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ABSTRACT

INTEGRATED ONCOLOGIST CONSULTATION AND CHEMOTHERAPY
APPOINTMENT SCHEDULING UNDER UNCERTAINTY IN OUTPATIENT

CHEMOTHERAPY CLINICS

EGE DİLAN ÖZYÜKSEL

INDUSTRIAL ENGINEERING MSc. THESIS, JULY 2023

Thesis Supervisor: Prof. Dr. Tonguç ÜNLÜYURT
Thesis Co-Supervisor: Asst. Prof. Serhat GÜL

Keywords: Chemotherapy Scheduling, Oncologist Consultation Appointments,
Care Coordination, Stochastic Programming, Scenario Reduction

The scheduling of chemotherapy treatments in outpatient chemotherapy clinics poses
significant challenges due to limited resources, uncertainty in infusion durations,
and the critical nature of cancer treatment. This study addresses these challenges
through integrating oncologist consultation and chemotherapy scheduling by coor-
dinating oncologist appointment times and chemotherapy treatment start times for
a daily list of patients. A two-stage stochastic mixed-integer programming model
is developed, considering continuous time frames for appointments and stochastic
factors such as infusion times and the status of chemotherapy treatment approval.
The first stage of the model arranges patients in a sequence based on their des-
ignated oncologists, while the second stage assigns patients to chairs and nurses.
The objective function penalizes the expected weighted sum of the closing time of
the chemotherapy clinic and patient waiting times. To reduce problem complexity, a
scenario reduction algorithm is applied to the original scenario set prior to optimiza-
tion. The proposed method, a Wasserstein Distance-Based Local Search Algorithm
(WDB-LSA), is tested using real data obtained from a major academic oncology hos-
pital in Turkey. The algorithm is compared with several practical heuristics from the
literature using a commercial solver. The results demonstrate the effectiveness and
computational efficiency of WDB-LSA in optimizing chemotherapy scheduling in
outpatient clinics, taking into account multiple uncertainties and limitations. The
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impact of varying model parameters was assessed under sensitivity analysis, and
the solution methodology was tested against the mean value solution in order to
estimate the value of the stochastic solution.
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1. INTRODUCTION

Cancer is a disease that might affect a variety of organs caused by uncontrollable
growth and the spread of abnormal cells, which commonly leads to death if
proper treatment is not provided. Unfortunately, the risks of cancer apply to any
age group and are expedited if the individual develops unhealthy habits such as
smoking, alcohol abuse, and poor diet, and exposes themselves to many other
environmental risk factors. According to the American Cancer Society, more than
16.9 million Americans were having a history of invasive cancer on January 1, 2019.
Furthermore, approximately 1.9 million additional cancer cases were foreseen to be
recorded in 2023 with 609,820 anticipated deaths in the United States, implying
around 1,670 deaths per day (ACS, 2023). Cancer is a major public health concern
in Turkey as well. The most recent estimates of the Global Cancer Observatory
(GCO) database are that the age-standardized incidence rate of cancer in Turkey
in 2020 was supposed to be 205.4 cases per 100,000 people.

Due to the avalanche of cancer diagnosis rates, the demand for outpatient
chemotherapy clinics (OCC) from cancer patients is growing drastically (Haghi,
Hashemi Doulabi, Contreras & Bhuiyan, 2022). An OCC is a healthcare institution
where chemotherapy patients can undergo treatment without needing to stay
overnight. While ongoing improvements in cancer treatments reduce death rates,
maintaining and supporting survival is challenging but possible with effective
management of chemotherapy processes in OCCs. Such institutions function with
multiple resources and uncertainties to be coordinated effectively while constituting
the appointment schedules for the chemotherapy patients (Corsini, Costa, Fichera
& Parrinello, 2022; Gul, 2022) .

Since determining the days of treatment and appointment hours in an integrated
manner is a very complicated problem (Benzaid, Lahrichi & Rousseau, 2020),
this task is typically divided into two isolated problems (Cataldo, Sufan, Lorca,
Andresen, Sánchez & Sauré, 2023; Lyon, Cataldo, Angulo, Rey & Sauré, 2023;
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Ramos, Cataldo & Ferrer, 2020). These two main subproblems for chemotherapy
treatment are the planning and scheduling phases. In the Planning phase, an
inter-day scheduling problem is solved to determine the days of treatment to
minimize the delay before the initiation of chemotherapy treatment throughout
the long-term treatment plan. Once the days of treatment over a time horizon are
determined, in the (intra-day) scheduling phase the daily patient sequences are
determined including appointment start times or drug preparation and delivery
times throughout a working day in an OCC. Since the number of patients assigned
to a day is pre-determined, such problems do not have to consider patients’
frequency or arrival rates. An additional division that is often combined with the
scheduling phase is the assignment perspective. The assignment aspect considers
the fairness and capacity issues for limited resources in the clinic by taking care
of optimal resource-patient assignments (Hadid, Elomri, El Mekkawy, Jouini,
Kerbache & Hamad, 2022).

As a patient is diagnosed with cancer, it is a critical matter that the chemotherapy
starts within the maximum allowed delay period so that the treatment serves
the purpose and stress-oriented adverse effects are prevented (Alexander, Blum,
Burbury, Coutsouvelis, Dooley, Fazil, Griffiths, Ismail, Joshi, Love & others, 2017;
Khorana, Tullio, Elson, Pennell, Grobmyer, Kalady, Raymond, Abraham, Klein,
Walsh & others, 2019). This type of delay in chemotherapy treatment is related to
the chemotherapy planning phase of the literature.

Outpatient chemotherapy clinics experience an extensive demand variety resulting
in complex treatment flow schemes that are customized to each patient with
varying needs by cancer types and disease backgrounds. Throughout chemotherapy
treatment pathways, process durations, availability of limited resources, patient
punctuality or unexpected fluctuations in health conditions commonly create an
overwhelming uncertainty in OCCs (Hadid et al., 2022). For the chemotherapy
scheduling phase, patient waiting time is also a crucial factor that affects the
patient’s chemotherapy outcomes.

The daily flow of a patient in an OCC follows a pathway that includes registration,
lab testing, oncologist consultation, drug preparation, premedication, and infusion
(see Figure 1.1). In practice, some OCCs conduct blood tests and vitals measure-
ments on the day before the scheduled treatment day. According to this plan, the
patients are urged to visit the clinic on two consecutive days with potentially more

2



Figure 1.1 Processes and associated resources along a patient pathway in an OCC

distress. Noting this, Liang, Turkcan, Ceyhan & Stuart (2015) cared to arrange
these procedures on the day of treatment in their studies. In a two-day visit
scheme, oncologist consultation, drug preparation, premedication, and infusion
constitute the critical steps of the second visit day. Oncologist consultation may
be a bottleneck process depending on the duration of blood testing and vitals
examination, which are rarely considered in chemotherapy planning and scheduling
studies (Hadid et al., 2022). Patients wait for their chemotherapy treatment during
the drug preparation phase. Premedication and infusion are the two fundamental
consecutive steps of chemotherapy treatment. Patients utilize a nurse and a chair
simultaneously during the premedication phase where they are prepared to prevent
the side effects of chemotherapy drugs. Then, the patient receives the infusion drugs
through a catheter and an IV bag under the surveillance of a nurse (Karakaya,
Gul & Çelik, 2023). After the infusion step, the patient is discharged from the OCC.

No matter how many components a patient pathway is designed to have, the
existence of multiple consecutive processes inevitably results in prolonged patient
waiting times due to bottlenecks and prominent challenges in resource management
(Hadid et al., 2022).

Changing the number of existing resources is not a preferred decision due to
high recruitment costs for management. For that reason, effective management
of healthcare resources in a limited capacity, in the long run, helps to serve more
patients with reduced waiting times. Therefore the service quality and chances
of survival enhance (Haghi et al., 2022). Commonly emphasized resources in a
daily chemotherapy flow can be considered nurses and chairs. While oncologists
and pharmacists are also incorporated occasionally, resources like receptionists, lab
technicians, and drug delivery staff are usually overlooked in the literature. Raw
materials for drug preparation are also considered as resources that are out of the
scope of OCC resource management (Hadid et al., 2022).

The limited availability of nurses and chairs paves the way for the interdependence
of resources (Vidal-Carreras, Garcia-Sabater & Marin-Garcia, 2022). Nurses are an
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essential type of resource that can be simultaneously utilized by multiple patients
for simple tasks such as monitoring multiple infusions. The complication arises
from the fact that each patient utilizes both a nurse and a chair simultaneously
throughout the entire treatment (Gul, 2022). This means that an outpatient
clinic can simultaneously serve several patients even when the number of patients
exceeds the number of available nurses, only if there is a satisfying number of
chairs. However, a single nurse can perform premedications for only one patient
at a time since absolute attention is required through the process (Lyon et al., 2023).

Based on the experience at Sir Charles Gairdner Hospital (a major tertiary academic
hospital in Australia), for patients receiving treatment on the same day, approxi-
mately 20% of pre-arranged chemotherapy and infusion drugs were wasted due to
cancellations or postponement of treatments (Lau, Watson & Hasani, 2014). There-
fore, it is important that drugs are prepared on the day of treatment to prevent a
remarkable amount of labor and drug-waste cost for such institutions. Although it
may increase the waiting time for patients within the day of treatment, this pro-
cedure is widely implemented in many clinics. Fortunately, the advancement in
automated chemotherapy drug preparation devices is expected to make this ap-
proach even more fetching (Hesaraki, Dellaert & de Kok, 2019). These systems are
already adopted in different countries including Denmark, Germany, Italy, Japan,
Spain, Turkey, and the United States (Masini, Nanni, Antaridi, Gallegati, Marri,
Paolucci, Minguzzi & Altini, 2014).

The primary objective of an OCC is often associated with delay minimization. Typ-
ical performance measures consist of delay minimization attached to waiting times,
clinic overtime, or chair idle times. Workload balance and overtime management
for nurses are also key issues that promote employee satisfaction that are mostly
related to cost minimization which is the secondary objective in an OCC. Patient
waiting time is directly related to the satisfaction levels of patients (Gul, 2022). The
total working time of a clinic (makespan) is also an alternative to nursing overtime,
which is a frequently studied criterion in the related literature. The total working
time of a clinic can be calculated as the final discharge time of the last patient on
the daily appointment list. Although makespan minimization does not restrict the
closing time of the care facility, it is helpful to optimize the utilization of resources
(Heshmat, Nakata & Eltawil, 2018).

