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ABSTRACT

CONTROL-ORIENTED, PHYSICS-INSPIRED DATA-DRIVEN MODELING
AND SIMULATION OF THE CLINKER PRODUCTION PYRO PROCESS

MUHAMMAD ASLANIMOGHANLOO

Mechatronics Engineering
M.S. THESIS, October 2023

Thesis Supervisor: Asst. Prof. Melih Turkseven

Keywords: Identification for Control, System Identification, Model Predictive
Control, Recurrent Neural Networks, Transformers, Attention Mechanism

The cement industry is one of the critical components of modern society, playing a
vital role in infrastructure and building construction. However, it is meanwhile one
of the most energy-intensive and pollutant industries in the world. On the other
hand, most current cement production plants are controlled and operated manually
making them non-optimal. Implementing novel controllers can help to solve these
problems. Model Predictive Controllers (MPC) have shown tremendous potential
in this regard since they provide optimal controllers and can consider constraints on
inputs and process variables. The essential part of MPC is its dynamic predictive
model. While efforts have been made to model the cement production process,
there is still a lack of suitable models for implementing MPC in cement production
processes. Traditionally, physics-based models have been considered for modeling
the cement production process. However, these models are typically complex with
a huge number of parameters and computationally time-consuming, making them
inapplicable to MPC. Recently, data-driven methods such as system identification
and machine learning models have been developed for cement production process
modeling. In spite of this, the majority of the literature did not take into account
the physical principles and internal dynamics of the process. Further, they did not
discuss the performance of their models and directly applied them to MPC.

This thesis aims to develop essential predictive models for implementing MPC for the
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cement production pyro process by considering both the process’s internal dynam-
ics and data-driven methods. Moreover, we investigated the models performance
comprehensively with a particular focus on long-term predictions which is essential
for the successful implementation of MPC. The first step was to develop a simple
and linear control-oriented model suitable for the MPC. Therefore, system identi-
fication methods were the focus. Moreover, the first principles of mass and energy
conservation laws are considered to discover internal dynamics and inter-component
relations in the process. As a result of incorporating these physics insights into
systems identification models, a gray-box model has been developed. Next, more
sophisticated simulation models were developed to represent the real plant in MPC
implementation, since it was not possible to implement the designed controller in the
real plant due to high risks and costs. For this purpose, machine learning models
particularly sequence modeling machine learning models such as recurrent neural
networks, and transformers are used. The selected ML models are modified and
implemented on data from the cement production process at the Akcansa Cimento
Plant.

Both the control-oriented models and simulation models were used for various pre-
diction tasks on the collected data. Results show that in control-oriented models,
the gray-box model performs better than the black-box model in validation data,
especially for long-term predictions. This depicts the benefit of considering the in-
ternal dynamics and inter-components of the process and integrating them into the
data-driven model. The results also reveal that the suggested simulation ML mod-
els are capable of modeling the cement production process and predicting its future
states. Among the proposed ML models, the transformer outperforms others as it
exploits the attention mechanism which overcomes RNN problems and can capture
long-term dependencies. It should be noted, however, that the selection of a suitable
model is dependent upon the objective task, the problem, and the available data.
Accordingly, selecting the right model for their intended use would be the user’s
responsibility. Lastly, the developed models can be used to design and implement
model predictive controllers for the cement production process in the future.
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ÖZET

CLİNKER ÜRETİM PİROLİZ SÜRECİNİN KONTROL ODAKLI, FİZİKTEN
İLHAM ALAN VERİYE DAYALI MODELLENMESİ VE SİMÜLASYONU

MUHAMMAD ASLANİMOGHANLOO

Mekatronik MÜHENDSLİĞİ
YÜKSEK LİSANS TEZİ, Ekim 2023

Tez Danışmanı: Asst. Prof. Melih Turkseven

Anahtar Kelimeler: Kontrol için Tanımlama, Sistem Tanimlama, Model Öngörülü
Kontrol, Yinelemeli Sınır Ağları, Transformatörler, Dikkat Mekanizması

Çimento endüstrisi, modern toplumun kritik bileşenlerinden biridir, altyapı ve bina
İnsan hayatında önemli bir rol oynar. Ancak aynı zamanda dünyanın en fazla enerji
yoğunluklu ve kirletici endüstrilerinden biridir. Öte yandan, mevcut çimento üre-
tim tesislerinin çoğu manuel olarak kontrol edilmekte ve iletilmektedir, bu da onları
optimal olmayan hale getirmektedir. Yeni kontrolörlerin uygulanması bu sorun-
ların çözülmesine yardımcı olabilir. Model Öngörülü Kumanda Sistemleri (Model
Predictive Control, MPC), bu konuda muazzam bir potansiyel göstermiştir, çünkü
optimal kontrolörler sayesinde girdiler ve süreç değişkenleri üzerindeki kısıtlamaları
dikkate alabilir. MPC’nin temel unsuru, dinamik tahmin modelidir. Çimento üre-
tim sürecini modellemek için çaba gösterilmiş olsa da, MPC’yi çimento üretim süreç-
lerinde uygulamak için hala uygun modellerin eksikliği vardır. Geleneksel olarak,
çimento üretim sürecini modellemek için fizik tabanlı modeller düşünülmektedir.
Bununla birlikte, bu modeller genellikle çok sayıda parametreye ihtiyaç duyar ve
hesaplama açısından zaman alıcıdır. Bu da onları MPC’ye uygulanamaz hale ge-
tirir. Son zamanlarda, sistem tanımlama ve makine öğrenimi modelleri gibi veri
odaklı yöntemler çimento üretim süreci modelleme için geliştirilmiştir. Buna rağ-
men, literatürün çoğunluğu sürecin fiziksel prensiplerini ve iç dinamiklerini hesaba
katmamaktadır. Ayrıca, mevcut literatürde modellerin performansı tartışılmamış,
modeller doğrudan MPC’ye uygulanmışlardır.
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Bu tez, çimento üretim piroliz süreci için MPC uygulanmasına yönelik gerekli tahmin
modellerini hem sürecin iç dinamiklerini hem de veri odaklı yöntemleri dikkate alarak
geliştirmeyi amaçlamaktadır. Ayrıca, MPC’nin başarılı bir şekilde uygulanması için
gerekli olan uzun vadeli tahminlere özel bir odaklanma ile modellerin performansı
kapsamlı bir şekilde incelenmiştir. Çalışmamızdaki ilk adım, MPC için uygun, basit
ve doğrusal bir kontrol odaklı model geliştirmektir. Bu nedenle, sistem tanımlama
yöntemlerine odaklanılmıştır. Ayrıca, süreçteki iç dinamikleri ve bileşenler arası il-
işkileri keşfetmek için kütle ve enerji korunumu yasaları ilkeleri dikkate alınmıştır.
Bu fiziksel içgörüleri sistem tanımlama modellerine dahil etmenin bir sonucu olarak,
bir gri kutu modeli elde edilmiştir. Ardından, yüksek risk ve maliyetler nedeniyle
tasarlanan kontrolörü gerçek tesiste uygulamak mümkün olmadığından, MPC uygu-
lamasında gerçek tesisi temsil etmek için daha sofistike simülasyon modelleri geliştir-
ilmiştir. Bu amaçla, özellikle tekrarlayan sınır ağları (recurrent neural networks,
RNN) ve transformatörler gibi makine öğrenimi (machine learning, ML) modelleri
kullanmıştır. Seçilen ML modelleri, Akçansa Çanakkale Çimento Fabrikası’ndaki
üretim sürecinden elde edilen veriler üzerinde geliştirilmiş ve uygulanmıştır.

Hem kontrol odaklı modeller hem de simülasyon modelleri, toplanan veriler üzerinde
çeşitli tahmin görevleri için kullanılmıştır. Sonuçlar, kontrol odaklı modellerde gri
kutu modelinin, özellikle uzun vadeli tahminler için doğrulama verilerinde siyah
kutu modelinden daha iyi performans gösterdiğini göstermektedir. Bu, sürecin iç
dinamiklerini ve bileşenler arası ilişkileri dikkate almanın ve bunları veri odaklı mod-
ele entegre etmenin faydasını göstermektedir. Sonuçlar ayrıca, önerilen simülasyon
ML modellerinin çimento üretim sürecini modelleme ve gelecekteki durumlarını tah-
min etme yeteneğine sahip olduğunu da ortaya koymaktadır. Önerilen ML model-
leri arasında, dikkat mekanizmasından yararlandığı ve RNN’lerdeki sorunları aşarak
uzun vadeli ilişkiler yakalayabildiği için transformatör diğerlerinden daha üstün per-
formans göstermektedir. Bununla birlikte, uygun bir modelin seçimi, hedeflenen
göreve, soruna ve mevcut verilere bağlıdır. Buna göre, amaçlanan kullanım için
doğru modeli seçmek kullanıcının sorumluluğundadır. Son olarak, geliştirilen mod-
eller gelecekte çimento üretim süreci için model öngörülü kontrolörler tasarlamak ve
uygulamak için kullanılabilir.
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Nomenclature

Fcal Calciner fuel feed rate (Kg/sec)

Fk Kiln fuel feed rate (Kg/sec)

Mr Raw material feed rate (Kg/sec)

Pcal Calciner pressure (Pa)

Pct Cooler tertiary air pressure (Pa)

Pcyc Cyclone pressure (Pa)

Pkh Kiln hood pressure (Pa)

Pki Kiln inlet pressure (Pa)

PRcl Clinker production rate (Kg/sec)

R Ideal gas constant (J.mol−1.K−1)

Scf Cooler fan rotation speed (rad/sec)

