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ABSTRACT

A LOCATION-ROUTING PROBLEM WITH MULTIPLE TRIPS ARISING IN
E-COMMERCE DELIVERY

ÇAĞRI DOĞUŞ İYICAN

INDUSTRIAL ENGINEERING M.S. THESIS, JULY 2023

Thesis Supervisor: Asst. Prof. Esra Koca Paç

Keywords: location routing,e-commerce, multi-trip, vehicle routing problem, mixed
integer linear programming

The classical location routing problem (LRP) is a well studied combinatorial opti-
mization problem that aims to identify optimal depot location(s) and the routing
decisions. In this study, we consider a two-echelon location routing problem with
multiple trips under constrained distances as a generalization of the traditional LRP.
Given the location of the single distribution center, we determine the locations of
the regional depots among a set of candidate locations and decide how to serve the
customers - from which regional depot and via which route. We consider a set-
ting where vehicles can perform multiple trips originated from their regional depots
as long as the total distance traveled does not exceed a predetermined level. We
develop different mathematical models for the problem and strengthen them with
simple valid inequalities. We also propose a heuristic solution method that gives
feasible solutions in reasonable times even for very large problem instances. The
computational experiments are designed and conducted to observe the performance
of all formulations and enhancements for solving different problem sizes and param-
eter settings. The results of the computational experiments show that using valid
inequalities improves the solution performance and different modeling approaches
perform differently in terms of their run-time and solution quality in small and large
instances.

iv



ÖZET

E-TİCARET TESLİMATINDA ORTAYA ÇIKAN ÇOKLU TURLU YER SEÇİMİ
ARAÇ ROTALAMA PROBLEMİ

ÇAĞRI DOĞUŞ İYICAN

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2023

Tez Danışmanı: Asst. Prof. Esra Koca Paç

Anahtar Kelimeler: lokasyon rotalama, e-ticaret, çoklu tur, araç rotalama
problemi, karma tamsayılı doğrusal programlama

Klasik yer seçimi rotalama problemi (YSRP), optimal depo konumlarını ve rota
kararlarını belirlemeyi amaçlayan yaygın bir şekilde çalışılmış bir kombinatoriyel
optimizasyon problemdir. Bu çalışmada, geleneksel YSRP’nin daha genel bir hali
olarak, kısıtlı mesafe kısıtı altında çoklu seferlere izin verilen iki aşamalı bir lokasyon
rotalama problemi ele alınmıştır. Konumu önceden bilinen tek bir dağıtım merkezine
göre, aday lokasyonlar arasından bölgesel depoların konumları belirlenmiş ve müş-
terilere nasıl hizmet edileceğine - hangi bölgesel depodan ve hangi rota ile hizmet
verileceğine karar verilmiştir. Araçların, toplam seyahat ettikleri mesafe önceden
belirlenmiş bir düzeyi aşmadığı sürece, bölgesel depolarına birkaç kez uğrayarak
birden fazla tur yapmalarına izin verilmiştir. Problem için farklı matematiksel mod-
eller geliştirilmiş ve modeller basit geçerli eşitsizliklerle güçlendirilmiştir. Ayrıca,
çok büyük problem örnekleri için bile makul sürelerde iyi kalitede çözümler sunan
bir sezgisel yöntem önerilmiştir. Formülasyonların ve iyileştirmelerin farklı problem
boyutlarını ve parametre ayarlarını çözmekteki performansını gözlemlemek amacıyla
bir sayısal çalışma tasarlanmış ve gerçekleştirilmiştir. Deneyler sonucunda, geçerli
eşitsizliklerin modellerin performansını iyileştirdiği ve farklı modelleme yaklaşım-
larının farklı problem boyutlarında farklı sürelerde ve kalitelerde sonuç verebildiği
görülmüştür.
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1. INTRODUCTION

It is widely acknowledged that the expenses associated with the logistics operations
constitute a significant portion of the budget of the most of the companies nowa-
days. These costs can be reduced by designing the network of the related supply
chain carefully, i.e. by deciding the locations of the depots and determining the
vehicle routes accordingly (Prodhon & Prins, 2014). Location and routing deci-
sions are studied separately and extensively in the literature for a long time, and
it is proven that the integration of these two decisions (when it is possible) might
yield a more efficient network in terms of the cost (Salhi & Rand, 1989). With the
recent developments in the optimization techniques, we are able to address these
two hard problems simultaneously (Prodhon & Prins, 2014). The decisions of both
locating the depots and determining the vehicle routes are studied under the name
of Location Routing Problem (LRP).

The two-echelon location routing problem (2E-LRP) is a generalization of the clas-
sical LRP in which the goods are transported from a main distribution center (DC)
to the customers through regional depots. In other words, the goods are first sent
from the DC to the regional depots, and from the regional depots to the customers
in 2E-LRP. In this supply chain design problem, locations of the regional depots
and the routes of the vehicles are the decided simultaneously Cuda, Guastaroba
& Speranza (2015). Many of these studies on 2E-LRP focus on mainly heuristic
methods such as hybrid genetic algorithm Moon, Salhi & Feng (2020), tabu search
heuristic Boccia, Crainic, Sforza & Sterle (2010), etc.

The location routing problem has several real-life applications, such as last-mile de-
livery and city logistics. In last-mile deliveries, the goods intended for customers
may face challenges due to issues related to truck sizes and inner-city infrastruc-
tures. Specifically, in the e-commerce sector, companies may need to design their
network taking into account the complexities of cities’ traffic and distribution ar-
eas. To clarify further, without an intermediate decision (such as opening regional
depots), direct transportation from distribution centers would suffer from time con-
straints and distribution inefficiencies. Due to the complexities of city traffic and
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distribution areas, in real life applications, e-commerce companies might design their
network so as to enable direct transportation from a single facility to regional de-
pots. This approach of direct transportation, without considering routes between
regional depots, aims to reduce the time complexity of deliveries. Additionally, since
the vehicles used for this transportation are larger compared to those utilized for
customer delivery services, their mobility range is limited within the inner city. Es-
tablishing a multi-trip environment between regional depots and customer locations
could be crucial in reducing the number of vehicle usages for planning. Moreover,
making decisions about both the locations of regional depots and the routes collec-
tively results in a more cost-effective logistical operation for both short-term and
long-term planning.

In this study, we address a location-routing problem with multiple trips (LRPMT)
which arises in e-commerce delivery and where the vehicles are allowed to perform
multiple trips. In the inbound transportation, the goods are transported to the
regional depots from a single distribution center with a direct transportation (no
routing decision is required). However, this operation has a cost component which
is effected by both the load of the vehicle and distance between depots. In the
outbound transportation, the goods are transported from the regional depots to the
customers with the vehicles that can do multiple trips starting and ending at the
same regional depot. Each customer should be served by exactly one regional depot
and one truck. The goal is to determine the locations of regional depots as well as the
routes of the vehicle to minimize the overall inbound, outbound and depot opening
costs. The motivation behind deciding both routes and regional depot locations,
as depicted by Salhi & Rand (1989), leads to a logistics environment with lower
costs. Furthermore, this approach contributes to a potential reduction in number
of vehicle usage. To the best of our knowledge, there exists no study on LRPMT in
the context of e-commerce delivery applications in the literature.

In this thesis, we develop different mathematical models as well as a heuristic method
for solving LRPMT, and test them through an extensive computational study. Our
contributions can be summarized as follows.

• LRPMT is defined and studied for the first time in the literature.

• Three mixed integer linear programming formulations (Two indexed/Three
indexed/Route Based) are proposed.

• The models are improved through different valid inequalities and tested com-
putationally.

• The affect of important problem parameters on the structure of the optimal
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solutions of the problem is discussed.

The remainder of this thesis is organized as follows. In Chapter 2, we present the
relevant literature review. We describe our problem and develop our mathematical
models in Chapter 3. Chapter 4 consists of the experimental data design and the
results of the computational studies. We conclude our thesis and discuss the future
research problems for LRPMT in Chapter 5.
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2. LITERATURE REVIEW

In this chapter, we present a summary of the related literature in order to give the
general overview of the work. As our study relies on the location routing problem
(LRP), two-echelon location routing problem (2E-LRP) and the multi-trip vehicle
routing problem (VRPMT), below we discuss the related studies on these three main
problems.

LRP have been studied since the 1970s and involves the combined decisions of lo-
cating depots and determining optimal routes for the vehicles. One of the first ideas
of simultaneously determining the depot location and the vehicle route potentially
dates back to the study by Watson-Gandy & Dohrn (1973) where a depot location
and travelling salesman problem with a "sales function" in which sales decline with
the distance from the depot is considered. The effect of deciding depot locations
and vehicle route together is depicted first in Salhi & Rand (1989). The authors
demonstrate that solving the depot location problem and the vehicle routing prob-
lem separately might result in sub-optimal results and there might be potential gains
of combining these two problems in terms of logistics cost. A survey published by
Nagy & Salhi (2007) revealed that heuristic approaches for solving LRP are more
prevalent than exact methods which is an expected result since LRP is a combination
of two hard problems, namely the facility location problem and the vehicle routing
problem. The authors also categorize the studies in the literature with respect to
their operational structures, objective functions, number of depots and the solution
methodology. One of the first heuristic approaches which is based on a tabu search
is due to Tuzun & Burke (1999) where the problem is solved in two stages.

The first exact solution method for LRP is proposed by Laporte & Nobert (1981)
where the authors decide the location of a single depot by determining the optimal
route for each possible depot location and selecting the best one. With the latest
advances on computation power, development of exact solution algorithms has also
emerged such as Belenguer, Benavent, Prins, Prodhon & Wolfler Calvo (2011) and
Contardo, Cordeau & Gendron (2014) where the capacitated version of LRP (CLRP)
with the capacitated depots is studied. To the best of our knowledge, the latest
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survey on LRP is by Prodhon & Prins (2014), and they address the first studies,
heuristic approaches, solution methods, benchmark instances and different variants
of LRP. The authors also emphasize that heuristic approaches are more studied
in the LRP literature compared to the exact methods. The authors also propose
valuable recommendations for future research directions, such as developing precise
approaches, addressing realistic scenarios where not all customers are served, and
exploring other relevant aspects.

