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ABSTRACT 

 

 

INCOMPLETE ANALYTIC HIERARCHY PROCESS (AHP) SOLUTION 

METHODOLOGIES 

 

 

DOĞUKAN ZORLU 

Industrial Engineering, MSc. Thesis, July 2023 

Thesis Supervisor: Assoc. Prof. Dr. Kemal Kılıç 

 

Keywords: Analytic Hierarchy Process, Incomplete Information, Decision Making, 

Pairwise Comparisons, Completion Methodologies 

 

Analytic hierarchy process (AHP) is a well-known multi criteria decision making method. 

It relies on matrices constructed through pairwise comparisons of criteria and alternatives 

by decision makers. In the literature, AHP has been proven effective in assessing weights 

of criteria and/or relative scores of alternatives. However, in order to utilize the AHP 

method, it is necessary for the decision maker to determine complete matrices, meaning 

that the decision maker must assign all pairwise comparisons into the matrices. This 

requirement may not always be feasible due to reasons such as the decision maker's 

inadequate knowledge in certain pairwise comparisons, uncertainty in the pairwise 

comparisons, and time constraints. In the literature, several algorithms have been 

proposed to address this issue, but there is no consensus on the best algorithm. In this 

study, we provided a comparative analysis of the existing algorithms. Furthermore, we 

also introduced new parametric heuristic algorithms for the incomplete AHP framework. 

The proposed algorithms were also compared with the existing algorithms in different 

experimental conditions. The performances of these methods were assessed utilizing 

metrics from the literature as well as a metric developed for the incomplete AHP 

framework in this research. The comparisons were conducted in two types of 

experiments, i.e., numerical and empirical. According to the results of these experiments, 

the developed algorithms were competitive, and even demonstrated better performance 

under some experimental conditions. 
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ÖZET 

 

 

TAMAMLANMAMIŞ ANALİTİK HİYERARŞİ PROSESİ (AHP) ÇÖZÜM 

METODOLOJİLERİ 

 

 

DOĞUKAN ZORLU 

Endüstri Mühendisliği, Yüksek Lisans Tezi, Temmuz 2023 

Tez Danışmanı: Assoc. Prof. Dr.  Kemal Kılıç 

 

Anahtar Kelimeler: Analitik Hiyerarşi Süreci, Eksik Bilgi, Karar Verme, İkili 

Karşılaştırmalar, Tamamlama Yöntemleri 

 

Analitik hiyerarşi prosesi (AHP) çok kriterli karar verme yöntemi olarak bilinen bir 

yöntemdir. AHP, karar vericiler tarafından kriterler ve alternatifler arasında ikili 

karşılaştırmalarla oluşturulan matrislere dayanır. Literatürde, bu yöntemin kriterlerin 

ağırlıklarını ve/veya alternatiflerin göreceli puanlarını değerlendirmede etkili olduğu 

kanıtlanmıştır. Fakat, AHP yönteminden yararlanmak için karar vericinin tam matrisler 

oluşturması gereklidir, yani karar vericinin bütün ikili karşılaştırmaları matrislere ataması 

gerekir. Bu gereklilik, uzmanın bazı ikili karşılaştırmalarda yetersiz bilgiye sahip olması, 

ikili karşılaştırmalardaki belirsizlik ve zaman sınırlaması gibi nedenlerden dolayı her 

zaman mümkün olmayabilir. Literatürde, bu sorunu ele almak için birkaç algoritma 

önerilmiştir, fakat en iyi algoritma konusunda fikir birliği yoktur. Bu çalışmada, mevcut 

algoritmaların karşılaştırmalı bir analizini sunduk. Ayrıca, tamamlanmamış AHP 

çerçevesi için yeni parametrik sezgisel algoritmalar da tanıttık. Tanıtılan algoritmalar, 

farklı deneysel koşullarda mevcut algoritmalarla da karşılaştırılmıştır. Bu yöntemlerin 

performansları, literatürdeki metriklerin yanı sıra bu araştırmada tamamlanmamış AHP 

çerçevesinde geliştirilen bir metrik kullanılarak değerlendirilmiştir. Karşılaştırmalar, 

sayısal ve deneysel olmak üzere iki tür deneyde gerçekleştirilmiştir. Bu deneylerin 

sonuçlarına göre, tanıtılan algoritmalar rekabetçi bir performans sergilemiş ve bazı 

deneysel koşullar altında daha iyi performans göstermiştir. 
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1. INTRODUCTION 

 

 

Decision making deals with the process of determining and selecting alternatives 

according to the preferences of decision makers. It should consider the pros and cons of 

each choice. It is a crucial phenomenon since people are always making decisions in their 

social lives, business, and economics. However, determining the priority of each 

alternative can be challenging, especially when the number of alternatives is enormous, 

and subjectivity is an issue. This challenge arises from the ambiguity of the alternatives 

or complexity of the decision-making process itself.  In order to address this challenge, 

decision makers might rely on knowledge of the relative importance of alternatives rather 

than on extracting their exact value. Some researchers have suggested that eliciting 

judgments on two alternatives separately is easier than eliciting judgments on all 

alternatives simultaneously. Choo et al. (2016) proposed that the use of pairwise 

comparison is the preferred methodology to extract human preferences, as this approach 

evaluates options in a binary manner, making it less cognitively demanding than 

evaluating all options at once. This consideration might be all the more important 

considering the work of Miller (1956), who suggested that the human brain stores a 

limited amount of information which includes between five and nine items in working 

memory.  

Another common issue is transitiveness. In the ideal scenario data, which comes from 

decision makers are transitive, meaning that if alternative A has a higher utility than that 

of B and B has a higher utility than that of C, then A has a higher utility than that of C. 

Note that consistency and transitivity are interconnected concepts. The presence of 

consistency leads to transitivity. Unfortunately, real-world situations are complicated by 

perturbations, noise, or subjective biases, which make it challenging to achieve 

consistency and transitivity (Davis 1958, Saaty 1977, Bessi et al. 2015). 
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One of the effective methodologies that deals with the decision-making phenomenon 

even if the above challenges are present is analytic hierarchy process (AHP), which was 

introduced by Saaty (1972, 1977). AHP is a decision-making methodology designed to 

support decision makers when dealing with complex problems that includes multiple 

subjective and conflicting criteria (Ishizaka and Labib, 2011). According to Emrouznejad 

and Marra (2017), AHP is considered to be a leading decision-making approach since it 

includes subjective factors to be taken into account. AHP has been successfully applied 

in a wide range of fields such as, warehouse network evaluation (Korpela and 

Lehmusvaara 1999), supplier selection (Chamodrakas et al., 2010), project selection 

(Amiri, 2010), the health sector (Saaty and Vargas, 1998), marketing (Wind and Saaty, 

1980), university evaluation (Lee, 2010), human resource manager selection 

(Kusumawardani and Agintiara, 2015), and other various domains. 

AHP is a very flexible approach and can handle many situations, some of which have 

already been mentioned. However, it has several limitations, some of which are ranking 

reversal, complexity, sufficient expertise knowledge, and incomplete data. The ranking 

reversal issue refers to a situation in which the relative ranking of alternatives changes 

when new alternatives are added or deleted. In other words, the ranking of alternatives is 

not consistent. The complexity issue may arise from the nature of the decision-making 

problem itself. When the problem includes numerous criteria and alternatives, the 

pairwise comparisons might become more complex and time-consuming. The correctness 

and reliability of AHP is highly related to the decision maker who is the expert of the 

subject under consideration. A lack of expertise in a decision maker may lead to 

inconsistent or unreliable results. Missing data may cause a major issue in AHP since 

consistency and accuracy highly depend on complete and precise data on the pairwise 

comparisons. Several solutions to these challenges have been published in AHP literature. 

However, they are out of the scope of this research except for the issue of incomplete data 

in AHP.  

Handling incomplete data in pairwise comparison matrices has been a frequently 

discussed topic in the AHP literature. Several studies have suggested a methodology 

which copes with the incompleteness issue (e.g., Harker, 1987a; Harker, 1987b; Carmone 

et al., 1997; Bozóki et al., 2010; Gomez-Ruiz et al., 2010; Oliva et al., 2017; Zhou et al., 

2018; Menci et al., 2018; Oliva et al., 2018). These studies can be classified into two 

subsets: reconstructing methods and sparse methods. Reconstructing methods aim to fill 
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in the missing entries in the pairwise comparison matrix, and then identify the rankings 

and priorities. In contrast, sparse methods utilize the pairwise comparison matrix as it is, 

without modification, to determine the rankings and priorities. Although there are many 

studies on reconstructing methods in the AHP literature (Harker, 1987a; Carmone et al., 

1997; Bozóki et al., 2010; Gomez-Ruiz et al., 2010; Zhou et al., 2018), sparse methods 

have also been the subject of recent research (Oliva et al., 2017; Menci et al., 2018; Oliva 

et al., 2018).  

There are several reasons why pairwise comparison matrix in AHP can be incomplete, 

such as time complexity, insufficient knowledge or vagueness about expertise in certain 

comparisons, and loss of collected data. In AHP, it is sufficient to conduct n(n-1)/2, where 

“n” represents the alternative number, pairwise comparisons per criterion since AHP 

assumes that the data collected from decision makers is reciprocal. This means that if A 

is rated as three times better than B, then B must be rated as one-third as good as A. 

Moreover, the diagonal entries of the pairwise comparison matrix must be one since each 

element is equivalent to itself. Thus, it is sufficient to complete one triangular section of 

the matrix (ex. upper right triangular). When the alternatives or criteria number are huge, 

it may be inefficient or time consuming to gather all of the necessary entries. When the 

decision maker has not established a strong perspective on certain assessments, it may be 

preferable to let them skip the question rather than compel them to make an unreliable 

estimate. Carmone et al. (1997) conducted an experimental study in which entries are 

removed from matrices having various sizes of 10, 15, 20. The results of the study 

demonstrated that it is possible to eliminate up to 50% of the entries in the pairwise 

comparison matrix without causing a significant decrease in the outcome. 

