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ABSTRACT

CLUSTERING–BASED TIME RESOLVED SPECTRAL INVESTIGATIONS OF
BURSTS FROM MAGNETAR SGR J1550−5418

MUSTAFA DEMIRER

PHYSICS M.SC. THESIS, DECEMBER 2023

Thesis Supervisor: Prof. Dr. ERSİN GÖĞÜŞ

Thesis Co-Supervisor: Dr. YUKI KANEKO

Keywords: neutron star, magnetar, X-ray burst, machine learning

Magnetars, strongly magnetized neutron stars, are the sources of short duration but
extremely energetic hard X-ray bursts. This thesis presents a time-resolved spectral
analysis of 42 bursts originated from SGR J1550−5418. Our study introduces an
innovative approach to time-resolved spectral analysis: Initially, we created over-
lapping time segments and fitted them using three models: a comptonized model,
a double blackbody model, and a modified blackbody model with resonance cy-
clotron scattering. Subsequently, we tested four distinct algorithms for clustering
overlapping time segments, namely; K-means clustering, DBSCAN, agglomerative
clustering, and Gaussian mixture. The K-means algorithm was ultimately selected
for its effectiveness. After that, we created non-overlapping time segments by fit-
ting the clustered time segments. We employed the Bayesian Information Criterion
(BIC) for model comparison. As a result, we found that the COMPT model is most
favorable for the most fits, with approximately half of the time segments also being
favored by the other two models. Additionally, we observed a deviation from Stefan-
Boltzmann trend in kT vs R2 plot of the double blackbody model. The most notable
aspects of this study are that it is the first extensive application of the MBB−RCS
model and our novel method combining overlapping time segments with clustering
analysis.
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ÖZET

MAGNETAR SGR J1550−5418 PATLAMALARININ KÜMELENME BAZLI
ZAMAN ÇÖZÜNÜRLÜKLÜ TAYFSAL İNCELEMELERİ

MUSTAFA DEMIRER

FİZİK YÜKSEK LİSANS TEZİ, ARALIK 2023

Tez Danışmanı: Prof. Dr. ERSİN GÖĞÜŞ

Tez Eş Danışmanı: Dr. YUKI KANEKO

Anahtar Kelimeler: nötron yıldızı, magnetar, X-ışını patlaması, makine öğrenmesi

Magnetarlar çok şiddetli manyetik alanlara sahip nötron yıldızları olup,
kısa süreli ancak yüksek enerjili X-ışını patlamaları sergilerler. Bu tez,
SGR J1550−5418 kaynağından 42 patlamanın zaman çözümlü tayfsal analizini sun-
maktadır. Çalışmamız zaman çözümlemeli tayfsal analize yenilikçi bir yaklaşım ge-
tirmektedir: Daha önceki çalışmalardan farklı olarak her bir patlama için başlangıçta
örtüşen zaman dilimleri oluşturduk ve bunları üç model kullanarak fit ettik: comp-
ton modeli, iki kara cisim modeli ve rezonans siklotron saçılımına sahip modifiye
bir kara cisim modeli. Daha sonra k-kümeleme, DBSCAN, toplayıcı kümeleme ve
Gauss karışımı algoritmalarını zaman dilimlerimize uygulayarak test ettik. Denedik-
lerimizin arasından basit olması ve etkili sonuç vermesi nedeniyle K-kümelenme al-
goritması ile devam etmeye karar verdik. Sonrasında bu algoritmayı kullanarak
birleştirdiğimiz zaman dilimlerini fit ettik ve örtüşmeyen zaman dilimleri oluştur-
duk. Model karşılaştırması için ise Bayes Bilgi Kriterini (BIC) kullandık. Sonuç
olarak; COMPT modelinin neredeyse tüm zaman dilimleri için en uygun model
olduğunu, öte yandan zaman dilimlerinin yaklaşık yarısının diğer iki model tarafın-
dan tercih edildiğini tespit ettik. Ek olarak, iki kara cisim modelinin kT vs R2

grafiğinde Stefan-Boltzmann davranışından bir sapma gözlemledik. Bu çalışmanın
dikkate değer yönleri, MBB−RCS modelinin ilk kez kapsamlı uygulaması ve örtüşen
zaman dilimlerini kümeleme analiziyle birleştiren yeni yöntem olarak sıralanabilir.
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1. INTRODUCTION

Magnetars represent a small class of isolated neutron stars with extremely strong
magnetic fields. Due to enormous stresses by these strong fields, magnetars emit
highly energetic bursts. SGR J1550−5418 , is one of the prolific magnetars: It
emitted hundreds of bursts during its most active episode in 2009 detected with
multiple space-based telescopes including Gamma-ray Burst Monitor (GBM) on
board the Fermi Gamma-ray Space Telescope. A sample of brightest bursts from
SGR J1550−5418 detected with GBM is the focus of this thesis.

1.1 Neutron Stars

A neutron star is a compact object that forms after a supernova explosion of a
massive star. Typically, stars spend most of their lives in a balance between its own
gravity and outward radiative pressure. However, as the star approaches the end
of its life, namely when the core is iron rich, its fusion power drops and it cannot
provide the necessary radiative pressure to support inward force of gravity. At this
stage, gravity takes over and the core of the star begins to collapse. In the case
of massive stars (M > 8M⊙; Woosley et al., 2002), this collapse exerts immense
pressure at the star’s core. This intense pressure triggers neutronization through
inverse beta decay. A neutron star could then form if the newly formed neutron
rich central structure achieves stability via degeneracy pressure of neutrons against
the infalling mass. The core collapse process could also give rise to the formation
of a black hole if the gravitational force of the infalling mass exceeds the opposing
neutron degeneracy pressure.

1



1.1.1 Brief History of Neutron Stars

Baade & Zwicky (1934) coined the term neutron star, shortly after the discovery of
neutrons by Chadwick (1932). They proposed that supernova explosions could end
in the formation of extremely dense, compact objects predominantly composed of
neutrons. However, observational evidence for such type of celestial objects come
more than 30 years later. Hewish & Okoye (1965) detected “an unusual source of
high radio brightness” in the Crab Nebula. Subsequently, Jocelyn Bell observed
periodic oscillations from this same source (Hewish et al., 1968), leading to the
discovery of the first observational manifestation of neutron stars.

Following the initial observation of a pulsar, binary systems containing pulsars were
also discovered (Hulse & Taylor, 1975). While the first pulsar was detected in radio
wavelengths, subsequent discoveries have revealed pulsars emitting across various
regions of the electromagnetic spectrum, including optical pulsars (Cocke et al.,
1969), X-ray pulsars (Giacconi et al., 1971), and gamma-ray pulsars (Kniffen et al.,
1974).

Over more than half a century since their observational discovery, significant pro-
gresses have been made in understanding neutron star systems. A notable example
is the identification of millisecond pulsars (Backer et al., 1982). These are old neu-
tron star systems with low magnetic fields (∼ 109 G) in binary systems. They could
possess such high frequency rotation rates through the spin-up process via transfer
of matter from their companion stars in binary systems (Alpar et al., 1982). On
the other extreme, X-ray pulsations and spin-down rate measurements from a soft
gamma repeaters (SGRs) yielded an inferred magnetic field strength exceeding 1014

G, marked the discovery of magnetars (Kouveliotou et al., 1998). These systems
will be investigated in Section 1.2.

1.1.2 Properties of Neutron Stars

A typical neutron star has a radius of ∼ 10 km and a mass of ∼ 1.4 M⊙. The
minimum allowed mass of a neutron star is considered ∼ 1.17 M⊙, which can be
observed in the mass of the neutron star in a binary system of PSR J0453+1559
(Suwa et al., 2018). Conversely, the maximum allowed mass of a neutron star
depends on its equation of state (EoS), which remains uncertain at higher densities
at the interior of neutron star (ranging between 2ρ0 and 10ρ0, where nuclear density
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ρ0 = 2.8×1014 g cm−3). However, it is generally assumed to be between 2 M⊙ and
3 M⊙ (Chamel et al., 2013). The most massive neutron star observed to date has a
mass of 2.35±0.17 M⊙ (Romani et al., 2022).