The number of studies on LRP variants has been increasing recently. Moon et al.
(2020) studied the LRP with multi-trip and multiple commodities. The authors
consider a single echelon structure with multiple commodities where the vehicles
perform multiple trips, if possible. They present a mathematical formulation and
a heuristic solution approach consisting of a hybrid genetic algorithm, and com-
pare them. They observe that the mathematical formulation solves the problem to
optimality in small problem instances and use the heuristic approach for finding so-
lutions for larger instances. Another variant of LRP which uses a distance constraint
with electrical vehicles is studied by Almouhanna, Quintero-Araujo, Panadero, Juan,
Khosravi & Ouelhadj (2020). Although a mathematical formulation for the prob-
lem is proposed, the problem is solved with heuristic methods such as multi-start
biased-randomization and a biased randomized variable neighborhood search. The
authors report that the proposed heuristic gives better results compared to the
previous studies in terms of the depot opening and transportation costs. Further-
more, another related problem is the inventory-location-routing problem (ILRP) in
e-commerce which is studied by Liu, Chen, Li, Liu & others (2015) and Deng, Li,
Guo, Liu & others (2016) on a network where a direct transportation from the plant
to merchandise centers and then routing from the centers to the retailers is consid-
ered. Both studies work with the same network considering return operation of the
goods, but use different solution methodologies. The main difference of these stud-
ies from ours is that in ILRP, the decision maker also decides the inventory level at
the retailers while in our problem the demand of customers is fixed. Besides, their
problem has a stochastic environment as the demand at the retailers is assumed as
uncertain, and this affects the whole modeling scheme.

Another problem that is in the scope of our study is the two-echelon location routing
problem (2E-LRP) which is first studied by Jacobsen & Madsen (1980) based on
a newspaper distribution case. In their problem description, there exists a single
distribution center (DC) which is the newspaper printing office, and there are re-
gional depots that will be used as transfer points for the printed newspapers. The
problem’s objective is to minimize the total depot locating and distance traveling
cost. A two-phase method is proposed in their study. In first phase, they decide
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on which depots (transfer points) to open to satisfy the overall demand at a given
service level. In second phase they use the savings algorithm to generate routes
from their pre-decided opened depots. Prodhon & Prins (2014) point out in their
LRP survey that no other study was conducted on 2E-LRP in the literature until
Lin & Lei (2009). They proposed a genetic algorithm to identify uncapacitated DCs
(satellite depots) while considering a collection of plants, big and small customers.
The difference between big and small customers is their way of transportation of
goods. The big clients can be served directly from the DC while small customers
can not. The goal is to select a group of big customers to serve in the initial rout-
ing level and to create routes for both levels. Later, Contardo, Hemmelmayr &
Crainic (2012) propose a branch-and-cut algorithm to solve 2E-CLRP instances to
optimality including 50 customers and 10 satellites. Two-echelon vehicle routing
problem (2E-VRP) can be seen as a special case of 2E-LRP where the locations of
satellites/regional depots are already given - see the survey of Cuda et al. (2015)
for the studies on this topic. Even if our problem seems like a two-echelon setting,
our problem does not contain routing decisions from distribution centers to regional
depot locations due to the e-commerce application we consider.

Vehicle routing problem with multiple trips (VRPMT) is an area which is studied
immensely. In VRPMT, there exist a set of capacitated vehicles that can start and
end their tours on a given depot. The sum of duration of the trips are limited and
the vehicles can visit the depot multiple times for replenishment which is the main
idea of the multi-trip mentality. Fleischmann (1990) considers a distribution system
that consists of heterogeneous fleet with time window restrictions, and presents a
constructive heuristic approach. However, there were no benchmark instances for
VRPMT at that time. The first benchmark instance set for VRPMT is due to
Taillard, Laporte & Gendreau (1996) where a tabu search algorithm with a parallel
search structure is proposed for solving VRPMT. In their computational experi-
ments, the authors consider the famous benchmark instances of Christofides et al.
(1979) with different number of vehicles and distance restrictions, and generate the
first benchmark instance set. In the following years, many heuristics and mathe-
matical formulations have been proposed for VRPMT. The natural formulation of
VRPMT requires four indices on the decision variables: two indices for the nodes,
one index for the vehicle and another for the trip. Aghezzaf, Raa & Van Lan-
deghem (2006) develops a three-index mathematical formulation that does not use
the trip indexes while Azi, Gendreau & Potvin (2010) proposes another three-index
mathematical formulation that does not use vehicle indices.

Koc & Karaoglan (2011) presents the first two-index mathematical model without
trip and vehicle indices. Similar to Azi et al. (2010), the authors define additional

6



binary variables to determine the last and the first nodes of the two consecutive
trips of a vehicle, and propose a branch-and-cut algorithm that makes use of valid
inequalities. Another two-index formulation for VRPMT is developed by Rivera,
Afsar & Prins (2014) where auxiliary arcs and decision variables are introduced to
model two consecutive trips performed by the same vehicle. Cattaruzza, Absi &
Feillet (2016) provide a survey of VRPMTs including mathematical formulations
and heuristic methods, the variants of the problem and the benchmark instances.

In general, LRP has an important application area on medical waste distribution.
Recently, Tirkolaee, Abbasian & Weber (2021) study a combination of LRP with
VRPMT where a case study on medical waste management on a network including
hospitals, infirmaries and disposal sites, during Covid-19 is considered. The authors
determine the locations of the disposal sites that will be opened given that the vehi-
cles start their routes from a single parking site and visit hospitals and infirmaries for
their medical waste in a given time window. They use chance constraints and con-
sider multiple objectives. Similarly, Cheng, Zhu, Costa, Thompson & Huang (2022)
study a disaster waste management problem on a system of landfills and recycling
facilities. Another important application area of LRP is e-commerce. Pichka, Ba-
jgiran, Petering, Jang & Yue (2018) mentions the potential economic earnings of
using 2E-LRP structure in e-commerce logistics where a main factory could send
products to smaller depots which will be closer to the customers.

To sum up, in this study we consider a location-routing problem that is observed
in an e-commerce delivery network, wherein vehicles can make multiple trips. The
inbound transportation cost between the main depot and the regional depots that
will be opened is affected by both the demand and the distance between them.
But, in this part of the network we consider direct transportation based on our
observations in the real life applications in e-commerce. Furthermore, different from
the literature, we permit multiple trips in the outbound transportation for utilizing
relatively compact vehicles that are well-suited for urban transportation. We observe
that there are few studies based on exact methods on the related topics, and our
contribution lies in proposing several mathematical formulations for the problem we
introduced.
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3. PROBLEM DEFINITION AND MODEL FORMULATION

We consider a network that involves inbound and outbound operations, as well as
the related decisions. This network comprises a single distribution center (DC), a
set of possible regional depot locations, and a set of customers to be served. The
transport of goods from the DC to the regional depots is referred as the inbound
transportation, while the transportation from the regional depots to the customers
is referred as the outbound transportation. In this problem, we mainly focus on
three key decisions:

• Given a set of possible locations for regional depots, which of them will be
opened to serve the customers?

• Which customer will be served by which opened regional depot?

• How the customers will be served from the regional depots (outbound trans-
portation routes)?

We remark that the inbound transportation decisions are directly affected by the
assignment of the customers to the regional depots that will be opened. Hence,
though we do not indicate the inbound transportation decisions separately, they are
determined based on the last two decisions stated above.

We consider a setting where each customer should be served by a single regional
depot. Besides, the fleet of identical vehicles should be also allocated to the opened
regional depots. Each customer should be visited exactly once by a truck that is
routed from the customer’s regional depot. Different from the traditional routing
problems, we allow trucks used for outbound transportation operations to perform
multiple trips. Each truck has to start and end its route in the same depot whether
it has a single or multi-trip.

There is a fixed cost for opening a regional depot. There are no capacity restrictions
for the inbound/outbound transportation volumes that can be operated from the
regional depots. This assumption is based on the expectation that the depots will be
opened/deployed according to the planned amounts from the solution we provide.
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The transportation of goods from the DC to regional depots is a direct transporta-
tion mode. On the other hand, the transportation from the regional depots to the
customers is performed like a multi-trip VRP (VRPMT) with truck usage costs. We
call this problem as LRPMT.

3.1 Problem Definition

Consider a directed graph G = (N,A) with the set of nodes N = I ∪ J where I and
J represent the set of possible locations for the regional depots and the customers,
respectively. We consider a partially complete graph by A = ((N × N)/(I × I))
where only the arcs connecting the regional depots to each other are ignored, i.e.
transportation between regional depots is not allowed.

We assume that the DC is the main source of the goods that will be sent to the
customers. But, instead of directly serving the customers from the DC, the goods
are first sent to the regional depots opened by direct transportation, and then dis-
tributed to the customers through routes of the trucks originated from the regional
depots. The cost of operating regional depot i ∈ I is given by fi. The demand of
customer j ∈ J is denoted by Dj .

Figure 3.1 Example of the Network Described
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We assume that different types of vehicles are available for inbound and outbound
transportation. For the vehicles dedicated to the inbound transportation, bi rep-
resents the unit cost of moving goods from the DC to regional depot i ∈ I. For
the vehicles that will be used for outbound transportation, we assume that there
is a fixed cost c of using each vehicle. The reason for considering a fixed cost of
c is to analyze and observe the effect of deciding on routes and depot locations
simultaneously. In other words, the fixed cost of using a vehicle can be seen as
the scaling factor between the two different objective components: the total fixed
cost of opening a regional depot and the number of vehicles used. Due to the cost
structure considered for the inbound transportation, the capacities of the vehicles
are not important and ignored. The capacity of the vehicles used for the outbound
transportation is given by Q, and we assume that there exist |K| homogeneous ve-
hicles available for outbound transportation. To make it easier to follow, we give
the list of parameters of LRPMT in Table 3.1. Figure 3.1 represents an example
network of LRPMT.

