters

In HFI, one 8-tap and two 7-tap FIR filters are used. These 3 FIR filters type A,

type B, type C are shown in equations (3.1), (3.2), and (3.3), respectively. The value of

shift1 is determined based on bit depth of the pixel. Figure 3.1 shows IPs “Ax,y”, HIPs

“ax,y, bx,y, cx,y”, VIPs “dx,y, hx,y, nx,y”, and HVIPs “ex,y, fx,y, gx,y, 𝑖x,y, jx,y, kx,y, px,y, qx,y,

rx,y” in a prediction unit (PU). The nearest IPs in horizontal direction are used for

interpolating HIPs (a, b, c) and the nearest IPs in vertical direction are used for

interpolating VIPs (d, h, n). The HVIPs are interpolated from the nearest HIPs.

35

A ₁, ₁ A₀, ₁ A₁, ₁ A₂, ₁

A ₁,₀

A₀,₂ A₁,₂ A₂,₂

A₂,₁

A₂,₀ A₀,₀

A₀,₁ A₁,₁

A₁,₀ a₀,₀ b₀,₀ c₀,₀

a₀, ₁ b₀, ₁ c₀, ₁

a₀,₁ b₀,₁ c₀,₁

a₀,₂ b₀,₂ c₀,₂

d₀,₀

h₀,₀

n₀,₀

d ₁,₀

h ₁,₀

n ₁,₀

d₁,₀

h₁,₀

n₁,₀

d₂,₀

h₂,₀

n₂,₀

e₀,₀ f₀,₀

i₀,₀ j₀,₀ k₀,₀

p₀,₀ q₀,₀ r₀,₀

a ₁,₀ b ₁,₀ c ₁,₀

e ₁,₀ f ₁,₀ g ₁,₀

i ₁,₀ j ₁,₀ k ₁,₀

p ₁,₀ q ₁,₀ r ₁,₀

a₁,₀ b₁,₀ c₁,₀

e₁,₀ f₁,₀ g₁,₀

i₁,₀ j₁,₀ k₁,₀

p₁,₀ q₁,₀ r₁,₀

g₀,₀

d₀, ₁

h₀, ₁

n₀, ₁

d ₁, ₁

h ₁, ₁

n ₁, ₁

d₁, ₁

h₁, ₁

n₁, ₁

e₀, ₁ f₀, ₁

i₀, ₁ j₀, ₁ k₀, ₁

p₀, ₁ q₀, ₁ r₀, ₁

a ₁, ₁ b ₁, ₁ c ₁, ₁

e ₁, ₁ f ₁, ₁ g ₁, ₁

i ₁, ₁ j ₁, ₁ k ₁, ₁

p ₁, ₁ q ₁, ₁ r ₁, ₁

a₁, ₁ b₁, ₁ c₁, ₁

e₁, ₁ f₁, ₁ g₁, ₁

i₁, ₁ j₁, ₁ k₁, ₁

p₁, ₁ q₁, ₁ r₁, ₁

g₀, ₁ d₂, ₁

h₂, ₁

n₂, ₁

a ₁,₂ b ₁,₂ c ₁,₂ a₁,₂ b₁,₂ c₁,₂

d₀,₁

h₀,₁

n₀,₁

d ₁,₁

h ₁,₁

n ₁,₁

d₁,₁

h₁,₁

n₁,₁

e₀,₁ f₀,₁

i₀,₁ j₀,₁ k₀,₁

p₀,₁ q₀,₁ r₀,₁

c ₁,₁

e ₁,₁ f ₁,₁ g ₁,₁

i ₁,₁ j ₁,₁ k ₁,₁

p ₁,₁ q ₁,₁ r ₁,₁

e₁,₁ f₁,₁ g₁,₁

i₁,₁ j₁,₁ k₁,₁

p₁,₁ q₁,₁ r₁,₁

g₀,₁

a₁,₁ b₁,₁ c₁,₁

d₂,₁

h₂,₁

n₂,₁

A ₁,₂

A ₁,₁ a ₁,₁ b ₁,₁

Figure 3.1 Integer pixels, HIPs, VIPs, HVIPs in HEVC FI.

In VFI, 8 7-tap and 7 8-tap FIR filters are used. Table 2.1 shows the coefficients

of these FIR filters. In VFI, there are 15 HIPs between 2 neighboring horizontal IPs and

15 VIPs between 2 neighboring vertical IPs. The HIPs and VIPs are interpolated from

nearest IPs using 15 FIR filters. The HVIPs are interpolated from nearest HIPs using 15

FIR filters.

3.2 Proposed HEVC FI Hardware

In this thesis, a novel technique is proposed, which reduces number of additions

by decomposing coefficients of the FIR filters used for HEVC FI. Decomposition of the

coefficients in type A, type B and type C FIR filters are shown in equations (3.9),

(3.10), and (3.11), respectively where common sub-expressions are highlighted with

different colors. Although the number of coefficients increases, more common sub-

expressions are obtained which reduces the number of additions.

In the proposed HEVC FI hardware, 8 type A FIR filters, 8 type B FIR filters

and 8 type C FIR filters are calculated in parallel in each clock cycle. Therefore, 24

fractional pixels in the same row or column are interpolated in each clock cycle using

15 integer pixels or 15 horizontal half-pixels in the same row or column.

36

For example, 𝑎−3,0, … , 𝑎0,0, … , 𝑎4,0 , 𝑏−3,0, … , 𝑏0,0, … , 𝑏4,0 , 𝑐−3,0, … , 𝑐0,0, … , 𝑐4,0

horizontal half-pixels in row 0 are interpolated using 𝐴−6,0, … , 𝐴0,0, … , 𝐴8,0 integer

pixels in row 0. FIR filters used in HEVC standard to interpolate 8 of these 24 half-

pixels are shown in equations (3.1)-(3.8).

𝑎0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 10𝐴−1,0 + 58𝐴0,0

+17𝐴1,0 − 5𝐴2,0 + 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.1)

𝑏0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 11𝐴−1,0 + 40𝐴0,0

+40𝐴1,0 − 11𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.2)

 𝑐0,0 = (
𝐴−2,0 − 5𝐴−1,0 + 17𝐴0,0 + 58𝐴1,0

−10𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.3)

𝑎1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 10𝐴0,0 + 58𝐴1,0

+17𝐴2,0 − 5𝐴3,0 + 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.4)

𝑏1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 11𝐴0,0 + 40𝐴1,0

+40𝐴2,0 − 11𝐴3,0 + 4𝐴4,0 − 𝐴5,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.5)

𝑏−1,0 = (
−𝐴−4,0 + 4𝐴−3,0 − 11𝐴−2,0 + 40𝐴−1,0

+40𝐴0,0 − 11𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.6)

𝑐−1,0 = (
𝐴−3,0 − 5𝐴−2,0 + 17𝐴−1,0 + 58𝐴0,0

−10𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.7)

𝑐2,0 = (
𝐴0,0 − 5𝐴1,0 + 17𝐴2,0 + 58𝐴3,0

−10𝐴4,0 + 4𝐴5,0 − 𝐴6,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.8)

The same FIR filters with decomposed coefficients are shown in equations (3.9)-

(3.16).

𝑎0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 10𝐴−1,0 + 40𝐴0,0 + 18𝐴0,0 + 18𝐴1,0

−𝐴1,0 − 𝐴2,0 − 4𝐴2,0 + 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.9)

𝑏0,0 = (
−𝐴−3,0 + 4𝐴−2,0 − 𝐴−1,0 − 10𝐴−1,0 + 40𝐴0,0

+40𝐴1,0 − 10𝐴2,0 − 𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.10)

𝑐0,0 = (
𝐴−2,0 − 4𝐴−1,0 − 𝐴−1,0 − 𝐴0,0 + 18𝐴0,0 + 18𝐴1,0

+40𝐴1,0 − 10𝐴2,0 + 4𝐴3,0 − 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.11)

𝑎1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 10𝐴0,0 + 40𝐴1,0 + 18𝐴1,0 + 18𝐴2,0

−𝐴2,0 − 𝐴3,0 − 4𝐴3,0 + 𝐴4,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.12)

𝑏1,0 = (
−𝐴−2,0 + 4𝐴−1,0 − 𝐴0,0 − 10𝐴0,0 + 40𝐴1,0 + 40𝐴2,0

−10𝐴3,0 − 𝐴3,0 + 4𝐴4,0 − 𝐴5,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.13)

𝑏−1,0 = (
−𝐴−4,0 + 4𝐴−3,0 − 𝐴−2,0 − 10𝐴−2,0 + 40𝐴−1,0 + 40𝐴0,0

−10𝐴1,0 − 𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.14)

𝑐−1,0 = (
𝐴−3,0 − 4𝐴−2,0 − 𝐴−2,0 − 𝐴−1,0 + 18𝐴−1,0 + 18𝐴0,0

+40𝐴0,0 − 10𝐴1,0 + 4𝐴2,0 − 𝐴3,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.15)

37

𝑐2,0 = (
𝐴0,0 − 4𝐴1,0 − 𝐴1,0 − 𝐴2,0 + 18𝐴2,0 + 18𝐴3,0

+40𝐴3,0 − 10𝐴4,0 + 4𝐴5,0 − 𝐴6,0
) ≫ 𝑆ℎ𝑖𝑓𝑡1 (3.16)

The sub-expressions in equations (3.9)-(3.11) that are common with the sub-

expressions in equations (3.9)-(3.16) are highlighted with different colors. Some

common sub-expressions are negated versions of each other. For example, negated

version of the sub-expression “𝐴−2,0 − 4𝐴−1,0” in equation (3.11), i.e. “−𝐴−2,0 +

4𝐴−1,0”, exists in equations (3.12) and (3.13). Therefore, it can be calculated only once,

and its result can be used in equations (3.12) and (3.13) by negating it.

The FIR filters in equations (3.9)-(3.16) with decomposed coefficients have more

common sub-expressions than the FIR filters in equations (3.1)-(3.8) with original

coefficients. There are even more common sub-expressions in all 24 FIR filters with

decomposed coefficients which are used to interpolate 24 fractional pixels in parallel in

each clock cycle. All these common sub-expressions and the number of adders used to

implement them are shown in Table 3.1.

Table 3.1 Common Sub-Expressions in the Proposed HEVC FI Hardware

General form Sub-expressions Adders

-Ax-1 ,0+4×Ax,0 -A-6,0+4×A-5,0 , -A-5,0+4×A-4,0 , … , -A3,0+4×A4,0 10

-10×Ax-1 ,0+40×Ax,0 -10×A-4,0+40×A-3,0 , -10×A-3,0+40×A-2,0 , … , -10×A3,0+40×A4,0 8

4×Ax-1 ,0-Ax,0 4×A-2,0-A-1,0 , 4×A-1,0-A0,0 , … , 4×A7,0-A8,0 10

40×Ax-1 ,0-10×Ax,0 40×A-2,0-10×A-1,0 , 40×A-1,0-10×A0,0 , … , 40×A5,0-10×A6,0 8

Ax-1 ,0+Ax,0 A-4 ,0+A-3,0 , A-3 ,0+A-2,0 , … , A5 ,0+A6,0 10

18×Ax-1 ,0+18×Ax,0 18×A-3,0+18×A-2,0 , 18×A-2 ,0+18×A-1,0 , …, 18×A4 ,0+18×A5,0 8

Total adders 54

Figure 3.2 shows the proposed datapaths for implementing all sub-expressions

including common sub-expressions shown in Table 3.1. Since the common sub-

expressions are calculated only once, they reduce the number of adders used in the

proposed HEVC FI hardware. In addition, as shown in Figure 3.2, first the sub-

expressions shown in rows 1, 3, 5 in Table 3.1 are calculated. Then, using the results of

these sub-expressions, the sub-expressions shown in rows 2, 4, 6 in Table 3.1 are

calculated. This also reduces the number of adders used in the proposed hardware.

38

+

<<2

+

Aₓ ₁

-Aₓ ₁ + 4A x

Aₓ

-

<<2

<<1

-10Aₓ ₁ + 40A x

<<2

+

Aₓ ₁

4Aₓ ₁ - A x

Aₓ

-+

+

<<2

<<1

40Aₓ ₁ - 10A x

+

Aₓ ₁

Aₓ ₁ + A x

Aₓ

+

<<3

<<1

18Aₓ ₁ + 18A x

+

+

Aₓ ₃

-Aₓ ₃ - A x

Aₓ

x (-1)

Figure 3.2 Sub-Expressions datapaths in the proposed HEVC FI hardware.

Adder trees are used to add the results of sub-expressions shown in Figure 3.2

for calculating FIR filters. There are also common sub-expressions in the adder trees.

Common sub-expression “-A-3,0 +4×A-2,0 -10×A-1,0 +40×A0,0” exists in equations (3.9)

and (3.10). Therefore, it is calculated only once, and its result is used in (3.9) and

(3.10). One adder is used to calculate this sub-expression by adding the common sub-

expressions “-A-3,0 +4×A-2,0” and “-10×A-1,0 +40×A0,0”. Common sub-expression

“40×A1,0 -10×A2,0 +4×A3,0 -A4,0” exists in equations (3.10) and (3.11). Therefore, it is

calculated only once, and its result is used in (3.10) and (3.11). One adder is used to

calculate this sub-expression by adding the common sub-expressions “40×A1,0 -

10×A2,0” and “4×A3,0 -A4,0”.

To calculate (3.9), three adders are used in adder trees to add the results of “-A-

3,0 +4×A-2,0 -10×A-1,0 +40×A0,0”, “18×A0,0 +18×A1,0”, “-A1,0 -A2,0”, and “-4×A2,0 +A3,0”.

To calculate (3.10), two adders are used in adder trees to add the results of “-A-3,0

+4×A-2,0 -10×A-1,0 +40×A0,0”, “-A-1,0 -A2,0”, “40×A1,0 -10×A2,0 +4×A3,0 -A4,0”. To

calculate (3.11), three adders are used in adder trees to add the results of “A-2,0 -4×A-

1,0”, “-A-1,0 -A0,0”, “18×A0,0 +18×A1,0”, and “40×A1,0 -10×A2,0 +4×A3,0 -A4,0”.

Therefore, 10 adders are used in adder trees to interpolate 3 FPs. 80 adders are used in

adder trees to interpolate 3×8 = 24 FPs in each CC.

Figure 3.3 shows the proposed HFI hardware for all PU sizes. The splitters

represent interconnects in the proposed hardware. They are used to simplify the figure.

In Figure 3.3, Sub-Expressions block represent the sub-expression datapaths shown in

Figure 3.2.

39

Transpose
Memory A

Transpose
Memory B

Transpose
Memory C

MUX

Sub-Expressions

Integer Pixels

Splitter #1

Adder
Tree
#8

Adder
Tree
#7

Adder
Tree
#6

Adder
Tree
#3

Adder
Tree
#1

Output
Memory A

Output
Memory B

Output
Memory C

Splitter #2

Adder
Tree
#4

Adder
Tree
#5

Adder
Tree
#2

Figure 3.3 Proposed HEVC FI hardware.

The proposed hardware interpolates all fractional pixels for luma component of

an 8×8 PU. The larger PU sizes are decomposed into 8×8 blocks and these 8×8 blocks

are interpolated separately.

First, 8×15 horizontal a, b, c half-pixels are interpolated in 15 clock cycles, and

they are stored into transpose memories A, B, C, respectively. Then, 8×8 vertical d, h, n

half-pixels are interpolated in 8 clock cycles. Finally, 9×8×8 quarter-pixels are

interpolated in 24 clock cycles using the half-pixels in transpose memories A, B, C.

There are three pipeline stages in the proposed hardware. Therefore, all fractional pixels

for an 8×8 PU are interpolated in 50 clock cycles.

3.3 Proposed VVC FI Hardware

In the proposed VFI hardware, FIR filter coefficients are decomposed to other

coefficients in the forms of powers of 2 as shown in Table 3.2. A-3 to A4 represent the

input pixels. The proposed VFI hardware also uses the common offset proposed by

Mert et al. [29].

40

Table 3.2 Decomposed Coefficients in Proposed VVC FI Hardware

 A-3 A-2 A-1 A0 A1 A2 A3 A4

Offset -1 4 -8 32 32 -8 4 -1

F1 1 1-4 4+1 -1+32 -32+4 2+4 -4+1 1
F2 0 -2 2+1 -2+32 -32+8 1+4 -4+1 1

F3 0 -1 0 32-4 -4-16+1 4 -4+1 1
F4 0 0 -2 2+8+16 -16+1 -1+4 -4+1 1

F5 0 0 1-4 16+4 -4-2 0 -1 0

F6 0 -1 -1 16-1 -1 -2 0 0
F7 0 0 -1-2 8+4+1 2 -2 0 0

F8 0 0 -1-2 8 8 -2-1 0 0
F9 0 0 -2 2 1+4+8 -2-1 0 0

F10 0 0 -2 -1 -1+16 -1 -1 0

F11 0 -1 0 -2-4 16+4 -4+1 0 0
F12 1 1-4 4-1 1-16 16+8+2 -2 0 0

F13 1 1-4 4 1-16-4 -4+32 0 -1 0
F14 1 1-4 4+1 8-32 32-2 1+2 -2 0

F15 1 1-4 4+2 4-32 32-1 1+4 -4+1 1

In the proposed VFI hardware, 8×15 FPs are interpolated in parallel in each CC

using 15 IPs or 15 HIPs and 8 sets of 15 FIR filters with decomposed coefficients.

There are more common sub-expressions in these 8×15 FIR filters.

Table 3.3 shows all the common sub-expressions in the proposed VFI hardware,

and the number of adders used to implement them. In each row, for each common sub-

expression general form, all specific sub-expressions, which are negated or shifted

versions of each other, are shown. For example, in the second row, “8×A-2 -2×A-1” and

“32×A-2 -8×A-1” are obtained by shifting “4×A-2 -A-1” 1 bit and 3 bits to the left,

respectively.

Adder trees are used to add the results of sub-expressions for calculating the

proposed VFI FIR filters. There are also common sub-expressions in the adder trees.

Common sub-expression “4×A2 -4×A3 +A3 +A4”, denoted by CA, is calculated using 1

adder which adds the results of common sub-expressions “4×A2 -4×A3” and “A3 +A4”.

