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Abstract

Convolutional Neural Networks (CNNs) is one of the mainstream paradigms in most

computer vision tasks. Accurately quantifying the uncertainty in CNN’s predictions

is crucial as they are being used in various applications, including safety- critical

domains such as medical image classification and autonomous driving. Yet, uncer-

tainty prediction remains a challenge. Softmax probabilities are often used to model

uncertainty with no solid support. Recent studies have tackled this challenge using

three distinct methodologies, namely: Monte Carlo Dropout, Deep Ensembles, and

Evidential Deep Learning (EDL). Although this thesis primarily focuses on EDL,

the most up-to-date and computationally efficient among these approaches, each of

these methods performance in uncertainty estimation along with their predictive ca-

pabilities are compared using CIFAR-10 and CelebA datasets in this work. Finally,

leveraging the EDL method on the CelebA dataset, a novel approach is presented

to automatically detect mislabeled samples within the dataset.
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Özet

Evrişimsel Sinir Ağları görüntü işleme uygulamalarında en yaygın olarak kullanılan

yöntemlerden biridir. Evrişimsel Sinir Ağları’ nın tahminlerindeki belirsizliğin doğru

bir şekilde ölçülmesi, bu yöntemin tıbbi görüntü sınıflandırması ve otonom sürüş gibi

güvenlik açısından kiritik alanlar da dahil olmak üzere çeşitli uygulamalarda yaygın

olarak kullanılması nedeniyle çok önemlidir. Buna rağmen, belirsizlik tahmini hala

tam olarak çözülemeyen bir problem olarak kalmaya devam etmektedir. Bu yönde

herhangi bir somut kanıt olmamasına rağmen softmax olasılıkları genellikle belirsi-

zliği modellemek için kullanılmaktadır. Güncel araştırmalar belirsizlik ölçümleme

problemini, Monte Carlo Dropout, Deep Ensembles ve Evidential Deep Learning

(EDL) isimli üç farklı strateji kullanarak ele almıştır. Bu tez öncelikli olarak, belir-

tilen yaklaşımlar arasında en güncel ve hesaplama açısından en verimli olan EDL’

ye odaklanmış olsa da, bu yöntemlerin her birinin belirsizlik ölçümlemedeki perfor-

mansı ve tahminleme yetenekleri bu çalışmada CIFAR-10 ve CelebA veri setleri kul-

lanılarak karşılaştırılmıştır. Son olarak, LFWA veri seti üzerinde EDL yönteminden

yararlanılarak veri seti içerisinde yanlış etiketlenmiş örneklerin otomatik olarak

tespit edilmesi için yeni bir yaklaşım sunulmaktadır.
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are one of the mainstream paradigms in

most computer vision tasks. Accurately quantifying the uncertainty in CNN’s pre-

dictions is crucial as they are being used in various applications, including safety-

critical domains such as medical image classification and autonomous driving. Yet,

uncertainty prediction remains a challenge. Softmax probabilities are often used to

model uncertainty with no solid support.

While the importance of accurately quantifying uncertainty in CNNs for safety-

critical applications has been widely acknowledged, the existing reliance on softmax

probabilities has proven inadequate. Recent studies have aimed to tackle the demand

for reliable uncertainty estimation by exploring Bayesian approaches and second -

order probabilistic frameworks such as Evidential Deep Learning (EDL).

In a study done in 2016, it has been shown that the mean softmax probability of

incorrectly classified samples was found to be greater than 0.80 on three different

datasets [1]. Due to the limitations of frequentist methods to estimate uncertainty,

Bayesian approaches have gained significant traction. In [2], each weight of the net-

work is represented as a probability distribution rather than a point estimate. To

approximate the predictive distribution, ensembles of different networks are used in

[3] which it is computationally inefficient due to the nature of ensemble techniques.

In [4], dropout is applied during testing which is computationally taxing since it

requires multiple passes through the network for each data sample. As a remedy to

drawbacks of mentioned techniques, Sensoy et al. [5] explicitly modeled the predic-
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tions of the network as a Dirichlet distribution defined over the network outputs, by

learning the parameters of the Dirichlet distribution from data. We compare these

methods using public datasets that are widely used in computer vision.

Furthermore, the majority of the works in uncertainty quantification literature use

small and simple benchmark datasets, such as MNIST[1] and CIFAR-10[2]. Al-

though promising results have been obtained from these studies, the application of

uncertainty quantification methods to more extensive and intricate datasets remains

underexplored.

Another contribution of this thesis is to evaluate the EDL framework, the most

recent and computationally efficient among the ones studied in this thesis, on two

of the widely used datasets for face attribute classification, CelebA[3] and LFWA[4].

Identifying attributes from face images has been a key area of research in recent

years, as it enables practical applications such as attribute based searching and

video surveillance. Despite the significant improvement that has been achieved in

terms of predictive performance, uncertainty estimation remains unexplored in the

domain of face attribute classification. In this paper, we tackle this problem by using

the Evidential Deep Learning (EDL) framework presented in [5]. The underlying

model is a convolutional neural network that is trained to learn the parameters of

an evidential distribution, which models a second-order probability distribution over

class probabilities.

The main contributions and findings of this paper are summarized in the following:

1. We conduct comprehensive quantitative analysis on the CIFAR-10 dataset us-

ing the most commonly used approaches of uncertainty quantification, namely,

Monte Carlo Dropout, Deep Ensembles and Evidential Deep Learning. We

compare the ability of mentioned methods in estimating the uncertainty by:

• Analyzing the resulting uncertainty distributions for correctly classified

and misclassified samples

• Providing rejection option based on confidence metrics obtained from

each approach

• Providing accuracy vs uncertainty curve for all uncertainty values ob-
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tained in the test to assess the relationship between accuracy and confi-

dence

2. We conduct extensive experimental analysis, both quantitatively and qualita-

tively, on two of the widely used datasets for face attributes classification, i.e.

CelebA and LFWA

• Applying the EDL framework to face attribute classification to estimate

the uncertainty in the output predictions.

• Illustrating the effectiveness of the proposed framework on the widely

used face attributes benchmark, i.e. CelebA

• Comparing the predictive performance of the EDL framework with the

traditional softmax-based approach on 40 distinct attributes provided in

CelebA

• Demonstrating the ability of the proposed approach in estimating the

uncertainty via extensive analyses and showing potential use cases

• Utilizing the EDL framework, we introduce a novel approach to automat-

ically detect mislabeled samples within the dataset

3



Chapter 2

Related Works

The problem of uncertainty quantification in deep learning have been studied for

years, since ”knowing what a model does not know” is a longstanding challenge,

especially today with the increase in deep learning applications in our everyday

lives.

In recent years, the field has seen significant advancement with approaches that

seeks to approximate the posterior distribution over the parameters of the network

through means of sampling. 2 commonly employed techniques in this category are

Monte Carlo Dropout(MC- Dropout) [5] and Deep Ensembles [6]. Although they

are popular and relatively easy to implement, these methods are computationally

demanding as they require making multiple passes through the network for each

data sample.

Recently, Evidential Deep Learning [7] has gained significant traction since it seeks

to learn the parameters of the posterior distribution directly rather than through

sampling, which reduces the computational complexity remarkably. We elaborate

on the mentioned techniques in the following.

