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ABSTRACT

DIFFERENTIALLY PRIVATE NOISE ADDITION ON SMART METER DATA
FOR EFFECTIVE PRIVACY RESEARCH

MOHAMED ZEINA

COMPUTER SCIENCE AND ENGINEERING M.S. THESIS, DECEMBER 2023

Thesis Supervisor: Prof. Albert Levi

Keywords: Smart Meters, Differential Privacy, GAN, SMOTE

Smart meters measure utility consumption, like electricity, gas, or water. Utility
providers publish smart meter data to contribute to research and innovation by per-
forming analysis on the data. Data owners utilize limited privacy techniques when
publishing smart meter data, such as anonymization, which is susceptible to link-
age attacks that allow for the re-identification of individuals. As a result, making
smart meter data publicly available raises privacy concerns. Smart meter data could
be misused to reveal personal information about daily routines, activities, and pri-
vate characteristics of households. Differential privacy is a framework that balances
the conflicting goals of data utilization and individual privacy. In this thesis, we
aim to show to what extent differential privacy can effectively balance household
privacy while providing efficient data utilization and information extraction. For
this purpose, we use household electricity consumption data. The data set was
unbalanced, so Synthetic Minority Oversampling Technique (SMOTE) was used to
balance it. Moreover, since the data set was small, Generative Adversarial Network
(GAN) technique was used to generate synthetic data based on the real data. Using
IBM’s diffprivlib library, conducted various experiments for adding noise to the data
and performed machine-learning-based classification over noisy data. We evaluated
various noise levels to determine the optimal one that gives a similar classification
performance as the original data. It has been determined that the Gaussian Naive
Bayes model with differential privacy provides a better differential privacy level
(smaller ε) than the Logistic Regression model with differential privacy. Further-
more, it has been shown that the Gaussian noise addition mechanism is the best
among the other mechanisms for achieving differential privacy.
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ÖZET

AKILLI SAYAÇ VERILERINDE ETKIN MAHREMIYET ARAŞTIRMALARI
IÇIN DIFERANSIYEL GIZLI GÜRÜLTÜ EKLEME

MOHAMED ZEINA

BILGISAYAR BILIMI VE MÜHENDISLIĞI YÜKSEK LİSANS TEZİ, ARALIK
2023

Tez Danışmanı: : Prof. Dr. Albert Levi

Anahtar Kelimeler: Akıllı sayaçlar, Diferansiyel Mahremiyet, Üretken Rekabetçi
Ağ (GAN), Sentetik Azınlık Örneklem Artırma Tekniği (SMOTE)

Akıllı sayaçlar, elektrik, gaz veya su gibi hizmetlerin tüketimini ölçer. Hizmet
sağlayıcıları, veri üzerinde analiz yaparak araştırma ve inovasyona katkıda bulun-
mak amacıyla akıllı sayaç verilerini yayınlamaktadırlar. Veri sahipleri, akıllı sayaç
verilerini yayınlarken, bireylerin yeniden tanımlanmasına olanak tanıyan bağlantı
saldırılarına karşı hassas olan anonimleştirme gibi, sınırlı mahremiyet tekniklerinden
yararlanmaktadır. Sonuç olarak akıllı sayaç verilerinin kamuya açık hale getirilmesi
mahremiyet endişelerini artırmaktadır. Akıllı sayaç verileri, hane halkının günlük
rutinleri, faaliyetleri ve mahrem özellikleri hakkındaki kişisel bilgileri ortaya çıkar-
mak için kötüye kullanılabilir. Diferansiyel mahremiyet, verinin kullanışlılığı ile
bireysel mahremiyetin çatışan hedeflerini dengeleyen bir çerçevedir. Bu tezde, difer-
ansiyel mahremiyetin, etkin veri kullanımı ve bilgi çıkarımı sağlanırken, ev halkının
mahremiyetini ne derece etkili bir şekilde dengeleyebileceğinin gösterimini amaçlan-
maktadır. Bu amaçla ev elektriği tüketim verileri kullanılmıştır. Veri seti dengesiz
olduğundan Sentetik Azınlık Örneklem Artırma Tekniği (SMOTE) kullanılarak den-
geleme yapıldı. Öte yandan, veri seti küçük olduğundan, gerçek verilere dayalı sen-
tetik veriler üretmek için Üretken Rekabetçi Ağ (GAN) tekniği kullanıldı. IBM’nin
diffprivlib kütüphanesi kullanılarak veriye gürültü eklemek için çeşitli deneyler
yapıldı ve gürültülü veri üzerinde makine öğrenimine dayalı sınıflandırma gerçek-
leştirildi. Orijinal verilere benzer sınıflandırma performansı sağlayan en uygun olanı
belirlemek için çeşitli gürültü seviyelerinin değerlendirilmesi yapılmıştır. Diferansiyel
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mahremiyete sahip Gaussian Naive Bayes modelinin, diferansiyel mahremiyete sahip
Lojistik Regresyon modeline göre daha iyi bir diferansiyel mahremiyet düzeyi (daha
küçük ε) sağladığı belirlendi. Ayrıca, Gaussian gürültü ekleme mekanizmasının,
diferansiyel mahremiyet elde etmek için diğer mekanizmalar arasında en iyisi olduğu
gösterilmiştir.
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1. INTRODUCTION

There has been a rapid increase in data collection across various domains in this
digital age. It is expected that the volume of data collected will reach more than
180 zettabytes by the year 2025 Taylor (2022). The rise in the number of digital
devices and the widespread use of the internet in numerous aspects of our daily lives
are among the factors behind this growth in data collection.

E-commerce is an online activity considered a crucial aspect of business operations
Hua (2016). The exponential increase in online activity, such as mobile app usage
and e-commerce transactions, is a primary factor contributing to the growth of data
collection. Organizations collect customer data for analysis, including click, search,
and purchase information.

Technological advancements in data processing and cloud computing have made it
possible to store massive amounts of data. This provides organizations with the
ability to extract valuable insights from the data they collect, including identifying
patterns about their customers. The Internet of Things (IoT) has made it even
easier to collect data, as there is an interconnected network of devices with sensors
that are all connected to the Internet. The devices generate real-time data that can
be used for various applications.

While there are many advantages to the increase in data collection, significant pri-
vacy concerns also need to be acknowledged. Data collection includes vast amounts
of personal and sensitive information, such as individual preferences, locations, and
interactions. The utilization of personal information has practical applications, such
as recommendation systems in e-commerce, entertainment, and search queries Ku-
mar & Reddy (2014). However, handling personal and sensitive information raises
serious privacy concerns, which can hinder data disclosure.

Technological advancement in the energy sector is being made with the deploy-
ment of smart meters. Smart meters are devices that measure and monitor utility
consumption, such as electricity, gas, or water. The number of residential smart
meters deployed has increased significantly in recent years, which has resulted in a
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notable increase in the amount of data collected by smart meters. In contrast to
conventional meters, smart meters have data transmission capability that allows for
two-way communication between the utility company and the meter. This feature
makes it possible to gather data in almost real-time, giving utility providers access
to up-to-date and accurate information. Utility providers can use smart meters’
data to forecast future usage patterns and identify trends Jain, Babu, Nair & Sawle
(2021).