It is expected that a newborn neutron star has a very high temperature (of the order
of 1010 K). Neutron stars rapidly cool via neutrino emission via direct and modified
Urca-processes (Gamow & Schoenberg, 1941). If the direct Urca-processes occur,
the liquid core would cool to 109 K in about a minute and reach 108 K roughly within
a week. However, the cooling to 109 K will be slightly slower due to the neutrino
and anti-neutrino absorption in the direct Urca core, extending this time to several
tens of minutes (Haensel & Schaeffer, 1992). On the other hand, if the non-direct
Urca-processes occurs, the core’s cooling to 109 K would take approximately a year,
and reaching 108 K would require around 106 years (Haensel, 1995).

The magnetic fields of neutron stars vary from 108 G (old systems) up to 1015 G
(magnetars). At birth, magnetic fields are believed to originate from the conser-
vation of magnetic flux during the dramatic shrinkage of radius of the progenitor
star to the much smaller radius of the neutron star (e.g. from R ∼ 1011 cm to R
∼ 106 cm; see Igoshev et al., 2021, for details). Additionally, various dynamo could
amplify the magnetic fields of new born neutron stars (Lander, 2021).

1.2 Magnetars

Magnetars are a subcategory of neutron stars that share similar characteristics with
typical neutron stars. However, they are distinguished from neutron stars in terms of
their enormous magnetic fields (≳ 1014 G, Duncan & Thompson, 1992). This intense
magnetic field of magnetars leads to a wide range of emission features primarily in
X-rays and gamma rays. The most distinctive magnetar activity is the repeated
emission of short duration but highly energetic bursts in hard X-rays. These events
were actually discovered with the Venera 11 & 12 spacecrafts in the late 1970s
(Mazets et al., 1979). They observed an initial narrow spike of about ∼ 15 ms and a
longer tail of about ∼ 150 ms. After observing recurring bursts from the same source,
a new class of burst sources were introduced: Soft Gamma Repeaters (SGRs) and
the first such source being SGR J1806−20 (Atteia et al., 1987; Laros et al., 1987).

Along with SGRs, another small class of bright X-ray sources have been exhibiting
intriguing persistent X-ray emission properties (Gregory & Fahlman, 1980). Based
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on their relatively long pulse periods and atypical X-ray spectra, they were called
Anomalous X-ray Pulsars (AXPs; van Paradijs, Taam & van den Heuvel, 1995). The
surface magnetic field strengths inferred from their spin period and spin-down rates
were already indicating that they could possess extremely strong magnetic fields.
Observations of SGR-like burst from AXPs (Gavriil, Kaspi & Woods, 2002) united
these two groups, which collectively form the family of magnetars. To date, there
are nearly 30 confirmed magnetars (Olausen & Kaspi, 2014).

Transient radiative behaviour of magnetars can be studied under three primary
classifications: Typical bursts, Outbursts, Giant Flares. Magnetar bursts are short
events, lasting from a few milliseconds to seconds, with a peak of distribution around
100 ms (Kaspi & Beloborodov, 2017). Peak luminosities of these bursts vary from
1038 to 1043 erg s−1. Bursts are commonly single-peaked with a fast rise and a slower
decay, while there have been observations of bursts with multiple peaks (Göǧüş
et al., 2001). Occasionally, bursts with emission tail that can last several minutes
are observed. (see; e.g. Göǧüş et al., 2011; Muş et al., 2015).

Outbursts are sudden increases in the persistent X-ray flux of magnetars. The flux
elevation at the onset of an outburst can be as high as a 1000 fold, reaching the level
of 1036 erg s−1 (see Rea & Esposito, 2011, for a review). For most outbursts, there
are typically associated timing anomalies, usually a glitch or an anti-glitch, which is
a sudden spin-up or spin-down of a pulsar (Kaspi & Beloborodov, 2017). The flux
of the outburst initially decays quite fast, occurring within a few minutes to hours.
Subsequently, the rate of decay slows down, stretching over several months or even
years (see e.g. Woods et al., 2004). Some magnetars do not show an outburst for
many years (e.g. 1RXS J1708-4009; Dib & Kaspi, 2014), in contrast, some can have
multiple outbursts (e.g. SGR 1806-20; Göǧüş et al., 2011).

Giant Flares are the brightest bursts originating from magnetars. To date, only
three such giant flares have been recorded. From SGR 0526-66 on March 5, 1979
(Evans et al., 1980), from SGR 1900+14 on August 27, 1998 (Hurley et al., 1999),
and from SGR 1806-20 on December 27, 2004 (Hurley et al., 2005). These events
reached peak X-ray luminosities within the range of 1044 to 1047 erg s−1, and a
total energy release exceeding 1044 erg in the hard X-rays and gamma-ray band.
Particularly, the December 27, 2004 event was at least 100 times more energetic
than the other two, even outshining all stars in our galaxy 1000 times.
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1.2.1 SGR J1550−5418

SGR J1550−5418, the source of bursts studied in this thesis, was first observed
with the Einstein X-ray satellite and was originally designated with the name, 1E
1547.0−5408 (Lamb & Markert, 1981). Its monitoring with the Parkes Radio Tele-
scope led to the discovery of its spin period P = 2.069 s and the spin-down rate of
Ṗ = 2.3 × 10−11 (Camilo et al., 2007). Therefore, the inferred magnetic dipole field
strength of 2.2 × 1014 G made this system the first magnetar identified via radio
observations.

After a long silence in X-rays, SGR J1550−5418 became active again in 2008 when
its three episodes of burst activity started. The first of these episodes began in
October 2008, featuring dozens of bursts (von Kienlin et al., 2012). The second
episode, starting on January 22, 2009, was the most active phase for the source,
emitting hundreds of bursts (van der Horst et al., 2012). The third significant
burst activity for SGR J1550−5418 occurred between March and April 2009. In
this thesis, mainly the bursts that took place in the second episode were analyzed.

Extensive investigations have been conducted to examine the spectral characteristics
of short bursts from various magnetars, employing both thermal and non-thermal
models (see e.g., Collazzi et al., 2015; Feroci et al., 2004; Israel et al., 2008). Specif-
ically for the bursts from SGR J1550−5418 , Lin et al. (2012), van der Horst et al.
(2012), and Kırmızıbayrak et al. (2017) have performed thorough time-integrated
spectral analyses. These comprehensive investigations have shown that the spec-
tra can be effectively described either by a combination of two blackbody functions
(BB+BB) or by a power law model with an exponential cut-off (COMPT).

Younes et al. (2014) conducted an in-depth time-resolved spectral analysis of a set
of bright bursts from SGR J1550−5418, aiming to overcome the limitation of time-
integrated analyses where the brightest moments dominate the overall picture. This
approach intended to provide a more clearer understanding of the bursts’ dynamics
and spectral characteristics, using BB+BB and COMPT models. In the COMPT
model fits, they observed a negative correlation between flux and the peak energy
(Epeak) up to a flux limit of approximately F ≈ 10−5 erg s−1 cm−2, after which the
correlation turns positive. Meanwhile, the BB+BB model fits indicated that the
relationship between the emission region’s area and temperature follows a broken
power law with a generally negative trend. For lower flux bursts, this trend remains
consistent with a single power law across temperatures, but a break in the power law
emerges at higher flux levels, possibly due to adiabatic cooling (Younes et al., 2014).
However, the spectral data were extracted from arbitrarily selected time intervals,

5



with each successive spectrum accumulated until reaching a certain signal-to-noise
ratio. This arbitrary selection might obscure the true spectral evolution within
the bursts, thereby limiting a deeper understanding of the spectral properties of
magnetars.