Table 3.1 The list of parameters of LRPMT

Parameter Definition
I Set of candidate regional depot locations
J Set of customers to be served
N Set of all regional depot and customer locations, N = I ∪J

K Set of available vehicles
Cmax Maximum distance a vehicle can travel during the outbound transportation
Dj Demand of customer j ∈ J

Q Capacity of vehicles used for outbound transportation
dij Distance between nodes i ∈ N and j ∈ N

fi Fixed cost of opening regional depot i ∈ I

bi Unit transportation cost from the distribution center to regional depot i ∈ I

c Fixed cost of using a truck for outbound transportation

The objective of LRPMT is to minimize the overall operation cost which includes
the fixed cost of opening regional depots, the inbound transportation cost from
the DC to the regional depots, and the cost of using vehicles for the outbound
transportation. The inbound transportation cost consists of the total demand and
distance between DC and any regional depot and we do not consider a distance
based cost in outbound transportation.

3.2 Mathematical Models
10



In this section, we present three different mathematical models for LRPMT. The
models basically differ from each other based on the number of indices of the deci-
sions variables.

3.2.1 3IM: Three-Index Model

3IM is a three-index model where vehicle related variables are defined for each
vehicle separately, but no indices are defined for the trips. Inspiring from the three
index model of Aghezzaf et al. (2006) where a mathematical model for an inventory
routing problem is proposed, in 3IM we allow vehicles to visit their regional depots
multiple times to perform multiple trips.

Let yi be equal to 1 if the regional depot i ∈ I is opened; 0 otherwise. The binary
decision variable ϕij equals to 1 if the demand of customer j ∈ J is satisfied from
regional depot i ∈ I, 0 otherwise. To allocate the vehicles to the regional depots
and the customers, we define the binary variable zik which will be equal to 1 if
truck k ∈ K is assigned to regional depot i ∈ I or customer i ∈ J ; 0 otherwise. The
binary variable zik is introduced also for customers due to the presence of symmetry-
breaking constraints involving both customer and truck indexes. These constraints
are elaborated upon in the subsequent sections. The binary decision variable xijk

equals to 1 if truck k ∈ K traverses arc (i, j) ∈ A; 0 otherwise. Finally, we define the
decision variable qijk to determine the total load of truck k ∈ K while traversing the
arc (i, j) ∈ A.

3IM is given below:

min
∑
i∈I

fiyi +
∑
i∈I

bi

∑
j∈J

Djϕij + c
∑

k∈K

∑
i∈I

zik(3.1a)

s.t.
∑

j:(i,j)∈A

xijk =
∑

j:(j,i)∈A

xjik = zik i ∈ J, k ∈ K(3.1b)

∑
j:(i,j)∈A

xijk =
∑

j:(j,i)∈A

xjik ≤ |J |zik i ∈ I, k ∈ K(3.1c)

∑
k∈K

zik = 1 i ∈ J(3.1d)

∑
i∈I

zik ≤ 1 k ∈ K(3.1e)

zik ≤ yi i ∈ I, k ∈ K(3.1f) ∑
(i,j)∈A

xijkdij ≤ Cmax k ∈ K(3.1g)
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∑
j:(j,i)∈A

qjik −
∑

j:(i,j)∈A

qijk = Dizik i ∈ J, k ∈ K(3.1h)

qijk ≤ Qxijk (i, j) ∈ A, k ∈ K(3.1i)

zik + zjk −1 ≤ ϕij i ∈ I, j ∈ J, k ∈ K(3.1j) ∑
i∈I

ϕij = 1 j ∈ J(3.1k)

ϕij ≤ yi i ∈ I, j ∈ J(3.1l)

yi ∈ {0,1} i ∈ I(3.1m)

xijk ∈ {0,1} (i, j) ∈ A, k ∈ K(3.1n)

zik ∈ {0,1} i ∈ N, k ∈ K(3.1o)

ϕij ∈ {0,1} i ∈ I, j ∈ J(3.1p)

qijk ≥ 0 (i, j) ∈ A, k ∈ K(3.1q)

In the objective function (3.1a), we minimize the total cost of opening regional
depots, and the inbound and outbound transportation. Constraints (3.1b) ensure
the inflow-outflow balance of the routing decision variables for the customers. In
other words, if vehicle k ∈ K arrives customer i ∈ J , then it should also leave that
customer. Moreover, this is only possible if zik = 1, i.e. customer i ∈ J is served by
vehicle k ∈ K. Constraints (3.1c) are the modifications of constraints (3.1b) for the
regional depot locations. If vehicle k is assigned to regional depot i ∈ I, then the
number of times vehicle k leaves depot i should be equal to the number of its arrival
times. Note that in the traditional VRP models, this number can be at most one.
But, since we allow multiple trips, it can be greater than one in our model. But,
it can be at most |J | since each customer can be visited at most once. Constraints
(3.1d) ensure that each customer can be visited by a single truck, and constraints
(3.1e) ensure that a truck is assigned to at most one regional depot. Constraints
(3.1f) relate the binary variables z and y: truck k might serve to regional depot
i only if depot i is opened. Constraints (3.1g) guarantee the total distance that
is traveled by truck k does not exceed the maximum distance allowed per truck,
denoted by Cmax. Constraints (3.1h) ensure that the difference between the total
load of vehicle k while arriving and leaving customer i is equal to the demand of
customer i if vehicle k visits customer i, and zero otherwise. Constraints (3.1i)
make sure that the total load of vehicle k while traversing arc (i, j) does not exceed
the capacity Q. Constraints (3.1j) relate the binary variables z and ϕ: if truck k

visits both the regional depot i and the customer j, then j should be assigned to
i. Constraints (3.1k) ensure that each customer j is served by exactly one regional
depot, and (3.1l) relate the binary variables ϕ and y by ensuring that ϕij is zero
if yi in zero, i.e. if a regional depot at i is not opened, then i cannot serve to any
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customer. Finally, constraints (3.1m)-(3.1p) define the ranges and bounds of the
decision variables.

3.2.1.1 Symmetry Breaking Inequalities for 3IM

3IM suffers from the solution symmetry since the same solution can be observed
under different assignments of the journeys to the vehicles as the vehicles are identi-
cal. Based on the symmetry breaking techniques available in the literature Darvish,
Coelho & Jans (2020), we consider the following symmetry breaking inequalities for
3IM:

∑
i∈I

zik ≤
∑
i∈I

zik−1 k ∈ K \{1}(3.2a)

zik ≤
∑

j∈J :j≤i−1
zjk−1 i ∈ J, k ∈ K \{1}(3.2b)

zik ≤
∑

j∈J :j≤i−1
zjt i ∈ J, t ∈ {1, , ...,k −1}, k ∈ K \{1}(3.2c)

(k −1)zik ≤
∑

j∈J :j≤i−1

k−1∑
t=1

zjt i ∈ J \{1}, k ∈ K \{1}(3.2d)

Inequalities (3.2a) assure that vehicle k can be used only if vehicle k − 1 is used.
Inequalities (3.2b) ensure that if customer i is visited by vehicle k then at least one
customer with a smaller index than i must be visited by truck k −1. Similarly, due
to inequalities (3.2c) if customer i is visited by vehicle k, then all vehicles smaller
than k should visit at least one customer with a smaller index than i. Finally,
inequalities (3.2d) aggregate (3.2c) over the vehicles with smaller indices.

3.2.2 2IM: Two-Index Model

2IM is a two-index model that does not include any vehicle or trip indices, and it
is inspired from Koc & Karaoglan (2011) where additional decisions variables are
defined for relating the last and the first customers visited in two consecutive trips
of a vehicle.

The binary variables y and ϕ are the same with 3IM: yi will be equal to 1 if the
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regional depot i ∈ I is opened, and ϕij will be equal to 1 if j ∈ J is served by the
regional depot i ∈ I. We define the binary decision variable xij which is equal to 1
if there is a vehicle traversing from node i to node j; and 0 otherwise. The binary
decision variable wij equals to 1 if a trip that ends at customer i and another trip
that starts with customer j are performed by the same vehicle. Finally, we define
two types of continuous decision variables: qij denotes the load of the vehicle while
traversing the arc (i, j), and Lj represents the total distance traveled by a vehicle
while visiting customer j ∈ J .

2IM is as follows:

minc(
∑
j∈J

∑
a∈I

xaj −
∑
i∈J

∑
j∈J

wij)+
∑
i∈I

fiyi +
∑
i∈I

∑
i∈J

biDjϕij(3.3a)

s.t.
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji = 1 i ∈ J(3.3b)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji ≤ |J |yi i ∈ I(3.3c)

ϕij2 ≥ ϕij1 +xj1j2 −1 j1, j2 ∈ J, i ∈ I(3.3d)

xij ≤ ϕij j ∈ J, i ∈ I(3.3e)

xji ≤ ϕij j ∈ J, i ∈ I(3.3f) ∑
i∈I

ϕij = 1 j ∈ J(3.3g)
∑
j∈J

wij ≤
∑
a∈I

xia i ∈ J(3.3h)

∑
i∈J

wij ≤
∑
a∈I

xaj j ∈ J(3.3i)

wij ≤ 2−ϕa1,j −
∑

a2∈I/a1
ϕa2,i a1 ∈ I, i, j ∈ J(3.3j)

∑
i∈J

∑
a∈I

xaj −
∑
i∈J

∑
j∈J

wij ≤ |K|(3.3k)

xij ≤ yi i ∈ I, J ∈ J(3.3l)

ϕij ≤ yi i ∈ I, J ∈ J(3.3m) ∑
j:(j,i)∈A

qji −
∑

j:(i,j)∈A

qij = Di i ∈ J(3.3n)

qij ≤ Qxij (i, j) ∈ A(3.3o)

Li +dijxij ≤ Lj +Cmax (1−xij) i ∈ J, j ∈ J, i ̸= j(3.3p)

Li +
∑
a∈I

(diaϕai +dajϕaj) ≤ 2Cmax(1−wij)+Lj i ∈ J, j ∈ J, i ̸= j(3.3q)
∑
a∈I

dajϕaj ≤ Lj ≤ Cmax −
∑
a∈I

djaϕaj j ∈ J(3.3r)

yi ∈ {0,1} i ∈ I(3.3s)
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xij ∈ {0,1} (i, j) ∈ A(3.3t)

wij ∈ {0,1} i, j ∈ J(3.3u)