Other than the need for more than one resource at a time, patient journey and
resource management in outpatient chemotherapy units are burdensome on account
of uncertain parameters as well (Karakaya et al., 2023). Acknowledging treatment
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durations as stochastic parameters renders imitating real-life instances easy. How-
ever, Haghi et al. (2022) remarks that literature still lacks stochastic approaches
toward treatment times.

The importance of developing stochastic models for appointment scheduling is in-
disputable due to legitimate reasons. Assuming an expected value for infusion times
is a venture due to unexpected circumstances. The duration of the chemotherapy
treatment of a patient might take a few minutes on the lower extreme or a few hours
on the upper extreme depending on the specified drug types, dosages, or the method
of treatment. A patient might have to terminate the treatment due to their inability
to tolerate the drugs resulting in an abnormally short infusion time. On the other
end, any kind of complication caused by adverse effects may require additional time
for revisions in medication content (Gul, 2022).

Inherently, the distribution for the infusion durations has a large variance. If a single
point estimation was made for each patient, the dispersion of the data set results in
either overestimated or underestimated values for a large portion of patients. While
overestimating infusion times favors patient waiting times, it might also increase
the total working time of the clinic. Conversely, underestimated infusion times are
likely to prolong patient waiting times while the total working time is potentially
shortened. Therefore, the decision maker should acknowledge the trade-off between
patient waiting times and the total working time (Gul, 2022).

An overlooked source of uncertainty in an OCC is the status of treatment approval
for patients depending on the results of blood tests and the progress in their course
of treatment. Prior to chemotherapy administration, oncologists examine lab re-
ports for the vitals and conditions of patients to decide if they should proceed with
the treatment on the same day. If the lab results signal a potential health hazard
that might arise due to treatment, the infusion must be postponed for about a week
(Hesaraki et al., 2019). Since patient waiting times and the total working time of the
clinic might be affected drastically due to deferrals on the day of treatment, consid-
eration of the treatment approval uncertainty also helps to build reliable schedules.

The presence of uncertainty in both infusion times and treatment approval status
arouses the need for an integrated appointment scheduling of treatment and con-
sultation stages. The integration of both scheduling procedures has the potential
to reduce patient waiting times and the total working time in OCCs. Due to the
doses and types of medication prescribed and the treatment approval decision of
oncologists, the outcomes of the consultation process have a remarkable impact on
the patient flow through an OCC. Therefore, considering the treatment scheduling
independent from the consultation scheduling facilitates the negligence of the in-
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terdependency and leads to a myopic approach to treatment appointment schedule
(Haghi et al., 2022).

This thesis study addresses the optimal patient scheduling and resource assignment
challenges in OCCs with an aim to enhance patient satisfaction by reducing wait-
ing times on treatment days. The patient pathway in this problem includes the
oncologist consultation, drug preparation, premedication, and infusion processes.
The limited resources are nurses and chairs that are seized simultaneously during
premedication and infusion durations. Beyond the effort in patient waiting time
minimization, the total working time of the clinic is also taken as a performance
measure that is in conflict with the patient waiting time. An essential aspect of this
research emphasizes the inherent variability in infusion durations. Furthermore, for
patients who are not considered ready for an infusion treatment on the appointment
day, the uncertain possibility of patient deferral is incorporated into the problem
framework. Thus, the contributions of this thesis work include assessing the value
of considering uncertainty in infusion durations and the status of treatment approval
while integrating the scheduling of daily appointments for oncologist consultation
and chemotherapy infusion processes in an OCC. The first stage of the stochas-
tic TSMIP model determines precedence amongst patients within their oncologist
groups. It sets appointment times, while the second stage assigns patients to a lim-
ited number of nurses and chairs. The uncertainty incorporated in the model is due
to the possibility of treatment cancellations and stochastic infusion durations. The
objective function minimizes the weighted sum of patient waiting times and the total
working time (makespan) of the clinic. Next, a scenario reduction algorithm is im-
plemented to represent the original scenario set by a smaller and more manageable
representative scenario set. The results of our solution methodology are compared
to the optimal value of the original model using a commercial solver. Furthermore,
our approach is compared with several practical scheduling heuristics from the lit-
erature. Moreover, sensitivity analysis on several model parameters is conducted to
generate managerial insights. Finally, the value of the stochastic solution (VSS) is
estimated.

The remainder of this thesis is organized as follows. A review regarding similar mod-
els and solution methodologies is provided from the relevant literature in Section 2.
Next, the stochastic TSMIP model details and assumptions are elaborated in Sec-
tion 3. The scenario reduction approach as our solution methodology is introduced
in Section 4, and computational results are discussed in Section 5. We conclude and
discuss possible extensions of this work in Section 6.

6



2. LITERATURE REVIEW

In this section, we first review the related literature on deterministic chemother-
apy appointment scheduling in Section 2.1. Then, we review the recent results for
stochastic chemotherapy appointment scheduling in Section 2.2, which is the essen-
tial intent of this study. Finally, an extensive review of alternative scenario reduction
methods in the literature is provided in Section 2.3. The comparison table in Fig-
ure 2.1 demonstrates a descriptive summary of various deterministic and stochastic
two-stage models for chemotherapy scheduling problems.

2.1 Deterministic Chemotherapy Appointment Scheduling

Sadki, Xie & Chauvin (2011) concentrate on the two-stage outpatient appointment
scheduling problem with a flow that follows oncologist consultation, drug prepara-
tion, and injection processes. In this work, nurses are not considered as limited
resources, while the limitations are defined on oncologists with no idle time al-
lowance and beds required for the infusion process. Makespan and patient waiting
times are minimized using a Lagrangian relaxation-based heuristic. Turkcan, Zeng &
Lawley (2012) combine this patient scheduling aspect of OCC studies with resource-
patient assignments and treatment planning aspects. In a rolling horizon approach,
treatment delays for patients and clinic overtime are minimized within a two-stage
deterministic frame. Drug preparation and infusion processes are focal points while
acuity level and treatment day tolerance complexities are resolved. Heshmat et al.
(2018) approach the same problem with the intent to reduce the problem size using
clustering algorithms to construct optimal patient groups for the first stage. The
clusters are produced based on patient similarities such as duration of treatment,
cancer type, or acuity levels. The latter stage is an improved extension of the math-
ematical model of Turkcan et al. (2012), in which every nurse is assigned to these
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optimal patient clusters and chairs at optimum time slots while minimizing the total
completion time of all treatments.

Alvarado & Ntaimo (2018) propose a variation on next-day chemotherapy schedul-
ing in which they handle patient-nurse assignments and treatment day identification
within the first stage. The researchers also incorporate nurse acuity levels into their
model to minimize the surplus acuity and maximum allowed acuity level, along with
the nurse overtime and deviation in treatment start time in the second stage. Apart
from the drug infusion scheduling aspect in which the most emphasis is devoted; pa-
tient planning and patient-nurse assignment approaches are also considered simulta-
neously in their three-mean-risk stochastic integer programming model. Throughout
the planning horizon, every day is divided into equal time slots.

2.2 Stochastic Chemotherapy Appointment Scheduling

An instance of two-stage stochastic integer programming models that focuses on the
chemotherapy infusion process in an OCC is studied by Castaing, Cohn, Denton
& Weizer (2016). The problem framework consists of a single nurse and multiple
patients to coordinate next-day patient appointment schedules under stochastic in-
fusion and preparation durations. A weighted sum of patient waiting times and
expected total time spent throughout a day of treatment is minimized in the multi-
objective function. The nurse and chair assignments are taken care of in the second
stage, after the first stage decisions are made. On the other end, Demir, Gul &
Çelik (2021) develop a two-stage functional care delivery model that schedules pa-
tients’ appointments on the same day, under the limited availability of chairs and
nurses with identical skills. Uncertainty in premedication and infusion duration of
patients introduced stochasticity to their model and the patient sequence remains
the same upon arrival at the clinic. The second stage assigns patients to nurses and
chairs using the first stage outputs by penalizing chair idle times, nurse overtime,
and patient waiting time in the clinic throughout the day. To maintain the workload
balance among nurses, Gul (2021) makes subtle structural alterations to the outline
of this same model by ensuring nurse-patient assignments in the first stage of their
stochastic programming model. Corsini et al. (2022) develop an efficient Hybrid
Harmony Search meta-heuristic to reduce the total flow time and patient waiting
time within a similar problem setting with the idle time factor included as well. As a
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Figure 2.1 Literature Review Comparison Table
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distinction from the previously mentioned studies, all the stages of a chemotherapy
process are modeled in a stochastic fashion. Deferrals and consultation times are
incorporated as sources of uncertainty.

Garaix, Rostami & Xie (2020) study the same deferral concept, namely the permis-
sion status for the injection process of patients following the oncologist consultation.
Their model constructs daily global patient sequences as in Demir et al. (2021)’s
work while minimizing the makespan of the clinic. Only bed-patient assignments
and patient waiting times are considered while the oncologist consultation duration
is identical for all patients. Deferral times are obtained from a stochastic distri-
bution with variable deferral probabilities for each scenario. The required number
of time slots with identical lengths for drug preparation and infusion processes are
deterministic parameters.

As the pioneer of studies that integrate consultation and treatment appointment
scheduling, Haghi et al. (2022) present two separate two-stage stochastic pro-
gramming models; one of which employs machine scheduling constraints for re-
source/patient assignments, and the other uses a multi-TSP formulation to mini-
mize overtime and patient waiting times. Non-identical patient types are taken into
consideration, and sample average approximation is used as the solution methodol-
ogy.

Karakaya et al. (2023) penalizes the excess workload of nurses by assigning patients
to nurses in the first stage of their TSMIP model for daily scheduling. Nurses in
this framework are equipped with varying (non-identical) skills while patient acuity
levels are considered as well. Appointment times are determined by assigning
patients to time slots. The expected weighted sum of excess acuity levels, nurse
overtime, and patient waiting time are minimized. Scenario bundles in adequate
sizes are created to obtain near-optimal schedules using a scenario bundle-based
decomposition algorithm. Gul (2022) approaches the same OCC TSMIP patient
scheduling model by introducing flexibility to the nursing care delivery system. The
alternatives for the system are broken down into fully flexible, partially flexible,
and inflexible policies. Even though patients have their primary nurses to whom
they are assigned, they may be paired with any nurse with adequate skills for them.
However, alternative nurses may be paired with a restrained number of patients
with upper and lower limits.
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2.3 Scenario Reduction

The discrete scenario reduction concept is introduced by Dupačová, Gröwe-Kuska
& Römisch (2003) as an alternative approach to approximate a discrete distribution
with a smaller/subset distribution where the components of the sub-distribution
must be selected arbitrarily from the set of components in the initial distribution.
The authors present a discrete scenario reduction approach to diminish the compu-
tational complexity by extracting a subset of scenarios from the main distribution
to compare the discrepancy between those two distributions later.