When determining priorities, the goal is to establish a consistent matrix whose entries 

represent the ratios of one priority to another. The entries in this matrix should match the 

pairwise comparison matrix collected from the decision maker. Moreover, it should have 

minimal deviation when slight inconsistencies are present. Several approaches to derive 

these priorities can be found in the AHP literature.  According to Saaty (1977), the 

preferred priorities can be determined by the principal eigenvector w. Following Saaty's 

innovative work, several methods for deriving priority vectors have been proposed. One 

of these was created by Crawford and Williams (1985). These authors addressed the issue 

of rank reversal in the eigenvector method and adapted an alternative technique called the 

logarithmic least squares method.  
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The incomplete AHP literature has also benefited from work in other disciplines to 

address the issues of calculating missing entry or determining priorities. Harker (1987b) 

suggested an approach for filling the missing entries based on the concept of connecting 

path. This approach involves calculating all indirect comparisons based on the transitivity 

rule and taking the geometric mean of these comparisons to assess the missing entry. 

Zhou et al. (2018) utilized decision-making and trial evaluation laboratory (DEMATEL) 

methodology and adapted it to reconstruct an incomplete pairwise comparison matrix. 

Olivia and colleagues (2017) adopted the eigenvector introduced by Saaty to sparse 

context to derive priorities. In 2018, Menci and colleagues introduced three alternative 

methodologies for finding priorities in sparse settings. These techniques are based on 

well-known methods in the several literatures including Metropolis-Hastings Markov 

chains (Metropolis et al., 1953), Heat-Bath Markov chains (Achlioptas et al., 2005), and 

formation control (Fax and Murray, 2004). 

Evaluating the accuracy of priorities is another important issue. There are various 

evaluation metrics available in the literature, including consistency index, consistency 

ratio, and compatibility index. However, when using these indices, which were designed 

for complete pairwise comparison matrices, on incomplete pairwise comparison matrices, 

it is essential to consider the assumptions and meanings behind them.  For instance, in a 

sparse setting where some entries are zero, the compatibility index becomes meaningless 

because the elementwise product of the missing entries yields 0 which reduces the 

compatibility index. The decline in the compatibility index is not due to the integrity of 

the assigned values, but rather it arises from the emptiness of the matrix. Furthermore, 

using the consistency index of an incomplete matrix is inappropriate since it assumes a 

complete matrix. Therefore, when the pairwise comparison matrix is incomplete, it may 

be necessary to develop new metrics or modify existing ones to evaluate priorities 

accurately. 

This research focuses on incomplete pairwise comparison matrix methodologies in the 

context of AHP. Some of the key accomplishments of this study are as follows: 

1. Novel parametric heuristic algorithms were created to handle an incomplete 

pairwise comparison matrix in the context of AHP. 
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2. A new metric, that is suitable for incomplete context, was developed. The 

relationships between the newly introduced metric and the metrics that are 

suitable in incomplete AHP framework were analyzed, and correlations were 

investigated. 

3. Methodologies for handling incomplete pairwise comparison matrices in 

incomplete AHP literature were statistically compared among themselves and 

with the proposed algorithms by several metrics under varying experimental 

designs.  

4. Methodologies were evaluated through both numerical and empirical studies. 

The rest of this thesis is organized as follows. Chapter 2 covers preliminary definitions 

and notations. Chapter 3 provides a review of existing algorithms in the literature. Chapter 

4 introduces proposed parametric heuristic algorithms and explains the motivation behind 

them. The numerical and empirical experimental designs are also introduced in chapter 

4. Chapter 5 presents, results and discussion. Chapter 6 concludes this research and 

discusses future research areas. 
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2. GENERAL NOTATIONS AND PRELIMINARIES 

 

 

2.1. General Notations 

 

Number of alternatives are demonstrated as n. Vectors are represented using italic, 

boldface, and lowercase letters (e.g., vector v is shown as v), whereas matrices are denoted 

using italic and uppercase letters (e.g., matrix A is shown as A). Additionally, the (𝑖, 𝑗)𝑡ℎ  

entry of a matrix A is represented by 𝐴𝑖𝑗, and the 𝑖𝑡ℎ entry of a v is represented by 𝒗𝒊. If 

we have a vector v that belongs to ℝn, then D(v) is an n × n diagonal matrix where the 

𝑖𝑡ℎ  diagonal entry is 𝒗𝒊.  An identity matrix is denoted by 𝐼𝑛. Furthermore, A ○ B 

represents the Hadamard product, which is the element-wise product of two matrices A 

and B that have the same dimensions.  

 

2.2. Preliminaries 

 

Definition 1: Analytic hierarchy process (AHP) is a multi-decision-making method that 

was developed by Saaty (1972, 1977). In general, AHP involves four main steps including 

problem modelling, pairwise comparison matrix creation, priority weights calculation and 

consistency measurement. In the first step a hierarchical structure is created by breaking 

down the decision problem into smaller components. The second step involves creating 

pairwise comparison matrices (PCMs) to assess the relative importance of alternatives. 

Each element in the PCM is usually determined by using a Saaty scale of values ranging 

from 1 to 9 (Table 1). In the third step the priority weights of the alternatives are calculated 

based on the PCMs. In the last step, the consistency of the PCMs is measured for 
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reliability. The main objective of AHP is to prioritize the alternatives and allocate weight 

to each of them in accordance with the pairwise comparisons.  

Table 1 Saaty scale 

Definition Intensity of Importance 

Equal Importance 1 

Moderate Importance 3 

Strong Importance 5 

Demonstrated Importance 7 

Extreme Importance 9 

Intermediate Values 2, 4, 6, 8 

 

Definition 2: Pairwise Comparison Matrix (PCM) Let X be a n × n PCM, where 𝑋𝑖𝑗 

represents the relative importance of 𝑖𝑡ℎ criteria on 𝑗𝑡ℎ  criteria. Moreover, X should satisfy 

the following conditions. 

 𝑋𝑖𝑗 > 0 and 𝑋𝑖𝑗 = {
1/𝑋𝑗𝑖     𝑖𝑓 𝑖 ≠ 𝑗

1           𝑖𝑓 𝑖 = 𝑗
 (2.1) 

In the context of incomplete AHP, it can be modified as follows. 

 𝐴𝑖𝑗 = {
           𝑋𝑖𝑗       𝑖𝑓 𝑖𝑡 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛

   1              𝑖𝑓 𝑖 = 𝑗
       0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2.2) 

Definition 3: True Priority Vector v = [𝒗𝟏, 𝒗𝟐, …, 𝒗𝒏] is the ideal depiction of the 

decision maker’s preferences. It can be used as a benchmark for evaluating the 

performance of the process. 

Definition 4: Calculated Priority Vector w = [𝒘𝟏, 𝒘𝟐, …, 𝒘𝒏] is the weight of the 

alternatives derived by a methodology. According to Saaty (1977) w is reproduced by the 

principal right eigenvector which corresponds to the maximum eigenvalue of the PCM 

(Equation 2.3). The main objective is to extract a weight vector that closely mates the true 

priority vector. In other words, to minimize the deviation between the calculated priority 

vector and the true priority vector. Large deviation can be seen as inconsistency in the 

process. 
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 Xw = 𝝀𝒎𝒂𝒙  w (2.3) 

Definition 5: Consistency Index (CI) and Consistency Ratio (CR) were characterized 

by Saaty.  

The Consistency Index is defined in equation 2.4. 

 CI = 
𝝀𝒎𝒂𝒙  − 𝑛

𝑛 − 1
 (2.4) 

The Consistency Ratio is expressed below.  

 CR = 
CI

RI
 (2.5) 

where RI is the Random Index, which is the average of the consistency indexes obtained 

from randomly generated PCMs. It depends on the dimension of PCMs and some of the 

values of RI are shown below (Table 2) (Hayrapetyan, 2019). If CR ≤ 0.1 then the derived 

PCM can be acceptable, which means PCM is sufficiently consistent. If CR = 0, PCM is 

fully consistent (Saaty, 1977). 

Table 2 Random index values 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.52 0.89 1.13 1.25 1.35 1.43 1.47 1.5 

 

Definition 6: Theoretical Pairwise Comparison Matrix (W) is a n × n matrix which is 

calculated from w. The value of 𝑊𝑖𝑗 is the ratio of 𝑖𝑡ℎ  entry of w over 𝑗𝑡ℎ  entry of w. 

Definition 7: True Theoretical Pairwise Comparison Matrix (V) is a n × n matrix 

which is constructed from v. 𝑉𝑖𝑗  is the ratio of 𝑖𝑡ℎ of v entry over 𝑗𝑡ℎ  entry of v. 

Definition 8: Kendall’s Correlation Index (Kendall’s tau, τ) is an index, which was 

created by Kendall (1938), for identifying the degree of relevance between two vectors 

(v, w) based on ordinal or ranked data. It evaluates the strength of the association between 

these vectors. Kendall’s tau can change between -1 and 1. If τ = +1, it shows that v and w 

have the identical order. On the other hand, if τ = -1, it means that they have opposite 

order. In other words, if tau is closer to 1, it shows that two vectors are correlated. If tau 

is closer to -1, it represents that two vectors are anti-correlated. Lastly, if tau is closer to 

0, it means that two vectors have no correlation. 
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Two pairs of values (𝒗𝒊, 𝒘𝒊) and (𝒗𝒋, 𝒘𝒋) are concordant if both 𝒗𝒊< 𝒗𝒋 and 𝒘𝒊< 𝒘𝒋 or 

both 𝒗𝒊 > 𝒗𝒋 and 𝒘𝒊  > 𝒘𝒋. Two pairs of values (𝒗𝒊, 𝒘𝒊) and (𝒗𝒋, 𝒘𝒋) are discordant if both 

𝒗𝒊 < 𝒗𝒋  and 𝒘𝒊  > 𝒘𝒋 or both 𝒗𝒊 > 𝒗𝒋 and 𝒘𝒊< 𝒘𝒋. Moreover, if 𝒗𝒊 = 𝒗𝒋   or 𝒘𝒊  = 𝒘𝒋 the 

pairs are considered to be neither concordant nor discordant. Let v and w belongs to  ℝn, 

then τ is calculated as follow. 

 𝛕 = 
2(|C| − |D|)

𝑛(𝑛 − 1)
 (2.6) 

where C represents the set of concordant pairs and D represents the set of discordant pairs. 

Definition 10: Compatibility Index Value (CIV), which is a metric described by Saaty 

(1994), demonstrates the deviation between X and W. CIV is defined in equation 2.7. 