Common sub-expression “A-3 +A-2 -4×A-2 +4×A-1”, denoted by CB, is calculated using 1

adder which adds the results of “A-3 +A-2” and “-4×A-2 +4×A-1”. Common sub-

expression “-2×A-1 +2×A0 +A1 -A2”, denoted by CC, is calculated using 1 adder which

adds the results of “-2×A-1 +2×A0” and “A1 -A2”. Common sub-expression “-A-1 +A0

+2×A1 -2×A2”, denoted by CD, is calculated using 1 adder which adds the results of “-

A-1 +A0” and “2×A1 -2×A2”. Common sub-expression “-2×A-1 +8×A0 +8×A1 -2×A2”,

denoted by CO, is calculated using 1 adder which adds the results of “-2×A-1 +8×A0”

and “8×A1 -2×A2”.

41

Table 3.3 Common Sub-Expressions in the Proposed VVC FI Hardware

General form Sub-expressions Adders

-Ax-2+4×Ax-1

A-6-4×A-5 , A-5-4×A-4 , … , A4-4×A5

-2×A-4+8×A-3 , -2×A-3+8×A-2 , … , -2×A4+8×A5

-4×A-4+16×A-3 , -4×A-3+16×A-2 , … , -4×A4+16×A5

-8×A-4+32×A-3 , -8×A-3+32×A-2 , … , -8×A3+32×A4

11

4×Ax-1-Ax

4×A-3-A-2 , 4×A-2-A-1 , … , 4×A7-A8

8×A-3-2×A-2 , 8×A-2-2×A-1 , …, 8×A5-2×A6

32×A-2-8×A-1 , 32×A-2-8×A-1 , …, 32×A5-8×A6

11

Ax-2+Ax-1
A-6+A-5 , A-5+A-4 , … , A7+A8

-4×A-3-4×A-2 , -4×A-2-4×A-1 , … , -4×A4-4×A5
14

Ax-1-Ax

A-2 -A-1 , A-1-A0 , … , A5-A6

-A-4+A-3 , -A-3+A-2 , … , -A3+A4

-2×A-5+2×A-4 , -2×A-4+2×A-3 , … , -2×A3+2×A4

2×A-2-2×A-1 , 2×A-1-2×A0 , … , 2×A6 -2×A7

-4×A-5+4×A-4 , -4×A-4+4×A-3 , … , -4×A2+4×A3

4×A-3-4×A-2 , 4×A-2-4×A-1 , … , 4×A6 -4×A7

16×A-3-16×A-2 , 16×A-2-16×A-1 , … , 16×A4-16×A5

-16×A-3+16×A-2 , -16×A-2+16×A-1 , … , -16×A4+16×A5

32×A-3-32×A-2 , 32×A-2-32×A-1 , … , 32×A4-32×A5

-32×A-3+32×A-2 , -32×A-2+32×A-1 , … , -32×A4+32×A5

12

Ax-3+Ax
A-4+A-1 , A-3+A0 , … , A3+A6

-A-4-A-1 , -A-3-A0 , … , -A3-A6
8

Ax-3-Ax
A-3 -A0 , A-2-A1 , … , A4-A7

-A-5+A-2 , -A-4+A-1 , … , -A2+A5
10

Ax-4-Ax
A-4-A0 , A-3-A1 , … , A3-A7

-A-5+A-1 , -A-4+A0 , … , -A2+A6
9

-Ax-3-Ax-2-Ax-1-Ax -A-5-A-4-A-3-A-2 , -A-4-A-3-A-2-A-1 , … , -A4-A5-A6-A7 10

-4×Ax-2+16×Ax-1+4×Ax-1-4×Ax
-4×A-4+16×A-3+4×A-3-4×A-2 , … ,

-4×A4+16×A5+4×A5-4×A6
9

Total adders 94

Offset is calculated using 2 adders which add “CO<< 2”, “-A3 +4×A-2”, and

“4×A3 -A4”. Common sub-expression denoted by CE is calculated using 1 adder which

adds CA and Offset. Common sub-expression denoted by CF is calculated using 1 adder

which adds CB and Offset. Common sub-expression denoted by CG is calculated using 2

adders which add CA, CB, and Offset. Common sub-expressions CA, CB, CC, CD, CO, CE,

CF, CG are calculated only once and their results are used in different FIR filters. For

example, CG is used in FIR filters F1 and F15. To calculate F1, 4 adders are used in adder

trees which add CG, “-A0 +4×A1”, “32×A0 -32×A1”, A-1, “A2<< 1”. Similarly, FIR

filters F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15 are calculated using 4, 4, 3,

3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4 adders, respectively. Therefore, 61 adders are used in adder

trees for calculating Offset and FIR filters to interpolate 15 FPs.

Figure 3.4 shows the proposed VFI hardware for all PU sizes. The splitters

represent interconnects in the proposed hardware. TR MEM and OUT MEM are the

42

transpose memories and output memories, respectively. Sub-Expressions block

calculates all common sub-expressions shown in Table 3.3.

MUX

Sub-Expressions

Integer Pixels

Splitter #1

Adder
Tree
#1

Adder
Tree
#8

Adder
Tree
#7

Adder
Tree
#1

Adder
Tree
#6

Adder
Tree
#5

Adder
Tree
#1

Adder
Tree
#4

Adder
Tree
#3

Adder
Tree
#1

Adder
Tree
#2

Adder
Tree
#1

OUT
MEM

#1

Splitter #2

OUT
MEM

#2

OUT
MEM

#3

OUT
MEM

#4

OUT
MEM

#5

OUT
MEM

#6

OUT
MEM

#7

OUT
MEM

#8

OUT
MEM

#9

OUT
MEM
#10

OUT
MEM
#11

OUT
MEM
#12

OUT
MEM
#13

OUT
MEM
#14

OUT
MEM
#15

TR
MEM

#1

TR
MEM

#2

TR
MEM

#3

TR
MEM

#4

TR
MEM

#5

TR
MEM

#6

TR
MEM

#7

TR
MEM

#8

TR
MEM

#9

TR
MEM
#10

TR
MEM
#11

TR
MEM
#12

TR
MEM
#13

TR
MEM
#14

TR
MEM
#15

Figure 3.4 Proposed VVC FI Hardware

Figure 3.5 shows the proposed datapaths used in the Sub-Expressions block.

Common sub-expressions “-Ax-3 -Ax-2 -Ax-1 -Ax” and “-4×Ax-2 +16×Ax-1 +4×Ax-1 -4×Ax”

are calculated using other common sub-expressions. Hence, only 1 extra adder is used

for implementing each of them.

Aₓ ₁

<< 2

+
-+

4Aₓ ₁-Aₓ

Aₓ

+ -+

Aₓ ₁ -Aₓ

Aₓ ₂

Aₓ ₂+Aₓ ₁

Aₓ ₁

+

<< 2

+- +

-Aₓ ₂ +4Aₓ ₁

+

<< 2

-4Aₓ ₂ +16Aₓ ₁ +4Aₓ ₁ -4Aₓ

Aₓ ₂

+

Aₓ ₃

Aₓ ₃ -Aₓ

Aₓ

+

+

-+

Aₓ ₃ +Aₓ

+

-Aₓ ₃ -Aₓ ₂ -Aₓ ₁ -Aₓ

x (-1)

Aₓ ₄

Aₓ ₄ -Aₓ

+- +

Figure 3.5 Common sub-expression datapaths in the proposed VVC FI hardware.

43

8×15×15 HIPs are interpolated in 15 CCs and stored in transpose memories.

8×8×15 VIPs are interpolated in 8 CCs. 8×8×225 HVIPs are interpolated in 8×15 CCs

using HIPs. There are 4 pipeline stages in the proposed hardware. Hence, all the FPs for

an 8×8 PU are interpolated in 147 CCs.

3.4 Proposed Approximate VFI Hardware DCF1

In the proposed hardware, the coefficients of F1 FIR filters are decomposed into

other coefficients in the forms of powers of 2 as shown in Table 3.4. Hence, it is called

Decomposed Coefficients of F1 (DCF1) hardware. The coefficients of common sub-

expressions are shown with the same color in the table.

Table 3.4 Approximate F1 FIR Filters with Offset Used in DCF1

 A-1 A0 A1 A2 Required Offset

Offsets
Off1 -8 64 8 0
Off2 0 8 64 -8
Off3 -8 8 8 -8

FIR Filters with

Offset Used in

DCF1

F1OF1 2+4 -1 -1-4 0 Off1

F1OF2 4 -2 -2 0 Off1
F1OF3 2 -2-2 2 0 Off1

F1OF4 1 -1-1-4 4+1 0 Off1
F1OF5 0 -8-4 4+8 0 Off1

F1OF6 1 -1-16 16 0 Off1

F1OF7 0 -1-2-16 16+2+1 0 Off1
F1OF8 0 32 32 0 Off3

F1OF9 0 1+2+16 -16-2-1 0 Off2
F1OF10 0 16 -16-1 1 Off2

F1OF11 0 4+8 -8-4 0 Off2
F1OF12 0 1+4 -4-1-1 1 Off2

F1OF13 0 2 -2-2 2 Off2

F1OF14 0 -2 -2 4 Off2
F1OF15 0 -4-1 -1 4+2 Off2

In DCF1 hardware, 8×15 FPs are interpolated in parallel in each CC using 15 IPs

or 15 HIPs and 8 sets of 15 F1 FIR filters with decomposed coefficients. There are more

common sub-expressions in these 8×15 FIR filters. Table 3.5 shows all the common sub-

expressions in DCF1 hardware, and the number of adders used to implement them.

Block diagram of DCF1 hardware is similar to the block diagram of the proposed

VFI hardware shown in Figure 3.4. Their Sub-Expressions and Adder Tree blocks are

different. Figure 3.6 shows the proposed datapaths used in the Sub-Expressions block of

DCF1 hardware. Some common sub-expressions are calculated using the results of other

common sub-expressions.

44

Table 3.5 Common Sub-Expressions in DCF1 Hardware

General form Sub-expressions Adders

-Ax-1+Ax

-A-3+A-2 , -A-2+A-1 , … , -A5+A6

-2×A-3+2×A-2 , -2×A-2+2×A-1 , … , -2×A5+2×A6

-4×A-3+4×A-2 , -4×A-2+4×A-1 , … , -4×A4+4×A5

-8×A-3+8×A-2 , -8×A-2+8×A-1 , … , -8×A4+8×A5

-16×A-3+16×A-2 , -16×A-2+16×A-1 , … ,

-16×A4+16×A5

A-4-A-3 , A-3-A-2 , … , A4-A5

2×A-4-2×A-3 , 2×A-3-2×A-2 , … , 2×A4-2×A5

4×A-3-4×A-2 , 4×A-2-4×A-1 , … , 4×A4-4×A5

8×A-3-8×A-2 , 8×A-2-8×A-1 , … , 8×A4-8×A5

16×A-3-16×A-2 , 16×A-2-16×A-1 , … ,

16×A4-16×A5

10

-Ax-2+Ax

-4×A-3+4×A-1 , -4×A-2+4×A0 , … , -4×A4+4×A6

-8×A-4+8×A-2 , -8×A-3+8×A-1 , … , -8×A3+8×A5

4×A-4-4×A-2 , 4×A-3-4×A-1 , … , 4×A3-4×A5

8×A-3-8×A-1 , 8×A-2-8×A0 , … , 8×A4-8×A6

9

Ax-1+Ax

-A-3-A-2 , -A-2-A-1 , … , -A4-A5

-2×A-3-2×A-2 , -2×A-2-2×A-1 , … , -2×A4-2×A5

32×A-3+32×A-2 , 32×A-2+32×A-1 , … ,

32×A4+32×A5

8

Ax-2 -Ax-1 -Ax-1+Ax
A-4 -A-3 -A-3+A-2 , A-3 -A-2 -A-1+A0 , … ,

 A3 -A4 -A5 +A6
9

2×Ax-2-Ax-1-Ax

2×A-4-A-3-A-2 , 2×A-3-A-2-A-1 , … , 2×A3-A4-A5

4×A-4-2×A-3-2×A-2 , 4×A-3-2×A-2-2×A-1 ,… ,

4×A3-2×A4-2×A5

8

-Ax-2-Ax-1+2×Ax

-A-3-A-2+ 2×A-1 , -A-2-A-1+ 2×A0 , … ,

-A4-A5+ 2×A6

-2×A-3-2×A-2+4×A-1 , -2×A-2-2×A-1+ 4×A0 ,…,

-2×A4-2×A5+ 4×A6

8

2×Ax-1+Ax-1-2×Ax-Ax

2×A-3+A-3-2×A-2-A-2 , … , 2×A4+A4-2×A5-A5

-2×A-3-A-3+2×A-2+A-2 , … , -2×A4-A4+2×A5+A5

8×A-3+4×A-3-8×A-2-4×A-2 , … ,

8×A4+4×A4-8×A5-4×A5

-8×A-3-4×A-3+8×A-2+4×A-2 , … ,

-8×A4-4×A4+8×A5+4×A5

8

16×Ax-1+2×Ax-1+Ax-1-16×Ax-2×Ax-Ax
16×A-3+2×A-3+A-3-16×A-2-2×A-2-A-2 , … ,

16×A4+2×A4+A4-16×A5-2×A5-A5
8

Total adders 68

Interpolation order and number of pipeline stages in DCF1 hardware are the same

as the proposed VFI hardware. Hence, DCF1 hardware interpolates all the FPs for an

8×8 PU in 147 CCs.

45

Aₓ ₁ Aₓ ₂ Aₓ ₁

+<< 1

Aₓ

+ -+

-Aₓ ₂ -Aₓ ₁ +2Aₓ

A x Aₓ ₂

++

-Aₓ ₁+Aₓ -Aₓ ₂+Aₓ

-+- +

+

+
- +

- +

Aₓ ₂ -Aₓ ₁ -Aₓ ₁ +Aₓ

Aₓ ₁

+

A x

Aₓ ₁+Aₓ

<< 1

+
-+

2Aₓ ₂ -Aₓ ₁ -Aₓ

x (-1)

<< 1

+

2Aₓ ₁ +Aₓ ₁ -2Aₓ -Aₓ

<< 4

+

16Aₓ ₁ +2Aₓ ₁ +Aₓ ₁ -16Aₓ -2Aₓ -Aₓ

Figure 3.6 Common sub-expression datapaths in DCF1 hardware.

3.5 Proposed Approximate VFI Hardware DCF2

In the proposed hardware, the coefficients of F2 FIR filters are decomposed into

other coefficients in the forms of powers of 2 as shown in Table 3.6. Hence, it is called

Decomposed Coefficients of F2 (DCF2) hardware.

Table 3.6 Approximate F2 FIR Filters with Offset Used in DCF2

 A-1 A0 A1 A2 Required

Offset

Required

Final Shift

Offsets
Off1 -1 8 1 0
Off2 0 1 8 -1

Off3 -1 1 1 -1

FIR Filters with

Offset Used in

DCF2

F2OF1 2+1 0 -2-1 0 Off1 << 2 >>5

F2OF2 1 0 -1 0 Off1 << 1 >>4
F2OF3 0 0 0 0 Off1 >>3

F2OF4 0 -1 1 0 Off1 >>3

F2OF6 0 -2-1 2+1 0 Off1 >>3
F2OF8 0 4 4 0 Off3 >>3

F2OF9 0 2+1 -2-1 0 Off2 >>3
F2OF11 0 1 -1 0 Off2 >>3

F2OF13 0 0 0 0 Off2 >>3
F2OF14 0 -1 0 1 Off2 << 1 >>4

F2OF15 0 -2-1 0 2+1 Off2 << 2 >>5

The coefficients are decomposed in such a way that the adder sizes are also

reduced. For example, for F2OF4 FIR filter, instead of implementing [(8×A1 -8×A0)

+O1] >> 6 in Table 2.7 where O1 = -8×A-1 +64×A0 +8×A1, we implement [(A1- A0)

+Off1] >> 3 where Off1 = -A-1 +8×A0 +A1.

46

F2 FIR filters F2OF4, F2OF6, F2OF9, F2OF11 are the same as F2OF5, F2OF7,

F2OF10, F2OF12, respectively. Hence, in DCF2 hardware, only FIR filters F2OF4,

F2OF6, F2OF9, F2OF11 are calculated, and their results are also used for F2OF5, F2OF7,

F2OF10, F2OF12, respectively.

In DCF2 hardware, 8×15 FPs are interpolated in parallel in each CC using 15 IPs

or 15 HIPs and 8 sets of 11 F2 FIR filters with decomposed coefficients. There are more

common sub-expressions in these 8×11 FIR filters. Table 3.7 shows all the common

sub-expressions in DCF2 hardware, and the number of adders used to implement them.

Table 3.7 Common Sub-Expressions in DCF2 Hardware

General form Sub-expressions Adders

Ax-2-Ax

A-4-A-2 , A-3-A-1 , … , A4-A6

2×A-4-2×A-2 , 2×A-3-2×A-1 , … , 2×A4-2×A6

-A-4+A-2 , -A-3+A-1 , … , -A4+A6

9

-Ax-1+Ax

-A-3+A-2 , -A-2+A-1 , … , -A4+A5

-2×A-3+2×A-2 , -2×A-2+2×A-1 , … , -2×A4+2×A5

A-3-A-2 , A-2-A-1 , … , A4-A5

2×A-3-2×A-2 , 2×A-2-2×A-1 , … , 2×A4-2×A5

8

-2×Ax-1-Ax-1+2×Ax+Ax
-2×A-3-A-3+2×A-2+A-2 , … , -2×A4-A4+2×A5+A5

2×A-3+A-3-2×A-2-A-2 , … , 2×A4+A4-2×A5-A5
8

-2×Ax-2-Ax-2+2×Ax+Ax
-2×A-4-A-4+2×A-2+A-2 , … , -2×A4-A4+2×A6+A6

2×A-4+A-4-2×A-2-A-2 , … , 2×A4+A4-2×A6-A6
9

Total adders 34

Block diagram of DCF2 hardware is similar to the block diagram of the

proposed VFI hardware shown in Figure 3.4. Their Sub-Expressions block, Adder Tree

block, and the numbers of OUT MEMs are different. DCF2 hardware uses 11 OUT

MEMs because the F2 FIR filters F2OF5, F2OF7, F2OF10, F2OF12 are the same as other

F2 FIR filters so their results are not calculated and stored. Figure 3.7 shows the

proposed datapaths used in the Sub-Expressions block of DCF2 hardware. Some

common sub-expressions are calculated using the results of other common sub-

expressions.