Sample average approximation (SAA) is one of the most prevalent approaches that
function by generating random samples of scenarios that are equally likely to occur
(Kleywegt, Shapiro & Homem-de Mello, 2002). Then, the sample average function
approximates the expected value function. Despite the asymptotical optimality of
the results and its significance in effectiveness, this approach may hinder the likeli-
hood of obtaining absolute optimality for insufficiently small sample sizes (Zhang,
Wang, Jacquillat & Wang, 2023). As an instance of this concept, Fei, Gülpınar
& Branke (2019) work with an SAA framework and develop a two-stage heuristic
solution methodology to their computational resource allocation model. A Wasser-
stein distance-based screening approach is used to measure the discrepancy between
sampling measures and rank solutions to detect and promote potentially superior
solutions for the simulation. The combination of the optimal computing budget
allocation technique and the Wasserstein screening approach can produce the opti-
mal number of replications for any potential solution and penalizes the selection of
undesired solutions.

As an alternative to probability metrics for distance-oriented approaches, Wasser-
stein distance can be an eligible selection. Based on this idea, Rujeerapaiboon,
Schindler, Kuhn & Wiesemann (2022) ground their scenario reduction discussions
on this metric to approximate an original scenario distribution with a reduced sce-
nario distribution for both discrete and continuous scenario reduction practices.
Incorporating the Wasserstein distance, a prominent Local Search algorithm is used
as a basis for a polynomial-time constant-factor approximation algorithm. Addi-
tionally, an exact mixed-integer programming (MIP) reformulation is developed for
the scenario reduction stage. Within a similar frame, Bertsimas & Mundru (2022)
develop a convex optimization-oriented alternating-minimization algorithm with an
emphasis on the cost structure of the problem. The quality of decisions is also based
on the Wasserstein distance between two discrete distributions. Authors construct

11



their ideas regarding their worst-case error-bound results based partially on Rujeer-
apaiboon et al. (2022)’s work. However, Bertsimas & Mundru (2022) differentiate
their study from theirs by using a novel divergence technique rather than the typical
Euclidean norm-based distance, and their study significantly outperforms the other
most recent scenario-reduction-related methods in the literature. Their algorithm is
influenced by Lloyd (1982)’s k-means clustering algorithm.

Out of the scope of healthcare applications, Abouelrous, Gabor & Zhang (2022)
implement a methodology resembling Bertsimas & Mundru (2022) study for their
two-stage stochastic inventory optimization problem to derive a cost-effective ful-
fillment policy of online and in-store demand. This problem has a sophisticated
nature due to demand uncertainty and the computational complexity of the ful-
fillment procedure. Therefore, to overcome this combinatorial complexity, a novel
proximity measure with their novel technique that combines Good-Turing sampling
and linear programming is used to determine clusters of scenarios that represent
randomly generated instances (Good, 1953). The fact that it does not require a
pre-specified number of scenarios is the primary benefit of this framework and one
of the two major distinctions from Bertsimas & Mundru (2022)’s work. The latter
distinction is that scenarios can be grouped in the same cluster only if the proximity
measure with the centroid of the cluster is less than the given threshold. Otherwise,
if scenarios seem to be distant, the algorithm creates new clusters for them.

As opposed to scenario generation practices focused on distance and probability met-
rics with poor convergence, Prochazka & Wallace (2020) introduce a novel scenario-
tree construction method for scenario generation in the problem-oriented realm. The
heuristic compares and minimizes the incoherence of performances between in-tree
and out-tree problem solutions, having this distance measure embedded in a loss
function. What distinguishes their work from an accustomed version of this imple-
mentation is that a subset of feasible solutions is used rather than having the problem
solved to optimality. Narum, Fairbrother & Wallace (2022) introduce a problem-
oriented approach called singular value decomposition to observe the impact of var-
ious potential decisions on output distributions for stochastic programming. This
is a generalized scenario reduction approach that is suitable even for significantly
challenging distributions in two-stage stochastic models. Usually within the scope
of scenario reduction practices, the number of scenarios required for reliable results
cannot be known beforehand. Therefore, the novelty of Narum et al. (2022)’s ap-
proach is that their method proposes a suitable number of scenarios for any accuracy
level provided. Fairbrother, Turner & Wallace (2022) propose a different extension
to problem-oriented scenario generation approaches by considering problems with
tail-risk measures, where the distribution of the stochastic input parameter has some
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regions that do not have an impact on the cost function. Scenarios that fall into
these regions are considered unnecessary to be included in the reduced scenario sets
while their "aggregation sampling algorithm" that collapses other scenarios outside
of the risk region into a single scenario point. Henrion & Römisch (2022) study the
problem-oriented method in which a semi-infinite optimization problem is solved to
obtain the best approximation of the main distribution by utilizing stability esti-
mates based on problem-specific input. They eventually conclude that the method
does not provide decent tractability since it is a generalized problem.

The scenario-grouping approach is often combined with common decomposition al-
gorithms such as the progressive hedging algorithm (Crainic, Hewitt & Rei (2014),
Escudero, Garín, Pérez & Unzueta (2013), Gade, Hackebeil, Ryan, Watson, Wets &
Woodruff (2016), Jiang, Bai, Wallace, Kendall & Landa-Silva (2021)), Lagrangian
decomposition algorithm (Escudero et al. (2013)) and L-shaped (Oliveira, Sagas-
tizábal & Scheimberg (2011)) algorithm. In one of the most recent studies carried
out by Karakaya et al. (2023), a two-step scenario bundling-based decomposition
algorithm is implemented to create near-optimal schedules for their TSMIP model
that investigates the impact of the flexibility in nurse care delivery system in an
OCC framework. Gul (2022) also pursued the effort for the assessment of the flex-
ibility factor within a similar TSMIP framework. As the solution methodology for
their model, they propose variations of a scenario grouping-based decomposition
(SGBD) algorithm in which each of the four variants has a different procedure to
partition the main scenario set into smaller clusters of scenarios. Progressive-SGBD
groups scenarios according to the proximity of single-scenario subproblem solutions
instead of the proximity among stochastic parameters. Inspired by k-means cluster-
ing, input-based-SGBD determines a reference scenario at each iteration and adds
scenarios to the cluster that are closest or furthest away to the centroid. Random-
SGBD, on the other hand, groups scenarios randomly while the rest of the proce-
dure is the same. Eventually, TSMIP gets to be solved for each scenario group, and
the initial original problem is solved to examine first-stage solutions. Keutchayan,
Ortmann & Rei (2023) also employ a similar approach that clusters scenarios into
plausible-sized groups by replicating a smaller portion of the original problem as a
reduced scenario cluster in a problem-oriented fashion. These smaller clusters are
constructed in such a way that their objective values approximate the objective value
provided by the original set of scenarios. Their approach considers the proximity
between scenarios in terms of their cost function value instead of directly measuring
the proximity between scenarios to find the best subset of scenarios that provides
a decent approximation of the original problem. Despite having both studies used
clustering-originated approaches, it is evident that Keutchayan et al. (2023)’s work
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falls into the scenario reduction category whereas Gul (2022)’s contribution is an in-
stance of scenario grouping-based decomposition algorithms, yielding even stronger
results in terms of computational efficiency, even for problems with larger instance
sizes.

Within the scope of problem-oriented scenario reduction, Zhang et al. (2023) for-
mulate another novel scenario decomposition methodology to overcome limitations
that exist in conventional SAA and distribution-based scenario reduction contexts.
A scenario subset selection model is constructed as an MIP to generate high-quality
solutions by optimizing stochastic recourse function approximations among possible
first-stage solutions. To obtain tighter stochastic lower bounds, a scenario assort-
ment optimization (SAO) is utilized so that smaller-scale stochastic models could be
solved within smaller scenario bundles. As a proprietary contribution of this study,
a column-evaluation and generation approach is proposed to obstruct the complexi-
ties that emerged from the SAO formulation by solving optimization problems with
small confidence in the predictability of objective parameters.
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3. THE CHEMOTHERAPY APPOINTMENT SCHEDULING

PROBLEM

3.1 A TSMIP Model for the Chemotherapy Appointment Scheduling

Problem

This section provides a TSMIP formulation for the integrated chemotherapy and
consultation scheduling problem. This model attempts to coordinate oncologist
consultations and chemotherapy treatments by determining daily patient sequences
and appointment start times under the limited availability of nurses and infusion
chairs. The stochastic nature of the problem stems from uncertainties in infusion
durations and the status of treatment approvals after oncologist consultations. De-
cisions made in this model can be listed in four steps:

– Determining a sequence for a daily patient list
– Setting appointment times for patients
– Patient-chair assignments
– Patient-nurse assignments

In the first stage of the TSMIP, the model ensures that the patients are sequenced
within their designated oncologist groups while the second stage is designed to as-
sign patients to chairs and nurses. The objective function minimizes the weighted
expected total patient waiting time and total working time over a sufficiently large
number of scenarios. Scenario instances are created by sampling from real dis-
tributions of infusion durations and treatment approval probabilities. Our solution
methodology to obtain near-optimal patient schedules ensures improvement in terms
of computational performance. To reduce the problem size, a Wasserstein Distance-
Based Local Search Algorithm (WDB-LSA) is introduced as a distribution-based
discrete scenario reduction technique. Next, the algorithm is tested against the op-
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Figure 3.1 OCC Patient Flow considered in our stochastic TSMIP formulation

timal solution, practically relevant sequencing, and appointment-setting heuristics
to advocate performance.

After the arrival at the OCC, a patient follows the illustrated pathway in Figure 3.1.
Since the blood draw process is completed one day in advance, patients start their
journey with an oncologist consultation without waiting in a queue. Patients are
pre-assigned to existing oncologists before their arrival. This means that patient-
oncologist assignment is not one of the intended efforts of the stochastic TSMIP
model described in section 3.1.1.

Next, the oncologist examines the vitals, the condition of organs, and laboratory
test results associated with the patient’s blood sample to decide whether the
patient is ready for the pre-planned treatment on this particular day. If the patient
is not granted to proceed with the chemotherapy treatment, the patient leaves the
system. Those patients are rescheduled to a future day by the head nurse, but this
task is out of the scope of this study. If the treatment is approved, a prescription is
delivered to the pharmacy for drug preparation. As soon as the custom-made drug
mix is ready, the patient waits for an available chair and nurse. Finally, the patient
seizes both resources at the same time throughout the premedication and infusion
processes. Once the infusion treatment is completed, the patient is discharged from
the OCC.
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3.1.1 The Stochastic TSMIP Formulation

This section elaborates on the stochastic TSMIP model for the chemotherapy ap-
pointment scheduling problem. The assumptions of the model are as follows:

– Patient allocations to different days over a broader period in the realm of
chemotherapy scheduling are already handled, meaning that the study only
tackles identifying the daily sequence and appointment times of patients who
are assigned to the same day for consultation and treatment.