 CIV = 
1

𝑛2
∑ ∑ 𝑋𝑖𝑗

𝒘𝒋

𝒘𝒊

𝑛
𝑗=1

𝑛
𝑖=1  (2.7) 

Note that, when a matrix X is fully consistent, X and W are exactly equal. This means that 

the CIV of matrix X and W would be equal to 1. On the other hand, if matrix X is 

inconsistent, CIV will be greater than 1 (Saaty, 1994) 

Definition 11: Modified Compatibility Index Value (MCIV), is modified version of 

CIV, is created for incomplete AHP setting in this research. It measures only the deviation 

between the cells assigned by the decision maker and the corresponding entries of W. Let 

m be the number of the missing data of PCM. Then, MCIV is described as below. 

 MCIV = 
1

𝑛2−𝑚
∑ ∑ 𝐴𝑖𝑗

𝒘𝒋

𝒘𝒊

𝑛
𝑗=1

𝑛
𝑖=1   (2.8) 

Definition 12: Generic Compatibility Index between V and W (GCIV-VW), was 

defined by Ahmed and Kilic (2022). It illustrates the deviation between V and W. As in 

CIV, GCIV-VW also equals 1 if fully consistency presents. In practical application matrix 

V is unknown, so that matrix X and/or W were usually used to assess the calculated priority 

vectors in the literature. However, in an empirical and a numerical application true 

priority vector may be known. In such a context, GCIV-VW metric can be utilized to 

assess methodologies. GCIV-VW is demonstrated as follows. 

 GCIV − VW = 
1

𝑛2
∑ ∑

𝒘𝒊

𝒘𝒋

𝒗𝒋

𝒗𝒊

𝑛
𝑗=1

𝑛
𝑖=1  (2.9) 
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Definition 12: Euclidean Distance (Euc), measures the distance between two objects in 

a space. Euclidean distance is commonly used in many areas such as statistics, data 

analysis and machine learning. Euclidean distance is characterized as follows. 

 𝐸𝑢𝑐 = √(𝒘𝟏 − 𝒗𝟏)2 + (𝒘�̇� − 𝒗𝟐)
2 +⋯+ (𝒘𝒏 − 𝒗𝒏)2 (2.10) 

Definition 13: Central Processing Unit Time, is a metric which evaluates the time for 

which a central processing unit (CPU) was employed for processing commands of 

operating system. 

 

2.2.1. Graph Theory 

Let G be a graph, represented as G = (V, E) where V is a set of nodes (vertices), and E is 

a set of edges. Node i are shown as 𝒗𝒊 and edge between node i and node j are indicated 

as (𝒗𝒊, 𝒗𝒋). An edge from 𝒗𝒊 to 𝒗𝒋 in E indicates that there is a connection between them. 

A graph is undirected if for any edge (𝒗𝒊, 𝒗𝒋) in E, (𝒗𝒋, 𝒗𝒊) must present in E. In a 

connected graph, there must be at least one path between any pair of nodes in G such that 

all nodes on that path must be connected by edges. In a connected graph there are no 

disconnected subsets of nodes. In the context of AHP, it is a common practice to assume 

PCM is undirected because of the reciprocal property of PCM. In the continuation of this 

research, the connectedness of PCM is another assumption since some methodologies in 

incomplete AHP literature encloses it such as the Metropolis Hastings and the Heat Bath 

algorithms developed by Menci et al. (2018). Therefore, numerical and empirical 

experiments were analyzed accordingly. 

An adjacency matrix of a graph with n nodes is a n × n matrix, represented by M.  

Adjacency matrix is a fundamental concept since it provides analysis of the connectivity 

of a graph and degree of nodes. The entries of M are either 1 or 0.  

 𝑀𝑖𝑗 = {
1    if 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝒗𝒊 𝑎𝑛𝑑 𝒗𝒋

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.11) 

The neighborhood of node i, denoted as N(i), is identified as the set of nodes that are 

adjacent to node i. For an undirected graph it can be represented as follows. 

 N(i) = {𝒗𝒊, 𝒗𝒋  ∈ V: (𝒗𝒊, 𝒗𝒋) ∈ E}  (2.12) 
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For an undirected graph, the degree of node i, represented as deg(i), is the number of 

nodes which are adjacent to node i. It can be shown as equation 2.13. 

  deg(i) = | {𝒗𝒊, 𝒗𝒋  ∈ V: (𝒗𝒊, 𝒗𝒋) ∈ E} |  (2.13) 

Moreover, it can be found by utilizing adjacency matrix of an undirected graph as follows. 

 deg(i) = ∑ 𝑀𝑖𝑗  𝒗𝒋∈𝑉  (2.14) 

The degree matrix of a graph, denoted as DG, is a diagonal matrix whose entries equal 

the degree of the nodes or 0, represented as below. 

 𝐷𝐺𝑖𝑗 = {
    𝑑𝑒𝑔(𝑖)          if i = j

             0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.15) 

The degree vector of a graph, denoted as d, whose entries equal the degree of the nodes. 

A n × n matrix L is irreducible if there is no P, which is a n × n permutation matrix whose 

rows and columns having exactly one 1 and other entries are 0, such that, 

 PTLP =[
𝐿11 𝐿12
0 𝐿22

] (2.16) 

where 𝐿11 is m × m, 𝐿22 is (n − m) × (n − m), 𝐿12 is n × (n − m), and m is an integer with 

0 < m < n. Moreover, in the case of undirected graphs, a matrix L is irreducible if and 

only if its structure corresponds to a connected graph G (Oliva et al., 2018). 

  

2.2.2. Markov Chains 

The definitions presented in the Markov chains will be helpful in comprehending certain 

methodologies utilized to solve the sparse setting, especially in chapters 3.4 and 3.5. 

Definition 14: Discrete Time Markov Chain (DTMC), let Z be a finite or countable set 

of the Markov chain, which is called state space of the chain. A DTMC is a sequence of 

random variables 𝑋0, 𝑋1, . . . taking values in the set Z, satisfying the following equation. 

 P(𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋0 = 𝑥0, . . . 𝑋𝑛−1 = 𝑥𝑛−1, 𝑋𝑛 = 𝑥𝑛) = P(𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 = 𝑥𝑛) (2.17) 

for all 𝑥0, . . ., 𝑥𝑛 ,𝑥𝑛+1 ∈ Z and n ∈ N, where P(X | Y) defines the conditional probability 

of X given Y. In other words, a DTMC is a stochastic model that defines a series of events, 

where the likelihood of each future state depends solely on the current state and not on 

any of the previous states. 
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Definition 15: Single Step Transition Matrix (P), let Z contains n states. Transition 

matrix is a n × n square matrix which consists of the probabilities of moving between 

states of the chain in a single time unit. Let 𝑃𝑖𝑗 defines the probability of moving from 

state i to state j in a single step. Furthermore, the transition matrix must include two 

properties (2.18 and 2.19). 

 𝑃𝑖𝑗 ≥ 0 (2.18) 

 ∑ 𝑃𝑖𝑗
n
j=1  =  1 (2.19) 

Definition 16: Time Homogeneous Markov Chain, a Markov chain is time-

homogeneous if the transition probabilities constant over time, i.e., it satisfies the 

following condition, 

 P(𝑋𝑛+1 = j |  𝑋𝑛 = i) = P(𝑋1 = j | 𝑋0 = i)  for all n ∈ N  (2.20) 

In time homogeneous MC, 

 p(𝑋𝑛+1) = PT p(𝑋𝑛)   (2.21) 

where p(𝑋𝑛) represents probability distribution of 𝑋𝑛. 

For homogenous DTMC, let the n-step transition probability of being in state j given that 

the chain was in state i, is represented as 𝑃𝑖𝑗
𝑛 and n-step transition matrix is denoted as 𝑃𝑛. 

According to Chapman-Kolmogorov equations (Dobrow, 2016), 

 𝑃(𝑛+𝑚) = 𝑃𝑛𝑃𝑚     for m, n ≥ 0 (2.22) 

Definition 17: Irreducible Markov Chain, is a Markov chain where all the states in the 

state space communicate with each other (single class). State i is accessible from state j 

if  𝑃𝑖𝑗
𝑛  is positive for some n ≥ 0. Any state i and j in the state space communicate each 

other if both are accessible from each other. Moreover, irreducibility of transition matrix, 

yields irreducibility of Markov chain. 

Definition 18: Period of Markov Chain, the period of state i, denoted as d(i), is defined 

as follows. 

 d(i) = gcd{n > 0:  𝑃𝑖𝑖
𝑛

 > 0} (2.23) 

where “gcd” refers to the greatest common divisor. If d(i) = 1, then state i is said to be 

aperiodic. Note that 𝑃𝑖𝑖 > 0 is an adequate condition for aperiodicity. When a Markov 
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chain is irreducible, and all states are aperiodic then Markov chain is called aperiodic 

Markov chain. Moreover, periodicity is a class property, i.e., if state i communicates with 

state j and is periodic/aperiodic, then state j is also periodic/aperiodic. Therefore, when a 

Markov chain is irreducible, there is a single class in which all states have the same 

periodicity property. Hence, if single step transition matrix is irreducible and for any i in 

state space has 𝑃𝑖𝑖  > 0, then Markov chain is aperiodic. 

Definition 19: Limiting Distribution (𝛑) of a Markov chain is a probability distribution 

such that, 

 lim
𝑛→∞

 𝑃𝑖𝑗
𝑛  = π𝑗 (2.24) 

In other words, the probabilities of being in each state converge after some steps to a 

certain value which is independent of the initial distribution of the states.  

Note that, if a Markov chain with finite state space is aperiodic and irreducible, then it 

has a limiting distribution. 

Remark 1: Suppose an irreducible but not aperiodic Markov chain with n states, let P is 

its transition matrix. Then for any 𝛽 ∈  (0, 1), matrix  𝛽𝑃 + (1 − 𝛽)𝐼𝑛 is aperiodic and 

its left dominant eigenvector is the same with P (Menci et al., 2018). 
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3. METHODOLOGIES IN INCOMPLETE AHP LITERATURE 

 

 

In experimental designs several incomplete AHP methodologies in literature namely 

Harker (1987a), Bozóki et al. (2010), Oliva et al. (2017), Zhou et al. (2018) and Menci et 

al. (2018) were compared. These incomplete AHP methodologies in literature are 

summarized in this chapter. 

 

3.1. Harker 

 

Harker (1987a) created a new matrix B and used its principal right eigenvector to assign 

missing entries of A.  

The derivation can be depicted as follows. 

1. Establish a matrix B as, 

 𝐵𝑖𝑗 = {

                  0               𝑖𝑓 𝐴𝑖𝑗  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

   1 + m𝑖                 𝑖𝑓 𝑖 = 𝑗
          𝐴𝑖𝑗                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.1) 

where m𝑖 represents the number of missing entries in the i’th row. 