In this thesis, we introduce a new approach to the time-resolved spectral analysis of
42 bright Fermi GBM detected bursts from SGR J1550−5418, distinguished by our
unique method of creating time segments, which differs significantly from previous
analysis methods. Unlike earlier studies that formed time segments uniformly or
based on signal-to-noise ratios, our approach involves generating overlapping time
segments as a preliminary step. Then, to accurately identify the points of spectral
change within the bursts, we utilized machine learning-based clustering algorithms.
These algorithms were applied to create time segments of varied lengths, determined
by the spectral parameters derived from the initial phase. This innovative approach
has enabled us to achieve a more profound understanding of the burst data being
examined.

The next section provides a brief description of Fermi GBM detectors, its data types,
and in depth description of our methodology for the innovative time-resolved spectral
investigations including a machine learning-based spectral clustering application.
We present our results in Section 3, and discuss their implications in Section 4.
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2. METHOD

2.1 The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope, designed for observing transient events in
the gamma-ray sky, was launched on June 11, 2008, into a 565 km orbit. Aboard the
telescope are two primary scientific instruments: the Large Area Telescope (LAT)
and the Gamma-ray Burst Monitor (GBM). The LAT can detect gamma-ray bursts
with energies exceeding ∼ 20 MeV. The GBM detectors were developed to observe
objects in the lower energy band, ranging from ∼ 8 keV to ∼ 40 MeV (Meegan et al.,
2009).

2.1.1 GBM Detectors

The GBM includes two types of detectors: 12 thallium activated sodium iodide
(NaI(Tl)) scintillation detectors, and two bismuth germanate (BGO) scintillation
detectors. The NaI(Tl) detectors provide a lower energy spectrum, from ∼ 8 keV to
∼ 1 MeV, and can encompass the entire sky through the diverse orientations of the
12 detectors. On the other hand, BGO detectors provide an intermediate energy
spectrum between NaI(Tl) detectors and the LAT, with a range of ∼ 200 keV to
∼ 40 MeV. Positioned on opposite sides of the spacecraft, the two BGO detectors
ensure that any event above the horizon can be detected by at least one of these
detectors. Furthermore, the BGO detectors’ intermediate position in the energy
spectrum, between NaI(Tl) and LAT, allows them to serve as a calibration tool for
the other detectors (Meegan et al., 2009).
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2.1.2 Data Types

The Fermi/GBM produces three types of data: CTIME, CSPEC, and TTE. CTIME
offers a finer time resolution (256 ms) but coarser spectral resolution (8 channels),
while CSPEC, in contrast, provides the opposite with a coarser time resolution (4096
ms) and finer spectral resolution (128 channels). However, upon detector triggering,
these time resolutions significantly improve: CTIME to 64 ms and CSPEC to 1024
ms. They revert back to the sky monitoring resolution 600 seconds after the trigger
event. Additionally, the third data type, known as "time-tagged events" (TTE), is
recorded along with each event’s arrival time (with precision of 2 µs) and energy
(including 128 channels). The TTE data is continuously stored in a buffer and
telemetered periodically. When the GBM triggers, buffered data along with 300
seconds of post-trigger TTE data is transmitted (Gruber et al., 2014).

In our project, we utilized the TTE data from the Fermi/GBM detector due to its
superior resolution both in time and energy compared to the other two data types.
Given that the observed energy range of the SGRs are lower than ∼ 200 keV (Lin
et al., 2012; van der Horst et al., 2012; Younes et al., 2014) we employed the NaI(Tl)
detectors of the GBM.

2.2 Data Selection and Preparation

We used a large sample comprising 386 bursts from the 2008-2009 active episode
of SGR J1550−5418 , compiled from the burst catalog presented in Collazzi et al.
(2015). From this sample, we selected 74 bursts using a criterion of a minimum
of 1200 background-subtracted counts in the brightest detector (the detector with
the smallest zenith-to-source angle, explained below), aiming to include only those
bursts with statistically significant data. 30 bursts among our selection are satu-
rated, meaning that some portion of their data exceeded the readout capability of
GBM system (that is, 375000 counts/s with all 14 detectors). Consequently, we pro-
ceeded by excluding these saturated portions from these bursts in our analysis. We
conducted our study within the 8 to 200 keV energy spectrum, utilizing a minimum
time resolution of 4 ms.
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Figure 2.1 Light curves for 12 NaI(Tl) detectors of the burst occurred at
254299790.321 MET (Mission Elapsed Time, the time in seconds since midnight
of January 1, 2001). The plots framed with red indicate the detectors chosen for
analysis. The blue-framed plot shows the blocked detector. Red blocks on top of
each light curve are Bayesian block representations of light curves.

2.2.1 Detector Angle Threshold

Due to the placement of Fermi/GBM NaI(Tl) detectors on the spacecraft, multiple
detectors can simultaneously observe the same event. However, the signal-to-noise
ratio diminishes as the detector zenith-to-source angle increases. See Figure 2.1 for
the light curves of a burst obtained with the data collected with all 12 NaI detectors.
Thus, it is essential to extract data only from detectors where the angle does not
exceed a certain threshold. In this regard, we tested 45 degrees and 60 degrees as
potential threshold angles. We selected 10 bursts which include 2 detectors with
45 degree limit and 3 detectors with 60 degree limit to see the difference in spec-
tral analysis results. We subjected both to tests in XSpec1 with a single blackbody
model. As it can be seen in Figure 2.2 fit parameter kT results with a 60-degree

1XSpec is an x-ray spectral analysis tool specifically designed for astrophysical studies (Arnaud, 1996).
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threshold are more constrained since an increase in data points creates better statis-
tics. We set a 60-degree threshold and consequently, for many bursts, we utilized
data from 3 detectors, while in some cases, only 2 detectors were used. Moreover,
from our analysis, we eliminated detectors that were partially or entirely obstructed
by the spacecraft, as determined using the GBMBLOCK software provided by the
GBM team.
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Figure 2.2 Ratios of kT errors/kT with detectors less than 60 degrees vs. 45 degrees
included in single BB fit. The solid line indicates a 1-1 relation.

2.2.2 Burst Interval (Duration) Determination

We determined burst durations using a Bayesian approach in order to accurately
identify burst intervals, within which burst spectra are to be extracted. For this pur-
pose, we used data collected from the brightest NaI(Tl) detector from Fermi/GBM.
For each burst, we first constructed a light curve with a 4 ms time resolution for the
time window from –10 seconds to +10 seconds taking the burst trigger time listed
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in Collazzi et al. (2015). We then generated Bayesian blocks (Scargle et al. 2013)
from this light curve. Blocks with a duration longer than 4 seconds were classified
as background, and background level was calculated by taking the average count
rates of these blocks. The blocks that were shorter than 4 seconds and higher than
the background level around the trigger time were identified as bursts. The burst
interval (duration) was then determined as the interval from the start of the first
burst block till the end of the last burst block (see Table 2.2 for burst durations).

2.2.3 Overlapping Time Segment Creation

Before generating overlapping time segments, we first produced background-
subtracted light curves. We selected the nominal background level by averaging
the rates in the time interval between –50 and –1 s before the burst start time
as obtained with the Bayesian blocks technique. We then generated background-
subtracted light curve with a 4 ms time resolution.

