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ABSTRACT

TORSION STRUCTURE OF ELLIPTIC CURVES OVER SMALL NUMBER
FIELDS

MUSTAFA UMUT KAZANCIOĞLU

Mathematics, Master Thesis, December 2023

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: elliptic curves, hyperelliptic curves, modular curves, torsion subgroup,
cubic number fields, quartic number fields, quintic number fields, sextic number

fields

Although it is well known which groups appear as torsion subgroup of an elliptic
curve over a number field K where [K : Q] = 1,2,3, a similar classification is not
known for number fields of higher degrees. On the other hand, it is well known which
groups can arise as a torsion subgroup for infinitely many Q-isomorphism classes of
elliptic curves over a number field K where [K : Q] = 4,5,6. In this thesis, we focus
on the torsion subgroups of elliptic curves occurring over a fixed number field K
with [K : Q] = 4,5,6. Our approach relies on analyzing the arithmetic structure of
the modular curves X1(m,mn), m ≥ 1. First, we investigate the possibility of the
growth in torsion subgroups of X1(m,mn) over quartic, quintic and sextic number
fields. In the case of growth in torsion, we check the new points and try to answer the
following question: ”Do new points give an elliptic curve with the desired torsion?”.
Secondly, we check the existence of torsion subgroups over cubic, quartic and quintic
number fields with the smallest discriminant and having different Galois groups.
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ÖZET

KÜÇÜK SAYI CISIMLERI ÜZERINE ELIPTIK EĞRILERIN BURULMA
YAPISI

MUSTAFA UMUT KAZANCIOĞLU

Matematik, Yüksek Lisans Tezi, Aralık 2023

Tez Danışmanı: Assoc. Prof. Mohammad Sadek

Anahtar Kelimeler: eliptik eğri, hipereliptik eğri, moduler eğri , burulma alt grubu,
üçüncü dereceden sayı cisimleri, dördüncü dereceden sayı cismi, beşinci dereceden

sayı cismi, altıncı dereceden sayı cismi

Hangi grupların [K :Q] = 1,2,3 koşulunu sağlayan K sayı cismi üzerindeki bir eliptik
eğrinin burulmalı alt grubu olarak ortaya çıktığı bilinmesine rağmen, daha yüksek
dereceli sayı cisimleri için benzer bir sınıflandırma bilinmemektedir. Öte yandan,
[K : Q] = 4,5,6 koşulunu sağlayan K sayı cismi üzerindeki eliptik eğrilerin sonsuz
sayıda Q-izomorfizm sınıfları için hangi grupların burulmalı alt grubu olarak ortaya
çıkabileceği bilinmektedir. Bu tezde, [K : Q] = 4,5,6 olan sabit bir K sayı cismi üz-
erinde oluşan eliptik eğrilerin burulmalı alt gruplarına odaklanıyoruz. Yaklaşımımız
X1(m,mn), m ≥ 1 modüler eğrilerinin aritmetik yapısını analiz etmeye dayanmak-
tadır. İlk olarak, derecesi 4, 5 ve 6 olan sayı cisimleri üzerinde X1(m,mn) ’in
burulmalı alt gruplarında büyüme olasılığını araştırıyoruz. Burulmalı alt grubunda
bir büyüme olması durumunda yeni noktaları kontrol ediyoruz ve aşağıdaki soruyu
cevaplamaya çalışıyoruz: "Yeni noktalar istenen burulmalı alt gruba sahip bir elip-
tik eğri veriyor mu?". İkinci olarak, derecesi 3, 4 ve 5 olan sayı cisimleri üzerinde
en küçük diskriminanta ve farklı Galois gruplarına sahip burulmalı alt gruplarının
varlığını kontrol ediyoruz.
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Algebra is the offer made by the devil to the mathematician.
Michael Francis Atiyah
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1. Introduction

The celebrated theorem of Mordell-Weil asserts the set E(K) of K-rationals points
on an elliptic curve E over a number field K is a finitely generated abelian group.
In particular, E(K) can be expressed as Zr ⊕T where r ∈ Z≥0 and T is the torsion
subgroup of E(K).

The following theorem of Mazur [20], [21] classifies the possible torsion groups of
elliptic curves over Q.

Theorem 1.0.1. If K = Q, then the torsion subgroup of E(K) is isomorphic to
one of the 15 groups in the following list:

Φ(1) = {(1,n) : 1 ≤ n ≤ 12,n ̸= 11}∪{(2,2n) : 1 ≤ n ≤ 4}.

The following theorem of Kenku, Momose [17] and Kamienny [16] classifies the
possible torsion groups of elliptic curves over quadratic fields.

Theorem 1.0.2. Let K be a quadratic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

Φ(2) = {(1,n) : 1 ≤ n ≤ 18,n ̸= 17}∪{(2,2n) : 1 ≤ n ≤ 6}∪{(3,3),(3,6),(4,4)}.

In addition, infinitely many Q- isomorphism classes exist for each of these torsion
subgroups.

We also have the complete classification of torsion subgroups of elliptic curves over
cubic number fields. This was recently achieved in [7].

Theorem 1.0.3. Let K be a cubic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

Φ(3) = {(1,n) : 1 ≤ n ≤ 21,n ̸= 17,19}∪{(2,2n) : 1 ≤ n ≤ 7}.
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There are infinitely many Q-isomorphism classes that possess each of these torsion
subgroups, except for Z/21Z where the elliptic curve 162b1 over Q(ζ9)+ is the
unique elliptic curve with Z/21Z-torsion.

In [18], Kubert provided parametrization of elliptic curves over Q realizing a given
group from Theorem 1.0.1 as a torsion subgroup. For example, consider the
following modular curve X1(9) of genus 0. The general equation of the elliptic
curve with torsion subgroup Z/9Z,[1], is the following:

y2 +(s− rs+1)xy +(rs− r2s)y = x3 +(rs− r2s)x2

where r = u2 −u+1, s := u and u ∈ Q.

Similar work was done by Rabarison in [25] for elliptic curves over quadratic
number fields.

The work of Najman [22] on cubic number field investigated the following
questions:

Q1: How many non-isomorphic curves does each of the groups from Φ(3) appear
as a torsion subgroup for any fixed cubic number field K?

Q2: Can we check existence of all the torsion subgroups from Φ(3) as torsion
subgroup of an elliptic curve over the number fields with smallest
discriminant and having Galois group S3 and Z/3Z.

Q3: Can we find the field with smallest discriminant field for every group from
Φ(3) such that that group occur as a torsion subgroup of an elliptic curve?

For a number field K, where [K : Q] = 4,5,6, we still do not have a complete
classification of possible torsion subgroup of E(K). However, the following
theorems of Derickx and Sutherland [6] classifies the possible torsion groups that
occur for infinitely many Q̄-isomorphism classes of elliptic curves defined over
quartic, quintic and sextic number fields.

Theorem 1.0.4. Let K be a quartic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes
is isomorphic to one of the groups in the following list:

Φ∞(4) = {(1,n) : 1 ≤ n ≤ 24,n ̸= 19,23}∪{(2,2n) : 1 ≤ n ≤ 9}

∪{(3,3n) : 1 ≤ n ≤ 3}∪{(4,4),(4,8),(5,5),(6,6)}.

Theorem 1.0.5. Let K be a quintic field and E be an elliptic curve over K. Then
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the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes
is isomorphic to one of the groups in the following list:

Φ∞(5) = {(1,n) : 1 ≤ n ≤ 25,n ̸= 23}∪{(2,2n) : 1 ≤ n ≤ 8}.

Theorem 1.0.6. Let K be a sextic field and E be an elliptic curve over K. Then
the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism classes
is isomorphic to one of the groups in the following list:

Φ∞(6) = {(1,n) : 1 ≤ n ≤ 30,n ̸= 23,25,29}∪{(2,2n) : 1 ≤ n ≤ 10}

∪{(3,3n) : 1 ≤ n ≤ 4}∪{(4,4),(4,8),(6,6)}.

In this thesis, for every possible G ∈ Φ∞(d), d = 4,5,6, and every number field K,
[K : Q] = d, we investigate whether there are infinitely many non-isomorphic
elliptic curves with the torsion G over K. For this reason we will study the possible
group structure of X1(m,mn) over the number field K, [K : Q] = d, for the
modular curves with genus g ≤ 1. The reason why we only look at curves with
genus g ≤ 1 is quite simple because genus 1 curves are elliptic curves and we have
a group structure on them, whereas it is straight forward how to find rational points
on genus 0 curves. As for the curves C with genus g > 1, we already have
| C(K) |< ∞ for any number field K, Falting’s theorem, [8].

In order to motivate over fundings, we briefly discuss the existence of elliptic
curves over quartic number field with torsion subgroup Z/15Z.

Example 1.0.7. Let K be a quartic number field. Then

Tors(X1(15),K) ≃



Z/16Z if K ≃ L1 := Q[x]/⟨x4 −7x3 −6x2 +2x+1⟩,

Z/16Z if K ≃ L2 := Q[x]/⟨x4 +3x3 +4x2 +2x+1⟩,

Z/2Z×Z/8Z if K ≃ L3 := Q[x]/⟨x4 −x2 +4⟩,

Z/2Z×Z/4Z if K ⊇ L4 := Q[x]/⟨x2 + 1
4x+ 1

4⟩,

Z/8Z if K ⊇ L5 := Q[x]/⟨x2 −x−1⟩,

Z/8Z if K ⊇ L6 := Q[x]/⟨x2 +x+1⟩,

Z/4Z otherwise.

X1(15) has rank 0 over the number fields in the above examples. This implies that
we can have only finitely many elliptic curves with torsion subgroup Z/15Z over
the number fields in the above examples. It is possible to obtain positive rank over
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the number fields that contains L4, L5 and L6. For example, Rank(X1(15),L) is
positive where L is the number field generated by the polynomial
x4 + 1

2x3 + 3
2x2 +2x+1,and L contains the number field L4. In this case, we have

infinitely many elliptic curve over the number field L with torsion Z/15Z.

In the second part of this thesis we try to answer the following question: Can we
check the existence of all the torsion subgroups from Φ∞(d), d = 3,4,5 as torsion
subgroup of an elliptic curve over the number field with smallest discriminant and
different Galois groups? We were only able to partially answer this question. For
d = 3 we did not encounter any problem, but for d = 4,5 we could not answer the
existence question in some cases. It is easier to check the existence of torsion
subgroup over some number field for d = 3 than d = 4,5 for two reasons. The first
reason is that there are fewer number fields with different Galois groups.

In the following tables we list the cubic and quartic number fields with different
Galois group and smallest discriminant. In the table, D is the discriminant of the
field, G its Galois group, and the last column is the generating polynomial of field
Ki where 1 ≤ i ≤ 5.

Field D G Polynomial
K1 −23 S3 x3 −x2 +1
K2 49 C3 x3 −x2 −2x+1

Table 1.1 Cubic Number Fields with Smallest Discriminant

Field D G Polynomial
K1 125 C4 x4 −x3 +x2 −x+1
K2 144 V4 x4 −x2 +1
K3 117 D4 x4 −x3 −x2 +x+1
K4 3136 A4 x4 −2x3 +2x2 +2
K5 229 S4 x4 −x+1

Table 1.2 Quartic Number Fields with Smallest Discriminant

The second reason is that there are fewer cases where we need to check the existence
of rational points over number fields. For example we could not produce a method
to check the existence of rational points over on X1(17), X1(21) and X1(22) over
quartic, quintic and sextic number field, but we do not face these modular curves
over cubic number number fields since Z/17Z and Z/22Z cannot occur as a torsion
subgroups of an elliptic curve over a cubic number field and there is only one
elliptic curve with torsion subgroup Z/21Z over a cubic number field. For instance,
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the method that we used to check the existence of torsion group Z/16Z over quartic
number field did not work for the quartic number fields K2 and K4 but we did not
encounter such a problem when we are working over cubic number fields.

For the torsion subgroups T corresponding to modular curves with genus ≤ 1, we
are able to answer the question of the realization of the group T as a torsion
subgroup of elliptic curves over a fixed number field of degree d = 4,5.

Throughout this paper, we use MAGMA to compute rank and torsion computations
on elliptic curves.
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2. Elliptic Curves

2.1 Preliminaries

Let K be a number field. We define an elliptic curve as a non-singular abelian
variety of dimension 1 with a K-rational point O called the point at infinity. It is
possible to express any elliptic curve with a Weierstrass equation of the form

E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6

with a1, ...,a6 ∈ K together with the point O = (0 : 1 : 0).

In the case of charK ̸= 2,3 we can write an elliptic in the following form,

E(A,B) : y2 = x3 +Ax+B

where A,B ∈ K.

Let ∆(E) be a discriminant of the elliptic curve E, then

∆(E) = −b2
2b8 −8b3

4 −27b2
6 +9b2b4b6,

where
b2 = a2

1 +4a2

b4 = 2a4 +a1a3

b6 = a2
3 +4a6

b8 = a2
1a6 +4a2a6 −a1a3a4 +a2a2

3 −a2
4.

In the case E(A,B), the discriminant ∆(E(A,B)) is −16(4A3 +27B2). Since the
elliptic curve E is non-singular, we know that ∆(E) ̸= 0.
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It is well-known that elliptic curves have a group structure and it is possible to
explain the group law using a geometric description, namely the chord and tangent
process.

In what follows, we geometrically describe the group law on E(A,B).

Let P1,P2 be two distinct points on the elliptic curve E. Let L be the line passing
through P1,P2. By Bézout Theorem we know the existence of a third intersection
point between elliptic curve E and line L. Let P3 be the third intersection point.
Then P1 ⊕P2 is the reflection of P3 respect the x-axis. In case P1 = P2, the line L

is the tangent to E at P1. Since process does not affected by the order of the
points, it is clear that E is an abelian group.

P1
P2

P3

P1 ⊕P2

Figure 1: y2 = x3 +Ax+B, A,B ∈ Q.

Let E(K) be the set of K- rational points of E defined as follow:

E(K) = {(x,y) ∈ K2 : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6}∪{O}.

Remark 2.1.1. By definition the set E(K) is a subgroup of the elliptic curve E

with the binary operation ⊕. We call E(K) the Mordell-Weil group of E over K.

Theorem 2.1.2 (Mordell-Weil). ([28]) The group E(K) is finitely generated.

According to the Fundamental Theorem of Finitely Generated Abelian group, we
obtain the following Corollary.

Corollary 2.1.3. There is a integer r ≥ 0 such that

E(K) ∼= T ×Zr

where r is the rank of the group E(K), T is the torsion subgroup of the elliptic
curve E and T is finite.
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2.2 Torsion Subgroup and Modular Curves

Definition 2.2.1. Let P = (xn,yn) be a rational point in E(K). We say that P is
an n-torsion point if nP = O.

To find n-torsion points P on E(K), we need division polynomials of E.

Let E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6 be an elliptic curve defined over K.
The division polynomials of E are:

Ψ1 = 1,

Ψ2 = 2y,

Ψ3 = 3x4 +6ax2 +12bx−a2,

Ψ4 = 4y(x6 +5ax4 +20bx3 −5a2x2 −4abx−8b2 −a3),
...

Ψ2m+1 = Ψm+2Ψ3
m −Ψm−1Ψ3

m+1 for m ≥ 2,

Ψ2m =
(

Ψm
2y

)
· (Ψm+2Ψ2

m−1 −Ψm−2Ψ2
m+1) for m ≥ 3.

The polynomials above are defined over Z[x,y,a,b].

We call P as an n-torsion point if and only if P is the root of n-division
polynomial of E.

Example 2.2.2. Let E : y2 = x3 +1 be an elliptic curve over Q. Then the
2-division polynomial of E is Ψ2(x) = (x+1)(x2 −x+1). We can say that (−1,0)
is a point of order 2 in E(Q), since −1 is a root of Ψ2(x) and (−1,0) ∈ E(Q).

We do not have a complete classification of all torsion subgroups of an elliptic
curve E over any number field K. But if [K : Q] = 1,2,3 then we have complete
classification of all torsion subgroups of an elliptic curve E over number field K.
Although it is not a complete classification, It is well known such a groups can
arise for infinitely many Q-isomorphism classes as a torsion subgroups of an
elliptic curve over a number field K when [K : Q] = 4,5,6. In what follows, we
describe these classifications.

Theorem 2.2.3 (Mazur). ([20], [21]) If K = Q, then the torsion subgroup of
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E(K) is isomorphic to one of the 15 groups in the following list:

Φ(1) = {(1,n) : 1 ≤ n ≤ 12,n ̸= 11}∪{(2,2n) : 1 ≤ n ≤ 4}.

Theorem 2.2.4 (Kenku, Momose, Kamienny). ([16],[17]) Let K be a quadratic
field and E be an elliptic curve over K. Then the torsion subgroup of E(K) is
isomorphic to one of the 26 groups in the following list:

Φ(2) = {(1,n) : 1 ≤ n ≤ 12,n ̸= 11}∪{(2,2n) : 1 ≤ n ≤ 6}∪{(3,3),(3,6),(4,4)}.

In addition, infinitely many Q- isomorphism classes exist for each of these torsion
subgroups.

Theorem 2.2.5. ([7]) Let K be a cubic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) is isomorphic to one of the 26 groups in the
following list:

Φ(3) = {(1,n) : 1 ≤ n ≤ 21,n ̸= 17,19}∪{(2,2n) : 1 ≤ n ≤ 7}.

Theorem 2.2.6. ([6]) Let K be a quartic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism
classes is isomorphic to one of the groups in the following list:

Φ∞(4) = {(1,n) : 1 ≤ n ≤ 24,n ̸= 19,23}∪{(2,2n) : 1 ≤ n ≤ 9}

∪{(3,3n) : 1 ≤ n ≤ 3}∪{(4,4),(4,8),(5,5),(6,6)}.

Theorem 2.2.7. ([6]) Let K be a quintic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism
classes is isomorphic to one of the groups in the following list:

Φ∞(5) = {(1,n) : 1 ≤ n ≤ 25,n ̸= 23}∪{(2,2n) : 1 ≤ n ≤ 8}.

Theorem 2.2.8. ([6]) Let K be a sextic field and E be an elliptic curve over K.
Then the torsion subgroup of E(K) that arise for infinitely many Q-isomorphism
classes is isomorphic to one of the groups in the following list:

Φ∞(6) = {(1,n) : 1 ≤ n ≤ 30,n ̸= 23,25,29}∪{(2,2n) : 1 ≤ n ≤ 10}

∪{(3,3n) : 1 ≤ n ≤ 4}∪{(4,4),(4,8),(6,6)}.

9



Assume that the curve

E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6

has a non-trivial rational point on K. Then we can obtain curve

E(b,c) : y2 +(1− c)xy + by = x3 + bx2

from E and we call E(b,c) an elliptic curve in Tate-Normal form. Clearly, the
point P = (0,0) is on the E(b,c) curve.

Definition 2.2.9. Let K be a number field. We define Y1(m,mn) as the affine
modular curve such that its K-rational points determine isomorphism classes of
triples (E,Pm,Pmn), where E is an elliptic curve over K, Pm and Pmn generators
of the subgroup of E which is isomorphic to Z/mZ×Z/mnZ.

In the case m = 1, instead of Y1(1,n), we write Y1(n). We define X1(m,mn) as a
compactification of Y1(m,mn) derived by adjoining its cusps.

Similarly, we define Y0(n) as the affine curve whose K-rational points determine
isomorphism classes of pairs (E,C), where E is an elliptic curve over K and C is
a n-cycle. Analogously, X0(n) is obtained by adjoining the cusps to Y0(n).

Remark 2.2.10. For the construction of X1(n), where 4 ≤ n, we use curve
E(b,c). Since the point P = (0,0) is on the curve E(b,c), we assume P = (0,0) is
the torsion point and by using the group law we obtain following relation:

• If n is even we use the relation [n/2]P = [−n/2]P .

• If n is odd we use the relation [(n+1)/2]P = [−(n−1)/2]P .

Then from these relation we obtain elliptic curve E(b,c) = [1− c,b,b,0,0].

Remark 2.2.11. Note that by construction the modular curve X1(m,mn) is
defined over the cyclotomic field Q(ζm), though we can have points on the equation
over smaller fields, these points do not give an elliptic curve with desired torsion
over smaller fields. Models of X1(n) and X1(m,mn) can be found in the website of
Professor Andrew Sutherland [1].

Example 2.2.12. The modular curve

X1(13) : y2 = x6 −2x5 +x4 −2x3 +6x2 −4x+1

10

https://math.mit.edu/~drew/


is a genus 2 curve. The modular curve

X1(2,10) : y2 = x3 +x2 −x

is a genus 1 curve.

Definition 2.2.13. We call point P new torsion point if P /∈ Tors(X1(m,mn)(Q))
but P ∈ Tors(X1(m,mn)(K)) where [K : Q] ≥ 2.

Throughout this thesis a will be the primitive element of the given field extension.
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3. Torsion Structure of Elliptic Curves over Cubic Number Fields

Throughout this thesis fi will denote a irreducible polynomial of degree i and in
each chapter we focus on the torsion parts occurring over a cubic, quartic, quintic
and sextic number field but not over Q. Since if a torsion occurs over Q, it occurs
over all number fields.

In this chapter, K will be a number field with [K : Q] = 3. The results in this
chapter can be found in [22].

Remark 3.0.1. If the modular curve X1(m,mn), where m ≥ 1, n ≥ 2, has genus
g > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< ∞ for any number field.

Remark 3.0.2. We notice that the modular curves X1(13), X1(16), X1(18),
X1(20) and X1(2,14) are curves of genus 2,2,2,3 and 4, respectively.