2.1 Monte Carlo Dropout

Dropout[8] is a straightforward yet effective technique used in deep learning to

prevent overfitting. Essentially, dropout works by randomly deactivating a subset

of neurons in the neural network based on a bernouilli random variable with a

4



probability p during training. This randomness ensures that the model does not

become overly dependent on any specific set of neurons, thereby encouraging the

network to learn more generalized features. Since it is used to combat overfitting,

dropout is only used in the training process, and it is turned off during inference.

During the training process, deterministic Neural Networks learn a fixed set of

weights, W, whereas Bayesian Neural Networks try to learn the posterior distri-

bution over weights, i.e. distribution of the network parameters given input X and

ground truth Y as depicted in the equation 2.1.

P (W | X,Y) =
P (Y | X,W)P (W)

P (Y | X)
(2.1)

Knowing this posterior distribution allows us to obtain the predictive distribution

for a new, unseen test sample (denoted as x*) by performing an integration over

the posterior distribution (equation 2.2). The variance or entropy of the resulting

predictive distribution can be considered as prediction uncertainty for that sample.

Unfortunately, the posterior distribution is intractable to compute.

P (y∗|x∗,X,Y) =

∫
P (y∗|x∗,W)P (W|X,Y)dw (2.2)

Monte Carlo Dropout (MC Dropout) aims to approximate the posterior predictive

distribution through sampling. The main idea behind the approach is to make mul-

tiple stochastic passes through the neural network for each sample using a different

sample of weights. At its core, MC Dropout extends the dropout technique to the

inference phase by utilizing the dropout mechanism to obtain multiple samples dur-

ing testing. More precisely, during inference, each sample is fed into the network

N times (usually taken as 100) with dropout activated so that a different output

scores are produced by the network for each of these passes. This process effectively

simulates sampling from a probabilistic model, creating a distribution of outputs for

each input.

For classification tasks, the uncertainty can be calculated as the variance or more

commonly as the entropy, which is also the preferred method in this study, across

the softmax output probabilities from all forward passes.A high variance indicates

5



that the model is less certain about its prediction, whereas a low variance suggests

higher confidence.

2.2 Deep Ensembles

Similar to MC Dropout approach described above, Deep Ensembles aims to ap-

proximate the posterior distribution by means of sampling. However, in this case,

using an ensemble of independently trained networks each learning a unique sample

of weights. In other words, the deep ensemble approach involves constructing an

ensemble of K DNNs as M = [Mi]
K
i=1, where each DNN, i.e. Mi, is characterized by

different architectural configurations.

In parallel with the MC Dropout approach, we have an ensemble of prediction

distribution, [p(y | x,Mi]
K
i=1, which can be utilized to measure the uncertainty by

computing the average entropy [9]. Intricacies regarding entropy calculation are

elaborated in section 4.4.

However, it is worth mentioning the biggest drawback of the deep ensemble ap-

proach: it is very demanding in terms of both computation and memory. This

challenge make the approach infeasible for real-world applications.

2.3 Evidential Deep Learning

Recently, the EDL framework [7], which is an extension of Dempster-Shafer Theory

[10] and Subjective Logic (SL) [11], is proposed for use with neural networks. EDL

constructs its learning objective as an evidence-gathering process by applying a

Dirichlet prior defined over network outputs. It attempts to overcome the limitations

of softmax-based CNNs by probabilistically estimating the predictive distribution

of the network. In this setting, model outputs are interpreted as a probability

distribution rather than a point estimate resulting from the traditional softmax-

based approach.

For a K-class classification task with mutually exclusive classes and input xi, the

loss function is defined using the sum squares loss and the Dirichlet prior [7]:

6



Li(θ) =

∫
∥yi − pi∥22

1

β(αi)

K∏
j=1

p
αij−1
ij dpi

=
K∑
j=1

yij
[
y2ij − 2yipi + p2ij

]
=

K∑
j=1

yij
(
y2ij − 2yij[pij] + [p2ij]

)
(2.3)

where yi is the one-hot encoded target; pi represents the assigned class probabilities

and αij are the parameters of the evidential Dirichlet distribution.

Additionally, a Kullback-Leibler (KL) divergence term is introduced into the loss

function to minimize the evidence for incorrectly classified samples, resulting in the

following total loss:

L(θ) =
N∑
i=1

Li(θ) + λt

N∑
i=1

KL [D (pi | α̃i) ∥ D (pi | 1)] (2.4)

where λt refers to the annealing coefficient which increases the effect of the KL

divergence throughout training; D(pi | 1) denotes the uniform Dirichlet distribution;

and α̃i = yi + (1− yi)⊙ ai, with element-wise product, denoted by ⊙.

Once the parameters of the Dirichlet distribution αij are obtained by applying ReLu

activation function to the network outputs for input xi, one can calculate Si which

is the Dirichlet strength, defined as S =
∑K

k=1 αk and the uncertainty u, which is

calculated as u = K
S
where K is the number of classes.

The modification to train a binary classifier with EDL only requires modifying the

loss function, as in Eq. 2.3 and applying ReLU activation function at the output to

keep the parameters of the Dirichlet distribution non-negative.

7



Chapter 3

Methodology

This chapter outlines the evaluation approaches used in this thesis. We first present

the datasets used in our study in detail. Our strategy to analyze uncertainties is

separated into three sections, namely, Comparative Analysis of Uncertainty Methods

(Sec. 3.2), Qualitative Analysis of EDL Uncertainties (Sec. 3.3), and Finding Errors

in Ground Truth (Sec. 3.4).

It is worth noting that, while alternative methods for uncertainty estimation have

been developed and evaluated for comparison purposes, the primary emphasis of this

thesis lies on EDL, which is the most recent and computationally efficient approach

among those discussed. Thus, EDL is specifically employed for methods 3.3 and 3.4.

3.1 Datasets

The CIFAR-10 dataset, which is a standardized benchmark widely used in the eval-

uation of CNNs due to its moderate size and diversity, is utilized for comparative

analysis between different uncertainty estimation methods. It consists of a total of

60k images across 10 different classes. The dataset is partitioned into training and

test sets, consisting of 50k images for training and 10k images for testing purposes.

Further information about the dataset is provided below:

• Number of Images: 60,000

• Image Dimensions: 32x32 pixels

8



• Classes: 10 (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck)

• Distribution: 6,000 images per class

In order to explore the capabilities of uncertainty estimation by the EDL framework,

which is the main focus of this thesis, we conduct extensive experimental analysis on

two of the widely used datasets for face attributes classification, namely, CelebA [3]

and LFWA [3]. CelebA dataset [3] is the largest facial attribute dataset to date with

more than 200k images, introduced by Liu et al. [3] in 2015. The dataset consists of

a total of 202, 599 images with a train, validation, and test split of 162, 770 images,

19, 867 images, and 19, 962 images respectively. The dataset provides 40 binary

attributes for each image. CelebA dataset is used to demonstrate the performance

of the system compared to the baseline.

LFWA dataset (Labelled Faces in the Wild) [3] is a medium-sized facial attribute

where the same 40 attributes as in CelebA are annotated. It consists of 13, 243

images belonging to 5, 749 subjects, whose pictures are collected from the web. The

train-test splits are given, where 6, 263 images are used for training and 6, 980 images

are utilized for evaluation. LFWA is used to demonstrate the use of uncertainties

in catching labeling mistakes due to its relatively small size, which allows manual

inspection.