Our goal is to analyze each burst by breaking it down into the maximum num-
ber of time segments, while also ensuring that these segments have enough burst
counts to conduct a statistically acceptable spectral analysis. Therefore, we needed
to determine the appropriate threshold for background-subtracted counts of each
time segment. Hence, we conducted spectral analyses on a sample of bursts us-
ing six threshold count values: 600, 1000, 1200, 1500, 1800, and 2000 counts. We
extracted time-resolved spectra with each of these threshold counts and we fitted
them with the three mostly favored continuum models: a blackbody, the sum of two
blackbody functions, and a power law with an exponential cutoff (these models are
further explained in detail in Section 2.3.1). For each spectrum fitted with each of
the three models, we calculated the ratio of best-fit model parameter error to the
corresponding parameter value and determined the percentage of ratios that exceed
50%, which indicates not well-constrained fit results. In Table 2.1, we present the
collective performances of these models for given count thresholds in determining
their model parameters. As a result, we concluded that all model parameters can
reasonably be constrained with a minimum of 1200 burst counts.
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Table 2.1 Table of time segments percentages of the burst 254297017.989 MET that
ratio of fit parameter error/fit parameter exceed 50% threshold with various photon
counts.

Number of Time Segments 29 23 19 16 13 13
Photon Count 600 1000 1200 1500 1800 2000
kT (Single Blackbody) 0% 0% 0% 0% 0% 0%
kTl (Sum of Two Blackbodies) 0% 0% 0% 0% 0% 0%
kTh (Sum of Two Blackbodies) 10% 4% 0% 0% 0% 0%
Γ (Power Law with an Exp. Cutoff) 0% 0% 0% 0% 0% 0%
Epeak (Power Law with an Exp. Cutoff) 0% 0% 0% 0% 0% 0%

Subsequently, we created time segments that were 80% overlapping in time, each
containing at least 1200 background-subtracted counts (see Figure 2.3). However,
during the burst peak, these overlapping segments tended to accumulate and more
than two time intervals overlap at the same time. To overcome this issue, we itera-
tively reduced the overlap by 5% per iteration until the end of each subsequent time
segment occurred later than the end of the previous one.
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Figure 2.3 Light curve of the burst detected at 2009 January 22 06:49:48.321 UTC
(254299790.321 MET) as seen with the brightest detector (n2). Black vertical dashed
lines show Bayesian block duration start and end times. Red horizontal bars rep-
resent the 48 overlapping time segments with each subsequent segment having an
overlap of 80% in time. The gap in the middle (shaded range corresponds to the
saturated part of the burst excluded from the analysis.

2.3 Spectral Analysis Methods

In our time-resolved spectral analysis, we implemented a novel approach for time bin-
ning that deviates from conventional methods, which typically rely on the observed
signal strength to determine the length of time segments. Our method comprises
two stages: First, we created overlapping time segments as explained in the previ-
ous section, and then fitted these time segments with our photon models described
below. After that, we employed the K -means clustering method to cluster the over-
lapping time segments, using the spectral parameters obtained from the fit results as
the basis for clustering. We determined non-overlapping time segments using these
clusters. In the final step, we fitted these non-overlapping segments again with the
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same photon models to obtain our results.

2.3.1 Continuum Photon Models

We utilized three different spectral models in our study, namely, a power law with
an exponential cut-off (COMPT), the sum of two blackbodies (BB+BB), and a
modified blackbody with resonance cyclotron scattering (MBB-RCS; Lyubarsky,
2002; Yamasaki et al., 2020), each of which is described below.

2.3.1.1 Power Law with an Exponential Cut-Off (COMPT)

This model is conventionally defined in XSpec as:

(2.1) A(E) = KE−α exp[−E/Eo]

where K is the photon flux measured at the pivot energy of 1 keV, Γ is the photon
index and E0 is the E-folding energy. This model mimics the spectral shape of
Comptonized burst photons emerging from the trapped fireball (burst sites) near
the surface of a magnetar. However, we implement a more intuitive parametrization
of this function as:

(2.2) A(E) = K(E/50 keV)Γ exp[−E(2+Γ)/Epeak]

where we change the pivot energy as 50 keV to optimize for the spectra of magnetar
bursts. Here Epeak corresponds to the energy at which E2A(E) function peaks, and
the two characteristic energies Epeak and E0 are related as follows:

(2.3) Epeak = (2+Γ)E0
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2.3.1.2 Sum of Two Blackbodies (BB+BB)

This model is the summation of two blackbody functions (Planck’s Law), we utilized
the built-in function of XSpec. Below is the equation for a single blackbody:

(2.4) A(E) = K ×8.0525E2dE

(kT )4
(

exp
(

E

kT

)
−1

)

In this equation, k is the Boltzmann constant, T is the temperature, and K is the
flux-related normalization parameter. In this way of definition, it is the measure of
source luminosity in units of 1039 erg/s if the emitting source is at a distance of 10
kpc.

2.3.1.3 Modified Blackbody with Resonance Cyclotron Scattering

(MBB−RCS)

Modified Blackbody with Resonance Cyclotron Scattering (MBB−RCS; Yamasaki
et al., 2020) is a model that incorporates two physical processes taking place in
the vicinity of magnetars, namely the effects of strong magnetic field on the emerg-
ing radiation and the effects of resonant cyclotron scattering. The first component
(MBB) was suggested by Lyubarsky (2002), who demonstrated using radiative trans-
fer treatments that the emission spectrum following a Planck distribution is altered
in the presence of strong magnetic fields. The resulting flux of the emission is ex-
pected as follows:

(2.5) A(E) = 0.47E2

exp
 E2

Tm
√

E2 +(3π2/5)T 2
m

 −1


−1

Here E and Tm denote the photon energy and the bolometric temperature respec-
tively. The factor of 0.47 in the equation ensures that total energy flux is pre-
served. Yamasaki et al. (2020) included the effect resonant cyclotron scattering to
the Lyubarsky (2002) model. In this case, photons emitted from a trapped fire-
ball near the surface of a magnetar undergo interactions with magnetospheric elec-
trons or positrons further changing the emerging photon spectrum. To implement
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MBB−RCS into XSpec, a table model was generated over the energy range from 5
to 300 keV, consisting of a grid of effective temperatures (Tm) ranging from 1 to 40
keV with energy steps of 0.5 keV.

2.3.2 Spectroscopy and Model Comparison

In our study, we employed the X-ray Spectral Fitting Package (XSpec; version
12.12.1) to conduct spectral analyses. Prior to the analysis, we generated Detector
Response Matrices (DRM) for every detector involved in all the untriggered events in
our sample. This was achieved using the GBM Response Generator, a tool provided
by the Fermi-GBM team. We analyzed 509 time segments from 42 bursts.

We employed three different models for fitting namely; COMPT, BB+BB, and
MBB-RCS as explained in the previous section. To quantify our fits statistic, we
used Castor statistics (C-stat; Cash, 1979). Since the C-stat is based on likelihood
and does not provide a measure for the goodness of fit. For this reason, we em-
ployed the Bayesian Information Criterion (BIC; Liddle, 2007) as our metric for
model preference:

BIC = −2lnLmax +m lnN = C-stat+m lnN.

Here, Lmax is the maximum likelihood, m represents the number of parameters in the
photon model, and N describes the number of data points. To compare models, we
evaluated the BIC difference (∆BIC) between pairs of models (BB+BB vs. COMPT,
COMPT vs. MBB−RCS, and BB+BB vs. MBB−RCS), if the difference exceeds
10 (corresponding to a Bayes factor > ∼150), we chose the model with lower BIC
as the preferred model (Kass & Raftery, 1995) for that specific time segment. If the
difference is less than 10, then we considered both two models as equally preferred
for the spectrum of that segment.
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Figure 2.4 values for overlapping time segments for the same burst shown in Figure
2.3. The light curve is shown with grey dashed lines (right axis). The favored models
determined by the ∆BIC are shown as color-coded.

After selecting favorable spectral models for each time segment of each burst by
comparing BIC values, we obtained the distribution of each fit parameter from
favorable fit models (Figures 2.5 and 2.6).
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Figure 2.5 Distribution of COMPT parameters: photon index (Γ) and Epeak for the
first and second graphs respectively. The third graph shows the Γ vs. Epeak for each
COMPT fit. Here, black plus signs represent the best fit model parameters and grey
bars represent the errors with 1σ (corresponds to 68 % confidence level) for each
parameter.