Interpolation order and number of pipeline stages in DCF2 are the same as the

proposed VFI hardware. Hence, DCF2 hardware interpolates all the FPs for an 8×8 PU

in 147 CCs.

47

Aₓ ₂

Aₓ ₂ -Aₓ

Aₓ

+ -+

Aₓ ₁

-Aₓ ₁ +Aₓ

+ -+

<< 1

+

-2Aₓ ₂ -Aₓ ₂ +2Aₓ +Aₓ

x (-1)

<< 1

+

-2Aₓ ₁ -Aₓ ₁ +2Aₓ +Aₓ

Figure 3.7 Common sub-expression datapaths in DCF2 hardware.

3.6 Comparison of Number of Adders

Table 3.8 shows the number of adders used in the proposed HFI and VFI

hardware and the best HFI and VFI hardware in the literature.

Table 3.8 Number of Adders in HFI and VFI Hardware

 Number of Adders Reduction

HFI
Kalali and Hamzaoglu [30] 176 -

Proposed HEVC FI 142 19.3%

Exact VFI
Mert et al. [29] 633 -

Proposed Exact VVC FI 582 8.0%

Approximate VFI

Mahdavi et al. MCMF1 [18] 341 -

Proposed DCF1 260 23.7%

Mahdavi et al. MCMF2 [18] 158 -

Proposed DCF2 138 12.6%

The proposed HFI hardware uses 54 adders to calculate common sub-

expressions as shown in Table 3.1. It uses 8 adders to calculate the 8 sub-expressions

that are not common in the FIR filters such as “-A-1,0 -A2,0” in (3.10), and it uses 80

adders in adder trees. Hence, it uses 142 adders. HFI hardware proposed by Kalali and

Hamzaoglu [30] uses 176 adders. Hence, the proposed HFI hardware uses 19.3% less

adders than the one proposed by Kalali and Hamzaoglu [30].

In the proposed VFI hardware, to interpolate 8×15 FPs, in addition to the 94

adders used to calculate common sub-expressions shown in Table 3.3, 8×61 = 488

adders are used in adder trees. Hence, it uses 94 + 488 = 582 adders. The VFI hardware

proposed by Mert et al. [29] uses 633 adders; 69 adders in MCM blocks, 34 adders for

realizing the common sub-expressions, 42 adders for common offsets, and 488 adders

48

for adder trees. Hence, the proposed VFI hardware uses 8% less adders than the one

proposed by Mert et al. [29].

DCF1 hardware uses 68 adders to calculate common sub-expressions as shown

in Table 3.5. To interpolate 15 FPs, 24 adders are used in adder trees for calculating

offsets and FIR filters. Hence, to interpolate 8×15 FPs, DCF1 hardware uses 68 + 8×24

= 260 adders. The MCMF1 hardware proposed by Mahdavi et al. [18] uses 341 adders;

38 adders in MCM blocks, 62 adders for common sub-expressions, 33 adders to

calculate the offsets, and 208 adders in adder trees. Hence, DCF1 uses 23.7% less

adders than MCMF1.

DCF2 hardware uses 34 adders to calculate common sub-expressions as shown

in Table 3.7. To interpolate 15 FPs, 13 adders are used in adder trees for calculating

offsets and FIR filters. Hence, to interpolate 8×15 FPs, DCF2 hardware uses 34 + 8×13

= 138 adders. The MCMF2 hardware proposed by Mahdavi et al. [18] uses 158 adders;

11 adders in MCM blocks, 42 adders for common sub-expressions, 33 adders to

calculate the offsets, and 72 adders in adder trees. Hence, DCF2 uses 12.6% less adders

than MCMF2.

3.7 Implementation Results

All the proposed HFI and VFI hardware are implemented using Verilog HDL. In

this thesis, original HFI hardware and VFI hardware are also designed using adders and

shifters for comparison, and they are implemented using Verilog HDL. Verilog RTL

codes of all the proposed and original FI hardware are synthesized, placed and routed to

a 28 nm FPGA. To have a fair comparison, Verilog RTL codes of the hardware

proposed by Kalali and Hamzaoglu [30], Mert et al. [38], Mert et al. [29], and Mahdavi

et al. [18] are synthesized, placed and routed to the same 28 nm FPGA. The FPGA

implementations are verified with post place and route simulations.

The implementation results of HFI hardware are shown in Table 3.9. The power

consumption results are shown in Table 3.9 and Table 3.10. The results shown as “---”

have not been reported in the corresponding papers. The proposed HFI hardware has

less area and less power consumption than the HFI hardware in the literature.

The proposed HFI hardware has higher performance than the manual HFI

hardware implementations proposed in [25], [28], [29], [32], and [38]. Although the

HFI HLS implementation proposed by Lung and Shen [29] and Sjövall et al. [39] have

49

higher performance than the proposed HFI hardware, they use more than 10 times

LUTs.

Table 3.9 Implementation Results of HEVC FI Hardware

Original

Hardware
[30] [31] [32] [33] [38] [39]

Proposed

HEVC

FI

FPGA (nm) 40 28 65 40 65 28 40 28

Slices 1669 1349 --- --- --- 1370 --- 1196

FFs 3448 3892 --- --- 2550 3909 --- 3747

LUTs 4110 2863 28486 26944 5017 3345 27100 2510

36K BRAM 3 3 --- --- 2 3.5 --- 3

Max. Freq.

(MHz)
200 230 120 200 283 244 313 323

fps
30

QFHD

36

QFHD

60

FHD

30

2560×1600

37

QFHD

99

QFHD

50

QFHD

Throughput

(M FPs/Second)
3840 4478 18720 1866 1843 4603 12317 6220

Power (mW) 152 196 --- 171 89 210 --- 83

Table 3.10 Power Consumption of HEVC FI Hardware (mW)

 [30] [38] Proposed

Video T K T K T K

Clock 11 11 9 9 11 11

Signal 143 226 144 225 35 51

Logic 26 39 25 37 21 31

BRAM 16 16 32 33 16 16

Total 196 292 210 304 83 109

The Verilog RTL code of the proposed HFI hardware is also synthesized using

90 nm standard cell library. The gate count of the resulting ASIC implementation is

calculated as 52278, including on-chip memories, based on a 2-input NAND gate area.

The power consumption result is reported by the synthesis tool. Table 3.11 shows the

ASIC implementation results of HFI hardware. The proposed HFI hardware is more

efficient than the existing HFI hardware.

Table 3.11 ASIC Implementation Results of HEVC FI Hardware

 [32] [30] [38]
Proposed

HEVC FI

Technology (nm) 90 90 90 90

Gate Count 265458 55738 57457 52278

Max. Freq. (MHz) 400 120 117 153

fps (Frames/Second) 30 QFHD 74 FHD 72 FHD 94 FHD

Throughput (M FPs/Second) 3732 2301 2239 2936

Power Consumption (mW) 30.2 20.5 21.6 23.1

50

The implementation and power consumption results of VFI hardware on the

same 28 nm FPGA are shown in Table 3.12 and Table 3.13, respectively. Power

consumptions of all FPGA implementations are estimated using a gate level power

estimation tool for 1 frame of 1920×1080 Tennis (T) video and 1920×1080 Kimono (K)

video at 100 MHz [35].

Table 3.12 Implementation Results of VVC FI Hardware

Original

Hardware
[29] [22]

Proposed

VVC FI

MCMF1

[18]

Proposed

DCF1

MCMF2

[18]

Proposed

DCF2

Exact (E)

/Approx. (A)
E E E E A A A A

Slices 5205 3121 15319 2970 2047 1934 2001 1851

FFs 6408 3589 37450 4167 3394 3089 2326 2272

LUTs 16334 10731 39047 9951 7112 6467 6725 6493

36K BRAM 30 30 30 30 30 30 26 26

Freq. (MHz) 208 219 150 230 237.5 237.5 246.9 249.3

Clock

Cycles

(8×8 PU)

147 147 74 147 147 147 147 147

fps
43

FHD

46

FHD

62

FHD

48

FHD

49

FHD

49

FHD

51

FHD

52

FHD

Throughput

(M FPs/Sec)
23092 24323 32783 25380 25909 25909 26967 27495

Table 3.13 Power Consumption of VVC FI Hardware (mW)

 [29]
Proposed

VFI

MCMF1

[18]

Proposed

DCF1

MCMF2

[18]

Proposed

DCF2

Video T K T K T K T K T K T K

Clock 25 25 27 27 22 22 20 20 17 16 17 17

Signal 172 238 174 238 60 83 53 73 65 87 59 76

Logic 203 288 185 253 58 82 48 65 56 77 47 62

BRAM 137 138 137 138 134 138 134 138 111 114 111 114

Total 537 689 523 656 274 325 255 296 249 294 234 269

The proposed exact VFI hardware has higher performance, less area, and up to

4.78% less power consumption than the best exact manual VFI hardware proposed by

Mert et al. [29]. Although the VFI HLS implementation proposed by Hamzaoglu et al.

[22] has higher performance than the proposed VFI hardware, its area is 4 times larger.

The proposed approximate VFI hardware DCF1 and DCF2 have the same

performance, less area, and up to 8.92% and 8.50% less power consumption than the

approximate VFI hardware MCMF1 and MCMF2 proposed by Mahdavi et al. [18],

respectively. The rate-distortion performance of DCF1 hardware and DCF2 hardware

are the same as the rate-distortion performance of MCMF1 hardware and MCMF2

hardware, respectively.

51

4 CHAPTER IV

A NOVEL APPROXIMATE HIGH EFFICIENCY VIDEO CODING DCT

HARDWARE

Both the HEVC and H.264 standards use discrete cosine transform (DCT) /

inverse discrete cosine transform (IDCT). H.264 standard utilizes only 4×4 and 8×8

transform unit (TU) sizes for DCT/IDCT. HEVC standard utilizes 4×4, 8×8, 16×16, and

32×32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy compaction.

However, they exponentially increase computational complexity. Moreover, HEVC

standard exploits discrete sine transform (DST) / inverse discrete sine transform (IDST)

for 4×4 intra prediction in particular cases.

DCT and DST have high computational complexity. DCT and DST account for

11% of the computational complexity of an HEVC video encoder. They account for

25% of the computational complexity of an all intra HEVC video encoder.

Approximate computing enables designing faster, smaller area and lower power

consuming hardware compared to accurate hardware by trading off speed, area, and

power consumption with quality [18], [40]-[44]. Hence, it is used for error tolerant

applications with high computational complexity. Various approximate circuits are

proposed in the literature [45]-[49]. Several approximate adders and multipliers are also

proposed in the literature [21], [50]-[52].

This chapter of the thesis is an extended version of [21], where a new

approximate constant multiplication technique is proposed to implement the constant

52

multiplication in HEVC DCT. In [21], all the multiplications in HEVC DCT are

implemented by using the proposed approximate constant multiplication hardware. In

this thesis, the approximate constant multiplication is used for multiplication with only

the DCT coefficients which do not cause high average percentage error. In the proposed

approximate HEVC DCT hardware, there are some common constant multiplications

that are calculated once and their results are used in multiple DCT equations. Hcub

multiplierless constant multiplication (MCM) technique [26] is utilized to implement

constant multiplications in the proposed hardware.

Two instances of one dimensional (1D) DCT are used in [53] to explore the 2D

DCT using its separability property for proposing a low-cost and high-throughput

HEVC 16×16 2D DCT hardware. The variable-size HEVC 2D DCT hardware proposed

in [54] allows multiple DCT sizes to share and reuse hardware resources. The HEVC

2D DCT hardware proposed in [55] uses the maximum circuit reuse during

computation. In [56], a new CORDIC-based DCT hardware is proposed using matrix

decomposition, resource sharing and merging.

In [12], a computation and energy reduction technique for HEVC DCT and a

low energy HEVC 2D DCT hardware are proposed. This technique decreases the

computational complexity of HEVC DCT at the cost of a reduction in peak-signal-to-

noise-ratio (PSNR) and increase in bitrate by calculating only some of the pre-

determined low frequency coefficients of TUs and assuming that the rest are zero.

Several approximate HEVC DCT hardware are proposed in the literature [57]-

[59], [14]. In [57], multiplierless 4-point DCT implementations are proposed to be used

in an approximate HEVC DCT hardware. These implementations include approximate

adders and subtractors which are made using cartesian genetic programming. In [58], a

flexible HEVC 2D DCT implementation is proposed, which can calculate 4 distinct

approximations ranging from the complete DCT to the Walsh-Hadamard transform.

This is done by selectively skipping some rotations. In [59], an 8×8 orthogonal

approximation of HEVC DCT is proposed and used to obtain approximate transforms

for other TU sizes. This approximation method exploits the neighboring pixels

correlation in images such that the odd basis vectors of the DCT kernel are quantized by

considering their signs and positions rather than their values. In [14], an algorithm to

compute the necessary minimum number of low-frequency DCT-output/IDCT-input

coefficients for 4, 8, 16, and 32-point DCT/IDCT in HEVC is proposed. It causes a

slight reduction in PSNR and increase in bitrate. A flexible transpose memory

53

architecture supporting all the HEVC TU sizes and an efficient 2D DCT/IDCT

hardware are proposed in [14].

4.1 Approximate Constant Multiplier and Approximate HEVC DCT Hardware

[21]

An approximate constant multiplication technique is proposed in [21]. It

achieves reduction in complexity of constant multiplication by manipulating variable

multiplicand and constant multiplier. The constant multiplication is converted to a

multiplication with a smaller constant, concatenation, and constant shift operation.

Multiplication of an m bit variable M with n bit constant N is shown in equation

(4.1). Constant multiplier (N) is manipulated as shown in equation (4.2). Any constant

integer N can be written as shown in (4.2). The proposed technique uses the values y

and z that minimize NN. Most significant bits (MSBs) and least significant bits (LSBs)

of variable multiplicand (M) are split as shown in equation (4.3) using the z value

obtained from equation (4.2). Then, manipulated versions of M and N are multiplied as

shown in equations (4.4)-(4.9). Equation (4.9) implements exact constant multiplication.

The symbols “×”, “«”, and “{,}” represent multiplication, left shift, and concatenation

operations, respectively.

 NMR = (4.1)

)21(2 NNN zy += (4.2)

   0:1:12 −+−= zMzmMM z (4.3)

)21(2 NNMNM zy += (4.4)

)2(2 NNMMNM zy += (4.5)

    )20:1:12(2 NNMzMzmMNM zzy +−+−= (4.6)

    )0:1):1(2(2 −+−+= zMzmMNNMNM zy (4.7)

  ()   0:1,:12 −−+= zMzmMNNMNM y (4.8)

 ()    yzMzmMNNMNM −−+= 0:1,:1 (4.9)

The manipulated exact multiplication shown in equation (4.9) requires

multiplication of variable multiplicand (M) with a constant (NN) smaller than the

54

constant multiplier (N), an addition, a concatenation, and a constant shift operation.

Addition operation in equation (4.9) is eliminated to achieve the proposed approximate

constant multiplication equation shown in equation (4.10).

 ()    yzMNNMNM −= 0:1, (4.10)

Concatenation and constant shift operations use no hardware resources. So, the

proposed approximate technique decreases multiplication with constant N to

multiplication with a smaller constant NN. Computational complexity reduction

depends on the values of constants N and NN. In the best case, NN is 1 and constant

multiplication is removed. In the worst case, NN is one bit smaller than N.

Figure 4.1 shows three examples of approximate constant multiplication. These

examples illustrate that constant NN is much smaller than constant N. Hence, the

proposed approximation technique decreases bit length of constant multiplication. It

also eliminates addition operation. In the example M×80, because NN is 1, constant

multiplication is also eliminated. Thus, approximate constant multiplication hardware

implementing the proposed approximation technique performs M×80 without using any

hardware resources.

13 = 2⁰ × (1 + 2² × 3)

M × 13 = {(M × 3), M[1:0]} << 0

R = M × 13
Constant

Multiplication

Constant

Manipulation

Approximate

Multiplication

Requires (m × 4)

bits mult iplier

Requires (m × 2)

bits mult iplier

Exact

Multiplication
M × 13 = {(M × 3 + M[m-1:2])

 , M[1:0]} << 0

38 = 2¹ × (1 + 2¹ × 9)

M × 38 = {(M × 9), M[0:0]} << 1

R = M × 38

Requires (m × 6)

bits mult iplier

Requires (m × 4)

bits multiplier

M × 38 = {(M × 9 + M[m-1:1])

 , M[0:0]} << 1

80 = 2⁴ × (1 + 2² × 1)

M × 80 = {(M × 1), M[1:0]} << 4

R = M × 80

Requires (m × 7)

bits mult iplier

Does not Require

any multiplier

M × 80 = {(M × 1 + M[m-1:2])

 , M[1:0]} << 4

Figure 4.1 Examples of approximate constant multiplication

Figure 4.2 shows the approximate constant multiplication hardware proposed in

[21]. The symbols “m” and “nn” denote bit lengths of input variable (M) and

manipulated constant (NN), respectively. Because NN is always smaller than N, the

proposed approximation technique decreases area and increases performance of

constant multiplication hardware.

55

×

M×NN M[z-1:0]

NN

M

M[z-1:0]

m×nn bits mult.

<< y

Figure 4.2 Approximate constant multiplication hardware proposed in [21]

The proposed approximate constant multiplication requires pre-determined

constant multiplication, concatenation, and constant shift operations. These operations

are different for each constant N. They should be determined for implementation of the

datapath required for performing the approximate constant multiplication.

A python based datapath generator is used to determine constant multiplication,

concatenation, and constant shift operations for an input variable and constants. If a

constant is a power of 2, a constant shift operation is used to implement this constant

multiplication. If a constant is a power of 2 multiple of another constant, this constant

multiplication is also implemented with only a constant shift operation. The proposed

approximate constant multiplication technique is used to implement the rest of constant

multiplications.