3.2 Comparative Analysis of Uncertainty Quan-

tification Methods

In this section, we explore our approach to evaluate and compare uncertainty esti-

mation methods. The following subsections cover our strategies for analyzing the

uncertainty metrics obtained from each respective method and outline our approach

to their comparative analysis.

3.2.1 Softmax Output as a Confidence Score

Softmax probabilities are often used as model confidence. However, due to the

exponential function employed in the softmax layer, the trained deep neural network

9



often produces high confidence scores even for misclassified samples, as studied

extensively in [5, 12, 13]. In fact, in one study, it has been shown that the mean

softmax probability of incorrectly classified samples was found to be greater than

0.80 on three different datasets [12].

We employed two approaches, similar to presented above, to showcase the drawbacks

of using the softmax output as a metric of uncertainty, using the CIFAR-10 and

CelebA datasets:

• Measuring the mean softmax output on wrongly classified samples in the test

set

• Illustrating the distrubution of softmax probabilities on wrongly classified sam-

ples to highlight high scores for the misclassified samples

Experiments belonging to these two approaches are discussed in 4.2

3.2.2 Dropout as a Bayesian Approximation

The approach presented in [5], commonly known as Monte Carlo Dropout. The

idea is to make multiple stochastic passes for each sample during inference time,

with different sample of the weights. This approach leverages the dropout mecha-

nism during both training and testing phases, enabling the generation of multiple

stochastic predictions by activating dropout at test time.

We analyze the capabilities of this method as:

• Depicting the relationship between predictive mean resulted from N stochastic

passes and entropy

• Demonstrating the test set accuracy versus reject ratio based on decreasing

entropy values

The experiments associated with these methodologies will be addressed in Section

4.2.
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3.2.3 Deep Ensembles

Similar to Monte Carlo Dropout approach, uncertainty estimation using Deep En-

sembles approximate the predictive distribution through sampling. The difference

lies in the sampling method. Unlike Monte Carlo Dropout approach which utilize

dropout layers, Deep Ensembles leverage independently trained neural networks by

aggregating their predictions to capture model uncertainty. We adopt the same

strategy for assessing the approach’s effectiveness in measuring uncertainty as used

in the MC Dropout method.

3.2.4 Evidential Deep Learning

As discussed in detail in Section 2.3, EDL treats its learning objective as an evidence

acquisition process by establishing a higher order distribution, i.e. evidential distri-

bution, over the initial likelihood parameters of the network. The modification to

train a classifier with EDL only requires modifying the loss function, as in equation

2.3 and applying ReLU activation function at the output to keep the parameters of

the Dirichlet distribution non-negative.

For the purpose of comparing the uncertainties quantified by EDL approach, we

conducted another analysis of the correlation between varying reject ratios, this time

derived from uncertainties quantified by the EDL framework, and overall accuracy

calculated on the test set of CIFAR-10.

We also conducted further experiments on CelebA dataset to investigate the relation-

ship between predictive performance of the model and characteristics of uncertainty

distribution estimated for different attributes belonging to the dataset. For selected

few attributes with varying predictive accuracies, mean and standard deviation of

uncertainty distributions are calculated on CelebA test set for positive and nega-

tive class proportions and presented in Table 4.6. The results derived from these

strategies are thoroughly discussed in Section 4.2
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3.3 Qualitative Analysis of EDL Uncertainties

In order to gain insights into the characteristics of samples deemed uncertain by

EDL network, we conduct extensive qualitative analysis on both the training set

and test set of CelebA.

First, samples in the training set are sorted by their respective uncertainty estima-

tions. Our intuition was that samples with the highest uncertainties might possess

out-of-distribution traits specific to the dataset. Results of the experiment discussed

in section 4.3.3 which validated our hypothesis.

Second, samples in the test are investigated. However, in this instance, we focused

on the samples associated with the smallest uncertainties. Our experiments reveal

that a significant portion of these samples entail labeling errors, as expounded in

Section 4.3.3. This observation lays the groundwork for our approach to identifying

mislabeled samples within the training set, which is explored in the following section.

3.4 Finding Errors in Ground Truth

Many datasets have errors in the ground-truth label. Specifically, the LFWA dataset

contains quite a lot of label mistakes. To see if uncertainties can be used to spot

dataset label errors, we found the label mistakes in the training split of the dataset

for the Male attribute. Relabeling was done only when the label error was clear and

resulted in 416 new labels, out of 6263 samples.

Motivated by the observations provided in section 3.3, we plotted the ratio of ground-

truth mistakes (true positives) that are caught when using different uncertainty

thresholds, together with the corresponding false positive rate. The outcomes are

discussed in section 4.4.1 by highlighting the ratio of ground truth mistakes caught

by this approach and ratio of the false positive rate obtained by our method.
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Chapter 4

Experiments

In this chapter, we elaborate on the experiments we have conducted, including

architectural details, optimization techniques, training strategy, data augmentation

and results. The intricacies of the training process are covered in section 4.1 while

subsequent sections delve into the results.

Results are grouped into 2 main sections, Comparative Analysis of Uncertainty

Methods on CIFAR-10 and Analysis of EDL Framework on CelebA & LFWA. The

first section evaluates the effectiveness of different approaches in uncertainty estima-

tion. The latter section delves into in-depth quantitative and qualitative experiments

conducted on CelebA and LFWA datasets. These experiments include: (1) Accu-

racy comparison of the EDL against the traditional softmax based classifiers (2)

Qualitative analysis to understand the characteristics of the samples that the model

deems uncertain (3) Quantitative analysis to assess the weaknesses of the system in

regard to class imbalance (4) Iplementing a rejection option based on uncertainty

(5) Finally introducing our approach to identify ground truth errors using the EDL

framework.

4.1 Experimental Setup

In this section, we provide our choice of the network architectures for each method,

along with the details of our implementation. We also describe the data augmenta-

tion techniques and the training strategy we employed.
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4.1.1 Network Architecture and Implementation

In all experiments, we adopted the pre-trained ResNet-50 model as the backbone

feature extractor due to its relatively small size and good performance, including

the state-of-art results obtained in face attribute classification problem [14]. For

the experiments conducted using CIFAR-10, which consists of images of size 32x32,

kernel sizes of convolutional blocks are adjusted to smaller dimensions. ResNet-50

was initially trained on ImageNet with images of size 224x224, therefore the kernel

sizes and strides were designed accordingly. Main reason for our decision to reduce

kernel sizes is to maintain larger feature map within the network, enhancing its

descriptive capability, hence increasing its performance. It is worth noting that

if the original kernel sizes are used, the size of the feature maps are reduced to

8x8 only after the 1st convolutional block. Modifications to networks convolutional

parameters are summarized in Table 4.1

Table 4.1: Convolutional Settings of the original ResNet-50 and our adapted version

for CIFAR-10

Original CIFAR-10 Adjusted

Kernel Size 7 3

Stride 2 1

Padding 3 1

As for the experiments involving CelebA dataset, original Resnet50 architecture is

used without any alterations. The model is pre-trained on the ILSVRC 2012 dataset

[15] with 1.2 million labeled images of 1, 000 object classes.

Pytorch is used as the deep learning development framework and each model is

trained on a single Tesla V100 16GB graphics processing unit (GPU). Details re-

garding training strategy and implementation specifics are provided in the following

for each method.
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Monte Carlo Dropout.