2. Calculate the principal right eigenvector w and eigenvalue λmax of B. 

3. Fill the missing entries of A by using w (if 𝐴𝑖𝑗 is missing, assign it as 𝒘𝒊/𝒘𝒋) 
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3.2. DEMATEL 

 

Zhou et al. (2018) proposed a DEMATEL based solution methodology to derive priorities 

in the context of incomplete AHP. DEMATEL is a kind of structural modelling technique, 

applicable to examine the cause-and-effect relationships between alternatives. It can be 

applied effectively to extract the interrelationships among alternatives within a complex 

system. Moreover, it can provide the ranking of these alternatives (Si et al., 2018). It has 

demonstrated its effectiveness in various fields, including but not limited to risk 

assessment (Li et al., 2020), supply chain management (Wu et al., 2017), and stock 

selection (Shen and Tzeng, 2015). There are two important matrices in DEMATEL 

including DRM and TRM. DRM is direct relation matrix, and it contains direct relations. 

TRM is total relation matrix, and it includes both indirect and direct relations. DEMATEL 

consists of five steps namely determining quality characteristics, deriving the DRM, 

normalizing DRM, constructing TRM and classifying factors. Zhou et al. (2018) adapted 

DEMATEL methodology into AHP framework in four steps. The purpose is extracting 

complete pairwise comparison matrix using incomplete pairwise comparison matrix. In 

the first step, the incomplete pairwise comparison matrix is converted into DRM and then 

DRM is normalized. This conversion is generated as follows. Let A be the incomplete 

PCM, D be the DRM.  

 𝐷𝑖𝑗 = {
  𝐴𝑖𝑗     𝑖𝑓 𝐴𝑖𝑗   𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑦 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟

 0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.2) 

After the creation of DRM, the sum of each row and column is calculated for the 

normalization step. The maximum of the row sum and column sum is identified and is 

utilized to normalize DRM, which is denoted as ND. Normalization step is shown as in 

equation 3.3. 

 ND = 
𝐷

max(∑ 𝐷𝑖𝑗
𝑛

𝑖=1
 ,   ∑ 𝐷𝑖𝑗

𝑛

𝑗=1
)

 (3.3) 
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In the second step TRM, denoted as T, is created by using ND as below. 

 T = 𝑙𝑖𝑚
𝑚→∞

(𝑁𝐷 + 𝑁𝐷2 +⋯+𝑁𝐷𝑚) 

             = 𝑙𝑖𝑚
𝑚→∞

(𝑁𝐷 (𝐼𝑛  − 𝑁𝐷
𝑚)(𝐼𝑛  − 𝑁𝐷)

−1)  

     = 𝑁𝐷(𝐼𝑛  − 𝑁𝐷)
−1                             (3.4) 

Zhou et al. (2018) emphasized that the progression from 1 to infinity represents the 

gradual discovery of indirect relationships between each pair in DRM. Sometimes TRM 

may not be calculated as above formula because of the nonexistence of inverted matrix 

(singularity of matrix). For these situations Zhou et al. (2018) designed an experiment to 

see the convergence of 𝑙𝑖𝑚
𝑚→∞

(𝑁𝐷 +𝑁𝐷2 +⋯+ 𝑁𝐷𝑚). According to their experiment, 

they observed that convergence of limit is very quick (m is around 5 in most cases). They 

suggested that it is appropriate to set m to be a specific integer like m = 5 and approach 

TRM with that assumption. In the experimental designs in this study, we approached 

TRM as utilizing coefficient of 25. 

In the third step of their methodology, a complete pairwise comparison matrix is 

constructed from TRM with satisfying reciprocal property. The construction is made as 

following algorithm. 

Algorithm 1: Conversion from TRM to PCM  

1: Input: the matrix 𝑇𝑛 × 𝑛  

2: Construct: a matrix 𝑃𝑛 × 𝑛  

3: for i =1, …, n do 

4:      for j =1, …, n do 

5:            𝑃𝑖𝑗  = √
𝑇𝑖𝑗

𝑇𝑗𝑖
  

6:            𝑃𝑗𝑖  = 
1

 𝑃𝑖𝑗
 

7: Output: P 

 

DEMATEL based solution methodology abbreviated as Dematel in the continuation of 

this research. 
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In the last step the missing values of A are derived by using P as follows. 

 𝐴𝑖𝑗 = {
     𝐴𝑖𝑗     𝑖𝑓 𝐴𝑖𝑗  𝑤𝑎𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟

     𝑃𝑖𝑗                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.5) 

Note 1: Following 4 methodologies are related with the sparse setting. In the context of 

sparse setting PCM is filled differently. In the nominal case, the diagonal entry of the 

PCM is assigned as 1, but in the sparse context it is assigned as 0. The missing entries 

also filled as 0 in the sparse setting. Therefore, while constructing the degree matrix (DG), 

the diagonal entries of PCM are not considered. 

Example 1: Let PCM is assigned as follows. 

A = [

1 − 2 0.5
− 1 3 −
0.5 0.34 1 0.25
2 − 4 1

] , where “-“ represents the missing value. 

Then, in the sparse context, it is demonstrated as below. 

A = [

0 0 2 0.5
0 0 3 0
0.5 0.34 0 0.25
2 0 4 0

]  

Furthermore, its degree matrix is considered as below. 

DG = [

2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 2

] 

Note 2: The connectedness of the G, which is derived from A, is an assumption for the 

following 4 methodologies in order to calculate the priorities. 
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3.3. Sparse Eigenvector 

 

The motivation behind the Sparse Eigenvector method developed by Oliva et al. (2017) 

is coming from the following result. When there is missingness but no perturbation, 

entries in the PCM are transitive and accurate, the principal right eigenvector of 𝐷𝐺−𝐴 is 

the same as the true priority vector v. Based on this outcome, they suggested using the 

principal right eigenvector of 𝐷𝐺−𝐴 as calculated priority vector w. The ideology 

resembles the eigenvector method created by Saaty.  

 

3.4. Metropolis-Hastings 

 

Menci et al. (2018) constructed the Metropolis-Hastings method to extract priorities in 

the case of the sparse setting. Their motivation behind the methodology is inspired by the 

Metropolis Hastings Markov chain. They suggested constructing a matrix P, which has 

the same structure as the connected graph G, utilizing A. The derivation is as follows. 

 𝑃𝑖𝑗 = 

{
 
 

 
 
                         

𝑚𝑖𝑛{1,
𝒅𝒊𝐴𝑗𝑖

𝒅𝒋
}

𝒅𝒊
                          𝑖𝑓 (𝒗𝒊, 𝒗𝒋)  ∈  E

1 − 
1

𝒅𝒊
 ∑  𝑚𝑖𝑛{1,

𝒅𝒊𝐴𝑘𝑖

𝒅𝒌
}  k∈ N(i)              𝑖𝑓 𝑖 = 𝑗

                             0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.6) 

where d is the degree vector and N(i) is the neighborhood of node i. 

Similar to the Sparse Eigenvector methodology, when there is no perturbation the left 

dominant eigenvector of P gives the true priority vector v (Menci et al., 2018).  

Note that the matrix P is a form of transition probability matrix of a Markov chain by 

construction. It holds the following two properties (2.18 and 2.19). 

Because G is undirected, connected and contains finite states, the Markov chain is 

irreducible since there is a single class, and all states can communicate with each other. 

When there is no perturbation, the Markov chain is aperiodic, so that the Markov Chain 
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has limiting distribution, which is determined by the left dominant eigenvector (Menci et 

al., 2018). The limiting distribution was taken as the calculated priority vector w.  

However, when dealing with perturbations, it cannot be guaranteed that the Markov chain 

will exhibit aperiodicity (Menci et al., 2018). In order to ensure convergence, a modified 

version of the Markov chain was employed by them. Therefore, they used convex 

combination of 𝑃𝑇 and 𝐼𝑛   as shown below. 

   �̅� =  𝛽𝑃𝑇 + (1 − 𝛽)𝐼𝑛, where 𝛽 ∈  (0, 1)  (3.7) 

Note that irreducibility property is not affected by convex combination. Moreover, �̅� is 

aperiodic and its left dominant eigenvector is the same with P (Remark 1). Therefore, the 

new Markov chain has a limiting distribution, which is used for approaching the true 

priority vector v. The algorithm they proposed for reaching the limiting distribution of P 

is as follows.  

Note 3: 𝒘𝒊(k +1) represents the probability of the Markov chain will be in state i state at 

the step k+1. 

Algorithm 2: Metropolis-Hastings  

1: Input: the matrix 𝐴𝑛 × 𝑛 , random parameter 𝛽 

2: Obtain: the matrix 𝑃𝑛 × 𝑛 , and the vector d 

3: Initialization 

4:      for i =1, …, n do 

5:            𝒘𝒊(0)  = random (0, 1) 

6:      Standardize w(0) 

7: Synchronous Iteration           

8:            𝒘𝒊(k +1)  =  (𝛽𝑃𝑖𝑖  +  1 − 𝛽) 𝒘𝒊(k)  +  𝛽  ∑   𝑃𝑗𝑖j∈ N(i)  𝒘𝒋(k)   

9: Output: w 

 

Note that, in their research they proposed more than one method for initialization 

procedure. However, in this research standardized random positive rational numbers were 

utilized. Initialization is necessary for determining the initial condition of the Markov 

chain. The aim of the synchronous iteration is approaching the limiting distribution. After 

several iterations the change between iterations becomes tiny. In this research, 0.000001 
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was used as a terminating condition. If all states change became less than 0.000001, the 

algorithm stopped, and w(k+1) was taken as calculated priority vector. Moreover, in 

experimental setups parameter 𝛽 was generated as in equation 3.12. 

 𝛽 = random(0, 1)  (3.8) 

 

3.5. Heat-Bath 

 

Menci et al. (2018) created the Heat-Bath method in order to derive priorities for the 

sparse setting. Their motivation behind the methodology gets inspired by Heat-Bath 

Markov chain.  

They proposed forming a matrix P that is adapted from A as below. It can be shown that 

P has the same structure as the graph G. 

 𝑃𝑖𝑗 = 

{
 

                         
𝛾

1 + 𝐴𝑖𝑗
                        𝑖𝑓 (i, j)  ∈  E

   1 −  𝛾 ∑  
1

1 + 𝐴𝑖𝑘
  k∈ N(i)             𝑖𝑓 𝑖 = 𝑗

                          0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9) 

where 𝛾 is a random parameter which must satisfy the following condition. 