Sef Exhaust fan rotation speed (rad/sec)

Sid ID fan rotation speed (rad/sec)

Tcal Calciner temperature (K)

Tcl Clinker final temperature (K)

Tct Cooler tertiary air temperature (K)

Tcyc Cyclone temperature (K)

Tkh Kiln hood temperature (K)

Tki Kiln inlet temperature (K)



1. Introduction

According to the International Energy Agency (IEA), the cement industry is one
of the largest industries in the world With an estimated production of 4.5 million
tonnes in 2021. It is also one of the most energy-intensive and polluting industries,
consuming approximately 7% of global industrial energy consumption each year [2]
and emitting an increasing amount of greenhouse gases such as carbon dioxide,
nitrogen oxide, and methane [3] [4]. Despite these, current cement production plants
are not efficient; according to the latest energy analysis, cement production plants
have an average energy efficiency of 58% [3]. Consequently, it is imperative to
explore the possibility of reducing energy consumption and environmental effects in
the cement industry by improving its efficiency. Currently, the majority of cement
production plants operate and are controlled manually, which makes them non-
optimal [5]. Novel controllers can be implemented to optimize the process and
maximize plant efficiency [6]. Among various types of controllers, model predictive
controllers (MPC) are the most commonly used and most suitable for controlling
cement processes due to their capability to provide optimal controllers and impose
constraints on inputs and states [7] [5], [8], [9]. However, model predictive controllers
require control-oriented predictive models of the process [10]. A control-oriented
model is a mathematical model of a system that is accurate enough for control tasks
while keeping its complexity minimum [11]. In light of this, a considerable amount
of research has been conducted on the modeling and control of cement production
processes, making it an ongoing research problem [12], [13], [14], [5].
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1.1 Process Description

A typical cement production process is illustrated in Figure 1.1, which has three
major stages: 1- raw material preparation 2- pyroprocessing 3- final product prepa-
ration. Almost all new clinker plants use dry powdered raw meals fed to the kiln
via a cyclone preheater to achieve high thermal efficiency and low costs. A mixture
of limestone, clay, and other minerals is used to make cement. The main compo-
nent of cement is calcium oxide (CaO), which is derived from the decomposition
of limestone, a sedimentary rock made up mostly of calcium carbonate (CaCO3).
Other materials that are commonly used in the production of cement include clay,
sand, and iron ore. During the cement production process, these raw materials are
combined in specific ratios. Typically, for Portland cement 80% of raw material is
limestone and the rest 20% is other materials [15], [16].

Figure 1.1 Cement production process [1]

The cement production process’s main part is pyro processing which includes three
major parts: 1- preheating raw materials in the preheater tower 2- calcination and
clinker production in the rotary kiln 3- cooling clinkers in the cooler. The pre-heater
tower is a large vertical structure consisting of cyclones and a pre-calciner chamber.
The preheater tower increases the raw materials’ temperature before feeding into
the rotary kiln. The raw materials are fed into the top of the tower and heated as
they move downward through the cyclones. The preheater tower uses hot gases from
the kiln and cooler to heat the raw materials, which helps to minimize the energy
required to heat the raw materials in the kiln increasing the overall efficiency of the
production plant. The preheater tower also helps to reduce emissions of greenhouse
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gases by reducing the amount of fuel needed to heat the raw materials in the kiln [17].
A preheater cyclone is a crucial component in the cement production process, as it
facilitates the transfer of heat between the raw materials and the hot gases from the
kiln and cooler and separates the raw materials as they move through the tower.
The cyclones are cylindrical structures with a conical bottom that tapers to a small
outlet. As raw materials and hot gases enter the cyclone, they are spun around by
the shape of the cyclone, separating the raw materials from the hot gases. The raw
materials then fall to the bottom of the cyclone, while the hot gases are expelled
through the outlet at the top.

Figure 1.2 Preheater cyclone

A calciner is a device used in the cement industry to heat raw materials to a high
temperature in order to partially decompose them and prepare them for the next
stage of the production process (rotary kiln). The calciner is typically located in
the preheater tower of a cement plant, and it is fed with hot gases from the kiln and
cooler as well as raw materials. The calciner burns coal or other fuels to increase the
temperature to the required level for calcination, which involves the decomposition of
the raw materials into their constituent compounds. The calciner helps to optimize
the chemical reactions that occur in the kiln, which in turn helps to improve the
efficiency and performance of the cement plant. Typically, 80-90% of calcination
happens in the pre-calciner which reduces 8-11% energy consumption in the whole
process.

After the raw material is heated and partially calcined in the preheater tower, it
enters the rotary kiln, which is the most important and the most complicated part
of the cement production process. The rotary kiln is a large, cylindrical tube with
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a slight inclination of 2-5 degrees and is rotated by electrical motors at a speed of
0.5-1.5 rpm. The raw material enters the rotary kiln from the tail end and as it
moves through the kiln, it is subjected to increasingly high temperatures due to the
heat from the burning coal and hot gases coming from the head of the kiln, known
as secondary air. At the head of the kiln, a flame is burning, typically fueled by
coal, to provide the heat needed for the chemical reactions and burning of the raw
materials. The chemical reactions that take place in the rotary kiln are complex
and involve the decomposition of limestone, the formation of calcium oxide, and the
combination of calcium oxide with other raw materials to form cement clinker. All
of these factors make it very challenging to develop an accurate and reliable model
for predicting the kiln states. Another challenge in kiln modeling is the difficulty
of gathering the necessary and accurate data. For example, it is hard to measure
the temperature inside the kiln due to the dusty and hot environment. While heat
cameras are often installed in the kiln heads to measure the kiln temperature, their
data is not accurate and reliable enough, and they can only measure the temperature
of a portion of the kiln, not the full distribution of temperature along the kiln.

Figure 1.3 Rotary kiln

After the rotary kiln, the hot clinker enters the cooling part, where it cools to about
150 C. The cooler consists of static and moving grates. The static grates are situated
at the entrance and the moving grates are located at the following. Under these
grates are high-pressure and powerful fans that force ambient air into the under-
grate chambers. As the gas goes through the hot clinker, it exchanges heat with the
clinker which reduces its temperature. Above the cooler, hot air is collected in two
places, one near the kiln head with a temperature around 1000-1200 C, the other
near the cooler end with a temperature around 300-400 C, by doing this a part of
the energy is recovered and the whole process efficiency increases. Grate coolers are
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capable of recovering 75% of the sensible heat of clinker into secondary and tertiary
air. A schematic of typical coolers is shown in Figure 1.4. Consequently, the cement
production process is a highly complex process with interconnected modules that
include numerous physical and chemical phenomena. Thus, modeling of cement
production process is a challenging task that requires a deep understanding of the
process, and industrial setting as well as modeling knowledge.

Figure 1.4 Grate clinker cooler

1.2 Physics-based models

Traditionally, the majority of attempts in modeling of cement production process
have been devoted to physics-based modeling in which the governing equations are
discovered using first principles. In this method, physical laws such as mass, energy,
and momentum conservation laws are applied to various chemical reactions and heat
transfers in order to obtain dynamic mathematical models [18] [19], [20], [21], [22].
As one major example of this modeling method, [4] provides a physics-based model
for the entire cement manufacturing process. A separate model was developed for
the pre-heater, the calciner, the kiln, and the cooler. After combining these models,
a dynamic model of the entire process was developed. The developed integrated
model was used to investigate the effects of different design and operation parame-
ters on net energy consumption (NEC), such as the number of preheaters, rotational
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speed of the kiln, tilt of the kiln, and speed of the clinker cooler grate. A dynamic
first principle model focused on control for the kiln has been developed in [6]. Au-
thors reduced modeling computation by considering 5 segments for the kiln, and
assuming that the mass distribution for gas and solid is homogeneous inside each
segment. Moreover, they considered average values for parameters like heat transfer
coefficients and linearized the equations. Although these assumptions and simpli-
fications decrease model accuracy compared to simulation models, the accuracy is
still sufficient for control-related tasks. Finally, they used this reduced order model
to implement an MPC controller for kiln burning zone temperature. For the cooler,
physics-based models were developed primarily to determine the temperature pro-
file of the clinker and air along the cooler. For instance, [23] implemented energy
analysis and energy balance with a large number of assumptions and simplifications
for the parameters. They were able to accurately predict the clinker output tem-
perature, secondary and exhaust gas temperatures, and pressures. This model was
used to evaluate the effects of parameters such as air mass velocity and solid mass
velocity on the production of entropy. Different simulation software was also used
for modeling the cement production process. As an example, Ansys and Fluent
software were utilized to develop a physics-based model for the cooler in [24]. The
model simulated both gas and solid temperature distributions along the cooler, as
well as transient temperatures. It was then used to investigate the effects of various
parameters, such as the effect of the average diameter of the clinker particles on the
pressure drop in the clinker layer. Based on convective heat transfer equations, [25]
developed a mathematical model for the cooler part that takes into account the effect
of moving grates, which had been overlooked by most researchers up to that point.
As a result of solving discretized difference equations, they determined the temper-
ature distribution along the cooler. Afterward, they used their model to investigate
the effect of different parameters on clinker cooling, such as the effect of clinker
speed or clinker thickness on secondary air temperature. They later improved their
model by incorporating real plant experiments in addition to simulations [26]. They
also demonstrated that using exhaust gas as the first and second grates’ input air
could increase secondary and tertiary air temperatures. Physics-based models are
highly adaptable due to their clear physical meaning and easy interpretation of their
parameters. However, because of the complexity, nonlinearity, and dynamic nature
of the clinker production process, physics-based models tend to be exceedingly com-
plex, of a high order, with an excessive number of parameters. In most cases, it is
necessary to simplify the model, resulting in a reduction in accuracy. Furthermore,
adjusting many parameters can be a challenging process. Consequently, physics-
based methods are not appropriate for developing models for controlling complex
systems such as the cement production process [14].