Figure 2.6 [Left] Distribution of thermal model parameters of the overlapping time
segmented bursts: Red solid line represents the cooler (low) kT and black solid
line shows hotter (high) kT for BB+BB fits. The dashed line presents the kT
parameter distribution of the MBB−RCS model. [Right] Cooler kT vs. Hotter
kT graph for each BB+BB fit. Grey color represents the model parameter errors
with 1σ (corresponds to 68 % confidence level) while black color shows the model
parameters.
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2.3.3 Clustering Methods

Following the fitting of our three models to the overlapping time segment data, we
implemented clustering using different clustering algorithms. This process was con-
ducted using Python programming language (version 3.6.9) and Scikit-learn (version
1.2.1; Pedregosa et al., 2011).

2.3.3.1 K-means Clustering

K-means is a common clustering algorithm in data analysis. The main purpose of
the algorithm is clustering data points such that the similarity within clusters is
maximized and the similarity between different clusters minimized (Lloyd, 1982).

Initially, the algorithm requires the number of clusters, denoted as k. It begins by
selecting random samples from the dataset to establish initial centroids (centers of
the clusters). The algorithm then proceeds through a two-step iteration: Firstly, it
assigns each data sample to its nearest centroid. Secondly, it calculates the mean
value of all samples associated with each centroid and defines the mean as the
new centroid. This iterative process continues until the squared difference between
the previous and current centroids falls below a predefined threshold. Once this
threshold is reached, the centroids stabilize, and the clustering process ends.

K -means clustering is one of the simplest and computationally efficient clustering
algorithms. Moreover, a weight can be defined for the data point, which is partic-
ularly helpful when the data has error bars. However, there are various drawbacks
of K -means too. First of all, the algorithm always draws circles (or ellipses due
to the scaling). This eliminates the possibility of clusters with different lengths.
Furthermore, K -means locate initial clusters randomly, therefore there is always a
possibility of converging to a local extremum point instead of the global extremum.
Nonetheless, there are some algorithms like running the algorithm multiple times or
spreading the initial centroids to reduce this issue.
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(a) Step 1: Data points shown in gray, ran-
dom initial centroids shown in red, green
and blue.

(b) Step 2: Each data point clustered with
the color of the nearest centroid.

(c) Step 3: Centroids updated according to
the mean of the each colored cluster.

(d) Step 4: Second and third step repeated
until the location of centroids are stabi-
lized.

Figure 2.7 Step by step working principle of the K -means algorithm. The figure is taken
from Wikimedia Commons, licensed under the CC BY-SA 3.0 license.

2.3.3.2 Density Based Spatial Clustering of Applications with Noise (DB-

SCAN)

Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
is a clustering algorithm based on density (Ester et al., 1996). The algorithm utilizes
two main parameters: eps and min_samples. The eps determines how close the
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data points should be to form a cluster and, as the name suggests, min_samples

determines the minimum number of samples to form a cluster. The algorithm begins
with drawing circles of eps radius around each data point. If there are at least
min_samples inside the circle, then that data point is defined as a core point.
Thus, points inside the circle of a core point are defined as neighbors. All core
points that are neighbors of each other and the non-core point neighbors of these
core points together form a cluster. In this schema, it is possible for a point to not
be a member of any cluster. Such data points are called noise or outliers.

The absence of an initial cluster number parameter is one of the biggest advantages
of DBSCAN. In addition, unlike K -means, it does not involve randomness. All steps
of the algorithm are deterministic. Therefore it is guaranteed to have the same result
in each trial with the same data. Moreover, clusters only depend on density, they
do not exhibit a distinct shape. On the other hand, it does not involve a weight
parameter. Also, it is not suitable for equal-density data or if all points of the data
set should be in a cluster (no noise).

Figure 2.8 DBSCAN clustering algorithm is shown. Red dots are core points, yellow
ones are neighbors of core points but themselves are not core points, and the blue
one is not connected to any of them, it is considered noise. The figure is taken from
Wikimedia Commons, licensed under the CC BY-SA 3.0 license.

2.3.3.3 Agglomerative Clustering

Agglomerative clustering is the “bottom-up” type of hierarchical clustering algo-
rithm. The algorithm starts with defining each data point as a cluster and then
merges the points closest to each other according to a metric. It repeats this pro-
cess step by step until all data points are collected in a single cluster. Hence, a
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dendrogram forms from this process. Depending on the parameters, any slice of the
dendrogram can be obtained as an ideal clustering of the data set.

The main advantage of agglomeration clustering is the ease of visualizing different
numbers of cluster schemas as a dendrogram. Therefore, the most suitable clustering
can be determined visually. In addition, it also does not need to specify the number
of clusters in the beginning. On the contrary, it is quite computationally expensive
and, hence not suitable for big datasets.

2.3.3.4 Gaussian Mixture Model Clustering

Gaussian mixture model clustering assumes that the data points are distributed
according to multiple Gaussian distributions with different parameters. Although
its principle is similar to K -means, unlike K -means shape of the clusters does not
have to be circular (or ellipsoidal), and they can be probabilistic. Gaussian mixture
utilizes an expectation maximization method to converge to a group of clusters. In
this method, clusters are initially determined via another clustering method or just
guessed. Then, each point is assigned a weight due to its probability of belong-
ing to each cluster. After that clusters are updated using the weights. These two
steps continue iteratively until a threshold is reached. The major drawback of Gaus-
sian mixture clustering is that it is a complicated algorithm and computationally
expensive.
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Figure 2.9 Comparison of our four clustering models on various two-dimensional data
sets. Different colors in each panel show their resulting clusters. The computation
time of each process is shown in the bottom right corner. The figure is taken from
Scikit-learn, licensed under the BSD license.
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2.3.4 Clustering Implementation

In this work, we investigated the aforementioned four clustering algorithms to cluster
the overlapping time segments. We selected the data points subject to clustering as
the midpoints of time segments and corresponding Epeak values obtained from the
COMPT model for each burst. The main reason for selecting Epeak as the clustering
parameter is that the COMPT model is statistically favorable for nearly all bursts in
our sample. Moreover, between Γ and Epeak parameters, the latter is more variable
throughout the bursts. For the implementation of the algorithms on our data, we
began by scaling the data points. This step was crucial for two reasons; (1) the range
of Epeak and time varies significantly among bursts and (2) in order to prevent one
axis from dominating the other one.
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Figure 2.10 Comparison of Epeak and Γ parameter variations on a sample burst
(MET: 254297017). It can be seen that the Epeak parameter varies from around 20
keV to around 40 keV. On the other hand, the range of the Γ parameter is only from
about -0.7 to about 0.

After examining all these clustering models described above, we found that DBSCAN
does not perform well with equally spaced data, that is time series data. On the other
hand, Agglomerative Clustering is suitable but requires extremely long computation
time. The Gaussian Mixture and K -means clustering models were found to yield
robustness in clustering time segments (that is, discrimination of spectral variations
in time). Due to the relative complexity and potential uncertainties involved with
the Gaussian Mixture clustering algorithm, we selected to proceed with a simpler
and more effective model, which is K -means clustering.