A dropout layer with a dropout rate of 0.1 is introduced after each ReLU non-

linearity presented in our adjusted version of ResNet-50. The model is trained

using Adam optimizer [16], with a batch size of 128, and learning rate of 4e−2.

ReduceLRonPlateau with a patience value of 10 is utilized as a scheduler and the

network is trained for 50 epochs.

Deep Ensembles.

ResNet-50, ResNet-34, and ResNet-18 are utilized in deep ensembles to achieve a

satisfying classification accuracy as well as powerful uncertainty representation. All

models are trained using the Adam optimizer, with a batch size of 128, and learning

rate of 3e−4. Once again, ReduceLRonPlateau with a patience value of 10 is used

as a scheduler during training and all networks are trained for 50 epochs with an

early stopping criteria.

EDL.

The system proposed in this work uses the EDL framework proposed in [7] and

summarized in Section 2.3.

For EDL implementation, the softmax layer of the network is replaced with ReLU

non-linearity and the loss function given in equation 2.3 is used in all experiments.

For experiments involving CIFAR-10 we use 10 output nodes for each class, whereas

for tests conducted using CelebA dataset, we use two output nodes per binary

attribute (K = 2) and train 40 models for the 40 binary attributes separately.

As for the model optimization, we trained each model using Adam [16] optimizer

with batch size of 128, learning rate of 3e4 and default momentum coefficients of

(0.9, 0.999).
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4.1.2 Data Augmentation

Deep Neural Networks are often characterized by a vast quantity of free parame-

ters, amounting to hundreds of billions if we consider the recent LLMs, rendering

them prone to overfitting. A common strategy to mitigate this issue is through

the application of data augmentation techniques. Recently, a variety of sophisti-

cated approaches for image augmentation have been developed, among which the

procedure called RandAugment detailed in [17] was selected as our preferred aug-

mentation policy for CelebA dataset following comparative evaluations with other

alternatives. In addition to RandAugment, we employed an augmentation technique

named Random Erasing, in which the pixel values of a random rectangle region in

the input image are replaced with random values as elaborated in [18].

A less aggressive data augmentation is employed for experiments performed on the

CIFAR-10 dataset, which can be considered as a small dataset, especially in today’s

standards. We observed that a more conservative augmentation techniques yield

more stable uncertainty values for small datasets. Consequently, we employ the

following straightforward yet efficient data augmentation methods for models trained

on CIFAR-10: (1) Random Horizontal Flip: images are flipped horizontally with a

probability of 0.3. (2) Random Affine Transformation: an affine transformation with

degrees ranging from -3 to +3, horizontal and vertical shift in the range [-3.2, +3.2],

and finally with a scaling factor ranging from 0.8 to 1.2 is applied to input images

randomly with a probability of 0.4. (3) Color Jitter: Hue property of input images

are jittered using a hue factor chosen uniformly from [-0.5, +0.5], while saturation

is jittered with a factor chosen uniformly from [0.5, 1.5].
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4.2 Comparative Analysis of Uncertainty Meth-

ods on CIFAR-10

In this section, we first provide an intuition behind fundamental problems associated

with treating softmax outputs as a confidence metric. This exploration includes not

just a theoretical discussion, but is also reinforced with empirical evidence obtained

on the CIFAR-10 dataset. Then, the uncertainty estimation methods employed in

this study are analyzed individually, culminating in a comparison that highlights

the relationship between uncertainty vs accuracy.

It is important to highlight that our objective is not to achieve the state-of-the-

art predictive performance in these problems, but rather to assess the effectiveness

of the approaches in quantifying uncertainty. However, choosing ResNet-50 as the

backbone, resizing input images to 224x224 and following a training regime that

is used for the experiments in CelebA yielded 96.23% accuracy for softmax based

approach, and 96.16% accuracy for EDL on the test set of CIFAR-10.

Softmax Output as a Confidence Metric. Disadvantage of considering softmax

scores as confidence metric is heavily studied in deep learning literature as discussed

in section 3.2.1 and is detailed in the following.

For a multi-class classification problems, the objective function is to optimize the

cross entropy loss between the predicted distribution and ground truth distribution,

as formulated in equation 4.2.

− log σ(f(x, θ)y (4.1)

where x is the input, y is the corresponding ground truth label, and fy is the output

corresponding to the neural network with parameters θ. The outputs of the network

are interpreted as the posterior probabilities of each class:

p(y | x, θ) = σ(f(x, θ)y)− log σ(f(x, θ)y (4.2)

It is important to recognize that the probabilistic interpretation of cross-entropy

loss essentially equates to Maximum Likelihood Estimation (MLE). As rooted in
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frequentist approach, MLE lacks the ability to determine the variance in predictive

distributions [7].

Furthermore, the softmax function is commonly recognized for its tendency to am-

plify the probability of the predicted class. The culprit behind this phenomenon is

the exponential applied on the logits, represented as z in equation 4.3 of the neural

network which is shown in:

σ(z)i =
ezi∑K
j=1 e

zj
(4.3)

Moving on to the experiments, similar to a test conducted in [12], the average soft-

max probability of misclassified samples are measured as 0.8011, which highlights

the limitations of relying on softmax outputs as a metric of uncertainty. Further-

more, distribution of the softmax score of the winning class is plotted in Figure

4.1 for incorrectly classified samples on the test set of CIFAR-10. This distribution

showcases the networks’ overconfidence on incorrectly classified samples.
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Figure 4.1: Histogram of softmax probability for misclassified samples, belonging

to winner class, obtained on the test set of CIFAR-10. Distribution peaks at the

tail end of the softmax probability, highlighting its limitations as an indicator of

confidence.
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EDL.

Extensive qualitative and quantitative analysis conducted on the CelebA dataset

regarding uncertainty estimation capabilities of EDL framework are presented in

the following sections. Here, we specifically provide our observations on CIFAR-10

for comparison with the other approaches.

A common way to assess the capability of uncertainty estimation is to analyze its

distribution. For samples that are correctly predicted, the uncertainty distribution

is expected to show a peaking trend, indicating a higher confidence level in these pre-

dictions. On the other hand, for misclassified samples, the distribution is expected

to become more flattened. This behavior is illustrated in Figure 4.2 by plotting the

histogram of uncertainties measured using the test set of CIFAR-10.
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Figure 4.2: Histogram of EDL uncertainties measured on the test set of CIFAR-10,

grouped by correct(blue) and wrong(orange) predictions. Distribution of correct

predictions peaks at the lower uncertainty values, while it peaks at the tail end for

the misclassified samples.
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Additionally, the relationship between predictive accuracy and uncertainty measure-

ment is evaluated. To this end, we calculate accuracy across varying uncertainty

thresholds, ranging from 0 to 1, by considering only those test samples associated

with uncertainty values exceeding the threshold. For instance, examining only the

samples with uncertainty > 0.9, we expect lower accuracy compared to samples

associated with uncertainty > 0.1. Consequently, this behavior should result in a

decreasing curve, which is depicted in 4.3.
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Figure 4.3: EDL uncertainty vs accuracy curve for varying uncertainty values. For

each uncertainty threshold t on the x-axis, accuracy is calculated for samples with

uncertainty > t. Accuracy reaches its minimum value for the maximum uncertainty

threshold.