ϕij ∈ {0,1} i ∈ I,j ∈ J(3.3v)

qij ≥ 0 (i, j) ∈ A(3.3w)

Li ≥ 0 i ∈ J(3.3x)
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The objective function (3.3a) minimizes the total truck usage cost for the outbound
transportation, the regional depot opening cost and the inbound transportation
cost. Note that the number of vehicles used in the outbound transportation is given
by ∑

j∈J
∑

a∈I x0j − ∑
i∈J

∑
j∈J wij since we allow multiple trips. Constraints (3.3b)

ensure that every customer is visited exactly once. Constraints (3.3c) guarantee that
the number of arrivals and the departures are equal to each other for each regional
depot i and can be positive only if i is opened. Constraints (3.3d) relate the binary
variables ϕ and x for the customers visited in the middle positions of the tours: if
customer j1 is assigned to the regional depot i and if arc (j1, j2) is traversed in the
solution, then customer j2 should be also served by the regional depot i. Similarly,
constraints (3.3e) and (3.3f) relate the binary variables ϕ and x for the customers
visited in the first and the last positions of the tours: if the arcs (i, j) or (j, i) are
traversed for a regional depot i and a customer j, then j should be served by the
regional depot i. The constraints (3.3g) ensure that each customer j is served from
a single regional depot. The constraints (3.3h) and (3.3i) relate the binary variables
w and x: wij can be 1 for two customers i, j ∈ J if i is the last node of a tour,
i.e. ∑

a∈I xia = 1, and j is the first node of a tour, i.e. ∑
a∈I xaj = 1. Besides, wij

can be 1 for two customers i, j ∈ J , if both of them are assigned to the same service
region, and this is achieved by (3.3j). Constraints (3.3k) limit the number of vehicles
that can be used in the outbound transportation by |K|. The constraints (3.3l) and
(3.3m) relate the binary variables x, y and ϕ: if the regional depot i is not opened,
then xij and ϕij can not be 1 for any customer j. Constraints (3.3n) and (3.3o)
are demand satisfaction and vehicle capacity constraints, respectively. Constraints
(3.3p) and (3.3q) determine the total distance traveled by a vehicle while visiting
customer j for the cases where j is a customer that is visited in the same tour with
the previous node and j is the first customer visited in a new tour of a vehicle,
respectively. Finally, the constraints (3.3r) ensure the maximum distance allowance
for each vehicle, and the remaining constraints (3.3s) - (3.3x) define the ranges and
boundaries of the variables.

3.2.2.1 Valid Inequalities for 2IM

We add the following valid inequalities to 2IM for relating binary decision variables
x and ϕ which is inspired from Koc & Karaoglan (2011):

∑
j∈J

xij ≥ 1
Q

∑
j∈J

Djϕij i ∈ I(3.4)
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Inequalities (3.4) ensure that the number of departures from a regional depot i is
larger the lower bound on the number of vehicles required to satisfy the demand of
the customers assigned to i which is given by the right-hand-side of the inequality.

3.2.2.2 Symmetry Breaking Inequalities for 2IM

2IM also suffers from the solution symmetry due to the decision variables x and w.
Note that two tours performed by a vehicle can be merged in two ways (symmetry
with respect to w). For instance, if there exist two tours performed by the same
vehicle originating from the regional depot 0 as 0 − 1 − 4 − 5 − 0 and 0 − 3 − 2 − 0,
setting w53 = 1 or w21 = 1 result in two different but equivalent solutions. Similarly,
the tours can be reversed without changing the cost and the feasibility: the tours
0−1−4−5−0 and 0−5−4−1−0 result in two different but equivalent solutions
(symmetry with respect to x).

We consider the following symmetry breaking constraints for 2IM:

wij = 0 i, j ∈ J, i > j(3.5)

In constraints (3.5), we allow wij to be 1 if customer j’s index is bigger than i: j > i.

3.2.3 A-2IM: An Alternative Two-Index Model

A-2IM is an alternative two-index model that is inspired from Rivera et al. (2014)
where auxiliary arcs, called as replenishment arcs, are defined between the customers
to represent two consecutive trips performed by the same vehicle. So, in A-2IM we
use the same decision variables with 2IM, but different from 2IM, here we ensure
that xij is one for at most one customer j ∈ J for each regional depot i ∈ I, and wjl

can be one without requiring xji and xil to be one for some regional depot i. But,
wjl = 1 still represents the case where the last and the first customers visited by two
consecutive trips of a vehicle are j and l, respectively. Note that this can happen if
both of the customers are assigned to the same regional depot.
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Our alternative two-index model A-2IM is given as follows:

min c
∑
i∈I

∑
j∈J

xij +
∑
i∈I

fiyi +
∑
i∈I

∑
i∈J

biDjϕij(3.6a)

s.t.
∑

j:(i,j)∈A

xij +
∑
j∈J

wij =
∑

j:(j,i)∈A

xji +
∑
j∈J

wji = 1 i ∈ J(3.6b)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji = yi i ∈ I(3.6c)

∑
i∈J

∑
i∈I

xij ≤ |K|(3.6d)

qij ≤ Qxij i ∈ J, j ∈ N(3.6e)

qij ≤ Q(xij +
∑
k∈J

wkj) i ∈ I, j ∈ J(3.6f)

qij ≤ Qϕij i ∈ I, j ∈ J(3.6g)

(3.3d)− (3.3g),(3.3j),(3.3l)− (3.3n),(3.3p)− (3.3x).

In A-2IM, since xij = 1 only for the first customer j that is visited in the first tour
of a vehicle originating from the regional depot i, ∑

i∈I
∑

j∈J xij gives the number
of vehicles that are used in the outbound transportation. We make the necessary
changes in the objective function (3.6a) and (3.6d) according to this observation.
Similarly, the flow conservation constraints (3.6b) and (3.6c), and the capacity con-
straints (3.6e) - (3.6g) are updated based on the new representation of the variables
x and w.

Note that the valid inequalities (3.4) and the symmetry breaking constraints (3.5)
can be also used with A-2IM.

3.2.4 RBM: Route-Based Model

In this section, we present our route based model (RBM) that gives a feasible solution
for the problem in shorter times. Assume that we have a pre-generated set of feasible
routes (trips, indeed) denoted by R = {1, ....., r} where each route r ∈ R starts and
ends at the same regional depot. Assume that we know the values of the parameters
for each route r ∈ R given in the following table. We will determine a feasible
solution for LRPMT by considering only these routes which is inspired from Ercan
(2019).

We again define the binary decision variable yi which is equal to 1 if the regional
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Table 3.2 Route-based model additional parameters

Parameter Definition
R Set of routes for outbound transportation considering all candidate regional

depot locations
Cr Total distance of the route r ∈ R
Ri Set of routes that are originating from regional depot i ∈ I
Rj Set of routes that contain customer j ∈ J
Jr Customers covered in route r ∈ R

depot i is opened; 0 otherwise. Let vrk be equal to 1 if route r is used by vehicle
k; 0 otherwise, and zik be equal to 1 if truck k is used and assigned to depot i; 0
otherwise. In our model, we allow the vehicles to visit a subset of the customers
that belong to a route. Hence, determining the customers that will be visited from
a route is also a decision. The binary decision variable xjrk will be equal to 1 if
truck k which uses route r visits customer j; and 0 otherwise.

The following MIP determines the best possible solution for LRPMT given the pre-
generated route set R:

min c
∑
i∈I

∑
k∈K

zik +
∑
i∈I

fiyi +
∑
i∈I

∑
r∈Ri

∑
J∈Jr

∑
k∈K

biDjxjrk(3.7a)

s.t.
∑

r∈Rj

∑
k∈K

xjrk = 1 j ∈ J(3.7b)

∑
j∈Jr

Djxjrk ≤ Qvrk r ∈ R,k ∈ K(3.7c)

∑
k∈K

vrk ≤ 1 r ∈ R(3.7d)

vrk ≤ zik k ∈ K,i ∈ I,r ∈ Ri(3.7e)

vrk ≤ yi k ∈ K,i ∈ I,r ∈ Ri(3.7f) ∑
r∈R

Crvrk ≤ Cmax k ∈ K(3.7g)
∑
i∈I

zik ≤ 1 k ∈ K(3.7h)

yi ∈ {0,1} i ∈ I(3.7i)

xjrk ∈ {0,1} j ∈ J,r ∈ R,k ∈ K(3.7j)

zk ∈ {0,1} k ∈ K(3.7k)

vrk ∈ {0,1} r ∈ R,k ∈ K(3.7l)

The objective function (3.7a) again minimizes the total truck usage cost for the out-
bound transportation, regional depot opening cost and the inbound transportation
cost. Constraints (3.7b) ensure that each customer is visited exactly once. Con-
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straints (3.7c) are the capacity constraints that are guaranteeing the total demand
of the customers visited by vehicle k throughout the route r does not exceed the
truck capacity Q. Constraints (3.7d) ensure that each route r is used by at most
one vehicle. Constraints (3.7e) ensure that if a route r originated from depot i is
used by vehicle k then the same vehicle k must work with that depot. Due to con-
straints (3.7f) route r can be used by vehicle k if the depot that route r originates
from is opened. Constraints (3.7g) limit the total distance that can be traveled by
any vehicle over all routes it performs. Constraints (3.7h) ensures that each truck
can operate at most 1 regional depot. Finally, constraints (3.7i) - (3.7k) define the
ranges and boundaries of the variables.

Note that when R includes all possible tours, our route-based model (3.7) turns into
an exact method with exponential number of decision variables. However, since this
is not possible in practice, (3.7) is a heuristic approach in the sense that a subset of
feasible tours are generated in R, and the model gives the best solution among the
possible solutions that can be obtained from the routes of R.

For our route based model (RBM), we generate the route set R using the following
algorithm which is called Expanded Nearest Neighborhood Search (ENNS) (Ercan,
2019). For each customer j ∈ J , we determine the shortest distance between j and
any regional depot location, and then set the routing diameter Rd to the maximum
of these distances among all customers. Then, for every regional depot location i ∈ I,
if the distance between i and a customer j ∈ J does not exceed Rd, we include j to
Ji which is the set of customers that can be served from i, and initialize the ENNS
algorithm. For each i ∈ I and j ∈ Ji, we initialize a route from i to j and construct
the remaining part of the route according to the Nearest Neighborhood Algorithm,
where the customer addition to the route stops when 2Rd distance limit has been
reached. We apply this procedure for each regional depot location to construct the
set of all routes R.