Question Are there infinitely many cubic points on any of the curves X1(m,mn)
in Remark 3.0.2 when the genus is g > 1?

The following theorem from [14] answers this question.

Theorem 3.0.3. (a) The modular curve X1(N) has infinitely many cubic points
if and only if N = 1, ...,16,18,20.

(b) The modular curve X1(2,2N) has infinitely many cubic points if and only if
N = 1, ...,7.

We use the following lemma from [23] in this chapter.

Lemma 3.0.4. [23] Let K be a number field where [K : Q] = 3. E(K) can not
have subgroups isomorphic to Z/2Z×Z/10Z, Z/2Z×Z/12Z or Z/2Z×Z/18Z.

In what follows, we only consider the curves X1(m,mn) of genus 1.

Case 1: Z/11Z ⊆ Tors(E,K).

12



Consider the following modular curves

X1(11) : y2 −y = x3 −x2

We have
Z/5Z ≃ Tors(X1(11),Q) ⊆ Tors(X1(11),K).

By Theorem 2.2.5 Tors(X1(11),K) must be one of the following groups:

Z/nZ, n = 5,10,15,20

Z/2Z×Z/10Z.

Theorem 3.0.5. Let K be a cubic number field. Then

Tors(X1(11),K) ≃

Z/10Z if K ≃ L := Q[x]/⟨x3 −x2 + 1
4⟩,

Z/5Z otherwise.

Proof: Notice that Tors(X1(11),K) cannot be Z/2Z×Z/10Z, by Lemma 3.0.4.

The 3 and 4 division polynomial of X1(11) are

Ψ3(x) = 3x4 −4x3 +3x−1

and
Ψ4(x) = (x3 −x2 + 1

4)(x6 −2x5 +5x3 −5x2 +2x− 1
2).

It is easy to see that a cubic number field can not contain a root of Ψ3(x) since if it
contains a root of Ψ3(x), it must also contain the number field obtained by
adjoining the root of Ψ3(x), but this is not possible. Hence we can not have Z/15Z
as a torsion subgroup of X1(11) over a cubic number field.

In the case Ψ4(x) we can have a cubic number field containing a root of Ψ4(x). By
MAGMA Tors(X1(11),L) ≃ Z/10Z where L is the number field generated by
x3 −x2 + 1

4 . Notice that since we cannot have a point of order 4, So, we could not
obtain Z/20Z as a torsion subgroup of X1(11) over a cubic number field.

Point from X1(11) Corresponding Elliptic Curve with torsion Z/11Z

(−2a+2,4a2 −4a+2)
y2 + (−8a2 + 6a)xy + (136a2 − 192a + 80)y = x3 +
(48a2 −68a+28)x2

Table 3.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by x3 −x2 + 1

4
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Case 2: Z/14Z ⊆ Tors(E,K).

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

We have
Z/6Z ≃ Tors(X1(14),Q) ⊆ Tors(X1(14),K).

By Theorem 2.2.5, Tors(X1(14),K) must be one of the following groups:

Z/nZ, n = 6,12,18

Z/2Z×Z/2nZ, n = 3,6

Theorem 3.0.6. Let K be a cubic number field. Then

Tors(X1(14),K) ≃

Z/18Z if K ≃ L := Q[x]/⟨x3 −x2 −2x+1⟩,

Z/6Z otherwise.

Proof: First we will show that the cases Z/2Z×Z/6Z and Z/2Z×Z/12Z are not
possibly. First, notice that (−1,0) is a 2-torsion point. Now we will show that
there is no other 2- torsion point. By [28] if there is a 2-torsion point it must be of
the form P = (x0,0). So x coordinate of point P must be a root of x2 −1 and
x2 −1 is a degree 2 polynomial. But if a cubic field contains a root of x2 −1, then
it must also contain the field generated with the polynomial x2 −1 which is degree
2. But this is not possible since 2 ∤ 3. Thus Z/2Z×Z/6Z and Z/2Z×Z/12Z
cannot occur as a torsion subgroup of X1(14) over a cubic number field.

The 4 division polynomial of X1(14) is

Ψ4(x) = (x+1)(x2 − 3
4x+ 1

4)(x2 +2x−1)(x4 − 3
2x3 + 3

2x2 + 1
2x+ 1

2).

Clearly, a cubic number field cannot contain a root of Ψ4(x), so we cannot obtain
Z/12Z as a torsion subgroup of X1(14) over a cubic number field. The 9-division
polynomial of X1(14) is

Ψ9(x) = x(x3 −2x2 −x+1)(x3 + 1
3x2 −x+1)f6f27

By MAGMA, Tors(X1(14),L) ≃ Z/6Z where L is the number field generated by

14



x3 + 1
3x2 −x+1.

By MAGMA, Tors(X1(14),L) ≃ Z/18Z where L is the number field generated by
x3 −2x2 −x+1.

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z

(2a2 −6a+3,6a2 −16a+6)
y2 + 1

7(4a2 − 17a + 15)xy + 1
7(−4a2 + 1)y = x3 +

1
7(−4a2 +1)x2

(−a2 +a+2,2a2 −3a−4)
y2 + 1

7(5a2 − 2a + 3)xy + 1
7(7a2 + a − 3)y = x3 +

1
7(7a2 +a−3)x2

Table 3.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x3 −2x2 −x+1

Remark 3.0.7. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated by x3 + 1

3x2 −x+1, so we have infinitely many elliptic curve over
the number field L with torsion Z/14Z.

Case 3: Z/15Z ⊆ Tors(E,K).

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

We have
Z/4Z ≃ Tors(X1(15),Q) ⊆ Tors(X1(15),K).

By Theorem 2.2.5, Tors(X1(15),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20

Z/2Z×Z/2nZ, n = 2,4,6

Theorem 3.0.8. Let K be a cubic number field. Then

Tors(X1(15),K) ≃ Z/4Z.

Proof: The cases Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/2Z×Z/12Z are not possible like
in previous case. Just notice that there is no 2-torsion point other than (−1,0).

15



The 3-division polynomial of X1(15) is

Ψ3(x) = 3x4 +5x3 +3x2 +3x+1.

It is clear that a cubic number field can not contain a root of Ψ3(x) since a cubic
number field cannot contain quartic number field Hence we can not obtain Z/12Z
as a torsion subgroup of X1(15) over a cubic number field.

The 5-division polynomial of X1(15) is

Ψ5(x) = 5x12 +25x11 +56x10 +145x9 +330x8 +480x7 +435x6 +249x5 +90x4

+10x3 −10x2 −5x−1

Similarly, a cubic number field can not contain a root of degree 12 irreducible
polynomial. Thus we cannot have Z/20Z as a torsion subgroup of X1(15) over a
cubic number field.

The 8-division polynomial of X1(15) is

Ψ8(x) = x(x+1)(x+2)(x2 −x−1)(x2 + 1
4x+ 1

4)(x2 +x+1)f (1)
4 f

(2)
4 f16.

It is clear that a cubic number field cannot contain a root of degree 2, 4 and 16
irreducible polynomial.

So, we cannot obtain a point of order 8 over a cubic number field. Thus Z/8Z and
Z/16Z cannot occur as a torsion subgroup of X1(15) over a cubic number field.
Hence

Tors(X1(15),K) = Z/4Z.

Case 4: Z/2Z×Z/10Z ⊆ Tors(E,K).

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x = x(x2 +x−1) = xf(x).

We have
Z/6Z ≃ Tors(X1(2,10),Q) ⊆ Tors(X1(2,10),K).

By Theorem 2.2.5, Tors(X1(2,10),K) must be one of the following groups:

Z/nZ, n = 6,12,18
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Z/2Z×Z/2nZ, n = 3,6

Theorem 3.0.9. Let K be a cubic number field. Then

Tors(X1(2,10),K) ≃ Z/6Z.

Proof: The groups Z/2Z×Z/6Z and Z/2Z×Z/12Z cannot occur as subgroup of
X1(2,10) over cubic number field, like in previous cases. Just notice that there is
no 2-torsion point other than (0,0).

If we can have Z/12Z, this means that we have a point of order 4. So it must be
half of the point of order 2. By the duplication formula from [28] we get

x4 +2x2 +1 = (x2 +1)2 = 0.

So if we have a point of order 4, x-coordinate of that point must be root of x2 +1,
but clearly a cubic number field cannot contain a root of degree 2 irreducible
polynomial. Hence, Z/12Z cannot occur as torsion subgroup of X1(2,10) over a
cubic number field.

The 9-division polynomial of X1(2,10) is

Ψ9(x) = (x−1)(3x3 +7x2 +x+1)f9f27.

By MAGMA, Tors(X1(2,10),L) ≃ Z/6Z where L is the number field generated by
the polynomial 3x3 +7x2 +x+1. So it is not possible to obtain Z/18Z as a torsion
subgroup of X1(2,10) over a cubic number field.

Thus
Tors(X1(2,10),K) = Z/6Z.

Case 5: Z/2Z×Z/12Z ⊆ Tors(E,K).

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x = x(x2 −x+1) = xf(x).

We have
Z/4Z ≃ Tors(X1(2,12),Q) ⊆ Tors(X1(2,12),K).

By Theorem 2.2.5, Tors(X1(2,12),K) must be one of the following groups:
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Z/nZ, n = 4,8,12,16,20

Z/2Z×Z/2nZ, n = 2,4,6

Theorem 3.0.10. Let K be a cubic number field. Then

Tors(X1(2,12),K) ≃ Z/4Z.

Proof: We cannot have Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/2Z×Z/12Z as a torsion
subgroup of X1(2,12) over cubic number field, like in previous cases since we can
not get a 2-torsion point over any cubic number field other than (0,0).

The 3-division polynomial of X1(2,12) is

Ψ3(x) = 3x4 −4x3 +6x2 −1.

Clearly, a cubic number field cannot contain a root of degree 4 irreducible
polynomial. So, we cannot obtain Z/12Z as a torsion subgroup of X1(2,12) over a
cubic number field.

The 5-division polynomial of X1(2,12) is

Ψ5(x) = 5x12 −20x11 +78x10 −80x9 −105x8 +360x7 −540x6 +432x5 −285x4 +140x3

−50x2 +1

Similarly, a cubic number field cannot contain a root of Ψ5(x), which is degree 12
irreducible polynomial. Hence Z/20Z cannot occur as a torsion subgroup of
X1(2,12) over a cubic number field.

The 8-division polynomial of X1(2,12) is

Ψ8(x) = f16(x4 +4x3 −6x2 +4x+1)(x4 −2x3 +6x2 −2x+1)(x2 −x+1)(x2 −4x+1)

(x2 +1)(x−1)(x+1)x.

Obviously, a cubic number field can not contain any root of the irreducible
polynomial of degree 2,4 and 16, since cubic number fields cannot contain a field of
degree 2, 4, or 16. So, we cannot have a point of order of 8. Hence we cannot
obtain Z/8Z and Z/16Z as a torsion subgroup of X1(2,12) over a cubic number
field. Thus

Tors(X1(2,12),K) = Z/4Z.
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4. Torsion Structure of Elliptic Curves over Quartic Number Fields

In this chapter, K will be a number field with [K : Q] = 4.

Remark 4.0.1. If the modular curve X1(m,mn) where, m ≥ 1 and n ≥ 2, has
genus g > 1, then by Falting’s theorem ,[8], | X1(m,mn)(K) |< ∞ for any number
field.

Remark 4.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X1(18)
X1(20), X1(21), X1(22), X1(24), X1(2,14), X1(2,16) and X1(2,18) are curves of
genus 2, 2, 5, 2, 3, 5, 6, 5, 4, 5 and 7, respectively.

By Theorem 2.2.6, there are infinitely many quartic points on any of the curves
X1(m,mn), see Remark 4.0.2.

In what follows, we only consider the curves X1(m,mn) when g ≤ 1.

Case 1: Z/11Z ⊆ Tors(E,K).

Consider the following modular curve

X1(11) : y2 −y = x3 −x2

We have
Z/5Z ≃ Tors(X1(11),Q) ⊆ Tors(X1(11),K).

By Theorem 2.2.6, Tors(X1(11),K) must be one of the following groups:

Z/nZ, n = 5,10,15,20

Z/2Z×Z/10Z

Z/5Z×Z/5Z

Theorem 4.0.3. Let K be a quartic number field. Then

Tors(X1(11),K) ≃ Z/5Z.
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Proof: The 2-division polynomial of X1(11) is

Ψ2(x) = 4x3 −4x2 +1.

Clearly, a quartic number field cannot contain a root of degree 3 irreducible
polynomial. So, groups Z/10Z, Z/20Z and Z/2Z×Z/10Z cannot seen as a torsion
group of X1(11) over a quartic number field.

The 3-division polynomial of X1(11) is

Ψ3(x) = 3x4 −4x3 +3x−1.

By MAGMA, Tors(X1(11),L) ≃ Z/5Z where L is the number field generated by
Ψ3(x). Hence, we cannot obtain Z/15Z over a quartic number field as torsion
group of X1(11).

Therefore, we are left the possibly that Tors(X1(11),K) ≃ Z/5Z×Z/5Z, see
Theorem 2.2.6.

The 5-division polynomial of X1(11) is

Ψ5(x) = x(x−1)f10.

If there is a new 5-torsion point, then the x-coordinate of the point must be a root
of f10. But a root of f10 cannot be contained in a quartic number field.

Hence
Tors(X1(11),K) ≃ Z/5Z.

Remark 4.0.4. By MAGMA, Rank(X1(11),L) is positive where L is the number
field generated by 3x4 −4x3 +3x−1. So, we have infinitely many elliptic curve
over the number field L with torsion Z/11Z.

Case 2: Z/14Z ⊆ Tors(E,K).

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

We have
Z/6Z ≃ Tors(X1(14),Q) ⊆ Tors(X1(14),K).

By Theorem 2.2.6, Tors(X1(14),K) must be one of the following groups:
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Z/nZ, n = 6,12,18,24

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/6Z

Z/6Z×Z/6Z

Theorem 4.0.5. Let K be a quartic number field. Then

Tors(X1(14),K) ≃


Z/12Z if K ≃ M := Q[x]/⟨x4 −4x3 −1⟩,

Z/2Z×Z/6Z if K ⊇ L := Q[x]/⟨x2 − 3
4x+ 1

4⟩,

Z/6Z otherwise.

Proof: The 2-division polynomial of X1(14) is

Ψ2(x) = (x+1)
(

x2 − 3
4x+ 1

4

)
.

(−1,0) is a 2-torsion point on the curve. If there is another 2-torsion point on the
curve then the x-coordinate of that point must be a root of the polynomial
x2 − 3

4x+ 1
4 . By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/2Z×Z/6Z where L

is the number field generated by the polynomial x2 − 3
4x+ 1

4 .

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
(−4a+3

4 , 4a−7
8 ) y2 + 2a+15

14 xy + a+1
14 y = x3 + a+1

14 x2

(a, −a−1
2 ) y2 + −4a+33

28 xy + −4a+7
56 y = x3 + −4a+7

56 x2

Table 4.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x2 − 3

4x+ 1
4

The 12-division polynomial of X1(14) is

Ψ12(x) = x(x−1)(x+1)
(

x2 − 3
4x+ 1

4

)
(x2 +x+2)(x2 +2x−1)(x4 −4x3 −1)(

x4 − 3
2x3 + 3

2x2 + 1
2x+ 1

2

)
f

(1)
3 f

(2)
3 f6f8f12f24.

First notice that the fields generated by x2 − 3
4x+ 1

4 and x2 +x+2 are isomorphic.

By MAGMA, Tors(X1(14),L) ≃ Z/6Z where L is the number field generated by the
polynomial x2 +2x−1.

By MAGMA, Tors(X1(14),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x4 − 3

2x3 + 3
2x2 + 1

2x+ 1
2 but it is easy to see that the
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field generated by the polynomial x2 − 3
4x+ 1

4 is contained in the field generated by
the polynomial x4 − 3

2x3 + 3
2x2 + 1

2x+ 1
2 .

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z

(1
2(−2a3 +5a2 −4a−1),−2)

y2 + 1
7(−4a3 + 10a2 − 8a + 7)xy + 1

7(−2a3 + 5a2 −
4a+1)y = x3 + 1

7(−2a3 +5a2 −4a+1)x2

Table 4.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x4 − 3

2x3 + 3
2x2 + 1

2x+ 1
2

In this case the point (1
8(−2a3 +5a2 −4a+3), 1

16(2a3 −5a2 +4a−11)) gives rise to
the elliptic curve

y2 + 1
56(2a3 −5a2 +4a+63)xy+ 1

112(2a3 −5a2 +4a+11)y = x3 + 1
112(2a3 −5a2 +4a+11)x2

with torsion Z/2Z×Z/14Z over the number field generated by
x4 − 3

2x3 + 3
2x2 + 1

2x+ 1
2 .

By MAGMA, Tors(X1(14),L) ≃ Z/12Z where L is the number field generated by
the polynomial x4 −4x3 −1.

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
(1

2(−a3 + 5a2 − 5a + 3), 1
2(−3a3 +

13a2 −5a+3))
y2 + 1

7(−4a3 +18a2 −9a+15)xy + 1
14(3a3 −14a2 +11a−

4)y = x3 + 1
14(3a3 −14a2 +11a−4)x2

(1
2(−a3 + 5a2 − 3a − 3), 1

2(3a3 −
11a2 −5a+1))

y2 + 1
14(−17a3 + 59a2 + 37a + 13)xy + 1

14(5a3 − 20a2 −
3a+8)y = x3 + 1

14(5a3 −20a2 −3a+8)x2

Table 4.3 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x4 −4x3 −1

Notice that we cannot have the group Z/2Z×Z/12Z as torsion subgroup of X1(14)
over quartic number field. Since we already examined Ψ12(x) for all possible
torsion subgroup over quartic number field.

The 9-division polynomial of X1(14) is

Ψ9(x) = x(x3 −2x2 −x+1)
(

x3 + 1
3x2 −x+1

)
f6f27

Clearly, a quartic number field cannot contain a root of irreducible polynomial of
degree 3, 6 and 27. So, the groups Z/18Z and Z/2Z×Z/18Z cannot occur as a
torsion group of X1(14) over a quartic number field.
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The 24-division polynomial of X1(14) is

Ψ24(x) = x(x−1)(x+1)
(

x2 − 3
4x+ 1

4

)
(x2 +x+2)(x2 +2x−1)(x4 −4x3 −1)(

x4 − 3
2x3 + 3

2x2 + 1
2x+ 1

2

)
f

(1)
3 f

(2)
3 f6f

(1)
8 f

(2)
8 f12f

(1)
16 f

(2)
16 f24f32f48f96.

We cannot have the group Z/24Z over a quartic number field as a torsion group of
X1(14), since the roots which can be in a quartic number fields does not give a point
of order 24. We already did necessary calculations when we are working on Ψ12(x).

The 3-division polynomial of X1(14) is

Ψ3(x) = x
(

x3 + 1
3x2 −x+1

)
.

If there is a another 3-torsion point then the x-coordinate of the point must be the
root of the polynomial x3 + 1

3x2 −x+1, however a quartic number field cannot
contain a root of a degree 3 irreducible polynomial. So, we cannot see Z/3Z×Z/6Z
and Z/6Z×Z/6Z as torsion subgroup of X1(14) over a quartic number field.

Remark 4.0.6. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated by the polynomial x4 − 3

2x3 + 3
2x2 + 1

2x+ 1
2 , so we have infinitely

many elliptic curve over the number field L with torsion Z/14Z.

Case 3: Z/15Z ⊆ Tors(E,K).

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

We have
Z/4Z ≃ Tors(X1(15),Q) ⊆ Tors(X1(15),K).

By Theorem 2.2.6, Tors(X1(15),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24

Z/2Z×Z/2nZ, n = 2,4,6,8

Z/4Z×Z/4nZ, n = 1,2
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Theorem 4.0.7. Let K be a quartic number field. Then

Tors(X1(15),K) ≃



Z/16Z if K ≃ L1 := Q[x]/⟨x4 −7x3 −6x2 +2x+1⟩,

Z/16Z if K ≃ L2 := Q[x]/⟨x4 +3x3 +4x2 +2x+1⟩,

Z/2Z×Z/8Z if K ≃ L3 := Q[x]/⟨x4 −x2 +4⟩,

Z/2Z×Z/4Z if K ⊇ L4 := Q[x]/⟨x2 + 1
4x+ 1

4⟩,

Z/8Z if K ⊇ L5 := Q[x]/⟨x2 −x−1⟩,

Z/8Z if K ⊇ L6 := Q[x]/⟨x2 +x+1⟩,

Z/4Z otherwise.

Proof: The 3-division polynomial of X1(15) is

Ψ3(x) = x4 + 5
3x3 +x2 +x+ 1

3 .

So, it is possible to obtain a a quartic number field that contain root of Ψ3(x). Let
L be the number field generated by the polynomial x4 + 5

3x3 +x2 +x+ 1
3 . By

MAGMA, we have Tors(X1(15),L) ≃ Z/4Z. So, there is no growth in torsion.
Hence the groups Z/12Z, Z/24Z and Z/2Z×Z/12Z cannot occur as a torsion
group of X1(15) over a quartic number field.

The 5-division polynomial of X1(15) is

Ψ5(x) = x12 +5x11 + 56
5 x10 +29x9 +66x8 +96x7 +87x6 + 249

5 x5 +18x4 +2x3 −2x2 −x− 1
5 .

Clearly, a quartic number field cannot contain a root of degree 12 irreducible
polynomial. So, we cannot have a 5-torsion point over a quartic number field.
Hence we cannot obtain Z/20Z over a quartic number field as a torsion subgroup
of X1(15).