HEVC uses DCT-II for transform operations. It uses 4×4, 8×8, 16×16, and

32×32 TU sizes. HEVC performs two-dimensional (2D) transform operation by

applying 1D transforms in vertical and horizontal directions. The coefficients in HEVC

1D transform matrices are derived from DCT basis functions. However, integer

coefficients are used for simplicity. The HEVC DCT algorithm includes 29 different

constant multiplication operations. As an example, equation (4.11) shows the 4×4 DCT

matrix used in HEVC.

 𝐷𝐶𝑇_4 × 4𝐻𝐸𝑉𝐶 = [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

] (4.11)

Table 4.1 shows 29 different constants (N values) used in HEVC 2D DCT

matrices. NN, y, and z values are determined to manipulate these constants as in

equation (4.2). The corresponding approximate constant multiplication equations in the

form of equation (4.10) are also shown in Table 4.1.

56

In Table 4.1, M is input variable and m is its bit length. Multiplications with

constants 4 and 64 are exactly implemented using constant shift operations.

Multiplication with an identical constant in the approximate constant multiplication

equations is implemented once and the result is used in all equations. As an example,

multiplication with 3 is implemented once whose result is used for multiplications with

constants 13, 25, and 50.

Table 4.1 Approximate Constant Multiplication

N

Size of Exact

Multiplication

(bits)

NN

Size of

Approximate

Multiplication

(bits)

y z Approximate Multiplication

4 - - - - - M << 2

9 m × 4 1 - 0 3 {M, M[2:0]}

13 m × 4 3 m × 2 0 2 {(M × 3), M[1:0]}

18 m × 5 1 - 1 3 {M, M[2:0]} << 1

22 m × 5 5 m × 3 1 1 {(M × 5), M[0:0]} << 1

25 m × 5 3 m × 2 0 3 {(M × 3), M[2:0]}

31 m × 5 15 m × 4 0 1 {(M × 15), M[0:0]}

36 m × 6 1 - 2 3 {M, M[2:0]} << 2

38 m × 6 9 m × 4 1 1 {(M × 9), M[0:0]} << 1

43 m × 6 21 m × 5 0 1 {(M × 21), M[0:0]}

46 m × 6 11 m × 4 1 1 {(M × 11), M[0:0]} << 1

50 m × 6 3 m × 2 1 3 {(M × 3), M[2:0]} << 1

54 m × 6 13 m × 4 1 1 {(M × 13), M[0:0]} << 1

57 m × 6 7 m × 3 0 3 {(M × 7), M[2:0]}

61 m × 6 15 m × 4 0 2 {(M × 15), M[1:0]}

64 - - - - - M << 6

67 m × 7 33 m × 6 0 1 {(M × 33), M[0:0]}

70 m × 7 17 m × 5 1 1 {(M × 17), M[0:0]} << 1

73 m × 7 9 m × 4 0 3 {(M × 9), M[2:0]}

75 m × 7 37 m × 6 0 1 {(M × 37), M[0:0]}

78 m × 7 19 m × 5 1 1 {(M × 19), M[0:0]} << 1

80 m × 7 1 - 4 2 {M, M[1:0]} << 4

82 m × 7 5 m × 3 1 3 {(M × 5), M[2:0]} << 1

83 m × 7 41 m × 6 0 1 {(M × 41), M[0:0]}

85 m × 7 21 m × 5 0 2 {(M × 21), M[1:0]}

87 m × 7 43 m × 6 0 1 {(M × 43), M[0:0]}

88 m × 7 5 m × 3 3 1 {(M × 5), M[0:0]} << 3

89 m × 7 11 m × 4 0 3 {(M × 11), M[2:0]}

90 m × 7 11 m × 4 1 2 {(M × 11), M[1:0]} << 1

Figure 4.3 shows the HEVC 2D DCT hardware presented in [12], which is

selected to apply the proposed approximate constant multiplication technique. In [21],

57

all the 29 different constant multiplication operations used in HEVC 2D DCT are

implemented using the proposed approximate constant multiplication technique

regardless of their average percentage error.

FO
R

W
A

R
D

 T
R

A
N

SF
O

R
M

 I
N

P
U

T
SP

LI
TT

ER 4x4 C. D.

4x4 C. D.

8x8 COLUMN
DATAPATH

16x16 COLUMN
DATAPATH

C
O

LU
M

N
 C

LI
P

TRANSPOSE
MEMORY

O
U

T
P

U
T

 M
EM

O
R

Y

3
2

X
3

2
 B

U
T

T
E

R
FL

Y

1
6

X
1

6
 B

U
T

T
E

R
FL

Y
R

E
G

IS
T

E
R

S

R
E

G
.

R
.

O
U

T
P

U
T

 M
U

LT
IP

LE
X

E
R

4x4 R. D.

4x4 R. D.

8x8 ROW
DATAPATH

16x16 ROW
DATAPATH

R
O

W
 C

LI
P

3
2

X
3

2
 B

U
T

T
E

R
FL

Y

1
6

X
1

6
 B

U
T

T
E

R
FL

Y
R

E
G

IS
T

E
R

S

R
E

G
.

R
.

O
U

T
P

U
T

 M
U

LT
IP

LE
X

E
R

8
X

8
 B

.

8
x8

 B
.

Figure 4.3 HEVC 2D DCT hardware [12]

Error produced by the proposed approximate constant multiplier is different for

each constant. Errors produced for the constants used in HEVC 2D DCT are calculated

as follows. Equations (4.12)-(4.14) show the calculation of average percentage error for

a constant N. Input variable bit length is taken as eight bits. The constant is multiplied

with all possible values of the input variable, i.e., 0 to 255, using both the exact

multiplier and the proposed approximate constant multiplier. Error for the input variable

value k (Ek) is obtained by calculating the absolute difference between the exact

multiplication result and the approximate multiplication result as shown in equation

(4.12). Equation (4.13) shows the percentage error calculation for the input variable

value k (PEk). Average percentage error for the constant N is obtained by calculating

average of percentage errors for all possible values of input variable, i.e., 0 to 255, as

shown in equation (4.14).

58

)()(kCapprkCexactEk −= (4.12)

 100
)(



=

kCexact

E
PE k

k
 (4.13)

256

255

0


== k

kPE

errorpercentageaverage (4.14)

Figure 4.4 shows the average percentage errors for the constants used in HEVC

2D DCT proposed in [21]. The proposed approximate constant multiplier causes very

small errors for most of the constants.

Figure 4.4 Average percentage error (%) for the constants [21]

Figure 4.5 Average percentage error (%) for the constants in the proposed hardware.

4.2 Proposed Approximate HEVC DCT

In the proposed approximate HEVC DCT, to decrease quality loss, the

approximate constant multiplication technique, proposed in [21], is applied only to the

constant multiplications that do not cause high average percentage error. So,

multiplications with N = 9, 18, 36, 80 are performed using exact constant

multiplication.

59

Some of the constant multiplications are performed once and their results are

used in different equations so that the number of multiplications is reduced. Also, more

common constant multiplications are calculated without any approximation, resulting in

further reduction in quality loss. For example, there is no need for an approximate

calculation of M×43 because 43 is also used as NN for M×87. Therefore, instead of

using approximate constant multiplication, M×43 is performed using exact constant

multiplication, and its result is also used in approximate calculation of M×87.

M×13 is performed using exact constant multiplication and its result is also used

in the approximate calculation of M×54 whose NN is 13. M×19 is performed using

exact constant multiplication. Its result is shifted one bit to the left to obtain M×38 and

used in the approximate calculation of M×78 whose NN is 19. M×11 is performed using

exact constant multiplication and its result is shifted one bit and three bits to the left to

obtain M×22 and M×88, respectively. It is also used in the approximate calculation of

M×46 whose NN is 11.

Table 4.2 shows the 29 different constants (N values) used in HEVC 2D DCT

matrices. The type of multiplication performed for each constant in the proposed HEVC

2D DCT is given in the table. For the approximate multiplications, NN, y, and z values

are determined as shown in equation (4.2) to manipulate the constants. These values and

the corresponding approximate constant multiplication equations in the form of

equation (4.10) are also shown in Table 4.2. In the table, M is the input variable.

Figure 4.5 shows the average percentage errors for the constants used in the

proposed HEVC 2D DCT. The proposed HEVC 2D DCT hardware performs both

approximate and exact multiplications. Therefore, it has much less average percentage

errors than the approximate constant multiplications in [21].

The proposed constant multiplications are integrated into DCT operations

performed by HEVC HM reference software encoder 15.0 [24]. Their impact on rate-

distortion performance is determined for several videos [35]. Their first 10 frames are

coded with all intra configuration and quantization parameters (QP) 22, 27, 32, 37 using

HEVC HM 15.0 [24] with and without the proposed constant multiplications.

The BD-Rate and BD-PSNR values [60] for the HEVC DCT hardware proposed

in [12], [21], and the proposed approximate HEVC DCT are given in Table 4.3. The

proposed approximate HEVC DCT reduces the computational complexity at the cost of

slight reduction in PSNR and slight increase in bitrate, but it has much better rate-

distortion performance than the HEVC DCT hardware proposed [12] and [21].

60

Table 4.2 Constant Multiplications Used in the Proposed Hardware

N
Type of Multiplication

(Exact/ Approximate)
NN y z Approximate Multiplication

4 Exact - - - -

9 Exact - - - -

13 Exact - - - -

18 Exact - - - -

22 Exact - - - -

25 Approximate 3 0 3 {(M × 3), M[2:0]}

31 Approximate 15 0 1 {(M × 15), M[0:0]}

36 Exact - - - -

38 Exact - - - -

43 Exact - - - -

46 Approximate 11 1 1 {(M × 11), M[0:0]} << 1

50 Approximate 3 1 3 {(M × 3), M[2:0]} << 1

54 Approximate 13 1 1 {(M × 13), M[0:0]} << 1

57 Approximate 7 0 3 {(M × 7), M[2:0]}

61 Approximate 15 0 2 {(M × 15), M[1:0]}

64 Exact - - - -

67 Approximate 33 0 1 {(M × 33), M[0:0]}

70 Approximate 17 1 1 {(M × 17), M[0:0]} << 1

73 Approximate 9 0 3 {(M × 9), M[2:0]}

75 Approximate 37 0 1 {(M × 37), M[0:0]}

78 Approximate 19 1 1 {(M × 19), M[0:0]} << 1

80 Exact - - - -

82 Approximate 5 1 3 {(M × 5), M[2:0]} << 1

83 Approximate 41 0 1 {(M × 41), M[0:0]}

85 Approximate 21 0 2 {(M × 21), M[1:0]}

87 Approximate 43 0 1 {(M × 43), M[0:0]}

88 Exact - - - -

89 Approximate 11 0 3 {(M × 11), M[2:0]}

90 Approximate 11 1 2 {(M × 11), M[1:0]} << 1

The proposed approximate HEVC 2D DCT hardware is implemented using the

HEVC 2D DCT hardware architecture proposed in [12]. Each HEVC 1D DCT includes

two different 4×4 datapaths, an 8×8 datapath, and a 16×16 datapath. These datapaths

support 4×4, 8×8, 16×16, and 32×32 TUs. In the proposed hardware, each datapath first

calculates the exact constant multiplications and the results are used either directly or as

NN multiplication results to obtain approximate constant multiplications. The exact

constant multiplications used in the proposed approximate HEVC 2D DCT hardware

are implemented using Hcub multiplierless constant multiplication (MCM) technique

[26].

61

Table 4.3 BD-Rate and BD-PSNR Results

 [12] [21] Proposed

Video
BD-Rate

(%)

BD-PSNR

(dB)

BD-Rate

(%)

BD-PSNR

(dB)

BD-Rate

(%)

BD-PSNR

(dB)

2560×1600 People on Street 1.89 -0.10 2.37 -0.13 0.96 -0.05

2560×1600 Traffic 1.76 -0.09 2.64 -0.14 0.94 -0.05

1920×1080 Tennis 2.32 -0.06 3.15 -0.09 0.75 -0.02

1920×1080 Basketball Drive 4.06 -0.13 1.86 -0.04 0.31 -0.008

1920×1080 Park Scene 2.52 -0.10 2.12 -0.09 0.69 -0.029

1280×720 Vidyo1 2.09 -0.09 1.99 -0.09 0.58 -0.029

1280×720 Vidyo4 2.85 -0.12 1.91 -0.08 0.55 -0.02

1280×720 Kristen and Sara 2.25 -0.11 1.71 -0.08 0.72 -0.03

832×480 Party Scene 0.61 -0.05 0.20 -0.01 0.17 -0.01

832×480 Race Horses 1.58 -0.10 1.01 -0.06 0.36 -0.02

832×480 Basketball Drill 0.44 -0.02 0.56 -0.02 0.08 -0.003

Average 2.03 -0.08 1.77 -0.07 0.55 -0.02

In the first 4×4 datapath, three constant multiplications with 36, 83, and 64 are

performed. M×64 is implemented exactly by constant shift operations. M×36 is

implemented using exact constant multiplication since its approximate multiplication

generates high average error. M×83 is approximately calculated using M×41 as shown

in Table 4.2. Figure 4.6 shows the implementation of the exact constant multiplications

M×36 and M×41 in the proposed first 4×4 datapath using MCM technique.

M

+

<< 3 << 5

M×41

+
<< 2

M×36

<< 6

M×64

Figure 4.6 Exact multiplications required in the proposed first 4×4 datapath

In the second 4×4 datapath, four constant multiplications with 18, 50, 75, and 89

are performed. In the proposed datapath, M×18 is implemented using exact

multiplication since its approximate multiplication generates high average error. M×50,

M×75, and M×89 are approximately calculated using M×3, M×37, and M×11,

respectively, as shown in Table 4.2. Figure 4.7 shows the implementation of the exact

constant multiplications M×18, M×3, M×37, M×11 in the proposed second 4×4

datapath using MCM technique.

62

M

+

<< 2 << 3

M×11

+

-+

M×3

+

M×18

<< 1

+

M×37

<< 2

Figure 4.7 Exact multiplications required in the proposed second 4×4 datapath

In the 8×8 datapath, eight constant multiplications with 9, 25, 43, 57, 70, 80, 87,

and 90 are performed. In the proposed datapath, M×9 and M×80 are implemented using

exact constant multiplications since their approximate multiplications generate high

average error. M×43 is also implemented using exact constant multiplication because its

exact result is required in the approximate calculation of M×87. M×25, M×57, M×70,

M×87, and M×90 are approximately calculated using M×3, M×7, M×17, M×43, and

M×11, respectively, as shown in Table 4.2. Figure 4.8 shows the implementation of the

exact constant multiplications M×9, M×80, M×43, M×3, M×7, M×11, and M×17 in the

proposed 8×8 datapath using MCM technique.

M

+

<< 2

-+

M×3

<< 3

M×11

+

+

<< 4

-+

M×43

+

<< 2

<< 4

M×80

+

<< 3

M×9

+

M×7

- +

M×17

+

<< 4

Figure 4.8 Exact multiplications required in the proposed 8×8 datapath

In the 16×16 datapath, 15 constant multiplications with 4, 13, 22, 31, 38, 46, 54,

61, 67, 73, 78, 82, 85, 88, and 90 are performed. M×4 is implemented exactly by

constant shift operations. In the proposed datapath, M×13, M×22, M×38, and M×88 are

implemented using exact constant multiplications, because their approximate

multiplications generate high average error and the shifted values of their exact results

63

are required in approximate calculations of other constant multiplications. M×38 is

obtained by one-bit shift to the left of M×19 result which is exactly calculated for

approximate calculation of M×78. M×22 and M×88 are respectively obtained by one-bit

and three-bit shifts to the left of the M×11 result which is exactly calculated for

approximate calculations of M×46 and M×90. The exact result of M×13 is required in

the approximate calculation of M×54. M×31, M×46, M×54, M×61, M×67, M×73,

M×78, M×82, M×85, and M×90 are approximately calculated using M×15, M×11,

M×13, M×15, M×33, M×9, M×19, M×5, M×21, and M×11, respectively, as shown in

Table 4.2. Figure 4.9 shows the implementation of the exact constant multiplications

M×13, M×22, M×38, M×88, M×5, M×9, M×11, M×15, M×19, M×21, and M×33 in the

proposed 16×16 datapath using MCM algorithm.

M

+

<< 3

- +

M×9

+

M×15

<< 4

+

<< 2

M×5

+

<< 2

M×19

+ -

+

M×21

+

M×11

+ -

<< 3

+

M×13

M×33

+

<< 5

<< 1

M×38

<< 3

M×88

<< 1

M×22

M×4

Figure 4.9 Exact multiplications required in the proposed 16×16 datapath

4.3 Implementation Results

We implemented 5 different HEVC 2D DCT hardware using the HEVC 2D

DCT hardware architecture proposed in [12]. The only difference between them is the

multipliers used to implement constant multiplications in HEVC DCT. The first

hardware (Orig_Mult) uses exact multipliers. The second hardware (Orig_MCM)

performs the multiplications exactly using the MCM algorithm. The third hardware uses

the approximate constant multipliers proposed in [21]. The fourth hardware (21_MCM)

uses the MCM algorithm to implement the approximate constant multipliers proposed

64

in [21]. The fifth hardware, our proposed hardware, uses MCM algorithm to implement

the proposed constant multiplications shown in Table 4.2.

All these HEVC DCT hardware support 4×4, 8×8, 16×16, and 32×32 TUs. They

perform 2D DCT in the same number of clock cycles. They perform 2D DCT by first

applying 1D DCT on the columns of a TU, and then applying 1D DCT on the rows of

the TU. Transpose memory is used for storing the coefficients of 1D column DCT.

These stored coefficients are used as inputs for 1D row DCT.

All HEVC DCT hardware are implemented using Verilog HDL. Verilog RTL

codes are implemented to a 28 nm FPGA. FPGA implementations are verified with post

implementation timing simulations. Post place and route simulation results matched the

results of HEVC DCT software implementation. Table 4.4 shows the FPGA

implementation results.

The proposed approximate HEVC 2D DCT hardware has higher performance,

less LUTs, less DFFs, less Slices, and no DSP block, compared to the approximate

HEVC 2D DCT hardware proposed in [21]. To make a fair comparison, we compared

the proposed hardware with the fourth hardware (21_MCM) using MCM algorithm to

implement the approximate constant multipliers proposed in [21]. As it can be seen in

Table 4.4, the proposed hardware has higher performance and less area than the

21_MCM hardware.