For the implementation of the K -means method, we needed to determine the optimal
value for k. To achieve this, we ran the algorithm for all possible k values, ranging
from 1 to N–1, where N represents the number of time segments in a particular burst.
We then plotted the k values against the inertia, which is the sum of the squared
distances of samples to their closest cluster center. The most popular technique to
determine k value in such occasions is called the elbow method. By definition, the
inertia value of K -means decreases as k increases. However, this decline starts very
sharp, and after a point, it decreases more gradually. Hence, the shape of the plot
looks like an arm, and the optimal k value is the point where the rate of decrease
suddenly changes, so-called the elbow point. However, it is not always possible to
have a distinct elbow point in the inertia plot, especially in the bursts with only
a few time segments. In such plots, elbow method algorithms fail or do not work
properly. Since we have a significant amount of fainter bursts, we saw that the elbow
method is failing in such cases.
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Therefore, we devised a unique method to identify the optimal point instead of the
elbow method. Based on our analyses of sample bursts, we observed that the last
25% of the k values typically fall into this flat region where the inertia does not
significantly change. Therefore, we first calculated the average inertia for the top
25% of k values on the inertia graph. Then, we increased this average inertia by
adding 1% of the maximum inertia value. The nearest integer to this value was
chosen as our optimal k number. We tried this method in some sample bursts and it
consistently yielded better results than the heuristic techniques that are commonly
used, such as the elbow method. This was particularly evident in bursts with a low
number of time segments, where the elbow method often fails to find an elbow point.
In contrast, our approach is still effective and applicable.

Lastly, besides k-means clustering, we also experimented with other machine learn-
ing clustering techniques such as DBSCAN, agglomerative clustering, and the Gaus-
sian mixture model. As explained in the previous section, we see that DBSCAN is
not suitable for our data, and agglomerative clustering, and the Gaussian mixture
results were in alignment with those obtained from k-means clustering. However,
both two models are much more complicated and computationally expensive when
compared to K -means clustering. Therefore, we decided to employ k-means clus-
tering as a reliable method for our analysis.
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Figure 2.11 Comparison of elbow method and our method in the burst MET:
255384041.494. The x-axis represents different numbers of k, y-axis represents the
inertia. As it can be clearly seen, our method gives a more stabilized k value in
terms of inertia.

After the clustering process, clusters (groups) of time segments still overlap since
each of the time segments was arranged such that it overlaps 80% with the previous
time segment. Hence, the last time segment in a cluster overlaps with the first
time segment in the adjacent cluster. To be able to create new non-overlapping
time segments from these clusters, we removed this overlap by dividing the total
background-subtracted counts in the overlapping region in half. Because the number
of counts is important to get a meaningful spectral fit result. Therefore, we shared
the number of counts in the overlapping region equally between the two clusters. In
this way, we finalized the decision of non-overlapping time segments’ start and stop
points for the extraction of new spectral data. A list of all bursts analyzed in this
study is shown in Table 2.2.
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Figure 2.12 Epeak values for 48 overlapping time segments (with 1σ uncertainties)
for the same burst shown in Figure 2.3. The light curve is shown with grey dashed
lines (right axis). The data points were colored by 9 spectrally distinct clusters
determined via K -means clustering, the intervals of which are shown with vertical
dotted lines. Note that the shaded interval was excluded from the analysis due to
count saturation. Black crosses show the Epeak values with 1σ uncertainties obtained
from the COMPT fits to the nine cluster segments in the second stage of spectral
analysis.
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Table 2.2 Table of SGR J1550−5418 bursts used in the project.

Burst Date UTC METa Durationb No of Overlapping No of Non-overlapping
(yymmdd) (s) (s) Time Segments Time Segments

090122 00:57:20.410 254278642.410 0.656 8 2
090122 01:08:41.706 254279323.706 0.915 11 3
090122 01:14:45.985 254279687.985 0.300 9 2
090122 01:28:59.988 254280541.988 0.516 5 2
090122 01:25:18.640 254280320.640 0.540 6 2
090122 02:32:53.944 254284375.944 0.296 5 2
090122 04:12:33.001 254290355.001 0.849 7 2
090122 04:09:08.677 254290150.677 0.808 8 2
090122 04:34:09.362 254291651.362 0.954 20 6
090122 04:32:49.462 254291571.462 0.687 13 5
090122 05:14:03.372 254294045.372 1.048 12 5
090122 05:16:06.849 254294168.849 0.153 10 3
090122 05:14:29.229 254294071.229 0.891 11 3
090122 06:03:35.989 254297017.989 0.448 15 4
090122 06:49:48.471 254299790.471 0.939 49 9
090122 06:51:14.791 254299876.791 1.165 32 9
090122 06:49:14.841 254299756.841 1.364 27 9
090122 06:49:08.655 254299750.655 0.751 19 4
090122 06:52:03.979 254299925.979 0.678 13 4
090122 06:52:00.167 254299922.167 0.264 7 3
090122 06:50:08.622 254299810.622 0.390 13 3
090122 06:49:32.952 254299774.952 0.548 11 3
090122 06:50:49.339 254299851.339 0.622 4 2
090122 06:49:44.192 254299786.192 0.609 9 2
090122 06:50:12.076 254299814.076 0.419 8 2
090122 06:50:14.271 254299816.271 0.281 7 2
090122 06:59:35.546 254300377.546 1.080 7 2
090122 07:00:58.715 254300460.715 0.665 12 4
090122 07:31:14.748 254302276.748 1.420 22 5
090122 07:40:15.939 254302817.939 0.602 10 3
090122 10:03:04.670 254311386.670 0.429 7 3
090122 12:00:48.740 254318450.740 0.565 7 2
090122 15:35:53.655 254331355.655 0.208 6 2
090122 23:14:54.053 254358896.053 0.520 17 6
090123 01:19:42.448 254366383.448 0.144 9 3
090123 02:42:10.695 254371330.695 0.592 18 5
090123 16:54:38.064 254422479.064 0.220 7 3
090125 23:00:36.087 254617238.087 0.980 10 2
090203 20:00:39.494 255384041.494 0.272 17 6
090204 20:27:20.796 255472042.796 0.236 6 2
090322 22:39:15.786 259454357.786 0.592 10 3
090401 15:59:36.826 260294378.826 0.208 5 2

a Mission Elapsed Time, the number of seconds since January 1, 2001
b Duration of the Bayesian block.
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3. RESULTS

After analyzing 562 overlapping time-segment spectra with three different models
and evaluating their BIC values, we found that 506 spectra (equivalent to 90.1% of
the sample) were most effectively modeled using the COMPT model. This means
that for these spectra, the COMPT model either had the most favorable ∆BIC value
or its BIC values were comparable (∆BIC difference < 10) to those of the other
models. The remaining two models, BB+BB and MBB−RCS, were less favored and
showed similar performance; the BB+BB model was preferred for 57.5% of the 562
spectra, while the MBB−RCS model was preferred by 58.4% of them.

In the second step of the analysis, we obtained 148 non-overlapping time segments.
Among these time segments; ∼ 95%, ∼ 54%, and ∼ 56% of them can be modeled
with the COMPT model, the BB+BB model, and MBB−RCS model respectively.
Therefore, in the second round of fitting, we noticed that there is a slight increase
in the number of favorable time segments COMPT model, and a slight decrease for
the other two models.

3.1 COMPT Model Results

We found that the photon index (Γ) parameter of the COMPT model shows a
Gaussian distribution in a range of between –2 and 1. The mean value of this
distribution is −0.53 ± 0.05 with a width of 0.47 ± 0.05. This fit corresponds to
a reduced chi-square of (χ2

ν) 0.79. In addition, the Epeak parameter of the model
is also Gaussian distributed with a mean and width of 31.1 ± 1.9 keV and 10.5 ±
2.4 keV respectively (χ2

ν = 1.89). The energy flux of this model fit in the 8−200
keV band ranges from 1.1×10−6 to 9.8×10−5 erg cm−2 s−1. Hence, energy fluence
values are between 1.9×10−7 and 1.6×10−6 erg cm−2.
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It is also worth mentioning that there are three outliers in the Epeak domain. They
have a peak energy of over 50 keV; exactly 55.7, 55.9, and 57.8 keV respectively.
These outliers coming from three different bursts and power law indices are not
extraordinary; -0.53, -0.96, and -1.04, respectively. Additionally, two of the three
outliers are obtained from two spectra with the flux of about 4×10−6 erg cm−2 s−1

and one from a spectrum at the flux of 2×10−5 erg cm−2 s−1, an order of magnitude
lower.