6



1.3 Data-driven Models

An alternative is to use statistically based methods, also known as data-driven
methods or black-box models which use statistics to discover direct relations be-
tween inputs and outputs. Thus, they can avoid the complexity and high fi-
delity of physics-based models. Consequently, data-driven methods have become
increasingly popular for modeling complex processes such as cement manufactur-
ing [27], [28], [29], [30], [31]. A Locally Linear Neuro-Fuzzy (LLNF) network was
used to model the kiln system in [32]. Using the identified model, they were able to
identify abnormal conditions within the kiln. To simulate the kiln process, a multi-
layer perceptron neural network was designed and trained by [33]. [34] constructed
a cement kiln model based on BP and Elman networks. In [35], a dynamic model of
the rotary kiln was developed by integrating a process mechanism and a recurrent
neural network. Using a time delay mechanism, the kiln’s residence time is esti-
mated, and a long-short-term memory model (LSTM) that combines an attention
mechanism and an ordinary differential equation solver is proposed for capturing the
time-varying and nonlinear characteristics of the kiln process. [36] used ARMAX to
model kiln tail temperature, and designed an MPC controller based on this iden-
tified model. A nonlinear ARMAX model was considered in [29] as the model for
the rotary kiln and a nonlinear MPC implemented with time-varying weights on the
identified model. For modeling the cooler, neural networks are the most commonly
used data-driven approach. For instance, [37] considered Elman neural networks,
while [38] utilized MLP networks. Using multi-modal fusion neural networks, [39]
predicted cooler grate pressures. However, black-box models are not without chal-
lenges. It can be challenging to understand how a black-box model makes its predic-
tions or decisions due to the lack of transparency or interoperability. Thus, errors
and biases can be harder to identify and fix in black-box models [40], [41]. Addi-
tionally, their performance is limited by utilized data quantity and quality which
is sometimes difficult to acquire in industrial settings [42]. On the other hand, the
majority of data-driven models for cement production process control did not dis-
cuss their models’ performance, particularly multistep predictions which is essential
for successful MPC design and implementation. These models were directly used
for the controller design and implementation. Analyzing and verifying the models’
reliable and satisfactory prediction performance can also enhance the control pro-
cess. Moreover, these data-driven models mostly did not consider useful knowledge
from the physics of the problem while it can be helpful in developing more reliable,
generalizable, and accurate models [43].
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1.4 Thesis Contributions

This research aims to develop two essential models for model predictive control of
the cement production process, namely the control-oriented model and the simu-
lation model. First, a control-oriented gray-box model utilizing classical system
identification and first principles was developed. In this model, the first principles
were utilized to discover inter-module relations helping to consider the internal dy-
namics of the process. A comprehensive analysis of the control-oriented model in
short-term and long-term predictions demonstrated its superiority over the black-
box system identification model. Additionally, the gray-box (physics-based) model
was more generalizable, making it less dependent on data, which is particularly
beneficial when it is difficult or expensive to collect data.

For a successful design of an MPC controller, it should be implemented on the
real plant, however, due to the costs and risks it is not reasonable and possible
to do so. Thus, a model that can mimic the real plant behavior is required. As a
result, more sophisticated nonlinear models for simulating the process are developed
utilizing state-of-the-art machine learning models. In this work, we used sequence
modeling machine learning models including Recurrent neural networks, Encoder-
decoder recurrent neural networks, and Transformers. Models based on machine
learning were very successful in predicting system variables, especially in the case
of multi-step predictions. In the end, both proposed hybrid and machine learning
models have the potential to improve the accuracy and robustness of the cement
production process modeling. This can lead to better process control utilizing MPC
controllers, which could ultimately increase efficiency and reduce the environmental
impact of cement production.

Figure 1.5 Model Predictive Controller Structure
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In Chapters 2 and 3, we delve into the modeling approaches in this thesis. First,
a control-oriented model was developed utilizing system identification methods and
considering the first principles. Afterward, simulation models for sequence modeling,
including RNNs, encoder-decoder RNNs, and transformers, are presented. Chapter
4 discusses these models problem specific modifications and implementations and
prediction performances for various prediction horizons. In Chapter 5, we analyze
the results presented in the previous chapter. We also discuss the limitations of the
models and suggest ways to improve their performance. Finally, the last chapter
concludes with a general conclusion concerning the performance of the developed
modeling approaches and suggests future research directions.
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2. Control-oriented modeling

In this section, we discuss the development of the proposed control-oriented model.
First, a simplified version of the process is described and presented which helps to
consider the physics of the problem. Afterward, considering first principles, the
interactions between different components of the process are studied. Lastly, these
insights are integrated into a system identification model to develop a gray-box
model of the process.

The cement manufacturing process can be simplified as Fig. 2.1. All components
are connected to each other through gas and solid flows. These components can be

Figure 2.1 Cement production process simplified schematics

considered as individual control volumes connected together. Afterward, they can
be analyzed through mass and energy conservation. A single control volume and its
interactions with neighboring control volumes can be represented in Fig 2.2.

The mass conservation law can be applied to the control volume:

ṁcv = ṁin − ṁout (2.1)

It is well known that the volumetric flow rate between two control volumes is
a function of their pressures (Qin = f(Pcvi−1 ,Pcvi)). Considering the ideal gas
condition for the control volume, its density can be represented by ρcv = Pcv

RTcv
.

Thus, the mass flow rate between two control volumes can be represented in the
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Figure 2.2 A control volume and its interactions with adjacent control volumes

form of ṁin = Pcvi−1
RTcvi−1

f(Pcvi−1 ,Pcvi), which can be written in the general form of
ṁin = f(Pcvi−1 ,Pcvi ,Tcvi−1). The same approach can be followed for the outlet mass
flow rate from the desired control volume ṁout = f(Pcvi+1 ,Pcvi ,Tcvi+1). Replacing
these relations into Eq. 2.1, and applying the ideal gas condition (mcv = PcvVcv

RcvTcv
), we

can get a general function for the desired control volume states dynamics.

Ṗcvi , Ṫcvi = f(Tcvi−1 ,Pcvi−1 ,Tcvi+1 ,Pcvi+1) (2.2)

A similar approach can be followed for applying the energy conservation law for the
desired control volume.

d

dt
(mcviCp,cviTcvi) =

∑
ṁin,iCp,inTin −

∑
ṁout,iCp,outTout +Qnet (2.3)

By taking into account the mass flow rates relation, and ideal gas assumption Eq.
2.3 can be written as follows:

Ṗcvi , Ṫcvi = f(Pcvi−1 ,Tcvi−1 ,Pcvi+1 ,Tcvi+1) (2.4)

This analyzing method can be applied to each part of the cement production pro-
cess. For instance, for the preheater cyclones, the same schematics in Fig. 2.2 can
be drawn. Afterward, mass and energy conservation laws can be applied like the
previous part. The only difference is that this time, the solid flow between cyclones
should be also considered. As a result, 2.3, and 2.4 can be written as:

Ṗcvi , Ṫcvi = f(Tcvi−1 ,Pcvi−1 ,Tcvi+1 ,Pcvi+1 , ṁsin , ṁsout) (2.5)

Ṗcvi , Ṫcvi = f(Pcvi−1 ,Tcvi−1 ,Pcvi+1 ,Tcvi+1 , ṁsin , ṁsout ,Tmsin ,Tmsout) (2.6)

where ṁsin , ṁsout are the inlet and outlet solid mass flow rates to the cyclone.
However, the solid particle resident time inside cyclones is approximately eight
seconds [44], while the sampling time in our data is 1 minute. Thus, the solid
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particles amount inside the cyclone can be considered constant meaning that
ṁsin = ṁsout = ṁs. Also, the solid and gas phases can be considered to have the
same temperature inside a cyclone due to heat equilibrium between them. As a
result the mass and energy conservation relations 2.5, 2.6 can be written in the
following format:

Ṗcvi , Ṫcvi = f(Tcvi−1 ,Pcvi−1 ,Tcvi+1 ,Pcvi+1 , ṁs) (2.7)

Based on the above relations one can conclude that a cyclone’s variables (pressure,
temperature) are a function of its adjunct cyclones’ states. Therefore, cyclone states
can be modeled by only considering its adjunct cyclones’ variables. This approach
has been implemented for the other parts of the cement production process including
the calciner, kiln, and the cooler to discover their relations with other components.
As a result, the affecting variables and inputs in each component’s states dynamic
have been identified. A list of the states of interest and their affecting states and
inputs are provided in table 4.2. These relations can be integrated into various
data-driven modeling methods in order to develop a dynamic model of the process.
As a result, a more accurate and reliable gray-box model can be developed. In
this research, we integrated these relations into system identification methods by
selecting the regressors based on these insights.