– This study considers the processes and waiting times shown on the patient
flow in Figure 3.1

– Waiting time calculations are assumed to be the total non-value added time.
Therefore, drug preparation time is not included in the waiting time calcula-
tions since it is considered necessary (value-added) waiting time.

– Blood tests are taken care of before the day of appointment for every patient.

– The model does not consider time slots since it is a restrictive approach. In
this model, patients are scheduled at any minute within the day to prevent
excessive idle times.

– Functional care delivery system is assumed to be utilized in the OCC. This
scheme allows the patients to be treated by any nurse available, meaning that
nurses have identical skills.

– A nurse can administer only one premedication at a time.

– While conducting premedication, the same nurse can monitor multiple infu-
sions simultaneously.

– All patients are assumed to be punctual.

– All patients have the same level of acuity/urgency.

– Regardless of the initial appointment sequence of the patients, patients who
are done with the oncologist consultation can move on to the treatment stage,
meaning that the sequence of the patients may change in the chemotherapy
treatment phase depending on their oncologist discharge times.

– Premedication duration is assumed to be deterministic and equal to 15 minutes
for each patient.

– Infusion duration is assumed to be stochastic.
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Table 3.1 Notation used throughout the two-stage SMIP model
Sets

I Set of patients
C Set of chairs
Θ Set of oncologists

IΘθ Set of patients of oncologist θ ∈ Θ, where IΘθ ∈ I
Ω Set of scenarios
N Set of nurses

Parameters
s Premedication duration
λ Trade-off parameters in the objective function in the interval [0,1]

M1,M2,M3 A large value
ki Drug preparation duration for patient i ∈ I
oi Oncologist consultation duration for patient i ∈ I
tω
i Infusion time of patient i ∈ I in scenario ω ∈ Ω

βω
i =

1, if patient i ∈ I proceeds with their treatment after the oncologist consultation in scenario ω ∈ Ω
0, otherwise

First-Stage Decision Variables

bij =

1, if patient i ∈ I precedes patient j ∈ I in the daily oncologist appointment sequence.
0, otherwise

eij =

1, if the oncologist discharge time of patient i ∈ I is earlier than or equal to the oncologist discharge time of patient j ∈ I

0, otherwise
ai Appointment start time of patient i ∈ I

Second-Stage Decision Variables

xω
in =

1, if patient i ∈ I is assigned to nurse n ∈ N in scenario ω ∈ Ω
0, otherwise

yω
ic =

1, if patient i ∈ I is assigned to chair c ∈ C in scenario ω ∈ Ω
0, otherwise

wω
i Waiting time of patient i ∈ I in scenario ω ∈ Ω

dω
i Final discharge time of patient i ∈ I in scenario ω ∈ Ω

fω
i Treatment start time for patient i ∈ I under scenario ω ∈ Ω if the patient’s treatment is approved

µω Total working time in scenario ω ∈ Ω

– Oncologist consultation duration for each patient is deterministic.

– Drug preparation duration is deterministic.

– Status of treatment approval is a binary stochastic parameter.

– There are sufficient number of pharmacists in our model, meaning that phar-
macists are not considered a bottleneck resource. Therefore, the drug prepa-
ration process can be simultaneously carried out for multiple patients.

– Prior to their visits, patients have their own designated oncologists, and pa-
tients are allowed to consult only their oncologists.
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min Q(a,b)(3.1)

bij + bji = 1 ∀i, j ∈ IΘθ, j > i,∀θ ∈ Θ(3.2)

aj ≥ ai +oi −M1(1− bij) ∀i, j ∈ IΘθ, j ̸= i,∀θ ∈ Θ(3.3)

eij + eji = 1 ∀i, j ∈ I,j > i(3.4)

aj +oj ≥ ai +oi −M2(1− eij) ∀i, j ∈ I,j ̸= i(3.5)

bij ∈ {0,1} ∀i, j ∈ IΘθ, j ̸= i,∀θ ∈ Θ(3.6)

eij ∈ {0,1} ∀i, j ∈ I,j ̸= i(3.7)

ai : integer ∀i ∈ I(3.8)

where
Q(a,b) = Eξ[Q(a,b, ξ(ω))]

is the expected recourse function, and is given for each scenario ω ∈ Ω by

Q(a,b, ξ(ω)) = min
{

λ
∑
i∈I

wω
i +(1−λ)µω

}

∑
n∈N

xω
in = 1 ∀i ∈ I(3.9)

∑
c∈C

yω
ic = 1 ∀i ∈ I(3.10)

fω
i = ai +oi +βω

i (ki +wω
i ) ∀i ∈ I(3.11)

dω
i = fω

i +βω
i (s+ tω

i ) ∀i ∈ I(3.12)

fω
j ≥ fω

i + s−M3(5− eij −xω
in −xω

jn −βω
i −βω

j ) ∀i, j ∈ I,j ̸= i,∀n ∈ N(3.13)

fω
j ≥ dω

i −M3(5− eij −yω
ic −yω

jc −βω
i −βω

j ) ∀i, j ∈ I,j ̸= i,∀c ∈ C(3.14)

fω
j ≥ fω

i −M3(3− eij −βω
i −βω

j ) ∀i, j ∈ I,j ̸= i(3.15)

µω ≥ dω
i ∀i ∈ I(3.16)

xω
in ∈ {0,1} ∀i ∈ I,∀n ∈ N(3.17)

yω
ic ∈ {0,1} ∀i ∈ I,∀c ∈ C(3.18)

dω
i ,wω

i ,fω
i ≥ 0 ∀i ∈ I(3.19)
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3.1.2 Explanations for the Stochastic TSMIP Formulation

The first-stage objective function (3.1) contains nothing but the expected second-
stage objective function since none of the variables in the first stage has an immediate
impact on the objective function value. Given the first-stage decisions, the expected
second-stage recourse function minimizes the scenario average of the weighted sum
of patient waiting times and total working time. Here, the parameter λ imposes a
trade-off between the two performance measures in the objective function.

Constraints for the first stage are illustrated by the expressions (3.2) - (3.7). Con-
straints (3.2) provide the order of precedence between patients concerning the on-
cologist groups they are assigned to. For each patient subgroup associated with the
oncologist θ, if patient i ∈ IΘθ precedes patient j ∈ IΘθ, the corresponding bij value
is equal to 1, and 0 otherwise. Constraints (3.3) coordinate the relationship between
the appointment start times and the sequence of patients. Amongst the patients of
the oncologist θ, if patient i ∈ IΘθ precedes patient j ∈ IΘθ, then the appointment
time of patient j should not be earlier than the summation of appointment time of
patient i and their consultation duration since they are consulting the same oncolo-
gist. Since the chemotherapy treatment sequence is determined based on the order
of oncologist discharge times of patients in our TSMIP model, we define a binary
variable eij to represent that order. Constraints (3.4) ensure that either patient i

precedes j in the oncologist discharge time sequence, or vice versa. Considering the
complete list of patients, constraints (3.5) deal with coordinating the relationship
between oncologist discharge times of patients. If eij is 1, it is expected that aj +oj

(the oncologist discharge time of patient j) is greater than or equal to ai + oi (the
oncologist discharge time of patient i). Otherwise, if the oncologist discharge time
of patient i is not earlier than that of patient j (eij = 0), the constraint inher-
ently becomes redundant due to the big M value. Constraints (3.6) - (3.7) indicate
the binary restriction on the first-stage variables bij and eij while constraints (3.8)
represent the integrality restriction on the first-stage variable ai.

In order to obtain the assignment decisions through the second stage formula-
tion, a subproblem must be solved for each scenario representing a different set
of chemotherapy durations and treatment approval statuses. The expressions (3.9)
– (3.19) stand for these second-stage constraints. Constraints (3.9) handle the as-
signment of each patient to an available nurse for every scenario while ensuring that
a patient is assigned to only one nurse. Similarly, constraints (3.10) assign each pa-
tient to only one of the available chairs in every scenario. Since our model considers
the binary state of treatment approval after the oncologist consultation, constraints
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(3.11) rely on this approval status while calculating the treatment start time for
each patient under each scenario. The binary stochastic second-stage parameter
βω

i stands for the state of this approval. As long as patient i ∈ I is approved to
go under treatment in scenario ω ∈ Ω (meaning that βω

i = 1), the treatment start
time of patient i ∈ I equals the summation of their oncologist discharge time, drug
preparation time and waiting time. A similar logic applies to constraints (3.12) in
which the final discharge time of each patient is calculated. Likewise, if βω

i equals
1, the discharge time of patient i ∈ I should be the summation of the premedication
duration, infusion duration, and the treatment start time that was calculated in
constraint (3.11). Under the opposite circumstance in which the beta parameter is
0, patient i ∈ I would be discharged at their potential treatment start time since the
treatment of the patient is not approved. If the oncologist discharge time of patient
i ∈ I is not later than that of patient j ∈ I, and patients i, j ∈ I are assigned to the
same nurse n ∈ N , and both patients are confirmed to go under treatment after the
oncologist consultation, then constraints (3.13) ensure that the treatment time of
patient j ∈ I should not start earlier than the premedication finish time of patient
i ∈ I. Similarly, constraints (3.14) ensure that if the oncologist discharge time of
patient i ∈ I is not later than that of patient j ∈ I, and patient i, j ∈ I are assigned
to the same chair c ∈ C, and both patients are confirmed to go under treatment after
the oncologist consultation, then the treatment start time of patient j ∈ I should
not be earlier than the final discharge time of patient i ∈ I. Constraints (3.15) is for-
mulated to determine the treatment start times according to the order of oncologist
discharge times of patients. The constraints secure that the treatment start time of
patient i ∈ I is earlier than or equal to that of patient j ∈ I as long as the oncologist
discharge time of patient i ∈ I is earlier than or equal to that of patient j ∈ I when
both patients are confirmed to go under chemotherapy treatment. For constraints
(3.13), (3.14) and (3.15), failure to sustain any of the binary requirements inside the
parentheses leads to redundancy due to the existence of big M values. Constraints
(3.16) guarantee that the daily total working time in the OCC is later than or equal
to the final discharge time of the last patient in the treatment sequence. Constraints
(3.17)-(3.18) are binary restrictions over the assignment variables xω

in and yω
ic, and

(3.19) ensure non-negativity for the rest of the second-stage variables.