Utility providers publish data from smart meters for several reasons. One of the main
reasons is to contribute to research in the energy sector by providing access to smart
meter data sets. Hofmann & Siebenbrunner (2023) conducted a study and published
a data set that included hourly electricity consumption data of Norwegian house-
holds and answers to three surveys about household characteristics. Researchers
and utility companies can use this data to analyze energy usage patterns, identify
areas where improvements can be made to energy efficiency, and manage the energy
grid more effectively. Cook, Schmitter-Edgecombe, Crandall, Sanders & Thomas
(2009) discussed the importance of creating public data sets of smart home meter
data to improve technology evaluation.

Smart meter data is often made public while using limited privacy techniques like
anonymization. Anonymization involves removing or altering personally identifiable
information, such as names and addresses, from the data set, as explained by Mar-
ques & Bernardino (2020). Hamza, Hefny & others (2013) have demonstrated how
linkage attacks can still be carried out on data that has undergone anonymization
to re-identify individuals. As a result, making smart meter data public raises some
privacy concerns. Cook (2012) stated how individuals are hesitant to use sensing
technologies in their homes due to privacy concerns

Smart meter data provides detailed information about a household’s energy con-
sumption, which could be used to reveal personal information about daily routines,
activities, and private characteristics of a household. The problem is how to preserve
the privacy of individuals while extracting useful information about the underlying
population from the published data Dwork (2006). This problem is known as the
privacy-preserving analysis of data problem.

Differential privacy emerged as a concept, offering a framework to balance the con-
flicting goals of data utility and individual privacy. It provides a mathematical guar-
antee of privacy and thus offers a more rigorous and formalized approach to privacy
preservation. Unlike common privacy-preserving methods that rely on anonymiza-
tion and data masking, differential privacy adds noise to the data analysis process,
ensuring that the addition or removal of a single data point does not affect the
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outcome of the analysis Desfontaines, Mohammadi, Krahmer & Basin (2019).

Smart meter data is often made public while using limited privacy techniques. We
use differential privacy as a privacy mechanism by applying noise to the data. This
thesis aims to experiment to see if we can publish smart meter data with some noise
while still having good data utilization. Based on the extracted electricity consump-
tion data, various supervised models were used to classify whether a household was
occupied by a single individual or not, with each feature representing a distinct
query. In other tests, different supervised models were used to attempt to classify
the number of people inside the household. Differential privacy was achieved by
applying noise to the data to analyze its effect on performance metrics, such as the
accuracy and F1 score of the models. The data set used only had 4,232 households’
consumption data. The Generative Adversarial Network (GAN) technique was used
to expand the data set to generate synthetic data. In addition, the data sets used
to train the models were unbalanced, so the Synthetic Minority Oversampling Tech-
nique (SMOTE) was used to balance the data sets.

Performance evaluation was carried out using values of optimal epsilon per feature.
Optimal epsilon per feature values are the smallest possible values of epsilon per
feature at which the performance metrics, such as the F1 score or the accuracy of
the classifier, reach their default values (i.e., values without any noise addition). It
has been determined that the Gaussian Naive Bayes model with differential privacy
provides a better level of differential privacy than the Logistic Regression model
with differential privacy. This has been concluded since, for both accuracy and F1
score, the Gaussian Naive Bayes model had a smaller optimal epsilon per feature
(ε). Additionally, it has been shown that the Gaussian noise-addition mechanism
is the best among the other mechanisms for achieving differential privacy. This
has been concluded since, for both performance metrics, the Gaussian NB model
being used for classification was able to reach its default metric values with smaller
optimal values of ε per feature and with δ = 1 than when using other noise addition
mechanisms. It was also discovered that the smart meter data can be utilized for
information extraction while using differential privacy with small values of ε to
achieve better privacy.

The remainder of the thesis is organized as follows: Related work is reviewed in
Chapter 2. Next, in Chapter 3, we present the data set and methodology. The
results are presented in Chapter 4, and Chapter 5 concludes the results.
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2. RELATED WORK

Due to the increasing availability of electricity consumption data, researchers have
extensively used machine-learning models and data mining techniques to analyze
electricity consumption data in recent years. There has been a significant amount
of literature dedicated to non-intrusive load monitoring (NILM). NILM is a method
that identifies the appliances being used in a household and their corresponding en-
ergy consumption levels. It works by analyzing fluctuations in voltage and current in
consumption data Revuelta Herrero, Lozano Murciego, López Barriuso, Hernández
de la Iglesia, Villarrubia González, Corchado Rodríguez & Carreira (2018). The pro-
cess can be challenging because each appliance has a unique energy signature. Firth,
Lomas, Wright & Wall (2008), Chang (2012), and Tina & Amenta (2014) all used
NILM for appliance recognition. Armel, Gupta, Shrimali & Albert (2013) explained
the various benefits of obtaining appliance-level data, including consumer benefits,
research and development, and utilities and policies. Zeifman & Roth (2011) and
Zoha, Gluhak, Imran & Rajasegarar (2012) both conducted studies and concluded
that there is no definitive set of features that can be used to detect and classify
appliances with complete accuracy. However, Sadeghianpourhamami, Ruyssinck,
Deschrijver, Dhaene & Develder (2017) later proposed a feature elimination process
for NILM (Non-intrusive Load Monitoring) which can identify the best subset of fea-
tures to be used by a model to classify appliances. This thesis differs from NILM in
that it analyzes private household characteristics and electricity consumption data.
This thesis differs from NILM in that it analyzes private household characteristics
along with electricity consumption data.

Molina-Markham, Shenoy, Fu, Cecchet & Irwin (2010) demonstrated that usage
patterns could be identified from smart meter data using statistical techniques,
even in the absence of prior training or knowledge of household activities. They
were able to demonstrate the potential for power consumption patterns to reveal a
range of private information, such as how many people are in the home, sleeping
routines, and eating routines. Their analysis used two months of data from three
homes. McLoughlin, Duffy & Conlon (2012) conducted a study to investigate the
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relationship between household characteristics and electricity consumption, using
multiple linear regression analysis to model electricity consumption. Their find-
ings concluded that there was a strong correlation between the characteristics of
electricity consumption (such as time of use, maximum demand, load factor, and
total consumption) and various household attributes (such as number of bedrooms,
water heating, and cooking type). Their study further highlighted that electricity
consumption data can potentially reveal private information about households.

Beckel, Sadamori, Staake & Santini (2014) also looked into the possibility of inferring
household characteristics from electricity consumption data. They created a system
that estimates some private characteristics of a household based on its electricity
consumption by using supervised machine-learning techniques. They were able to
demonstrate that eight private characteristics could be inferred with an accuracy
ranging from 72% to 82%. Pekey, Çelebi, Anıl & Levi (2021) extracted features
from 30-minute electricity consumption data and classified specific household private
information using those features. They also concluded that private information
about a household can be obtained from electricity consumption data. Beckel et al.
(2014), McLoughlin et al. (2012), and Pekey et al. (2021) used the same data set
as this thesis to analyze personal privacy. However, this thesis is different as we
focus on applying differential privacy to examine whether it can effectively balance
household privacy with efficient data utilization, rather than analyzing personal
privacy like these prior studies.

A self-organizing map was employed in a different study by Beckel, Sadamori & San-
tini (2012) to examine electricity consumption traces. Using standard classification
methods, they identified household properties that are likely to be inferred. They
demonstrated that properties that are likely to be detectable using an automatic
classification system are the size of a household and the income of its members.