Finally, we conclude this part by implementing an EDL uncertainty based reject

option. We explored a range of reject ratios based on uncertainty values, spanning

from 1% to 20% of the most uncertain portion of the test set, and calculated the

accuracy for each of these varying reject ratios. The line plot resulted from this

approach is demonstrated in 4.4. Filtering out the top 1% uncertain portion of the

dataset results in 1.9% increase in accuracy.
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Figure 4.4: EDL uncertainty based rejection option (from 1% to 20%) acquired on

test set of CIFAR-10. for instance, for reject rate of 1%, accuracy is measured by

filtering out the top 1% uncertain samples, increasing the accuracy of the remaining

samples by 1.9% compared to baseline(i.e. from 93.7% to 95.6% as marked with red

point in the plot).

Monte Carlo Dropout.

As outlined in section 3.2.2, we implemented a dropout layer with a rate of 0.1 after

each ReLU activation in the ResNet-50 architecture and trained the network for 50

epochs. During inference, each sample is passed through the network for 100 times

to generate a predictive distribution. For each 100 forward pass, output probabilities

for each class are stored. The average probability across all these passes represents

the final prediction of the model for that sample.

Entropy is utilized as a metric for uncertainty in model’s predictions, a method

commonly used in the literature of uncertainty quantification [5, 6, 7, 9]. Defined by

the formula in equation 4.4, entropy is a fundamental concept in information theory

that quantifies the amount of unpredictability in the outcomes of a random variable.

In the context of machine learning, it is used to assess the level of uncertainty in

a model’s predictions. In other words, high entropy for a sample indicates higher
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uncertainty in the prediction, while lower entropy suggests that the model is con-

fident in its predictions. Entropy reaches its maximum value if the model outputs

probability of 0.1 for all 10 classes.

H(X) = −
n∑

i=1

P (xi) logP (xi) (4.4)

We first start our experiments by evaluating the uncertainty distribution for cor-

rectly predicted and mispredicted samples from the test set. In Figure 4.5, a scatter

plot is provided to illustrate the relationship between predictive mean and entropy

for two classes of CIFAR-10, namely, automobile and truck. Predictive mean is cal-

culated by averaging over the 100 softmax score for the corresponding class, while

entropy is measured according to equation 4.4. False predictions are associated with

high uncertainty, while their predictive mean is relative low as expected. Among all

the misclassified samples in the automobile and truck classes, the model associates

only 3 and 2 samples, lower than the average entropy calculated across the entire

test set, as depicted in Figure 4.5.

Figure 4.5: Predictive mean of the corresponding class and entropy obtained over

the test set of CIFAR-10, for automobile and truck classes. Higher entropy indicates

higher uncertainty. Among all the misclassified samples in the automobile and truck

classes, the model associates only 3 and 2 samples(marked in red) with entropy lower

than the average entropy calculated across the entire test set.
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Figure 4.6: MC-DO entropy based rejection option (from 1% to 30%) acquired on

test set of CIFAR-10. i.e. for reject rate of 20%, samples with entropy values greater

than 80% of the highest entropy calculated in the test is filtered out, and accuracy

is calculated considering only those samples.
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Figure 4.7: MC-DO entropy vs accuracy curve for varying entropy values. For each

entropy threshold t on the x axis, accuracy is calculated considering only the samples

with entropy > t. Accuracy reaches its minimum value (0) for the maximum entropy

measured on the test set.
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Next, a rejection option mechanism using the entropy values is implemented akin

to the method used in EDL approach as depicted in 4.6. This curve again exhibits

an increasing trend, demonstrating that the measured entropy values distinguish

between correct and incorrect samples.

To conclude, we provide our results for the correlation between accuracy and mea-

sured entropy values. Unlike the uncertainty metric used in the EDL framework,

entropy values are not bounded between [0, 1]. Confidence values obtained by the

MC-DO approach is more spread out from the mean as it exhibits more variation

compared to EDL method. This is summarized in Table 4.2, by providing descrip-

tive statistics regarding the confidence metric for all methods. Hence, rather than

using a rejection option based on the proportion of confidence values, we offer a re-

jection criterion that utilizes the statistical characteristics of the confidence metric

across different uncertainty quantification methods for comparison purposes. De-

tails of this approach are discussed in the subsection Observations and the result

is illustrated in Figure 4.12.

Table 4.2: Summary statistics of the confidence metrics obtained on the test set of

CIFAR-10, for EDL, MC-DO and Deep Ensemble approach

EDL MC-DO Deep Ensembles

mean 0.23 1.10 0.20

variance 0.05 0.22 0.04

std 0.23 0.47 0.21
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Deep Ensembles.

As elaborated in section 4.1.1, 3 ResNet variations are used for deep ensembles,

namely, ResNet-18, ResNet-34 and ResNet-50. Accuracy obtained over the test set

for each model are measured as 92.6%, 93%, 93.5% respectively. It is important

to note that the use of multiple CNNs in this approach demands significantly more

memory and computational resources than any other method analyzed in this study,

making it impractical for real-world applications. For the remaining of this section,

we adopt the same experimental structure that aligns with the methodologies used

in other approaches

First, in order to evaluate approach’s capability to measure uncertainty, we explore

whether the model can distinguish between correctly and incorrectly classified sam-

ples based on the uncertainty metric, i.e. entropy. Following this investigation, we

find that the average entropy for the correctly classified samples is 0.17, in contrast

to a significantly higher average entropy of 0.72 for misclassified samples.

Second, we implement a rejection option based on entropy values in the ensemble

method, paralleling the approach used in other methods. The resulting curve, illus-

trated in Figure 4.8, shows the impact of excluding the most uncertain portion of

the test set on overall accuracy. When we reject the top 1% of the test set to which

the model assigns the highest uncertainty, there is a 1.8% increase in accuracy.

Finally, the relationship between predictive accuracy and confidence is analyzed.

Similar to other approaches, we compute accuracy at various entropy thresholds,

expecting a correlation between higher entropy and lower accuracy. When we filter

out the samples with the highest entropy values (for instance, the top 10% cor-

responding to entropy of 1.56), we observe that the accuracy for samples in this

portion reaches zero. However, it’s important to note that this outcome primarily

stems from the fact that only 4 samples are present in this segment. This is also

the reason of the noisy segments locating at the tail of the curve.
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Figure 4.8: Deep Ensembles entropy based rejection option (from 1% to 20%) ac-

quired on test set of CIFAR-10. i.e. for reject rate of 20%, samples with entropy

values greater than 80% of the highest entropy calculated in the test is filtered out,

and accuracy is calculated considering only those samples.
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Figure 4.9: Deep Ensembles entropy vs accuracy curve for varying entropy values.

For each entropy threshold t on the x axis, accuracy is calculated considering only

the samples with entropy > t. Accuracy reaches its minimum value (0) for the

maximum entropy measured on the test set.
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Figure 4.10: Samples with the highest uncertainties(top row) and the lowest uncer-

tainties (bottom row) measured on the test set of CIFAR-10 for each approach.
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Observations.

Here, we extend the individual analysis conducted for each approach in the previous

sections to overall comparison and offer our insights. To begin with, we present a

qualitative analysis performed on the CIFAR-10 test set for each method. Next, we

particularly focus our attention into discrepancy regarding the value range of the

uncertainty metrics, which hinders a direct comparison between methods in terms

of reject ratios. A short summary of the mentioned problem is provided before

presenting our approach to comparison in the subsequent sections.

We explore the test set of CIFAR-10 in Figure 4.10, according to the uncertainty

values assigned to the samples by each method. Samples with the highest uncer-

tainties are displayed in the top row, while the bottom row shows samples with the

lowest, which is an intuitive result, verifying our implementation qualitatively.