Table 2.1 Process variables and their influencing inputs and variables derived from
first principles

Desired State Affecting states Affecting inputs
Pkh Tkh,Tct, Pct, Tki, Pki Scf , Sef , Fk, Mr

Tkh Pkh, Tct, Pct, Tki, Pki Scf , Sef , Fk, Mr

Pki Pkh, Tkh, Tcal, Pcal, Tki Fk, Mr

Tki Pkh, Tkh, Tcal, Pcal, Pki Fk, Mr

Pcal Tcal, Tct, Pct, Tcyc, Pcyc Fcal, Mr

Tcal Pcal, Tct, Pct, Tcyc, Pcyc Fcal, Mr

Tcl Pkh, Tkh, PRcl Scf , Sef , Fcal, Fk, Mr

PRcl Pcal, Tcal, Pki, Tki Fcal, Fk, Mr

System identification is a methodology for building mathematical models of dynamic
systems using measurements of the input and output signals of the system. In a
dynamic system, the values of the output signals depend on both the instantaneous
values of the input signals and also on the past behavior of the system. System
identification uses the input and output signals of a system to estimate the values
of adjustable parameters in a given model structure. A model structure is a math-
ematical relationship between input and output variables that contains unknown
parameters. Some of the most common model structures are the Input-Output
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Figure 2.3 System identification process

Polynomial Models. A polynomial model uses a generalized notion of transfer func-
tions to express the relationship between the input, u(t), the output y(t), and the
noise e(t) using the equation:

ny∑
j=1

A(q)y(t) =
nu∑
i=1

Bi(q)
Fi(q) ui(t−nki)+ C(q)

D(q)e(t) (2.8)

The variables A, B, C, D, and F are polynomials expressed in the time-shift operator
q−1. yj is the jth output, ny is the total number of outputs, ui is the ith input, nu

is the total number of inputs, and nki is the ith input delay that characterizes
the transport delay. The variance of the white noise e(t) is assumed to be λ. In
practice, not all the polynomials are simultaneously active. Often, simpler forms,
such as ARX, ARMAX, Output-Error, and Box-Jenkins are employed. Assuming
C = D = F = 1 the model becomes ARX.

ny∑
i=1

A(q)y(t) =
nu∑
i=1

Bi(q)ui(t−nki)+ e(t) (2.9)

Polynomial models can be estimated using either time domain or frequency domain
data. To estimate a polynomial model, the model order must be specified as a set of
integers, where each integer represents the number of coefficients for a polynomial
in the selected model structure. The integers na and nb represent the number of
coefficients for the A and B polynomials, respectively. The model orders can be
selected based on the physics, and statistical relations between output and input
data such as autocorrelation and cross-correlations. However, mostly it is helpful to
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try various model orders to investigate the effects of increasing and reducing orders
from the one suggested by physics or statistics. System identification techniques
can be categorized based on the amount of physical knowledge used in the modeling
process: black-box models and gray-box models. Unlike black-box models, which
are based solely on data, gray-box models incorporate the physics of the problem
as well as the statistical methods. The black-box method in our problem can be
a direct model between the process inputs and outputs of interest. In this regard,
after identifying the process inputs and outputs, a proper model structure with
proper orders has to be selected, lastly utilizing parameter estimation methods, the
proposed model structure will be fitted to data. However, gray-box models can be
developed in this context as well considering the internal dynamics of the process.
The first option is to consider not only the process inputs but also all the internal
dynamics in the modeling process which would result in a larger model. Another
option is to utilize the physical insights from the previous part to identify affecting
inputs and states for each process variable. Consequently, the regressors can be
selected based on these insights. The matrix format for a multi-input multi-output
ARX model with n outputs and m inputs can be written as follows, where p, q

indicate the orders of the outputs and inputs.

Yk︷ ︸︸ ︷
y1,k

...
yn,k

 =

A︷ ︸︸ ︷
a1,1 · · · a1,n

... . . . ...
an,1 · · · an,p



Ŷk︷ ︸︸ ︷

y1,k−1
...

y1,k−p
...

yn,k−1
...

yn,k−p


+

B︷ ︸︸ ︷
b1,1 · · · b1,m

... . . . ...
bm,1 · · · bm,q



Ûk︷ ︸︸ ︷

u1,k−1
...

u1,k−q
...

um,k−1
...

um,k−q


(2.10)

A and B are the coefficients/parameters matrices to be estimated, Yk is the sys-
tem’s current outputs (to be predicted) and Ŷk, Ûk are previous inputs and outputs.
Integrating relations from table 4.2 into the ARX structure will result in sparse co-
efficient matrices. This is because, based on these physical models/understandings,
only some states and inputs affect the desired state. The parameters in the co-
efficient matrices associated with non-affecting states and inputs can therefore be
equaled to zero. As a result, the number of free parameters in the ARX model is
reduced by approximately 50% from 960 to 485. Consequently, the ARX model
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coefficients/parameters matrices can be sparified as follows:

A =


a1,1 0 0 · · · a1,n

... 0 0 · · · ...
an,1 0 0 · · · an,p

 ,B =


b1,1 0 0 · · · b1,m

... 0 0 · · · ...
bm,1 0 0 · · · bm,q

 (2.11)

The implementation of this proposed gray-box (hybrid) model for the intended prob-
lem, the Akcansa cement production plant modeling, will be discussed in the models’
implementation and results part.

The main advantage of gray-box models is that they can be more accurate than
black-box models, which do not use any prior knowledge about the system. This
is because the theoretical structure can help to constrain the possible values of the
parameters, which can lead to a more accurate model. Another advantage of gray-
box models is that they can be less complex than white-box models, which are
fully specified by the theoretical structure. This is because the theoretical structure
can be simplified or approximated, which can make the model easier to build and
estimate. However, there are also some disadvantages to using gray-box models. One
disadvantage is that they can be more difficult to build and estimate than black-
box models. This is because the theoretical structure must be carefully chosen, and
the data must be carefully selected and pre-processed. In addition, the model’s
accuracy depends on the quality of prior knowledge. An inaccurate or incomplete
prior knowledge may lead to an inaccurate model.

Upon selecting a model structure, the identification procedure provides us with a
specific model of the selected model structure. Although the identified model may
be the best one available, the more critical question is whether it meets the intended
purpose adequately. The process of determining if a designated model is suitable
is known as model validation. These methods are inevitably problem-dependent,
contain several subjective elements, and no conclusive validation procedure can be
given. Basically, it is a matter of falsifying a model under the conditions it will be
used for and also to gain confidence in its ability to reproduce new data from the
system. Some common model validation approaches are:

• Quality of the model: Comparing the model predictions to the measured out-
puts. In this regard, various comparison methods can be used such as Mean
Squared Error, and Normalized Root Mean Squared Error Fitness percentage
(NRMSE −fitness(%) = 100(1−

∑
(y−ŷ)2∑
(y−ȳ)2 ).

• Residual analysis: Analyzing autocorrelation and cross-correlation of the
model residuals with input data.
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• Analyzing model responses such as Impulse and Step Response Plots.

• Price of the model: Compare models using the Akaike Information Criterion
or Akaike Final Prediction Error.

For a sufficient model validation task, a combination of these methods is typically
required. Nonetheless, the user objectives in modeling, knowledge of the problem,
and understanding of the required performance are the essential parts of model
validation and system identification as a whole. This is why some people believe
that System identification is the art and science of building mathematical models of
dynamic systems from observed input-output data [43].
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3. Simulation modeling

Every designed controller should be implemented on a real plant in order to study
its performance and effects. However, in the case of the cement production pro-
cess, it is not possible to test the controller on the real plant due to the high risks
and costs. A comprehensive model that can simulate the real plant can be a solu-
tion to this challenge. This model can serve as a replacement for the real plant to
test the controllers. The simulation model does not have most of the limitations
of the control-oriented model. Thus it can be more complex, and nonlinear than
the control-oriented model. In this section, we will discuss the development of the
simulation model with a specific focus on machine learning models. Machine learn-
ing can be used to develop models that accurately predict dynamic system output
for a given input. There are numerous machine learning algorithms available for
modeling dynamic systems. The choice of machine learning algorithm depends on
the specific characteristics of the system being modeled and the availability of data.
In this work, we will focus on sequential modeling in machine learning due to time
dependencies between system variables. Shortly, sequence modeling involves apply-
ing machine learning to sequential data. Any data with a natural sequential order
can be considered sequential data, such as time-dependent signals, speech, text,
or music. It is well noted that system identification is closely related to sequence
modeling and that the current trends in this field may have a significant impact on
the field of system identification. In this section, we will discuss various common
sequence modeling techniques using machine learning. Starting with recurrent neu-
ral networks (RNNs) we ended up utilizing the most state-of the art in sequence
modeling namely attention mechanism and transformers.

3.1 Recurrent Neural Networks
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Recurrent neural networks are a type of artificial neural networks that is particularly
suitable for tasks that involve sequential data, such as time series data, natural
language processing, and speech recognition. While in standard neural networks,
all inputs and outputs are independent of one another, in RNNs, different time
steps are processed in the same unit. The fundamental characteristic of RNNs is
their hidden state, which remembers certain information about the sequences they
process. Due to its ability to remember the previous input, this state is also referred
to as a Memory State. To generate the output, RNNs apply the same parameters
to all inputs or hidden layers. As a result, the complexity of the model is reduced,
as compared to other neural networks.

Figure 3.1 Recurrent Neural Networks (RNNs) structure

RNNs follow the same input and output architecture as other deep neural networks.
Nevertheless, there are differences in the manner in which information is transferred
from input to output. In contrast to deep neural networks, in RNN the weight
matrix for each dense network remains the same. A Recurrent Neural Network is
composed of multiple fixed activation function units, one for each time step. Each
unit has a hidden state that determines its internal state. As a result of this hidden
state, the network is capable of retaining past knowledge at any given point in time.
As the network learns about the past, the hidden state is updated at every time
step. For each time-step t, the activation a<t> and the output y<t> are expressed
as follows:

a<t> = g1(Waaa<t−1> +Waxx<t> + ba)

y<t> = g2(Wyaa<t> + by)
(3.1)
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Figure 3.2 RNN cell structure

The parameters are updated using backpropagation. As RNNs work on sequential
data, they use updated backpropagation, called backpropagation through time. In a
normal RNN, only one input is sent into the network at a time, and only one output
is obtained. On the other hand, backpropagation uses both current and prior inputs.
This is referred to as a timestep, and one timestep contains multiple data points
from the time series entering the RNN simultaneously. Once the neural network has
been trained and given an output, its output is used to calculate errors. Afterward,
the weights are recalculated and adjusted according to the newly calculated network.