Patient assignments to nurses and chairs are handled in the second stage after the
sequencing and appointment time decisions are obtained since the opposite approach
might be too restrictive for the appointment times and result in inefficient sched-
ules. In cases of real-life applications, patient-to-resource assignment decisions are
likely to be made dynamically right as patients arrive prior to the full realization of
the uncertainty on the infusion durations (Demir et al., 2021). In the corresponding

21



multi-stage stochastic programming (SP) model, the decision stages would represent
the time points at which the nurses and chairs become available. However, a par-
ticular nurse and chair assignment policy that we impose in our model renders the
formulation of a multi-stage SP model unnecessary. In particular, we enforce a my-
opic resource assignment policy through constraints (3.15). The policy ensures that
the assignment of patients to an available chair and nurse, and hence the treatment
start times of patients only depend on the order of oncologist discharge times, which
is determined through the values of first-stage variables. In other words, among the
patients waiting in the OCC, an available nurse and chair are assigned to the pa-
tient who is done with their oncologist consultation at the earliest time. Therefore,
realizations of uncertain infusion durations of the patients who are not treated yet
are irrelevant when patient-to-chair-nurse assignment decisions are made. This im-
plies that the patient-to-resource assignment decisions can be made independently
for each scenario by only considering the values of eij variables. Consequently, our
TSMIP model would provide the same solution as the multi-stage SP formulation
of our problem.

According to a likely inaccurate inference to be made from the model at first glance,
infusion times seem to be revealed before patient-resource assignments. However,
the uncertain infusion times are in fact realized randomly after the assignment is
completed, which is in line with practice and the discrete event simulation concept.
It is essential to note that this simple assumption is realistic and applicable in real
life since a head nurse cannot optimize the treatment sequence instantaneously at
each time the resources become available by taking uncertain infusion durations into
account.

To provide an example patient flow through the oncologist clinic and OCC, we
provide an instance of a realization of a schedule for a case having 2 oncologists, 6
patients, 3 chairs, and 2 nurses. The Gantt chart 3.2 for our TSMIP model, reveals
the patient appointment sequence for oncologist consultation as P3 = P4 < P5 < P2

< P6 < P1. Unlike the case in Garaix et al. (2020), since there is no globally fixed
sequence assumption in our model, it is clearly visible that the patient sequences
change after the consultation as P4 < P5 < P2 < P1 < P6. The chart also shows
that the sequence of patients from different oncologist groups is independent of each
other.

In this particular scenario presented in Figure 3.2, the only type of waiting time
under consideration is between the end of drug preparation and the beginning of
premedication. The chart depicts the premedication process (PM) (15 minutes) and
the infusion process for each patient Pi along the same bar without an interruption,
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Figure 3.2 Gantt Chart for the OCC Patient Flow with a 2 oncologist, 6 patient,
3 chair, 2 nurse setup for a1 = 97, a2 = 39, a3 = 0, a4 = 0, a5 = 26, a6 = 62 (in
minutes).

since patients seize both a chair and a nurse simultaneously throughout the two
processes. The drug preparation process is not shown here since there are a sufficient
amount of pharmacists in the OCC. Therefore, drug preparation can be carried out
simultaneously for all patients if required. It was stated that nurses might be used
by several patients simultaneously under convenient circumstances. As can be seen
in Figure 3.2, a particular nurse can start administering premedication drugs to
another patient only after the premedication of the previously assigned patient is
completed. It can also be seen that Nurse 1 can start the premedication of Patient
2 while still monitoring Patient 5. Then, nurse 1 starts administering premedication
for Patient 1 while monitoring Patient 2, and simultaneously monitors both until
discharge.

The Gantt chart shown in 3.2 reveals that the oncologist discharge time of Patient
6 is at time 117, and the treatment starts for the same patient at time 186. This
results in a 69-minute time gap in between for Patient 6, which also comprises the
13-minute drug preparation process. Therefore, since drug preparation is considered
a value-added process, the actual waiting time for Patient 6 can be reported as 56
minutes. Similarly, Patient 1 leaves the oncologist consultation at time 123 and the
treatment for this patient begins at time 144, leading to a 21-minute waiting time.
However, since the drug preparation for Patient 1 is 15 minutes, the actual waiting
time for this patient can be reported as 6 minutes. Therefore, the total waiting
time in this particular scenario realization is recorded as 62 minutes. Meanwhile,
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the total working time (makespan) in the OCC is realized as 318 minutes, which
corresponds to Patient 6’s treatment completion time.

3.1.3 Big M Calculations

Selection of a sufficiently large value for big M parameters is a delicate matter. The
big M parameter should be as small as possible to remain conservative. A small
enough big M value restricts the feasible solution so much so that the computational
complexity can be reduced. Nevertheless, parameters M1, M2, and M3 are required
to be large enough since it is desired to help violate constraints they are used in, if
desired requirements for those specific constraints to be valid are not satisfied. A
large enough parameter ensures that the feasible region is not cut down further than
necessary, which may result in eliminating a part of the feasible region that might
have a potentially optimal solution. In other words, approximating the original
optimal value of the problem is not ensured if big M is set to a too-small value.
On the other hand, too-large M values may decrease both the precision and the
numerical stability of the solution (Cococcioni & Fiaschi, 2021).

In order to obtain the most conservative big M calculations for our constraints in the
stochastic TSMIP model, we assume a single chair, single oncologist system. Nurses
are not included as a resource in calculations and all βω

i parameters are assumed to
be 1. We use the maximum values of each duration parameter. Chairs are bottleneck
resources since they are utilized during both premedication and infusion, which is
the longest process in the clinic.

Constraints (3.3) concern the appointment start times of patients in a sequence.
The maximum infusion duration for a patient is known to be 217 minutes relying on
the data collected. We do not consider drug preparation duration in the calculation
since this process does not utilize a physical resource. Premedication duration is
deterministic and constant for each patient and equal to 15 minutes. Big M must be
equal to the appointment start time of the last patient and we assume there are 9
patients assigned to a single day in all our experiments. In the worst-case situation,
a patient would occupy a chair as long as the summation of premedication and
infusion durations, which is 15 + 217 = 232 minutes per patient. We can accept
this duration as the upper bound on the time when the next patient on the list
can start their appointment. The reason for this logic is that, since the chair is
the bottleneck resource, no matter how long the waiting, drug preparation, and
oncologist consultation times are, patients will be ready to occupy the chair after
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the previously assigned patient leaves the chair. 8 x 232 will give us the latest
appointment of the first 8 patients, which is also the appointment start time of
patient 9, the last patient assigned on the same day. Hence, the big M value for
constraints (3.3) is calculated as M1 = 1856.

Constraints (3.5) concern the relation between oncologist discharge times of patients
based on their sequencing. The maximum oncologist consultation duration possible
is 30 minutes for a single patient. Since we have already calculated the latest ap-
pointment time of the 8th patient as 1856, the maximum oncologist discharge time
for the last patient is going to be 1856 + 30 = 1886. Hence, the big M value for
constraint (3.5) is set as M2 = 1886.

Constraints (3.13), (3.14), and (3.15) are related to treatment start and final dis-
charge times of patients. The only parameter excluded from the previous big M
calculations is the drug preparation duration with a maximum value of 35 for a
patient. Adding this value to the maximum oncologist discharge time of the last
patient results in the treatment start time of the last patient in the system. There-
fore, the common big M value calculated for constraints (3.13), (3.14), and (3.15) is
M3 = 1921.
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4. SOLUTION METHODOLOGY

Future uncertainty is formulated and introduced in TSMIP models as stochastic
second-stage constraints to obtain strategic decisions in the first stage of the problem
(Bertsimas & Mundru, 2022). Thus, expected cost calculations in such stochastic
models are often a numerically non-practical matter since a large number of scenarios
is required to realistically simulate the long-run performance of any system under
future uncertainty. Additionally, the inclusion of numerous parameters and variables
is a hindrance to computational complexity. This reveals the need for a smaller
subset of scenarios to represent the entire scenario set. In this study, it is not
possible to solve the TSMIP model to optimality for a sufficient number of scenarios
in a reasonable amount of time due to the computational burden. Therefore, we
implement a scenario reduction methodology to solve our large instance problem
by combining a distance measure called the Wasserstein metric and a typical Local
Search Algorithm for k-medians clustering from the literature.

Section 4.1 details the goals and branching concepts in the scenario reduction ap-
proach from other studies. Section 4.2 provides the structure of the aggregation of
the Wasserstein distance metric and the Local Search Algorithm (WDB-LSA) as the
solution methodology.

4.1 Scenario Reduction

The scenario reduction realm of the literature, pioneered by Dupačová et al. (2003),
is a fundamental step for solving stochastic programs for many reasons, one of which
being the fact that the size of the scenario space has an impact on the instance size
of a problem. One other goal of scenario reduction is to determine the scenarios
and their probabilities that produce the tightest bounds possible while the gap is
approximately zero (Keutchayan et al., 2023) and produce optimal or near-optimal
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decisions with a reduced scenario space to increase tractability and interpretability
of continuous distributions by discretizing them, or by reducing the size of an already
discrete distribution (Narum et al., 2022).

Stochastic programming models are commonly solved by approximating the under-
lying probability distribution P by a discrete probability distribution R with fewer
number of scenarios, where each scenario appears with a certain probability. This
reduced distribution R must resemble the original distribution P so much so that
the solution of stochastic mathematical models does not deviate significantly. Ap-
proximating a distribution by another distribution often means that a distance cal-
culation between two distributions is required. Although the numerical calculation
of such a distance is not always straightforward, obtaining estimates of Dl(P⋉,R⋗)
by other distances of simpler distributions is possible. Laying this knowledge as the
groundwork, optimal scenario reduction can be described as the determination of the
best approximation of P by distribution R, according to the distance of probability
measures Römisch (2009).

The discrete scenario reduction concept is introduced by Dupačová et al. (2003) as
an alternative approach to approximate a discrete distribution with another dis-
crete distribution where the components of the sub-distribution must be selected
arbitrarily from the set of components in the initial distribution. Dupačová et al.
(2003) present a discrete scenario reduction approach to diminish the computational
complexity by extracting a subset of scenarios from the main distribution to com-
pare the discrepancy between those two distributions. While forming a reduced
scenario set under discrete scenario reduction, any scenario to be selected from the
initial distribution must be exactly one of the existing scenario points. This restric-
tion is relaxed in continuous scenario reduction, meaning that new scenarios can
be selected without being limited to only discrete points in the initial distribution,
yielding more flexible and superior approximations. This also means that the sce-
narios derived from the initial distribution are mostly unforeseeable, especially for a
distribution with non-convex or multi-partite support. Therefore, the discrete sce-
nario reduction occupies a remarkable place in literature for stochastic programming
(Rujeerapaiboon et al., 2022). Continuous scenario reduction might also be referred
to as scenario generation in related literature (Löhndorf, 2016).