As discussed regarding the experiments for MC-Dropout approach, the uncertainty

metric of the EDL framework can take values in the range of [0,1], independent of

the number of classes involved in the problem. In contrast, the maximum value

of entropy is influenced by the number of classes; with 10 classes in this instance,

the upper limit for entropy reaches 3.32. In addition, no test sample reached this

upper limit in our experiments, as sample with the maximum entropy has a value

of 2.20 and 1.74 for MC-Dropout and Deep Ensembles approaches respectively.

Consequently, for instance, if we consider the top top 1% uncertain samples in

the test set of CIFAR-10, EDL approach have 440 samples whereas MC-Dropout

and Deep Ensembles approaches contain only three and two samples respectively in

this portion. This is summarized in Table 4.3 for different methods. This issue is

illustrated further in Figure 4.11 by dividing the uncertainty range of each method

to 100 evenly spaced intervals, and reporting the corresponding number of samples

within each interval. This issue is illustrated further in Figure 4.11 by dividing the

uncertainty range of each method to 100 evenly spaced intervals, and reporting the

corresponding number of samples within each interval.
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Table 4.3: Number of samples that belongs to top K% uncertain portion of the test

set, for K ∈ {1, 2, 5, 10} for EDL, MC-Dropout and Deep Ensembles method

Count

EDL MC-Dropout Deep Ensembles

top 1% 442 3 2

top 2% 457 12 4

top 5% 493 47 10

top 10% 538 199 24

top 20% 641 914 67
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Figure 4.11: Count of samples for varying uncertainty values with evenly spaced

intervals , 0% corresponding to minimum uncertainty and 100% indicating the max-

imum uncertainty value observed on the test set of CIFAR-10 for each approach.

As a result of this observation, we suggest a rejection option based on the descriptive

statistics of the uncertainty metrics, measured on the test set. We computed the

mean and standard deviation (std) of the uncertainty values in the test set and

employed the mean, along with values one and two standard deviations above the

mean as threshold values. Table 4.4 shows the number of samples left and their

corresponding accuracy when samples with uncertainty greater than the specified

thresholds are removed from the dataset. EDL emerges as the most suitable method

for this approach, given its higher accuracy across these thresholds.
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A similar plot is created by considering all samples that exceed an uncertainty

threshold and then applying a rejection criterion, as shown in Figure 4.12.

Table 4.4: Accuracy and the count of samples that remain after excluding samples

with uncertainty exceeding the specified thresholds.

Threshold Values EDL MC-DO Deep Ensembles

Acc Count Acc Count Acc Count

mean 99.6% 7451 99.4% 4994 99.2% 7803

mean + 1 std 99.1% 8808 96.8% 8070 97.9% 8764

mean + 2 std 98.5% 9240 92.5% 9925 96.48% 9369
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Figure 4.12: Error rate for for the samples that remain if the samples associated

with uncertainty exceeding the specified threshold is rejected.
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4.3 Analysis of EDL Framework on CelebA &

LFWA

In this section, we first provide a literature review for face attribute classification

then evaluate the EDL framework in a series of experiments, including both quan-

titative and qualitative analysis. A significant portion of this section has been

previously published in [19].

4.3.1 Face Attribute Classification

Face attributes classification is the task of describing visual characteristics of facial

images, including gender and facial expressions, which are therefore beneficial for

identifying individuals. It has gained significant attention in wide range of applica-

tions, such as face recognition [20, 21, 22], image search and retrieval [23, 24, 25],

face verification [26, 27], etc.

Until recent years, facial attributes classification has been addressed by extracting

handcrafted features at predefined locations/ landmarks as in [28, 29, 30, 31]. Kumer

et al. [28] trained binary classifiers for face attributes based on low-level features

extracted from different regions of the face. Li et al. [31] employed multi-scale Gabor

features [32] for facial attributes encoding, which are then converted by a learned

hashing process for attributes prediction. Even though these kinds of approaches

lead to reasonable results in various applications, these handcrafted features are not

tuned for the target task and may fail with unconstrained backgrounds and complex

facial variations.

Due to the rapid development and the ability of deep learning to learn discriminative

features, CNN has shown great success in face attributes classification [14, 33, 34,

35, 36]. In [33], Hand and Chellappa propose a multi-task deep CNN sharing the

lowest layers amongst all attributes. In [14], Atito and Yanikoglu take advantage of

attributes relationship by training attributes in groups based on their localization in

an end-to-end framework and incorporating an ensemble learning technique within

the network itself to reduce the training time. In [36], Chen et al. propose an

attribute grouping strategy to divide the attributes into task groups based on their
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correlation. A recent survey on the topic can be found in [37].

While the above methods learn effective classifiers, the trained models are in general

not effective in estimating the confidence/uncertainty of the output. In this thesis,

we explore using the EDL framework introduced by Sensoy et al. [7] to represent

the prediction uncertainty in face attribute classification.

4.3.2 Accuracy Evaluation

The application of the EDL framework is demonstrated on the face attribute classi-

fication problem, using the widely used CelebA dataset. Specifically, we trained 40

binary classifiers for each attribute independently using EDL loss function, employ-

ing ResNet-50 as the backbone network. As a baseline, we train the same backbone

network using sigmoid activation function, one for each attribute. The training of

the binary classifiers are done independently, using the binary cross entropy loss.

As shown in Table 1, the models trained with EDL approach outperform the inde-

pendently trained models with traditional sigmoid layer (denoted as Baseline by a

margin of 0.63% points (91.34 vs 90.70%) and obtain better results among on 24 out

of the 40 attributes. Considering that the EDL model improved the performance

over the simple baseline, we conclude that there is no disadvantage of using the EDL

framework.

The proposed approach also obtained comparable results to the state-of-the-art

methods, which use advanced approaches to improve performance. For instance,

both systems [14, 33] use the multi-task learning approach (in addition to other

novelties), which has been found to improve accuracy compared to the independent

training of 40 binary classifiers due to the regularization brought by the more gen-

eral learning task. Considering the results in Table 4.5, we see that EDL results are

within 2% points of the state-of-art [14], even though the aim was not to beat the

state-of-art, but to show that models that are trained with EDL objective are better

suited to estimate the prediction uncertainty as shown in the extensive qualitative

analysis given below.

We have also implemented a baseline with the multi-task learning approach where

the target is the 40-dimensional label corresponding to the 40 labeled attributes that
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Table 4.5: State-of-the-art accuracies on CELEBA dataset under two settings; multi-

task learning and independent classifiers. Bold figures indicate the best results

among the proposed (EDL) and the baseline with independent binary classifiers.