The following pseudo-code gives the ENNS algorithm flow for generation of route
set R
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Algorithm 1 Expanded Nearest Neighbor Heuristic
Require: Set of regional depots I, set of customers J , candidate sets of visitable

customers J ′ for each regional depot, maximum route distance parameter 2Rd

Ensure: Routes covering all visitable customers
1: for each regional depot i ∈ I do
2: for each visitable customer set Ji for regional depot i do
3: Initialize an empty route R

4: Initialize a set visited to keep track of visited customers
5: for each customer j in Ji do
6: Add j to R and visited

7: while J ′
i \visited ̸= ∅ do

8: Find nearest neighbor j ∈ Ji \visited to the last customer in R

9: if Distance between last customer in R and j′ > 2Rd then
10: Add current route R to the list of routes
11: Clear R and visited

12: Add j to R and visited

13: break ▷ Terminate the inner loop
14: else
15: Add j to R and visited

16: end if
17: end while
18: Add current route R to the list of routes
19: Clear R and visited

20: end for
21: end for
22: end for

We make use the route-based model (3.7) for determining a feasible solution for
LRPMT in short computation times. After a feasible solution for LRPMT is ob-
tained from the route-based model (3.7), we provide it to the models presented in
the previous sections as an initial solution, and run them further to improve the
initial solution as much as possible within the time limit. Figure 3.2 illustrates the
flow of our warm start approach. For models 2IM and A-2IM, since we do not have
vehicle indices, we convert the solution obtained from (3.7) to the appropriate form
(calibration step).

After generating our route set R, we will use of RBM model as an initial solution
giver to our 2IM and 3IM models and their variants. The following image shows
the overall input-output flow of how RBM model is used as a warm starting(initial
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solution) method in general.

Figure 3.2 Warm start strategy using RBM Model
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4. COMPUTATIONAL RESULTS

In this chapter, we present the computational results for the models presented in
the previous chapter. First, we describe our data generation approach, and then, we
discuss the computational performance of the methods of previous chapter. Finally,
we present our findings for business and modeling insights.

Throughout the experiments, we use GUROBI 10.0 with PYTHON 3.7 on an HPC
system with Intel(R) Xeon(R) Gold 5122 CPU 8 core processor with 3.60 GHz
speed, 128 GB RAM, and 64-bit Linux operating system. All the coding for data
reading, model preparation, and output generation are implemented in Python 3.7
with Anaconda Spyder. The time limit is set to 4 hours (14400 seconds) unless
otherwise is stated, and TL is used to represent it in the tables when the solver
terminates due to the time limit. Furthermore, in RBM we set the time limit to 600
seconds for the route-based model (3.7).

4.1 Experimental Data Design

LRPMT has no benchmark instances in literature. In order to generate different
problem instances in different sizes, we make use of CMT4 problem instance of
Christofides (1979) which contains a single depot and the locations and the demand
rates for 150 customers. Location of the DC in our instances is set to the location of
the depot in CMT4 instance. To test our methods with small to large scale problem
instances, we generate problem instances with:

• 2 possible regional depot locations, 10 customers: |I| = 2, |J | = 10

• 5 possible regional depot locations, 15 customers: |I| = 5, |J | = 15

• 10 possible regional depot locations, 30 customers: |I| = 10, |J | = 30
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• 15 possible regional depot locations, 50 customers: |I| = 15, |J | = 50

Customers of these instances are selected randomly from the CMT4 instance along
with their coordinates and the demand data. Possible locations for the regional
depots are determined using the k-means algorithm, in sense of the distribution of
customer locations might have an effect on pre-decided candidate regional depots
(Hartigan & Wong, 1979). The k-means algorithm involves iteratively assigning data
points to the clusters based on their distance from cluster centers and updating the
centers to minimize the distance within each cluster.

Regional depot opening cost, denoted by fi for i ∈ I, is generated randomly from
U[20000, 40000]. The additional parameters for our problem including the inbound
and outbound transportation costs, vehicle capacity, and the maximum route length
restriction are decided as follows. We determine 3 different levels for the outbound
vehicle capacity Q by scaling the average demand of each instance with 3, 4 and 5,
i.e. Q = βd̄ where d̄ is the average customer demand and β ∈ {3,4,5}. For example,
if the total demand for an instance that has 10 customers is 180, then the average
demand for this instance is d̄ = 18, and the vehicle capacity Q is set to 54, 72 and
90 for β = 3,4,5, respectively.

We assume that the unit vehicle usage cost for the outbound transportation depends
on the vehicle capacity. The unit vehicle usage cost c for the smallest vehicle is 2500,
and it increases proportionally with the capacity of the truck by the coefficient 0.8 for
representing the economies of scale. We assume that the unit inbound transportation
cost bi for regional depot location i ∈ I is proportional to the distance between the
DC and i, and given by bi = ti where ti represents the distance between the DC
and the regional depot location i. For the maximum distance limitation Cmax, we
consider three different levels by Cmax = γC̄ where C̄ represents the average distance
traveled in the optimal solution of the VRP model, i.e. total distance traveled is
divided by the number of vehicles used in the optimal solution, and γ = 1,2,3.

Consequently, for each I and J setting, we consider 9 different parameter values - 3
different β values, 3 different γ values. We also generate 3 random problem instances
for each setting. Since there are 4 different I and J levels, we generate 108 problem
instances in total.

4.2 Computational Results for 3IM

24



In this section, we present the results for the three-index model (3IM) given in the
previous chapter, the three-index model with valid inequalities (3IM-V), and 3IM-V
with a route-based model used as a warm start (3IM-V-RBM).

This part aims to observe the performance of 3IM in solving problem instances with
different sizes, and the effect of enhancements in the solution time and the optimality
gaps.

4.2.1 3IM and The Symmetry Breaking Constraints

In this section, we analyze the effect of using the symmetry breaking constraints
(3.2) in 3IM. Here, we consider all of the 9 different parameter settings for the 3
random problem instances with 2 regional depots and 10 customers, denoted by
D10-1, D10-2, D10-3, and with 5 regional depots 15 customers, denoted by D15-1,
D15-2, D15-3, and we report the average results over all parameter setting. More
specifically, in Table 4.1 we report the average run time (in seconds) for the instances
that are solved to optimality within the time limit, average percentage gap for the
instances that cannot be solved within the time limit and the number of instances
where an optimal solution is found.

Table 4.1 Effect of symmetry breaking inequalities in 3IM

3IM 3IM-V
Data Avg. Run Avg. Gap Optimal Avg. Run Avg. Gap Optimal
Set Time (s) (%) # Time (s) (%) #

D10-1 40 0.00 9 5 0.00 9
D10-2 38 0.00 9 4 0.00 9
D10-3 230 0.00 9 4 0.00 9
D15-1 2157 10.98 3 433 0.00 9
D15-2 6061 5.42 2 414 0.00 9
D15-3 1125 13.75 4 527 0.00 9

Table 4.1 shows the efficiency of symmetry breaking inequalities in 3IM by reducing
the solution times. We see that all instances of D10-1 and D10-2 are solved to
optimality by both 3IM and 3IM-V in very short times. Considering the data set
D15, the number of instances solved to optimality by 3IM within the time limit
decreases drastically. However, 3IM-V again finds optimal solutions for this data
set in relatively shorter times. Hence, we can conclude that 3IM with symmetry
breaking constraints performs definitely better in terms of the solution times and
the optimality gaps reported.
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Table 4.2 The worst 3 results of 3IM for the problem instances with 15 customers

Data Set β γ Gap (%)
5 1 23.66

D15-1 4 1 12.60
3 1 12.02
5 1 15.38

D15-2 3 2 6.85
4 2 5.02
5 1 32.81

D15-3 3 1 21.18
4 2 7.44

Table 4.2 shows the worst 3 results of 3IM for the problem instances with 15 cus-
tomers (D15). Recall that β and γ represent different levels of the vehicle capacity
Q, and the maximum allowed distance per vehicle Cmax, respectively. Note that the
worst optimality gaps within the time limit are observed when the truck capacity is
large and the max route length is small, i.e. β = 5, γ = 1. One potential explanation
for this situation is that finding a feasible solution might be also hard in this case.
Hence, improving the solution and decreasing the optimality gap is also harder for
3IM without symmetry breaking inequalities. From Table 4.2, we also see that the
results for the last random instance (D15-3) is worse than the other two random
instances, in general, and this shows the affect of the data in the problem difficulty.

As a result of these observations, in the remainder of the thesis we ignore 3IM and
continue our tests considering 3IM-V.

4.2.2 3IM-V with a Warm Start

In this section, we discuss the results of 3IM-V and 3IM-V with a warm start based
on our route-based model (3IM-V-RBM) that are given in Table 4.3.

We see that the performance of 3IM-V is affected significantly by the size of the
problem instance. Although 3IM-V solves all problem instances with 10 and 15 cus-
tomers to optimality, its performance declines considerably in the problem instances
with 30 and 50 customers. From Table 4.3, we observe that 3IM-V terminates with
optimality gaps between 25% and 35% in all D30-1 instances and in one D30-3 in-
stance within the time limit. The results get worse when the number of customers
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increases to 50. Note that 3IM-V cannot find a feasible solution within the time
limit - 5, 7 and 6 out of 9 for D50-1, D50-2 and D50-3, respectively.