Discrete scenario reduction can be formulated as below, where n is the cardinality
of P and m is the cardinality of R.

DW (Pn,m) = minR

{
DW (Pn,R) : R ∈ P ({ξ1 . . . ξn},m)

}
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For such computationally challenging scenario reduction methods, two main ap-
proaches can be classified as distribution-oriented and problem-oriented. While
distribution-oriented methods make use of probabilistic distance measures, the solu-
tion to the original problem itself can be observed as a metric for problem-oriented
methods. The problem-oriented scenario reduction method holistically treats the
problem by comparing the ultimate cost function and parameters of the problem for
different scenarios and works with scenario-based output data instead of input data
of a probability distribution. This may mean that problems with the same funda-
mental distribution and different objective function values are not formulated using
the same set of scenarios (Keutchayan et al., 2023; Narum et al., 2022). Keutchayan
et al. (2023) suggest that the problem-oriented method is more useful and powerful
for problems with larger distribution sizes and thus higher complexity, to obtain
tractable and stable results. However, Keutchayan et al. (2023) also argues that
problem-oriented approaches are not as common as distribution-oriented approaches
since their results are not practical enough to systematically generate scenarios for
problems. Furthermore, the distribution-oriented methods are compatible with a
vast variety of algorithms such as Monte Carlo sampling or clustering algorithms.
Other than its simplicity, our study also steers towards distribution-oriented meth-
ods taking their practicality into account.

Since this study adopts a distribution-oriented approach, only the distribution
for the scenario space is considered and the cost function and constraints are
neglected while generating the best reduced discrete distribution R. Distribution-
oriented methods often make use of probabilistic proximity measures such as
Wasserstein (Bertsimas & Mundru, 2022; Ketkov, 2023; Pflug & Pichler, 2015;
Rujeerapaiboon et al., 2022) Lévy–Prokhorov or Hellinger (Vidyashankar & Xu,
2015) distance metrics. Our solution method adopts the Wasserstein metric for
the distribution-oriented discrete scenario reduction concept. This methodology
approximates the initial distribution P by another distribution R in a reduced
size. Each scenario point in P has a constant realization probability pi, where
i ∈ 1, . . . ,n and n > 0. This approach intends to produce a proximate discrete
distribution R that contains scenarios with constant realization probabilities qj ,
where j ∈ 1, . . . ,m and n > m > 0. As the proximity between P and R increases,
it is expected that the solutions associated with those scenario sets get closer to
each other in terms of quality. The trade-off, in this case, is that the computational
burden significantly diminishes as the n-point distribution P is replaced with the
new m-point distribution R.
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4.2 Wasserstein Distance Based Local Search Algorithm (WDB-LSA)

The remainder of this section provides the Wasserstein Distance formulation in
Section 4.1, and the Local Search Algorithm in Section 4.2.2.

4.2.1 A Proximity Measure Between Distributions: Wasserstein Distance

– P : A discrete probability distribution with scenario points
{

ξ1, . . . ,ξn

}

– R : A reduced discrete probability distribution with scenario points{
ζ1, . . . ,ζm

}

– pi : Probability of scenario ξi, where i ∈ {1, . . . ,n} and pi ∈ [0,1]

– qj : Probability of scenario ζj , where j ∈ {1, . . . ,m} and qj ∈ [0,1]

– πij : The amount of probability transferred from scenario ξi to scenario ζj ,
where ∑n

i=1
∑m

j=1 πij = ∑n
i=1 pi = ∑m

j=1 qj = 1

Dl(P,R) =
min

{
n∑

i=1

m∑
j=1

πij∥ξi − ζj∥l :
m∑

j=1
πij = pi,∀i = {1, . . . ,n}

(4.1)

n∑
i=1

πij = qj ,∀j = {1, . . . ,m}, πij ≥ 0
}

The joint probability distribution for Wasserstein distance (Rujeerapaiboon et al.,
2022) can be modeled and optimized as a transportation problem that aims to
transfer probabilities from an n-point origin P to an m-point destination R with the
minimum transportation cost possible. The unit transportation cost between two
scenarios of different distributions can be calculated as ∥ξi − ζj∥l.

The expression (4.1) minimizes the Wasserstein difference between two distributions
where ∥ξi − ζj∥l represents the l-norm of scenario ζi ∈ R and scenario ξi ∈ P\R. In
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this study, we consider the l2-norm for the distance vector, and we assume that the
realization probabilities of all scenarios are equal.

4.2.2 Local Search Algorithm

Both Rujeerapaiboon et al. (2022) and Bertsimas & Mundru (2022) have previ-
ously modified Arya, Garg, Khandekar, Meyerson, Munagala & Pandit (2001)’s lo-
cal search algorithm for k-median clustering. The authors of both studies performed
and discussed several computational experiments on various branches of scenario re-
duction approaches. The structure of the same algorithm is tailored to this study’s
requirements and the Wasserstein metric is considered for distance calculations.

For the initialization step of WDB-LSA, an initial reduced scenario set, R, is defined
with size m, where m < n. Besides, the initial reduced scenario set is marked as the
best reduced set, R′. Next, using the distance matrix, the algorithm calculates the
Wasserstein distance between R and P. The distance matrix is built to store the
Euclidean distance values between every ξi ∈ P and ζj ∈ R pair in a two-dimensional
array.

Subsequently, the algorithm creates a candidate reduced scenario set by selecting a
scenario ζj ∈ R and swapping that with a scenario ξi ∈ P\R. Then, the Wasserstein
distance between the candidate reduced set and P is calculated and compared to the
distance between R and P. If the candidate reduced set results in a smaller distance
value from P, then the best reduced set is updated as the candidate reduced set.
Otherwise, the best reduced set remains the same. The algorithm checks all possible
candidate reduced sets by swapping ζj ∈ R with all ξi ∈ P\R. When a new swap is
not possible, the algorithm chooses a new scenario, ζk, from R instead of ζj . Next,
similar swap operations are conducted by replacing ζk with all possible scenarios in
P \R to generate candidate reduced scenario sets. The algorithm terminates after
all such candidate reduced scenario sets are checked, and the one with the smallest
distance from P becomes the final reduced scenario set (i.e., best reduced set, R′)
representing the original scenario set.

The initial true probability distribution dominates the uncertain problem parame-
ters. Therefore, when comparing the distance between scenarios (approximating the
true distribution), the values to be compared are stochastic model parameters since
they vary in each scenario. In our TSMIP model, the diversity and uncertainty are
mainly originated from infusion duration parameter tω

i . However, our model also
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consists of a binary variable βω
i for the status of treatment approval of each patient

in each scenario. Since the revealed binary value of β determines whether a patient
receives treatment or not, it also determines if the corresponding infusion duration
is in the picture. Therefore, these two essential parameter arrays are multiplied
with each other to form a new consolidated parameter for distance calculations.
The resulting parameter inherently contains either the value 0 for patients without
treatment approval or contains the corresponding infusion durations for patients
with approval in each scenario.

Algorithm 1 Local Search Algorithm

1.1 Initialize: R = {1, . . . ,m}
1.2 δw = Wasserstein distance between P and R.
1.3 δbestfit = δw

1.4 if γ ∈ R and κ /∈ R then
1.5 δcandidate = min

γ∈R,κ∈P\R
Wasserstein distance between P and R ∪{κ}\{γ}

1.6 γ,κ = arg min
γ∈R,κ∈P\R

Wasserstein distance between P and R ∪{κ}\{γ}

1.7 if δcandidate < δbestfit then
1.8 δbestfit = δcandidate

1.9 update R′ = R∪{κ}\{γ}
1.10 end if
1.11 end if
1.12 Repeat until no further improvement on best-fit

This algorithm may outline that the discrete scenario reduction problem accom-
panied by the Wasserstein metric the same as the k-median clustering problem
(Rujeerapaiboon et al., 2022).

While exchanging single scenarios across sets, R and P\R, we search for the swap
that results in the best improvement in terms of distance from the original scenario
set P. This search strategy is called as the the best-fit strategy. An alternative
strategy, first-fit, stops swapping scenarios right after an improvement in distance
value is obtained. Even though the latter strategy would be inferior to former
strategy in terms of approximating the original scenario set, it is obviously associated
with lower computational time.
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5. COMPUTATIONAL EXPERIMENTS

This section outlines the course of computational experiments and provides infer-
ences of the comparisons for the integrated oncologist and chemotherapy scheduling
problem.

The experiments are performed on a problem instance set that comprises 10 problem
instances that are generated by sampling infusion durations in our data set gathered
from the OCC at Hacettepe University Oncology Hospital between November 2017
and March 2018.

In the following set of experiments, models, and algorithms are coded and run in
C++ using Microsoft Visual Studio 2022 along with CPLEX Studio IDE 20.1.0.
The computations are performed with Intel Core i7- 1165G7 CPU @2.80 GHz and
16GB RAM.

The descriptive statistics regarding the data set and the problem instance generation
method are explained in Section 5.1. WDB-LSA performance is evaluated in Section
5.2. Section 5.3 demonstrates the results of sensitivity analysis on various model
parameters, and managerial insights are presented according to inferences. Finally,
the value of a stochastic solution (VSS) is estimated in Section 5.4.

5.1 Data Description and Instance Generation

Our data set, which is detailed in Demir et al. (2021), comprises the estimated
treatment durations along with the actual treatment durations of 204 patients. The
data of these patients are collected over 11 different days. Infusion durations vary
between 16 and 217 minutes; the average is 112.5 minutes while the 95% CI for
infusion durations is [104.56, 120.35] minutes.
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Table 5.1 Infusion duration intervals (in minutes) and their frequencies in the data
set

Class Predicted Interval Realization Probability True Interval for Infusion
1 (20, 45] 26.96% [16, 44]
2 (45, 100] 7.85% [29, 80]
3 (100, 150] 33.33% [74, 132]
4 (150, 240] 31.86% [125, 217]

For problem instance generation, β (treatment approval status) and infusion dura-
tion parameters are considered components. Both the status of treatment approval
and infusion duration samples are uniquely varied for all instances in an instance set.
Infusion durations are sampled from the data set of Hacettepe Oncology Hospital.
While generating treatment approval status parameters, we benefit from the values
reported in Garaix et al. (2020) and our own observations. Garaix et al. (2020)
argue that a deferral probability ≤ 0.2 sounds realistic and plausible based on the
setting they study. However, we choose a slightly larger value (0.25) than the limit
they suggest for deferral probability to be less conservative. Therefore, 75% percent
of patients are assumed to be approved to undergo their chemotherapy treatments
following their oncologist consultations, while the remaining 25% are assumed to
have their treatments disapproved (i.e. deferred).