Power consumptions of all HEVC DCT hardware are estimated using Xilinx

Vivado 2020.1 for transforming six 4×4 TUs, four 8×8 TUs, four 16×16 TUs, five

32×32 TUs. To estimate power consumption of an FPGA implementation, timing

simulation of its placed and routed netlist is done at 25 MHz using Mentor Graphics

QuestaSim. Switching activities in this timing simulation are stored in a switching

activity interchange format (SAIF) file. This SAIF file is used by Vivado 2020.1 to

estimate power consumption of the FPGA implementation. Table 4.5 shows the power

consumption results. The proposed hardware has less power consumption than the one

in [21].

The comparison of the proposed approximate HEVC 2D DCT hardware with the

exact and approximate HEVC DCT hardware in the literature is shown in Table 4.6.

The results shown as “---” have not been reported in the corresponding papers. [57] and

[58] are excluded in the comparison because they have not reported FPGA

implementation results. In [54] and [55], throughput values are reported as 361

Mpixels/sec and 52 Mpixels/sec, respectively, which are equivalent with 43 and 6 Quad

65

Full HD (QFHD) frames per second. The proposed approximate HEVC 2D DCT

hardware is faster and has less area than the HEVC 2D DCT hardware in the literature.

The proposed approximate hardware, in the worst case, can process 76 QFHD

(3840×2160) frames per second.

Table 4.4 FPGA Implementation Comparison

 Orig_Mult Orig_MCM [21] 21_MCM Proposed

FPGA 28 nm 28 nm 28 nm 28 nm 28 nm

LUT 28050 32203 27887 27426 27294

DFF 11652 11695 11702 11682 11667

Slice 8397 9058 8163 7755 7746

BRAM 32 32 32 32 32

DSP Block 368 0 108 0 0

Frequency (MHz) 148.3 158.2 156.7 158.2 158.7

Table 4.5 Power Consumption Comparison

 Orig_Mult Orig_MCM [21] 21_MCM Proposed

Clock (mW) 19 16 18 16 17

Signal (mW) 254 362 248 267 266

Logic (mW) 227 340 229 235 246

BRAM (mW) 25 25 25 25 25

DSP (mW) 176 0 48 0 0

Total (mW) 701 743 568 543 554

Table 4.6 Comparison with HEVC DCT Hardware

 [53] [54] [55] [12] [59] [14] [21] Proposed

Approximate(A)

/ Exact (E)
E E E A A A A A

Transform 2D

DCT

2D DCT 2D DCT 2D DCT 1D DCT 2D

DCT/IDCT

2D DCT 2D DCT

TU Size 16 4,8,16,32 4,8,16,32 4,8,16,32 32 4,8,16,32 4,8,16,32 4,8,16,32

FPGA 65 nm 28 nm 65 nm 40 nm 45 nm 40 nm 28 nm 28 nm

LUT 16002 5.6 K 54305 35555 1776 30701 27887 27294

DFF --- --- 15607 11230 --- 10965 11702 11667

Slice --- --- --- 10080 --- 8924 8163 7746

BRAM --- --- --- 32 --- 16 32 32

DSP Block --- 128 384 0 --- 0 108 0

Frequency (MHz) 27 177 90 100 --- 104 156 158

fps
35

QFHD

43

QFHD

6

QFHD

48

QFHD
--- ---

75

QFHD

76

QFHD

66

5 CHAPTER V

FPGA IMPLEMENTATION OF VIDEO COMPRESSION ALGORITHMS

USING HIGH-LEVEL SYNTHESIS

High-level synthesis (HLS) is used to increase productivity [61], [62]. HLS tool

takes the behavioral description of the application, such as C++ code, and automatically

generates an RTL description [63]-[65].

We propose the first FPGA implementations of VVC FI algorithm using an HLS

tool in the literature. In this thesis, we also propose the first FPGA implementations of

HEVC fractional motion estimation (FME) algorithm using an HLS tool in the

literature. We also propose novel FPGA implementations of HEVC two-dimensional

(2D) discrete cosine transform (DCT) algorithm using an HLS tool.

As the first VVC FI HLS implementations [22], three different C++ codes are

developed based on the VVC test model software encoder (VTM) [23]. In these C++

codes, called VVC-FI-MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-HLS,

constant multiplications are implemented with multiplication operations, addition and

shift operations, and Hcub multiplierless constant multiplication (MCM) algorithm [26],

respectively.

As the first HEVC FME HLS implementations, two different C++ codes are

developed based on the HEVC reference software encoder (HM) [24]. In these C++

codes, called HEVC-FME-MUL-HLS and HEVC-FME-DC-HLS, constant

67

multiplications are implemented with multiplication operations and decomposed

coefficients technique [20], respectively.

As novel HEVC 2D DCT HLS implementations, two different C++ codes are

developed based on the HEVC reference software encoder (HM) [24]. In these C++

codes, called HEVC-DCT-MUL-HLS and HEVC-DCT-MCM-HLS, constant

multiplications are implemented with multiplication operations and Hcub MCM

algorithm [26], respectively.

All the C++ codes are synthesized to Verilog RTL using Xilinx Vivado HLS

tool. The Verilog RTL codes are implemented to Xilinx Virtex-7 FPGA using Xilinx

Vivado tool. The best proposed VVC FI HLS implementation can process 62 full HD

(1920×1080) video frames per second (fps). The best proposed HEVC FME HLS

implementation supports all the prediction unit (PU) sizes and can process 23 full HD

fps. The best HEVC 2D DCT HLS implementation supports all the transform unit (TU)

sizes and can process 65 full HD fps.

We proposed the first HLS implementation of VVC FI algorithm in [22]. There

is no other HLS implementation of VVC FI algorithm in the literature.

There are several HEVC FME hardware in the literature. But there is no HLS

implementation of HEVC FME algorithm in the literature. In [66], a highly parallel

HEVC FME hardware is proposed for the 8×8 PU size. In [67], an HEVC FME

hardware with a scalable search pattern is proposed. In [68], an HEVC FME hardware

is proposed using the sum of absolute differences (SAD) values of neighboring search

locations (SLs) to calculate SAD values of fractional SLs. It decreases computational

complexity at the cost of quality loss. In [69], low-power and memory-aware

approximate hardware is proposed for HEVC FME.

In [53], two instances of one-dimensional (1D) DCT are used to propose a low-

cost and high-throughput HEVC 16×16 2D DCT hardware. In [12], a computation and

energy reduction technique for HEVC 2D DCT is proposed. This technique decreases

the computational complexity of HEVC DCT at the cost of a reduction in peak-signal-

to-noise-ratio (PSNR) and increase in bitrate. In [14], an algorithm to compute the

minimum number of low-frequency DCT-output/IDCT-input coefficients in HEVC is

proposed. It causes a slight reduction in PSNR and increase in bitrate. The HEVC 2D

DCT hardware proposed in [55] uses the maximum circuit reuse during computation. In

[70], HLS implementations of HEVC 2D IDCT are proposed.

68

5.1 VVC FI HLS Implementations

Coefficients of the VVC FI FIR filters are given in Table 2.1. In the C++ code

of VVC-FI-MUL-HLS, multiplication operations are used to implement constant

multiplications. In the VVC-FI-ASH-HLS, addition and shift operations are used to

implement constant multiplications. In the VVC-FI-MCM-HLS, constant

multiplications are implemented using MCM algorithm [26]. These C++ codes are

synthesized to Verilog RTL using Xilinx Vivado HLS tool.

15×15 integer pixels are used for FI of an 8×8 prediction unit (PU). In VVC-FI-

MCM-HLS, Hcub MCM algorithm multiplies a single input with multiple constants

such that the number of adders and their bit size decrease. VVC-FI-MCM-HLS

calculates a common offset for 15 different FIR filter equations to decrease the number

of constant multiplications. It also calculates common sub-expressions in several FIR

filter equations once and uses the results in corresponding equations.

In the C++ codes, we use two functions called calculation and filter. In all the

HLS implementations VVC-FI-MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-

HLS, filter function is the same. It takes 15 rows of 15 integer pixels as inputs. A for

loop with 15 iterations is used in filter function for HHPs interpolation. Figure 5.1

shows a part of this for loop. In each iteration, the input pixels, which are later used for

VHPs interpolation, are stored into temp_ver arrays. One row of 15 integer pixels is

given to calculation function which interpolates 8×15 HHPs in parallel. In 15 iterations,

using 15 rows of 15 integer pixels, 8×15×15 HHPs are interpolated and stored into

hpa1[8], …, hpa15[8] arrays.

In filter function, there are 16 for loops with 8 iterations including one for loop

used for interpolating 8×8×15 VHPs using integer pixels, and 15 for loops used for

interpolating 8×8×225 QPs using HHPs. The QPs interpolated in each iteration are

stored into qp1[8], …, qp15[8] arrays. Memories outˍmem1[136], …, outˍmem15[136]

are used for storing all the output fractional pixels. We used a rotating addressing

scheme to store the HHPs into transpose memories trˍmem1[15], …, trˍmem15[15].

However, Xilinx Vivado HLS tool did not recognize it. So, there is no difference

between the HLS implementations with and without rotating addressing scheme.

69

Figure 5.1 Part of the C++ codes performing HHPs interpolation

Calculation function takes 15 integer pixels or 15 HHPs as inputs temp14,

temp13, …, temp0. It calculates 8 sets of 15 FIR filter (F1,…,F15) equations. Thus, 8×15

fractional pixels are interpolated in parallel. For each HLS implementations VVC-FI-

MUL-HLS, VVC-FI-ASH-HLS, and VVC-FI-MCM-HLS, calculation function is

written depending on how constant multiplications are implemented in that HLS

implementation. Part of the calculation function in C++ codes of VVC-FI-MCM-HLS

implementation, which calculates FIR filter F5 denoted as hpa5[0], is shown in Figure

5.2. The common sub-expressions and offset value shown in Figure 5.2 are calculated

only once and used for calculating other FIR filters as well.

Figure 5.2 Part of the calculation function in C++ codes of VVC-FI-MCM-HLS

70

HLS tool generates Verilog RTL code based on default behavior, constraints,

and optimization directives. We used several optimization directives to improve

performance of the proposed HLS implementations.

In the Xilinx Vivado HLS tool, a library is provided to design bit-accurate

models in C++ codes [71]. As shown in Figure 5.2, ap_uint<> bit accurate data type is

used in the proposed HLS implementations to reduce adder bit widths and therefore

hardware area.

Using array partition (APAR) directive, the large arrays are partitioned into

distinct registers to improve access to data and remove block RAM bottleneck. We

applied APAR directive to hpa1[8], …, hpa15[8], trˍmem1[15], …, trˍmem15[15],

qp1[8], …, qp15[8].

Pipeline (PIPE) directive uses pipelining which improves performance. We

apply PIPE directive to the proposed HLS implementations in two ways which are

denoted as PIPE(1) and PIPE(2). In PIPE(1), PIPE directive is applied only to the for

loops. In PIPE(2), in addition to the for loops, PIPE directive is also applied to the

calculation function.

UNROLL directive unrolls the loops so that iterations are implemented in

parallel. In the proposed HLS implementations, the for loop with 15 iterations is

unrolled 15 times and the for loops with 8 iterations are unrolled 8 times.

The Verilog RTL codes generated by Xilinx Vivado HLS tool for the C++ codes

are verified with RTL simulations. The Verilog RTL codes are implemented to Xilinx

Virtex-7 FPGA using Xilinx Vivado 2020.1. The FPGA implementations are verified

with post place and route simulations.

Table 5.1 shows FPGA implementation results of VVC-FI-MUL-HLS. The

multiplication operations are mapped to DSP48 blocks. Array partition (APAR),

pipeline (PIPE(1) and PIPE(2)), and UNROLL directives are applied to VVC-FI-MUL-

HLS.

Table 5.2 shows FPGA implementation results of VVC-FI-ASH-HLS. Array

partition (APAR), pipeline (PIPE(1) and PIPE(2)), and UNROLL directives are applied

to VVC-FI-ASH-HLS. It has better performance than VVC-FI-MUL-HLS.

Table 5.3 shows FPGA implementation results of VVC-FI-MCM-HLS. Among

the three proposed VVC FI HLS implementations, VVC-FI-MCM-HLS has the best

performance with acceptable hardware area because of using Hcub MCM algorithm,

71

common offset, and common sub-expressions. Array partition (APAR), pipeline

(PIPE(1) and PIPE(2)), and UNROLL are applied to VVC-FI-MCM-HLS.

Table 5.1 FPGA Implementation Results of the Proposed VVC-FI-MUL-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(8×8 PU)

fps

FHD

No optimization 19740 41948 13124 30.5 74 130.7 2159 1

APAR 16334 35909 11166 15.5 73 119.1 811 4

APAR-PIPE(1) 17265 38482 10560 15.5 66 259.7 379 21

APAR-UNROLL 50784 40072 16537 30 292 83 215 11

APAR-UNROLL-

PIPE(1)
50784 40072 16537 30 292 83 215 11

APAR-UNROLL-

PIPE(2)
53019 36696 17049 30 300 88.5 73 37

Table 5.2 FPGA Implementation Results of the Proposed VVC-FI-ASH-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(8×8 PU)

fps

FHD

No optimization 19470 41156 14958 30.5 0 135.1 2159 1

APAR 15774 35645 11985 15.5 0 142.9 954 4

APAR-PIPE(1) 15580 37166 11118 15.5 0 183.5 345 16

APAR-UNROLL 48711 45099 19271 30 0 122 214 17

APAR-UNROLL-

PIPE(1)
48711 45099 19271 30 0 122 214 17

APAR-UNROLL-

PIPE(2)
49687 41380 19094 30 0 124.2 74 51

Table 5.3 FPGA Implementation Results of the Proposed VVC-FI-MCM-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(8×8 PU)

fps

FHD

No optimization 16549 40264 13614 30.5 0 145.8 2016 2

APAR 12891 33528 10523 15.5 0 166.7 811 6

APAR-PIPE(1) 14071 35299 9965 15.5 0 178.6 345 15

APAR-UNROLL 37242 41911 15933 30 0 157.5 214 22

APAR-UNROLL-

PIPE(1)
37242 41911 15933 30 0 157.5 214 22

APAR-UNROLL-

PIPE(2)
39047 37450 15319 30 0 150.4 74 62

In the proposed HLS implementations with APAR-UNROLL-PIPE(2), in

addition to the for loops, pipelining is also applied to the calculation function. This

significantly improved the performance.

In Table 5.4, the best proposed VVC MCM HLS implementation (VVC-FI-

MCM-HLS with APAR-UNROLL-PIPE(2)) is compared with manual VVC FI

hardware implementations proposed in [29] and [19]. To have a fair comparison, these

72

handwritten Verilog RTL codes are implemented to Xilinx Virtex-7 FPGA using Xilinx

Vivado 2020.1. The proposed VVC-FI-MCM-HLS implementation has higher

performance than [29] and [19] at the cost of larger area.

Table 5.4 VVC FI Hardware Comparison

 [29] [19] VVC-FI-MCM-HLS

LUT 10569 11125 39047

FF 3591 3521 37450

Slice 3079 3308 15319

BRAM 30 30 30

Frequency (MHz) 225.7 235 150.3

Clock Cycles (8×8 PU) 147 147 74

FHD (1920×1080) fps 47 49 62

5.2 HEVC FME HLS Implementation

FME is done after integer motion estimation. In HEVC reference software

encoder (HM) [24], FME is done in two stages. As shown in Figure 5.3, in stage 1,

eight fractional SLs around the best integer SL are searched. In stage 2, eight fractional

SLs around the best fractional SL found in stage 1 are searched. HEVC FME first

interpolates the fractional pixels required for fractional SLs using three different FIR

filters. In Figure 5.3, HHPs a, b, c and VHPs d, h, n are interpolated using the nearest

integer pixels in horizontal and vertical directions, respectively. QPs e, i, p and f, j, q

and g, k, r are interpolated using the nearest a HHPs, b HHPs, and c HHPs, respectively.

HEVC FME then calculates the sum of absolute difference (SAD) values for each

fractional SL and determines the best fractional SL with the minimum SAD value.

Two HEVC FME HLS implementations HEVC-FME-MUL-HLS and HEVC-

FME-DC-HLS are proposed. In the C++ codes, we use four functions called FI,

SAD_adders, SAD_8×8, and FME. HEVC-FME-MUL-HLS and HEVC-FME-DC-HLS

differ only in FI function and are the same in the other functions. In the C++ code of

HEVC-FME-MUL-HLS, multiplication operations are used to implement the constant

multiplications in FI function. In the HEVC-FME-DC-HLS, decomposed coefficients

technique [20] is used to implement the constant multiplications in FI function. These

C++ codes are synthesized to Verilog RTL using Xilinx Vivado HLS tool.

73

f₀, ₁e₀, ₁d₀, ₁g ₁, ₁f ₁, ₁e ₁, ₁ g₀, ₁

j₀, ₁i₀, ₁h₀, ₁k ₁, ₁j ₁, ₁ i ₁, ₁ k₀, ₁

q₀, ₁p₀, ₁n₀, ₁ r ₁, ₁q ₁, ₁p ₁, ₁ r₀, ₁

b₀,₀a₀,₀A₀,₀c ₁,₀b ₁,₀a ₁,₀ c₀,₀

f₀,₀ e₀,₀d₀,₀g ₁,₀f ₁,₀e ₁,₀ g₀,₀

j₀,₀i₀,₀h₀,₀k ₁,₀j ₁,₀i ₁,₀ k₀,₀

q₀,₀p₀,₀n₀,₀r ₁,₀q ₁,₀p ₁,₀ r₀,₀

Integer
Pixel

Stage 1
Search

Location

Stage 2
Search

Location

Figure 5.3 Fractional search locations

Figure 5.4 shows the HEVC-FME-DC-HLS. It takes 72 rows of 72 integer

pixels as search area, 64 rows of 64 integer pixels as current block, PU size, and best

SAD of integer SLs as input. SAD_8×8 function calculates the SADs of eight fractional

SLs for an 8×8 PU by calling FI and SAD_adders functions. FI function takes 16

integer pixels as input and calculates 3×9 fractional pixels using 3 FIR filters. FI

function in the HEVC-FME-DC-HLS decomposes coefficients of FIR filters to decrease

number of additions by using decomposed coefficients technique [20]. SAD_8×8

function calls FI function 51 times (16 for HHPs + 8 for VHPs + 27 for QPs) to

calculate all the fractional pixels required for FME of an 8×8 PU. Then, SAD_8×8 calls

SAD_adders function to calculate 8 SADs for 8 fractional SLs. In stage 1, eight

fractional SLs around the best integer SL are searched. Eight parallel SAD calculation

hardware are used to calculate SAD values of these 8 SLs in parallel. Appropriate

current block pixels, HHPs, VHPs, and QPs are given to SAD_adders function for the

SAD calculations. If the PU size is 8×8, FME function compares the SADs of eight

fractional SLs to determine the SL with minimum SAD value in stage 1. In stage 2,

eight fractional SLs around the best fractional SL found in stage 1 are searched. The

same hardware used in stage 1 is used for FI and SAD calculation in stage 2.