There are four types of RNNs based on the number of inputs and outputs in the
network.

• One to One: This type of RNN operates like a standard neural network, often
referred to as a vanilla neural network, and it involves a single input and yields
a single output.

• One to Many: In this RNN variant, a single input is linked to multiple outputs.
One application of this type can be seen in the development of image captions,
where an image is input and the network generates a sentence containing
various words based on the image.

• Many to One: In this type of RNNs, numerous inputs are taken at various
stages, and one output is produced. As an example, it is commonly used in
tasks such as sentiment analysis, in which multiple words are used as input
and a sentiment prediction is generated for the entire sentence as an output.
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Figure 3.3 Backpropagation through time

• Many to Many: This type of RNN involves multiple inputs and produces
multiple outputs. For instance, during translation, it takes several words from
one language as input and generates multiple words in another language as
output.

Figure 3.4 Various RNN Types

The main problem with RNNs is that they can be prone to vanishing or exploding
gradients. It means that the error signal can become extremely small or extremely
large as it propagates through the network, making learning difficult for RNNs. To
address this problem, several techniques can be used, including LSTMs (long short-
term memories) and GRUs (gated recurrent units) networks. LSTMs and GRUs are
specifically designed to address the vanishing gradient problem. They accomplish
this by controlling the flow of information through the network using gates. There
are three gates in an LSTM:
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• Forget gate: The forget gate determines which information from the cell state
should be erased.

• Input gate: This gate decides which information to add to the cell state.

• Output gate: An output gate is responsible for determining which information
is to be output from a cell.

Gates are implemented as neural networks, and they are updated at every time step.
The gates are updated by the current input and the previous state of the LSTM.
The gates are also adjusted according to the forgetting factor, which is a measure of
how much of the past information should be retained. The gates help to determine
which neurons will fire during the next step of the LSTM. This is the key to the
LSTM’s ability to learn complex tasks and long-term dependencies.

Figure 3.5 Long short-term memory (LSTM) cell structure

3.2 Transformers

Although LSTMs are designed to overcome most of the limitations of traditional
RNNs, such as the vanishing gradient problem, they are usually slow to train due
to their architectural design, which requires the data to be introduced sequentially
to the network. This prevents parallelization of the training process, which is why
GPUs are used in deep learning calculations. The LSTM also has limitations in
terms of addressing long-range dependencies. This is because the memory capacity
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of the LSTM is not large enough to store the time-series data, which prevents it
from capturing the long-range dependencies. Additionally, the vanishing gradients
problem can also be difficult to resolve since it requires a large number of training
iterations, which can take a considerable amount of time. This means that the
LSTMs can have challenges in tasks that require long-term predictions, such as
forecasting or predicting the future behavior of a system. Transformers are a type
of deep learning model introduced in a paper called "Attention is All You Need" in
2017 [45]. Transformers are designed to handle sequential data in a fundamentally
different way compared to RNNs and LSTMs. The key innovation of Transformers
is the attention mechanism. Instead of processing data sequentially, as RNNs and
LSTMs do, Transformers can consider the relationships between all elements in a
sequence simultaneously. This is achieved by calculating attention weights for each
pair of input elements, and determining how much attention should be given to each
element when producing an output. This dynamic attention enables Transformers
to capture long-term dependencies and context effectively. This mechanism utilizes
three main components, namely the queries Q, the keys, K, and the values, V , then
performs the following operations:

1. An average score is computed by matching each query vector, q, against a
database of keys. The matching operation is computed as the dot product
of the specific query under consideration and each key vector, ki. The dot
product is a scalar value calculated by multiplying the two vectors together.
It is a measure of how closely the vectors match, with a higher dot product
indicating a closer match.

eq,ki
= q.ki (3.2)

2. Weights are generated by passing the scores through a softmax operation:
Thus, weights can be used to adjust the importance of features in a model.

αq,ki
= softmax(eq,ki

) (3.3)

3. Afterwards, the attention vector is calculated as the weighted sum of the value
vectors, V[ki], with each value vector corresponding to a key:

attention(q,K,V ) =
∑

i

αq,ki
Vki

(3.4)
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Figure 3.6 Attention Mechanism

Transformers consist of an encoder and a decoder, both composed of multiple layers
of self-attention mechanisms and feedforward neural networks. To account for the
order of elements in a sequence, positional encoding is added to the input embed-
dings. Figure 3.7 shows the architecture of the transformer proposed by Vaswani
et al., and its main components: encoder and decoder. Inputs for both components
are passed through a positional encoder that encodes order information and adds
it directly to the vector of input data. The encoder consists of six stacked encoder
layers. In each layer, there is a multihead self-attention sublayer and a feed-forward
sublayer. The multi-head self-attention sub-layer receives queries (Q), keys (K),
and values (V). By using multihead attention, the model can simultaneously attend
to information from different representation sub-spaces. In the Vanilla Transformer,
the multihead self-attention sublayer consists of six scaled-dot-product heads. After-
ward, a residual connection is applied around the multihead attention, followed by
layer normalization. The second part of the encoder, referred to as the feed-forward
sublayer, contains two dense layers with linear and rectified linear unit (ReLU) ac-
tivation functions. This layer projects the vector into a larger space, which allows
for easier extraction of the required information and then projection back into the
original space. Like the multihead self-attention sublayer, a residual connection is
employed before applying layer normalization.

The decoder is similar to the encoder consisting of 6 layers. In addition to the mul-
tihead self-attention and feed-forward sublayers, the decoder layer includes a third
sublayer performing multihead attention at the encoder outputs. Furthermore, the
multihead self-attention sublayer is changed to a masked multihead self-attention
sublayer, as shown in figure ??, which is similar to the multihead self-attention
sublayer except that masked scaled dot-product attention is used instead of scaled
dot-product attention. This prevents later leaks of information by limiting predic-
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Figure 3.7 Transformer Model Architecture

tions to outputs that are known. When it comes to training these models, one
crucial aspect is "teacher forcing." This method is commonly employed during the
training phase to teach the model how to generate sequences effectively. In teacher
forcing, the model is given the correct target output from the training data at each
step of sequence generation. This means that during training, the model receives
a ground truth token as input, helping it to understand the relationships between
input and output tokens. While teacher forcing accelerates training by providing
clear supervision, it can lead to a discrepancy between training and inference, where
the model struggles with generating accurate outputs when it doesn’t receive ground
truth inputs during inference.

Transformers have been shown to be very effective for time series forecasting and
dynamic systems modeling tasks. They have achieved state-of-the-art results on a
variety of these tasks, such as stock price forecasting, chemical production process
modeling, and modeling physical systems. They are also relatively easy to use, with
a relatively low training overhead. Transformers are also scalable, and able to handle

24



large amounts of data. They are also robust, and able to learn and generalize from
small amounts of data. Therefore, Transformers offer a strong set of capabilities and
advantages over traditional machine learning approaches [46], [47], [35].
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4. Model implementation and results

In this section, we will discuss how to apply the models introduced in the previous
section to the specific cement production process at the Akcansa cement plant. We
will start by explaining how data is collected and prepared. Next, we will present
the implementation and results of the physics-inspired or gray-box model and black-
box system identification model. Then, we will implement and discuss the results
of various machine learning models discussed in the simulation modeling section.
Finally, we will draw conclusions about the modeling process.

4.1 Data description and preparation

Using process analysis and descriptions, we identify the key variables that must be
controlled to achieve optimal process operation. We also pinpoint the internal vari-
ables, which represent the internal component states, that will be used to model the
process variables. Additionally, we recognize the process inputs that influence and
regulate both the process and its variables. For the calciner, the inside temperature
and pressure (Pcal, Tcal) are important states to monitor and control since they
directly affect the calcination reaction inside the calciner and the gas flow between
various parts of the process. Likewise, in the rotary kiln, the inlet pressure, temper-
ature, kiln hood pressure and temperature (Pkh, Tkh, Pki, Tki) are critical variables
due to the same above-mentioned reasons. Lastly, in the cooler part, the clinker
production temperature and rate (Tcl, PRcl) are the focus of process control since
the clinker temperature determines the mechanical and chemical properties of the
clinker. It goes without saying that a cement production plant’s clinker production
rate is of importance. Considering the process inputs, clearly, the raw material feed
rate and fuel feed rate into the calciner and rotary kiln (Fcal, Fk, Mr) are the main
material inputs to the system. On the other hand, for the gas phase in the process,
the fans’ speed are the control inputs including the ID fan, cooler undergrate fans,
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and cooler exhaust fan [13], [14], [48], [12]. Tables 4.2 lists the process variables,
internal variables, and process inputs. A description of each symbol can be found
in the nomenclature.