The 8-division polynomial of X1(15) is

Ψ8(x) = x(x+1)(x+2)(x2 −x−1)
(

x2 + 1
4x+ 1

4

)
(x2 +x+1)(

x4 + 1
2x3 + 3

2x2 +2x+1
)

(x4 +8x3 +9x2 +2x+1)f16.

Clearly, a quartic number field cannot contain a root of degree 16 irreducible
polynomial. Notice that the number fields generated by the polynomials x2 −x−1,
x2 + 1

4x+ 1
4 and x2 +x+1 are not isomorphic. Since a quartic number field can

contain a quadratic number field we need to consider number field generated by
above polynomials.
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By MAGMA, Tors(X1(15),L) ≃ Z/8Z where L is the number field generated by the
polynomial x2 −x−1.

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(a,−2a−1) y2 + (2a−1)

2 xy + (−11a+18)
2 y = x3 + (−11a+18)

2 x2

Table 4.4 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x2 −x−1

By MAGMA, Tors(X1(15),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 + 1

4x+ 1
4 .

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(−2,−4a) y2 +(8a+1)xy +(24a+8)y = x3 +(24a+8)x2

Table 4.5 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x2 + 1

4x+ 1
4

By MAGMA, Tors(X1(15),L) ≃ Z/8Z where L is the number field generated by the
polynomial x2 +x+1. But in this case, new torsion points do not give rise to an
elliptic curve with torsion subgroup Z/15Z.

By MAGMA, Tors(X1(15),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x4 + 1

2x3 + 3
2x2 +2x+1. But it is easy to see that the

number field generated by the polynomial x4 + 1
2x3 + 3

2x2 +2x+1 contains the
number field generated by the polynomial x2 + 1

4x+ 1
4 .

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z

(−2,−2a3 +a2 −2a−1)
y2 + (4a3 − 2a2 + 4a + 3)xy + (12a3 − 6a2 + 12a +
14)y = x3 +(12a3 −6a2 +12a+14)x2

Table 4.6 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x4 + 1

2x3 + 3
2x2 +2x+1

By MAGMA, Tors(X1(15),L) ≃ Z/4Z where L is the number field generated by the
polynomial x4 +8x3 +9x2 +2x+1. So, there is no growth in torsion in this case.
But, in this case rank is positive so we have infinitely many elliptic curve over the
number field L with torsion Z/15Z.

We also need to consider the compositum of the quadratic field.

L4 is the number field generated by x2 + 1
4x+ 1

4
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L5 is the number field generated by x2 −x−1

L6 is the number field generated by x2 +x+1

Let Fij be the compositum of the number field Li and Lj. Then By MAGMA, F45,
F56 and F46 are the number fields generated by 16x4 −24x3 −19x2 +21x+31,
x4 −x2 +4 and 16x4 +40x3 +69x2 +55x+19, respectively. Notice that F45, F56

and F46 are isomorphic to each other, so we only need to consider one of them. We
will work on F56.

By MAGMA, Tors(X1(15),L) ≃ Z/2Z×Z/8Z where L is the number field
generated by the polynomial x4 −x2 +4.

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(−a2

4 , a2−4
8 ) y2 + (7a2+69)

64 xy + (79a2+93)
2048 y = x3 + (79a2+93)

2048 x2

(a3−3a+2
4 , a3−3a+2

4 ) y2 + (5a3−15a−20)
2 xy+ (47a3−141a−210)

2 y = x3 + (47a3−141a−210)
2 x2

Table 4.7 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x4 −x2 +4

The 16-division polynomial of X1(15) is

Ψ16(x) = x(x+1)(x+2)(x2 −x−1)
(

x2 + 1
4x+ 1

4

)
(x2 +x+1)

(
x4 + 1

2x3 + 3
2x2 +2x+1

)
(x4 +8x3 +9x2 +2x+1)(x4 −7x3 −6x2 +2x+1)(x4 +3x3 +4x2 +2x+1)f8f

(1)
16 f

(2)
16 f64.

The only polynomials, we need to consider are (x4 −7x3 −6x2 +2x+1) and
(x4 +3x3 +4x2 +2x+1) since we already examined the other polynomials when we
are working on Ψ8(x).

By MAGMA, Tors(X1(15),L) ≃ Z/16Z where L is the number field generated by
the polynomial x4 −7x3 −6x2 +2x+1.

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(1

3(−a3 + 8a2 − a −
3), 1

3(2a3 −16a2 +2a+3))
y2 + 1

6(−2a3 + 16a2 − 2a − 9)xy + 1
6(11a3 − 88a2 + 11a +

87)y = x3 + 1
6(11a3 −88a2 +11a+87)x2

(1
3(7a3 − 51a2 − 27a +

20), 1
3(−23a3 + 168a2 +

87a−73))

y2 + 1
3(106a3 − 694a2 − 949a − 224)xy + 1

3(−18224a3 +
119150a2 + 164384a + 39466)y = x3 + 1

3(−18224a3 +
119150a2 +164384a+39466)x2

Table 4.8 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x4 −7x3 −6x2 +2x+1
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By MAGMA, Tors(X1(15),L) ≃ Z/16Z where L is the number field generated by
the polynomial x4 +3x3 +4x2 +2x+1.

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z

(a3 +3a2 +3a,−a2 −2a−2)
y2 + (−3a3 − 11a2 − 16a − 7)xy + (−16a3 − 45a2 − 50a −
8)y = x3 +(−16a3 −45a2 −50a−8)x2

(−a3 − 2a2 − a + 1,−a3 −
2a2 −a+1)

y2 + (−10a3 − 20a2 − 10a − 5)xy + (−94a3 − 188a2 − 94a −
58)y = x3 +(−94a3 −188a2 −94a−58)x2

Table 4.9 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x4 +3x3 +4x2 +2x+1

The 4-division polynomial of X1(15) is

Ψ4(x) = x(x+1)(x+2)
(

x2 + 1
4x+ 1

4

)(
x4 + 1

2x3 + 3
2x2 +2x+1

)
.

If Z/4Z×Z/4Z occur over quartic number field as a torsion subgroup of X1(15), it
must occur over number fields generated by the above polynomial, but we already
examined all of them and it didn’t occur. So, we cannot have Z/4Z×Z/4Z,
Z/4Z×Z/8Z and Z/2Z×Z/16Z as a torsion subgroup of X1(15) over a quartic
number field.

Remark 4.0.8. By MAGMA, Rank(X1(15),L) is positive where L is the number
field generated by the polynomial x4 + 1

2x3 + 3
2x2 +2x+1, so we have infinitely

many elliptic curve over the number field L with torsion Z/15Z.

Case 4: Z/2Z×Z/10Z

Consider following modular curve

X1(2,10) : y2 = x3 +x2 −x = x(x2 +x−1).

We have
Z/6Z ≃ Tors(X1(2,10),Q) ⊆ Tors(X1(2,10),K).

By Theorem 2.2.6, Tors(X1(2,10),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/6Z

Z/6Z×Z/6Z
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Theorem 4.0.9. Let K be a quartic number field. Then

Tors(X1(2,10),K) ≃


Z/12Z if K ≃ L := Q[x]/⟨x4 +4x3 +6x2 −4x+1⟩,

Z/2Z×Z/6Z if K ⊇ M := Q[x]/⟨x2 −4x−1⟩,

Z/6Z otherwise.

Proof: The 9-division polynomial of X1(2,10) is

Ψ9(x) = (x−1)
(

x3 + 7
3x2 + 1

3x+ 1
3

)
f9f27.

But a quartic number field cannot contain any roots of
(
x3 + 7

3x2 + 1
3x+ 1

3

)
, f9 and

f27. So, we cannot obtain Z/18Z and Z/2Z×Z/18Z as a torsion subgroup of
X1(2,10) over a quartic number field.

The 12- division polynomial of X1(2,10) is

Ψ12(x) = x(x−1)(x+1)(x2 −4x−1)(x2 +1)(x2 +x−1)(x4 +2x3 −6x2 −2x+1)

(x4 +4x3 +6x2 −4x+1)f (1)
3 f

(2)
3 f6f8f12f24.

Notice that the number fields generated by the polynomials x2 −4x−1 and
x2 +x−1 are isomorphic, so it is enough to consider only one of them.

By MAGMA, Tors(X1(2,10),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x2 −4x−1. But in this case, new torsion points do
not give rise to an elliptic curve with torsion subgroup Z/2Z×Z/10Z.

By MAGMA, Tors(X1(2,10),L) ≃ Z/6Z where L is the number field generated by
the polynomial x2 +1.

By MAGMA, Tors(X1(2,10),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x4 +2x3 −6x2 −2x+1. Notice that the number field
generated by the polynomial x4 +2x3 −6x2 −2x+1 contains the number field
generated by the polynomial x2 −4x−1. But in this case, new torsion points do
not give rise to an elliptic curve with torsion subgroup Z/2Z×Z/10Z.

By MAGMA, Tors(X1(2,10),L) ≃ Z/12Z where L is the number field generated by
the polynomial x4 +4x3 +6x2 −4x+1.
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Point from X1(2,10)
Corresponding Elliptic Curve with torsion Z/2Z×
Z/10Z

(a3 +4a2 +6a−4, a3+5a2+11a+5
2 ) y2 = x3 + (−3a3−18a2−39a−6)

10 x2 + (2a3+8a2+14a−2)
5 x

Table 4.10 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(2,10) over the number field generated by x4 +4x3 +6x2 −4x+1

The 3-division polynomial of X1(2,10) is

Ψ3(x) = (x−1)
(

x3 + 7
3x2 + 1

3x+ 1
3

)
.

So if there is a new 3-torsion point, its x-coordinate must be root of the polynomial(
x3 + 7

3x2 + 1
3x+ 1

3

)
. But a quartic number cannot contain a root of this

polynomial. Hence we cannot have groups Z/3Z×Z/6Z and Z/6Z×Z/6Z as
torsion group of X1(2,10) over a quartic number field.

The case Z/2Z×Z/12Z cannot occur over a quartic number field since if they
occur over a quartic number field then x-coordinate of the new 2-torsion point must
came from root of degree 2 or 4 polynomial which is component of Ψ12(x), but this
is not possible.

The 24- division polynomial of X1(2,10) is

Ψ24(x) = Ψ12(x)f (2)
8 f

(1)
16 f

(2)
16 f32f48f96.

We notice that there is no new root can be contained in a quartic number field. So,
the case Z/24Z cannot occur as a torsion subgroup of an elliptic curve over a
quartic number field.

Case 5: Z/2Z×Z/12Z

Consider following the modular curve

X1(2,12) : y2 = x3 −x2 +x = x(x2 −x+1).

We have
Z/4Z ≃ Tors(X1(2,12),Q) ⊆ Tors(X1(2,12),K).

By Theorem 2.2.6, Tors(X1(2,12),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24

Z/2Z×Z/2nZ, n = 2,4,6,8
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Z/4Z×Z/4nZ, n = 1,2

Theorem 4.0.10. Let K be a quartic number field. Then

Tors(X1(2,12),K) ≃



Z/2Z×Z/8Z if K ≃ L := Q[x]/⟨x4 −2x3 +5x2 −4x+1⟩,

Z/2Z×Z/4Z if K ⊇ M1 := Q[x]/⟨x2 −x+1⟩,

Z/8Z if K ⊇ M2 := Q[x]/⟨x2 −4x+1⟩,

Z/8Z if K ⊇ M3 := Q[x]/⟨x2 +1⟩,

Z/4Z otherwise.

Proof:The 3-division polynomial of X1(2,12) is

Ψ3(x) = x4 − 4
3x3 +2x2 − 1

3 .

By MAGMA, Tors(X1(2,12),L) ≃ Z/4Z where L is the number field generated by
the polynomial x4 − 4

3x3 +2x2 − 1
3 .

Since we cannot obtain a 3-torsion point, Z/12Z, Z/24Z and Z/2Z×Z/12Z
cannot occur as torsion group of X1(2,12) over a quartic number field.

The 5-division polynomial of X1(2,12) is

Ψ5(x) = x12 −4x11 + 78
5 x10 −16x9 −21x8 +72x7 −108x6 + 432

5 x5 −57x4 +28x3 −10x2 + 1
5 .

A quartic number field cannot contain a root of degree 12 irreducible polynomial.
Hence we cannot have Z/20Z as torsion subgroup of X1(2,12) over a quartic
number field.

The 8-division polynomial of X1(2,12) is

Ψ8(x) = x(x−1)(x+1)(x2 −4x+1)(x2 −x+1)(x2 +1)(x4 −2x3 +6x2 −2x+1)

(x4 +4x3 −6x2 +4x+1)f16.

By MAGMA, Tors(X1(2,12),L) ≃ Z/8Z where L is the number field generated by
the polynomial x2 −4x+1. But in this case, new torsion points do not give rise to
an elliptic curve with torsion subgroup Z/2Z×Z/12Z.

By MAGMA, Tors(X1(2,12),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 −x+1.But in this case, new torsion points do not
give rise to an elliptic curve with torsion subgroup Z/2Z×Z/12Z.

By MAGMA, Tors(X1(2,12),L) ≃ Z/8Z where L is the number field generated by
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the polynomial x2 +1. But in this case new torsion points do not give rise to an
elliptic curve with torsion subgroup Z/2Z×Z/12Z.

By MAGMA, Tors(X1(2,12),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x4 −2x3 +6x2 −2x+1. But it is easy to notice that
the number field generated by the polynomial x4 −2x3 +6x2 −2x+1 contain the
number field generated by the polynomial x2 −x+1.

By MAGMA, Tors(X1(2,12),L) ≃ Z/8Z where L is the number field generated by
the polynomial x4 +4x3 −6x2 +4x+1. But it is easy to notice that the number
field generated by the polynomial x4 +4x3 −6x2 +4x+1 contain the number field
generated by the polynomial x2 −4x+1.

We also need to consider the compositum of the quadratic fields M1, M2 and M3.

Let Fij be the compositum of the number field Mi and Mj. Then By MAGMA, F12,
F13 and F23 are the number fields generated by x4 −10x3 +33x2 −40x+25,
x4 −2x3 +5x2 −4x+1 and x4 −8x3 +20x2 −16x+16, respectively. Notice that
F12, F13 and F23 are isomorphic to each other, so we only need to consider one of
them. We will work on F13.

By MAGMA, Tors(X1(2,12),L) ≃ Z/2Z×Z/8Z where L is the number field
generated by the polynomial x4 −2x3 +5x2 −4x+1. But in this case, new torsion
points do not give rise to an elliptic curve with torsion subgroup Z/2Z×Z/12Z. So
we cannot have Z/16Z and Z/2Z×Z/16Z as a torsion group of X1(2,12) over a
quartic number field.

The 4-division polynomial of X1(2,12) is

Ψ4(x) = x(x−1)(x+1)(x2 −x+1)(x4 −2x3 +6x2 −2x+1).

So we cannot have the groups Z/4Z×Z/4Z and Z/4Z×Z/8Z as a torsion group
of X1(2,12) over a quartic number field. Since if there is new 4-torsion point, its
x-coordinate must be root of the Ψ4(x), but this is not possible. We already did
necessary calculations when we are working on Ψ8(x).

Remark 4.0.11. By MAGMA, Rank(X1(2,12),L) is positive where L is the
number field generated by the polynomial x4 − 4

3x3 +2x2 − 1
3 , so we have infinitely

many elliptic curve over the number field L with torsion Z/2Z×Z/12Z.

Remark 4.0.12. For the remaining cases we do not need to consider new points
over quadratic number fields since following torsions cannot occur over quadratic
number field.
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Case 6: Z/3Z×Z/3Z

Consider following the modular curve X1(3,3) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/3Z×Z/3Z, [1], is the following:

E(3,3) : y2 +((z +2)v +(1− z))xy +((z +1)v2 − zv)y = x3

where v ∈ K, z = ζ3 and X1(3,3) is defined over the field Q(ζ3). Then the
discriminant is given by

∆(3,3) = −27(−vz +v2(1+ z))4 +(−vz +v2(1+ z))3(1− z +v(2+ z))3.

Notice that ∆(3,3) = 0 if and only if v = 0, v = 1, v = z
1+z and v = (−1+z)3

(2+z)3 . So

other than the points (0,0), (0,1), (0, z
1+z ) and (0, (−1+z)3

(2+z)3 ), we can have an elliptic
curve with torsion Z/3Z×Z/3Z.

Case 7: Z/3Z×Z/6Z

Consider following the modular curve X1(3,6) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/3Z×Z/6Z, [1], is the following:

E(3,6) : y2 +(t+2)xy +(−t(t+1))y = x3 +(−t(t+1))x2

where t = 4v2+6v+3
v3 , v ∈ K and and X1(3,6) is defined over the field Q(ζ3). Then

the discriminant is given by

∆(3,6) = −27t4(t+1)4 +8t3(t+2)3(t+1)3 + t3
(
(t+2)2 −4t(t+1)

)2
(t+1)3

−9t3(t+2)
(
(t+2)2 −4t(t+1)

)
(t+1)3.

Notice that ∆(3,6) = 0 if and only if v = −1, v = −3
2 , v = 1

4

(
−3− i

√
3

)
,

v = 1
4

(
−3+ i

√
3

)
, v = 1

2

(
−3− i

√
3

)
and v = 1

2

(
−3+ i

√
3

)
. So other than the

points (0,v), where v is the root of ∆(3,6), we can have an elliptic curve with
torsion Z/3Z×Z/6Z.

Case 8: Z/3Z×Z/9Z

Consider following the modular curve

X1(3,9) : y2 +y = x3

We have
Z/3Z ≃ Tors(X1(3,9),Q) ⊆ Tors(X1(3,9),K).

32



By Theorem 2.2.6, Tors(X1(3,9),K) must be one of the following groups:

Z/nZ, n = 3,6,9,12,15,18,21,24

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/3nZ, n = 1,2,3

Z/6Z×Z/6Z

Theorem 4.0.13. Let K be a quartic number field. Then

Tors(X1(3,9),K) ≃

Z/3Z×Z/3Z if K ⊇ L := Q[x]/⟨x2 −x+1⟩,

Z/3Z otherwise.

Proof:The 2-division polynomial of X1(3,9) is

Ψ2(x) = x3 + 1
4 .

Clearly a quartic number field cannot contain a root of a degree 3 irreducible
polynomial. So we cannot have a point of order 2. Hence the groups Z/6Z, Z/12Z,
Z/18Z, Z/24Z, Z/2Z×Z/6Z, Z/2Z×Z/12Z, Z/3Z×Z/6Z and Z/6Z×Z/6Z
cannot occur as torsion group of X1(3,9) over a quartic number field.

The 5-division polynomial of X1(3,9) is

Ψ5(x) = x12 +19x9 −3x6 −5x3 − 1
5 .

Clearly a quartic number field cannot contain a root of a degree 12 irreducible
polynomial. So, we cannot obtain the group Z/15Z.

The 7-division polynomial of X1(3,9) is

Ψ7(x) = (x6 − 1
7x3 + 1

7)f18.

Clearly a quartic number field cannot contain a root of a degree 6 and 18
irreducible polynomial. So, we cannot obtain the group Z/21Z.

The 9-division polynomial of X1(3,9) is

Ψ9(x) = x(x+1)(x2 −x+1)(x3 −3x2 +1)f6f9f18.

Clearly a quartic number field cannot contain a root of a degree 3, 6, 9 and 18
irreducible polynomial. So, we only need to consider the polynomial x2 −x+1. By
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MAGMA, Tors(X1(3,9),L) ≃ Z/3Z×Z/3Z where L is the number field generated
by the polynomial x2 −x+1. But since we cannot have Z/3Z×Z/9Z as torsion
group of an elliptic curve over a quadratic number field, we do not need to consider
new points in the torsion. Also, we cannot obtain the groups Z/9Z and
Z/3Z×Z/9Z as torsion group of X1(3,9) over a quartic number field.

Case 9: Z/4Z×Z/4Z

Consider following the modular curve X1(4,4) of genus 0.

The general equation of the elliptic curve with torsion subgroup Z/4Z×Z/4Z, [1],
is the following:

E(4,4) : y2 +xy +(−t)y = x3 +(−t)x2

where t = (1−v)(v2−2v+2)
2v4 , v ∈ K and X1(4,4) is defined over the field Q(ζ4). Then

the discriminant is given by

∆(4,4) = −27t4 +(1−4t)2t3 −9(1−4t)t3 +8t3.

Notice that ∆(4,4) = 0 if and only if v = 1, v = 2, v = 1− i and v = 1+ i. So other
than the points (0,1), (0,2), (0,1− i) and (0,1+ i) we can have an elliptic curve
with torsion Z/4Z×Z/4Z.

Case 10: Z/4Z×Z/8Z

Consider following the modular curve

X1(4,8) : y2 = x3 −x.

We have
Z/2Z×Z/2Z ≃ Tors(X1(4,8),Q) ⊆ Tors(X1(4,8),K).

By Theorem 2.2.6, Tors(X1(4,8),K) must be one of the following groups:

Z/2Z×Z/2nZ, n = 1,2,3,4,5,6

Z/4Z×Z/4nZ, n = 1,2

Theorem 4.0.14. Let K be a quartic number field. Then

Tors(X1(4,8),K) ≃



Z/4Z×Z/4Z if K ≃ L := Q[x]/⟨x4 −4x3 +4x2 +8⟩,

Z/2Z×Z/4Z if K ⊇ M1 := Q[x]/⟨x2 −2x−1⟩,

Z/2Z×Z/4Z if K ⊇ M2 := Q[x]/⟨x2 +1⟩,

Z/2Z×Z/2Z otherwise.
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Proof: The 3-division polynomial of X1(4,8) is

Ψ3(x) = x4 −2x2 − 1
3 .

By MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/2Z where L is the number field
generated by the polynomial x4 −2x2 − 1

3 . There is no growth in torsion.

So, also Z/2Z×Z/6Z and Z/2Z×Z/12Z cannot occur as torsion subgroup of
X1(4,8) over a quartic number field.

The 4-division polynomial of X1(4,8) is

Ψ4(x) = x(x−1)(x+1)(x2 −2x−1)(x2 +1)(x2 +2x−1).

First notice that the number fields generated by the polynomials x2 −2x−1 and
x2 +2x−1 are isomorphic. So, it is enough to consider only one of them.

By MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 −2x−1.

By MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 +1.

There is no quartic polynomial in Ψ4(x) but we also need to consider compositum
of the fields generated by the polynomials x2 −2x−1 and x2 +1.

Let M be the compositum of the fields generated by the polynomials x2 −2x−1 and
x2 +1. Then M is the number field generated by the polynomial x4 −4x3 +4x2 +8.

By MAGMA, Tors(X1(4,8),L) ≃ Z/4Z×Z/4Z where L is the number field
generated by the polynomial x4 −4x3 +4x2 +8. But all of the torsion points are
cusps. So new torsion points do not give rise to an elliptic curve with the torsion
subgroup Z/4Z×Z/8Z. (double checked)

The 8-division polynomial of X1(4,8) is

Ψ8(x) = Ψ4(x)f (1)
8 f

(2)
8 f

(3)
8 .

There isn’t any new polynomials we need to consider in Ψ8(x) because we already
examined all of them when we are working on Ψ4(x). So, the cases Z/2Z×Z/8Z
and Z/4Z×Z/8Z cannot occur as torsion subgroup of X1(4,8) over a quartic
number field.
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The 5-division polynomial of X1(4,8) is

Ψ5(x) =
(

x4 − 2
5x2 + 1

5

)
f8.

By MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x4 − 2

5x2 + 1
5 and all new torsion points are cusps. It is

easy to see that the field generated by the polynomial x2 +1 is contained in the field
generated by the polynomial x4 − 2

5x2 + 1
5 . So we could not obtain a point of order

5. Hence, we cannot obtain Z/2Z×Z/10Z as torsion subgroup of X1(4,8) over a
quartic number field.

Remark 4.0.15. By MAGMA, Rank(X1(4,8),L) is positive where L is the number
field generated by the polynomial x4 −2x2 − 1

3 , but L does not contain ζ4. So, even
we have a positive rank, we cannot obtain an elliptic curve with torsion
Z/4Z×Z/8Z over L.

Case 11: Z/5Z×Z/5Z

Consider following the modular curve X1(5,5) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/5Z×Z/5Z, [1], is the following:

E(5,5) : y2 +(1− t)xy +(−t)y = x3 +(−t)x2

where t = U
V (U+1) and X1(5,5) is defined over the field Q(ζ5). U and V are defined

as following

U =
(2−a)v2

5 + (2−a)v
5 + a+3

5
v +1

and
V = −((a+2)v2 +(5a+9)v +(25a+41))

(v3 +(−3a−2)v2 +(2a+6)v +(5a+9))

where a = z+1
z , z = ζ5 and v ∈ K,. Then

∆(5,5) = −27t4 +8(1− t)3t3 +
(
(1− t)2 −4t

)2
t3 −9

(
(1− t)2 −4t

)
(1− t)t3.

So other than the points (0,v) where v is the root of ∆(5,5) we can have an elliptic
curve with torsion Z/5Z×Z/5Z.

Case 12: Z/6Z×Z/6Z

Consider following the modular curve

X1(6,6) : y2 = x3 +1.
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We have
Z/6Z ≃ Tors(X1(6,6),Q) ⊆ Tors(X1(6,6),K).

By Theorem 2.2.6, Tors(X1(6,6),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/6Z

Z/6Z×Z/6Z

Theorem 4.0.16. Let K be a quartic number field. Then

Tors(X1(6,6),K) ≃


Z/12Z if K ≃ L := Q[x]/⟨x4 −8x3 −8x−8⟩,

Z/2Z×Z/6Z if K ⊇ M := Q[x]/⟨x2 −x+1⟩,

Z/6Z otherwise.

Proof: The 2-division polynomial of X1(6,6) is

Ψ2(x) = (x+1)(x2 −x+1).

By MAGMA, we obtain that Tors(X1(6,6),L) ≃ Z/2Z×Z/6Z where L is the
number field is generated by the polynomial x2 −x+1.

The 12-division polynomial of X1(6,6) is

Ψ12(x) = x(x−2)(x+1)(x2 −x+1)(x2 +2x−2)(x2 +2x+4)(x4 −8x3 −8x−8)

(x4 −2x3 +6x2 +4x+4)f (1)
3 f

(2)
3 f6f8f12f24.

First notice that the number fields generated by the polynomials x2 −x+1 and
x2 +2x+4 are isomorphic and we already examined the polynomial x2 −x+1.

By MAGMA, Tors(X1(6,6),L) ≃ Z/6Z where L is the number field generated by
the polynomial x2 +2x−2.

By MAGMA, Tors(X1(6,6),L) ≃ Z/12Z where L is the number field generated by
the polynomial x4 −8x3 −8x−8. Since L does not contain ζ6, new points from
torsion do not give rise to an elliptic curve with torsion Z/6Z×Z/6Z.

By MAGMA, Tors(X1(6,6),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x4 −2x3 +6x2 +4x+4 but it is easy to see that the
number field generated by the polynomial x4 −2x3 +6x2 +4x+4 contain the number
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field generated by the polynomial x2 −x+1. New points from torsion are cusps, so
they do not give rise to an elliptic curve with torsion subgroup Z/6Z×Z/6Z.

We also need to consider the compositum of the number fields generated by the
polynomials x2 −x+1 and x2 +2x−2. Their compositum is the number field
generated by the polynomial x4 +2x3 −3x2 −4x+13. We notice the number fields
generated by the polynomials x4 +2x3 −3x2 −4x+13 and x4 −2x3 +6x2 +4x+4
are isomorphic.

Notice that we cannot have the case Z/2Z×Z/12Z as torsion subgroup of X1(6,6)
over quartic number field. Since we already examined Ψ12(x) for all possible
torsion subgroup over quartic number field.

The 9-division polynomial of X1(6,6) is

Ψ9(x) = x(x3 +4)f9f27.

Clearly a quartic number field cannot contain a root of the polynomials (x3 +4), f9

and f27. So, the groups Z/18Z and Z/2Z×Z/18Z cannot occur as a torsion
subgroup of X1(6,6) over a quartic number field.

The 24-division polynomial of X1(6,6) is

Ψ24(x) = x(x−2)(x+1)(x2 −x+1)(x2 +2x−2)(x2 +2x+4)(x4 −8x3 −8x−8)

(x4 −2x3 +6x2 +4x+4)f (1)
3 f

(2)
3 f6f

(1)
8 f

(2)
8 f12f

(1)
16 f

(2)
16 f24f32f48f96.

Notice that we already examined the necessary polynomials when we are working on
Ψ12(x). So the case Z/24Z cannot occur.

The 3-division polynomial of X1(6,6) is

Ψ9(x) = x(x3 +4).

If there exist a new independent 3-torsion point, it must be root of the polynomial
x3 +4 but a quartic number field cannot contain root of degree 3 irreducible
polynomial. So we cannot have the cases Z/3Z×Z/6Z and Z/6Z×Z/6Z as
torsion subgroup of X1(6,6) over a quartic number field.
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5. Torsion Structure of Elliptic Curves over Quintic Number Fields

In this chapter, K will be a number field with [K : Q] = 5.

Remark 5.0.1. If the modular curve X1(m,mn), where m ≥ 1 and n ≥ 2, has
genus g > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< ∞ for any number
field.

Remark 5.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X1(18),
X1(19), X1(20), X1(21), X1(22), X1(24), X1(25) X1(2,14) and X1(2,16) are
curves of genus 2, 2, 5, 2, 7, 3, 5, 6, 5, 12, 4 and 5, respectively.

By Theorem 2.2.7, there are infinitely many quintic points on any of the curves
X1(m,mn), see Remark 5.0.2.

In what follows, we only consider the curves X1(m,mn) when g = 1.

Case 1: Z/11Z ⊆ Tors(E,K).

Consider the following modular curve

X1(11) : y2 −y = x3 −x2

We have
Z/5Z ≃ Tors(X1(11),Q) ⊆ Tors(X1(11),K).

By Theorem 2.2.7, Tors(X1(11),K) must be one of the following groups:

Z/nZ, n = 5,10,15,20

Z/2Z×Z/10Z

Theorem 5.0.3. Let K be a quintic number field. Then

Tors(X1(11),K) ≃

Z/25Z if K ≃ L := Q[x]/⟨x5 −18x4 +35x3 −16x2 −2x+1⟩,

Z/5Z otherwise.
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Proof: The 2-division polynomial of X1(11) is

Ψ2(x) = 4x3 −4x2 +1.

It is easy to see that a quintic number field can not contain a root of Ψ2(x) since if
it contains a root of Ψ2(x), it must also contain the number field obtained by
adjoining the root of Ψ2(x), but this is not possible. Hence we cannot obtain
Z/10Z, Z/20Z and Z/2Z×Z/10Z as a torsion subgroup of X1(11) over a quintic
number field.

The 3-division polynomial of X1(11) is

Ψ3(x) = 3x4 −4x3 +3x−1.

Similarly, a quintic field can not contain a root of degree 4 irreducible polynomial.
Hence Z/15Z cannot occur as the torsion subgroup of X1(11) over a quintic
number field.

Now consider 25-division polynomial of X1(11), which are

Ψ25(x) = x(x−1)(x5 −18x4 +35x3 −16x2 −2x+1)(x5 −7x4 +13x3 −5x2 −2x+1)

f10f
(1)
20 f

(2)
20 f250

Clearly, a quintic number field can not contain a root of irreducible polynomials
f10, f

(1)
20 , f

(2)
20 and f250.

Also notice that the fields generated by the polynomials

x5 −18x4 +35x3 −16x2 −2x+1,

x5 −7x4 +13x3 −5x2 −2x+1

are isomorphic. So it is enough to consider only one of them.

By MAGMA, Tors(X1(11),L) ≃ Z/25Z where L is the number field generated by
the polynomial x5 −18x4 +35x3 −16x2 −2x+1.
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Point from X1(11) Corresponding Elliptic Curve with torsion Z/11Z
( 1

11(a4 − 19a3 + 50a2 −
3a+3), 1

11(10a4 −168a3 +
148a2 +25a−3))

y2 + 1
11(61a4 − 1017a3 + 786a2 + 43a − 42)xy + 1

11(9199a4 −
153213a3 + 115964a2 + 8589a − 6848)y = x3 + 1

11(2183a4 −
36363a3 +27587a2 +2037a−1629)x2

( 1
11(a4 − 19a3 + 50a2 −

3a + 3), 1
11(−10a4 +

168a3 − 148a2 − 25a +
14))

y2 + 1
11(10a4 − 160a3 + 22a2 + 10a + 4)xy + 1

11(−3325a4 +
55475a3 − 43435a2 − 3104a + 2565)y = x3 + 1

11(−831a4 +
13888a3 −11227a2 −775a+663)x2

( 1
11(15a4 − 271a3 +

546a2 − 327a +
60), 1

11(49a4 − 897a3 +
1986a2 −1330a+229))

y2 + 1
11(−2401a4 + 43799a3 − 94630a2 + 61254a − 9956)xy +

1
11(36813276a4 − 671514575a3 + 1450365472a2 − 938692534a +
152690206)y = x3 + (211054a4 − 3849857a3 + 8315088a2 −
5381621a+875389)x2

Table 5.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by x5 −18x4 +35x3 −16x2 −2x+1

Case 2: Z/14Z ⊆ Tors(E,K).

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

We have
Z/6Z ≃ Tors(X1(14),Q) ⊆ Tors(X1(14),K).

By Theorem 2.2.7, Tors(X1(14),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24

Z/2Z×Z/2nZ, n = 3,6

Theorem 5.0.4. Let K be a quintic number field. Then

Tors(X1(14),K) ≃ Z/6Z.

Proof: We cannot obtain groups Z/2Z×Z/6Z and Z/2Z×Z/12Z as torsion
subgroup of X1(14) over a quintic number field because if there is a 2-torsion point
other than (−1,0) then x-coordinates of that point must be a root of polynomial
x2 −1, but this implies that the field generated by the polynomial x2 −1 must be
contained in a quintic number field, which is not possible.
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The 4-division polynomial of X1(14) is

Ψ4(x) = x+1)(x2 − 3
4x+ 1

4)(x2 +2x−1)f4.

Clearly, a quintic number field can not contain a root of degree 2 and 4 irreducible
polynomials. So, Z/12Z and Z/24Z cannot occur as torsion subgroup of X1(14)
over a quintic number field.

The 9-division polynomial of X1(14) is

Ψ9(x) = x(x3 −2x2 −x+1)(x3 + 1
3x2 −x+1)f6f27.

Clearly, a quintic number field can not contain a root of degree 3, 6, and 27
irreducible polynomials. So, Z/18Z cannot occur as torsion subgroup of X1(14)
over a quintic number field.

Hence
Tors(X1(14),K) ≃ Z/6Z.

Case 3: Z/15Z ⊆ Tors(E,K).

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

We have
Z/4Z ≃ Tors(X1(15),Q) ⊆ Tors(X1(15),K).

By Theorem 2.2.7 Tors(X1(15),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24

Z/2Z×Z/2nZ, n = 2,4,6,8

Theorem 5.0.5. Let K be a quintic number field. Then

Tors(X1(15),K) ≃ Z/4Z.

Proof: The groups Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/2Z×Z/12Z and
Z/2Z×Z/16Z cannot occur as torsion group of X1(15) over a quintic number
field. Just notice that there is no 2-torsion point other than (−1,0).
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The 5-division polynomial of X1(15) is

Ψ5(x) = 5x12 +25x11 +56x10 +145x9 +330x8 +480x7 +435x6 +249x5 +90x4

+10x3 −10x2 −5x−1.

Surely, a quintic number field can not contain a root of a degree 12 irreducible
polynomial. So, we cannot obtain Z/20Z as a torsion subgroup of X1(15) over a
quintic number field.

The 6-division polynomial of X1(15) is

Ψ6(x) = (x+1)(x2 + 1
4x+ 1

4)f (1)
4 f

(2)
4 f8.

A quintic number field cannot contain a root of degree 2, 4, and 8 irreducible
polynomial. So, Z/12Z and Z/24Z cannot occur over a quintic number field as a
torsion subgroup of X1(15).

The 8-division polynomial of X1(15) is

Ψ8(x) = x(x+1)(x+2)(x2 −x−1)(x2 + 1
4x+ 1

4)(x2 +x+1)f (1)
4 f

(2)
4 f16.

Like in previous cases a quintic number field can not contain a root of degree 2, 4,
and 16 irreducible polynomial. As a result, Z/8Z and Z/16Z cannot occur over a
quintic number field as a torsion subgroup of X1(15).

Hence
Tors(X1(15),K) ≃ Z/4Z.

Case 4: Z/2Z×Z/10Z

Consider following modular curve

X1(2,10) : y2 = x3 +x2 −x = x(x2 +x−1).

We have
Z/6Z ≃ Tors(X1(2,10),Q) ⊆ Tors(X1(2,10),K).

By Theorem 2.2.7, Tors(X1(2,10),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24

Z/2Z×Z/2nZ, n = 3,6
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Theorem 5.0.6. Let K be a quintic number field. Then

Tors(X1(2,10),K) ≃ Z/6Z.

Proof: Like in previous cases we cannot have a 2-torsion point other than (0,0).
Hence the groups Z/2Z×Z/6Z and Z/2Z×Z/12Z cannot occur as torsion
subgroup of X1(2,10) over a quintic number field.

The 4-division polynomial of X1(2,10) is

Ψ4(x) = x(x2 +1)(x2 +x−1)(x4 +2x3 −6x2 −2x+1).

Apparently, a quintic number field cannot contain a root of polynomials (x2 +1),
(x2 +x−1), (x4 +2x3 −6x2 −2x+1). Thus we cannot have Z/12Z and Z/24Z as
torsion subgroup of X1(2,10) over a quintic number field.

The 9-division polynomial of X1(2,10) is

(x−1)(x3 + 7
3x2 + 1

3x+ 1
3)f9f27.

A quintic number field can not contain a root of degree 3, 9, and 27 irreducible
polynomials. So, Z/18Z cannot occur over a quintic number field as a torsion
subgroup of X1(2,10).

Therefore
Tors(X1(2,10),K) ≃ Z/6Z.

Case 5: Z/2Z×Z/12Z

Consider following the modular curve

X1(2,12) : y2 = x3 −x2 +x = x(x2 −x+1).

We have
Z/4Z ≃ Tors(X1(2,12),Q) ⊆ Tors(X1(2,12),K).

By Theorem 2.2.7, Tors(X1(2,12),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24

Z/2Z×Z/2nZ, n = 2,4,6,8
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Theorem 5.0.7. Let K be a quintic number field. Then

Tors(X1(2,12),K) ≃ Z/4Z.

Proof: We cannot obtain Z/2Z×Z/4Z, Z/2Z×Z/8Z, Z/2Z×Z/12Z and
Z/2Z×Z/16Z as torsion subgroup of X1(2,12) over a quintic number field, since
there is no 2-torsion point other than (0,0) as a quintic number field can not
contain a field that generated by a degree 2 irreducible polynomial.

The 5-division polynomial of X1(2,12) is

Ψ5(x) = 5x12 −20x11 +78x10 −80x9 −105x8 +360x7 −540x6 +432x5 −285x4 +140x3 −50x2 +1.

It is clear that a quintic number field cannot contain a root of a degree 12
irreducible polynomial. As a result, Z/20Z cannot occur over a quintic number field
as torsion subgroup of X1(2,12).

The 6-division polynomial of X1(2,12) is

Ψ6(x) = x(x2 −x+1)(x4 − 4
3x3 +2x2 − 1

3)(x4 −6x2 +4x−3)f8.

Like in previous cases a quintic number field cannot contain a root of degree 2, 4,
and 8 irreducible polynomials. So, Z/12Z and Z/24Z cannot occur as a torsion
subgroup of X1(2,12) over a quintic number field.

The 8-division polynomial of X1(2,12) is

Ψ8(x) = x(x−1)(x+1)(x2 −4x+1)(x2 −x+1)(x2 +1)f (1)
4 f

(2)
4 f8.

Precisely, a quintic number field cannot contain a root of degree 2, 4, and 16
irreducible polynomials. Hence, we cannot obtain Z/8Z and Z/16Z over a quintic
number field as a torsion subgroup of X1(2,12).

Thus
Tors(X1(2,12),K) ≃ Z/4Z.
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6. Torsion Structure of Elliptic Curves over Sextic Number Fields

In this chapter, K will be a number field with [K : Q] = 6.

Remark 6.0.1. If the modular curve X1(m,mn), where m ≥ 1 and n ≥ 2, has
genus > 1, then by Falting’s theorem, [8], | X1(m,mn)(K) |< ∞ for any number
field.

Remark 6.0.2. Notice that the modular curves X1(13), X1(16), X1(17), X1(18),
X1(19), X1(20), X1(21), X1(22), X1(24), X1(25), X1(26), X1(27), X1(28),
X1(30), X1(2,14), X1(2,16), X1(2,18), X1(2,20), X1(3,12) are curves of genus 2,
2, 5, 2, 7, 3, 5, 6, 5, 12, 10, 13, 10, 9, 4, 5, 7, 9 and 3, respectively.

By Theorem 2.2.8, there are infinitely many sextic points on any of the curves
X1(m,mn), see Remark 6.0.2.

In what follows, we only consider the curves X1(m,mn) when g ≤ 1.

Case 1: Z/11Z ⊆ Tors(E,K).

Consider the following modular curve

X1(11) : y2 −y = x3 −x2

We have
Z/5Z ≃ Tors(X1(11),Q) ⊆ Tors(X1(11),K).

By Theorem 2.2.8, Tors(X1(11),K) must be one of the following groups:

Z/nZ, n = 5,10,15,20,30

Z/2Z×Z/2nZ, n = 5,10
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Theorem 6.0.3. Let K be a sextic number field. Then

Tors(X1(11),K) ≃


Z/10Z if K ⊇ L := Q[x]/⟨4x3 −4x2 +1⟩,

Z/2Z×Z/10Z if K ≃ M1 := Q[x]/⟨16x6 −32x4 +16x2 +11⟩,

Z/5Z otherwise.

Proof: The 3-division polynomial of a X1(11) is

Ψ3(x) = 3x4 −4x3 +3x−1.

Clearly, a sextic number field cannot contain a root of degree 4 irreducible
polynomial. So we cannot have Z/15Z and Z/30Z as a torsion subgroup of X1(11)
over sextic number field.

The 4-division polynomial of X1(11) is

Ψ4(x) = (4x3 −4x2 +1)(2x6 −4x5 +10x3 −10x2 +4x−1).

By MAGMA, we obtain that Tors(X1(11),L) ≃ Z/10Z where L is the number field
generated the by the polynomial 4x3 −4x2 +1.