 𝛾 <
1

𝑚𝑎𝑥{𝒅𝒊}
 (3.10) 

Note that similar to the Metropolis-Hasting method the matrix P is a form of transition 

probability matrix by construction. It is known that G is undirected, connected and 

contains finite states by assumption. Therefore, the Markov chain is irreducible. 

Moreover, since the diagonal entries are positive, it is aperiodic.  

 ∑  𝑃𝑖𝑗  j∈N(i) = 𝛾∑  
1

1 + 𝐴𝑖𝑗
 <  

1

𝑚𝑎𝑥{𝒅𝒊}
∑  1  ≤  1 j∈N(i)  j∈N(i)  (3.11) 

Consequently, since the row sum is 1 all diagonal entry must satisfy the below condition. 

 𝑃𝑖𝑖 > 1 − 
𝒅𝒊

𝑚𝑎𝑥{𝒅𝒊}
 ≥ 0 (3.12) 

Therefore, there exists a limiting distribution w. When there is no perturbation, this 

limiting distribution becomes the true priority vector (Menci et al., 2018). On the other 

hand, in the existence of perturbations they suggested approaching the true priority vector 
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by the limiting distribution w. The algorithm they proposed for attaining the limiting 

distribution of P is as below. 

Algorithm 3: Heat-Bath  

1: Input: the matrix 𝐴𝑛 × 𝑛 , random parameter 𝛾 

2: Construct: the matrix 𝑃𝑛 × 𝑛  

3: Initialization 

4:      for i =1, …, n do 

5:            𝒘𝒊(0) = random (0, 1) 

6:      Standardize w(0) 

7: Synchronous Iteration           

8:            𝒘𝒊(k +1) = ∑   𝑃𝑗𝑖j∈ N(i)∪{i}  𝒘𝒋(k)   

9: Output: w 

 

Note that, they recommended several methodologies for initialization procedure. In this 

research, standardized random positive rational numbers were used. The goal of 

synchronous iteration is to reach the limiting distribution. As the iterations progress, the 

changes gradually diminish. In the experimental designs, a value of 0.000001 was 

employed as a termination criterion. When the change in all states became less than 

0.000001, the algorithm terminated, and w(k+1) became the calculated priority vector. 

Furthermore, in experimental designs parameter 𝛾 was generated as below. 

 𝛾 = randomuniform(0, 
1

𝑚𝑎𝑥{𝒅𝒊}
)  (3.13) 

 

3.6. Sparse Logarithmic Least Squares 

 

The latest approach within the sparse setting is the sparse logarithmic least squares 

(SLLS), which was introduced by Menci et al. (2018). This algorithm is inspired by a 

widespread method logarithmic least square (LLS) developed by Crawford (1987). As an 

adaptation, the SLLS algorithm aims to approach the true priority vector v. In other words, 

the objective is detecting a vector (w) which ensures the log quadratic minimization of 
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the error between pairwise comparison matrix A and theoretical pairwise comparison 

matrix W. The following equation (3.14) demonstrates the derivation of w. 

 𝒘 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑥∈ℝ+𝑛{∑ ∑ (ln𝐴𝑖𝑗  −  ln( 
𝒙𝒊

𝒙𝒋
 ))2𝑛

i∈N(i)
𝑛
i }  (3.14) 

The algorithm they used to approach such w is shown below. For further information, 

e.g., the theorem and the derivation behind the algorithm, see Menci et al. (2018). 

Algorithm 4: Sparse Logarithmic Least Squares  

1: Input: 𝛽 

2: Initialization 

3:      for i =1, …, n do 

4:           𝒓𝒊(0) = random positive real number 

5:           𝒘𝒊 (0) = expo (𝒓𝒊 (0)) 

6:           𝒔𝒊 = ∑ ln𝐴𝑖𝑗
𝒏
𝐣∈𝐍(𝐢)  

7: Synchronous Iteration           

8:            𝒓𝒊(k+1) = 𝒓𝒊(k) + 𝛽 ∑ (𝒓𝒋(𝐤)   −  𝒓𝒊(𝐤))  + 𝛽𝒔𝒊  𝐣∈𝐍(𝐢)  

9:            𝒘𝒊(k+1) = expo(𝒓𝒊(k+1)) 

10: Output: w 

 

Note that, in the experimental designs in this research a value of 0.000001 and 30000 

(70000 was used only in one experiment since in that experiment convergence was slow) 

were used as a termination criterion. When the change in all states became less than 

0.000001 or the changes could not be less than 0.000001 in 30000 iterations, the algorithm 

stopped and returned w(k+1) as the calculated priority vector. Furthermore, Menci et al. 

(2018) suggested to employ 𝛽 such that, 

 𝛽 ≤ 
1

𝑚𝑎𝑥{𝒅𝒊}
  (3.15) 

Therefore, in this research 𝛽 was chosen as below. 

 𝛽 = randomuniform (0, 
1

𝑚𝑎𝑥{𝒅𝒊}
)  (3.16) 

Note that the logarithmic least squares method is widely used in AHP literature both in 

standard setting and incomplete setting. For example, in the incomplete case Menci et al. 
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(2018) and Bozoki et al. (2010) utilized logarithmic least square as objective. Therefore, 

both methodologies can reach the same calculated priority vector. The difference between 

them is the algorithm they used. For instance, Menci et al. was inspired by the Fax and 

Murrays formation control algorithm (Fax and Murray, 2004; Olfati-Saber et al., 2007) 
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4. PARAMETRIC HEURISTIC ALGORITHMS, THE NUMERICAL AND 

EMPIRICAL STUDY EXPERIMENTAL DESIGN 

 

 

4.1. Parametric Heuristic Algorithms 

 

A natural approach to complete the missing element in the pairwise comparisons matrix 

is to take the geometric average of all the indirectly calculated comparisons of missing 

entry (Harker, 1987b). However, a limitation of this approach is that as the number of 

alternatives increases, the number of indirect comparisons grows significantly, which 

results in a time complex. The parametric heuristics proposed in this article derive its 

motivation from this idea. It decreases the time complexity by using some of the indirect 

comparisons. Moreover, some of the proposed heuristics weigh these indirect 

comparisons based on their lengths. By length, it is meant to how many arcs the path has. 

In order to achieve indirect comparisons, it utilizes graph theory. Paths which reach 

missing values by transitivity are examined. After all the paths leading to the missing 

value are found, the missing value is calculated by taking the geometric average of the 

value of these paths. The value of the paths is calculated as the product of its arcs. One 

advantage of using the geometric average is that it preserves the reciprocal property of 

the matrix, which is an assumption of AHP.  

Let 𝐴𝑖𝑗 and 𝐴𝑗𝑖 be the missing value and the paths from i to j having values as 𝑧1, 𝑧2, …, 

𝑧𝑘. It is known that the assigned values from decision maker preserve reciprocal property 

and path length is calculated as product of its arcs, thus any path from i to j has the inverse 

value of the path from j to i if they use the same arc set but in reverse order. Moreover, if 

there is a path having specific arc set, the existence of the reverse order is guaranteed 
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since the graph is undirected. Then the paths from j to i having values as 1/𝑧1, 1/𝑧2, …, 

1/𝑧𝑘. Therefore, the geometric average of the missing values is reciprocal. 

Example 2: Finding missing value by paths and geometric average methodology. 

Let the pairwise comparison matrix be as follows, where “-“ represents the missing value. 

A = 

[
 
 
 
 
1 − 5 0.5 2
− 1 − 0.25 0.5
0.2 − 1 0.25 −
2 4 4 1 5
0.5 2 − 0.2 1 ]

 
 
 
 

 

Paths having length less than or equal to three that start from node 1 and end with node 

2, length and value are as below. 

P1: 𝐴13 – 𝐴34 – 𝐴42, length: 3, value: 5 × 0.25 × 4 = 5 

P2: 𝐴14 – 𝐴42, length: 2, value: 0.5 × 4 = 2 

P3: 𝐴14 – 𝐴45– 𝐴52, length: 3, value: 0.5 × 5 × 2 = 5 

P4: 𝐴15 – 𝐴52, length: 2, value: 2 × 2 = 4 

P5: 𝐴15 – 𝐴54– 𝐴42, length: 3, value: 2 × 0.2 × 4 = 1.6 

Therefore, 𝐴12 is: √5 × 2 × 5 × 4 × 1.6
5

 = 3.17 

Paths having length less than or equal to three that start from node 2 and end with node 

1, their length and value are as below. 

P6: 𝐴24 – 𝐴43 – 𝐴31, length: 3, value: 0.25 × 4 × 0.2 = 0.2 

P7: 𝐴24 – 𝐴41, length: 2, value: 0.25 × 2 = 0.5 

P8: 𝐴25 – 𝐴54– 𝐴41, length: 3, value: 0.5 × 0.2 × 2 = 0.2 

P9: 𝐴25 – 𝐴51, length: 2, value: 0.5 × 0.5 = 0.25 

P10: 𝐴24 – 𝐴45– 𝐴51, length: 3, value: 0.25 × 5 × 0.5 = 0.625 

Accordingly, 𝐴21 is: √0.2 × 0.5 × 0.2 × 0.25 × 0.625
5

 = 0.315 

In the example above, all paths having length less than or equal to three were found for 

two missing entries, since the matrix size is five and missing entries are six there is small 

number of paths. However, as the number of alternatives increases, the number of paths 
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will increase. For example, in a 25 × 25 matrix with having two missing entries, the total 

number of paths that reach to these two missing entries having two and three lengths are 

46 (23 × 2) and 1012 (23 × 22 × 2)  respectively. Moreover, in a 25 × 25 matrix there 

are paths with having from 2 to 24 arcs for these missing entries. Note that the above 

example is only restricted to two missing entries, the total number of paths that need to 

be derived will also increase as the number of missing entries rises. In order to avoid this 

complexity, instead of looking at all paths, this study suggests examining paths that 

contain a limited number “k” of arcs. Choosing “k” means, not only evaluating path 

lengths of “k”, but also evaluating paths with lengths of less than “k”. For example, k = 

4 suggests taking into account the paths of having lengths of 2, 3, 4 (0 is trivial and 1 

means there is a direct path from i to j, in this case 𝐴𝑖𝑗 is not a missing value). The 

motivations behind considering small values are time complexity and the belief that the 

information is stored on paths that have few arcs sufficient to approach the true value. As 

the length of a path increases, the opportunity of forming path increases since more 

combinations can be achieved by adding indirect relations. Therefore, choosing small “k” 

decreases the complexity of the algorithm. Furthermore, the chance of revealing less 

perturbation may increase, since perturbations accumulate while multiplying the arcs. 