5



3. OUR METHODOLOGY

In this chapter, we provide a detailed description of our contributions and the meth-
ods used. In Section 3.1, we discuss the data set used and how we processed it to
extract meaningful data. In Section 3.2, we explain the features we extracted from
the data and the methods used to extract them. In Section 3.3, we discuss how we
used multilayer perceptron neural networks to create a General Adversarial Network
(GAN) for synthetic data generation. In section 3.4, we explain the method we used
to remove data imbalance in the data set, which was Synthetic Minority Oversam-
pling Technique (SMOTE). We utilized a data set that had previously been used
for analyzing personal privacy in other studies (discussed in Chapter 2). In Section
3.5, we showcase how the IBM Differential Privacy Library (diffprivlib) was used
to evaluate model performance metrics under differential privacy. This was done
to determine if differential privacy can effectively balance household privacy with
efficient data utilization and information extraction.

3.1 Data Set & Data Processing

In a study conducted in Ireland by the Commission for Energy Regulation, Irish
Social Science Data Archive (Irish Social Science Data Archive), smart meters were
used to measure household electricity consumption. At 30-minute intervals, they
gathered electricity consumption data from 4,232 households in Ireland. Data span-
ning 75 weeks (July 2009 – December 2010) was gathered, and kilowatt-hour (kWh)
was used to calculate electricity consumption. Private information regarding the
households, including the number of occupants, their income, and other private
characteristics, was gathered through surveys.

The electricity consumption data from 4,232 households was provided in six CSV
files. The CSV files have three columns. The first column shows the meter ID

6



of a household. The second column contains five-digit codes that represent two
different things. The first three digits represent the day code, where day 1 corre-
sponds to January 1st, 2009. The last two digits represent the time code and can
have values between 1 and 48, each representing a 30-minute interval starting from
00:00:00 to 00:29:59. The last column contains the electricity consumed during the
30-minute interval (in kWh). In summary, each row shows the amount of electricity
used by a particular household meter throughout a 30-minute interval on a given
day. A reading of 0.140 kWh was recorded for meter ID 1392 on July 14, 2009, at
01:00:00–01:29:59, 195 days after January 1, 2009. This data is displayed in the first
row of Table 3.1.

Table 3.1 Sample Rows from Electricity Consumption Data

Meter ID Date Time Code Consumption (kWh)
1392 19503 0.140
1392 19504 0.138
1392 19505 0.140
1392 19506 0.145

The data from the six CSV files was combined into a single data frame. After
combining the CSV files, 157,992,996 rows were obtained in total. Duplicate rows
were removed, along with rows that contained null readings. To extract useful dates
and times from the five-digit codes, the column containing the codes was divided
into two columns: one for the day code and another for the time code. Table 3.2
shows the same sample rows from Table 3.1 after splitting the five-digit codes.

Table 3.2 Electricity Consumption Data After Splitting the Five-Digit Codes

Meter ID Day Code Time Code Consumption (kWh)
1392 195 3 0.140
1392 195 4 0.138
1392 195 5 0.140
1392 195 6 0.145

Time codes were mapped to extract times, while dates were obtained by adding
the date code to December 31st, 2008. Table 3.3 shows the same sample rows from
Table 3.2 after extracting dates and times.

Table 3.3 Electricity Consumption Data After After Extracting Dates and Times

Meter ID Date Time Consumption (kWh)
1392 07/14/2009 1:29:59 0.140
1392 07/14/2009 1:59:59 0.138
1392 07/14/2009 2:29:59 0.140
1392 07/14/2009 2:59:59 0.145

7



3.2 Feature Extraction

Feature extraction was carried out using all 75 weeks of data. Beckel et al. (2014)
and Pekey et al. (2021) used different categories of features, including consumption
figures, ratios of consumption figures, temporal properties, statistical properties, and
principal components. In this thesis, consumption figures were the only category of
features extracted. The extracted features are as follows:

• Average Daily Electricity Consumption

• Average Electricity Consumption During Working Hours

• Maximum Electricity Consumption During Working Hours

• Average Electricity Consumption During Weekdays

• Average Electricity Consumption During Weekends

• Average Electricity Consumption During The Morning

• Average Electricity Consumption During The Afternoon

• Average Electricity Consumption During the Evening

To measure electricity consumption during working hours, we used data collected
between 9 AM and 5:30 p.m. These hours correspond to the typical working hours
in Ireland. For weekdays, we used data collected from Monday to Friday, while
for weekends, we used data collected on Saturday and Sunday. Additionally, we
measured electricity consumption during the morning hours between 5 AM and 12
PM, during the afternoon between 12 PM and 5 PM, and in the evening between 5
PM and 9 PM. All of the features are measured in kWh. For feature extraction., we
utilized three Python libraries: NumPy, Pandas, and Sklearn Pedregosa, Varoquaux,
Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg & others
(2011). Jupyter Notebook was used as the coding environment.

The household characteristics obtained from the surveys did not require any data
cleaning. Our focus was solely on the number of people living in each household,
which was categorized into seven groups: 1, 2, 3, 4, 5, 6, or 7+. Category 7+
indicated that more than seven people were living in the household. Using the
meter IDs, we combined the features extracted from the consumption data with
the number of people living in each household to create a single data frame. We
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derived the information on whether someone was living alone or not from the labels
containing the number of people living in the household. A label equal to 1 indicates
living alone, and 0 indicates not. Sample rows representing different households from
the data frame that the models used are displayed in Tables 3.4 and 3.5.

Table 3.4 Electricity Consumption Data After Feature Extraction

Average
Daily

Average
During
Working
Hours

Maximum
During
Working
Hours

Average
During
Weekdays

Average
During
Weekends

9.987 4.100 18.686 10.506 8.674
30.421 9.975 36.335 30.226 30.91
47.251 15.059 45.584 46.029 50.338
29.968 11.659 43.398 29.212 31.879
35.155 12.222 43.083 34.391 37.098

Table 3.5 Electricity Consumption Data After Feature Extraction

Average
During
Morning

Average
During
Afternoon

Average
During
Evening

Number of
People

Living
Alone or
Not

3.071 1.872 2.125 1 1
7.179 5.993 8.181 3 0
7.541 9.580 14.655 4 0
8.271 6.822 7.761 2 0
7.861 7.537 8.445 4 0

3.3 Synthetic Data Generation

We used a data set of only 4,232 households’ consumption data. To expand the data
set, a Generative Adversarial Network (GAN) was used to generate synthetic data.
Generative adversarial networks use deep learning to generate models, employing
methods such as convolutional neural networks. GANs operate on the principle of
a two-player zero-sum game, where the total gains of both players are zero. This
means that any gain or loss of utility by one player is exactly balanced by the loss
or gain of utility by the other player. In the case of GANs, the two players are
two models: the generator and the discriminator. The generator model attempts
to produce new samples by capturing the distribution of the real samples. On the
other hand, the discriminator model is used to categorize samples as authentic (from
the domain) or fake (generated) Wang, Gou, Duan, Lin, Zheng & Wang (2017).
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A sequential multilayer perceptron neural network was used to create the discrimi-
nator model. The input to the neural network was nine-dimensional, consisting of
eight features extracted from the consumption data and the number of people living
in the household. The network had three hidden layers, all of which had ReLU
activation functions. The first layer consisted of 256 neurons, while the second and
third hidden layers consisted of 128 and 64 neurons, respectively. The output was a
single neuron with a sigmoidal activation function, representing a probability.