There is not any correlation between parameters of the COMPT model, Spearman’s
rank order correlation coefficient is (ρ) 0.21, and the chance probability of such
correlation to occur from a random data set (P) is 0.0105. On the contrary, there
is a positive correlation between the Γ and the corresponding flux with a ρ of 0.56
and P of 2.7×10−13. We also observe that the spectra exhibiting the highest flux
levels produce photon indices around 0.5, with their Epeak values tending to cluster
near 40 keV. Conversely, for spectra at lower flux levels, the Epeak values display a
broader distribution, spanning a range from approximately 15 keV to 45 keV.
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Figure 3.1 (a) The scatter plot of Epeak vs. photon index of the COMPT model
fits for 141 spectra. Corresponding energy flux values are color-coded. (b) The
distribution of Photon Index values, the best-fit Gaussian function model shown in
brown, and corresponding flux values are shown as diamond data points. The gray
dashed line shows the mean value of fluxes. (c) The distribution of Epeak, the best-fit
Gaussian function model shown in brown, and corresponding flux values are shown
as diamond data points. The gray dashed line shows the mean value of fluxes.

3.2 Thermal Models Results

3.2.1 BB+BB Model

As for the BB+BB model results, we observed that the cooler component of the
BB+BB model (kTl) has a Gaussian distribution with a peak at 4.37± 0.16 keV
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and a width of 1.0 ± 0.2 (χ2
ν = 0.82). This parameter has a narrower spread from

2 to 7 keV. On the other hand, the hotter component of the same model (kTh) has
a much broader distribution, ranging between 6 and 20 keV, yet the shape of the
curve is Gaussian. The distribution has a peak at 12 ± 0.49 keV and a width of 3.43
± 0.55 (χ2

ν = 1.15). Nevertheless, kTl and kTh parameters are correlated positively
(ρ = 0.84 and P = 1.6×10−22). but they are not correlated with the flux values.

For time segments with larger flux values, we observe that the spectra generally
exhibit higher kTl values. In the case of time segments with intermediate flux
values, the kTl values are predominantly found between 3 and 6 keV. Regarding the
flux-dependent behavior of kTh , its values span almost the entire range from 7.5 keV
to approximately 20 keV across all flux levels. The only exception is observed in
the highest flux time segments, where the kTh values are concentrated in a narrower
range, specifically between 10 and 11 keV.
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Figure 3.2 (a) The scatter plot of kTl vs kTh parameters that can be described with
BB+BB (80 spectra). Corresponding flux values are color-coded. (b) The distribu-
tion of kTh , the best-fit Gaussian function model shown in red, and corresponding
flux values are shown as diamond data points. The gray dashed line shows the
mean value of fluxes. (c) The distribution of kTl values, the best-fit Gaussian func-
tion model shown in red, and corresponding flux values are shown as diamond data
points. The gray dashed line shows the mean value of fluxes.

3.2.2 MBB–RCS Model

The distribution of the thermal parameter of MBB−RCS model (kTm) is between
kTl and kTh . Its range is in between 4 and 12 keV. Despite the lower number of
samples, the distribution of kTm is consistent with a bimodal distribution beside the
single Gaussian distribution. A single Gaussian fit to the distribution peaks at 8.35
± 0.74 keV and its width is 2.91 ± 1.0 (χ2

ν = 1.45). Additionally, the addition of
two Gaussian functions has the first peak at 5.63 ± 0.45 keV and the second peak at
9.0±0.13 keV. The widths are 1.6 ± 0.3 and 0.88 ± 0.12, respectively (χ2

ν = 0.47).
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In terms of the flux dependence within the MBB−RCS model, the lower and middle
flux values exhibit a distribution across the entire range of kTm values. However, a
notable trend is observed with the highest flux values: they tend to cluster around
the 8-10 keV region. This clustering interestingly coincides with the second peak of
the distribution.
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Figure 3.3 Time segment distribution of the MBB-RCS model temperature, kTm for
83 spectra. Flux values of each individual time segment are shown in logarithmic
scale and color-coded diamond data points. The best single Gaussian fit is drawn in
red and the best double Gaussian fit is drawn in blue. The gray dashed line shows
the mean value of fluxes.
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4. DISCUSSION

In this study, we introduced a novel method to examine the time-resolved spectral
characteristics of bursts from SGR J1550−5418 . This approach differs significantly
from traditional time-resolved spectral analysis methods (see e.g., Younes et al.,
2014). Our innovative two-step process employs a clustering algorithm to identify
time intervals during bursts that show substantial spectral variations. Consequently,
the spectral parameters derived from our method more accurately reflect the source’s
true spectral behavior, independent of our selection of time bins. Furthermore, our
systematic analysis of the time-resolved spectra of SGR J1550−5418 bursts involved
the use of a physically-motivated model (MBB-RCS), in addition to the application
of standard continuum models (COMPT and BB+BB).

4.1 Comparison to Previous Studies

The burst spectra of SGR J1550−5418 have been examined in previous studies using
both time-integrated and time-resolved approaches. Specifically, Younes et al. (2014)
and van der Horst et al. (2012) conducted studies on a list of bursts similar to the
one we have analyzed.

Younes et al. (2014) studied time-resolved analyses of 63 bursts originating from
SGR J1550−5418. Among these bursts, there are 44 bursts in common with ours.
Therefore, it is possible to make a valid comparison of the results of the two studies.
In the analysis, they employed the COMPT model as one of their continuum models.
They reported a Gaussian distribution for the photon index, peaking at −0.55±0.58.
This finding is compatible with our result.

Moreover, they graphed Epeak vs. Flux and Photon Index vs. Flux plots, resulting
in a broken power-law relation in both two plots. For the Epeak plot, they found a
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low-flux power law index of -0.18 ± 0.02 and a high-flux power law index of 0.12
± 0.02, with a breakpoint flux at (9.1±0.7)×10−6 erg cm−2 s−1, corresponding to
Epeak = 32 ± 2 keV. In comparison, we observed a broken power-law trend in the
Epeak vs. Flux plot as well. Our results show similar characteristics in higher flux
levels with a power-law index of 0.16 ± 0.04. However, this similarity does not
extend to lower flux values. In our results, we do not observe any correlation at low
flux levels.

About the photon index vs. flux plot, they indicated no correlation up to the
breakpoint of ∼ 10−5 erg cm−2 s−1, followed by a similar positive correlation as
Epeak vs. flux plot. However, our study revealed a double positive power law
characterized by slopes of 0.48 ± 0.07 and 1.85 ± 0.40.

In addition, Younes et al. (2014) analyzed the correlation between the blackbody
temperature (kT) and the surface area of the inferred emission region (R2 ) in four
flux regimes. They found that R2 vs. kT values show broken power-law charac-
teristics above a flux threshold of 3.2×10−6 erg cm−2 s−1. Below this threshold,
the trend aligns with a simple power law. In contrast, our results suggest that the
broken power-law model is only valid for the trend at the highest flux levels of F >

3.2×10−5 erg cm−2 s−1. Below this level, a simple power-law model is enough for
describing R2 vs. kT trends in all lower flux regimes.

It is also worth mentioning another difference between the two studies. Younes et al.
(2014) found a broken power law correlation with indexes of 0.2 ± 0.1 and 0.7 ± 0.2
between kTl and kTh, while we found a power law correlation which is explained in
the previous section.

Regarding the MBB−RCS model, we investigated the R2 vs. kT behavior with
the same flux levels. It was sufficient to represent all four correlations with the
power-law model. Our findings indicate that in the two lowest flux regimes, the
observed trends align with the predictions of the Stefan-Boltzmann law, where R2

∝ kT 4 . However, this pattern begins to diverge from the Stefan-Boltzmann law as
the flux increases, and the deviation becomes significant (nearly 7σ) in the highest
flux interval.
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Figure 4.1 The scatter plot of Epeak vs. flux (left panel) and photon index vs. flux
(right panel). Color code shows the preferred photon model(s) based on BIC values.
The black dots represent the weighted means of consecutive groups, each with 10
data points. The black dashed lines show the best fit to the relation between the
weighted means of Epeak and flux, and between the weighted means of photon index
and flux, respectively. The vertical dotted lines in both panels show the flux breaks,
which are consistent with each other within their errors.