Comparison hardware determines the best SAD and its location.

If PU size is larger than 8×8, it is divided to 8×8 PUs. In each stage, FME

function adds up the SADs corresponding to the eight SLs in each of the 8×8 PUs to

obtain the SADs of eight SLs in the main PU. Then, comparison hardware determines

the best SAD and its location. To calculate SADs for 4×8 and 8×4 PUs, zero is assigned

to the fractional pixels that do not exist in these small PUs. So, the proposed HLS

implementations support FME for all the 24 different PU sizes in HEVC FME.

74

Transpose
Memory A

Transpose
Memory B

Transpose
Memory C

MUX

Sub-Expressions

Integer Pixels

Adder
Tree
#8

Adder
Tree
#7

Adder
Tree
#6

Adder
Tree
#5

Adder
Tree
#4

Adder
Tree
#3

Adder
Tree
#2

Adder
Tree
#1

Splitter #2

Input Arrays

SAD_Adders
Function

PU Size
Fulfilled?

Comparators

Current
Stage

Array Indexing

FI Function

SAD_8×8 Function

SADs of 8 SLs in 8×8 PU

SADs of 8 SLs in main PU

Best SAD and its location

Adders

No

Yes

Stage 1

Stage 2

FME Function

Splitter #1

Adder
Tree
#8

SAD
Adders

#1

SAD
Adders

#2

SAD
Adders

#3

SAD
Adders

#4

SAD
Adders

#5

SAD
Adders

#6

SAD
Adders

#7

SAD
Adders

#8

Comparators

Best SAD and its location

HLS C++ Code HLS Hardware

HLS Tool

Adder
Tree
#9

Figure 5.4 HEVC FME HLS implementation HEVC-FME-DC-HLS

To improve performance of the proposed HEVC FME HLS implementations, in

addition to bit-accurate models in C++ codes, we apply UNROLL directive to the for

loops and pipeline (PIPE) directive in two ways. In PIPE(1), PIPE directive is applied

only to the for loops. In PIPE(2), in addition to the for loops, PIPE is also applied to the

functions. The for loops are used to divide the large input arrays of a large PU to

smaller arrays corresponding to smaller 8×8 PUs.

The Verilog RTL codes generated by Xilinx Vivado HLS tool are verified with

RTL simulations and then implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado

2020.1. The FPGA implementations are verified with post place and route simulations.

Table 5.5 and Table 5.6 show FPGA implementation results of HEVC-FME-

MUL-HLS and HEVC-FME-DC-HLS, respectively. UNROLL, PIPE(1), and PIPE(2)

directives are applied. The multiplication operations in HEVC-FME-MUL-HLS are

mapped to DSP48 blocks.

In Table 5.7, the best proposed HEVC FME HLS implementation (HEVC-FME-

DC-HLS with UNROLL-PIPE(2)) is compared with manual HEVC FME hardware

implementations proposed in [66], [67] and [68]. The values shown as “---” have not

been reported in [67]. Because the hardware proposed in [69] is approximate, it is

75

excluded in comparison. The hardware proposed in [66] supports only 8×8 PUs. The

proposed HEVC-FME-DC-HLS has much better area than [67] at the cost of lower

performance. The hardware proposed in [68] has better implementation results at the

cost of quality loss. However, FME in our proposed HLS implementations is done

without any approximation and quality loss.

Table 5.5 FPGA Implementation Results of the Proposed HEVC-FME-MUL-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(8×4 or 4×8

PUs)

FHD

fps

No optimization 119381 33697 39281 0 525 114 416 4

PIPE(1) 120724 33768 39555 0 525 119 260 7

UNROLL-PIPE(1) 115684 23486 34486 20 405 66 66 15

UNROLL-PIPE(2) 54990 37043 19998 20 90 99 76 20

Table 5.6 FPGA Implementation Results of the Proposed HEVC-FME-DC-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(8×4 or 4×8

PUs)

FHD

fps

No optimization 70902 19592 22196 0 0 119 411 4

PIPE(1) 70912 19645 22389 0 0 116 255 7

UNROLL-PIPE(1) 115237 24193 39841 20 0 55 66 13

UNROLL-PIPE(2) 49341 34600 18081 20 0 113 75 23

Table 5.7 HEVC FME Hardware Comparison

 [66] [67] [68] HEVC-FME-DC-HLS

FPGA 28 nm 40 nm 40 nm 28 nm

LUT 17888 130306 5200 49341

FF 17946 --- 3794 34600

Slice 5742 --- 1814 18081

Frequency (MHz) 97 200 142 113

Supported PU sizes 8×8 All All All

FHD (1920×1080) fps 55 128 76 23

5.3 HEVC 2D DCT HLS Implementations

HEVC uses DCT-II for transform operations. It uses 4×4, 8×8, 16×16, and

32×32 TU sizes. HEVC performs 2D transform operation by first performing 1D

column transform and then performing 1D row transform. The coefficients in HEVC

1D transform matrices are derived from DCT basis functions. However, integer

coefficients are used for simplicity.

76

Two HEVC 2D DCT HLS implementations HEVC-DCT-MUL-HLS and

HEVC-DCT-MCM-HLS are proposed. In the C++ codes, we use three functions called

DCT_col, DCT_row, and DCT_2D. In the C++ code of HEVC-DCT-MUL-HLS,

multiplication operations are used to implement constant multiplications. In the HEVC-

DCT-MCM-HLS, Hcub MCM algorithm [26] is used to implement constant

multiplications. These C++ codes are synthesized to Verilog RTL using Xilinx Vivado

HLS tool.

In DCT_2D function, we use two for loops with iterations of TU size. The first

for loop performs 1D column transform by calling DCT_col function and storing its

outputs in a transpose memory in each iteration. The second for loop performs 1D row

transform by applying the relevant data from the transpose memory to the DCT_row

function in each iteration.

The Verilog RTL codes generated by Xilinx Vivado HLS tool are verified with

RTL simulations and then implemented to Xilinx Virtex-7 FPGA using Xilinx Vivado

2020.1. The FPGA implementations are verified with post place and route simulations.

Table 5.8 and Table 5.9 show FPGA implementation results of HEVC-DCT-

MUL-HLS and HEVC-DCT-MCM-HLS, respectively. To improve performance of the

proposed HEVC DCT HLS implementations, in addition to bit-accurate models in C++

codes, pipeline (PIPE), INLINE, and resource (RES) directives are applied. We apply

PIPE to the for loops.

We apply INLINE directive to the functions DCT_col and DCT_row. Function

inlining removes the function hierarchy. Inlining a function may improve area by

allowing the components within the function to be better shared or optimized with the

logic in the calling function [71].

Resource (RES) directive is used to specify which resource will be used to

implement a variable such as an array, arithmetic operation or function argument. In

HEVC-DCT-MUL-HLS, we apply RES to specify DSP blocks to be used to implement

multiplication operations. In both HEVC-DCT-MUL-HLS and HEVC-DCT-MCM-

HLS, we apply RES to specify BRAMs to implement the input arrays.

In Table 5.10, the best proposed HEVC DCT HLS implementation (HEVC-

DCT-MCM-HLS with INLINE-PIPE-RES) is compared with the manual HEVC DCT

hardware implementations proposed in [53], [12], [14], [55] and [70]. The values shown

as “---” have not been reported. The proposed HEVC-DCT-MCM-HLS has better area

and performance than the HLS implementation proposed in [70] and manual HEVC

77

DCT hardware proposed in [55]. The hardware proposed in [12] and [14] are

approximate hardware. The hardware proposed in [53] performs HEVC 2D DCT for

only 16×16 TUs.

Table 5.8 FPGA Implementation Results of the Proposed HEVC-DCT-MUL-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(4×4 for TU)

FHD

fps

No optimization 20813 23663 7442 0 535 192 71 20

INLINE 20095 21834 7832 0 537 188 59 24

PIPE 20138 23720 7831 0 535 188 51 28

INLINE-PIPE 21515 22730 8064 0 540 172 22 60

INLINE-PIPE-RES 20931 23119 8341 0 540 181 22 63

Table 5.9 FPGA Implementation Results of the Proposed HEVC-DCT-MCM-HLS

 LUTs FFs Slices BRAMs DSP48
Freq

(MHz)

Clock Cycles

(4×4 for TU)

FHD

fps

No optimization 36247 28491 12108 0 0 181 75 18

INLINE 36667 27777 12073 0 0 187 59 24

PIPE 35652 29020 11871 0 0 187 53 27

INLINE-PIPE 37627 29289 12393 0 0 167 21 61

INLINE-PIPE-RES 37491 29374 12893 0 0 177 21 65

Table 5.10 HEVC DCT Hardware Comparison

 [53] [12] [14] [55] [70]
HEVC-DCT-

MCM-HLS

HLS / Manual Manual Manual Manual Manual HLS HLS

Approximate(A)

/ Exact (E)
E A A E E E

Transform 2D DCT 2D DCT 2D DCT/IDCT 2D DCT 2D IDCT 2D DCT

TU size 16 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32

FPGA 65 nm 40 nm 40 nm 65 nm 40 nm 28 nm

LUT 16002 35555 30701 54305 50566 37491

FF --- 11230 10965 15607 34955 29374

Slice --- 10080 8924 --- 14944 12893

BRAM --- 32 16 --- 13 0

DSP blocks --- 0 0 384 0 0

Freq. (MHz) 27 100 104 90 208 177

fps 35 QFHD 48 QFHD --- 6 QFHD 54 FHD 65 FHD

78

6 CHAPTER VI

VVC AFFINE MOTION ESTIMATION HARDWARE

Inter prediction is a vital part of video coding, which aims to find a similar block

in the reference frames to decrease the temporal redundancy. Motion estimation (ME)

and motion compensation are the main tools of inter prediction. The basic motion model

of the conventional block-based ME in HEVC is translational motion model. However,

the motion of an object may happen in different forms such as rotation and zooming.

In VVC, affine motion estimation (AME) is used which considers rotation,

zooming, and shearing of blocks during block matching ME. AME achieves higher

compression than translational ME at the cost of much more computational complexity

[72], [73].

In this thesis, to reduce the computational complexity of VVC AME, an

approximate VVC AME hardware is proposed using a proposed approximate absolute

difference (AD) hardware, approximate adder tree, and sub-sampling. The proposed

approximate AD hardware reduces the bit length of each AD value from 8 to 5. A new

approximate adder tree is proposed to decrease the bit length of the adders. To further

reduce the computational complexity of VVC AME, sub-sampling is used.

79

6.1 VVC Affine Motion Estimation

AME has two modes. 4-parameter AME utilizes two motion vectors and 6-

parameter AME utilizes three motion vectors. 4-parameter AME takes zoom and

rotation into account. Equations (6.1) and (6.2) show formulas of 4-parameter AME. 6-

parameter AME takes zoom, rotation, and shear into account. Equations (6.3) and (6.4)

show the formulas of 6-parameter AME. Figure 6.1 shows 6-parameter AME model

with three motion vectors.

Translational ME has the most computational complexity in video coding. AME

is more computationally complex than translational ME. To decrease computational

complexity, VVC performs AME on 4×4 sub-blocks instead of pixels. For higher

spatial video resolutions, the importance of each 4×4 sub-block is reduced, which lets

us apply AME on sub-blocks instead of pixels with negligible quality loss.

𝑚𝑣𝑥 =
𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑥

 (6.1)

𝑚𝑣𝑦 =
𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑦

 (6.2)

𝑚𝑣𝑥 =
𝑚𝑣1𝑥−𝑚𝑣0𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥−𝑚𝑣0𝑥

𝑤
𝑦 + 𝑚𝑣0𝑥

 (6.3)

𝑚𝑣𝑦 =
𝑚𝑣1𝑦 −𝑚𝑣0𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦−𝑚𝑣0𝑦

𝑤
𝑦 + 𝑚𝑣0𝑦

 (6.4)

mv₀ mv₁

mv₂

Current

Block

Prediction

Block

Reference Frame

Current Frame

Figure 6.1 The 6-parameter affine model with three motion vectors.

80

In translational ME, a motion vector is calculated for every block, then all the

pixels within that block are shifted to the location indicated by that motion vector

regardless of their positions within the block. Whereas, in AME, new locations of pixels

are calculated based on their locations within the block.

Figure 6.2 shows AME of 4×4 sub-blocks in a 16×16 block where the affine

motion vectors are shown with the black arrows, and four of 16 calculated translational

motion vectors are shown with the colored arrows. In AME, affine motion vectors are

used to calculate translational motion vectors for the center points of the sub-blocks.

Figure 6.2 AME of 4×4 sub-blocks in a 16×16 block.

Since AME uses 2 or 3 motion vectors per block, the number of search locations

increases exponentially. For instance, for a 128×128 search window, there are 16384

mv0 search locations; while for each mv0, 16384 mv1 search locations exist, and for

each mv1, 16384 mv2 search locations exist. Thus, for a 6-parameter full-search AME,

4.3×1012 SAD values need to be calculated. It is not feasible to calculate them. Hence,

approximate AME algorithms are required such as using full search for mv0 while

searching just pre-determined search locations for mv1 and mv2 [72].

In [74], a VVC AME hardware is proposed to perform 4-parameter AME. It is

the first VVC AME FPGA implementation in the literature. The hardware proposed in

[74] uses a new pixel storage method that considerably decreases the computational

complexity and the number of BRAM read operations. In the hardware proposed in

[74], fixed search window size is 128×128 and block sizes are 16×16, 32×32 or 64×64.

The block size is given to the hardware as input. The user determines the trade-off

81

between compression and speed by selecting the block size [75]. The hardware

proposed in [74] searches all the mv0 search locations in the 128×128 search window,

i.e., 4096 mv0 search locations for 64×64 block size, 9216 mv0 search locations for

32×32 block size, and 12544 mv0 search locations for 16×16 block size. It searches just

eight pre-determined mv1 search locations. Thus, the hardware proposed in [74]

searches 32768, 73728, or 100352 search locations.

The hardware proposed in [74] has two copies of the VVC AME hardware

shown in Figure 6.3, which work in parallel. Each copy consists of a translational

motion vector calculation component in the control module, multiplexers to select

pixels utilizing the motion vectors, 64×64 processing units for absolute difference (AD)

calculation and an adder tree. After start signal, the search window pixels are read from

off-chip memory and written to BRAMs. 64 pixels are read in a clock cycle. The 64

pixels are concatenated and written to a single location in BRAMs. Because the search

window size is 128×128, 128 rows are stored to every BRAM. Thus, 256 clock cycles

are required to store the search window pixels in BRAMs. Then, the current block

pixels are read in 64, 16, or 4 clock cycles based on the block size. Next, in one clock

cycle, one row of search window (128 pixels) is read from BRAMs and stored to

registers. Previous and next rows are also required for SAD calculations because the

affine motion vectors can point upwards and downwards. After reading the required

pixels, SAD calculation begins.

Search Window
Registers

Current Block
Registers

64x64
Processing

Units
(Absolute

Difference)

4x4 Sub Blocks

Tran
slatio

n
al M

o
tio

n

V
ecto

rs Adder Tree
Final SAD
Output

Control Module

Figure 6.3 VVC affine motion estimation hardware proposed in [74].

In the hardware proposed in [74], based on the translational motion vectors

calculated by the control module, proper pixels are sent to the 64×64 processing units

82

for AD calculation and AD results are added up by the adder tree. Eight mv1 search

locations are searched for each mv0. Figure 6.4 shows seven mv1 search locations. The

8th mv1 search location is the upper right corner of the block. Each of the copies of the

hardware shown in Figure 6.3 performs motion vector and SAD calculations four times.

The smallest SAD and the corresponding motion vector are stored in the registers to be

compared with the SAD values that will be calculated later.

The hardware proposed in [74] uses a new pixel storage method. After SAD

calculations for a mv0 search location and eight mv1 search locations are completed,

instead of incrementing mv0𝑥, the search window pixels in the registers are shifted by

one to the left. Also, after SAD calculations for a row is completed, instead of

incrementing mv0𝑦, the search window pixels in the registers are shifted up and a new

row is read from the BRAMs. After all the SAD calculations are completed, the

smallest SAD and the related motion vector are sent to the output. This process is

repeated for each block.

Figure 6.4 MV1 locations in the VVC AME hardware proposed in [74].

This pixel storage method uses a large number of registers. However, it has

three advantages. First, it considerably decreases the number of BRAM read operations.

Second, it removes complex address generation for BRAMs. Third, it notably simplifies

calculation of translational motion vectors from affine motion vectors. This method

performs left and up shifts that can be considered as moving the search window instead

of the current block. Thus, mv0 value does not change. Since the first mv0 is considered

as (0,0), AME formulae are converted to equations (6.5) and (6.6) for 4-parameter AME

and equations (6.7) and (6.8) for 6-parameter AME, which decreases the hardware area.