Patients are grouped into classes based on the feedback from the head nurse and
predicted infusion durations. Table 5.1 displays the realized infusion duration in-
terval for classes along with the probability of observing patients from each class.
Note that the sampling of binary beta parameters is independent of patient classes.

The initial step while generating instances is to determine each patient’s class by
drawing a random number between 0 and 1 and using the associated class prob-
abilities in Table 5.1. In each instance, the number of patients in each group is
the same and the patient categories do not change. In the latter step for deriving
infusion durations for each patient, a value is sampled from the actual data set for
the corresponding patient class. A different infusion duration is generated while
also considering patient classes for each patient in each scenario. This procedure
is repeated for every single patient in each problem instance. Likewise, the binary
β parameter is simulated for each patient in each instance by drawing a random
number between 0 and 1. If the random number drawn is smaller than the defer-
ral probability (0.25), the β value in the sample data set is realized as 0 for the
corresponding patient, and 1 otherwise.

Besides the stochastic input parameters, deterministic drug preparation durations
are randomly generated between [13, 35] in minutes; deterministic oncologist consul-
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tation durations are randomly generated between [15, 30] in minutes for each patient,
but remaining constant across different scenarios. The data ranges are determined
based on our observations in Hacettepe University Oncology Hospital. Premedi-
cation durations are constant at 15 minutes for all patients and across scenarios
(Karakaya et al., 2023).

Since the assignment of patients to oncologists is not a decision made by the TSMIP
problem, the pre-assignment of patients to oncologists is handled according to pa-
tient indices on the daily list prior to sequencing. Explicitly, the number of patients
is divided by the number of available oncologists in the clinic, and patients are
evenly distributed among oncologists. If the numbers are indivisible, the last on-
cologist gets fewer patients to preserve the integrality. For instance, if there are 8
patients and 2 oncologists, both oncologists would be assigned to 4 patients each.
If the number of patients is 9 for 2 oncologists, the first oncologist is assigned to 5
patients while the other is assigned to 4.

5.2 Assessment of WDB-LSA Performance

In the remainder of this section, results of the performance assessment of WDB-
LSA methodology against the optimal solutions of the original TSMIP model are
discussed in Section 5.2.1. Next, Section 5.2.2 compares WDB-LSA to the well-
known sequencing and job hedging heuristics from the relevant literature.

5.2.1 Comparison with the Optimal Solutions

This section intends to verify that the WDB-LSA provides solutions close to the
optimal solutions for several instances generated for experimentation purposes. In
this section, a computational time-wise comparison is intended while ensuring that
the optimality gap is as small as possible, proving that the solution methodology
provides an improvement in computational time without deteriorating the optimal
value significantly.

For a credible comparison, it is ensured that the TSMIP model is solved to optimality
by CPLEX before exceeding a reasonable time limit that is set as 3 hours in this
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study. The parameter settings are set as 9 patients, 2 nurses, 4 chairs, and 3
oncologists. In the objective function, the weight of the cost for patient waiting
time λ is set as 0.3. We set the number of scenarios as 35 in these experiments,
because CPLEX requires more than 3 hours to find optimal solutions for larger
scenario size instances. The objective, average makespan, and waiting time values
are recorded as well as the computational time for each instance.

The value of |R| which stands for the length of the reduced set for the WDB-
LSA was determined by comparing the computational efficiency associated with
various values. Considering a too-small size for the reduced set would mean that
the entire scenario set is approximated by only a small number of scenarios despite
computational gains. On the contrary, having the |R| value as close to the size of
the original set of scenarios as possible would produce more realistic and powerfully
representative reduced sets. However, this approach is in contradiction with the
essential goal of scenario reduction. Therefore, this trade-off is investigated by
testing the model time with different |R| values, and a sufficiently large value for
the reduced set size is decided as |R| = 10.

CPLEX spends 1479 seconds, on average, to find the optimal solutions across 10 in-
stances. The WDB-LSA spends only 306 seconds, on average, to provide a solution.
Whereas, Table 5.2 shows that the average optimality gap associated with WDB-
LSA solutions is 3%. The largest gap between TSMIP and WDB-LSA is detected as
6% while there is also an instance with 0% gap, indicating that it is possible to ob-
tain the optimal solution in some instances using the WDB-LSA methodology. This
implies that since the average computational time for CPLEX is 79% worse than
that for WDB-LSA, a satisfactory near-optimal solution can be obtained within a
significantly shorter time.

5.2.2 Comparison with Scheduling Heuristics

We compare the solutions found by WDB-LSA against those found by practically rel-
evant scheduling heuristics from the literature. The heuristics are the combinations
of well-known sequencing heuristics with appointment start time setting heuristics
that can be easily used in practice by the head nurse. Four basic sequencing heuris-
tics taken into consideration are shortest (increasing) mean infusion duration (SPT),
longest (decreasing) mean infusion duration (LPT), increasing variance of infusion
duration (VAR), and increasing coefficient of variance of infusion duration (CoV).
While sequencing patients, we do not consider premedication or consultation dura-
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Table 5.2 CPLEX optimal solution and WDB-LSA comparison in terms of objective
value and model time (in seconds)

CPLEX WDB-LSA
Instance # Objective Time Objective Time Gap%

1 238.0 609.8 253.1 336.0 5.9%
2 261.6 751.2 261.7 214.2 0.0%
3 266.9 821.2 276.6 122.7 3.5%
4 267.4 165.8 275.5 253.7 2.9%
5 276.2 1665.6 284.8 631.7 3.0%
6 273.1 4716.3 287.3 290.1 4.9%
7 263.0 126.7 268.6 566.6 2.1%
8 246.6 2712.5 251.2 404.3 1.8%
9 255.8 159.0 264.1 37.3 3.1%

10 252.2 3063.3 259.5 203.5 2.8%
Average 260.1 1479.1 268.2 306.0 3.0%

tions, because mean or variance of these durations do not change from one patient to
another. After sequencing patients based on their infusion times, estimated patient
appointment times are calculated using a job hedging heuristic.

It is demonstrated in our TSMIP model formulation that the binary first stage
decision variable bij depicts the precedence relationship between patients i ∈ I and
j ∈ I while the first stage decision variable ai stands for the appointment time
for patient i ∈ I. Note that eij is also a first-stage binary decision variable whose
value is dependent directly on ai and indirectly on bij . Since the derivation of eij

values would be fairly burdensome for the head nurse, the job hedging heuristic
does not tackle determining eij values. This task is rather handed over to the two
of the original first stage constraints (3.4)-(3.5) that contain the eij variables. As
a result, we determine the values of bij and ai using the heuristics, and then solve
the remaining part of the TSMIP model (i.e., we exclude constraints which include
only these fixed variables).

5.2.2.1 Implementation of Heuristics

Based on the classes to which certain patients belong, the mean infusion durations
within those particular classes (using the original infusion duration data) are cal-
culated. Similarly, variance and coefficient of variation values of original infusion
durations are calculated for each patient’s class and are assigned to patients of those
classes. Eventually, patients could be sorted based on which class they belong to,
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Table 5.3 Average gap percentages of various sequencing rules from the WDB-LSA
solutions under different job hedging levels

Job Hedging Level LPT&CoV Gap% SPT Gap% VAR Gap%
40% 25.6 24.4 23.4
45% 26.4 25.3 23.6
50% 27.1 26.0 24.4
55% 27.7 26.5 25.1
60% 28.1 26.8 25.5
65% 29.3 28.2 26.7
70% 30.4 29.0 27.9
75% 30.9 29.6 28.5
80% 32.0 30.2 29.6

Average 28.6 27.4 26.1

which oncologist they are assigned to, and which sequencing heuristic is under con-
sideration. It is of great importance to note that throughout the sequencing process,
it is ensured that patients are sequenced within their oncologist groups so that we
could make an eligible comparison to WDB-LSA.

After sorting the patient indices and determining bij values with the assistance of
scheduling heuristics, we notice that the LPT rule and the CoV rule resulted in the
same sequence of patients. Therefore, the following steps of the algorithm has the
same results for both cases in which LPT and CoV are considered as sequencing
rules. In order to apply job hedging to obtain the appointment start times of
patients, different percentile values of the treatment durations are calculated in
each patient class. Next, we estimate the treatment duration as the summation of
infusion duration and the constant premedication duration (15 min) for each patient.
Then, to calculate the appointment time of a patient, we add the treatment time
of the preceding patient of the same oncologist to the appointment time of the
preceding patient. However, appointment times for patients that precede all others
in their oncologist group are set as 0. For each patient class, percentile values are
varied between 40% and 80% in increments of 5% to allow and assess a wider range
of values coming from the original distribution.

For the experiments, runs are performed with Algorithm 2 for 100 scenarios. While
appointment times (ai) between the 40th and 80th percentiles are set as parameters,
the increase in percentile values results in increased total working time (makespan).
Indicating a trade-off here, the waiting time either keeps decreasing or remains fixed
to a certain value since the patients are assigned later appointment times as the
percentile value is increased. Scheduling a patient at a larger appointment time
means that the patients arrive at the clinic later. Therefore, the expected waiting
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times in the clinic change in a non-increasing fashion.

Table 5.3 demonstrates the average objective gap percentages for the comparison of
WDB-LSA to varying combinations of job hedging levels and sequencing heuristics.
Ideally, it is expected to have these gap percentage values as high as possible in favor
of WDB-LSA to ensure the methodology we suggest outperforms the conventional
one. Table 5.3 shows that the WDB-LSA significantly outperforms practical heuris-
tics. Although SPT and VAR sequencing rules perform slightly better than LPT
and CoV, the performance gap against these rules is fairly similar. Since the Gap%
keeps increasing with respect to job hedging levels, the best solution performance
for the sequencing rules is obtained on the 40% level for each.