Table 4.1 Process Variables, Internal Variables, and Process Inputs

Process variables: Pkh , Tkh , Pki ,Tki ,Pcal , Tcal , Tcl , PRcl

Internal variables: Pcyc, Tcyc, Tct, Pct

Process inputs: Fcal, Fk, Mr, Sid, Scf , Sef ,

Data for the modeling was collected from Akcansa’s cement production plant at a
sampling rate of 1 minute during plant normal operations. Different data amounts
are considered for different modeling approaches as they need various amounts of
data. For the physics-inspired part, data from 5 consecutive days were used. While,
for the machine learning part, a larger number of 30 days of data is considered.
Moreover, since the plant is heavily controlled, most of the time, the process vari-
ables are around some set points without much change, while it is imperative to
utilize sufficiently rich data for modeling and identification of dynamic systems.
Variables in the system are mainly dynamic when the system undergoes changes or
if it becomes out of control. Thus, after considering a long period of data (more than
2 years), we attempted to identify the most dynamic areas of the data and to utilize
them for modeling tasks. A low-pass filter was then applied to the data to attenuate
high-frequency noise. We decided to proceed with a 10th-order low-pass filter with
a cutting frequency of 0.002 Hz, noting that the sampling frequency is 0.016 Hz.
The power spectrum of the designed low-pass filter and its performance on the kiln
hood pressure data as a sample of process data is shown in Fig. 4.1. Finally, in
every modeling task, data is divided into two parts, training and validation. Where
70 percent of data is considered for training and 30 percent for validation.
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(a) Low pass filter magnitude
response

(b) Spectrum plot of measurement
and filtered data

(c) Time plot of measurement and
filtered data

(d) Zoomed Time Plot of
Measured and Filtered Data

Figure 4.1 Effect of Filtering on Kiln Hood Pressure: A Sample from Process Data

4.2 Control-oriented model implementation and results

As discussed in the modeling part, system identification requires the selection of
a model structure and the implementation of parameter identification algorithms
within the model structure chosen. It is generally recommended to select the sim-
plest model first, and then increase the model complexity if the simple model does
not provide satisfactory results. Therefore, we have chosen to start with the ARX
model structure in this study. Having selected the model structure, the next step
involves deciding on the model order(s). In general, the aim should be to not use a
model order higher than necessary. In the absence of enough physical knowledge to
determine the model order based on them, statistical relationships such as autocor-
relation and cross-correlation can be used to determine the model order. However,
due to the feedback in the plant, collected data has a correlation with all its previ-
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ous values. For instance, the autocorrelation of Kiln hood pressure data is shown
in Figure 4.2. Therefore, simple autocorrelation is not informative enough, in this
condition, instead partial autocorrelation can be helpful. Partial autocorrelation
(PACF) is the correlation between the time series at two different lags while con-
trolling the effect of any intermediate lags. PACF for 4 sample states are plotted

(a) Kiln hood pressure ACF (b) Kiln hood temperature ACF

Figure 4.2 Autocorrelation of Kiln hood pressure and temperature data

in Fig. 4.3. PACF diagrams show that different states (variables) are correlated
with different previous values. However, in most cases, the significant correlation
is limited to three lags. Consequently, it is reasonable to consider 3 as the number
of previous outputs when modeling the current output. A similar approach can
be followed for determining the model order for inputs. Investigating the partial
cross-correlation between various inputs and outputs reveals that only 1-2 previous
inputs are correlated to the current output. Therefore, 2 can be considered for the
ARX model external part order. Nevertheless, it is essential to try other model
orders that are close to those identified by statistical analysis. In this work, after
statistical analysis and trial and error, the model orders were determined to be (5,5).
In addition, by setting the model orders to 5 for all states, we are able to reduce
the number of design parameters, otherwise, we would have to test a large number
of different combinations of model orders. As a result, in this work, we decided to
choose an ARX (5,5) for the model structure. As a common black-box model, we
can derive a model between the process inputs and process variables without con-
sidering any physical insights and internal variables. We name this as 1st black-box
model. An alternative is to consider the internal measurements as well which should
be included in the model outputs part (we name it 2nd black-box model). However,
a gray-box model can be developed by considering the internal variables (measure-
ments) and integrating the relationships between various components discovered by
the first principles. One way of achieving this integration is to select the regressors
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Figure 4.3 Partial Autocorrelation of 4 sample states

for modeling each state to include only the affecting states and inputs. As a result,
the black-box and gray-box models can be written in the following matrix format:

Yk,b =

Ab︷ ︸︸ ︷
a1,1 · · · a1,n

... . . . ...
an,1 · · · an,p

 Ŷk,b +

Bb︷ ︸︸ ︷
b1,1 · · · b1,m

... . . . ...
bm,1 · · · bm,q

 Ûk,b (4.1)

Where, Yk,b, Uk,b, Ŷk,g, Ûk,g are the black-box model inputs and outputs and their
p,q previous values respectively:

Yk,b =



Pkh,k

Tkh,k

Pki,k

Tki,k

Pcal,k

Tcal,k

Tcl,k

PRcl,k



, Uk,b =



Sid,k

Sef,k

Fca,k

Scf,k

Fk,k

Mr,k


(4.2)
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The parameter matrices Ab, and Bb are estimated by parameter estimation methods
like least squares or maximum likelihood method.

The gray-box model has a similar format to the 1st black-box model except that the
model outputs matrix includes the process variables as well as internal variables.
Moreover, the parameter matrices Ag, and Bg are sparsified based on the relations
found in the physical modeling part. In this case, the parameters associated with
non-affecting states or inputs for predicting the desired state can be fixed to zero.
By doing so, the coefficient matrices in the gray-box model will have fewer free
parameters. In this work, the number of process states to be predicted is 8, and
the number of inputs is 7. Thus, the selected black-box models have 960, and 1680
free parameters. Upon integrating the physical relations into it, the number of free
parameters is reduced to 485, which is approximately 50% and 70% reduction.

Yk,g =

Ag︷ ︸︸ ︷
a1,1 0 0 · · · a1,n

... 0 0 · · · ...
an,1 0 0 · · · an,p

 Ŷk,g +

Bg︷ ︸︸ ︷
b1,1 0 0 · · · b1,m

... 0 0 · · · ...
bm,1 0 0 · · · bm,q

 Ûk,g (4.3)

Yk,g =



Pkh,k

Tkh,k

Pki,k

Tki,k

Pcal,k

Tcal,k

Tcl,k

PRcl,k

Tcyc,k

Pcyc,k

Tct,k

Pct,k



(4.4)

Afterward, MATLAB was used to implement both the black-box and gray-box mod-
els, and analyze their performance on both estimation and validation data.
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4.2.1 Prediction performance

First, the models’ performance is analyzed for short-term predictions. Fig. 4.4
shows models’ performance on 1-step ahead prediction on the estimation and vali-
dation data. In this case, both models perform very well for all process variables.
As expected their performance is slightly better on the estimation data. Model per-
formance on validation data, however, is the primary objective, since the models are
intended to predict unseen data (predict the future). In this regard, the gray-box
model performed marginally better than the black-box model.

(a) Estimation data (b) Validation data

Figure 4.4 Black-box and gray-box model performance for 1-step ahead prediction
on estimation and validation data

(a) Estimation data (b) Validation data

Figure 4.5 Black-box and gray-box model performance for 1-step ahead prediction
on estimation and validation data, time plot, kiln hood pressure as a sample data

Modeling for control is primarily concerned with the model’s performance on long-
term prediction, known as multi-step ahead prediction. A model predictive con-
troller employs a receding horizon algorithm that heavily relies on long-term pre-
dictions. In the case of false predictions, controller performance would be poor.
As a result, it is imperative to examine the multi-step-ahead performance of every
model that is developed for control purposes. Therefore, the developed models are
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evaluated for various multi-step ahead predictions. Figure. 4.8 shows the models’
performance for various multi-step ahead predictions on both estimation and val-
idation data. As the results suggest both models are performing reasonably well
on multi-step ahead predictions. However, the gray-box model outperforms the
black-box model in validation data which proves the benefits of integrating physical
knowledge into black-box models. This better performance in the gray-box model
can be also associated with over-fitting. Overfitting is a problem where a model
learns the training data too well, including the noise and outliers. As a result, the
model fits the training data almost perfectly, but its performance on new, unseen
data drops significantly. When models are complex, they tend to over-fit the train-
ing data and perform poorly on new, unseen data. The black-box models have more
free parameters (1680, 960), thus it is more prone to over-fit on estimation data. On
the other hand, the gray-box model has fewer free parameters (485) which makes
it more flexible towards new data. It also should be noted that both models’ per-
formance deteriorates as the prediction horizon increases which is expected since a
longer-term prediction is harder than short-term predictions. This is because both
models aim to predict the future, which becomes increasingly uncertain and complex
the further ahead they attempt to predict.
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(a) Estimation data (b) Validation data

(c) Estimation data (d) Validation data

(e) Estimation data (f) Validation data

(g) Estimation data (h) Validation data

Figure 4.6 Black-box and gray-box models performance for various multi-step
(3,5,7, 10 steps) ahead prediction on estimation and validation data

Lastly, in order to ensure that the results are not dependent on the data, two
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other datasets were used to test the models (gray-box and black-box models). The
following are plots illustrating the prediction performance of the models at various
steps. In order to save space and time, we have only presented the validation data
results.
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(a) Estimation data (b) Validation data

(c) Estimation data (d) Validation data

(e) Estimation data (f) Validation data

(g) Estimation data (h) Validation data

Figure 4.7 Gray-box and black-box models prediction performance on various steps
ahead (1,3,5,7) on dataset 2
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(a) Estimation data (b) Validation data

(c) Estimation data (d) Validation data

(e) Estimation data (f) Validation data

(g) Estimation data (h) Validation data

Figure 4.8 Gray-box and black-box models prediction performance on various steps
ahead (1,3,5,7) on dataset 3
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4.2.2 Model generalizability and effect of data quantity on model perfor-

mance

It is well known that data-driven methods heavily rely on data quality and quantity,
and without reliable and sufficient data, their performance suffers. In contrast,
physics-based methods are less dependent on data since they are based on physical
principles. To investigate this issue, we trained both models with different amounts
of data, 25%, 50%, and 100%. In Fig. 5.2, the performance of the models on a longer
prediction horizon (5 steps ahead) is depicted. Results indicate that the black-box
model loses performance when trained on a limited amount of data, whereas the
gray-box model retains its performance. As a result of these capabilities, physics-
inspired models can be particularly beneficial when there is limited data available
or if it is expensive to conduct additional experiments and collect more data. This
is because physics-inspired models are able to learn the underlying structure of the
data and can use that knowledge to make predictions on larger horizons, even when
the amount of data is limited. Additionally, physics-inspired models are also more
efficient to run and consume fewer resources, making them an attractive option for
applications that require real-time predictions.