83

𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣1𝑦

𝑤
𝑦 (6.5)

𝑚𝑣𝑦 =
𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣1𝑥

𝑤
𝑦 (6.6)

𝑚𝑣𝑥 =
𝑚𝑣1𝑥

𝑤
𝑥 −

𝑚𝑣2𝑥

𝑤
𝑦 (6.7)

𝑚𝑣𝑦 =
𝑚𝑣1𝑦

𝑤
𝑥 −

𝑚𝑣2𝑦

𝑤
𝑦 (6.8)

Hardware friendly interweaved prediction for affine motion compensation is

presented in [76]. In [77], a hardware architecture for the VVC affine motion

compensation (MC) is proposed. In [78], two new hardware architectures for the VVC

affine MC are developed. These proposed architectures process the 4×4 subblocks,

generating the interpolated samples for the affine MC process of the VVC standard and

generating four interpolated samples in parallel. In the hardware proposed in [79], four

4×4 subblocks are reconstructed in parallel, where the MCM technique is used to

replace the multipliers with sum and shifts in the SMV generator and interpolation

filters. In [80], a simplified AME algorithm and its ASIC hardware implementation are

proposed.

In [74], low error approximate absolute difference (LAD_X) hardware is

proposed. LAD_2 hardware and its two least significant bits (LSBs) are shown in

Figure 6.5. LAD_X hardware comprises a subtractor, XOR gates, an adder, and OR

gates. First, the difference (D) is obtained by subtracting inputs A and B. The sign bit of

the difference (D[8]) is XOR’ed with the other eight bits of the difference (D[7:0]).

Then, the sign bit (D[8]) is added to the least significant 𝑋 bits. Therefore, instead of

calculating 2’s complement of the entire difference, 2’s complement of its least

significant 𝑋 bits is calculated. This restricts carry propagation in the addition operation.

Lastly, the MSB of the addition result (ECN[2]) is OR’ed with the other bits of the

addition result.

84

D[1] D[0]

D[8]

+

21

21

2

EC[1:0]

ECN[1:0]ECN[2]

AD[1:0]AD[1:0]

ECN[2:0]

ECN[1:0] ECN[2]

EC[1:0]

EC[7:0]

EC[7:2]

AD[7:2]

D[7:0] D[8]

A B
88

9

(a) (b)

Figure 6.5 (a) LAD_2 hardware, (b) Two least significant bits of absolute difference in

the LAD_2 hardware.

6.2 Proposed VVC Affine Motion Estimation Hardware

An approximate 4-parameter VVC AME hardware is proposed using a new

approximate absolute difference (AD) hardware, approximate adder tree, and sub-

sampling.

6.2.1 Proposed Approximate AD hardware

The pixels in a video are 8-bit integers in the range [0-255]. Sum of absolute

differences (SAD) is a distortion metric which is commonly used in block matching ME

and AME. The search location with the minimum SAD is selected as the best search

location. To design the proposed approximate AD hardware, we assume that the AD

value of the best search location is smaller than 32.

The proposed approximate AD hardware comprises a subtractor and some logic

gates. The inputs of the hardware are two 8-bit unsigned integers shown as A[7:0] and

B[7:0], and its output is a 5-bit unsigned integer shown as AD[4:0]. First, the inputs A

and B are subtracted and the result is shown as D[8:0]. If |D| < 32, AD[4:2] is equal to

XOR of D[8] (sign bit of the difference) with D[4:2] as shown in Table 6.1. If |D| > 32,

85

we make AD[4:0] as large as possible so AD[4:2] is as shown in Table 6.1. The cases

corresponding to |D| > 32 are not expected to be the best search location in ME and

AME. Therefore, this approximation does not cause much quality loss.

Figure 6.6 shows the Karnaugh maps for AD[4]. Accordingly, AD[4] is obtained

as shown in equation (6.9) which is simplified as shown in equation (6.10).

Table 6.1 D[4:2] in the Proposed Approximate AD Hardware

 D[8] D[7] D[6] D[5] AD[4] AD[3] AD[2]

|D| < 32 0 0 0 0 D[4] D[3] D[2]

|D| > 32

0

.

.

.

1

0

.

.

.

1

0

.

.

.

1

1

.

.

.

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

|D| < 32 1 1 1 1 𝐷[4]̅̅ ̅̅ ̅̅ 𝐷[3]̅̅ ̅̅ ̅̅ 𝐷[2]̅̅ ̅̅ ̅̅

00 01 11 10
D[5]

D[4]

D[6]

D[7]

00

01

11

10

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 1

D[8] = 1

00 01 11 10
D[5]

D[4]

D[6]

D[7]

00

01

11

10

0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

D[8] = 0

Figure 6.6 Karnaugh maps for AD[4] in the proposed approximate AD hardware.

𝐴𝐷[4] = 𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[4] + 𝐷[8]̅̅ ̅̅ ̅̅ . 𝐷[7]̅̅ ̅̅ ̅̅ . 𝐷[6]̅̅ ̅̅ ̅̅ . 𝐷[5]̅̅ ̅̅ ̅̅ . 𝐷[4]̅̅ ̅̅ ̅̅̅̅ (6.9)

𝐴𝐷[4] = 𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[4]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[4]) (6.10)

Similarly, AD[3] and AD[2] are obtained as shown in equations (6.11) and (6.12),

respectively.

𝐴𝐷[3] = 𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[3]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[3]) (6.11)

𝐴𝐷[2] = 𝐷[8]. 𝐷[7]. 𝐷[6]. 𝐷[5]. 𝐷[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (𝐷[8] + 𝐷[7] + 𝐷[6] + 𝐷[5] + 𝐷[2]) (6.12)

86

In the proposed approximate AD hardware, the two least significant bits of the

absolute difference (AD[1:0]) are implemented similar to the LAD_2 hardware shown

in Figure 6.5 so that the carry propagation of addition with 1 is restricted to only two

bits. The hardware shown in Figure 6.5 is simplified using the truth table shown in

Table 6.2.

Table 6.2 Truth Table for AD[1:0] in the LAD_2 Hardware

D[8] D[1:0] EC[1:0] ECN[2:0] AD[1:0]

0 00 00 000 00

0 01 01 001 01

0 10 10 010 10

0 11 11 011 11

1 00 11 100 11

1 01 10 011 11

1 10 01 010 10

1 11 00 001 01

Figure 6.7 shows the Karnaugh maps for AD[1]. Accordingly, AD[1] is obtained

as shown in equation (6.13) which is simplified as shown in equation (6.14). Similarly,

AD[0] is obtained as shown in equation (6.15).

00 01 11 10
D[1]

D[0]

D[8]

0

1

00 01 11 10
D[1]

D[0]

D[8]

0

1

0 0 1 1

1 1 0 1

0 1 1 0

1 1 1 0

(a) (b)

Figure 6.7 Karnaugh maps for (a) AD[1] and (b) AD[0] in the proposed approximate

AD hardware.

𝐴𝐷[1] = 𝐷[8]. 𝐷[1]̅̅ ̅̅ ̅̅ + 𝐷[8]̅̅ ̅̅ ̅̅ . 𝐷[1] + 𝐷[1]. 𝐷[0]̅̅ ̅̅ ̅̅ (6.13)

𝐴𝐷[1] = (𝐷[8] ⊕ 𝐷[1]) + 𝐷[1]. 𝐷[0]̅̅ ̅̅ ̅̅ (6.14)

𝐴𝐷[0] = 𝐷[0] + 𝐷[8]. 𝐷[1]̅̅ ̅̅ ̅̅ (6.15)

Figure 6.8 shows the proposed approximate AD hardware using equations

(6.10), (6.11), (6.12), (6.14), and (6.15). In the cases that the absolute difference of two

pixels A and B in the best search location is smaller than 32 (|A-B| < 32), the proposed

approximate AD hardware has very low error. In the cases that the absolute difference

87

of two pixels A and B in the best search location is larger than 32 (|A-B| > 32), although

the AD for these two pixels may not have low error, the SAD value can still have low

error.

A-B

8 8

9

A[7:0] B[7:0]

D[8:0]
D[8] D[7] D[6] D[5]D[8] D[7] D[6] D[5]

D[4] D[3] D[2]

AD[4] AD[3] AD[2]

D[1]D[8]

AD[0]

D[0]D[1]

AD[1]

D[8]

Figure 6.8 The proposed approximate AD hardware.

In ME and AME, the best search location is found using a distortion metric such

as SAD. If some of the AD results have large errors, the SAD values can still have low

error especially because large number of AD results are added in the adder tree to

obtain the SAD value. For example, for the 64×64 block size, 4096 AD results are

added to obtain the SAD value. Even though some of the AD results are calculated

inaccurately, the best search location can still be found. Therefore, the proposed

approximate AD hardware can be used for ME and AME. In the proposed approximate

AD hardware, bit length of each AD is reduced from 8 to 5 which reduces area of both

AD hardware and adder tree.

88

6.2.2 Approximate Adder Tree

In the VVC AME hardware proposed in [74], each AD is an 8-bit value and

there are 12 stages in the adder tree, therefore the SAD bit length is 20.

In the proposed approximate VVC AME hardware, approximate adders are used

in some of the stages in the adder tree to further decrease the bit length of the adders.

Figure 6.9 shows the proposed approximate adder that is used in stage 4 of the adder

tree, in which A[7:0] and B[7:0] are inputs and AS[7:0] is output. In the proposed

approximate adder, the most significant bit (MSB) is removed. But before its removal, it

is OR’ed with the three bits which have less significance than the MSB. Therefore, if

the addition result is large such that MSB is one, before removing the MSB, we make

the three less significant bits “111” and keep the rest of the bits as they are. This keeps

the addition result large enough so that it does not affect the AME predictions much. In

ME and AME, accuracy in calculation of the minimum SAD is much more important

than the large SAD values. AD values used to calculate the minimum SAD

corresponding to the best search location are not very large so that removal of MSB in

some stages of adder tree does not cause much error.

In the proposed approximate VVC AME hardware, using the proposed

approximate AD hardware, each AD is a 5-bit value and there are 12 stages in the adder

tree. The proposed approximate adders are used in stages 4, 7, and 10 as shown with red

color in Figure 6.10. In addition to the 3-bit reduction in bit length by using the

proposed approximate AD hardware, there are three 1-bit reductions in bit length by

using the proposed adder tree. Therefore, the SAD bit length in the proposed

approximate VVC AME hardware is reduced from 20 to 14.

A+B

8 8

9

A[7:0] B[7:0]

S[8:0]

1 3 5
S[8] S[7:5] S[4:0]

AS[4:0]AS[7:5]

Figure 6.9 The approximate adder used in stage 4 of the proposed adder tree

89

AD

AD

AD

AD

5

5

5

5

8

8

8

8

A0

B0

A1

B1

6

6

7

8

8

9

10

10

11

12

12

13

AD

AD

AD

AD

5

5

5

5

8

8

8

8

A 4095

B4095

A4094

B 4094

6

6

7

8

8

9

10

10

11

12

12

13

14
SAD

12

12

12

11

10

10

8

8

9

7

12

11

10

10

9

8

8

7

Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

Figure 6.10 The proposed approximate adder tree

6.2.3 Sub-Sampling

Sub-sampling method is used in the second proposed approximate VVC AME

hardware (proposed VVC AME (2)) to improve the performance and reduce the

hardware area. In the proposed approximate hardware, only four of the pixels are used

to calculate the SAD of a 4×4 sub-block instead of all the 16 pixels in the sub-block. In

90

Figure 6.11, the pixels that are used for SAD calculation in a 4×4 sub-block are shown

as red squares. Using this sub-sampling, the bit length of the sub-block SAD and the

output SAD become 7 and 12, respectively. The number of stages in the adder tree is

reduced to 10. The proposed approximate adders are used in stages 4, 7, and 9 of the

adder tree.

Figure 6.11 Sub-sampling in a 4×4 sub-block used in proposed VVC AME (2)

6.3 Implementation Results

We proposed two approximate VVC AME hardware (1) and (2). In both

hardware, the pixel storage method proposed in [74] is used. Eight AME search

locations are searched as in [74]. In proposed hardware (1), the proposed approximate

AD hardware and proposed adder tree are used. In proposed hardware (2), in addition to

the proposed approximate AD hardware and proposed adder tree, the sub-sampling

method is also used.

Both proposed approximate VVC AME hardware are implemented using

Verilog HDL. Verilog RTL codes are synthesized, placed and routed to a Virtex 7

FPGA using Xilinx Vivado 2020.1. In Table 6.3, the implementation results of the

proposed hardware are compared to [74] which is the only FPGA implementation of the

VVC AME in the literature. Proposed approximate VVC AME hardware (1) has 5%

higher frequency and 7%, 20%, and 7% less LUT, FF, and BRAM, respectively, than

the one in [74]. Proposed approximate VVC AME hardware (2) has 79% higher

frequency and 71%, 57%, and 7% less LUT, FF, and BRAM, respectively, than the one

in [74]. No DSP blocks are used in proposed hardware (2), because the multiplications

in equations (6.5) and (6.6) are implemented with only adders and shifters.

91

Table 6.3 Implementation Results

 Frequency (MHz) LUT FF BRAM DSP

[74] 125.786 655741 252982 16 1920

Proposed VVC AME hardware (1) 131.579 610268 203680 15 1920

Proposed VVC AME hardware (2) 225.734 186392 106733 15 0

VVC AME in the proposed hardware is performed in 50188, 36876, and 16396

clock cycles for the blocks with 16×16, 32×32, and 64×64 sizes, respectively. Table 6.4

shows the frames per second (fps) of the proposed hardware for HD and FHD video

resolutions. In the table, in hybrid case, 40% of the frame is processed with 64×64 block

size, 35% of the frame is processed with 32×32 block size and 25% of the frame is

processed with 16×16 block size. Both proposed hardware have higher performance

than the one in [74].

Table 6.4 Number of frames per second (fps)

Block Size
[74] Proposed hardware (1) Proposed hardware (2)

HD FHD HD FHD HD FHD

64×64 32.5 fps 15 fps 35.6 fps 15.8 fps 61.1 fps 27.1 fps

32×32 3.7 fps 1.6 fps 3.9 fps 1.7 fps 6.8 fps 3.0 fps

16×16 0.65 fps 0.29 fps 0.72 fps 0.32 fps 1.25 fps 0.55 fps

Hybrid 2 fps 0.91 fps 2.25 fps 1.76 fps 3.87 fps 3.02 fps

92

7 CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, approximate F2 VVC FI filters and VVC FI hardware implementing

approximate F1 and F2 filters (MCMF1, BF2, MCMF2) are proposed. The proposed

approximate VVC FI filters reduce computational complexity of VVC FI at the expense

of very small quality loss. F2 filter causes slightly more quality loss than F1 filter. The

proposed approximate VVC FI hardware have higher speed, smaller area, and up to

51% lower power consumption than the exact VVC FI hardware. Since VVC FI has

higher computational complexity than HEVC FI, implementation results of the HEVC

FI hardware are better than implementation results of the proposed approximate VVC

FI hardware at the expense of lower quality. BF2 and MCMF2 hardware have higher

speed, smaller area and lower power consumption than BF1 and MCMF1 hardware.

However, they have slightly worse rate-distortion performance than BF1 and MCMF1

hardware. Therefore, MCMF1 hardware can be used in consumer electronics devices

requiring high speed, small area, low power consumption and high quality. MCMF2

hardware can be used in consumer electronics devices requiring higher speed, smaller

area, lower power consumption and slightly lower quality. Moreover, a novel VVC FI

hardware using memory based constant multiplication for all PU sizes is proposed.

Several optimizations are proposed to reduce memory size. The proposed VVC FI

hardware can process 49 full HD (1920×1080) video frames per second. It has up to

9.4% less power consumption than VVC FI hardware in the literature.

93

In this thesis, decomposed coefficients technique is proposed for implementing

HFI and VFI. Exact HFI hardware, exact VFI hardware, and approximate VFI hardware

DCF1 and DCF2 are designed and implemented using the proposed technique. The

proposed exact HFI and exact VFI hardware have higher performance, less area, and

less power consumption than the best exact HFI and exact VFI hardware, respectively.

The proposed approximate VFI hardware have the same performance, less area, and less

power consumption than the best approximate VFI hardware. Therefore, the proposed

hardware can be used in consumer electronics products which require real-time HEVC

and VVC video encoder and decoder.

In this thesis, a new approximate constant multiplication technique is used to

propose a new approximate HEVC 2D DCT for all transform unit (TU) sizes. In the

proposed hardware, the approximate constant multiplication is used for multiplications

with only the DCT coefficients that do not cause high average percentage error. So, it

has less quality loss than the existing approximate HEVC 2D DCT hardware. In the

proposed hardware, there are some common constant multiplications that are calculated

once so that the number of multiplications is reduced. The proposed approximate

HEVC 2D DCT hardware has less area, less power consumption, and higher

performance than the existing HEVC 2D DCT hardware.

In this thesis, the first FPGA implementations of VVC FI and HEVC FME

algorithms using an HLS tool in the literature are proposed. Novel FPGA

implementations of HEVC 2D DCT algorithm using an HLS tool are proposed. The

best proposed VVC FI HLS implementation can process 62 full HD video fps. It has

higher performance than the manual VVC FI hardware implementations at the cost of

larger area. The best proposed HEVC FME HLS implementation supports all the PU

sizes, and in the worst case, can process 23 full HD video fps. The best proposed

HEVC 2D DCT HLS implementation, in the worst case, can process 65 full HD fps.

In this thesis, we proposed an approximate VVC AME hardware using proposed

approximate AD hardware, approximate adder tree, and sub-sampling. Using the

proposed approximate hardware reduces VVC AME hardware area and improves its

performance. Sub-sampling is used to further reduce the area and improve the

performance. The proposed approximate VVC AME hardware has higher performance

and smaller area than the best VVC AME hardware in the literature.

94

As future work, new VVC 2D DCT hardware can be proposed using the

approximate constant multiplication method that is used in the proposed HEVC 2D

DCT hardware. The proposed decomposed coefficients technique can be applied to

VVC AME. Instead of full search algorithm, fast search algorithms can be used for

VVC AME to achieve higher performance with smaller area.

95

8 BIBLIOGRAPHY

[1] V. Sze, M. Budagavi, and G. J. Sullivan, “High efficiency video coding (HEVC),” in

Integrated circuit and systems, algorithms and architectures, vol. 39, p. 40. Berlin,

Germany: Springer, 2014.

[2] “IMT traffic estimates for the years 2020 to 2030,” ITU, Geneva, Switzerland, Rep.

M.2370-0, Jul. 2015. [Online]. Available: http:// www.itu.int/dms_pub/itu-r/opb/rep/R-

REP-M.2370-2015-PDF-E.pdf

[3] B. Bross, J. Chen, S. Liu, and Y. K. Wang, “Versatile Video Coding (Draft 10),” JVET-

S2001, Jul. 2020.