Table 4.3 Three-index model with symmetry breaking constraints and with warm
start

3IM-V 3IM-V-RBM

Data Set Avg Run
Time (s)

Avg Gap
(%)

Opt #
(Feas. #)

Avg Run
Time (s)

Avg Initial
Gap %

Avg Gap
(%)

Opt #
(Feas #)

D10-1 5 0.00 9 (9) 4 47.23 0.00 9 (9)
D10-2 4 0.00 9 (9) 4 25.12 0.00 9 (9)
D10-3 4 0.00 9 (9) 3 38.46 0.00 9 (9)
D15-1 433 0.00 9 (9) 529 56.63 0.00 9 (9)
D15-2 414 0.00 9 (9) 342 54.33 0.00 9 (9)
D15-3 527 0.00 9 (9) 803 67.43 0.00 9 (9)
D30-1 TL 29.23 0 (9) TL 84.78 30.08 0 (9)
D30-2 7251 41.06 3 (6) TL 74.58 29.37 0 (9)
D30-3 3683 33.39 2 (7) 3658 83.72 28.35 1 (8)
D50-1 TL 50.19 0 (4) TL 81.45 62.15 0 (9)
D50-2 TL 58.06 0 (2) TL 84.03 67.39 0 (9)
D50-3 TL 50.75 0 (3) TL 87.92 68.27 0 (9)

The results of 3IM-V-RBM can be seen in the right part of Table 4.3. As problem
instances with 10 and 15 customers are already solved by 3IM-V very efficiently,
we observe no significant improvement with the addition of the warm start in these
data sets. Furthermore, average solution times slightly increase in some setting due
to the warm start. Besides, we observe that including the warm start reduces the
number of instances that are solved to optimality in some D30 instances which is
an undesired case. In other words, 3IM-V solves 3 instances (out of 18 instances) of
D30-2 to optimality while 3IM-V-RBM can not solve any. Hence, no improvement
is obtained, and additionally some decline is obtained with the addition of warm
start in D30 instances. But, for the instances with 50 customers, since our route-
based model model gives an initial feasible solution in very short times, 3IM-V-RBM
reports a feasible solution for all instances while 3IM-V cannot find a feasible solution
for more than half of the instances of D50. We also report the average percentage
gap of the initial solution (reported by the solver in the log file) that is provided by
the route based model under the column Avg Initial Gap. Note that 3IM-V-RBM
improves the initial solution in all settings.

From the results presented above, we conclude that 3IM-V works better without a
warm start when it can find a feasible solution for the problem. On the other hand,
when the problem size is very large and when 3IM-V cannot find a feasible solution,
it is better to provide a feasible solution to the model using a heuristic approach.
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4.3 Computational Results for Two-Index Model

In this section, we present the results for the two-index model (2IM) given in the
previous chapter, the two-index model with valid inequalities (2IM-V), and 2IM-V
with a route-based model used as a warm start (2IM-V-RBM).

Similar to the previous part, our main aim in this part is to observe the perfor-
mance of 2IM in solving problem instances with different sizes, and the effect of
enhancements in the solution time and the optimality gaps.

4.3.1 2IM and The Valid Inequalities

In this section, we analyze the effect of adding the symmetry breaking constraints
(3.5), and the valid inequalities (3.3) to 2IM. Similar to the previous section, we
run 2IM and 2IM-V, which denotes 2IM with the additional inequalities, for all
parameter settings (9 different settings) of the 3 random problem instances with 10
customers, denoted by D10-1, D10-2, D10-3, and report the average results in Table
4.4.

Table 4.4 Effect of additional inequalities in 2IM

2IM 2IM-V
Data Avg. Run Avg. Gap Optimal Avg. Run Avg. Gap Optimal # of instances
Set Time (s) (%) # Time (s) (%) # 2IM-V is better

D10-1 1732 0.00 9 237 0.00 9 8
D10-2 1694 0.00 9 115 0.00 9 9
D10-3 242 0.00 9 43 0.00 9 8

From Table 4.4, we see that both models find optimal solutions in all settings.
However, the average solution time of 2IM decreases drastically with the addition of
the valid inequalities as it can be observed from the running times of 2IM-V. From
the last column of the table, we also observe that 2IM-V is better again in terms of
the solution times in almost all of the settings considered. The settings where 2IM-V
performs worse have β = 3 and γ = 1, i.e. when the maximum distance allowed and
the truck capacity are small. One potential explanation for this situation is that
because of the potential multi-trip occurrence is significantly limited in this setting,
there might not be any feasible solution in which symmetry breaking constraints are
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useful. Hence, we can conclude that 2IM-V performs definitely better in terms of
the solution times in general.

4.3.2 2IM-V with a Warm Start

In this section, we discuss the affect of using a warm start, which is explained in
figure 3.2, with 2IM-V based on our route-based model. In Table 4.5, we report the
average run time (in seconds) for the instances that are solved to optimality within
the time limit, average percentage gap for the instances that cannot be solved within
the time limit and the number of instances where an optimal solution is found for
2IM-V and 2IM-V-RBM. From Table 4.5, we see that 2IM-V solves all D10 instances
in very short times, solves 3 out 9 instances of all D15 instances, and terminates
between 20% and 25% optimality gap in the other instances of D15. None of the
D30 and D50 instances can be solved by 2IM-V. The parameter settings where
performance of 2IM-V is relatively better (the optimality gap is smaller) is when
the maximum distance allowed per vehicle Cmax is small, i.e. γ = 1. Especially, all
of the problem instances solved to optimality in D15 have small Cmax values, i.e.
γ = 1, a similar behavior is observed in the other data sets. Note that providing
a feasible solution to 2IM-V as a warm start using our route-based model based
approach has negligible effect on the overall performance of 2IM-V.
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Table 4.5 Two-index model with the additional constraints and with warm start

2IM-V 2IM-V-RBM

Data Set
Avg Run
Time (s)

Avg Gap
(%)

Optimal
#

Avg Run
Time (s)

Avg Gap
(%)

Optimal
#

D10-1 253 0.00 9 236 0.00 9
D10-2 207 0.00 9 206 0.00 9
D10-3 30 0.00 9 30 0.00 9
D15-1 365 24,91 3 371 24.62 3
D15-2 15 21.06 3 15 21.06 3
D15-3 81 19.05 3 69 18.79 3
D30-1 TL 32.18 0 TL 32.02 0
D30-2 TL 28.81 0 TL 29.04 0
D30-3 TL 27.96 0 TL 27.60 0
D50-1 TL 40.26 0 TL 39.65 0
D50-2 TL 44.17 0 TL 44.46 0
D50-3 TL 40.88 0 TL 39.84 0

4.4 Overall Model Performance Comparison

In this section, we compare the best implementations of the two-index and three-
index models, namely 3IM-V, 3IM-V-RBM and 2IM-V in terms of their ability to
solve the problem instances, optimality gaps, and solution times. Recall that, β

and γ represent different levels of the vehicle capacity Q, and the maximum allowed
distance per vehicle Cmax, respectively.

Tables 4.6 - 4.9 present the average results of all parameter settings for the D10 -
D50 data sets over all randomly generated instances .
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Table 4.6 Results of 2IM-V, 3IM-V and 3IM-V-RBM for D10 instances

2IM-V 3IM-V 3IM-V-RBM
β γ Avg Run Avg Gap Avg Run Avg Gap Avg Run Avg Gap

Time (s) (%) Time (s) (%) Time (s) (%)
3 1 2 0 3 0 2 0

2 19 0 7 0 7 0
3 151 0 1 0 1 0

4 1 0 0 3 0 3 0
2 85 0 8 0 6 0
3 418 0 1 0 0 0

5 1 0 0 2 0 2 0
2 90 0 10 0 8 0
3 711 0 3 0 1 0

Average 164 0 4 0 3 0

Table 4.6 shows that all problem instances can be solved in short durations by all
models, but the solution times are shorter for the models 3IM-V and 3IM-V-RBM
compared to 2IM. Besides, there is no significant change in the performance of 3IM
with the usage of the warm start. We also observe that the solution time of 2IM
increases with the max route length parameter γ.

Table 4.7 Results of 2IM-V, 3IM-V and 3IM-V-RBM for D15 instances

2IM-V 3IM-V 3IM-V-RBM
β γ Avg Run Avg Gap Solved Avg Run Avg Gap Solved Avg Run Avg Gap Solved

Time (s) (%) # Time (s) (%) # Time (s) (%) #
3 1 94 0.00 3 535 0.00 3 753 0.00 3

2 TL 17.30 0 401 0.00 3 317 0.00 3
3 TL 22.53 0 106 0.00 3 140 0.00 3

4 1 119 0.00 3 765 0.00 3 810 0.00 3
2 TL 22.73 0 394 0.00 3 317 0.00 3
3 TL 23.67 0 166 0.00 3 180 0.00 3

5 1 258 0.00 3 1196 0.00 3 1052 0.00 3
2 TL 21.77 0 363 0.00 3 241 0.00 3
3 TL 21.20 0 239 0.00 3 178 0.00 3

Average 157 21.53 1 462 0.00 3 443 0.00 3

The superiority of 3IM-V over 2IM becomes clearer with the results given in Table
4.7. Note that all D15 instances are solved to optimality by both 3IM-V and 3IM-V-
RBM while only 9 (out of 27) instances can be solved by 2IM-V within the time limit.
Indeed, the solution times of 2IM-V are better than 3IM-V for these 9 instances.

31



However, 2IM-V terminates with optimality gaps larger than 20% on the average for
the other parameter settings. From Table 4.7, we also observe an interesting result.
While the performance of 2IM-V is the best for smaller Cmax values (γ = 1) compared
to the other γ values, a reverse result is observed for 3IM-V and 3IM-V-RBM since
the largest solution times are seen when Cmax is smaller (γ = 1). Comparing 3IM-V
and 3IM-V-RBM, again, we do not observe any significant improvement which is
consistent with our previous observation.

Table 4.8 Results of 2IM-V, 3IM-V and 3IM-V-RBM for D30 instances

2IM-V 3IM-V 3IM-V-RBM
β γ Avg Run Avg Gap Solved Avg Run Avg Gap Solved Avg Run Avg Gap Solved

Time (s) (%) # Time (s) (%) # Time (s) (%) #
3 1 TL 12.07 0 TL 63.43 0 TL 63.70 0

2 TL 39.40 0 TL 9.43 0 TL 7.90 0
3 TL 33.40 0 3770 6.80 2 TL 6.67 0

4 1 TL 11.93 0 TL 70.43 0 TL 68.87 0
2 TL 40.33 0 TL 10.40 0 TL 8.57 0
3 TL 34.87 0 4886 7.80 1 3685 7.80 1

5 1 TL 13.73 0 TL 73.40 0 TL 71.70 0
2 TL 44.53 0 6931 11.30 1 TL 12.50 0
3 TL 36.60 0 9762 8.50 1 TL 8.83 0

Average TL 29.65 0 5823 29.05 0.5 3685 28.05 0.1

Similar results can be observed from Table (4.8). 2IM-V performs better when γ = 1,
and for the other settings 3IM-V provides better results.