38



(a) Estimation with 25% of estimation
data

(b) Estimation with 50% of estimation
data

(c) Estimation with 100% of estimation
data

Figure 4.9 Validation Performance of Gray-box and Black-box Models for
Multi-Step Ahead Prediction with Varied Training Data Percentages
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(a) Trained with 25% of estimation data

(b) Trained with 50% of estimation data

(c) Trained with 100% of estimation data

Figure 4.10 Validation Performance of Gray-box and Black-box Models for 5 steps
Ahead Prediction with Varied Training Data Percentages
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4.3 Simulation models implementation and results

This section discusses the implementation and results of the machine learning models
proposed in the simulation modeling section including RNN, encoder-decoder RNN,
and Transformers. First of all each model structure is modified to meet the problem-
specific needs. Afterward, the implementation of each method is discussed, followed
by the analysis of their results. The models’ performance is analyzed in terms of
loss mainly the root mean squared value of model errors. Finally, it will discuss
the strengths and weaknesses of each model. The results of this analysis will help
inform the design of future machine learning models for predicting time series data.
In the first place, the data should be prepared like the previous part. The only
difference in this part is that the data must be normalized to the range (0, 1). This
is essential to ensure that all features are on the same scale and that variables with
large magnitudes do not dominate the learning process. Moreover, in this part, in
order to make the results concise and more understandable we limited our analysis to
the cooler significant states/variables including kiln hood pressure and temperature,
clinker production rate, and clinker final temperature simulation. A very similar
approach can be applied to all other important states in the process. To provide a
baseline for comparing the performance of more complex models, it is beneficial to
evaluate the performance of a simple model before building the trainable models.
A simple model that can be used as a baseline is one that always predicts "No
change". This is a reasonable baseline because the data changes slowly. However,
the performance of this baseline will decrease as the prediction horizon increases.

Figure 4.11 Baseline model
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4.3.1 Recurrent neural networks (RNNs)

4.3.1.1 Single-shot RNN

Recurrent neural networks are mostly used to get a series of previous inputs and
produce the current output. In other words, they are mostly used for 1-step ahead
prediction. However, as it was discussed multi-step ahead prediction is required for
control tasks, particularly MPC. Therefore, we designed and trained the recurrent
neural network model to predict multi-steps ahead. One high-level approach to this
problem is to use a "single-shot" model, where the model makes the entire sequence
prediction in a single step. In this method, given a series of inputs, the model will
predict many steps in the future instead of just one step. A simple schematic of this
approach is presented in Figure 4.12 in which 24 previous inputs are fed into the
model, and the model predicts the next 24 outputs at the same time. The single-
shot RNN model has been designed with 3 LSTM layers with 64, 32, and 8 neurons
respectively, and a final dense layer to reshape the model output to the output data
shape.

Figure 4.12 Single-shot RNN Model Structure
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4.3.1.2 Encoder-decoder RNN

Single-shot RNNs do not consider the previous outputs and they predict the fu-
ture values for multiple steps at the same time. This method limits their capability
and accuracy. Feeding the previous output to the network can increase its perfor-
mance. Using encoder-decoder architecture can make the models able to consider
the previous outputs as well as previous inputs.

Figure 4.13 Autoregressive Multi-Step Predictor Model Structure

Figure 4.14 Encoder-decoder RNN Model Structure
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Encoder-decoders are a type of neural network that consists of two parts: an encoder
and a decoder. The encoder compresses the input data into a lower-dimensional
representation, known as the latent space. This process allows the model to learn
the most important features of the input data. The decoder then reconstructs the
output data from the latent space. In the case of encoder-decoder-based RNNs, the
encoder processes the input sequence data and extracts the context from it. This
context is then fed into the decoder, which also receives the previous outputs. This
allows the decoder to consider both the input sequence and the previous outputs
when generating the next output. Due to its different structure, the encoder-decoder
RNN training process is also different from classical ML models. Teacher-forcing is
the most effective training method for encoder-decoder RNNs. It works by feeding
the ground truth (actual) output from the previous time step as input to the RNN
at the current time step. This forces the RNN to learn to predict the next output in
the sequence, even if it has made mistakes in the past. Teacher forcing significantly
improves the efficiency and effectiveness of encoder-decoder RNN training. However,
during testing, the model predictions are fed as the previous outputs to the decoder,
since the actual output data for the future is unavailable. For this encoder-decoder
RNN model, we considered 1 LSTM layer with 128 neurons for each encoder and
decoder.

4.3.2 Transformers

Transformers also have an encoder-decoder structure. In the encoder, the input
data is processed by the attention mechanism. The output of the encoder is then
fed into the decoder, which also receives the previous outputs. In addition to the
parameters in typical neural networks, transformers also have other parameters that
must be determined, such as the number of heads and the model dimension. In this
work, we used a transformer architecture with two layers in both the encoder and
decoder. We also set the number of heads and the model dimension to four and
32, respectively. We also used dropout and batch normalization in the transformer.
Dropout is used to prevent overfitting, while batch normalization helps to keep the
weights of the neural network stable.

All of the proposed models were implemented in Python using the TensorFlow ma-
chine learning library. Due to the large number of hyperparameters in neural net-
works, we decided to use the same hyperparameters for all models whenever possible.
The hyperparameters were chosen through trial and error, and the best model for
each architecture was selected. We fixed the number of future steps to 30 in the
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Figure 4.15 Transformers for time-series

first stage, meaning that the models need to predict the system output from 1 to 30
minutes in the future. We used a dataset of 5,000 data points, splitting it into three
sets: 3,500 samples for training, 1000 for validation, and the remaining 500 samples
for testing. We trained the models for 50 epochs, and the learning curves (loss vs.
epoch) for each model are provided in the figures 4.16. Finally, we evaluated the
performance of all models on various steps ahead predictions for different significant
states using the root mean squared error (RMSE) criterion.
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(a) Single-shot learning curve

(b) Encoder-Decoder RNN learning curve

(c) Transformers learning curve

Figure 4.16 Simulation models learning curves
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4.3.3 Prediction performance

After implementing and training the machine learning models, we used them to
make various predictions on the test data. Starting with the short-term prediction
performance, we present their performance on multi-step ahead predictions. Fig-
ures 4.17, 4.18, ??, ?? show the time plots for the desired states, for 1-step ahead
prediction for various models. In 1-step ahead prediction, the baseline model is per-
forming better than ML models. This is mainly because the data is not dynamic
and does not change significantly within 1 minute/sample. As a result, the baseline
model, which predicts the next output to be the same as the previous output, does
not have a large error. However, ML models demonstrate superiority over baseline
models in long-term predictions, and as the prediction horizon increases, the baseline
model’s error also increases significantly, while ML models still maintain accuracy.
In the prediction of kiln hood pressure, the baseline model error RMSE increases
from 0.0168 in 1-step to 0.1243 in 30 steps (650%), while the encoder-decoder RNN
error RMSE increases from 0.0211 in 1-step to 0.0738 in 30 steps (250%). It is also
important to note that model performance can vary from state to state depending
on the data and its characteristics. As an example, the models’ errors in predicting
the kiln hood temperature are much lower than in other states. This is primarily
due to the fact that data on kiln hood temperature is the least noisy data of all the
process states, while it is also changing at a much slower rate than other process
states. It is therefore possible for even the simplest model (baseline model) to have
small errors. To reveal the full potential of sophisticated models like ML models,
suitable dynamic data is necessary [43].
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Figure 4.17 Performance of Machine Learning Models for 1-Step Ahead Predictions
of Kiln Hood Temperature
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Figure 4.18 Performance of Machine Learning Models for 1-Step Ahead Predictions
of Kiln Hood Pressure
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Figure 4.19 Performance of Machine Learning Models for 1-Step Ahead Predictions
of Clinker Final Temperature
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Figure 4.20 Performance of Machine Learning Models for 1-Step Ahead Predictions
of Clinker Production Rate
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The long-term prediction performance of the ML models is analyzed with various
multi-step ahead predictions. Table 4.2 depicts the models’ performance on various
long-term predictions for different process variables. The single-shot RNN model
maintains a similar error level for all multi-step predictions. The performance of
this model, however, is not satisfactory for short-term predictions. Encoder-decoder
models make better predictions than single-shot models because they exploit the
auto-regressive structure in which previous outputs are utilized along with previ-
ous inputs. Nonetheless, it makes more errors as the prediction horizon increases.
Transformers are presenting the best performance among all ML models consider-
ing all process variables and prediction steps although, in some states and steps, it
may fall behind other models. The attention mechanism enables the transformers
to attend to different parts of the sequence. As a result, they can discover the most
affecting features of the previous inputs and outputs for the prediction of future val-
ues. Moreover, the attention mechanism overcomes the vanishing gradient problem
of recurrent neural networks since the attention mechanism does not process the
inputs in sequence. This core element of transformers makes them a better choice
for modeling complex and nonlinear systems.