[4] J. Chen, Y. Ye, and S. Kim, “Algorithm Description for Versatile Video Coding and Test

Model 5,” JVET-N1002, Jun. 2019.

[5] A. C. Mert, E. Kalali, and I. Hamzaoglu, “High performance 2D transform hardware for

future video coding,” IEEE Trans. Consum. Electron., vol. 63, no. 2., pp. 117-125, May

2017.

[6] H. Azgin, A. C. Mert, E. Kalali, and I. Hamzaoglu, “Reconfigurable intra prediction

hardware for future video coding,” IEEE Trans. Consum. Electron., vol. 63, no. 4., pp.

419-425, Nov. 2017.

[7] M. J. Garrido, F. Pescador, M. Chavarrías, P. J. Lobo, and C. Sanz, “A 2-D Multiple

Transform Processor for the Versatile Video Coding Standard,” IEEE Trans. Consum.

Electron., vol. 65, no. 3, pp. 274-283, Aug. 2019.

[8] A. Henkel, I. Zupancic, B. Bross, M. Winken, H. Schwarz, D. Marpe, and T. Wiegand,

“Alternative Half-sample Interpolation Filters for Versatile Video Coding,” in Proc. IEEE

Int. Conference on Acoustics, Speech and Signal Processing, May 2020, pp. 2053-2057.

http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf

96

[9] High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC), ITU-T

and ISO/IEC, Apr. 2013.

[10] F. Pescador, M. Chavarrias, M. J. Garrido, E. Juarez, and C. Sanz, “Complexity analysis

of an HEVC decoder based on a digital signal processor,” IEEE Trans. Consum.

Electron., vol. 59, no. 2, pp. 391- 399, May 2013.

[11] E. Kalali, E. Ozcan, O. M. Yalcinkaya, and I. Hamzaoglu, “A low energy HEVC inverse

transform,” IEEE Trans. Consum. Electron., vol. 60, no. 4, pp. 754-761, Nov. 2014.

[12] E. Kalali, A. C. Mert, and I Hamzaoglu, “A computation and energy reduction technique

for HEVC discrete cosine transform,” IEEE Trans. Consum. Electron., vol. 62, no. 2, pp.

166-174, May 2016.

[13] H. Azgin, E. Kalali, and I. Hamzaoglu, “A computation and energy reduction technique

for HEVC intra prediction,” IEEE Trans. Consum. Electron., vol. 63, no. 1, pp. 36-43,

Feb. 2017.

[14] A. Singhadia, M. Mamillapalli, and I. Chakrabarti, “Hardware-Efficient 2D-DCT/IDCT

Architecture for Portable HEVC-Compliant Devices,” IEEE Trans. Consum. Electron.,

vol. 66, no. 3, pp. 203-212, Aug. 2020.

[15] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The new gold

standard for video compression: How does HEVC compare with H. 264/AVC?,” IEEE

consum. Electron. magazine, vol. 1, no. 3, pp. 36-46, 2012.

[16] J. Lainema, F. Bossen, W.J. Han, J. Min and K. Ugur, “Intra Coding of the HEVC

Standard”, IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,

pp.1792-1801, Dec. 2012.

[17] T. Biatek, V. Lorcy, P. Castel, P. Philippe, “Low-Complexity Adaptive Multiple

Transform for Video Coding”, Proc. Data Compression Conference, April 2016.

[18] H. Mahdavi, H. Azgin, and I. Hamzaoglu, “Approximate versatile video coding

fractional interpolation filters and their hardware implementations,” IEEE Trans. on

Consum. Electron., vol. 67, no. 3, pp. 186-194, 2021, Aug. 2021, doi:

10.1109/TCE.2021.3107460.

[19] H. Mahdavi and I. Hamzaoglu, “A VVC fractional interpolation hardware using memory

based constant multiplication,” in IEEE Int. Conf. on Consum. Electron. (ICCE), pp. 1-5,

Jan. 2021.

[20] H. Mahdavi and I. Hamzaoglu, “An efficient HEVC fractional interpolation hardware,”

in IEEE Int. Conf. on Consum. Electron. (ICCE), pp. 1-4, Jan. 2021.

https://doi.org/10.1109/TCE.2021.3107460

97

[21] H. Azgin, E. Kalali, and I. Hamzaoglu, “A Novel Approximate Constant Multiplier and

HEVC Discrete Cosine Transform Case Study,” in IEEE 10th Int. Conf. on Consumer

Electronics (ICCE-Berlin), pp. 1-6, Nov. 2020.

[22] I. Hamzaoglu, H. Mahdavi, and E. Taskin, “FPGA Implementations of VVC Fractional

Interpolation Using High-Level Synthesis,” in IEEE Int. Conf. on Consum. Electron.

(ICCE), pp. 1-6, 2022, doi: 10.1109/ICCE53296.2022.9730363.

[23] J. Chen, Y. Ye, and S. Kim, “Algorithm description for versatile video coding and test

model 5,” Joint Video Experts Team (JVET) of ITU-T SG, 2019.

[24] K. McCann, B. Bross, W. J. Han, I. K. Kim, K. Sugimoto, and G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model 15 (HM 15) Encoder Description,”

JCTVC-Q1002, June 2014.

[25] H. Azgin, E. Kalali, and I. Hamzaoglu, “An Approximate Versatile Video Coding

Fractional Interpolation Hardware,” in Proc. IEEE Int. Conference on Consumer

Electronics, Jan. 2020, pp. 1-4, doi: 10.1109/ICCE46568.2020.9042986.

[26] Y. Voronenko and M. Püschel, “Multiplierless constant multiplication,” ACM Trans.

Algorithms, vol. 3, no. 2, May 2007.

[27] A. Henkel, I. Zupancic, B. Bross, M. Winken, H. Schwarz, D. Marpe, and T. Wiegand,

“Alternative Half-sample Interpolation Filters for Versatile Video Coding,” in Proc.

IEEE Int. Conference on Acoustics, Speech and Signal Processing, May 2020, pp. 2053-

2057.

[28] H. Azgin, A. C. Mert, E. Kalali, and I. Hamzaoglu, “A Reconfigurable Fractional

Interpolation Hardware for VVC Motion Compensation,” in Proc. Euromicro

Conference on Digital System Design, Aug. 2018, pp. 99-103, doi:

10.1109/DSD.2018.00030.

[29] A. C. Mert, E. Kalali, and I. Hamzaoglu, “A Low Power Versatile Video Coding (VVC)

Fractional Interpolation Hardware,” in Proc. Int. Conference on Design and

Architectures for Signal and Image Processing, Oct. 2018, pp. 43-47, doi:

10.1109/DASIP.2018.8597040.

[30] E. Kalali and I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation hardware,” in

Proc. IEEE Int. Conference on Image Processing, Oct. 2014, pp. 1218-1222,

doi: 10.1109/ICIP.2014.7025243.

[31] C. Y. Lung and C. A. Shen, “A high-throughput interpolator for fractional motion

estimation in high efficient video coding (HEVC) systems,” in Proc. IEEE Asia Pacific

Conference on CAS, Nov. 2014, pp. 268-271, doi: 10.1109/APCCAS.2014.7032771.

https://doi.org/10.1109/ICCE53296.2022.9730363
https://doi.org/10.1109/ICCE46568.2020.9042986
https://doi.org/10.1109/DSD.2018.00030
https://doi.org/10.1109/DASIP.2018.8597040
https://doi.org/10.1109/ICIP.2014.7025243
https://doi.org/10.1109/APCCAS.2014.7032771

98

[32] G. Pastuszak and M. Trochimiuk, “Algorithm and architecture design of the motion

estimation for the H.265/HEVC 4K-UHD encoder,” Journal of Real-Time Image

Process., vol. 12, no. 2, pp. 517-529, Aug. 2016, doi: https://doi.org/10.1007/s11554-

015-0516-4.

[33] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “A reconfigurable hardware

architecture for fractional pixel interpolation in high efficiency video coding,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 2, pp. 238-251, Feb.

2015, doi: 10.1109/TCAD.2014.2384517.

[34] E. Kalali, and I. Hamzaoglu, “Approximate HEVC Fractional Interpolation Filters and

Their Hardware Implementations,” IEEE Trans. Consum. Electron., vol. 64, no. 3, pp.

285-291, Aug. 2018.

[35] F. Bossen, “Common test conditions and software reference configurations,” JCTVC-

I1100, May 2012.

[36] P. K. Meher, “LUT Optimization for Memory-Based Computation”, IEEE Transactions

on Circuits and Systems-II: Express Briefs, vol. 57, no. 4, pp. 285-289, Apr. 2010.

[37] P. K. Meher, “New Approach to Look-Up-Table Design and Memory- Based Realization

of FIR Digital Filter”, IEEE Transactions on Circuits and Systems-I: Regular Papers ,

vol. 57, no. 3, pp. 592-603, Mar. 2010.

[38] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An HEVC fractional interpolation hardware

using memory based constant multiplication,” IEEE Int. Conference on Consumer

Electronics, pp. 1-5, Jan. 2018, doi: 10.1109/ICCE.2018.8326312.

[39] P. Sjövall, M. Rasinen, A. Lemmetti, and J. Vanne, “High-Level Synthesis

Implementation of an Accurate HEVC Interpolation Filter on an FPGA,” in IEEE Nordic

Circuits and Syst. Conf. (NorCAS), Oslo, Norway, 2021, pp. 1-7, doi:

10.1109/NorCAS53631.2021.9599653.

[40] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing

Surveys, vol. 48, no. 4, May 2016.

[41] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016.

[42] T. Nomani, M. Mohsin, Z. Pervaiz, and M. Shafique, “xUAVs: Towards efficient

approximate computing for UAVs—Low power approximate adders with single LUT

Delay for FPGA-based aerial imaging optimization,” IEEE Access, vol. 8, pp. 102982-

102996, June 2020.

https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1007/s11554-015-0516-4
https://doi.org/10.1109/TCAD.2014.2384517
https://doi.org/10.1109/ICCE.2018.8326312
https://doi.org/10.1109/NorCAS53631.2021.9599653

99

[43] E. Kalali and I. Hamzaoglu, “An approximate HEVC intra angular prediction hardware,”

IEEE Access, vol. 8, pp. 2599-2607, 2020.

[44] H. Mahdavi and S. Timarchi, “Improving architectures of binary signed-digit CORDIC

with generic/specific initial angles,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 67, no. 7, pp. 2297-2304, 2020.

[45] A. C. Mert, H. Azgin, E. Kalali, and I. Hamzaoglu, “Novel approximate absolute

difference hardware,” in Euromicro Conf. on Digital System Design, Aug. 2019.

[46] G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of approximate circuits

with runtime reconfigurable accuracy,” IEEE Access, vol. 8, pp. 53522-53538, Mar.

2020.

[47] S. Xu and B. C. Schafer, “Toward self-tunable approximate computing,” IEEE Trans. on

VLSI Systems, vol. 27, no. 4, pp. 778-789, Apr. 2019.

[48] Y. Kim, Y. Zhang, and P. Li, “Energy efficient approximate arithmetic for error resilient

neuromorphic computing,” IEEE Trans. on VLSI Systems, vol. 23, no. 11, pp. 2733-

2737, Nov. 2015.

[49] A. Raha, H. Javakumar, and V. Raghunathan, “Input-based dynamic reconfiguration of

approximate arithmetic units for video encoding,” IEEE Trans. on VLSI Systems, vol. 24,

no. 3, pp. 846-857, Mar. 2016.

[50] W. Ahmad, B. Ayrancioglu, and I. Hamzaoglu, “Low Error Efficient Approximate

Adders for FPGAs,” IEEE Access, vol. 9, pp. 117232-117243, Aug. 2021.

[51] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of

approximate compressors for multiplication,” IEEE Trans. on Computers, vol. 64, no. 4,

pp. 984-994, Apr. 2015.

[52] I. Hammad, L. Li, K. El-Sankary, and W. M. Snelgrove, “CNN inference using a

preprocessing precision controller and approximate multipliers with various

precisions,” IEEE Access, vol. 9, pp. 7220-7232, Jan. 2021.

[53] R. Conceição, J. C. de Souza Jr, R. Jeske, B. Zatt, M. Porto, and L. Agostini, “Low-cost

and high-throughput hardware design for the hevc 16x16 2-d dct transform,” Journal of

Integrated Circuits and Systems, vol. 9, no. 1, pp. 25-35, 2014.

[54] M. Chen, Y. Zhang, and C. Lu, “Efficient architecture of variable size HEVC 2D-DCT

for FPGA platforms,” AEU-International Journal of Electronics and Communications,

vol. 73, pp. 1-8, Mar. 2017.

100

[55] H. Loukil and N. Masmoudi, “A novel architecture design for VLSI implementation of

integer DCT in HEVC standard,” Multimedia Tools and Applications, vol. 79, no. 33, pp.

23977-23993, Sep. 2020.

[56] A. Shabani, S. Timarchi, and H. Mahdavi, “Power and area efficient CORDIC-Based

DCT using direct realization of decomposed matrix,” Microelectronics Journal, vol. 91,

pp. 11-21, 2019.

[57] Z. Vasicek and V. Mrazek, “Towards low power approximate DCT architecture for

HEVC standard,” in IEEE Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 1576-1581, 2017.

[58] M. Masera, M. Martina, and G. Masera, “Adaptive approximated DCT architectures for

HEVC,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 27, no. 12, pp.

2714-2725, July 2016.

[59] M. Jridi, A. Alfalou, and P. K. Meher, “Efficient approximate core transform and its

reconfigurable architectures for HEVC,” Journal of Real-Time Image Processing, vol.

17, no. 2, pp. 329-339, Apr. 2020.

[60] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” 13th

Video Coding Experts Group Meeting, 2001.

[61] R. Saha, P. P. Banik, and K. D. Kim, “Conversion of LDR image to HDR-like image

through high-level synthesis tool for FPGA implementation,” in IEEE Int. Conf. on

Consumer Electronics (ICCE), pp. 1-2, Jan. 2018.

[62] H. S. Lee and H. W. Jeon, “Comparison between HLS and HDL image processing in

FPGAs,” in IEEE Int. Conf. on Consumer Electronics-Asia (ICCE-Asia), pp. 1-2, Nov.

2020.

[63] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet? A study on the

state of high-level synthesis,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 38, no. 5, pp. 898-911, 2018.

[64] M. Kammoun, A. B. Atitallah, K. M. A Ali, and R. B. Atitallah, “Case study of an

HEVC decoder application using high-level synthesis: intraprediction, dequantization,

and inverse transform blocks,” Journal of Electronic Imaging, vol. 28, no. 3, pp. 033010,

2019.

[65] A. Sengupta, “Evolution of the IP design process in the semiconductor/EDA industry

[hardware matters],” IEEE Consum. Electron. Magazine, vol. 5, no. 2, pp. 123-126,

2016.

101

[66] J. S. León, C. S. Cardenas, and E. V. Castillo, “A high parallel HEVC Fractional Motion

Estimation architecture,” in IEEE ANDESCON, pp. 1-4, 2016.

[67] D. Ding, X. Ye, and S. Wang, “1/2 and 1/4 pixel paralleled FME with a scalable search

pattern for HEVC ultra-HD encoding,” in IEEE 16th Int. Conf. on Communication

Technology (ICCT), pp. 278-281, 2015.

[68] A. C. Mert, E. Kalali, and I. Hamzaoglu, “Low complexity HEVC sub-pixel motion

estimation technique and its hardware implementation,” in IEEE 6th Int. Conf. on

Consum. Electron.-Berlin (ICCE-Berlin), pp. 159-162, 2016.

[69] W. Penny, G. Correa, L. Agostini, D. Palomino, M. Porto, G. Nazar, and B. Zatt, “Low-

power and memory-aware approximate hardware architecture for fractional motion

estimation interpolation on HEVC,” in IEEE Int. Symposium on Circuits and Systems

(ISCAS), pp. 1-5, 2020.

[70] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC inverse DCT using high-

level synthesis,” in Conf. on Design and Architectures for Signal and Image Processing

(DASIP), pp. 1-6, 2015.

[71] UG902, “Vivado Design Suite User Guide: High-Level Synthesis,” Oct. 2019.

[72] L. Li, H. Li, Z. Lv, and H. Yang, “An affine motion compensation framework for high

efficiency video coding,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 525-

528, 2015.

[73] Y. J. Choi, D. S. Jun, W. S. Cheong, and B. G. Kim, “Design of efficient perspective

affine motion estimation/compensation for versatile video coding (VVC) standard,”

Electronics, vol. 8, no. 9, pp. 993, 2019.

[74] B. Ayrancıoğlu, Approximate computing based video compression hardware. Diss. 2022.

[75] B. Bross, J. Chen, J. R. Ohm, G. J. Sullivan, and Y. K. Wang, “Developments in

international video coding standardization after avc, with an overview of versatile video

coding (vvc),” Proceedings of the IEEE, vol. 109, no. 9, pp. 1463-1493, 2021.

[76] T. Fu, K. Zhang, L. Zhang, S. Wang, and S. Ma, “Hardware friendly interweaved

prediction for affine motion compensation,” in IEEE Picture Coding Symposium (PCS),

pp. 1-5, 2021.

[77] M. M. Muñoz, D. Maass, M. Perleberg, L. Agostini, and M. Porto, “Hardware Design for

the Affine Motion Compensation of the VVC Standard,” in IEEE 14th Latin America

Symposium on Circuits and Systems (LASCAS), pp. 1-4, 2023.

[78] M. M. Muñoz, D. Maass, M. Perleberg, L. Agostini, and M. Porto, “Efficient Hardware

Design for the VVC Affine Motion Compensation Exploiting Multiple Constant

102

Multiplication,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 1-

6, 2023.

[79] M. M. Muñoz, D. Maass, M. Perleberg, L. Agostini, G. Correa, and M. Porto, “4K

UHD@ 60fps Design For The VVC Affine Motion Estimation Reconstructor,” in 36th

SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design

(SBCCI), pp. 1-6, 2023.

[80] C. Taranto, “Simplified affine motion estimation algorithm and architecture for the

versatile video coding standard,” PhD diss., Politecnico di Torino, 2022.