However, there is a tradeoff which is the chance of information being lost. It could be 

that the most accurate information is stored on the longest path. In the ideal case when 

there is no perturbation, paths which have length of two are enough to derive the missing 

values correctly, considering the graph is connected.  

Moreover, in this study the importance levels of the paths are investigated. As the length 

of the arcs increases, the number of interactions increases. This may cause the possibility 

of an increase in deformation. Therefore, while taking the geometric average, paths 

having different lengths were weighted.  

The consistency of the algorithms in the AHP literature is a popular debate subject. There 

are several methodologies to improve the consistency of the algorithms in literature such 

as Cao et al. (2008) and Gomez-Ruiz et al. (2010). The methodology was proposed by 

Gomez-Ruiz et al. (2010) modifies the highest perturbation between pairwise comparison 

matrix and theoretical pairwise comparison matrix. The relation between perturbation and 

the matrices is as below. 

 A = 𝑊  ○  𝐸  (4.1) 
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where E represents the perturbation matrix. The idea behind the algorithm is changing the 

highest perturbation, so that it develops the consistency of the algorithm in a better way. 

They proposed to change the entry which is farthest from one. Their algorithm is 

demonstrated as follows (Algorithm 5). 

Algorithm 5: Improving Consistency Ratio  

1: Input: 𝐴𝑛 × 𝑛 ,𝑊𝑛 × 𝑛  

2: Calculate: 𝐸𝑛 × 𝑛  

3:  Find: 𝐸𝑖𝑗  that is farthest from one 

4:  Replace: 𝐴𝑖𝑗  and 𝐴𝑗𝑖  with 0 and the corresponding diagonal entries of i, j with 2 

5:  Calculate: new w according to updated 𝐴𝑛 × 𝑛  

6:  Replace: 𝐴𝑖𝑗  with 
𝒘𝒊

𝒘𝒋
, 𝐴𝑗𝑖  with 

𝒘𝒋

𝒘𝒊
 and the diagonal entries of i, j with 1 

7:   Output: A 

 

Based on these considerations, the following heuristics namely Transitivity of Length of 

Two (TLT) (Algorithm 6) and Transitivity of Length of not Exceeding Three (TLET) 

(Algorithm 7) were proposed in this study. The length parameter “k” was selected as two 

in the TLT, and three in the TLET. As highlighted before, length parameter three means 

investigating paths both length of two and three. The importance parameter is only 

considered in the TLET because TLT utilizes only paths of length two. In this study, the 

importance coefficient of TLET was parameterized as one and two. If the parameter value 

is two, paths of length two are counted twice and paths of length three are counted once. 

However, if the parameter value is one, both are considered only once when calculating 

the geometric average. 

Example 3: Consider the values of the above paths (Example 2), the geometric average 

for 𝐴12 must be calculated as follows if the importance level parameter is taken as two. 

 √5 × 22 × 5 × 42 × 1.6
7

 = 3.068  (4.2) 

The main reason for choosing the importance level close is the fact that paths of length 

two and paths of length three are exposed to similar perturbations, there is an additional 

arc which leads to extra multiplication in paths of length three.  
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In addition, the effect of improving the consistency method (Gomez-Ruiz et al., 2010) on 

the completed matrix created by the algorithms was adapted. For each algorithm three 

different scenarios, which are based on the number of entries that change (NEC), were 

evaluated. In the first scenario, the method was not utilized, no entry was changed. In the 

second scenario, the method iterated twice.  In the third scenario, the method was 

executed four times. Thus, 9 (3 due to importance levels (1, 2) or path lengths parameters 

(2, 3) × 3 due to NEC parameters (0, 2, 4)) algorithms having different parameters were 

revealed. Finally, the calculated priority vector of the matrices generated by these 

algorithms are founded by using principal right eigenvector. 

Algorithm 6: Transitivity of Length of Two (TLT)  

1: Input: 𝐴𝑛 × 𝑛 , NEC 

2: Calculate: missing number of A  

3: Create: 0 matrix 𝑀𝑛 × 𝑛  

3: for i = 1, …, n do  

4:    for j = 1, …, n do 

5:       If (𝐴𝑖𝑗  ≡ 0 and i < j)  

6:          Find and Store: all paths (length of 2) from i to j by using A 

7:          If (Paths were found)  

8:             Calculate: Geometric average of these paths 

9:                Assign: Geometric average to 𝑀𝑖𝑗 and reciprocal of it to 𝑀𝑗𝑖  

10:              Reduce: missing number by 2 

11: Assign: non-zero values of M to A 

12: while (there is missing number) 

13:    for i =1, …, n do  

14:       for j =1, …, n do 

15:          If (𝐴𝑖𝑗 ≡ 0 and i < j)  

16:             Find and Store: all paths (length of 2) from i to j by using A 

17:             If (Paths were found)  

18:                Calculate: Geometric average of these paths 

19:                Assign: Geometric average as 𝐴𝑖𝑗 and reciprocal of it as 𝐴𝑗𝑖  

20:                Reduce: missing number by 2 

21: Iterate: Improving Consistency Ratio (A) NEC times 

22: Derive: principal right eigenvector of A  

23: Output: w 
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In the algorithm, there are two loops. The purpose of the first loop is to derive the paths 

that are associated with the missing entry by using only the matrix assigned by the 

decision maker. However, in the second loop paths are generated by utilizing the matrix 

assigned by the decision maker, the values extracted by the first loop and the values that 

are calculated during the second loop. The reason behind the existence of the second loop 

is in some cases the first loop is not enough to fill in all the missing values only adhering 

to the decision maker, even though the matrix derived by the decision maker is connected 

(see ex. 4). The reason is the constraint of the path lengths (in this algorithm it is two). 

While calculating the missing values, the primacy of the algorithm is to make a derivation 

only over the values assigned by the decision maker since they are assumed as expert 

knowledge. Therefore, solely the matrix assigned by the decision maker is used in the 

first loop. If there are still any missing entries after the first loop, the algorithm enters the 

second loop and remains in the second loop until there is no missing entry. After the 

missing values are calculated, the Improving Consistency Ratio algorithm is iterated NEC 

times. Finally, the calculated priority vector of the completed matrix is obtained by 

utilizing the principal right eigenvector. 

Example 4: Suppose that the decision maker filled in a matrix as follows. 

A = 

[
 
 
 
 
1 0 1 0 0
0 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 0 0 1 1]

 
 
 
 

 

The matrix that the algorithm can complete in the first loop, although the matrix is 

connected, is as follows. 

A* = 

[
 
 
 
 
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1]

 
 
 
 

 

There are values that cannot be filled in the matrix. Therefore, there is a need for the 

second loop.  
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Algorithm 7: Transitivity of Length of not Exceeding Three (TLET)  

1: Input: 𝐴𝑛 × 𝑛 , NEC, importance 

2: Calculate: missing number of A  

3: Create: 0 matrix 𝑀𝑛 × 𝑛  

3: for i = 1, …, n do  

4:    for j = 1, …, n do 

5:       If (𝐴𝑖𝑗 ≡ 0 and i < j)  

6:          Find and Store: all paths (length of 2, 3) from i to j with their path length by using A 

7:          If (Paths were found)  

8:             Calculate: Geometric average of these paths based on path length and importance 

9:             Assign: Geometric average to 𝑀𝑖𝑗 and reciprocal of it to 𝑀𝑗𝑖  

10:           Reduce: missing number by 2 

11: Assign: non-zero values of M to A 

12: while (there is missing number) 

13:    for i =1, …, n do  

14:       for j =1, …, n do 

15:          If (𝐴𝑖𝑗 ≡ 0 and i < j)  

16:             Find and Store: all paths (length of 2, 3) from i to j with their path lengths by using A 

17:             If (Paths were found)  

18:                Calculate: Geometric average of these paths based on path length and importance 

19:                Assign: Geometric average as 𝐴𝑖𝑗 and reciprocal of it as 𝐴𝑗𝑖  

20:                Reduce: missing number by 2 

21: Iterate: Improving Consistency Ratio (A) NEC times 

22: Derive: principal right eigenvector of A  

23: Output: w  

 

As in the TLT algorithm, there are two loops in this algorithm and the purposes of the 

loops are the same, they differ only in content. Identifying paths with a length of three 

and consideration of the importance level in the geometric average are additional 

requirements in TLET. After the PCM is completed, the Improving Consistency Ratio 

algorithm is executed based on NEC parameter. Lastly, priority values are calculated by 

using the principal right eigenvector method. 

In this algorithm, depending on the size of the matrix, the number of missing entries and 

the software used, there is a chance to obtain an undefined value while accumulating the 



31 

 

values of paths. If the matrix size is high and the missing numbers in the PCM are low, 

the algorithm finds an excessive number of paths while deriving the missing entry. 

Depending on the values of these paths, a high (low) number that is undefined in the 

software can be obtained from the multiplication of the values while calculating 

geometric average. A viable action in this case is to set this undefined high (low) number 

to the highest (lowest) valid number in the software. While performing the numerical 

experimental analysis in this research, this situation solely occurred in some iterations 

when the matrix size was 25 and the missingness ratio was 20 percent. This number was 

set as the highest or lowest value in the software depending on the value it has. According 

to the results of the experiment, no deflecting results were observed (see the result and 

discussion chapter, the algorithm was competitive in the case of matrix size 25 or missing 

ratio 0.2). 