Table 4.2 ML models performance on multi-steps ahead prediction

Kiln hood pressure
1-step 3-steps 5-steps 10-steps 20-steps 30-steps

Baseline model 0.0168 0.0491 0.0775 0.1205 0.1234 0.1243
Single-shot RNN 0.0699 0.0667 0.0642 0.0662 0.0761 0.0819
Encoder-decoder RNN 0.0139 0.0299 0.0469 0.0853 0.0676 0.0753
Transformers 0.0211 0.0383 0.0501 0.0607 0.0599 0.0738

Kiln hood temperature
1-step 3-steps 5-steps 10-steps 20-steps 30-steps

Baseline model 0.0032 0.0095 0.0153 0.0256 0.0286 0.03
Single-shot RNN 0.0261 0.0263 0.0266 0.0273 0.0248 0.0283
Encoder-decoder RNN 0.0103 0.0113 0.0118 0.0123 0.0144 0.0171
Transformers 0.0152 0.0151 0.0153 0.0151 0.0143 0.0168

Clinker final temperature
1-step 3-steps 5-steps 10-steps 20-steps 30-steps

Baseline model 0.0129 0.0376 0.0596 0.0956 0.1136 0.1266
Single-shot RNN 0.0765 0.074 0.0677 0.0739 0.0948 0.072
Encoder-decoder RNN 0.0392 0.0366 0.0545 0.078 0.0779 0.0733
Transformers 0.0141 0.0355 0.0518 0.0723 0.0679 0.0717

Clinker production rate
1-step 3-steps 5-steps 10-steps 20-steps 30-steps

Baseline model 0.0093 0.0275 0.0438 0.0731 0.0718 0.0861
Single-shot RNN 0.0382 0.0344 0.0311 0.0377 0.0369 0.0415
Encoder-decoder RNN 0.0155 0.0189 0.0307 0.0377 0.0486 0.0559
Transformers 0.0135 0.0258 0.0342 0.0387 0.0317 0.0325
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Kiln hood temperature

Clinker production temperature

Clinker production rate

Figure 4.21 ML Models Multi-steps Ahead Predictions RMSE
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Figure 4.22 Performance of Machine Learning Models for 30-Step Ahead
Predictions of Kiln Hood Temperature
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Figure 4.23 Performance of Machine Learning Models for 30-Step Ahead
Predictions of Kiln Hood Pressure
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Figure 4.24 Performance of Machine Learning Models for 30-Step Ahead
Predictions of Clinker Final Temperature
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Figure 4.25 Performance of Machine Learning Models for 30-Step Ahead
Predictions of Clinker Production Rate
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Based on the above analysis and user needs, various machine learning models can
be utilized for simulating the cement production process. If the user does not have
computational and model complexity limitations, transformers are the most appro-
priate choice, particularly for long-term predictions. However, if the model needs
to be simpler with less computational effort, recurrent neural networks both the
simple RNN and encoder-decoder RNN can be utilized. Nonetheless, in every mod-
eling and simulation task, various models should be implemented, and then based
on their performance on the available data, the most suitable model can be selected
for the intended tasks. All in all, selecting the right model for the intended purpose
requires careful consideration of the task, data, and computing resources.
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5. Discussion

Simulation and control-oriented models both demonstrate satisfactory performance
in predicting the future state of the cement production process. Despite this, the
control-oriented model had difficulty predicting the calciner temperature state. Al-
though it displays satisfactory performance in the short term, it loses accuracy in the
long-term prediction horizon for the calciner temperature state more than in other
states. The reason for this may be related to the quality of the data collected by the
calciner temperature sensor. As a result of the significant noise in its measurement
signal, this state is the most challenging to model. Furthermore, the calciner tem-
perature is strictly controlled and maintained within a set range during plant normal
operation. Consequently, its measurement signals are usually constant and do not
provide sufficient excitation to identify its dynamic behavior and response to inputs.
A comparison of the calciner temperature signal with the kiln hood pressure signal
reveals noise and an absence of information in the signal (Fig 5.1). Another crucial

(a) Calciner temperature time
plot

(b) Calciner temperature power
spectrum

Figure 5.1 Calciner temperature power spectrum and time plot

issue that should be discussed is the residuals of the control-oriented model. Figure
5.2 depicts the autocorrelation of two sample variables in the control-oriented model
which shows that the model’s residuals have significant autocorrelation. Although it
may seem that the model failed to capture the full dynamic of the system, it should
be noticed that the model residual autocorrelation does not imply the failure of the
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model, it is more an indication of some missing in the modeling part. Secondly, we
believe that this residual autocorrelation is mainly due to the filtering effects. In the
case that unfiltered data is used for modeling, the model residual becomes different
with almost no autocorrelation between them.

Figure 5.2 Control-oriented model residuals autocorrelation for 2 sample variables

Figure 5.3 Control-oriented model residuals autocorrelation for 2 sample variables
when the model estimated with unfiltered data

Among ML models in the simulation part, the encoder-decoder RNN and trans-
former outperform the common RNN (single-shot) model. This is mainly due to
the fact that the encoder-decoder RNN and transformer get not only the previous
input but also the previous output. This is particularly beneficial in modeling dy-
namic physical systems as it considers the current or initial state of the system.
Nonetheless, a possible more complex and accurate model could be the encoder-
decoder and transformer models which are fed with multiple previous outputs of the
system. Transformers demonstrate better performance than the encoder-decoder
RNN model in most states in the longer-term predictions. The main reason is the
difference in the structure of these two models. Although encoder-decoder RNN con-
siders previous output unlike single-shot RNN, it still exploits the main sequence
processing structure in the RNNs. This structure in RNNs is prone to vanishing or
exploding gradients, making the encoder-decoder RNN susceptible to this problem.
On the other hand, the transformers exploit the attention mechanism which enables
them to process a sequence of data simultaneously which increases their ability to
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capture long-term dependencies. In this work, the number of prediction steps is
limited to 30 due to computational resource limitations, while a longer prediction
horizon can reveal complex models’ capabilities more clearly. Therefore, future work
should focus on exploring longer prediction horizons, with the hope of uncovering
more complex models. It’s important to emphasize the significance of data quality
in the context of data-driven methods. However, in industrial processes, such as
cement production, obtaining a sufficient amount of high-quality dynamic data is
challenging due to commercial and security constraints. Lastly, it should be noted
that model structure selection and development are inevitably problem-dependent,
so all these ML models can be suitable depending on the data and problem.
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6. Conclusion and Future Work

The cement industry is one of the largest and most polluting industries in the modern
era. Therefore, it is imperative to investigate methods to increase their efficiency
and reduce their environmental impact. This challenge can be addressed through the
use of novel controllers, such as model predictive controllers (MPCs). Nevertheless,
model predictive controllers require predictive dynamic models of the plant. In this
study, we developed two types of models for the cement production process: Control-
oriented models which should be suitable for control design tasks, and simulation
models that can replace the real plant in the controller implementation. In the first
type of model, the emphasis was on keeping the model simple, and appropriate to
the context of the model predictive controller, such as keeping it linear for convex
optimization criteria in MPC. For the simulation models, more sophisticated and
nonlinear models have been considered since they do not have the limitations of
control-oriented models.

In the control-oriented models, in contrast to most of the existing literature, we
considered the internal dynamics of the process by using first principles such as
mass and energy conservation laws. These analyses enabled us to identify the inter-
component relationships in the process. By incorporating these physical insights into
the black-box system identification model, we are able to develop a gray-box model
of the process. The results indicate that demonstrates that integrating physical
understanding by considering internal dynamics and inter-component relations in
the process can increase system models’ prediction performance and generalizability.
The more generalizability capability of the gray-box model makes it suitable for
problems in which it is hard to get enough quality data such as industrial plants.

For the simulation models, machine learning techniques including recurrent neural
networks (RNNs), encoder-decoder RNNs, and transformers were considered. The
models are modified and implemented in a manner that is specific to the intended
problem (the cement production process). ML models are trained on actual data
from the Akcansa cement plant, and then their performance on both short-term and
long-term predictions is evaluated. The results show that all models have accept-

62



able accuracy for both short-term and long-term predictions. Among these models,
transformers are more successful than other models since their ability to capture
long-term dependencies and contexts for learning makes them more effective.

This study focused on developing essential predictive models for model predictive
controllers for cement production. The next step can be to utilize these models to
develop and implement model predictive controllers for the cement production pro-
cess. In this regard, control-oriented models can be used to design the MPC, whereas
simulation models can be utilized to represent the real plant in the controller imple-
mentation phase. After the model predictive controllers have been implemented, it
is possible to examine their effects on the process in terms of decreasing energy and
material consumption as well as environmental pollution.

Due to limitations in computational resources, the ML model dimensions were se-
lected to be small in this study. However, larger ML models, especially in the case
of transformers can be more accurate and reliable. In this study, only one previous
output value was fed into the autoregressive models, which limits their ability to
capture previous states of the system. The performance of these models can be im-
proved when more past output values and inputs are included. Last but not least, a
major research line in the modeling part could be the integration of physical concepts
into machine learning models to develop physics-informed machine learning mod-
els. Current ML models are solely based on data which limits their transparency,
reliability, and generalizability. Physics-informed ML models have the potential to
address these limitations associated with purely data-driven models.
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