The generator model was created using a sequential multilayer perceptron neural
network. The network had two hidden layers, both with ReLU activation functions
Radford, Metz & Chintala (2015). The first layer had 16 neurons, and the second
layer had 32 neurons. The output consisted of 9 neurons with a linear activation
function. The model was trained for 400 epochs, which means it was trained for 400
repetitions on the whole training set. The learning rate used was 0.001, which is
the suggested learning rate. The binary cross-entropy function was used as the loss
function to train the models. This function is suitable for training the discriminator
because it considers a binary classification task. The Adam optimizer function was
used to train both the discriminator and generator models Kingma & Ba (2014).

The GAN model was trained on 4096 data points, resulting in the generation of an-
other 4096 data points. The synthetic data was then combined with the original data
set, resulting in a combined data set containing information for 8,322 households
after processing. The distribution of synthetic data was compared to the original
data set for each feature.

The GAN model successfully replicated the general pattern of the original data for
the average daily electricity consumption. However, it was unable to generate some
of the unusual data points that are present in the original data set. The results are
shown in Figure 3.1.
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Figure 3.1 4096 Real Data Points vs 4096 Generated Data Points for Average Daily
Electricity Consumption

Figure 3.2 compares the data distributions of real and generated data for the average
daily electricity consumption, and it can be seen that both distributions are very
similar.

Figure 3.2 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Daily Electricity Consumption

The general trend of average electricity consumption during working hours in the
original data was successfully reproduced by the GAN. However, the GAN was
unable to generate some of the unusual data points that were present in the original
data set, as demonstrated in Figure 3.3.
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Figure 3.3 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During Working Hours

The data distributions of real and generated data for the average electricity con-
sumption during working hours are compared, and Figure 3.4 shows that both dis-
tributions are very similar.

Figure 3.4 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During Working Hours

The GAN model was able to replicate the general pattern of maximum electricity
consumption during working hours in the original data. It was also able to generate
some of the unusual data points that are present in the original data set, and this
can be seen in Figure 3.5.
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Figure 3.5 4096 Real Data Points vs 4096 Generated Data Points for Maximum
Electricity Consumption During Working Hours

A comparison between the data distributions of real and generated data for the
maximum electricity consumption during working hours was made, and it can be
seen that both distributions are very similar, as shown in Figure 3.6.

Figure 3.6 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Maximum Electricity Consumption During Working Hours

The GAN model was able to mimic the general trend of average electricity con-
sumption during the weekdays in the original data. It followed the same behavior
as for most features where it was unable to generate outliers, and this can be seen
in Figure 3.7.
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Figure 3.7 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During the Weekdays

For average consumption during the weekdays, the data distributions of real and
generated data were compared. The results of the analysis indicated that the dis-
tributions are highly similar, as evidenced in Figure 3.6

Figure 3.8 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During the Weekdays

Figure 3.9 shows that the GAN model was able to reproduce the general pattern of
average electricity consumption during the weekends in the original data. Addition-
ally, it was unable to generate outliers seen in the original data set.
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Figure 3.9 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During the Weekends

The data distributions of real and generated data were compared for average daily
consumption during the weekends. The data distributions are very similar, as dis-
played in Figure 3.10

Figure 3.10 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During the Weekends

We can see from Figure 3.11 that the GAN model successfully replicated the overall
pattern of average electricity consumption during the morning as observed in the
original data set. Moreover, it was observed that the GAN model did not produce
any outliers that are present in the original data set.
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Figure 3.11 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During the Morning

Distributions of real and generated data for the average daily consumption of elec-
tricity during the morning. Figure 3.12 clearly shows that the distributions of both
real and generated data are quite similar.

Figure 3.12 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During the Morning

In Figure 3.13, we can observe that the GAN model was able to successfully replicate
the pattern of average electricity consumption during the afternoon, as seen in the
original data set. Additionally, the GAN model did not produce any outliers that
are present in the original data.

16



Figure 3.13 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During the Afternoon

Figure 3.14 compares the distributions of real and generated data for the average
daily consumption of electricity during the afternoon. The distributions of both real
and generated data in the figure are quite similar.

Figure 3.14 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During the Afternoon

The GAN model mimicked the general trend of average electricity consumption dur-
ing the evening that was present in the original data but was unable to generate some
of the outliers that are present in the original data set. The results are presented in
Figure 3.15.
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Figure 3.15 4096 Real Data Points vs 4096 Generated Data Points for Average
Electricity Consumption During The Evening

Figure 3.16 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for Average Electricity Consumption During The Evening

The distributions of real and generated data for evening electricity consumption
were compared, showing how similar they are in Figure 3.16.

The GAN model generated real numbers for the number of people, resulting in
dissimilar data distributions as shown in Figure 3.17.
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Figure 3.17 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for the Number of People

After converting real numbers to integers, the distributions were compared once
again. It was observed that the GAN model generated more data points for the class
that contained three people in a household, as compared to the original dataset. The
distributions appear to be quite similar, as displayed in Figure 3.18.

Figure 3.18 Data Density of 4096 Real Data Points vs 4096 Generated Data Points
for the Number of People After Integer Conversion
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3.4 Data Oversampling

Section 3.4.1 discusses the imbalance in data sets when models were used to classify
whether someone is living alone or not in a household. The section also describes
how the data imbalance was addressed by applying SMOTE. Similarly, Section 3.4.2
discusses the imbalance in data when models were used to classify the number of
people in a household. This section also explains how the imbalance was eliminated
after applying SMOTE. All performance metrics were compared before and after
applying SMOTE. Please note that the performance metrics analyzed in this section
do not take into account differential privacy. This means that no noise was applied
to the data used by the machine-learning models.

3.4.1 Oversampling for Living Alone or Not Label

The original data set (without data generated by GAN) after processing contained
data for 4,232 households, and it was unbalanced. For the label indicating whether
someone lived alone or not, approximately 79.7% of individuals did not live alone,
while only 20.3% of individuals lived alone, as shown in Figure 3.19. This resulted
in a slight imbalance of approximately 4 to 1 in the original data set.

Do Not Live Alone

79.7%

Living Alone

20.3%

Figure 3.19 Living Alone or Not Label Distribution for 4,232 Households from the
Original Data Set

The combined data set (original data set + data generated by GAN) after processing
contained data for 8,322 households, and it was also unbalanced. For the label
indicating whether someone lived alone or not, approximately 83% of individuals
did not live alone, while only 17% of individuals lived alone, as demonstrated in
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Figure 3.20. This resulted in a slight imbalance of approximately 5 to 1 in the
combined data set.

Do Not Live Alone

83%

Living Alone
17%

Figure 3.20 Living Alone or Not Label Distribution for 8,322 Households for the
Combined Data Set

The Synthetic Minority Oversampling Technique (SMOTE) was used to address the
class imbalance problem in the data sets. Unlike common oversampling techniques,
SMOTE generates synthetic samples to over-sample the minority class instead of
oversampling it with replacement. Synthetic samples are generated by operating in
feature space rather than data space Chawla, Bowyer, Hall & Kegelmeyer (2002).

Initially, the original data set contained data for 4,232 households, with the majority
class representing 3,373 households that had more than one person living in them.
After applying SMOTE, the minority class samples were increased to 3,373 and
matched the samples in the majority class, thus eliminating the imbalance in the
data set. Moreover, SMOTE increased the overall number of samples from 4,232 to
6,746.