Point from X1(11) Corresponding Elliptic Curve with torsion Z/11Z

(−2a+2,4a2 −4a+2)
y2 +(−8a2 +6a)xy+(136a2 −192a+80)y = x3 +(48a2 −68a+
28)x2

Table 6.1 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 4x3 −4x2 +1

By MAGMA, we obtain that Tors(X1(11),L) ≃ Z/10Z where L is the number field
generated the by the polynomial 2x6 −4x5 +10x3 −10x2 +4x−1. Notice that the
number field generated the by the polynomial 2x6 −4x5 +10x3 −10x2 +4x−1
contains the number field generated the by the polynomial 4x3 −4x2 +1

Point from X1(11) Corresponding Elliptic Curve with torsion Z/11Z

( 1
11(−8a5 + 7a4 + 12a3 −

32a2 +4a+5), 1
2)

y2 + 1
44(−48a5 + 42a4 + 72a3 − 192a2 + 24a + 19)xy +

1
176(2a5 −10a4 +8a3 +19a2 −34a+7)y = x3 + 1

88(10a5 −
17a4 −4a3 +51a2 −38a+13)x2

Table 6.2 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 2x6 −4x5 +10x3 −10x2 +4x−1

We also need to consider the splitting field of 4x3 −4x2 +1. Let L be the splitting
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field of 4x3 −4x2 +1 and we obtain that L is generated by the polynomial
16x6 −32x4 +16x2 +11.

By MAGMA, we obtain that Tors(X1(11),L) ≃ Z/2Z×Z/10Z where L is the
number field generated the by the polynomial 16x6 −32x4 +16x2 +11.

Point from X1(11) Corresponding Elliptic Curve with torsion Z/11Z

( 1
19(−12a4 +20a2 +1), 1

2)
y2 + 1

76(−72a4 + 120a2 − 13)xy + 1
304(−16a4 + 14a2 − 5)y =

x3 + 1
152(−4a4 −6a2 +13)x2

( 1
38(12a4 − 20a2 − 19a +

18), 1
2)

y2 + 1
76(36a4 −60a2 −57a+35)xy + 1

304(−12a5 +8a4 +20a3 −
7a2 − 18a − 7)y = x3 + 1

304(−24a5 + 4a4 + 40a3 + 6a2 − 17a +
6)x2

( 1
38(12a4 − 20a2 + 19a +

18), 1
2)

y2 + 1
76(36a4 − 60a2 + 57a + 35)xy + 1

304(12a5 + 8a4 − 20a3 −
7a2 +18a−7)y = x3 + 1

304(24a5 +4a4 −40a3 +6a2 +17a+6)x2

Table 6.3 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(11) over the number field generated by 16x6 −32x4 +16x2 +11

If there is a 4-torsion point, x-coordinate of that point must came from Ψ4(x) but
we saw that roots of Ψ4(x) does not give a 4-torsion point. So we cannot have
Z/20Z and Z/2Z×Z/20Z as torsion subgroup of X1(11) over a sextic number
field.

Remark 6.0.4. By MAGMA, Rank(X1(11),L) is positive where L is the number
field generated the by the polynomial 2x6 −4x5 +10x3 −10x2 +4x−1. It follows
that there are infinitely many elliptic curve over the number field L with torsion
Z/11Z.

Case 2: Z/14Z ⊆ Tors(E,K).

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

We have
Z/6Z ≃ Tors(X1(14),Q) ⊆ Tors(X1(14),K).

By Theorem 2.2.8, Tors(X1(14),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24,30

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/3nZ, n = 2,4
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Z/6Z×Z/6Z

Theorem 6.0.5. Let K be a sextic number field. Then

Tors(X1(14),K) ≃



Z/2Z×Z/6Z if K ⊇ L1 := Q[x]/⟨x2 − 3
4x+ 1

4 ⟩,

Z/18Z if K ⊇ L2 := Q[x]/⟨x3 −9x2 −x+1⟩,

Z/18Z if K ≃ M1 := Q[x]/⟨x6 +x4 +2x3 +x2 −2x+1⟩,

Z/2Z×Z/18Z if K ≃ M2 := Q[x]/⟨64x6 −1296x5 +7372x4 −8275x3 +3802x2 −848x+344⟩,

Z/3Z×Z/6Z if K ≃ M3 := Q[x]/⟨81x6 −504x4 +784x2 +2352⟩,

Z/6Z otherwise.

Proof: The 4-division polynomial of X1(14) is

Ψ4(x) = (x+1)(x2 − 3
4x+ 1

4)(x2 +2x−1)f4.

Clearly, a sextic number field cannot contain a root of degree 4 irreducible
polynomial.

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/2Z×Z/6Z where L is the
number field generated the by the polynomial x2 − 3

4x+ 1
4 .

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
( (−4a+3)

4 , (4a−7)
8 ) y2 + (2a+15)

14 xy + (a+1)
14 y = (a+1)

14 x2

(a, (−a−1)
2 ) y2 + (−4a+33)

28 xy + (−4a+7)
56 y = x3 + (−4a+7)

56 x2

Table 6.4 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x2 − 3

4x+ 1
4

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/6Z where L is the number field
generated the by the polynomial x2 +2x−1. So, we cannot obtain a 4-torsion
point. Hence we cannot obtain Z/12Z, Z/24Z, Z/2Z×Z/12Z and Z/3Z×Z/12Z
as torsion subgroup of X1(14) over a sextic number field.

The 5-division polynomial of X1(14) is

Ψ5(x) = x12 +x11 −6x10 +17x9 +9x8 −6x7 −10x5 +11x4 −3x3 −2x2 +x− 1
5 .

Clearly, a sextic number field cannot contain a root of degree 12 irreducible
polynomial. So, we cannot obtain Z/30Z as a torsion subgroup of X1(14) over a
sextic number field.
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The 6-division polynomial of X1(14) is

Ψ6(x) = x(x−1)(x+1)(x2 − 3
4x+ 1

4)(x2 +x+2)(x3 + 1
3x2 −x+1)(x3 +5x2 −x+1)

(x6 −4x5 +9x4 +6x3 −3x2 −2x+1).

We already investigated the case x2 − 3
4x+ 1

4 . Also notice that the fields generated
by the polynomials (x2 − 3

4x+ 1
4), (x2 +x+2) are isomorphic.

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/6Z where L is the number field
generated the by the polynomial x3 + 1

3x2 −x+1 Also notice that the fields
generated by the polynomials x3 + 1

3x2 −x+1, x3 +5x2 −x+1 are isomorphic.

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/2Z×Z/6Z, where L is the
number field generated by the polynomial x6 −4x5 +9x4 +6x3 −3x2 −2x+1. Also
notice that the number field L contains the number field generated by the
polynomial x2 − 3

4x+ 1
4 .

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
(1

8(−a5 + 3a4 − 5a3 − 15a2 − 2a +
6), 1

16(a5 − 3a4 + 5a3 + 15a2 + 2a −
14))

y2 + 1
56(a5 − 3a4 + 5a3 + 15a2 + 2a + 60)xy +

1
112(a5 −3a4 +5a3 +15a2 +2a+8)y = x3 + 1

112(a5 −
3a4 +5a3 +15a2 +2a+8)x2

(1
2(−a5 + 3a4 − 5a3 − 15a2 − 2a +

2),−2)

y2 + 1
7(−2a5 + 6a4 − 10a3 − 30a2 − 4a + 13)xy +

1
7(−a5 +3a4 −5a3 −15a2 −2a+4)y = x3 + 1

7(−a5 +
3a4 −5a3 −15a2 −2a+4)x2

Table 6.5 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x6 −4x5 +9x4 +6x3 −3x2 −2x+1

Now we need to consider the compositum field generatad by the polynomials
x2 − 3

4x+ 1
4 and x3 + 1

3x2 −x+1 and also the splitting field of the polynomial
x3 + 1

3x2 −x+1.

The compositum field of x2 − 3
4x+ 1

4 and x3 + 1
3x2 −x+1 is generated by the

polynomial 576x6 −912x5 −404x4 +2133x3 −754x2 −1752x+1276 and it is
isomorphic to the number field generated by the polynomial
x6 −4x5 +9x4 +6x3 −3x2 −2x+1.

The splitting field of the polynomial x3 + 1
3x2 −x+1 is generated by the polynomial

81x6 −504x4 +784x2 +2352. By MAGMA, we obtain that
Tors(X1(14),L) ≃ Z/3Z×Z/6Z where L is the number field generated the by the
polynomial 81x6 −504x4 +784x2 +2352.
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Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z

( 1
2436(−243a4 + 1260a2 −

1316), 1
14616(−162a5 + 729a4 +

3276a3 −3780a2 −10892a−3360))

y2 + 1
34104(4293a5 − 1296a4 − 32004a3 + 11592a2 +

85232a + 7056)xy + 1
159152(−7695a5 + 22302a4 +

60606a3 − 168420a2 − 166992a + 466872)y = x3 +
1

159152(−7695a5 + 22302a4 + 60606a3 − 168420a2 −
166992a+466872)x2

( 1
2436(−243a4 + 1260a2 −

1316), 1
14616(162a5 + 729a4 −

3276a3 −3780a2 +10892a−3360))

y2 + 1
34104(−4293a5 − 1296a4 + 32004a3 +

11592a2 − 85232a + 7056)xy + 1
159152(7695a5 +

22302a4 − 60606a3 − 168420a2 + 166992a +
466872)y = x3 + 1

159152(7695a5 + 22302a4 −
60606a3 −168420a2 +166992a+466872)x2

( 1
3248(−243a5 + 216a4 +

1260a3 − 1932a2 + 1120a −
2800), 1

1624(−162a5 +567a4 −378a3 −
504a2 +476a−2072))

y2 + 1
11368(432a5 − 1035a4 − 210a3 + 1036a2 −

1540a + 18424)xy + 1
477456(135a5 + 3276a4 −

7602a3 − 13468a2 + 3528a + 78792)y =
x3 + 1

477456(135a5 + 3276a4 − 7602a3 − 13468a2 +
3528a+78792)x2

( 1
3248(243a5 + 216a4 − 1260a3 −

1932a2 − 1120a − 2800), 1
1624(162a5 +

567a4 + 378a3 − 504a2 − 476a −
2072))

y2 + 1
11368(−432a5 − 1035a4 + 210a3 + 1036a2 +

1540a + 18424)xy + 1
477456(−135a5 + 3276a4 +

7602a3 − 13468a2 − 3528a + 78792)y =
x3 + 1

477456(−135a5 +3276a4 +7602a3 −13468a2 −
3528a+78792)x2

Table 6.6 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by 81x6 −504x4 +784x2 +2352

We cannot obtain Z/6Z×Z/6Z as torsion subgroup of X1(14) over a sextic
number field.

The 18-division polynomial of X1(14) is

Ψ18(x) = x(x−1)(x+1)(x2 − 3
4x+ 1

4)(x2 +x+2)(x3 −9x2 −x+1)(x3 −2x2 −x+1)

(x3 + 1
3x2 −x+1)(x3 +5x2 −x+1)(x6 −4x5 +9x4 +6x3 −3x2 −2x+1)

(x6 +x4 +2x3 +x2 −2x+1)(x6 +2x5 +11x4 +3x2 −2x+1)

(x6 +3x5 +2x4 −x3 +4x2 −2x+1)f12f
(1)
27 f

(2)
27 f54

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/18Z where L is the number field
generated the by the polynomial x3 −9x2 −x+1. Also notice that the fields
generated by the polynomials x3 −9x2 −x+1, x3 −2x2 −x+1 are isomorphic.
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Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
(1

4(a2 − 10a + 5), 1
4(−3a2 +

28a−9))
y2 + 1

14(−a2 + 13a + 12)xy + 1
28(a2 + 6a + 1)y = x3 +

1
28(a2 +6a+1)x2

(1
2(−3a2 +26a+11),−4a2 +

35a+13)
y2 + 1

28(−17a2 + 144a + 85)xy + 1
7(−2a − 1)y = x3 +

1
7(−2a−1)x2

Table 6.7 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x3 −9x2 −x+1

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/18Z where L is the number field
generated the by the polynomial x6 +x4 +2x3 +x2 −2x+1. Also notice that the
fields generated by the polynomials x6 +x4 +2x3 +x2 −2x+1 and
x6 +2x5 +11x4 +3x2 −2x+1 are isomorphic.

Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
(2a5 + a4 + 2a3 + 5a2 +
4a − 3, 1

2(−7a5 − a4 − 6a3 −
14a2 −7a+15))

y2 + 1
42(−48a5 − 25a4 − 60a3 − 122a2 − 106a + 93)xy + 1

42(4a5 +
2a4 + a3 + 9a2 + 5a − 11)y = x3 + 1

42(4a5 + 2a4 + a3 + 9a2 + 5a −
11)x2

(1
2(a5 + a4 + 2a3 + 2a2 + a −

1),−a5 −a2 −a+1)
y2 + 1

14(5a4 +2a3 +6a+27)xy+ 1
98(−46a5 −12a4 −47a3 −107a2 −

73a+97)y = x3 + 1
98(−46a5 −12a4 −47a3 −107a2 −73a+97)x2

(1
2(−2a5 − a4 − 2a3 − 4a2 −

4a + 3), 1
2(−a5 − a4 − 2a3 −

4a2 −3a−1))

y2 + 1
14(a5 + 3a4 − 4a3 − 10a2 − a + 23)xy + 1

14(−6a5 + a4 + 5a3 −
3a2 −9a+8)y = x3 + 1

14(−6a5 +a4 +5a3 −3a2 −9a+8)x2

Table 6.8 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(14) over the number field generated by x6 +x4 +2x3 +x2 −2x+1

In this case the point (a, 1
2(a4 −1)) gives rise to the elliptic curve

y2 + 1
7(−a5 +a4 −4a2 +3a+7)xy + 1

98(−a5 −10a4 +25a3 −39a2 +22a+5)y =

x3 + 1
98(−a5 −10a4 +25a3 −39a2 +22a+5)x2

with torsion Z/2Z×Z/14Z over the number field generated by
x6 +x4 +2x3 +x2 −2x+1.

Again we need to consider the compositum field of the degree 3 and 2 polynomial
and the splitting field of the degree 3 polynomial which we did not consider before.

Notice that the splitting field of the number field generated by the polynomial
x3 −9x2 −x+1 is itself.
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The compositum field of polynomials x2 − 3
4x+ 1

4 and x3 −9x2 −x+1 generatd by
the polynomial 64x6 −1296x5 +7372x4 −8275x3 +3802x2 −848x+344.

By MAGMA, we obtain that Tors(X1(14),L) ≃ Z/2Z×Z/18Z where L is the
number field generated the by the polynomial
64x6 −1296x5 +7372x4 −8275x3 +3802x2 −848x+344
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Point from X1(14) Corresponding Elliptic Curve with torsion Z/14Z
( 1

14640836(−399360a5 +
7918848a4 − 42923648a3 +
37033728a2 − 18681856a +
9401719), 1

29281672(399360a5 −
7918848a4 + 42923648a3 −
37033728a2 + 18681856a −
24042555))

y2 + 1
51242926(199680a5 − 3959424a4 + 21461824a3 −

18516864a2 + 9340928a + 55692589)xy +
1

25621463(49920a5 − 989856a4 + 5365456a3 −
4629216a2 + 2335232a + 2027468)y = x3 +

1
25621463(49920a5 − 989856a4 + 5365456a3 −
4629216a2 +2335232a+2027468)x2

( 1
7320418(209792a5 −

3902512a4 + 17679120a3 +
5217645a2 − 7567338a +
3028910), 1

3660209(−310704a5 +
6048280a4 − 31351523a3 +
18443167a2 −4294033a−848048))

y2 + 1
51242926(−1302480a5 + 26068008a4 −

139589749a3 + 90414809a2 − 15196845a +
66791476)xy + 1

102485852(−1148880a5 + 22378744a4 −
114392685a3 + 53445594a2 − 16498374a +
14949160)y = x3 + 1

102485852(−1148880a5 +
22378744a4 − 114392685a3 + 53445594a2 −
16498374a+14949160)x2

( 1
3660209(−399360a5 + 7918848a4 −

42923648a3 + 37033728a2 −
18681856a+2081301),−2)

y2 + 1
25621463(−1597440a5 + 31675392a4 −

171694592a3 + 148134912a2 − 74727424a +
41267085)xy + 1

25621463(−798720a5 + 15837696a4 −
85847296a3 + 74067456a2 − 37363712a +
11483020)y = x3 + 1

25621463(−798720a5 +
15837696a4 − 85847296a3 + 74067456a2 −
37363712a+11483020)x2

( 1
14640836(−1592512a5 +

32285584a4 − 184207604a3 +
206506735a2 − 59636178a −
7448176), 1

14640836(991680a5 −
20629200a4 + 125893444a3 −
196900555a2 + 131178420a −
44230152))

y2 + 1
204971704(−19638720a5 + 403249552a4 −

2370786532a3 + 3116825143a2 − 1605521436a +
469421936)xy + 1

409943408(8679744a5 −170629136a4 +
898285180a3 − 550217883a2 − 188995344a +
264298996)y = x3 + 1

409943408(8679744a5 −
170629136a4 + 898285180a3 − 550217883a2 −
188995344a+264298996)x2

( 1
7320418(−2568192a5 +

51310416a4 − 281244856a3 +
243006141a2 − 26469532a +
28636578), 1

3660209(−3457536a5 +
69073792a4 − 378570112a3 +
327094332a2 − 35629461a +
31950180))

y2 + 1
102485852(−14220288a5 + 284159984a4 −

1557951144a3 + 1346173359a2 − 146626498a +
246554436)xy + 1

25621463(199680a5 − 3959424a4 +
21461824a3 − 18516864a2 + 2020510a − 2870755)y =
x3 + 1

25621463(199680a5 − 3959424a4 + 21461824a3 −
18516864a2 +2020510a−2870755)x2

Table 6.9 All non-isomorphic Elliptic Curves obtained from new torsion points
of X1(14) over the number field generated by 64x6 − 1296x5 + 7372x4 − 8275x3 +
3802x2 −848x+344
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In this case the point ( 1
14640836(989184a5 −19743088a4 +108056168a3 −

93346623a2 +10170184a+22702588), 1
14640836(−2767872a5 +55269840a4 −

302706680a3 +261523005a2 −28490042a−45357056)) gives rise to the elliptic
curve

y2 + (−1288704a5 +25682224a4 −140248904a3 +121121919a2 −13200949a+38336784)
51242926 xy

+ (−608256a5 +11932304a4 −63638424a3 +54788289a2 −5993896a+1746120)
102485852 y

= x3 + (−608256a5 +11932304a4 −63638424a3 +54788289a2 −5993896a+1746120)
102485852 x2

Remark 6.0.6. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial x3 + 1

3x2 −x+1, so we have infinitely many
elliptic curves over the number field L with torsion Z/14Z.

Remark 6.0.7. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial x6 −4x5 +9x4 +6x3 −3x2 −2x+1, so we
have infinitely many elliptic curves over the number field L with torsion Z/14Z.

Remark 6.0.8. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial 81x6 −504x4 +784x2 +2352, so we have
infinitely many elliptic curves over the number field L with torsion Z/14Z.

Remark 6.0.9. By MAGMA, Rank(X1(14),L) is positive where L is the number
field generated the by the polynomial x6 +x4 +2x3 +x2 −2x+1, so we have
infinitely many elliptic curves over the number field L with torsion Z/14Z.

Case 3: Z/15Z ⊆ Tors(E,K).

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

We have
Z/4Z ≃ Tors(X1(15),Q) ⊆ Tors(X1(15),K).

By Theorem 2.2.8, Tors(X1(15),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24,28

Z/2Z×Z/2nZ, n = 2,4,6,8,10

Z/4Z×Z/4nZ, n = 1,2
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Theorem 6.0.10. Let K be a sextic number field. Then

Tors(X1(15),K) ≃



Z/2Z×Z/4Z if K ⊇ L1 := Q[x]/⟨x2 + 1
4x+ 1

4⟩,

Z/8Z if K ⊇ L2 := Q[x]/⟨x2 −x−1⟩,

Z/8Z if K ⊇ L3 := Q[x]/⟨x2 +x+1⟩,

Z/4Z otherwise.

Proof: The 3-division polynomial of X1(15) is

Ψ4(x) = x4 + 5
3x3 +x2 +x+ 1

3 .

Clearly a sextic number field cannot contain a root of degree 4 irreducible
polynomial. Hence we cannot obtain Z/12Z, Z/24Z and Z/2Z×Z/12Z as torsion
subgroup of X1(15) over a sextic number field.

The 5-divison polynomial of X1(15) is

Ψ5(x) = x12 +5x11 + 56
5 x10 +29x9 +66x8 +96x7 +87x6 + 249

5 x5 +18x4 +2x3 −2x2 −x− 1
5 .

So, we cannot have Z/20Z and Z/2Z×Z/20Z as torsion subgroup of X1(15) over
a sextic number field.

The 7-divison polynomial of X1(15) is

Ψ7(x) = f24.

It is clear that a sextic number field cannot contaion a root of degree 24 irreducible
polynomial. Hence, Z/28Z cannot occur as torsion subgroup of X1(15) over a
sextic number field.

The 16-divison polynomial of X1(15) is

Ψ16(x) = x(x+1)(x+2)(x2 −x−1)(x2 + 1
4x+ 1

4)(x2 +x+1)f (1)
4 f

(2)
4 f

(3)
4 f

(4)
4 f8f

(1)
16 f

(2)
16 f64.

Notice that the number fields generated by the polynomials x2 −x−1, x2 + 1
4x+ 1

4
and x2 +x+1 are not isomorphic.

By MAGMA, Tors(X1(15),L) ≃ Z/8Z where L is the number field generated by the
polynomial x2 −x−1.
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Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(a,−2a−1) y2 + (2a−1)

2 xy + (−11a+18)
2 y = x3 + (−11a+18)

2 x2

Table 6.10 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x2 −x−1

By MAGMA, Tors(X1(15),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 + 1

4x+ 1
4 .