Table 4.1 Area vs. kT fit parameters for various flux ranges of MBB-RCS and
BB+BB models as shown in Figure 5

MBB-RCS BB+BB
Flux Range α-kTm α-kTl α-kTh kTbreak

(erg cm−2 s−1) (keV)
F > 10−4.5 −3.18±0.12 −1.48±0.40 −8.98±0.99 10.81±1.03

10−5.0 < F < 10−4.5 −3.71±0.06 −4.11±0.11a −− −−
10−5.5 < F < 10−5.0 −4.35±0.08 −3.88±0.08a −− −−

F < 10−5.5 −4.11±0.10 −3.74±0.11a −− −−
a A single PL fit to the data.

van der Horst et al. (2012) revealed an intriguing relationship between flux and the
Epeak : They observed an anti-correlation between these parameters with a power
law index of -0.22 up to about 30 keV in Epeak , equivalent to a flux of 4×10−6 erg
cm−2 s−1, beyond which they become positively correlated with an index of 0.07.
In contrast, our results do not show any correlation at low flux levels but do show
a positive correlation between flux and Epeak with a power law index of 0.16±0.04.
This shift in trend happens at a flux of approximately 1.74×10−5 erg cm−2 s−1.
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Despite van der Horst et al. (2012) finding no correlation between the photon index
and flux, we found a broken power-law relationship between them with the slope
of 0.48±0.07 and 1.85±0.40. The change in this trend, which coincides with the
change of trend in the flux−Epeak behavior, occurs around a flux of 3.09×10−5 erg
cm−2 s−1.

Additionally, we analyzed the distribution of spectra in the Epeak vs. flux and pho-
ton index vs. flux planes, categorizing them based on their preferred model. Notably,
COMPT is the favored model for all these spectra. We observed that spectra with a
preference for the MBB−RCS model, in addition to COMPT, correspond to higher
Γ parameters than those favoring the BB+BB and COMPT models, even though
both groups are present across all flux levels.
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Figure 4.2 [Left] Flux color-coded plot of R2 vs. kT for BB+BB. Each data point
represents the weighted means of R2 and kT of 2 time segments only for display
purposes. Solid lines show the best-fit models. [Right] Flux color-coded scatter plot
of R2 vs. kT for MBB-RCS. Solid lines represent PL fits. Distance = 5 kpc
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4.2 Comparison with SGR J1935+2154

We compared the results of SGR J1550−5418 and SGR J1935+2154 (Keskin et al.
(in preparation)) in addition to previous studies. We found significant differences
in the flux relationships of both parameters from the COMPT model. We ob-
served a positive correlation between flux and Photon Index in SGR J1550−5418 ,
in particular time segments with the highest fluxes. Despite time segments
of SGR J1935+2154 with the highest fluxes also exhibiting Photon Index values
around 0 and 0.5, these points represent the median of the distribution, unlike
in SGR J1550−5418. Moreover, in SGR J1935−2154, there is a positive cor-
relation between Epeak values and flux, with the highest Epeak values correlat-
ing with the highest flux values. Yet, the flux peaks around the middle of the
SGR J1550−5418 distribution. Additionally, in both bursts, Epeak and flux values
demonstrate a relationship characterized by a broken power-law.

About the BB+BB model analysis, we found a positive correlation between kTl and
kTh in both two bursts. Also, both two kT values and flux show a positive correlation
in SGR J1935−2154, which is not the case in SGR J1550−5418. Instead, the highest
flux values are concentrated around the peak of the Gaussian distribution in both
two kT values of SGR J1550−5418. Finally, for SGR J1935−2154, the relationship
between R2 and kT values in the BB+BB model can be described using a broken
power law, except in the case of the lowest flux group, where both a single and
broken power law can fit the data. Conversely, for SGR J1550−5418, the parameters
generally exhibit characteristics of a single power law fit, with the only exception
being the highest flux group, which displays a broken power law relationship.

MBB−RCS model displays similar flux characteristics in both SGR J1550−5418 and
SGR J1935+2154 bursts but they have different distributions. In
SGR J1550−5418 , there is a distribution with two peaks, which can be modeled us-
ing a double Gaussian, a feature not present in the SGR J1935+2154 distribution.
The relations between R2 and kTm in both bursts show single power-law fit
characteristics across all flux groups. Notably, there is a significant deviation
from a Planckian distribution at the highest flux values in SGR J1935−2154.
This deviation aligns with expectations, as Yamasaki et al. (2020) described the
MBB−RCS model implies that photons emitted from the fireball scatter once by
magnetospheric particles in the resonant layer, leading to a tail in the spectrum at
higher energies and, consequently, a deviation from a Planckian distribution. In
SGR J1550−5418, although there is a deviation at the highest fluxes (F > 10−4.5),
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it remains relatively close to -4 with α = −3.18.
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5. CONCLUSIONS AND FUTURE PROSPECTS

In this thesis, we employed a number of machine learning tools to identify significant
spectral variations in short magnetar bursts for the first time. We concluded that
one of the earliest techniques, namely the K-means clustering is the most robust
and effective method in time-resolved spectral analysis of very short transient events.
A similar two-stage approach that we incorporated here could be applied to time-
resolved spectral investigations of other short transient events, such as, cosmological
gamma ray bursts and thermonuclear bursts from neutron stars in low mass X-ray
binaries.

The COMPT model is dominantly favored nearly for the whole sample of spectra.
However, earlier time-integrated magnetar burst spectral studies showed that the
BB+BB model is more preferred (e.g. van der Horst et al., 2012). This is not
surprising given the fact that we observe significant variations in Epeak throughout
the bursts. When these spectra with different Epeak values are combined to form
the integrated burst spectra, the resulting spectral shape could mimic the form
of a BB+BB if Epeak values are mostly concentrated around two or more values.
Therefore, despite with less statistical significance, the COMPT model yields a
better description on short timescales.

The MBB−RCS model is applied systematically for the first time to a large sample
of magnetar burst spectra. Even though it is still a toy model (involving only a
single scattering) it can explain most (∼ 60%) of the spectral of time segments. We
can also see that the R2 and kTm relation shows similar characteristics with the
Stephan-Boltzmann Law as in Figure [right]. Hence, it lends further support to this
relatively simple but physically motivated model for magnetar bursts.

We found a broken power law in R2 and kTm relation of BB+BB model only in the
flux regime larger than about 3×10−5 erg cm−2 s−1 whereas earlier time-resolved
spectral investigations showed the deviation from Stephan-Boltzmann Law when
flux is higher than 3×10−6 erg cm−2 s−1 Younes et al. (2014). This difference could
arise from different methodological approaches (number of counts in each spectrum,
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arbitrary selection of time segments, etc.). The important fact is that we confirm
the presence of a broken power law trend in the R2 vs kT domain. It was recently
suggested that the deviation could be due to anisotropies of the flux tubes that
could form in the emission zone.

In the future, different methodologies can be applied to capture spectral change
points more precisely. In particular, deep learning methods, such as artificial neural
networks can be utilized for this purpose.

In this thesis, we present combined results of our detailed time-resolved spectral
analyses. Within this context, we have developed a large set of spectral results for
all bursts in our sample. The recent detection of quasi-periodic oscillations (QPOs)
in the Epeak parameter of an SGR J1935+2154 burst (Roberts et al., 2023) is highly
encouraging to systematically search for similar periodic or quasi-periodic variations
in the parameters of SGR J1550−5418 bursts.
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