The combined data set included data for a total of 8,322 households. The majority of
the households (6,908) had more than one person living in them. The minority class
samples were increased to 6,908 after applying SMOTE, matching the majority class
samples, and thus eliminating the imbalance in the data set. Additionally, SMOTE
increased the overall number of samples from 8,322 to 13,816.

When using any oversampling method, the overall accuracy of the prediction model
decreases. However, the model’s ability to classify minority classes increases in
accuracy. SMOTE generates synthetic samples, which may also create unrealistic
samples and, as a result, reduce accuracy Fernández, García, Galar, Prati, Krawczyk
& Herrera (2018).

For models that used the original data set and classified whether someone lived
alone or not, the Gaussian NB model showed a decrease in accuracy from approxi-
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mately 77.5% to around 73%. Meanwhile, the Logistic Regression model showed a
decrease in accuracy from approximately 74% to around 58%. On the other hand,
the Gaussian NB model showed an increase in the F1 score from approximately 40%
to around 73%, while the Logistic Regression model showed an increase in the F1
score from approximately 26% to around 51%. This information is summarized in
Table 3.6

Table 3.6 Performance Metrics for Living Alone or Not Classification Using Original
Data (Pre-SMOTE vs Post-SMOTE)

Classifier Accuracy F1 Score
Pre SMOTE Post SMOTE Pre SMOTE Post SMOTE

Gaussian NB 77.5% 73% 40% 73%
Logistic Regression 74% 58% 26% 51%

It was observed that the Gaussian NB model’s accuracy decreased from around
80% to approximately 75% when classifying whether someone lived alone or not
using the combined data set. Similarly, the Logistic Regression model’s accuracy
decreased from around 77.5% to approximately 61%. In contrast, the Gaussian NB
model demonstrated a significant improvement in the F1 score, from around 45% to
approximately 77%. Meanwhile, the Logistic Regression model only showed a slight
increase in the F1 score, from approximately 55% to around 57%. You can find this
data summarized in Table 3.7.

Table 3.7 Performance Metrics for Living Alone or Not Classification Using Com-
bined Data (Pre-SMOTE vs Post-SMOTE)

Classifier Accuracy F1 Score
Pre SMOTE Post SMOTE Pre SMOTE Post SMOTE

Gaussian NB 80% 75% 45% 77%
Logistic Regression 77.5% 61% 55% 57%

3.4.2 Oversampling for Number of People Label

For the label indicating the number of people living in a household in the original
dataset, out of all the samples, approximately 20.3% of households had only one
person, 31.7% had two people, 17.5% had three people, 17.7% had four people,
8.5% had five people, 3.3% had six people, and only 1% had seven or more people
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living in the household. This information is represented in Figure 3.21. This re-
sulted in a significant imbalance between the majority and minority classes, with an
approximate ratio of 33 to 1.

1

20.3%

2

31.7%

3

17.5%

4

17.7% 5
8.5% 6

3.3% 7+1%

Figure 3.21 Number of People Label Distribution for 4,232 Households from the
Original Data Set

Similarly, for the combined dataset, out of all the samples, approximately 17% of
households had only one person, 30.6% had two people, 22.9% had three people,
17.6% had four people, 7.7% had five people, 3.2% had six people, and only 1%
had seven or more people living in the household. This information is represented
in Figure 3.22. This resulted in a significant imbalance between the majority and
minority classes, with an approximate ratio of 33 to 1.

1
17%

2

30.6%

3

22.9%

4

17.6% 5
7.7% 6

3.2% 7+1%

Figure 3.22 Number of People Label Distribution for 4,232 Households from the
Combined Data Set

For the original data set, the majority of households had two people living in them,
totaling up to 1340 households. After applying SMOTE, the number of samples in
all classes increased except the majority class to 1340, making them equal. As a
result, the overall number of samples in the data set increased from 4,232 to 9,380.
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In the combined data set, it was found that most households had a total of two
individuals living in them, making it a majority class with 2,545 households. To
balance the data set, SMOTE was applied, resulting in an increase in the number
of samples in all classes except for the majority class, which remained at 2,545. As
a result, the total number of samples in the data set increased from 8,322 to 17,815.

When using the original data set to classify the number of people living in a house-
hold, the Gaussian NB model showed a decrease in accuracy from about 35% to
around 26%. Similarly, the Logistic Regression model showed a decrease in accu-
racy from about 19% to around 16%. The F1 score for the Gaussian NB model
slightly increased from approximately 18% to approximately 21.5%. Additionally,
the Logistic Regression model has also shown a slight increase in the F1 score from
around 11% to around 14%, as shown in Table 3.8

Table 3.8 Performance Metrics for Number of People Classification Using Original
Data (Pre-SMOTE vs Post-SMOTE)

Classifier Accuracy F1 Score
Pre SMOTE Post SMOTE Pre SMOTE Post SMOTE

Gaussian NB 35% 26% 18% 21.5%
Logistic Regression 19% 16% 11% 14%

When the combined data set was used to classify the number of people living in a
household, the Gaussian NB model’s accuracy decreased from 35% to approximately
28%. Similarly, the Logistic Regression model showed a decrease in accuracy, drop-
ping from approximately 21% to 16%. The Gaussian NB model’s F1 score slightly
increased from approximately 22% to approximately 25%. Additionally, the Logistic
Regression model also showed a slight increase in the F1 score from around 14% to
around 15%, as demonstrated in Table 3.9.

Table 3.9 Performance Metrics for Number of People Classification Using Combined
Data (Pre-SMOTE vs Post-SMOTE)

Classifier Accuracy F1 Score
Pre SMOTE Post SMOTE Pre SMOTE Post SMOTE

Gaussian NB 35% 28% 22% 25%
Logistic Regression 21% 16% 14% 15%
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3.5 Differential Privacy Models

As previously mentioned, we used features extracted from electricity consumption
data as inputs to various supervised models. Each feature represents a different
query. Some of these models were utilized to classify whether a household was
occupied by a single person or not, while others were used to classify the number of
people residing in a household. We added noise to the data during classification to
ensure differential privacy and assess its impact on model performance, specifically
accuracy, and F1 score. The IBM Differential Privacy Library (diffprivlib) was used
to achieve this. Diffprivlib is a Python library that is open-source and designed
for differential privacy. Unlike the generic models found in Scikit-learn, Diffprivlib
provides machine-learning models with differential privacy. Additionally, Diffprivlib
offers mechanisms that add various types of noise Holohan, Braghin, Mac Aonghusa
& Levacher (2019).

Two sets of tools were used to test the impact of differential privacy on the per-
formance metrics of the models. The first set of tools included hybrid differential
privacy machine-learning models. They are hybrid since they can classify data while
adding noise to the data they are classifying to achieve differential privacy. During
initialization, the privacy parameter of the machine-learning model was set to apply
noise addition to the data being classified. Gaussian Naive Bayes (Gaussian NB)
and Logistic Regression differential privacy machine-learning models were used.

The second set of tools contained noise-addition mechanisms, which are independent
of the machine-learning models used for classification. The data underwent noise
addition using three different noise-addition mechanisms: Gaussian, Geometric, and
Laplace. This was achieved by setting the privacy parameter and the sensitivity
parameter of the mechanism used during initialization.