Point from X1(15) Corresponding Elliptic Curve with torsion Z/15Z
(−2,−4a) y2 +(8a+1)xy +(24a+8)y = x3 +(24a+8)x2

Table 6.11 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(15) over the number field generated by x2 + 1

4x+ 1
4

By MAGMA, Tors(X1(15),L) ≃ Z/8Z where L is the number field generated by the
polynomial x2 +x+1. But in this case, new torsion points do not give rise to an
elliptic curve with torsion subgroup Z/15Z.

Hence, Z/16Z, Z/2Z×Z/8Z, Z/2Z×Z/16Z, Z/4Z×Z/4Z and Z/4Z×Z/8Z
cannot occur as torsion subgroup of X1(15) over a sextic number field.

Case 4: Z/2Z×Z/10Z

Consider following modular curve

X1(2,10) : y2 = x3 +x2 −x = x(x2 +x−1).

We have
Z/6Z ≃ Tors(X1(2,10),Q) ⊆ Tors(X1(2,10),K).

By Theorem 2.2.8, Tors(X1(2,10),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24,30

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/3nZ, n = 2,4

Z/6Z×Z/6Z
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Theorem 6.0.11. Let K be a sextic number field. Then

Tors(X1(2,10),K) ≃


Z/3Z×Z/6Z if K ≃ L := Q[x]/⟨x6 −6x5 +55x4 −180x3 +655x2 −966x+1641⟩,

Z/2Z×Z/6Z if K ⊇ M := Q[x]/⟨x2 +x−1⟩,

Z/6Z otherwise.

Proof: The 5-division polynomial of X1(2,10) is

Ψ5(x) = x12 +4x11 − 46
5 x10 −16x9 −21x8 −72x7 +12x6 + 304

5 x5 +7xx4 −28x3 +10x2 + 1
5 .

So, we cannot obtain Z/30Z as a torsion subgroup of X1(2,10) over a sextic
number field. The 4-division polynomial of X1(2,10) is

Ψ4(x) = x(x2 +1)(x2 +x−1)f4.

By MAGMA, Tors(X1(2,10),L) ≃ Z/6Z where L is the number field generated by
the polynomial x2 +1.

By MAGMA, Tors(X1(2,10),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x2 +x−1. But new torsion points do not give rise to
an elliptic curve with torsion subgroup Z/2Z×Z/10Z. So, we cannot have a point
of order 4. Hence, we cannot obtain Z/12Z, Z/24Z, Z/2Z×Z/12Z and
Z/3Z×Z/12Z as torsion subgroup of X1(2,10) over a sextic number field.

The 18-division polynomial of X1(2,10) is

Ψ18(x) = x(x−1)(x+1)(x2 −4x−1)(x2 +x−1)(x3 −x2 +7x−3)(x3 + 7
3x2 + 1

3x+ 1
3)

(x6 +8x5 +5x4 −5x2 +8x−1)f (1)
9 f

(2)
9 f18f

(1)
27 f

(2)
27 f54

Notice that the number fields generated by the polynomials x2 −4x−1 and
x2 +x−1 are isomorphic and we already investigated x2 +x−1. Also the number
fields generated by the polynomials x3 + 7

3x2 + 1
3x+ 1

3 and x3 −x2 +7x−3 are
isomorphic. So it is enough to consider just one of them.

By MAGMA, Tors(X1(2,10),L) ≃ Z/6Z where L is the number field generated by
the polynomial x3 −x2 +7x−3.

By MAGMA, Tors(X1(2,10),L) ≃ Z/2Z×Z/6Z where L is the number field
generated by the polynomial x6 +8x5 +5x4 −5x2 +8x−1. But in this case, new
torsion points do not give rise to an elliptic curve with torsion subgroup
Z/2Z×Z/10Z. Also notice that number field L contains the number field generated
by the polynomial x2 +x−1.
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Now we need to consider that compositum field generated by the polynomials
x2 +x−1, x3 −x2 +7x−3 and also splitting field of the polynomial x3 −x2 +7x−3.

The compositum field generated by the polynomials x2 +x−1 and x3 −x2 +7x−3
is isomorphic the number field generated by the polynomial
x6 +8x5 +5x4 −5x2 +8x−1.

The splitting field of x3 −x2 +7x−3 is generated by the polynomial
x6 −6x5 +55x4 −180x3 +655x2 −966x+1641 and By MAGMA,
Tors(X1(2,10),L) ≃ Z/3Z×Z/6Z where L is the number field generated by the
polynomial x6 −6x5 +55x4 −180x3 +655x2 −966x+1641.

Point from X1(2,10) Corresponding Elliptic Curve with torsion Z/2Z×Z/10Z
( 1

60(a4 − 4a3 + 46a2 − 84a +
261), 1

180(−2a5 + 10a4 −
85a3 +215a2 −585a+447))

y2 = x3 + 1
20(−a4 + 4a3 − 29a2 + 50a − 124)x2 + 1

400(43a4 −
172a3 +778a2 −1212a+2163)x

Table 6.12 All non-isomorphic Elliptic Curves obtained from new torsion points
of X1(2,10) over the number field generated by x6 − 6x5 + 55x4 − 180x3 + 655x2 −
966x+1641

Hence Z/18Z, Z/2Z×Z/18Z and Z/6Z×Z/6Z cannot occur as a torsion subgroup
of X1(2,10) over a sextic number field.

Case 5: Z/2Z×Z/12Z

Consider following the modular curve

X1(2,12) : y2 = x3 −x2 +x = x(x2 −x+1).

We have
Z/4Z ≃ Tors(X1(2,12),Q) ⊆ Tors(X1(2,12),K).

By Theorem 2.2.8, Tors(X1(2,12),K) must be one of the following groups:

Z/nZ, n = 4,8,12,16,20,24,28

Z/2Z×Z/2nZ, n = 2,4,6,8,10

Z/4Z×Z/4nZ, n = 1,2
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Theorem 6.0.12. Let K be a sextic number field. Then

Tors(X1(2,12),K) ≃



Z/2Z×Z/4Z if K ⊇ M1 := Q[x]/⟨x2 −x+1⟩,

Z/8Z if K ⊇ M2 := Q[x]/⟨x2 −4x+1⟩,

Z/8Z if K ⊇ M3 := Q[x]/⟨x2 +1⟩,

Z/4Z otherwise.

Proof: The 3-division polynomial of X1(2,12) is

Ψ4(x) = x4 − 4
3x3 +2x2 − 1

3 .

Clearly, a sextic number field cannot contaion a root of degree 4 irreducible
polynomial.So, Z/12Z, Z/24Z and Z/2Z×Z/12Z cannot occur as a torsion
subgroup of X1(2,12) over a sextic number field.

The 5-division polynomial of X1(2,12) is

Ψ5(x) = f12.

Clearly, a sextic number field cannot contaion a root of degree 12 irreducible
polynomial.So, Z/20Z and Z/2Z×Z/20Z cannot occur as a torsion subgroup of
X1(2,12) over a sextic number field.

The 7-division polynomial of X1(2,12) is

Ψ7(x) = f24.

Clearly, a sextic number field cannot contaion a root of degree 24 irreducible
polynomial.So, Z/28Z cannot occur as a torsion subgroup of X1(2,12) over a sextic
number field.

The 16-division polynomial of X1(2,12) is

Ψ16(x) = x(x−1)(x+1)(x2 −4x+1)(x2 −x+1)(x2 +1)f (1)
4 f

(2)
4 f

(1)
8 f

(2)
8 f

(3)
8 f

(4)
8 f16f64.

By MAGMA, Tors(X1(2,12),L) ≃ Z/8Z where L is the number field generated by
the polynomial x2 −4x+1. But new torsion points do not give rise to an elliptic
curve with torsion subgroup Z/2Z×Z/12Z.

By MAGMA, Tors(X1(2,12),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 −x+1.But new torsion points do not give rise to
an elliptic curve with torsion subgroup Z/2Z×Z/12Z.
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By MAGMA, Tors(X1(2,12),L) ≃ Z/8Z where L is the number field generated by
the polynomial x2 +1. But new torsion points do not give rise to an elliptic curve
with torsion subgroup Z/2Z×Z/12Z.

So, we cannot obtain Z/16Z, Z/2Z×Z/8Z, Z/2Z×Z/16Z, Z/4Z×Z/4Z and
Z/4Z×Z/8Z as a torsion subgroup X1(2,12) over a sextic number field.

Case 6: Z/3Z×Z/3Z

Consider following the modular curve X1(3,3) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/3Z×Z/3Z, [1], is the following:

E(3,3) : y2 +((z +2)v +(1− z))xy +((z +1)v2 − zv)y = x3

where v ∈ K, z = ζ3 and X1(3,3) is defined over the field Q(ζ3). Then the
discriminant is given by

∆(3,3) = −27(−vz +v2(1+ z))4 +(−vz +v2(1+ z))3(1− z +v(2+ z))3.

Notice that ∆(3,3) = 0 if and only if v = 0, v = 1, v = z
1+z and v = (−1+z)3

(2+z)3 . So

other than the points (0,0), (0,1), (0, z
1+z ) and (0, (−1+z)3

(2+z)3 ), we can have an elliptic
curve with torsion Z/3Z×Z/3Z.

Case 7: Z/3Z×Z/6Z

Consider following the modular curve X1(3,6) of genus 0. The general equation of
the elliptic curve with torsion subgroup Z/3Z×Z/6Z, [1], is the following:

E(3,6) : y2 +(t+2)xy +(−t(t+1))y = x3 +(−t(t+1))x2

where t = 4v2+6v+3
v3 , v ∈ K and and X1(3,6) is defined over the field Q(ζ3). Then

the discriminant is given by

∆(3,6) = −27t4(t+1)4 +8t3(t+2)3(t+1)3 + t3
(
(t+2)2 −4t(t+1)

)2
(t+1)3

−9t3(t+2)
(
(t+2)2 −4t(t+1)

)
(t+1)3.

Notice that ∆(3,6) = 0 if and only if v = −1, v = −3
2 , v = 1

4

(
−3− i

√
3

)
,

v = 1
4

(
−3+ i

√
3

)
, v = 1

2

(
−3− i

√
3

)
and v = 1

2

(
−3+ i

√
3

)
. So other than the

points (0,v), where v is the root of ∆(3,6), we can have an elliptic curve with
torsion Z/3Z×Z/6Z.

Case 8: Z/3Z×Z/9Z
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Consider following the modular curve

X1(3,9) : y2 +y = x3

We have
Z/3Z ≃ Tors(X1(3,9),Q) ⊆ Tors(X1(3,9),K).

By Theorem 2.2.8, Tors(X1(3,9),K) must be one of the following groups:

Z/nZ, n = 3,6,9,12,15,18,21,24,27,30

Z/2Z×Z/2nZ, n = 3,6, ,9

Z/3Z×Z/3nZ, n = 1,2,3,4

Z/6Z×Z/6Z

Theorem 6.0.13. Let K be a sextic number field. Then

Tors(X1(3,9),K) ≃



Z/3Z×Z/3Z if K ⊇ M1 := Q[x]/⟨x2 −x+1⟩,

Z/6Z if K ⊇ M2 := Q[x]/⟨x3 + 1
4⟩,

Z/9Z if K ⊇ M3 := Q[x]/⟨x3 −3x2 +1⟩,

Z/6Z if K ≃ N1 := Q[x]/⟨x6 +5x3 − 1
2⟩,

Z/6Z×Z/6Z if K ≃ N2 := Q[x]/⟨x6 −3x5 +12x4 +11x3 +6x2 +3x+1⟩,

Z/3Z×Z/9Z if K ≃ N3 := Q[x]/⟨x6 +3x5 +9x4 +2x3 +3x2 +1⟩,

Z/3Z otherwise.

Proof: The 5-division polynomial of X1(3,9) is

Ψ5(x) = f12.

Clearly, a sextic number field cannot contain a root of degree 12 polynomial. So,
we cannot have Z/15Z and Z/30Z as a torsion subgroup of X(3,9) over a sextic
number field.

The 4-division polynomial of X1(3,9) is

Ψ4(x) = (x3 + 1
4)(x6 +5x3 − 1

2).

By MAGMA, Tors(X1(3,9),L) ≃ Z/6Z where L is the number field generated by
the polynomial x3 +1/4. But new torsion points do not give rise to an elliptic
curve with torsion subgroup Z/3Z×Z/9Z, since an elliptic curve cannot have
Z/3Z×Z/9Z as torsion subgroup over cubic number field.
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By MAGMA, Tors(X1(3,9),L) ≃ Z/6Z where L is the number field generated by
the polynomial x6 +5x3 − 1

2 . However, new points do not give rise to an elliptic
curve with torsion subgroup Z/3Z×Z/9Z, even we have a positive rank we cannot
obtain an elliptic curve with torsion subgroup Z/3Z×Z/9Z over L since L does
not contain ζ3. So, we could not obtain a 4-torsion point. Hence we cannot obtain
Z/12Z, Z/24Z, Z/2Z×Z/12Z and Z/3Z×Z/12Z as a torsion subgroup of
X1(3,9) over a sextic number field.

The 3-division polynomial of X1(3,9) is

Ψ3(x) = x(x+1)(x2 −x+1).

By MAGMA, Tors(X1(3,9),L) ≃ Z/3Z×Z/3Z where L is the number field
generated by the polynomial x2 −x+1. However, new points do not give rise to an
elliptic curve with torsion subgroup Z/3Z×Z/9Z,since an elliptic curve cannot
have Z/3Z×Z/9Z as torsion subgroup over quadratic number field.

The 6-division polynomial of X1(3,9) is

Ψ6(x) = x(x+1)(x2 −x+1)(x3 −2)(x3 + 1
4)(x3 +3x2 −3x+1)

(x6 −3x5 +12x4 +11x3 +6x2 +3x+1).

Notice that the number fields generated by polynomials x3 −2, x3 + 1
4 and

x3 +3x2 −3x+1 are isomorphic. By MAGMA, Tors(X1(3,9),L) ≃ Z/6Z×Z/6Z
where L is the number field generated by the polynomial
x6 −3x5 +12x4 +11x3 +6x2 +3x+1.

Point from X1(3,9) Corresponding Elliptic Curve with torsion Z/3Z×Z/9Z
(1

9(a5 −4a4 +16a3 −2a2 −a+
4), 1

3(a5 − 3a4 + 12a3 + 10a2 +
3a))

y2 + 1
3(72a5 − 221a4 + 860a3 + 789a2 + 154a − 34)xy +

1
3(1410a5 − 4327a4 + 16838a3 + 15465a2 + 3014a − 739)y =
x3 + 1

3(1410a5 −4327a4 +16838a3 +15465a2 +3014a−739)x2

Table 6.13 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(3,9) over the number field generated by x6 −3x5 +12x4 +11x3 +6x2 +3x+1

We also need to investigate compositum field generatet by the polyomials x2 −x+1
and x3 +1/4, which is the field generated by the polynomial
16x6 −48x5 +96x4 −104x3 +84x2 −60x+25. But it is easy to notice that this
compositum field is isomorphic to the field generated by the polynomial
x6 −3x5 +12x4 +11x3 +6x2 +3x+1.
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So we cannot obtain Z/2Z×Z/6Z and Z/3Z×Z/6Z as a torsion subgroup of
X1(3,9) over a sextic number field.

The 9-division polynomial of X1(3,9) is

Ψ9(x) = x(x+1)(x2 −x+1)(x3 −3x2 +1)(x6 +3x5 +9x4 +2x3 +3x2 +1)f18

By MAGMA, Tors(X1(3,9),L) ≃ Z/9Z where L is the number field generated by
the polynomial x3 −3x2 +1. Notice that L does not contain ζ3, so new points does
not give rise to an elliptic curve over L.

By MAGMA, Tors(X1(3,9),L) ≃ Z/3Z×Z/9Z where L is the number field
generated by the polynomial x6 +3x5 +9x4 +2x3 +3x2 +1.

Point from X1(3,9) Corresponding Elliptic Curve with torsion Z/3Z×Z/9Z
(1

3(−a4 − 4a3 − 12a2 − 10a −
4), 1

3(4a5 + 12a4 + 35a3 +
4a2 −10))

y2 + 1
3(−14a5 − 42a4 − 120a3 − 14a2 − 18)xy + 1

3(−89a5 −
267a4 − 763a3 − 89a2 − 136)y = x3 + 1

3(−89a5 − 267a4 −
763a3 −89a2 −136)x2

Table 6.14 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(3,9) over the number field generated by x6 +3x5 +9x4 +2x3 +3x2 +1

We also need to investigate compositum field generated by the polyomials x2 −x+1
and x3 −3x2 +1, which is the field generated by the polynomial
x6 −9x5 +30x4 −47x3 +45x2 −30x+19. But it is easy to notice that this
compositum field is isomorphic to the field generated by the polynomial
x6 +3x5 +9x4 +2x3 +3x2 +1

The 7-division polynomial of X1(3,9) is

Ψ7(x) = (x6 − 1
7x3 + 1

7)f18.

By MAGMA, Tors(X1(3,9),L) ≃ Z/3Z×Z/3Z where L is the number field
generated by the polynomial x6 − 1

7x3 + 1
7 . Notice that L contains the number field

generated by the polynomial x2 −x+1 and in this case L contains ζ3. But new
points do not give rise to an elliptic curve with torsion subgroup Z/3Z×Z/9Z.

But we could not obtain a 7-torsion point, hence we cannot have Z/21Z as a
torsion subgroup of X1(3,9) over a sextic number field.
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The 18-division polynomial of X1(3,9) is

Ψ18(x) = x(x+1)(x2 −x+1)(x3 −3x2 +1)(x3 −2)(x3 +1/4)(x3 +3x2 −3x+1)

(x6 −3x5 +12x4 +11x3 +6x2 +3x+1)(x6 +3x5 +9x4 +2x3 +3x2 +1)f (1)
9 f

(2)
9 f

(1)
18 f

(2)
18 f27f54

and the 27-division polynomial of X1(3,9) is

Ψ27(x) = x(x+1)(x2 −x+1)(x3 −3x2 +1)(x6 +3x5 +9x4 +2x3 +3x2 +1)f9f18f27f54f81.

Notice that we already investigated all the necessary polynomial in Ψ18(x) and
Ψ27(x) when we are working with other division polynomials. Hence, we cannot
obtain Z/18Z, Z/27Z and Z/2Z×Z/18Z as a subgroup of X1(3,9) over a sextic
number field.

Case 9: Z/4Z×Z/4Z

Consider following the modular curve X1(4,4) of genus 0.

The general equation of the elliptic curve with torsion subgroup Z/4Z×Z/4Z, [1],
is the following:

E(4,4) : y2 +xy +(−t)y = x3 +(−t)x2

where t = (1−v)(v2−2v+2)
2v4 , v ∈ K and X1(4,4) is defined over the field Q(ζ4). Then

the discriminant is given by

∆(4,4) = −27t4 +(1−4t)2t3 −9(1−4t)t3 +8t3.

Notice that ∆(4,4) = 0 if and only if v = 1, v = 2, v = 1− i and v = 1+ i. So other
than the points (0,1), (0,2), (0,1− i) and (0,1+ i) we can have an elliptic curve
with torsion Z/4Z×Z/4Z.

Case 10: Z/4Z×Z/8Z

Consider following the modular curve

X1(4,8) : y2 = x3 −x.

We have
Z/2Z×Z/2Z ≃ Tors(X1(4,8),Q) ⊆ Tors(X1(4,8),K).

By Theorem 2.2.8, Tors(X1(4,8),K) must be one of the following groups:

Z/2Z×Z/2nZ, n = 1, ...,10
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Z/4Z×Z/4nZ, n = 1,2

Z/6Z×Z/6Z

Theorem 6.0.14. Let K be a sextic number field. Then

Tors(X1(4,8),K) ≃


Z/2Z×Z/4Z if K ⊇ M1 := Q[x]/⟨x2 −2x−1⟩,

Z/2Z×Z/4Z if K ⊇ M2 := Q[x]/⟨x2 +1⟩,

Z/2Z×Z/2Z otherwise.

Proof: The 3-division polynomial of X1(4,8) is

Ψ3(x) = x4 −2x2 − 1
3 .

A sextic number field cannot contain a root of degree 4 polynomial. So, we cannot
obtain Z/2Z×Z/6Z, Z/2Z×Z/12Z, Z/2Z×Z/18Z and Z/6Z×Z/6Z as torsion
subgroup of X1(4,8) over a sextic number field.

The 5-division polynomial of X1(4,8) is

Ψ3(x) = (x4 − 2
5x2 + 1

5)f8.

A sextic number field cannot contain a root of degree 4 and 8 polynomial. So, we
cannot obtain Z/2Z×Z/10Z and Z/2Z×Z/20Z as torsion subgroup of X1(4,8)
over a sextic number field.

The 8-division polynomial of X1(4,8) is

Ψ8(x) = x(x−1)(x+1)(x2 −2x−1)(x2 +1)(x2 +2x−1)f (1)
8 f

(2)
8 f

(3)
8 .

Notice that the number fields generated by the polynomials x2 −2x−1 and
x2 +2x−1 are isomorphic. So, it is enough to consider only one of them. By
MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/4Z where L is the number field generated
by the polynomial x2 −2x−1.

By MAGMA, Tors(X1(4,8),L) ≃ Z/2Z×Z/4Z where L is the number field
generated by the polynomial x2 +1.

So, we cannot have Z/2Z×Z/8Z, Z/2Z×Z/16Z, Z/4Z×Z/4Z and Z/4Z×Z/8Z
as torsion subgroup of X1(4,8) over a sextic number field.
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The 7-division polynomial of X1(4,8) is

Ψ7(x) = f24.