Algorithm 2 Job Hedging Heuristic
1: Calculate the average infusion duration for each patient.
avgi =

∑
ω∈Ω tω

i

∥Ω∥
, ∀i ∈ I

2 :Assign index numbers to patients and determine the classes for each patient.
Sort avgi values within oncologist groups with respect to one of the sequencing
heuristics (LTP, SPT, VAR or CoV). Sequence the index numbers of the patients.
3 :Assign bij values according to the patient sequence found in Step 2.
4 :Determine ai values (appointment times) for all patients according to a range
of varying percentile levels of job hedging heuristic. In each oncologist group, if
a patient is preceding all other patients, the appointment time of that patient is
assigned as zero. The appointment times of other patients in each oncologist group
are determined in sequence with respect to their precedence by taking account of
the first average available time of nurse and chair simultaneously.
5 : Call CPLEX to solve TSMIP by fixing bij and ai values and the optimal
objective function value.

5.3 Sensitivity Analysis on Model Parameters

In this section, sensitivity analysis results for objective function coefficient λ are
discussed in subsection 5.3.1, and sensitivity analysis results for varying numbers of
nurses and oncologists are provided in subsection 5.3.2.
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Figure 5.1 The change in objective value, waiting times, and the makespan with
respect to varying λ values.

5.3.1 Impact of the λ Value

The λ ∈ [0,1] value is the objective function coefficient for the patient waiting time
while (1−λ) is the coefficient for the total working time in the TSMIP formulation.
Different values chosen for λ indicate the importance attached to key performance
measures in the model. In this section, the trade-off between these performance
measures is assessed by varying the λ value between 0.1 and 0.8 with increments
of 0.1. Extreme values for λ, such as 0 or 1, are excluded since that would mean
ejecting one of the key measures from the picture. Throughout the experiments, the
number of patients, nurses, oncologists, chairs, and scenarios are kept constant at
9, 2, 3, 4, and 35 respectively.

The numerical results of the experiment are provided in Table 5.4. As the coef-
ficient of patient waiting time λ increases by 0.1, the objective function decreases
substantially. In fact, a gradually more dramatic percentage difference between two
consecutive objective function values is observed for every 0.1 increase in the λ value.
Waiting time naturally decreases as lambda increases, eventually with a significant
reduction of 90%. Total working time, on the other hand, constantly increases, with
a maximum increase rate of 10%. This indicates that waiting time and total work-
ing time are two conflicting components of the objective function. This significant
reduction rate in waiting time results in a 74% improvement in the objective func-
tion from λ = 0.1 to λ = 0.8. Thus, favoring the waiting time in terms of relative
importance (against the total working time) leads to substantially superior results
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Table 5.4 Sensitivity of average objective value, patient waiting time (in minutes),
and clinic closing time (in minutes) to λ

Objective Value Waiting Time Makespan
λ=0.1 366.8 96.5 363.5
λ=0.2 306.5 57.3 368.8
λ=0.3 272.2 37.3 372.8
λ=0.4 235.7 23.5 377.1
λ=0.5 199.7 17.4 382.0
λ=0.6 162.2 14.6 383.6
λ=0.7 127.7 10.2 391.5
λ=0.8 86.8 9.7 395.1

for the expected objective function value.

5.3.2 Impact of the Number of Nurses and Oncologists

The sensitivity of the model outputs against different combinations of varying num-
bers of nurses and oncologists is assessed in this section. Keeping all other param-
eters the same, the number of oncologists ranges from 2 to 4, and the number of
nurses ranges from 2 to 3. Since this problem considers nurse assignments in the
second stage, the number of nurses must be at least 2. The sensitivity analysis in
this part reveals peculiar results at first appearance, which can be explained by the
nature of the solution approach. The numerical values of nurse-oncologist variations
are shown in Tables 5.5, 5.6, and Figure 5.2.

Patterns observed:

For two nurses, as the number of oncologists increases from 2 to 3, waiting time
slightly increases and then remains constant from 3 oncologists to 4 oncologists. For
three nurses, the waiting time initially decreases, then remains constant. For two
oncologists, as the number of nurses increases, the average waiting time increases.
The same peculiarity is not observed for O = 3 or O = 4.

The objective function value (see Table 5.6 ) automatically provides similar unex-
pected patterns since the formulation is solely based on the patient waiting time and
the total working time (makespan) of the clinic. However, the objective function
tends to decrease as the number of oncologists increases. Computational time does
not exhibit an expected pattern with respect to the increase of problem parameters
as well.
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Figure 5.2 The change in the makespan, waiting times, and objective function values
based on varying numbers of nurses and oncologists in the respective order.
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Table 5.5 Average patient waiting time and total working time (makespan) values
(in minutes) varying with respect to different numbers of oncologists and nurses.

Waiting Time Total Working Time
|O| = 2 |O| = 3 |O| = 4 |O| = 2 |O| = 3 O| = 4

|N | = 2 35.8 37.3 37.3 375.9 372.8 372.8
|N | = 3 41.5 36.5 36.5 374.0 369.9 369.9

Table 5.6 Average objective function (in minutes) and computational run time values
(in seconds) varying with respect to different numbers of oncologists and nurses.

Objective Computational Time
|O| = 2 |O| = 3 |O| = 4 |O| = 2 |O| = 3 O| = 4

|N | = 2 273.9 272.2 272.2 643.0 690.8 671.8
|N | = 3 274.2 269.9 269.9 791.9 685.4 723.1

As the number of nurses in the OCC increases, the total working time of the clinic
conceivably exhibits a slight reduction (see Table 5.5). Similarly, as the number of
oncologists increases, the total working time of the clinic initially slightly decreases
and then remains the same.

Unexpected pattern observations are likely to occur in our experiments considering
the existence of potential alternative optimal solutions when the TSMIP is solved
based on the reduced scenario set (10 scenarios). This model outputs the first-stage
variables to be used as input parameters for the second-stage problem which is solved
using 100 scenarios. Two alternative optimal solutions for the TSMIP model with
the reduced scenario set may yield different objective values when the second-stage
problem is solved using the original scenario set. In other words, the evaluation
process of the solution methodology alters the average values and results in peculiar
outputs since the scenario reduction method produces imperfect approximations.

5.4 VSS Estimation

The value of stochastic solution assessment is the concept of solving the original
stochastic model with a deterministic setup for a single scenario. When the stochas-
tic values are substituted by mean/deterministic values for the input parameters,
VSS allows us to assess the quality of the expected solution value (Escudero, Garín,
Merino & Pérez, 2007). In other words, VSS estimates the predicted advantage from
solving a stochastic model rather than its deterministic version. While a low value
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Table 5.7 Percent improvement acquired on average mean value (MV) solutions
based on varying λ values using the WDB-LSA.

λ Average VSS% Min VSS% Max VSS%
0.3 10% 0% 16%
0.5 12% 4% 24%
0.7 19% 6% 38%
Avg 14% 3% 26%

for VSS nearly always indicates a flaw in the modeling itself, obtaining satisfactory
VSS values proves that stochastic programming models are necessary despite the
computational challenges (Maggioni & Wallace, 2012).

The VSS is estimated by calculating the difference between the WDB-LSA solutions
and the expected objective value of the mean value (MV) problem. The assessment
is made considering different trade-off parameter values (λ), and average improve-
ment percentages WDB-LSA makes on the deterministic MV solution are reported in
Table 5.7 along with the maximum and minimum improvement rate that can be ob-
tained from individual instances. Evidently, the improvement percentage increases
as the objective function coefficient of the waiting time increases. The average VSS
over all instances is found as 14%, while the VSS can reach up to 38%.
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6. CONCLUSION

Cancer is a global health concern and a leading cause of death in Turkey. The
risk factors that contribute to cancer development include genetic predisposition,
unhealthy habits, or other unavoidable external factors. Outpatient Chemotherapy
Clinics (OCC) are prominent healthcare institutions that facilitate oncology pa-
tients’ intra-day follow-up chemotherapy treatments. Given the limited resources,
the uncertainty surrounding infusion durations, and the critical nature of cancer
treatment, scheduling chemotherapy in outpatient clinics poses significant challenges
and constraints. To address this, our study integrates oncologist consultation and
chemotherapy scheduling, ensuring coordination of daily sequences and appointment
times for patients scheduled on the same day through the medium of a two-stage
stochastic mixed integer programming model. The model considers integer appoint-
ment times and incorporates stochastic elements such as infusion times and the
approval status of chemotherapy treatments based on the outcomes of consultations
with oncologists. In the first stage of the model, after the patient sequence is ar-
ranged, appointment times for consultation are set taking into account patients’
designated oncologists. The second stage involves assigning patients to chairs and
nurses. The objective function incorporates a weighted sum of the total clinic work-
ing time and patient waiting times. To solve the model efficiently, we employ a sce-
nario reduction algorithm to reduce problem complexity. The suggested algorithm,
referred to as the Wasserstein Distance-Based Local Search Algorithm (WDB-LSA),
has been examined using authentic data gathered from a prominent oncology hos-
pital in Turkey. The algorithm is benchmarked against various practical heuristics
drawn from scholarly sources. It is shown that WDB-LSA is both effective and
computationally efficient at improving chemotherapy scheduling in outpatient de-
partments, even when considering a range of uncertainties and constraints. The
influence of different model parameters has been evaluated through sensitivity anal-
ysis. Additionally, the solution methodology has been examined against the mean
value solution to assess the value of the stochastic solution.
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6.1 Future improvement opportunities

Limitations of the model include a lack of consideration for other processes and
limited resources in the patient pathway. In future studies, blood testing can be-
come a part of the patient flow considered for the scheduling problem in an OCC,
considering uncertainty in blood draw durations and limitations on responsible lab
technicians.

In addition, the model can be revised by the assumption that the number of phar-
macy technicians is limited. In such a case, drug preparation is likely to become a
bottleneck process, evoking a new space for additional patient waiting time.

Another revision of the model can be the consideration of fairness issues in the
objective function.

In this thesis study, oncologists are not considered resources to assign patients to,
and rather entities that are already assumed to be designated to certain patients in a
pre-determined list. It is also possible to consider these entities as limited resources
of an OCC.

In order to improve and expand the TSMIP model, varying treatment deferral prob-
abilities can be assessed. Additionally, oncologist consultation times could also be
introduced as uncertain parameters to the problem by collecting realistic data from
healthcare institutions. These approaches may play an important role in enhancing
patient satisfaction and better time management in future studies.

For the implementation of the scenario reduction, integrating different distance met-
rics into the LSA could be considered another experiment opportunity. It is possible
to alter the randomization method for the initial reduced set in scenario reduction.
Additionally, rather than randomly initializing the reduced set, a different system-
atic approach can also be explored. After the randomization, the scenario swapping
operation between the reduced set and the entire scenario set can also be diversified.
Other than the distribution-based discrete scenario reduction approach adopted in
this study, problem-based reduction methods can be tested in terms of practicality,
computational performance, and solution quality.
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