We used two sets of data to conduct tests: the original dataset, which did not
include data generated by GAN, and the combined dataset (original dataset +
GAN-generated data). For the analysis utilizing hybrid differential privacy machine-
learning models, we used Logistic Regression and Gaussian NB models. These
models use epsilon (ϵ) as their privacy parameter. The value of ϵ ranges from 0 to
1, as shown in Table 3.10.

A total of eight tests were conducted using hybrid differential privacy machine-
learning models. Four of these tests were used to classify whether an individual

25



Table 3.10 Privacy Parameters of the Hybrid Differential Privacy Machine-Learning
Models

Model Privacy Paramter Range
Gaussian NB Epsilon (ϵ) [0, 1]

Logistic Regression Epsilon (ϵ) [0,1]

was living alone or not, while the remaining four were used to classify the number
of people living in a household. Different combinations of machine-learning models
and performance metrics were used in each test, as shown in Table 3.11.

Table 3.11 Test Combinations Using the Hybrid Differential Privacy Machine-
Learning Models

Model Performance Metric Label
Gaussian NB Accuracy Living Alone or Not

Logistic Regression Accuracy Living Alone or Not
Gaussian NB F1 Score Living Alone or Not

Logistic Regression F1 Score Living Alone or Not
Gaussian NB Accuracy Number of People

Logistic Regression Accuracy Number of People
Gaussian NB F1 Score Number of People

Logistic Regression F1 Score Number of People

For the analysis utilizing noise-addition mechanisms, we used three noise-addition
mechanisms: Gaussian, Geometric, and Laplace. All noise-addition mechanisms
use epsilon (ϵ) as their privacy parameter, with ϵ ranging from 0 to 1. However,
the Gaussian mechanism differs from the other two mechanisms as it takes an extra
privacy parameter called delta (δ), which represents the probability of information
accidentally being leaked. This information is summarized in Table 3.12.

Table 3.12 Privacy Parameters of the Noise-Addition Mechanisms

Mechanism Privacy Paramters Range
Gaussian Epsilon (ϵ), Delta (δ) (0, 1], (0, 1]
Geometric Epsilon (ϵ) (0, 1]

Laplace Epsilon (ϵ) (0, 1]

A total of 12 tests were performed using noise-addition mechanisms. The Gaussian
NB model was used as the model for classification for all of the tests. For each
mechanism, two tests were performed to classify whether an individual was living
alone or not, and two were used to classify the number of people living in a household.

Eight features were used by the classifiers to do the classification. Each feature
represented a different query. A total privacy budget of ε = 8 was used, and it was
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divided equally among each feature. In each test, ε was varied using 50 different
values in linear space. Since the models and noise-addition mechanisms are prob-
abilistic, they produce different results each time they are run. Therefore, 50 runs
were performed for each of the 50 different values of privacy parameters tested, and
their averages were taken to obtain more stable results. When using noise-addition
mechanisms, we set the sensitivity parameter of the mechanisms to 1 because the
queries used were count queries. We divided the data sets used for analysis in all
tests into 70% for training and 30% for testing the machine-learning models.
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4. RESULTS

In this chapter, we present the results of the differential privacy analysis and provide
the optimal privacy parameters for each machine-learning model and noise-addition
mechanism. Optimal privacy parameters are the smallest values of privacy param-
eters at which performance metrics reach default values. A privacy budget of ε= 8
was equally divided among each feature. Each figure in this chapter shows perfor-
mance metrics plotted against ϵ per feature. As mentioned in Section 3.5, we used
two sets of tools to test the impact of differential privacy on the performance met-
rics of the models. All of the results displayed in this section show the classification
done by models on the combined data after the application of SMOTE. Section 4.1
shows the results obtained when using hybrid differential privacy machine learning
models, while Section 4.2 demonstrates the results obtained using noise-addition
mechanisms. Section 4.3 discusses the findings.

4.1 Hybrid Differential Privacy Machine-Learning Models

The accuracy and F1 scores of the models were evaluated before adding any noise. In
the case of predicting whether a person is living alone in a household, the Gaussian
Naive Bayes model had an accuracy of around 74% and an F1 score of around 75%,
while the Logistic Regression model had an accuracy of approximately 59% and an
F1 score of approximately 57%. However, when predicting the number of people in
a household, the Gaussian Naive Bayes model had an accuracy of around 28% and
an F1 score of around 25%, whereas the Logistic Regression model had an accuracy
of approximately 16% and an F1 score of approximately 15%.

Two different machine learning models, Gaussian NB, and Logistic Regression, were
employed. 50 different values of ε were tested for both models in a linear space.
For each of these 50 different values, the average values were computed across 50
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different runs. Section 4.1.1 displays the results when models are classifying whether
a person is living alone or not inside a household, while Section 4.1.2 displays the
results when models are classifying the number of people inside a household.

4.1.1 Living Alone or Not Predictions

Figure 4.1 illustrates the accuracy of Gaussian NB against different values of ε per
feature. The optimal value of ε per feature is approximately 0.36, at which point the
accuracy converges to its default value (i.e., the accuracy without noise addition).

Figure 4.1 Gaussian NB: Living Alone or Not Predictions (Accuracy vs Epsilon
Per Feature)

The optimal value of ε per feature is approximately 0.72, at which point the F1
score of Gaussian NB converges to its default value (i.e., the F1 score without noise
addition), as can be seen in Figure 4.2.
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Figure 4.2 Gaussian NB: Living Alone or Not Predictions (F1 Score vs Epsilon Per
Feature)

Figure 4.3 displays the accuracy of Logistic Regression for various values of ε per
feature. The optimal ε per feature value is around 0.42, which results in the accuracy
converging to its default value.

Figure 4.3 Logisitic Regression: Living Alone or Not Predictions (Accuracy vs
Epsilon Per Feature)
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The graph in Figure 4.4 shows the F1 score of Logistic Regression when tested
against different values of ε per feature. It was discovered that when ε per feature
is approximately 0.78, the F1 score converges to its default value, and this was
taken as the optimal ϵ per feature value. Table 4.1 provides an overview of the
results obtained when using hybrid differential privacy machine learning models
when predicting whether an individual is living alone or not.

Figure 4.4 Logisitic Regression: Living Alone or Not Predictions (F1 Score vs
Epsilon Per Feature)

Table 4.1 Overview of Results Using Hybrid Differential Privacy Machine Learning
Models when Predicting Whether an Individual is Living Alone or Not

Model Optimal Paramter Performance Metric
Gaussian NB ε = 0.36 Accuracy
Gaussian NB ε = 0.72 F1 Score

Logistic Regression ε = 0.42 Accuracy
Logistic Regression ε = 0.78 F1 Score

4.1.2 Number of People Predictions

The accuracy of Gaussian NB, when tested against different values of ε per feature,
reaches its default value when ε per feature is approximately 0.6, which is the optimal
ε per feature value. This is demonstrated in Figure 4.5.
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Figure 4.5 Gaussian NB: Number of People Predictions (Accuracy vs Epsilon Per
Feature)

When tested against different values of ε per feature, the F1 score of Gaussian NB
reaches its default value when ε per feature is approximately 0.62, which is the
optimal ε per feature value as shown in Figure 4.6.