 

4.2. The Numerical Experimental Design 

 

An approach was developed in order to mimic the process of a decision maker assigning 

pairwise comparisons. This methodology was adapted from the experimental setup 

developed by Ahmed and Kilic (2022) to the incomplete AHP context. The adapted 

methodology assumes that the decision maker uses a specific weight vector and expresses 

preferences through pairwise comparisons. The pairwise comparison matrix should 

constitute inconsistency and missing entries due to the decision maker inconsistency, 

limited knowledge of decision maker about some alternatives, uncertainty in the 

comparisons, and time constraints.  To simulate this process, a numerical dataset was 

created. The dataset included PCMs of three matrix sizes (n = 5, 15, 25) three levels of 

inconsistencies (low, medium, high) and four missing ratios (0.2, 0.3, 0.4, 0.5). In sum, 

36 (3 matrix sizes × 3 inconsistency levels × 4 missing ratios) numerical experimental 

conditions were obtained. The subsequent algorithm (Algorithm 8) was initially 

implemented to generate random inconsistent PCMs. 
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Algorithm 8: Creating random PCM  

1: Create: random normalized vector v,  

                  random uniform perturbation coefficient c, and 0 matrix 𝐴𝑛 × 𝑛   

2: for i =1, …, n do  

3:      for j =1, …, n do 

4:           if (i ≡ j) 

5:                𝐴𝑖𝑗 = 1 

6:           elif (i < j) 

7:                a = 𝒗𝒊 / 𝒗𝒋 – c × 𝒗𝒊 / 𝒗𝒋 

8:                b = 𝒗𝒊 / 𝒗𝒋 + c × 𝒗𝒊 / 𝒗𝒋 

9:                𝐴𝑖𝑗  = uniform (a, b) 

10:              𝐴𝑗𝑖  = 1 / 𝐴𝑖𝑗 

 

Here, vector v represents the true priority vector that the decision maker should adhere to 

achieve the true theoretical pairwise comparison matrix. The inconsistency arises from 

the utilization of parameter c and the uniform operation. To maintain the integrity of the 

AHP structure, the diagonal entries are kept as 1, and the reciprocal property is preserved. 

The existence of randomness leads the matrices to exhibit diverse degrees of 

inconsistencies. In order to quantify the inconsistency of these matrices, the Consistency 

Ratio (CR) was utilized. Matrices exhibiting a CR value ranging from 0 to less than 0.03 

were considered as a low level of inconsistency. Matrices with a CR value between 0.03 

and less than 0.06 were classified as a medium (med) level of inconsistency. Matrices 

with a CR value between 0.06 and less than 0.1 were taken into account as a high level 

of inconsistency. Matrices that surpassed 0.1 CR value were labeled inadequately 

consistent and thus were not used. 

In order to introduce missing entries, some random entries in the generated matrix were 

set to zero based on the missing ratios (0.2, 0.3, 0.4 and 0.5), no changes were made to 

the diagonal entries. The number of missing entries were determined by the missing ratio 

and the multiplication of the number of entries in the upper-right triangle of the matrix, 

excluding the diagonal entries. In cases where the multiplication was not an integer, the 

value was rounded up. For instance, let matrix size be 10 and the missing ratio be 0.3. 
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The upper-right triangle without the diagonal entries, there are a total of 45 entries 

(Equation 4.3). 

 
(𝑛 × 𝑛−1)

2
 =  45  (4.3) 

Therefore, the number of missing entries was set as 14 (Equation 4.4). 

 ⌈45 ×  0.3⌉  =  14  (4.4) 

Subsequently, any entries that had set to zero were determined, and its reciprocal entry 

were also set to zero. Connectedness of the incomplete pairwise comparison matrix was 

an assumption in some methodologies that were utilized in this study. Therefore, the 

connectedness of the newly generated incomplete matrix was also examined. If it was 

connected, the methodologies computed the priority vector and were assessed according 

to the metrics. In case the matrix was not connected, a new random incomplete pairwise 

comparison matrix was created until it was connected. 

For each numerical experimental condition, a total of 100 connected incomplete pairwise 

comparison matrices were produced and analyzed. As a result, 3600 

(36 experimental conditions × 100 matrices) connected incomplete pairwise 

comparison matrices were obtained. 

 

4.3. The Empirical Experimental Design 

 

An empirical experiment including the participation of students from Sabancı University, 

Istanbul was conducted. In this experiment, 30 students were asked to compare the 

geographic size of 15 countries and to fill two matrices. In the first matrix, the students 

were expected to leave cells empty for which they were uncertain or preferred not to fill 

in. In the second matrix, they were asked to fill in the matrix completely referring to the 

cells they had filled in the first matrix. Participants were required to adhere the Saaty scale 

(Table 1) while they were assigning the cells.  The priority vectors of the first matrices 

were determined utilizing the incomplete AHP methodologies. However, the priority 

vectors of the second matrices were identified using the principal right eigenvector 

method (Saaty, 1977). The comparison of the incomplete AHP methodologies among 

themselves was made using the calculated priority vectors of the first matrices and true 

priority vectors. The accuracy of filling the uncertain comparisons was examined by 

comparing the calculated priority vectors of both the Saaty methodology and the 
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incomplete AHP methodologies with the true priority vectors. The discussion was 

whether it is more suitable to leave the uncertain comparisons for the incomplete AHP 

methods to fill or to let the decision maker estimate them.  

It is necessary that the decision maker have relevant knowledge about the subject in AHP. 

The reasons for choosing the geographic size of countries as the subject were that they 

are a kind of cultural knowledge therefore likely to be known, and they have a natural 

scale. The fact that they have quantitative values enabled the identification of the true 

priority vector, as shown below (Table 3). Thus, the priority vectors computed by the 

methodologies could be evaluated and compared.  

Table 3 Normalized true priority vector of empirical experiment 

Countries Corresponding Priority Vector Value 

Chile 0.1 

Colombia 0.151 

Egypt 0.133 

France 0.073 

Germany 0.047 

Greece 0.017 

Japan 0.05 

Morocco 0.059 

Portugal 0.012 

Senegal 0.026 

Spain 0.067 

Sweden 0.06 

Thailand 0.068 

Turkey 0.104 

United Kingdom 0.032 

 

The experiment was approved by the Sabancı University ethics committee. Moreover, 

before it was conducted by participants, the written informed consent form had been taken 

from the participants. The estimated duration of the experiment was approximately 10 

minutes. However, additional time was granted to the participants who asked. 
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5. RESULTS AND DISCUSSIONS 

 

 

5.1. Numerical Experimental Design 

 

The existing six algorithms in literature, namely Harker, Dematel, Sparse Eigenvector, 

Metropolis-Hastings, Heat-Bath, and SLLS, along with the parametric heuristics TLT and 

TLET algorithms, were compared in terms of six performance metrics, including CI, 

Kendall's tau, MCIV, Euclidean distance, GCIV-VW and central processing unit time.  

The TLT algorithm was examined in three different ways according to the NEC parameter 

(NEC = 0, NEC = 2, NEC = 4). The TLET algorithm was analyzed in six different ways 

regarding the NEC and importance parameters (three different NEC values = 0, 2, 4, and 

two different importance values = 1, 2). 

Before comparing results of the methodologies, the relationships between performance 

metrics were examined in order to reduce the complexity since there are six different 

metrics and to see the behavior between the metrics. For this purpose, the correlation 

coefficient was utilized. Data was collected for each experimental condition from each 

algorithm. In order to avoid oversampling of the proposed heuristics, only one TLT 

algorithm and one TLET algorithm were selected from the three TLT algorithms and six 

TLET algorithms, namely TLT - NEC = 2 and TLET - NEC = 2, importance = 2. This 

selection was randomly made. 

In order to observe the relationships among the metrics, data generated from numerical 

experimental setup were gathered. Five metrics out of six metrics (CI, Kendall's tau, 

MCIV, Euclidean distance, and GCIV-VW) measure the accuracy and deviation of the 

algorithms' performance, while one metric (central processing unit time) examines the 

algorithm's process time. Therefore, the relationships among only the five metrics, which 
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are related with accuracy and deviation, were investigated by using correlation 

coefficients. 

Since four algorithms namely Sparse Eigenvector, Metropolis-Hastings, Heat-Bath, and 

SLLS had a sparse setting, the CI values could not be derived. These values had been 

assigned zero during the numerical experimental setup. Consequently, when examining 

the relationships between the CI and the other four metrics, the data from these four 

algorithms could not be used. The analysis for CI was conducted only based on data 

collected from the Harker, the Dematel, the TLT - NEC = 2, and the TLET - NEC = 2, 

importance = 2 algorithms.  

The correlation coefficient values were interpreted as follows: (0, 0.3) or (-0.3, 0) indicate 

a weak, (0.3, 0.7) or (-0.3, -0.7) define a moderate, and (0.7, 1) or (-0.7, -1) specify a 

strong linear relationship (Ratner, 2009). The relationships between metrics are shown in 

table 4, and the strong linear relationships are demonstrated in figures 1 and 2. Strong 

linear relationships were highlighted in bold. 

Table 4 Correlation coefficients between metrics 

Metrics Correlation Coefficient 

Kendall's tau – GCIV-VW -0.511 

Kendall's tau – MCIV -0.074 

Kendall's tau – Euclidean distance -0.576 

Kendall's tau – CI -0.012 

GCIV-VW – MCIV 0.001 

GCIV-VW – Euclidean distance 0.857 

GCIV-VW – CI -0.078 

Euclidean distance – MCIV -0.036 

Euclidean distance – CI -0.126 

MCIV – CI 0.87 
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Figure 1 Strong linear relationship between GCIV-VW and Euclidean distance 

 

Figure 2 Strong linear relationship between MCIV and CI 

 

The correlation coefficient between GCIV-VW and Euclidean distance was 0.857, and 

the correlation coefficient between MCIV and CI was 0.87, which proposed a strong 

linear relationship. Therefore, it was assumed that Euclidean distance can be interpreted 

with GCIV-VW, as well as CI with MCIV. Note that the relationships were investigated 

as only linearly, there may exist another type of relations. This is out of the scope of this 

research. However, it was noted as a future study subject. In this study, the aim was to 

reduce the complexity caused by metric numbers in a meaningful way. Therefore, only 

two out of these four metrics were used, while comparing the algorithms.  Another 

contribution of this result rather than reducing the metric number, is the advantage of 
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being able to make interpretations about the CI values to some degree. As mentioned 

earlier, the CI values for the four algorithms could not be extracted because of their sparse 

setting. However, thanks to the relationship between MCIV and CI, it becomes possible 

to make inferences. Therefore, MCIV was chosen among the two. GCIV-VW was chosen 

instead of Euclidean distance since it was created in the context of AHP. In short, the 

algorithms outputs were decided to compare using four metrics instead of six, these were 

GCIV-VW, MCIV, Kendall's tau, and central processing unit time. 

In order to reduce complexity comes from the algorithm number before comparing all 

algorithms, the parametric algorithms were grouped, and the algorithm that would yield 

the best statistical results based on the metrics within each group was distinguished. 

Therefore, one TLT algorithm was chosen from the three TLT algorithms, and one TLET 

algorithm was selected from the six TLET algorithms. Subsequently, a total of eight 

algorithms (the two proposed algorithms and the six algorithms from the literature) were 

compared according to the metrics.  