Table 4.9 Results of 2IM-V, 3IM-V and 3IM-V-RBM for D50 instances

2IM-V 3IM-V 3IM-V-RBM
β γ Avg Run Avg Gap Solved Avg Run Avg Gap Solved Avg Run Avg Gap Solved

Time (s) (%) # Time (s) (%) (Feas) # Time (s) (%) (Feas) #
3 1 TL 25.23 0 TL NA 0 (0) TL 82.83 0 (3)

2 TL 52.07 0 TL NA 0 (0) TL 63.37 0 (3)
3 TL 47.57 0 TL 49.85 0 (2) TL 52.60 0 (3)

4 1 TL 23.67 0 TL NA 0 (0) TL 81.93 0 (3)
2 TL 49.47 0 TL NA 0 (0) TL 60.67 0 (3)
3 TL 47.43 0 TL 50.10 0 (3) TL 49.37 0 (3)

5 1 TL 26.97 0 TL NA 0 (0) TL 83.70 0 (3)
2 TL 53.50 0 TL 56.50 0 (1) TL 66.00 0 (3)
3 TL 50.03 0 TL 54.20 0 (3) TL 52.93 0 (3)

Average TL 41.77 0 TL 52.66 0 (1) TL 65.93 0(3)

The results for our largest data set D50 are shown in Table 4.9 where NA is used for
the cases where a feasible solution cannot be obtained by the solver within the time
limit. First, note that none of these problem instances can be solved to optimality
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by any of our models. Since 3IM-V cannot find any feasible solution in most of
the parameter settings, this time the results of 3IM-V-RBM are better than 3IM-
V. From the previous tables for D10, D15 and D30 instances, we know that the
performance of 2IM is worse than the other models. However, interestingly, for D50
instances, the optimality gaps reported by 2IM-V are better than that of the other
models in all parameter settings. One possible explanation for this behavior is that
the number of variables in the 3IM and 3IM-V models is increasing much more
compared to the 2IM-V model. As a result, this increase in variables leads to an
increase in model complexity. Note that providing an initial solution to 3IM-V does
not help it to report a better optimaltiy gap than 2IM-V.

To sum up, while all models can solve small problem instances (D10) efficiently,
our three-index formulation with symmetry breaking constraints 3IM-V performs
better in medium sized instances (D15 and D30), and the two-index model with the
symmetry breaking constraints and valid inequalities reports better optimality gaps
in large problem instances (D50).
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4.5 Modeling Insights

In this section, we consider our data set with 15 customers (D15) and analyze the
structure of the optimal solutions to provide some business insights. We again
consider 9 parameter settings for the 3 random instances of D15, and additionally
introduce a new parameter setting γ = 0.75 to investigate the structure of the optimal
solutions.

We explore the advantages of the multi-trip environment and examine the relation-
ship between different parameter settings for each data set instance.

We first investigate the effect of allowing vehicles to perform multiple trips through-
out the day. To observe it, we solve the same problem instances under the traditional
restriction that each vehicle can perform at most one trip, called as LRP, and com-
pare the cost components with our problem LRPMT in Table 4.10 where I.C, D.C.,
O.C. and T.C. represent the inbound cost, regional depot opening cost, the out-
bound cost, and the total cost respectively. We also report the percentage reduction
in the total cost due to the usage of multiple trips under the last column of the
table. Also, Avg # V. and Avg # D. represent the average number of vehicles used
and the regional depots opened, respectively.

Table 4.10 The effect of allowing multiple trips

LRP LRPMT

Data Set Avg
I.C.

Avg
D.C.

Avg
O.C.

Avg
T.C.

Avg
# V.

Avg
# D.

Avg
I.C.

Avg
D.C.

Avg
O.C.

Avg
T.C.

Avg
# V.

Avg
# D.

Cost
Improvement

D15-1 4038 63218 15724 82980 5.58 2.5 4251 63212 12960 80422 4.58 2.5 3.2%
D15-2 3731 55099 14446 73276 5.17 2.0 3184 55761 12682 71627 4.50 2.0 2.3%
D15-3 3941 64893 17862 86696 5.92 2.25 3938 64893 16140 84970 5.33 2.25 2.0%

As it can be seen from Table 4.10, the average inbound cost and the depot opening
cost do not change so much with the inclusion of multiple trips. However, as ex-
pected, the outbound cost and consequently the total cost decrease when multiple
trips are allowed. Note that LRPMT uses less vehicles in all instances, and this is
the main reason of the decrease in the total cost. Hence, we could suggest a busi-
ness stakeholder to allow multiple trips as a general mentality in their supply chain
operations.

In Tables 4.11 and 4.12 the detailed results of LRP and LRPMT for the instances
D15-1 and D15-2 are given. We should remark that the parameter γ for the max-
imum distance allowed per vehicle is still available among the restrictions of LRP
to observe only the effect of multiple trip option. We first note that the number of
regional depots opened is the same for both models in all settings. However, we can
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Table 4.11 Multi-trip effect on the cost components for data set D15-1.
LRP LRPMT T.C Improvement

%β γ I.C D.C O.C T.C # of V. # of D. I.C D.C O.C T.C # of V. # of D.

3

0.75 4240 105570 20000 129810 8 4 4240 105570 20000 129810 8 4 0.0
1 4896 105780 15000 125676 6 4 5125 105780 12500 123405 5 4 1.8
2 4042 20590 12500 37132 5 1 3173 20880 10000 34053 4 1 8.3
3 3173 20880 12500 36553 5 1 5225 20800 5000 31025 2 1 15.1

4

0.75 4240 105570 21336 131146 8 4 4240 105570 21336 131146 8 4 0.0
1 4191 105570 16002 125763 6 4 4330 105570 13335 123235 5 4 2.0
2 3173 20880 10668 34721 4 1 4042 20590 8001 32633 3 1 6.0
3 3173 20880 10668 34721 4 1 3173 20880 5334 29387 2 1 18.2

5

0.75 4240 105570 26672 136482 8 4 4240 105570 26672 136482 8 4 0.0
1 4191 105570 16670 126431 5 4 4191 105570 16670 126431 5 4 0.0
2 3173 20880 13336 37389 4 1 3173 20880 10002 34055 3 1 8.9
3 3173 20880 13336 37389 4 1 3173 20880 6668 30721 2 1 17.8

Table 4.12 Multi-trip effect on the cost components for data set D15-2.
LRP LRPMT T.C Improvement

%β γ I.C D.C O.C T.C # of V. # of D. I.C D.C O.C T.C # of V. # of D.

3

0.75 4153 118060 17500 139713 7 4 4153 118060 15000 137213 6 4 1.7
1 2418 57290 17500 77208 7 2 2593 57290 15000 74883 6 2 3.0
2 1642 25170 12500 39312 5 1 1642 25170 10000 36812 4 1 6.3
3 4784 21200 12500 38484 5 1 4784 21200 7500 33484 3 1 12.9

4

0.75 4153 118060 16002 138215 6 4 4153 118060 16002 138215 6 4 0.0
1 2696 57290 16002 75988 6 2 2593 57290 16002 75885 6 2 0.1
2 4784 21200 10668 36652 4 1 4784 21200 10668 36652 4 1 0.0
3 4784 21200 10668 36652 4 1 1642 25170 5334 32146 2 1 12.3

5

0.75 4153 118060 20004 142217 6 4 4153 118060 20004 142217 6 4 0.0
1 2418 57290 20004 79712 6 2 2418 57290 20004 79712 6 2 0.0
2 1642 25170 10002 36814 3 1 1642 25170 10002 36814 3 1 0.0
3 4784 21200 10002 35986 3 1 1642 25170 6668 33480 2 1 6.9

see that number of vehicles used is decreasing when γ is increasing. i.e. when the
maximum distance allowed per vehicle Cmax is increasing, since the trucks can visit
more customers and perform more trips during their routes in this case. Besides,
when Cmax is very small, i.e. γ = 0.75, there is no difference between the solutions
of the models. Furthermore, the number of vehicles used difference between LRP
and LRPMT is increasing when β parameter level is increasing and γ levels kept
the same. The results are consistent with the D15-3 data set which can be found
in Appendix. Hence, our main observation from these tables is that multiple trip
option is more valuable (provides more benefit) when the maximum distance allowed
per vehicle is large but the vehicle capacities are small or medium sized.
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Figure 4.1 γ parameter level effect on objective components

Next, we investigate the effect of max route length parameter Cmax (γ) on the
cost components in Figure 4.1. By intuition, we expect to see the outbound cost to
decrease while the max route length parameter Cmax (γ) increases since the problem
becomes more relaxed and it might be possible to fulfill the customer demand with
less vehicles. This can be observed from the figure. Furthermore, the regional depot
opening cost seems to decrease while the max route length parameter increases. One
possible explanation is that, when the traveling range of the vehicles increases the
customer points that are further away could be satisfied without having opening a
depot that is closer to that customer point. Finally, for the inbound cost levels, the
inbound cost seems to decrease when max route length parameter level increases.
Because of the trucks can travel farther away, which decreases the number of depots
that must be opened again farther away from DC, its effect decreases the inbound
cost levels as well.
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Table 4.13 γ parameter effect on relative KPIs

Data set γ Average Vehicle Count Average # of Depots Average trip per Truck

D15-1

0.75 8.0 4.0 1.1
1 5.0 4.0 1.4
2 3.3 1.0 1.5
3 2.0 1.0 2.8

D15-2

0.75 6.0 4.0 1.2
1 6.0 2.0 1.1
2 3.7 1.0 1.4
3 2.3 1.0 2.1

D15-3

0.75 8.0 4.0 1.2
1 7.0 3.0 1.1
2 3.7 1.0 1.5
3 2.7 1.0 2.1

Table 4.13 indicates the effect of the max route length parameter γ on the number
of vehicles used, number of opened depots and the average trip per truck. The
results are consistent with Figure 4.1. When max route length parameter level
increases, in general, the number of vehicles used and number of depots opened
decrease. Furthermore, the average trip per truck also increases because a truck can
perform more trips with the relaxation of the total distance traveled. Therefore, as
a business point of view, we could indicate that having a more range allowance for
each truck could yield a less number of depots, vehicles and in general less cost for
their operations.