Figure 4.6 Gaussian NB: Number of People Predictions (F1 Score vs. Epsilon Per
Feature)
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The accuracy of Logistic Regression never reaches its default value when tested
against different values of ε per feature. However, the optimal value of ε per feature
can be taken as 0.74. At this ε per feature value, the accuracy is very close to its
default value. This is shown in Figure 4.7.

Figure 4.7 Logistic Regression: Number of People Predictions (Accuracy vs
Epsilon Per Feature)

The F1 score of Logistic Regression reaches its default value when ε per feature is
approximately 0.96. However, its optimal ε per feature can be taken as 0.76 since,
at this ε per feature value, the accuracy is very close to its default value. Figure
4.8 displays this information. An overview of the results obtained using hybrid
differential privacy machine learning models when classifying the number of people
in a household is provided in Table 4.2
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Figure 4.8 Logistic Regression: Number of People Predictions (F1 Score vs Epsilon
Per Feature)

Table 4.2 Overview of Results Using Hybrid Differential Privacy Machine Learning
Models when classifying the Number of People

Model Optimal Paramter Performance Metric
Gaussian NB ε = 0.6 Accuracy
Gaussian NB ε = 0.62 F1 Score

Logistic Regression ε = 0.74 Accuracy
Logistic Regression ε = 0.76 F1 Score

4.2 Noise-Addition Mechanisms

In this section, the Gaussian NB model was used for classification. When predicting
whether a person is living alone in a household, the Gaussian Naive Bayes model
achieved an accuracy of approximately 74% and an F1 score of approximately 75%.
However, the model’s accuracy dropped significantly to around 28% with an F1
score of around 25% when predicting the number of people residing in a household.

Three different noise-addition mechanisms were utilized: Gaussian, Geometric, and
Laplace. In total, 50 different values of ε were tested for Gaussian, Geometric, and
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Laplace mechanisms. For each of these 50 different values, the average values were
computed across 50 different runs.

As mentioned earlier, the Gaussian mechanism requires an additional privacy param-
eter called delta (δ). To compare the Gaussian mechanism with other mechanisms,
we determine the optimal value of delta and this topic is further discussed in Sec-
tion 4.2.1. Section 4.2.2 displays the results when models are predicting whether
a person is living alone or not inside a household, while Section 4.2.3 displays the
results when models are predicting the number of people inside a household.

4.2.1 Gaussian Mechanism Optimal Delta

Delta (δ) indicates the probability of information accidentally being leaked. The
closer the δ is to zero, the more noise is applied to the data. To find the optimal
value of δ, we tested four different values: 0.25, 0.5, 0.75, and 1. For each of these
delta values, we tested 50 different values of ε. For each of these 50 values, we
computed the average values across 50 different runs. Four tests were conducted
in total, with two used to determine if an individual lives alone and the other two
used to determine the number of people residing in a household.

Figure 4.9 shows the Gaussian NB when classifying whether a person is living alone
or not, where the accuracy of the classifier is being tested against ε per feature. It
can be seen from the figure that when using δ = 1, the classifier reaches its default
accuracy with the smallest optimal ε per feature.
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Figure 4.9 Gaussian NB: Living Alone or Not Predictions Using Different Delta
Values (Accuracy vs Epsilon Per Feature)

In the given figure, denoted as Figure 4.10, the Gaussian NB model is used to
classify whether a person is living alone or not. The F1 score of the classifier is
being evaluated against ε per feature. From the figure, it can be observed that by
using δ = 1, the classifier achieves its default F1 score with the smallest optimal ε

per feature.
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Figure 4.10 Gaussian NB: Living Alone or Not Predictions Using Different Delta
Values (F1 Score vs Epsilon Per Feature)

The figure labeled as Figure 4.11 presents the use of the Gaussian NB model to
classify the number of individuals residing in a household. The accuracy of the
classifier is being assessed against ε per feature. The figure shows that when δ

equals 1, the classifier reaches its optimal accuracy with the smallest ε per feature
value.
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Figure 4.11 Gaussian NB: Number of People Predictions Using Different Delta
Values. (Accuracy vs Epsilon Per Feature)

The classification of the number of people living in a household was carried out
using the Gaussian Naive Bayes model. The F1 score of the classifier is being
evaluated against the value of ε per feature, which is shown in Figure 4.12. The
figure illustrates that the classifier achieves its default F1 score when δ equals 1,
with the smallest possible value of ε per feature.
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Figure 4.12 Gaussian NB: Number of People Predictions Using Different Delta
Values (F1 Score vs Epsilon Per Feature)

It has been determined that the best value for delta (δ) is 1. This is because, in
all four tests, the classifier achieves its default performance metric value with the
smallest optimal ε per feature when using this δ value. Therefore, when conducting
the tests to compare the Gaussian mechanism with other noise-addition mechanisms,
δ = 1 was used.

4.2.2 Living Alone or Not Predictions

Figure 4.13 displays the accuracy of Gaussian NB using Gaussian Mechanism with
varying values of ε per feature. The optimal value of ε per feature is approximately
0.32, at which point the accuracy converges to its default value.
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Figure 4.13 Gaussian NB: Living Alone or Not Predictions using Gaussian
Mechanism (Accuracy vs Epsilon Per Feature)

In the given figure, labeled as Figure 4.14, we can observe the accuracy of Gaussian
NB with Geometric Mechanism when subjected to different values of ε per feature.
As per the Figure, the accuracy of the model converges to its default value when ε

per feature is approximately 0.64.
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Figure 4.14 Gaussian NB: Living Alone or Not Predictions using Geometric
Mechanism (Accuracy vs Epsilon Per Feature)

We tested the accuracy of Gaussian NB utilizing the Laplace Mechanism by varying
the values of ε per feature, as shown in Figure 4.15. The outcomes suggest that the
optimal value of ε per feature is approximately 0.6, which is the point where the
accuracy converges to its default value.
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Figure 4.15 Gaussian NB: Living Alone or Not Predictions using Laplace
Mechanism (Accuracy vs Epsilon Per Feature)

The F1 score of Gaussian NB using Gaussian Mechanism with varying values of
ε per feature is displayed in Figure 4.16. The observed results indicate that the
optimal value of ε per feature is approximately 0.28, at which point the F1 score
converges to its default value.
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Figure 4.16 Gaussian NB: Living Alone or Not Predictions using Gaussian
Mechanism (F1 Score vs Epsilon Per Feature)

The F1 score of Gaussian NB using Geometric Mechanism was tested with varying
values of ε per feature. The optimal value of ε per feature is approximately 0.64, at
which point the F1 score converges to its default value, as displayed in Figure 4.17.
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Figure 4.17 Gaussian NB: Living Alone or Not Predictions using Geometric
Mechanism (F1 Score vs Epsilon Per Feature)

Figure 4.18 shows the F1 score of Gaussian NB using Laplace Mechanism, with
varying values of ε per feature. The F1 score does not converge to its default value,
but an optimal value of ε per feature can be selected at approximately 0.66. At this
point, the F1 score is very close to its default value. Table 4.3 provides an overview
of some of the results obtained using noise-addition mechanisms when predicting
whether an individual is living alone or not.
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Figure 4.18 Gaussian NB: Living Alone or Not Predictions using Laplace
Mechanism (F1 Score vs Epsilon Per Feature)

Table 4.3 Overview of Results Using Noise-Addition Mechanisms when Predicting
Whether an Individual is Living Alone or Not

Mechanism Optimal Parameter Performance Metric
Gaussian ε = 0.32 Accuracy
Geometric ε = 0.64 Accuracy

Laplace ε = 0.6 Accuracy
Gaussian ε = 0.28 F1 Score
Geometric ε = 0.64 F1 Score

Laplace ε = 0.66 F1 Score

4.2.3 Number of People Predictions

Figure 4.19 shows the accuracy of Gaussian NB using Gaussian Mechanism with
varying values of ε per feature. The accuracy converges to its default value at an
optimal ε per feature of approximately 0.42.
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Figure 4.19 Gaussian NB: Number of People Predictions using Gaussian
Mechanism (Accuracy vs Epsilon Per Feature)

The accuracy of Gaussian NB using Geometric Mechanism with varying values of
ε per feature never converges to its default value, as shown in Figure 4.20. The
optimal value of ε per feature can be selected at approximately 0.76. At this point,
the accuracy is very close to its default value.