Attribute
Multi-task Learning Independent Classifiers

Baseline-MTL [33] [14] Baseline EDL (ours)

5 o Clock Shadow 94.82% 94.51% 97.18% 94.42% 94.61%

Arched Eyebrows 84.14% 83.42% 85.79% 83.89% 83.36%

Attractive 83.04% 83.06% 85.68% 79.29% 82.76%

Bags Under Eyes 84.95% 84.92% 86.33% 84.46% 85.11%

Bald 99.02% 98.90% 99.57% 98.98% 98.78%

Bangs 96.16% 96.05% 96.32% 94.42% 96.26%

Big Lips 71.51% 71.47% 92.70% 69.94% 70.83%

Big Nose 84.29% 84.53% 83.36% 84.43% 84.18%

Black Hair 90.42% 89.78% 94.00% 89.12% 89.32%

Blond Hair 96.16% 96.01% 97.89% 94.44% 95.88%

Blurry 96.23% 96.17% 96.84% 96.28% 96.15%

Brown Hair 89.51% 89.15% 89.61% 93.81% 89.43%

Bushy Eyebrows 92.86% 92.84% 94.41% 93.01% 92.80%

Chubby 95.75% 95.67% 97.54% 95.11% 95.81%

Double Chin 96.50% 96.32% 97.56% 96.37 % 96.40%

Eyeglasses 99.66% 99.63% 99.13% 98.91% 99.65%

Goatee 97.60% 97.24% 98.41% 95.54% 97.42%

Gray Hair 98.27% 98.20% 98.96% 98.39% 98.11%

Heavy Makeup 91.83% 91.55% 94.19% 89.94% 90.91%

High Cheekbones 87.94% 87.58% 88.69% 88.01% 87.45%

Male 98.75% 98.17% 99.13% 98.71% 98.37%

Mouth Slightly Open 94.07% 93.74% 96.27% 85.67% 93.60%

Mustache 96.91% 96.88% 98.75% 95.82% 96.97%

Narrow Eyes 87.51% 87.23% 89.21% 87.86% 87.64%

No Beard 96.36% 96.05% 98.36% 96.41% 95.43%

Oval Face 75.11% 75.84% 77.07% 75.38% 75.25%

Pale Skin 97.05% 97.05% 99.30% 96.47% 96.92%

Pointy Nose 77.83% 77.47% 78.54% 76.48% 77.36%

Receding Hairline 93.95% 93.81% 94.90% 93.88% 93.42%

Rosy Cheeks 95.26% 95.16% 95.66% 96.13% 95.17%

Sideburns 97.96% 97.85% 98.05% 96.02% 97.96%

Smiling 93.15% 92.73% 95.15% 92.14% 93.23%

Straight Hair 84.21% 83.58% 85.21% 83.58% 84.56%

Wavy Hair 85.46% 83.91% 85.53% 84.79% 85.61%

Wearing Earrings 90.68% 90.43% 91.34% 88.84% 90.75%

Wearing Hat 99.09% 99.05% 99.13% 98.57% 98.92%

Wearing Lipstick 94.28% 94.11% 97.11% 91.04% 94.34%

Wearing Necklace 87.20% 86.63% 88.32% 88.61% 87.14%

Wearing Necktie 97.00% 96.51% 97.58% 94.39% 96.78%

Young 88.98% 88.48% 89.84% 88.66% 88.96%

Mean 91.56% 91.29% 93.20% 90.70% 91.34%
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are trained at once, with the same backbone network but no other improvement.

The results of this model is given as Baseline-MTL in Table 4.5. Despite the regu-

larization advantage of the MTL training, the EDL approach obtained very similar

results in comparison (91.34% vs 91.56%).

4.3.3 Qualitative Analysis of EDL Uncertainties

When we analyzed the samples with the highest uncertainties on the training set

(uncertainty of 0.9 or larger), we observed that they contain both out-of-distribution

and challenging characteristics. These samples are roughly divided into 4 groups: (1)

Samples in which faces are occluded by items such as eyeglasses and hats, (2) Sam-

ples with under-represented races in the dataset, (3) Samples with non-stereotypical

gender traits, and (4) Samples with incorrect ground-truth labels. Examples of sam-

ples that are associated with an uncertainty of 0.9 or larger from the training portion

of the CelebA dataset are shown in Fig. 4.13, to illustrate these issues. Note that

while the first three (a-c) issues are challenges in the problem or the class distribu-

tions, the last row (d) indicates labeling problems in the dataset.

On the other hand, when we analyzed the uncertainties associated with the pre-

diction errors on the test set, we saw that 72 samples are associated with an

uncertainty of 0.1 or lower; in other words, the system is quite certain about its

predictions. Upon closer inspection, we realized that more than half of these (39

samples, 54.1%) are actually mislabeled in the ground-truth (indicated by a red

cross mark), as shown in Fig. 4.14.

(a) Occluded Faces (b) Under-represented Races

(c) Non-stereotypical Gender Traits (d) Errors in the Ground-truth

Figure 4.13: Sample images with high uncertainty for the Male attribute from the

training set of CelebA.
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Figure 4.14: Sample images corresponding to prediction errors with lowest uncer-

tainty for the Male attribute (top-left: most certain; bottom-right:most uncertain).

Most of these errors turned out to be ground-truth mistakes (indicated by a red

cross mark), while others are genuine mistakes (indicated by green tick).

4.3.4 Uncertainty Distributions

When we analyze the distribution of the uncertainties over the whole test set (rather

than just the mistakes), we see that the model is certain in its predictions for most

of the samples. Furthermore, the distribution is peaked for the attributes for which

the network is more accurate. This is illustrated in Fig. 4.15 for the test set of

CelebA dataset over two facial attributes which are easier to visually inspect (i.e.

Male, Blond Hair).
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0.0 0.2 0.4 0.6 0.8 1.0
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Male, Acc: 98.97%

Blond Hair Acc: 95.96%

Figure 4.15: Histogram of uncertainties, obtained over the test set(left) and training

set(right) of CelebA for the Male and Blond Hair attributes.

In addition, looking at the distribution for positive and negative samples in each

attribute, as shown in Table 4.6 for four attributes in CelebA dataset, we see that

the system displays more uncertainty towards the class with fewer samples. For

instance, the Male attribute is very accurate (98.32%) and well-balanced (62/38)

and the resulting uncertainties are very low for either class.On the other hand,
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uncertainties are higher for attributes learned with low accuracy (Young) or for

under-represented classes in Eyeglasses (positive) and Bald (positive).

In summary, the uncertainties assigned by the EDL system are lower for attributes

that are more accurately learned and for classes that are dominant in each attribute.

These results show the promise of this framework to assess confidences in a classifi-

cation task.

Table 4.6: Mean and standard deviation of uncertainties calculated on CelebA test

set for the selected attributes, shown with positive and negative class proportions in

parentheses. Accuracy for the attributes are 98.32%, 99.65%, 98.78%, and 88.96%

from left to right, respectively.

Male Eyeglasses Bald Young

Positive

(%62)

Negative

(%38)

Positive

(%7)

Negative

(%93)

Positive

(%2)

Negative

(%98)

Positive

(%75)

Negative

(%25)

Mean 0.045 0.032 0.981 0.010 0.895 0.025 0.217 0.432

Std 0.091 0.101 0.132 0.056 0.251 0.112 0.232 0.270

4.4 Using Uncertainties for Reject Option

Motivated by the findings above, we wanted to analyze whether uncertainty scores

would be useful as confidence measures that can be used in determining inputs for

which the system is unsure and reject to make a decision, during test time. First,

we considered how many images are rejected and the corresponding accuracies for

different rejection thresholds, as shown in Table 4.7. As can be seen there, if we

reject all test samples with an uncertainty 0.9 or above, 126 samples are rejected

out of 19,962, corresponding to a reject rate of 0.6%, while accuracy increases 0.25%

points (98.37 to 98.62%). Hence, using uncertainties that are learned using the EDL

framework seems effective for implementing a reject decision, without rejecting too

many.