Next, Figure 4.2 displays the effect of truck capacity levels (β) on the objective
components. As explained in the experimental data design section, the unit cost of
the truck increases proportional to the capacity of the truck. Hence, if the number
of vehicles used in the solutions for two different β values are the same, then the
outbound cost for larger β value will be larger. This can be observed in Figure 4.2
(the graph for O.C.) when β increases from 4 to 5. Also note that the outbound
cost stays the same when β increases from 3 to 4. This means that using larger
but more expensive vehicles is not beneficial for the inbound transportation when
multiple trip option is available. Moreover, the inbound cost seems to be staying
the same or decreasing while increasing the truck cost and capacity levels. Depot
cost seems to be stay at the same level majority of the time and finally as expected
the truck cost component of the objective is increasing.
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Figure 4.2 β level effect on objective components.

One discussion point is that, whenever we increase the capacity and therefore the
unit cost of the truck, we would expect to use less trucks, but this does not guarantee
a decrease in the total transportation cost. Therefore, in Table 4.14 we report the
number of vehicles used, number of opened depots and average trip per truck values
for different β values.

Table 4.14 β parameter effect on relative KPIs

Data set β Average Vehicle Count Average # of Depots Average trip per Truck

D15-1
3 4,8 2,5 2,0
4 4,5 2,5 1,7
5 4,5 2,5 1,5

D15-2
3 4,8 2,0 1,5
4 4,5 2,0 1,5
5 4,3 2,0 1,4

D15-3
3 5,5 2,3 1,6
4 5,5 2,3 1,4
5 5,0 2,3 1,4

The average vehicle count is decreasing while the β parameter level is increasing.
However, the overall outbound cost is increasing in this case as it can be seen from
Figure 4.2 because of the economies of scale that we assumed in our parameter set-
ting. Hence, we can conclude that though using larger vehicles require less vehicles
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in total, if larger vehicles are expensive, then it does not make sense to use them.
Furthermore, the average number of depots that is opened is not changing for any of
the parameter levels given. Finally, we see a slight decrease on the average trip per
truck with increasing β. One possible explanation is that, model seems to utilize
vehicles more when β is increasing, and therefore the multi-tripping option becomes
unnecessary.

Table 4.15 Inbound cost parameter effect on relative KPIs

Data Set Inbound Cost
Average

Vehicle Count
Average

# of Depots
Average

Trip per Truck
Average

I.C.
Average

D.C.
Average

O.C.

D15-1
1.0 Scaled 4.58 2.5 1.65 4027 63212 12960
2.0 Scaled 4.67 2.5 1.66 7626 63218 13168
3.0 Scaled 4.75 2.5 1.59 11220 63201 13377

D15-2
1.0 Scaled 4.50 2 1.46 3017 55761 12682
2.0 Scaled 4.50 2 1.55 4543 56423 12682
3.0 Scaled 4.50 2 1.60 6815 56423 12682

D15-3
1.0 Scaled 5.33 2.25 1.53 4136 64893 16140
2.0 Scaled 5.33 2.25 1.48 8933 64893 16140
3.0 Scaled 5.33 2.25 1.45 13400 64893 16140

Next, we investigate the effect of the inbound cost bi. We scale the unit inbound
cost by multiplying bi with 2.0 and 3.0, and the results can be found in Table
4.15. Considering D15-1 data set and comparing the scaling factors 1.0 and 2.0, we
observe that the difference occurs due to the selection of different depot locations
with higher fixed costs, using more trucks but saving from the increasing (with the
power of scale) inbound cost. The same behaviour is observed between the scales
of 2.0 and 3.0 of D15-1. Furthermore, in the D15-2 data set when the inbound
cost is scaled by 2, the average depot opening cost increases as a the result of the
selection of different depot locations. Hence, the value of the inbound cost affects
the locations of the regional depots that will be opened, and this also affects the
inbound transportation cost.

Finally, to analyze the impact of depot opening cost, we scale the depot opening
cost by 0.5 and 2, and report the results in Table 4.16. The number of vehicles
used in the outbound transportation and the number of regional depots opened do
not change with the depot opening cost. Furthermore, average multi trip per truck
seems to change with the scale. However, this difference has no trend in any data-
set. One potential explanation is that there might be multiple optimal solutions
which consists the same number of trucks and multi-trip number could vary within
the max route length (γ) limitations which creates the variation.

There are slight differences occurred in D15-2 data set instance. Considering the
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Table 4.16 Depot cost parameter effect on relative KPIs

Data Set Depot Cost Average
Vehicle Count

Average
# of Depots

Average
Trip per Truck

Average
I.C.

Average
D.C.

Average
O.C.

D15-1
0.5 Scaled 4.58 2.50 1.66 4027 31606 12960
1.0 Scaled 4.58 2.50 1.65 4027 63212 12960
2.0 Scaled 4.58 2.50 1.76 4027 126423 12960

D15-2
0.5 Scaled 4.50 2.00 1.52 2493 28211 12682
1.0 Scaled 4.50 2.00 1.46 3017 55761 12682
2.0 Scaled 4.83 2.00 1.37 4064 108875 13668

D15-3
0.5 Scaled 5.33 2.25 1.46 4136 32446 16140
1.0 Scaled 5.33 2.25 1.53 4136 64893 16140
2.0 Scaled 5.33 2.25 1.58 4136 129785 16140

scales between 0.5 and 1.0, the main cause of the difference is model’s selection of
different depots which has less cost but higher inbound cost. Furthermore, consider-
ing scales between 1.0 and 2.0 the same behavior occurred with an additional more
vehicle usage. Because of the power of scale, depot opening costs increases rapidly
and model is tend to select the depots with less fixed cost and using the depots
with higher inbound cost and even using extra vehicles. Thus, model’s behaviour
for minimization of the total cost is consistent with the relative actions that is taken
which is explained above. Hence, we can way that the number of depots opened
is not affected but the locations might be affected with the changes in the regional
depot opening cost.

We summarize our findings as follows:

• The maximum distance allowed per vehicle should be larger to get the most
benefit from the multiple trip option.

• When the maximum distance allowed per vehicle is larger, the company might
need less number of regional depots to reduce the total cost.

• If larger vehicles are expensive, then it is better to use smaller (or medium
sized) vehicles with longer ranges to minimize the total cost.

• The changes in the depot opening cost do not change the structure of the
solutions so much.
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5. CONCLUSION AND FUTURE RESEARCH

In this thesis, we study a location-routing problem with multiple trips arising in
e-commerce delivery option under the max route length per vehicle constraints.
To the best of our knowledge, this problem is not studied in the literature before.
We present two main models (3IM and 2IM) and strengthen them by using valid
inequalities (3IM-V and 2IM-V). These valid inequalities mainly focus on breaking
the symmetry due to the truck usages and trip merging. Also, we present a route
based model (RBM) to determine a feasible solution for the problem in very short
times, and we further use it as a warm-start model for 3IM-V and 2IM-V to improve
the performance of our exact methods.

Since we introduce a new problem to the literature, there exists no benchmark
instances for the problem. Using the CMT4 instance of Christofides (1979), we gen-
erate different problem instances and test our solution methods. We first observe
that the addition of the valid inequalities definitely improve the mathematical mod-
els 2IM and 3IM. Besides, while 3IM-V can solve small to medium sized instances
in shorter times, it struggles to find even a feasible solution for larger problem in-
stances. On the other hand, 2IM-V performs better in larger problem instances
though its performance is inferior in the small and medium sized instances com-
pared to 3IM-V. Hence, we can state that these two model types are complements
to each other for solving problem instances in different sizes. As a business point
of view, we observe that allowing trucks to have more range of mobility, in other
words relaxing the distance constraint parameter, allows us to use less trucks and
utilizes the multi-tripping option more. Also, the number of regional depots opened
decreases in this case.

There exist studies on VRPMT where the time windows constraints are considered
in place of the maximum distance allowed per vehicle, and this can be considered
for our problem in a future research. Besides, we assume that there are no capacity
limitations for the regional depots that will be opened, and this might be relaxed
in a future work. Besides, there might be multiple distribution centers. The pool of
routes used in our route based model RBM could be extended with other heuristic

41



algorithms such as Clarke and Wright savings algorithm (Clarke & Wright, 1964).
Besides, alternative and more sophisticated heuristic methods such as ALNS and
GRASP might be used to provide initial solution to the models to obtain better
results for larger instances.
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APPENDIX A

Table A.1 Multi-trip effect on the cost components for data set D15-3.
2E-LRP 2E-LRPMT T.C Improvement

%Beta Gamma I.C D.C O.C T.C # of V. # of D. I.C D.C O.C T.C # of V. # of D.

3

0.75 4428 118470 22500 145398 9 4 4427 118470 20000 142897 8 4 1.7
1 4764 92860 17500 115124 7 3 4718 92860 17500 115078 7 3 0.0
2 3719 24120 12500 40339 5 1 3719 24120 10000 37839 4 1 6.2
3 3719 24120 12500 40339 5 1 3719 24120 7500 35339 3 1 12.4

4

0.75 4367 118470 21336 144173 8 4 4367 118470 21336 144173 8 4 0.0
1 4718 92860 18669 116247 7 3 4718 92860 18669 116247 7 3 0.0
2 3719 24120 10668 38507 4 1 3719 24120 10668 38507 4 1 0.0
3 3719 24120 10668 38507 4 1 3719 24120 8001 35840 3 1 6.9

5

0.75 4367 118470 32000 154837 8 4 4367 118470 32000 154837 8 4 0.0
1 4718 92860 28000 125578 7 3 4718 92860 28000 125578 7 3 0.0
2 3719 24120 16000 43839 4 1 3719 24120 12000 39839 3 1 9.1
3 3719 24120 12000 39839 3 1 3719 24120 8000 35839 2 1 10.0
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