46



Figure 4.20 Gaussian NB: Number of People Predictions using Geometric
Mechanism (Accuracy vs Epsilon Per Feature)

The accuracy of Gaussian NB when employing the Laplace Mechanism for noise
addition, with varying values of ε per feature is presented in Figure 4.21. The
Figure illustrates that the optimal ε per feature value is approximately 0.72, at
which the accuracy reaches its default value
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Figure 4.21 Gaussian NB: Number of People Predictions using Laplace Mechanism
(Accuracy vs Epsilon Per Feature)

The Gaussian Mechanism was employed for noise addition to test the F1 score of
Gaussian NB with varying values of ε per feature. Figure 4.22 shows the optimal
value of ε per feature is approximately 0.12, at which the F1 score converges to its
default value
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Figure 4.22 Gaussian NB: Number of People Predictions using Gaussian
Mechanism (F1 Score vs Epsilon Per Feature)

The F1 score of Gaussian NB using the Geometric mechanism for noise addition
was tested with varying values of ε per feature. The optimal value of ε per feature
is approximately 0.24, at which point the F1 score converges to its default value, as
demonstrated in Figure 4.23.
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Figure 4.23 Gaussian NB: Number of People Predictions using Geometric
Mechanism (F1 Score vs Epsilon Per Feature)

Gaussian NB’s F1 score was tested with different values of ε per feature when the
Laplace Mechanism was used for noise addition, as shown in Figure 4.24. The Figure
indicates that the optimal value of ε per feature is around 0.26, at which point
the F1 score converges to its default value. Results obtained using noise-addition
mechanisms when predicting the number of people in a household are provided in
table 4.4.
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Figure 4.24 Gaussian NB: Number of People Predictions using Laplace Mechanism
(F1 Score vs Epsilon Per Feature)

Table 4.4 Overview of Results Using Noise-Addition Mechanisms when Predicting
the Number of People

Mechanism Optimal Parameter Performance Metric
Gaussian ε = 0.42 Accuracy
Geometric ε = 0.76 Accuracy

Laplace ε = 0.72 Accuracy
Gaussian ε = 0.12 F1 Score
Geometric ε = 0.24 F1 Score

Laplace ε = 0.26 F1 Score

4.3 Discussion of Results

The default values of accuracy and F1 score without any noise were used as a point
of reference for comparison. For performance metrics being tested against privacy
parameters, the expected behavior is that when the privacy parameter is small,
the metric being measured should be somewhat lower than its default value and
then gradually increase as the privacy parameter increases (i.e., the noise applied
decreases).
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The results obtained using hybrid differential privacy machine learning models show
the Gaussian Naive Bayes model provides a better level of differential privacy than
the Logistic Regression model. When tested against ε per feature, both the accuracy
and F1 score start at much lower values compared to their default values, with
higher levels of noise (i.e., at very low ε per feature), but gradually converge to
their default values as ε per feature increases (i.e., lower noise). This is in line with
expected behavior.

On the other hand, the results for the Logistic Regression model show a different
behavior. The accuracy starts at a lower value, which is quite close to its default
value, and gradually improves as ε per feature increases. The expected behavior was
seen for the F1 score, where it starts at a much lower value compared to its default
value and gradually converges to its default value as ε per feature is increased.

For the F1 scores in both models, it was seen that their F1 scores converged to their
default values at high values of ε per feature in comparison to their accuracies. It
was observed that the Gaussian NB model outperformed the Logistic Regression
model in terms of accuracy and F1 score, and it had smaller optimal epsilon values
for both metrics.

All of the noise-addition mechanisms used ε as their privacy parameter, but the
Gaussian noise-addition mechanism had an extra privacy parameter δ. Before com-
paring the Gaussian noise-addition mechanism with other noise-addition mecha-
nisms, four tests were conducted to determine the optimal value of δ. It was found
that the optimal value of δ is 1.

The results from using noise-addition mechanisms show that, when compared to
the other noise-addition mechanisms used, the Gaussian noise-addition mechanism
is the best method for achieving differential privacy. The results for all mechanisms
follow the expected behavior for both performance metrics. For both accuracy and
F1 score, all noise-addition mechanisms start around the same initial values and
then converge to their default values as ε per feature increases.

Smaller ε per feature values were taken as the optimal values since, for some tests,
the metric being tested reaches its default value at high epsilon values (ε > 0.8).
The point with the highest recorded metric for 0 < ε ≤ 0.8 was taken. The ε per
feature value at this point was taken as the smaller optimal ε per feature value. The
metric values at the smaller optimal ε per feature were very close to their default
values.

When hybrid differential privacy machine learning models were used, the logistic
regression classifier’s accuracy failed to converge to its default accuracy while pre-
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dicting the number of people living in a household. Similarly, when noise-addition
mechanisms were used for noise addition, the F1 score of Gaussian NB using the
Laplace mechanism failed to converge when predicting whether a person was living
alone or not. Moreover, while predicting the number of people living in a household,
the accuracy of Gaussian NB using the Geometric Mechanism never converged.

All results for the accuracy and F1 score of the Gaussian NB classifier follow the
expected behavior when noise-addition mechanisms are used. Accuracies and F1
scores increase and converge to their default values as ε approaches 1.
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5. CONCLUSION

This thesis proposes whether differential privacy can effectively balance household
privacy with efficient data utilization and information extraction.SMOTE was used
to address the data set imbalance, and synthetic data was generated using the GAN
technique.

Differential privacy was achieved by adding noise to the data for noise addition,
We analyzed the effect of noise addition on performance metrics like accuracy and
the F1 score of the models. Two sets of tools were used to add noise. The first
set included hybrid differential privacy machine learning models, while the second
included noise-addition mechanisms.

Overall, we can conclude that data utilization is possible with small values of ε that
provide better privacy with differential privacy. The use of these values ensures that
the users’ privacy is protected while still allowing for the effective use of the data.

The Gaussian NB model was found to provide a better level of differential privacy
than the Logistic Regression model. It followed the expected behavior of perfor-
mance metrics when tested against ε per feature. Moreover, the Gaussian NB model
had smaller optimal ε per feature values for both accuracy and F1 score as compared
to the Logistic Regression model.

It was also concluded that the Gaussian noise-addition mechanism is the best method
for achieving differential privacy when compared to the other noise-addition mech-
anisms used. This is because, when using the Gaussian Naive Bayes model for clas-
sification, it was observed that the default metric values were achieved with smaller
optimal ε per feature values than when using other noise addition mechanisms for
both the accuracy and F1 score.
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