A sextic number field cannot contain a root of degree 24 polynomial. Hence,
Z/2Z×Z/14Z cannot occur as a torsion subgroup of X1(4,8) over a sextic number
field.

Case 11: Z/6Z×Z/6Z

Consider following the modular curve

X1(6,6) : y2 = x3 +1.

We have
Z/6Z ≃ Tors(X1(6,6),Q) ⊆ Tors(X1(6,6),K).

By Theorem 2.2.8, Tors(X1(6,6),K) must be one of the following groups:

Z/nZ, n = 6,12,18,24,30

Z/2Z×Z/2nZ, n = 3,6,9

Z/3Z×Z/6Z

Z/6Z×Z/6Z

Theorem 6.0.15. Let K be a sextic number field. Then

Tors(X1(6,6),K) ≃


Z/2Z×Z/6Z if K ⊇ L := Q[x]/⟨x2 −x+1⟩,

Z/6Z×Z/6Z if K ≃ M := Q[x]/⟨x6 −6x5 +36x4 +8x3 −24x2 +16⟩,

Z/6Z otherwise.

Proof:The 4-division polynomial of X1(6,6) is

Ψ4(x) = (x+1)(x2 −x+1)(x2 +2x−2)f4.

By MAGMA, we obtain that Tors(X1(6,6),L) ≃ Z/2Z×Z/6Z where L is the
number field is generated by the polynomial x2 −x+1.

By MAGMA, Tors(X1(6,6),L) ≃ Z/6Z where L is the number field generated by
the polynomial x2 +2x−2.

So we cannot obtain a 4-torsion point. Thus Z/12Z, Z/24Z, Z/2Z×Z/12Z and
Z/3Z×Z/12Z cannot occur as a torsion subgroup of X1(6,6) over a sextic number
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field.

The 5-division polynomial of X1(6,6) is

Ψ5(x) = f12.

Clearly, a sextic number field cannot contain a root of degree 12 polynomial. Hence
we cannot have Z/30Z as a torsion subgroup of X1(6,6) over a sextic number field.

The 18-division polynomial of X1(6,6) is

Ψ18(x) = x(x−2)(x+1)(x2 −x+1)(x2 +2x+4)(x3 +4)(x3 +6x2 +4)

(x6 −6x5 +36x4 +8x3 −24x2 +16)f (1)
9 f

(2)
9 f18f

(1)
27 f

(2)
27 f54.

Notice that the number fields generated by the polynomials x2 −x+1 and
x2 +2x+4 are isomorphic and we already examined the polynomial x2 −x+1.
Also Notice that the number fields generated by the polynomials x3 +6x2 +4 and
x3 +4 are isomorphic.

By MAGMA, Tors(X1(6,6),L) ≃ Z/6Z where L is the number field generated by
the polynomial x3 +4.

We also need to investigate the splitting field of x3 +4 and the compositum field of
x3 +4 and x2 −x+1. But these two fields are isomorphic to the number field
generated by the polynomial x6 −6x5 +36x4 +8x3 −24x2 +16.

By MAGMA, Tors(X1(6,6),L) ≃ Z/6Z×Z/6Z where L is the number field
generated by the polynomial x6 −6x5 +36x4 +8x3 −24x2 +16.

Point from X1(6,6)
Corresponding Elliptic Curve with torsion
Z/6Z×Z/6Z

( 1
36(a4 − 8a3 + 48a2 − 56a −

32), 1
12(a4 −6a3 +36a2 +4a−12))

y2 + 4
3xy + 2

9y = x3 + 2
9x2

Table 6.15 All non-isomorphic Elliptic Curves obtained from new torsion points of
X1(6,6) over the number field generated by x6 −6x5 +36x4 +8x3 −24x2 +16

So, Z/18Z, Z/2Z×Z/18Z and Z/3Z×Z/6Z cannot occur as torsion subgroup of
X1(6,6) over a sextic number field.
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7. Torsion Subgroups over Number Fields with Smallest

Discriminant

In the following table we list the 2 cubic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its
Galois group, and the last column is the generating polynomial of field Ki where
1 ≤ i ≤ 2.

7.1 Cubic Number Fields

Field D G Polynomial
K1 −23 S3 x3 −x2 +1
K2 49 C3 x3 −x2 −2x+1

Table 7.1 Cubic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above fields.

In this chapter for the computation of torsion of Jacobian over a number field we
use the MAGMA code by Samir Siksek [2].

The results in this section can be found in [22].

Theorem 7.1.1. The torsion of an elliptic curve over K1 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12

Z/2Z×Z/2mZ, m = 1, ...,4,6.

Proof: We already have all the torsion subgroups occuring over Q.
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Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K1) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K1.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K1) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K1

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K1) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K1

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K1) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K1.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K1) ≃ Z×Z/4Z where
(a2 −a+1,a2 −2a+1) is the point with infinite order. So we can have an elliptic
curve over K1 with torsion subgroup Z/2Z×Z/12Z.

Genus 2
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For genus 2 curves we check, Jacobian of the curve over the number field and
whether there is no growth in torsion and rank. We conclude that all points are
cusps over the number field, since none of the points on the curve cannot give an
elliptic curve with desired torsion over Q.

Consider the following modular curve

X1(13) : y2 = x6 −2x5 +x4 −2x3 +6x2 −4x+1.

By MAGMA, Tors(J1(13)(K1)) ≃ Z/19Z and Rank(J1(13)(K1)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

Consider the following modular curve

X1(16) : y2 = x5 +2x4 +2x2 −x.

By MAGMA, Tors(J1(16)(K1)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K1)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

Consider the following modular curve

X1(18) : y2 = x6 +2x5 +5x4 +10x3 +10x2 +4x+1.

By MAGMA, Tors(J1(18)(K1)) ≃ Z/21Z and Rank(J1(18)(K1)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain Z/14Z as a torsion subgroup of an elliptic curve over K1,
it is not possible to obtain Z/2Z×Z/14Z as a torsion subgroup of an elliptic curve
over K1.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ≃ X0(20)(Q) ≃ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on X0(20)(K1) are
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cusps.

Theorem 7.1.2. The torsion of an elliptic curve over K2 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,13,14,18

Z/2Z×Z/2mZ, m = 1, ...,4.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K2) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K2.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K1) ≃ Z/18Z. Notice that the number
fields generated by the polynomials x3 −x2 −2x+1 and x3 −2x2 −x+1 are
isomorphic. We already obtain elliptic curves over K2 with torsion subgroup
Z/14Z, which is

E1
14 : y2 + 1

7(9a2 −13a+1)xy + 1
7(8a2 −4a−19)y = x3 + 1

77(8a2 −4a−19)x2

E2
14 : y2 + 1

7(3a2 +5a+5)xy + 1
7(8a2 +7a−4)y = x3 + 1

7(8a2 +7a−4)x2

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K2) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K2
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Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K2) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K2.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K2) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/12Z over K2.

Genus 2

Tors(J1(13)(K2)) ≃ Z/19Z and 0 < Rank(J1(13)(K2)) ≤ 2. In this case we can
easily find a point on X1(13) over the number field K2 that gives an elliptic curve
with torsion subgroup Z/13Z.

Point from X1(13) Corresponding Elliptic Curve with torsion Z/13Z
(a2 −a−1,2a2 −6) y2 +(4a2 −2a−8)xy +(20a2 −11a−45)y = x3 +(20a2 −11a−45)x2

Table 7.2 Elliptic curve obtained from points on X1(13) over the number field K2

By MAGMA, Tors(J1(16)(K1)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K1)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

Tors(J1(18)(K2)) ≃ Z/21Z and 0 < Rank(J1(18)(K2)) ≤ 2. In this case we can
easily find a point on X1(18) over the number field K2 that gives an elliptic curve
with torsion subgroup Z/18Z.

Point from X1(18) Corresponding Elliptic Curve with torsion Z/18Z
(−a2 +1,3a+3) y2 +(−7a2 +6a+13)xy +(−a2 +9a−13)y = x3 +(−a2 +9a−13)x2

Table 7.3 Elliptic curve obtained from points on X1(18) over the number field K2

Higher genus Curves

Since we can only obtain two elliptic curves with the torsion subgroup Z/14Z over
K2, which are E1

14 and E2
14, we need to check the elliptic curves E1

14 and E2
14 above
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to find another 2-torsion point. But By MAGMA, we obtain that there does not
exist another 2-torsion point on E1

14 and E2
14 . So, it is not possible to obtain

Z/2Z×Z/14Z as a torsion subgroup of an elliptic curve over K2.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ≃ X0(20)(Q) ≃ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on X0(20)(K1) are
cusps.
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7.2 Quartic Number Fields

In the following table we list the 5 quartic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its
Galois group, and the last column is the generating polynomial of field Ki where
1 ≤ i ≤ 5.

Field D G Polynomial
K1 125 C4 x4 −x3 +x2 −x+1
K2 144 V4 x4 −x2 +1
K3 117 D4 x4 −x3 −x2 +x+1
K4 3136 A4 x4 −2x3 +2x2 +2
K5 229 S4 x4 −x+1

Table 7.4 Quartic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above fields.

For this section, we assume that no torsion groups occur over the quartic number
fields other than these in Theorem 1.0.4.

In this section we will analyze the modular curves for each field according to their
genus, because although we always get a conclusion for small genus curves, this
was not possible for curves with large genus.

Remark 7.2.1. We could not find any method to check the existence of
Ki-rational points for the modular curves X1(17), X1(21) and X1(22) over the
number field Ki where i = 1, ...,5.

Theorem 7.2.2. The torsion of an elliptic curve over K1 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,15,16

Z/2Z×Z/2mZ, m = 1, ...,4

Z/5Z×Z/5Z.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 0
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Since K1 does not contain ζ3 and ζ4, Z/3Z×Z/3Z, Z/3Z×Z/6Z and
Z/4Z×Z/4Z cannot occur as a torsion subgroup of an elliptic curve over K1.

Notice that K1 contains ζ5, so it is enough to find one elliptic curve with torsion
Z/5Z×Z/5Z over K1.

Point
from
X1(5,5)

Corresponding Elliptic Curve with torsion Z/5Z×Z/5Z

(0, ζ5)
y2 + 1

22(−8ζ3
5 +5ζ2

5 −8ζ5 +24)xy + 1
22(−8ζ3

5 +5ζ2
5 −8ζ5 +2)y = x3 + 1

22(−8ζ3
5 +5ζ2

5 −
8ζ5 +2)x2

Table 7.5 Elliptic curve obtained from points on X1(5,5) over the number field K1

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K1) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K1.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K1) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K1

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K1) ≃ Z/16Z. Notice that the number
fields generated by the polynomials x4 −x3 +x2 −x+1 and x4 +3x3 +4x2 +2x+1
are isomorphic. We already obtain elliptic curves over K1 with torsion subgroup
Z/15Z, which are

y2 +(−10a3 +10a2 −5)xy +(−94a3 +94a2 −58)y = x3 +(−94a3 +94a2 −58)x2,
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y2 +(−2a3 +5a2 −5a+3)xy+(3a3 +5a2 −13a+10)y = x3 +(3a3 +5a2 −13a+10)x2.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K1) ≃ Z/2Z×Z/6Z Notice that K1

contains the number field generated by the polynomial x2 −4x−1. But all the new
points from torsion subgroup are cusps.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K1) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/12Z over K1.

Consider the following modular curve

X1(3,9) : y2 +y = x3.

By our computations we obtain that X1(3,9)(K1) ≃ Z×Z/3Z where
(a3 −a2,a3 −a2) is the point with infinite order. Even rank is positive, since K1

does not contain ζ3, we cannot have an elliptic curve over K1 with torsion
subgroup Z/3Z×Z/9Z.

Consider the following modular curve

X1(4,8) : y2 = x3 −x.

By our computations we obtain that X1(4,8)(K1) ≃ Z×Z/2Z×Z/2Z where
(a3 −a2,−a3 +a2) is the point with infinite order. Even rank is positive, since K1

does not contain ζ4, we cannot have an elliptic curve over K1 with torsion
subgroup Z/4Z×Z/8Z.

Consider the following modular curve

X1(6,6) : y2 = x3 +1.

By our computations we obtain that X1(6,6)(K1) ≃ Z/6Z ≃ X1(6,6)(Q) and all the
points of X1(6,6)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/6Z×Z/6Z over K1
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Genus 2

By MAGMA, Tors(J1(13)(K1)) ≃ Z/19Z and Rank(J1(13)(K1)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

Tors(J1(16)(K1)) ≃ Z/10Z×Z/10Z and 0 < Rank(J1(16)(K1)) ≤ 2. In this case
we can easily find a point on X1(16) over the number field K1 that gives an elliptic
curve with torsion subgroup Z/16Z.

Point from X1(16) Corresponding Elliptic Curve with torsion Z/16Z
(2a3 − 2a2 − 3,16a3 +
4a2 +12a−6)

y2 + (2a3 + 3a2 + 3a + 3)xy + (−3a3 − 5a2 − 5a − 3)y =
x3 +(−3a3 −5a2 −5a−3)x2

Table 7.6 Elliptic curve obtained from points on X1(16) over the number field K1

By MAGMA, Tors(J1(18)(K1)) ≃ Z/21Z and Rank(J1(18)(K1)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain 14-torsion over K1,obviously Z/2Z×Z/14Z cannot occur
over K1.

Since we cannot obtain 18-torsion over K1,obviously Z/2Z×Z/18Z cannot occur
over K1.

Since Z/16Z occur as a torsion subgroup of an elliptic curve over K1, we cannot
use same argument for Z/2Z×Z/16Z. Also we could not find any method to check
its existence over K1.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ≃ X0(20)(Q) ≃ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on X0(20)(K1) are
cusps. Now consider

X0(24) : y2 = x3 −x2 −4x+4.
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We will show that there is no 24-cycle over K1. By MAGMA,
X0(24)(K1) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z.

By [24], X0(24) has 8 rational cusps. Hence all the points on X0(24)(K1) are
cusps.

Theorem 7.2.3. The torsion of an elliptic curve over K2 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,14,15

Z/2Z×Z/2mZ, m = 1, ...,4

Z/3Z×Z/3mZ, m = 1,2

Z/4Z×Z/4Z.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 0

Since K2 does not contain ζ5, Z/5Z×Z/5Z cannot occur as a torsion subgroup of
an elliptic curve over K2.

Notice that K2 contains ζ3, so it is enough to find one elliptic curve with torsion
Z/3Z×Z/3Z and Z/3Z×Z/6Z over K2.

Point
from
X1(3,3)

Corresponding Elliptic Curve with torsion
Z/3Z×Z/3Z

(0, ζ3) y2 +y = x3

Table 7.7 Elliptic curve obtained from points on X1(3,3) over the number field K2

Point
from
X1(3,6)

Corresponding Elliptic Curve with torsion
Z/3Z×Z/6Z

(0, ζ3) y2 +(2ζ3 +1)xy+(6ζ3 +4)y = x3 +(6ζ3 +4)x2

Table 7.8 Elliptic curve obtained from points on X1(3,6) over the number field K2

Notice that K2 contains ζ4, so it is enough to find one elliptic curve with torsion
Z/4Z×Z/4Z over K2.
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Point
from
X1(4,4)

Corresponding Elliptic Curve with torsion Z/4Z×Z/4Z

(0, ζ4) y2 +xy + 1
2(3ζ4 +1)y = x3 + 1

2(3ζ4 +1)x2

Table 7.9 Elliptic curve obtained from points on X1(4,4) over the number field K2

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K2) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K2.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K2) ≃ Z×Z/6Z where
(−a3,a3 −a2 −a) is the point with infinite order. So we can have an elliptic curve
over K2 with torsion subgroup Z/14Z.

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K2) ≃ Z×Z/8Z where
(a3 −a−1,−a3 −a2) is the point with infinite order. So we can have an elliptic
curve over K2 with torsion subgroup Z/15Z.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K2) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K2.
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Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K2) ≃ Z/2Z×Z/8Z. Notice that the
number fields generated by the polynomials x4 −x2 +1 and x4 −2x3 +5x2 −4x+1
are isomorphic. We already saw that new torsion points do not give rise to an
elliptic curve in the previous chapter.

Consider the following modular curve

X1(3,9) : y2 +y = x3.

By our computations we obtain that X1(3,9)(K2) ≃ Z/3Z×Z/3Z. But new points
do not give rise to an elliptic curve with torsion subgroup Z/3Z×Z/9Z.

Consider the following modular curve

X1(4,8) : y2 = x3 −x.

By our computations we obtain that X1(4,8)(K2) ≃ Z/2Z×Z/4Z. Notice that the
number field generated by the polynomial x4 −x2 +1 contains the number field
generated by the polynomial x2 +1. All the new points from torsion subgroup are
cusps. So, new torsion points do not give rise to an elliptic curve with desired
torsion.

Consider the following modular curve

X1(6,6) : y2 = x3 +1.

By our computations we obtain that X1(6,6)(K2) ≃ Z/2Z×Z/6Z. So, K2 contains
number field generated by the polynomial x2 −x+1. Even K2 does contain ζ6, new
points from torsion are cusps. Clearly, new torsion points do not give rise to an
elliptic curve with desired torsion.

Genus 2

By MAGMA, Tors(J1(13)(K2)) ≃ Z/19Z and Rank(J1(13)(K2)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K2)) ≃ Z/2Z×Z/2Z×Z/10Z and
Rank(J1(16)(K2)) = 0.
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By MAGMA, Tors(J1(18)(K2)) ≃ Z/3Z×Z/21Z and Rank(J1(18)(K2)) = 0.

Since there is a growth in torsion for some cases, we cannot say anything about
their existence over K2.

Higher genus Curves

By MAGMA, X0(20)(K2) ≃ Z/2Z×Z/6Z.

By MAGMA, X0(24)(K2) ≃ Z/4Z×Z/4Z.

We could not obtain any useful information with this method, but we figure out a
method useful for X1(20)(K2) and X1(24)(K2).

As X1(4n) is a cover of X1(2,2n), if Y1(2,2n) = ∅ then Y1(4n) = ∅. In our case we
have Y1(2,10) = ∅ and Y1(2,12) = ∅, so we can say Y1(20) = ∅ and Y1(24) = ∅. Thus
we cannot have Z/20Z and Z/24Z as torsion subgroup of an elliptic curve over K2.

Since Z/14Z occurs as a torsion subgroup of an elliptic curve over K2, we cannot
say Z/2Z×Z/14Z occurs or not.

Similarly, since we do not have information for Z/16Z and Z/18Z, we also cannot
decide Z/2Z×Z/16Z and Z/2Z×Z/18Z occur or not.

Theorem 7.2.4. The torsion of an elliptic curve over K3 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,13

Z/2Z×Z/2mZ, m = 1, ...,5

Z/3Z×Z/3mZ, m = 1,2.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 0

Since K3 does not contain ζ4 and ζ5, Z/4Z×Z/4Z and Z/5Z×Z/5Z cannot occur
as a torsion subgroup of an elliptic curve over K3.

Notice that K3 contains ζ3, so it is enough to find one elliptic curve with torsion
Z/3Z×Z/3Z and Z/3Z×Z/6Z over K3.
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Point
from
X1(3,3)

Corresponding Elliptic Curve with torsion
Z/3Z×Z/3Z

(0, ζ3) y2 +y = x3

Table 7.10 Elliptic curve obtained from points on X1(3,3) over the number field K3

Point
from
X1(3,6)

Corresponding Elliptic Curve with torsion
Z/3Z×Z/6Z

(0, ζ3) y2 +(2ζ3 +1)xy+(6ζ3 +4)y = x3 +(6ζ3 +4)x2

Table 7.11 Elliptic curve obtained from points on X1(3,6) over the number field K3

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K3) ≃ Z×Z/5Z where
(−a3 +2a2 −1,a3 −a2 −a+2) is the point with infinite order. So we can have an
elliptic curve over K3 with torsion subgroup Z/11Z.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K3) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K3) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K3

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K3) ≃ Z/8Z. Notice that K3 contains
the number field generated by the polynomial x2 +x+1, but in the previous chapter
we obtain that new torsion points does not give rise to elliptic curves with the
torsion subgroup Z/15Z. Hence we cannot obtain an elliptic curves with torsion
Z/15Z over K3
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Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K3) ≃ Z×Z/6Z where
(2a3 −3a2 +2,3a3 −5a2 +a+2) is the point with infinite order. So we can have an
elliptic curve over K3 with torsion subgroup Z/2Z×Z/10Z.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K3) ≃ Z/2Z×Z/4Z. Notice that the
number field K3 contains the number field generated by the polynomial x2 −x+1
and all the points are cusps.

Consider the following modular curve

X1(3,9) : y2 +y = x3.

By our computations we obtain that X1(3,9)(K3) ≃ Z/3Z×Z/3Z. But new points
do not give rise to an elliptic curve with torsion subgroup Z/3Z×Z/9Z

Consider the following modular curve

X1(4,8) : y2 = x3 −x.

By our computations we obtain that X1(4,8)(K3) ≃ Z×Z/2Z×Z/2Z where
(−a,a2 −a−1) is the point with infinite order. Even rank is positive, since K3

does not contain ζ4, we cannot have an elliptic curve over K3 with torsion
subgroup Z/4Z×Z/8Z.

Consider the following modular curve

X1(6,6) : y2 = x3 +1.

By our computations we obtain that X1(6,6)(K3) ≃ Z/2Z×Z/6Z.So, K3 contains
number field generated by the polynomial x2 −x+1. Even K3 does contain ζ6, new
points from torsion are cusps. Clearly, new torsion points do not give rise to an
elliptic curve with desired torsion.