Secondly, we plotted the proportion of wrong predictions among the top-k most

uncertain images, in Figure 4.16. Considering the Male attribute, we see that the

error rate among the top-100 most uncertain images is 43%, while the error rate for
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Table 4.7: Reject rate and resulting accuracy increase (in percentage points) for

different uncertainty thresholds, measured over the test set of CelebA for the Male

attribute.

Uncertainty

Threshold

# of Samples

Rejected

Reject

Rate

Accuracy

Increase

0.5 302 1.51% 0.53

0.6 235 1.17% 0.44

0.7 194 0.97% 0.39

0.8 151 0.75% 0.31

0.9 126 0.63% 0.25

the attribute is only 1.6% overall. When we consider prediction probabilities of the

baseline model that does not use EDL, we see that the error rate among the top-100

most uncertain images is smaller (38.5% compared to 43%). In other words, when

considering the same number of images to reject, EDL uncertainties better align

with prediction mistakes.

Hence, it seems that we can indeed use the EDL uncertainties for denoting a reject

region. We can also obtain a similar plot by considering all images above an uncer-

tainty threshold and choose a reject. This is further demonstrated in Fig. 4.17 by

plotting the receiver operating characteristic (ROC) curve for increasing uncertainty

thresholds.

Top-100 Top-200 Top-300

Top-K Uncertain Samples

0.40

0.45

0.50

0.55
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r
R
a
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Blond Hair, Err Rate 4.12%

Bangs, Err Rate: 3.73%

Male, Err Rate: 1.6%

Figure 4.16: Error rate for top-K uncertain samples in CelebA test set for Blond

Hair, Bangs, Male attributes. K ∈ {100, 200, 300}
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Figure 4.17: ROC curve for the Male Attribute with different threshold values based

on uncertainty, from the test set of CelebA

4.4.1 Finding Errors in Ground Truth

Many datasets contain mistakes in the ground-truth label that makes it difficult to

benchmark algorithms. This is especially true for the LFWA dataset.

To see if uncertainties estimated by EDL can be used to spot dataset label errors, we

found the label mistakes in the train portion of the dataset for the Male attribute.

Relabeling was done only when the label error was clear and resulted in 416 new

labels, out of 6,263 samples (6.6%).

We then plotted the ratio of ground-truth mistakes (true positives) that are caught

when using different uncertainty thresholds, together with the corresponding false

positive rate, as shown in Fig. 4.18.

For instance, if we consider the samples that are associated with an uncertainty of

0.5 or above (605 samples), 170 of them are mislabeled in the ground-truth (28%)

and 435 are correctly labeled. Thus, 40.86% of the ground-truth mistakes are

caught at the expense of 7.43% false positive rate.

We conclude that browsing the highly uncertain training samples after the training

of the EDL model can be effective, to see if there are any mislabeled samples in the

dataset.
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Figure 4.18: True positive (samples with wrong ground-truth caught according to

uncertainties) and False positive (samples with correct ground truth labels) rates

obtained with varying uncertainty thresholds.
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Chapter 5

Conclusion and Future Work

In this thesis, we have explored the problem of uncertainty quantification in deep

learning, which gained importance as the deep learning models are being utilized in

more applications that significantly influence our daily lives. In particular, our study

focused on widely-used sampling based approaches, such as Monte Carlo Dropout

and Deep Ensembles, alongside the more recent Evidential Deep Learning method.

The latter approach aims to directly learn the parameters of the predictive dis-

tribution instead of approximating it through sampling, hence rendering it more

efficient. Initially, we conducted comprehensive analysis of each approach on the

CIFAR-10 dataset in order to evaluate their effectiveness in measuring uncertainty.

Then, we focused our attention into the EDL framework, which showed promising

results in the initial experiments. We carried out extensive experimental analysis

using significantly larger datasets for face attribute classification, specifically CelebA

and LFWA. Our observations regarding these experiments are summarized in the

remaining.

To begin our initial exploration work on CIFAR-10, we evaluated the resulting uncer-

tainty distributions on the test set, demonstrating that that models can differentiate

between correctly and incorrectly classified samples by the uncertainty values that

it assigns. Furthermore, the relationship between accuracy and the measured un-

certainty is explored in order to implement a reject region. For this, we offered 2

options: (1) based on the numerical values that uncertainty metrics can take in each

method (2) using the summary statistics measured on the test set. In the light of
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these experiments, for a system that precision is the priority, we suggest that Deep

Ensembles approach could be more appropriate since samples that it associates with

the highest uncertainty, though very few in number compared to other approaches,

contains a greater proportion of incorrectly classified samples. EDL performed bet-

ter for the second option as it resulted in higher accuracy for each specified threshold

values. It is important to acknowledge that our test setup may not fully capture the

efficacy of MC-Dropout. Although we followed the suggestion of the original author

and introduced dropout before every weight layer, this approach, in conjunction

with the configuration of ResNet, results in an overly strong regularization effect for

CIFAR-10. Therefore, we conclude that while MC-Dropout is fairly straightforward

to implement, it demands specific architectural considerations based on the nature

of the problem.

As for the experiments conducted on CelebA using EDL method, we first evaluated

the predictive performance of traditional softmax-based approach against the EDL-

based approach on the 40 unique attributes provided in the dataset. For this, we

trained 40 separate classifiers for both methods, each utilizing the same backbone.

Additionally, we implemented a baseline using the multi-task learning approach for

comparison. We conclude that the EDL framework does not compromise predictive

performance in binary classification tasks due to

• Models trained with EDL approach outperform the independently trained

models with traditional sigmoid layer by a margin of 0.63% points (91.34%

compared to 90.70%) and achieve better results in 24 of the 40 attributes.

• Despite the added benefit of regularization in MTL training, the results from

the EDL approach were very similar (91.34% compared to 91.56%).

It is worth highlighting the measures we have taken to maintain fairness in a com-

parison involving 80 distinct models. To this end, we set the initial learning rate

of each model according to individual learning rate range tests, trained all models

for 100 epochs and applied early stopping with a patience value of 10, and used

the same optimizer, scheduler and batch size as stated in Section 4.1. We intend

to extend this comparison to multi-class classification problems in future to reach a

more general conclusion.
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The comprehensive qualitative study we conducted on the CelebA dataset revealed

that the training set samples associated with the highest uncertainty values often

display out-of-distribution and challenging features such as occluded faces, under-

represented races as well as samples with incorrect ground truth labels. Furthermore,

we demonstrated that prediction uncertainties learned by the system can be used

for indicating potential ground-truth mistakes in the dataset and weaknesses of the

system with regard to class imbalance and challenges present in the data. We find it

important to emphasize the usefulness of uncertainty estimation methods as a tool to

identify the potential weaknesses in the dataset. This proves particularly invaluable

when curating real-world datasets, as it allows for necessary adjustments to ensure

that the distribution of the training data aligns with that of the broader real-world

dataset. Building on these insights, we proposed a method to detect labeling errors

using our relabeled version of the LFWA dataset. Our approach managed to catch

40.86% of the ground-truth mistakes at the expense of eliminating 7.43% of correctly

labeled samples.

We suggest that the EDL framework can be used in many classification problems as

it requires only a small change in the general network architecture and loss term, and

the assessed uncertainties are good indicators of prediction confidences. In future

work, we will extend the EDL formulation to multi-label problems and compare

it with the other uncertainty qualification methods on larger and more complex

datasets.
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