Genus 2

By MAGMA, Tors(J1(13)(K3)) ≃ Z/57Z and Rank(J1(13)(K3)) = 0. In this case
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we can easily find a point on X1(13) over the number field K3 that gives an elliptic
curve with torsion subgroup Z/13Z.

Point from X1(13) Corresponding Elliptic Curve with torsion Z/13Z
(a3 −a2 +1,a3 −3a2 +
2)

y2 +(2a3 −4a2 +2a+2)xy +(7a3 −12a2 +a+8)y = x3 +
(7a3 −12a2 +a+8)x2

Table 7.12 Elliptic curve obtained from points on X1(13) over the number field K3

By MAGMA, Tors(J1(16)(K3)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K3)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K3)) ≃ Z/3Z×Z/21Z and Rank(J1(18)(K3)) = 0. Since
there is growth in this case we cannot decide its occurrence.

Higher genus Curves

Since we cannot obtain 14-torsion over K3,obviously Z/2Z×Z/14Z cannot occur
over K3.

Since we cannot obtain 16-torsion over K3,obviously Z/2Z×Z/16Z cannot occur
over K3.

We cannot use same argument for Z/2Z×Z/18Z, since we do not have
information about X1(18).

By MAGMA, X0(20)(K3) ≃ Z×Z/6Z. Since rank is positive we cannot decide its
occurrence over K3.

Now consider
X0(24) : y2 = x3 −x2 −4x+4.

We will show that there is no 24-cycle over K3. By MAGMA,
X0(24)(K3) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z.

By [24], X0(24) has 8 rational cusps. Hence all the points on X0(24)(K3) are
cusps.

Theorem 7.2.5. The torsion of an elliptic curve over K4 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12

Z/2Z×Z/2mZ, m = 1, ...,5.
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Proof: We already have all the torsion subgroups occuring over Q.

Genus 0

Since K4 does not contain ζ3, ζ4 and ζ5, Z/3Z×Z/3Z, Z/3Z×Z/6Z, Z/4Z×Z/4Z
and Z/5Z×Z/5Z cannot occur as a torsion subgroup of an elliptic curve over K4.

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K4) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K4.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K4) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K4.

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K4) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K4.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K4) ≃ Z×Z/6Z where
( 1

2809(714a3 −730a2 −340a+1139), 1
148877(34976a3 −34312a2 −25216a+13125)) is

the point with infinite order. So we can have an elliptic curve over K4 with torsion
subgroup Z/2Z×Z/10Z.
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Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K4) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K4) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/12Z over K4.

Consider the following modular curve

X1(3,9) : y2 +y = x3.

By our computations we obtain that X1(3,9)(K4) ≃ Z/3Z ≃ X1(3,9)(Q) and all the
points of X1(3,9)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/3Z×Z/9Z over K4.

Consider the following modular curve

X1(4,8) : y2 = x3 −x.

By our computations we obtain that X1(4,8)(K4) ≃ Z×Z/2Z×Z/2Z where
(80a3−164a2+152a+41

81 , −686a3+2192a2−2972a+424
729 ) is the point with infinite order. Even

rank is positive, since K4 does not contain ζ4, we cannot have an elliptic curve
over K4 with torsion subgroup Z/4Z×Z/8Z.

Consider the following modular curve

X1(6,6) : y2 = x3 +1.

By our computations we obtain that X1(6,6)(K4) ≃ Z×Z/6Z where
(−a3 +2a2 +2,−2a3 +4a2 +2a+3) is the point with infinite order. Even rank is
positive, since K4 does not contain ζ6, we cannot have an elliptic curve over K4

with torsion subgroup Z/6Z×Z/6Z.

Genus 2

By MAGMA, Tors(J1(13)(K4)) ≃ Z/19Z and Rank(J1(13)(K4)) ≤ 2.

By MAGMA, Tors(J1(16)(K4)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K4)) ≤ 2.

By MAGMA, Tors(J1(18)(K4)) ≃ Z/21Z and Rank(J1(18)(K4)) ≤ 4.

Since we could not obtain lower bound Rank(J1(13)(K4)), Rank(J1(16)(K4)) and
Rank(J1(18)(K4)), we cannot decide existence of Z/13Z, Z/16Z and Z/18Z over
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K4.

Higher genus Curves

Since we cannot obtain 14-torsion over K4,obviously Z/2Z×Z/14Z cannot occur
over K4. But we cannot use same argument for Z/2Z×Z/16Z and Z/2Z×Z/18Z
,since we do not have information about X1(16) and X1(18).

By MAGMA, X0(20)(K4) ≃ Z×Z/6Z. Since rank is positive we cannot decide its
occurrence over K4.

Now consider
X0(24) : y2 = x3 −x2 −4x+4.

We will show that there is no 24-cycle over K4. By MAGMA,
X0(24)(K4) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z.

By [24], X0(24) has 8 rational cusps. Hence all the points on X0(24)(K4) are
cusps.

Theorem 7.2.6. The torsion of an elliptic curve over K5 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12

Z/2Z×Z/2mZ, m = 1, ...,4,6.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 0

Since K5 does not contain ζ3, ζ4 and ζ5, Z/3Z×Z/3Z, Z/3Z×Z/6Z, Z/4Z×Z/4Z
and Z/5Z×Z/5Z cannot occur as a torsion subgroup of an elliptic curve over K5.

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K5) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K5.
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Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K5) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K5.

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K5) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K5.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K5) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K5) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K5.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K5) ≃ Z×Z/4Z where
(a3 −1,a3 +a2 +a) is the point with infinite order. So we can have an elliptic
curve over K5 with torsion subgroup Z/2Z×Z/12Z.

Consider the following modular curve

X1(3,9) : y2 +y = x3.

By our computations we obtain that X1(3,9)(K5) ≃ Z/3Z ≃ X1(3,9)(Q) and all the
points of X1(3,9)(K5) are cusps. Hence we cannot obtain an elliptic curve with
torsion Z/3Z×Z/9Z over K5

Consider the following modular curve

X1(4,8) : y2 = x3 −x.
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By our computations we obtain that X1(4,8)(K5) ≃ Z×Z/2Z×Z/2Z where
(a3 +a2 +a−1,−2a3 −a2 +2) is the point with infinite order. Even rank is
positive, since K5 does not contain ζ4, we cannot have an elliptic curve over K5

with torsion subgroup Z/4Z×Z/8Z.

Consider the following modular curve

X1(6,6) : y2 = x3 +1.

By our computations we obtain that X1(6,6)(K5) ≃ Z/6Z ≃ X1(6,6)(Q) and all the
points of X1(6,6)(K5) are cusps. Hence we cannot obtain an elliptic curve with
torsion Z/6Z×Z/6Z over K5

Genus 2

By MAGMA, Tors(J1(13)(K5)) ≃ Z/19Z and Rank(J1(13)(K5)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K5)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K5)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K5)) ≃ Z/21Z and Rank(J1(18)(K5)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain 14-torsion over K5,obviously Z/2Z×Z/14Z cannot occur
over K5.

Since we cannot obtain 16-torsion over K5,obviously Z/2Z×Z/16Z cannot occur
over K5.

Since we cannot obtain 18-torsion over K5,obviously Z/2Z×Z/18Z cannot occur
over K5.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K5. By MAGMA,
X0(20)(K5) ≃ X0(20)(Q) ≃ Z/6Z.
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By [24], X0(20) has 6 rational cusps. Hence all the points on X0(20)(K5) are
cusps.

By MAGMA, X0(24)(K5) ≃ Z×Z/2Z×Z/4Z. Since rank is positive we cannot
decide existence of Z/24Z over K5.
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7.3 Quintic Number Fields

In the following table we list the 5 quintic number fields with different Galois group
and smallest discriminant. In the table, D is the discriminant of the field, G its
Galois group, and the last column is the generating polynomial of field Ki where
1 ≤ i ≤ 5.

Field D G Polynomial
K1 1609 S5 x5 −x3 −x2 +x+1
K2 2209 D5 x5 −2x4 +2x3 −x2 +1
K3 35152 F5 x5 −x4 +2x3 −4x2 +x−1
K4 18496 A5 x5 −x4 +2x2 −2x+2
K5 14641 C5 x5 −x4 −4x3 +3x2 +3x−1

Table 7.13 Quintic Number Fields with Smallest Discriminant

We investigate possible torsion groups over the above field.

In this chapter for the computation of torsion of Jacobian we use the MAGMA code
of Samir Siksek and the code can be found at website.

For this section, we assume that no torsion groups occur over the quintic number
field other than these in Theorem 2.1.7.

In this section we will analyze the modular curves for each field according to their
genus, because although we always get a conclusion for small genus curves, this
was not possible for curves with large genus.

Remark 7.3.1. We could not find any method to check the existence of
Ki-rational points for the modular curves X1(17), X1(19), X1(21), X1(22) and
X1(25) over the number field Ki where i = 1, ...,5.

Theorem 7.3.2. The torsion of an elliptic curve over K1 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,13,14,15

Z/2Z×Z/2mZ, m = 1, ...,4.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 1
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Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K1) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K1) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K1.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K1) ≃ Z×Z/6Z where
(−a,−a4 +a2 +a−1) is the point with infinite order. So we can have an elliptic
curve over K1 with torsion subgroup Z/14Z.

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K1) ≃ Z2 ×Z/4Z where
(a4 −a,−a3 +a+1) and (3a4 −2a3 −2a2 −2a+4,−9a4 +6a3 +5a2 +6a−13) are
the points with infinite order. So we can have an elliptic curve over K1 with
torsion subgroup Z/15Z.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K1) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K1.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K1) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K1) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/12Z over K1.

Genus 2

By MAGMA, Tors(J1(13)(K1)) ≃ Z/19Z and 0 < Rank(J1(13)(K1)) ≤ 2. In this
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case we can easily find a point on X1(13) over the number field K1 that gives an
elliptic curve with torsion subgroup Z/13Z.

Point from X1(13) Corresponding Elliptic Curve with torsion Z/13Z

(a2,a3 −a2 +a+1)
y2 + (a4 − a + 2)xy + (5a4 − 3a3 − 2a2 − 3a + 7)y = x3 +
(5a4 −3a3 −2a2 −3a+7)x2

Table 7.14 Elliptic curve obtained from points on X1(13) over the number field K1

By MAGMA, Tors(J1(16)(K1)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K1)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K1)) ≃ Z/21Z and Rank(J1(18)(K1)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain 16-torsion over K1,obviously Z/2Z×Z/16Z cannot occur
over K1.

Since Z/14Z occur as a torsion subgroup of an elliptic curve over K1, we cannot
use same argument for Z/2Z×Z/14Z. Also we could not find any other method to
check that it occurs or not over K1. We cannot use above methods for X1(20) since
it is a non-hyperelliptic curve of genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K1. By MAGMA,
X0(20)(K1) ≃ X0(20)(Q) ≃ Z/6Z. By [24], X0(20) has 6 rational cusps. Hence all
the points on X0(20)(K1) are cusps.

Now consider
X0(24) : y2 = x3 −x2 −4x+4.

We will show that there is no 24-cycle over K1. By MAGMA,
X0(24)(K1) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z. By [24], X0(24) has 8 rational cusps.
Hence all the points on X0(24)(K1) are cusps.

Theorem 7.3.3. The torsion of an elliptic curve over K2 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,14
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Z/2Z×Z/2mZ, m = 1, ...,4,6.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 1

Consider the following modular curve

X1(11) : y2 −y = x3 −x2.

By our computations we obtain that X1(11)(K2) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K2.

Consider the following modular curve

X1(14) : y2 +xy +y = x3 −x.

By our computations we obtain that X1(14)(K2) ≃ Z2 ×Z/6Z where
(−a4 +2a3 −a2,a4 −a3 −a2 −a) and (a3 −a2 +1,a4 −3a3 +3a2 −2) are the points
with infinite order. So we can have an elliptic curve over K2 with torsion subgroup
Z/14Z.

Consider the following modular curve

X1(15) : y2 +xy +y = x3 +x2.

By our computations we obtain that X1(15)(K2) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K2) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K2.

Consider the following modular curve

X1(2,10) : y2 = x3 +x2 −x.

By our computations we obtain that X1(2,10)(K2) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K2) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K2.

Consider the following modular curve

X1(2,12) : y2 = x3 −x2 +x.

By our computations we obtain that X1(2,12)(K2) ≃ Z2 ×Z/4Z where
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(2a2 −2a+1,−2a+3) and (a4 −a3 +a2,−a4 +a3 +1) are the points with infinite
order. So we can have an elliptic curve over K2 with torsion subgroup
Z/2Z×Z/12Z.

Genus 2

By MAGMA, Tors(J1(13)(K2)) ≃ Z/19Z and Rank(J1(13)(K2)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K2)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K2)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K2)) ≃ Z/21Z and Rank(J1(18)(K2)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain 16-torsion over K2,obviously Z/2Z×Z/16Z cannot occur
over K2.

Since Z/14Z occur as a torsion subgroup of an elliptic curve over K2, we cannot
use same argument for Z/2Z×Z/14Z. Also we could not find any other method to
check its existence over K2.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K2. By MAGMA,
X0(20)(K2) ≃ X0(20)(Q) ≃ Z/6Z. By [24], X0(20) has 6 rational cusps. Hence all
the points on X0(20)(K2) are cusps.

By MAGMA, X0(24)(K2) ≃ Z2 ×Z/2Z×Z/4Z. Since rank is positive we cannot
decide its existence over K2.

Theorem 7.3.4. The torsion of an elliptic curve over K3 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,12,14,15

Z/2Z×Z/2mZ, m = 1, ...,6.
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Proof: We already have all the torsion subgroups occuring over Q.

Genus 1

By our computations we obtain that X1(11)(K3) ≃ Z×Z/5Z where

( 1
10082(−14a4 +1397a3 −3725a2 +6161a+5289),

1
715822(177601a4 −125712a3 +16421a2 −103362a+477684))

is the point with infinite order. So we can have an elliptic curve over K3 with
torsion subgroup Z/11Z.

By our computations we obtain that X1(14)(K3) ≃ Z×Z/6Z where

( 1
1681(445a4 −1432a3 +1199a2 +275a+685),

1
68921(2505a4 +115823a3 −170020a2 +32316a−66576))

is the point with infinite order. So we can have an elliptic curve over K3 with
torsion subgroup Z/14Z.

By our computations we obtain that X1(15)(K3) ≃ Z×Z/4Z where(
1

578(−131a4 +481a3 −133a2 +1261a−74), 1
9826(3163a4 +4557a3 +14522a2 +10119a−3969)

)
is the point with infinite order. So we can have an elliptic curve over K3 with
torsion subgroup Z/15Z.

By our computations we obtain that X1(2,10)(K3) ≃ Z×Z/6Z where(
1

1225(619a4 −78a3 +871a2 −1032a−279), 1
42875(20586a4 +8993a3 +42669a2 −30183a−23476)

)
is the point with infinite order. So we can have an elliptic curve over K3 with
torsion subgroup Z/2Z×Z/10Z.

By our computations we obtain that X1(2,12)(K3) ≃ Z×Z/4Z where(
4a4 −9a3 +11a2 −23a+20,−29a4 +46a3 −64a2 +136a−76

)
is the point with

infinite order. So we can have an elliptic curve over K3 with torsion subgroup
Z/2Z×Z/12Z.

Genus 2

By MAGMA, Tors(J1(13)(K3)) ≃ Z/19Z and Rank(J1(13)(K3)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K3)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K3)) ≤ 2.
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By MAGMA, Tors(J1(18)(K3)) ≃ Z/21Z and Rank(J1(18)(K3)) ≤ 2.

Since we could not obtain lower bound Rank(J1(16)(K2)) and Rank(J1(18)(K2)),
we cannot decide existence of Z/16Z and Z/18Z over K3.

Higher genus Curves

We cannot say anything about existence of Z/2Z×Z/14Z and Z/2Z×Z/16Z
,since we do not have information about X1(14) and X1(16).

By MAGMA, X0(20)(K3) ≃ Z×Z/6Z. Since rank is positive we cannot decide
existence Z/20Z over K3.

By MAGMA, X0(24)(K3) ≃ Z×Z/2Z×Z/4Z. Since rank is positive we cannot
decide existence Z/24Z over K3.

Theorem 7.3.5. The torsion of an elliptic curve over K4 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,10,12,15

Z/2Z×Z/2mZ, m = 1, ...,5.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 1

By our computations we obtain that X1(11)(K4) ≃ Z/5Z ≃ X1(11)(Q) and all the
points of X1(11)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/11Z over K4.

By our computations we obtain that X1(14)(K4) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K4) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K4.

By our computations we obtain that X1(15)(K4) ≃ Z2 ×Z/4Z where
(a4 −a3 +a2,−a4 +3a3 −5a2 +4a−3) and

(
1
4(a4 +2), 1

8(−5a4 +2a3 +2a2 −10)
)

are the points with infinite order. So we can have an elliptic curve over K4 with
torsion subgroup Z/15Z.

By our computations we obtain that X1(2,10)(K4) ≃ Z×Z/6Z where
(a3 +1,a4 +2a−1) is the point with infinite order. So we can have an elliptic
curve over K4 with torsion subgroup Z/2Z×Z/10Z.

By our computations we obtain that X1(2,12)(K4) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K4) are cusps. Hence we cannot obtain an elliptic curves
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with torsion Z/2Z×Z/12Z over K4.

Genus 2

By MAGMA, Tors(J1(13)(K4)) ≃ Z/19Z and Rank(J1(13)(K4)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K4)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K4)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K4)) ≃ Z/21Z and Rank(J1(18)(K4)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
cusps.

Higher genus Curves

Since we cannot obtain 14-torsion over K4,obviously Z/2Z×Z/14Z cannot occur
over K4.

Since we cannot obtain 16-torsion over K4,obviously Z/2Z×Z/16Z cannot occur
over K4.

By MAGMA, X0(20)(K4) ≃ Z×Z/6Z. Since rank is positive, we cannot decide
existence Z/20Z over K4.

Now consider
X0(24) : y2 = x3 −x2 −4x+4.

We will show that there is no 24-cycle over K4. By MAGMA,
X0(24)(K4) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z. By [24], X0(24) has 8 rational cusps.
Hence all the points on X0(24)(K4) are cusps.

Theorem 7.3.6. The torsion of an elliptic curve over K5 is isomorphic to one of
the following groups:

Z/mZ, m = 1, ...,12

Z/2Z×Z/2mZ, m = 1, ...,4.

Proof: We already have all the torsion subgroups occuring over Q.

Genus 1
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By our computations we obtain that X1(11)(K5) ≃ Z/25Z. In this case we obtain
following 3 non-isomoprhic elliptic curves over K5 with torsion subgroup Z/15Z.

y2 +(−4a4 +11a3 −3a2 −8a+3)xy +(−652a4 +1739a3 −321a2 −1380a+383)y

= x3 +(−155a4 +411a3 −73a2 −325a+90)x2,

y2 +(501a4 −918a3 −1241a2 +2537a−605)xy+(−7687269a4 +14074083a3 +19055905a2

−38894025a+9252517)y = x3 +(−484791a4 +887570a3 +1201744a2 −2452818a+583502)x2,

y2 +(4a4 −8a3 −8a2 +22a−10)xy +(−739a4 +1329a3 +1869a2 −3669a+788)y

= x3 +(−180a4 +318a3 +464a2 −877a+168)x2.

By our computations we obtain that X1(14)(K5) ≃ Z/6Z ≃ X1(14)(Q) and all the
points of X1(14)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/14Z over K5.

By our computations we obtain that X1(15)(K5) ≃ Z/4Z ≃ X1(15)(Q) and all the
points of X1(15)(K5) are cusps. Hence we cannot obtain an elliptic curves with
torsion Z/15Z over K5.

By our computations we obtain that X1(2,10)(K5) ≃ Z/6Z ≃ X1(2,10)(Q) and all
the points of X1(2,10)(K5) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/10Z over K5.

By our computations we obtain that X1(2,12)(K5) ≃ Z/4Z ≃ X1(2,12)(Q) and all
the points of X1(2,12)(K5) are cusps. Hence we cannot obtain an elliptic curves
with torsion Z/2Z×Z/12Z over K5.

Genus 2

By MAGMA, Tors(J1(13)(K5)) ≃ Z/19Z and Rank(J1(13)(K5)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(13) are
cusps.

By MAGMA, Tors(J1(16)(K5)) ≃ Z/2Z×Z/10Z and Rank(J1(16)(K5)) = 0. Since
there is no growth in torsion and rank is 0, we can say that all the points on
X1(16) are cusps.

By MAGMA, Tors(J1(18)(K5)) ≃ Z/21Z and Rank(J1(18)(K5)) = 0. Since there
is no growth in torsion and rank is 0, we can say that all the points on X1(18) are
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cusps.

Higher genus Curves

Since we cannot obtain 14-torsion over K4,obviously Z/2Z×Z/14Z cannot occur
over K4.

Since we cannot obtain 16-torsion over K4,obviously Z/2Z×Z/16Z cannot occur
over K4.

We cannot use above methods for X1(20) since it is a non-hyperelliptic curve of
genus 3. In this case we will use

X0(20) : y2 = x3 +x2 +4x+4

and show that there is no 20-cycle over K5. By MAGMA,
X0(20)(K5) ≃ X0(20)(Q) ≃ Z/6Z.

By [24], X0(20) has 6 rational cusps. Hence all the points on X0(20)(K5) are
cusps.

Now consider
X0(24) : y2 = x3 −x2 −4x+4.

We will show that there is no 24-cycle over K5. By MAGMA,
X0(24)(K5) ≃ X0(24)(Q) ≃ Z/2Z×Z/4Z.

By [24], X0(24) has 8 rational cusps. Hence all the points on X0(24)(K5) are
cusps.
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