Tukey HSD and Games Howell tests were utilized as a statistical comparison test. The 

Tukey HSD test assumes samples have equal variances (Lee and Lee, 2018). It was 

employed when the GCIV-VW, MCIV, and Kendall's tau metrics were compared, since 

the algorithms outputs had equal or close variances. On the other hand, the Games Howell 

test, which can be used when inequality of variances existed (Lee and Lee, 2018), was 

used to compare the central processing unit time where were significant deviations on 

variances among the outputs of the algorithms. Statistical differences were examined at 

the significance level of 0.05. 

In the experimental conditions, there were three parameters including matrix size, missing 

ratio, and consistency. The 36 experimental conditions result were grouped into 10 cases 

for each metrics these are high consistency, med consistency, low consistency, matrix 

size 5, matrix size 15, matrix size 25, missing ratio 0.2, missing ratio 0.3, missing ratio 

0.4, and missing ratio 0.5. While creating the cases, one parameter of experimental 

conditions was kept constant, and the data were collected accordingly. For example, in 

the matrix size 5 case, considering three consistency levels and four missing ratios, a total 

of 1200 (3 × 4 × 100 simulations/experimental design) data were gathered. Therefore, 

there were 1200 (3 × 4 × 100) data in the consistency and matrix size cases, while there 

were 900 (3 × 3 × 100) data in the missing ratio cases. 
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5.1.1. TLT Comparisons 

The TLT algorithms (NEC = 0, NEC = 2, NEC = 4) were compared statistically based on 

three metrics namely GCIV-VW, MCIV, and Kendall's tau. Since these algorithms 

displayed similar processing time values, their comparison based on central processing 

unit time was omitted. The following tables (Table 5, 6 and 7) illustrate the comparisons 

of these three algorithms for a total of 30 cases (10 cases for each three metrics). Entries 

demonstrating statistical disparities were highlighted in bold. 

Table 5 Results of the Tukey HSD test for matrix size cases 

Metric i  j  Mean Diff.  Sig.  Mean Diff.  Sig.  Mean Diff.  Sig. 

           (i-j) n=5  (i-j) n = 15 (i-j) n = 25 

    NEC=0      NEC=2 -0.018  0.003  -0.001 0.574 -0.001 0.961 

GCIV-VW    NEC=0      NEC=4 -0.023  <0.001  -0.001 0.179 -0.001 0.886 

    NEC=2      NEC=4 -0.006  0.941  -0.000 0.999 -0.000 1.000 

    NEC=0      NEC=2 -0.020  <0.001  -0.002 0.976 -0.001 1.000 

MCIV    NEC=0      NEC=4 -0.025  <0.001  -0.003 0.656 -0.001 1.000 

    NEC=2      NEC=4 -0.005  0.020  -0.001 0.998 -0.000 1.000 

    NEC=0      NEC=2  0.019  0.522   0.004 0.916  0.002 0.992 

Kendall    NEC=0      NEC=4  0.025  0.176   0.005 0.859  0.002 0.976 

    NEC=2      NEC=4  0.006  1.000   0.000 1.000  0.000 1.000 

 

Table 6 Results of the Tukey HSD test for consistency cases 

Metric i  j  Mean Diff.  Sig.  Mean Diff.  Sig.  Mean Diff.  Sig. 

           (i-j) Low (i-j) Med (i-j) High 

    NEC=0     NEC=2 -0.002  0.310  -0.007 0.002 -0.010 0.269 

GCIV-VW    NEC=0     NEC=4 -0.002  0.047  -0.010 <0.001  -0.014 0.033 

    NEC=2     NEC=4 -0.001  0.998  -0.002 0.959 -0.003 0.997 

    NEC=0     NEC=2 -0.002 0.026  -0.007 <0.001  -0.013    <0.001   

MCIV    NEC=0     NEC=4 -0.002  0.001  -0.009 <0.001  -0.018    <0.001   

    NEC=2     NEC=4 -0.000  0.995  -0.002 0.278 -0.004 0.228 

    NEC=0     NEC=2  0.005 0.918   0.009 0.860  0.011 0.830 

Kendall    NEC=0     NEC=4  0.007  0.724   0.014 0.318  0.011 0.838 

    NEC=2     NEC=4  0.002  1.000   0.005 0.995 -0.000 1.000 
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Table 7 Results of the Tukey HSD test for missing ratio cases 

Metric i  j  Mean       Sig.  Mean       Sig.  Mean       Sig.  Mean        Sig. 

               (i-j) 0.2                (i-j) 0.3                (i-j) 0.4                   (i-j) 0.5 

 NEC=0  NEC=2 -0.007  0.110  -0.007 0.258 -0.007 0.471 -0.005 0.950 

GCIV-VW NEC=0  NEC=4 -0.008  0.028  -0.008 0.060 -0.010 0.081 -0.008 0.634 

 NEC=2  NEC=4 -0.001  1.000  -0.002 1.000 -0.003 0.996 -0.003 0.999 

 NEC=0  NEC=2 -0.007  0.016  -0.008 0.006 -0.008 0.002 -0.006 0.157 

MCIV NEC=0  NEC=4 -0.009  <0.001  -0.010 <0.001 -0.012 <0.001  -0.008 0.003 

 NEC=2  NEC=4 -0.002  0.999  -0.002 0.995 -0.003 0.792 -0.003 0.944 

 NEC=0  NEC=2  0.012  0.647   0.008 0.971  0.006 0.996  0.008 0.987 

Kendall NEC=0  NEC=4  0.013  0.579   0.008 0.957  0.012 0.833  0.010 0.946 

 NEC=2  NEC=4  0.001  1.000   0.001 1.000  0.005 0.998  0.002 1.000 

 

Note that MCIV and GCIV-VW are a distance metric, while Kendall is a similarity 

metric.  There is no significant difference among the three algorithms in terms of the 

Kendall metric. However, according to the GCIV-VW and MCIV metrics, there are 

statistically significant differences in particular cases. According to GCIV-VW, in cases 

including matrix size 5, low consistency, med consistency, high consistency, and missing 

ratio 0.2 statistically differences were observed. According to MCIV, in cases namely 

matrix size 5, low consistency, med consistency, high consistency, missing ratio 0.2, 

missing ratio 0.3, missing ratio 0.4, and missing ratio 0.5 statistically differences were 

obtained. NEC = 0 outperforms the other two algorithms in these cases. Furthermore, no 

statistical difference was observed between NEC = 2 and NEC = 4, except the case of 

matrix size 5 based on MCIV. In that case NEC = 2 displays statistically superiority over 

NEC = 4. The fact that the NEC = 0 algorithm outperforms the other two algorithms 

demonstrates that the increase in the NEC parameter is not beneficial in terms of the 

MCIV and GCIV-VW metrics in the TLT algorithm. Therefore, among the TLT 

algorithms NEC = 0 was selected.  

 

5.1.2. TLET Comparisons 

The statistical comparison of the six TLET algorithms were conducted based on three 

metrics, which are GCIV-VW, MCIV, and Kendall's tau. Since the processing time values 

of the algorithms were similar, their statistical comparison based on central processing 

unit time was not investigated. Comparisons were made among six algorithms, so that 
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resulted in 15 different comparisons for each 30 cases. Due to limited space and for the 

sake of compactness, only cases where there was at least one statistically significant 

difference between any of the algorithms were presented in tables below (Table 8, 9 and 

10) and in the appendix chapter (Table 27, 28, 29, 30, 31 and 32). The representation in 

the tables is as follows: The case title is indicated above the tables. Mean differences 

between algorithms and corresponding significance values are displayed within the cells. 

The upper value in the cell corresponds to the mean difference, and the lower value 

indicates the significance value. The mean difference was obtained by subtracting the 

algorithm in the column from the algorithm in the row. Only the right upper triangle was 

demonstrated, the bottom left triangle was not presented since the left bottom triangle is 

negative of the right upper triangle in terms of mean differences, and the same in terms 

of the significance values. The diagonal entries were also not indicated as was considered 

trivial. Entries that show statistical differences were highlighted in bold. 

Note 3: "importance" was abbreviated as "imp" in the tables. 

Table 8 Results of the Tukey HSD test for missing ratio 0.2 case based on GCIV-VW 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2  

NEC = 0,  
imp = 1 

-0.007 
0.170 

-0.008 
0.052 

0 
1.00 

-0.006 
0.23 

-0.007 
0.085 

NEC = 2,  
imp = 1 

 -0.001 
1.00 

0.007 
0.165 

0 
1.00 

-0.001 
1.00 

NEC = 4,  
imp = 1 

  0.008 
0.05 

0.001 
1.00 

0 
1.00 

NEC = 0,  
imp = 2 

   -0.006 
0.224 

-0.007 
0.082 

NEC = 2,  
imp = 2 

    -0.001 
1.00 

 

Table 9 Results of the Tukey HSD test for matrix size 5 case based on MCIV 

 
NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2  

NEC = 0,  

imp = 1 

-0.014 

<0.001 

-0.018 

<0.001 

0 

1.00 

-0.012 

<0.001 

-0.014 

<0.001 

NEC = 2,  
imp = 1 

 -0.004 
0.165 

0.014 
<0.001 

0.002 
0.91 

-0 
1.00 

NEC = 4,  
imp = 1 

  0.018 
<0.001 

0.006 
0.002 

0.004 
0.222 

NEC = 0,  

imp = 2 
   -0.012 

<0.001 

-0.014 

<0.001 

NEC = 2,  
imp = 2 

    -0.002 
0.856 
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Table 10 Results of the Tukey HSD test for missing ratio 0.2 case based on MCIV 

 
NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2  

NEC = 0,  

imp = 1 

-0.001 

0.033 

-0.008 

0.002 

-0 

1.00 

-0.007 

0.04 

-0.008 

0.003 

NEC = 2,  
imp = 1 

 -0.002 
0.998 

0.007 
0.034 

0 
1.00 

-0.001 
0.999 

NEC = 4,  
imp = 1 

  0.008 
0.002 

0.002 
0.997 

0 
1.00 

NEC = 0,  

imp = 2 
   -0.007 

0.04 

-0.008 

0.003 

NEC = 2,  
imp = 2 

    -0.002 
0.998 

 

When examining the obtained results, there are no significant differences among the 

algorithms in terms of the Kendall metric. However, significant differences appeared 

between the algorithms in particular cases. Based on the GCIV-VW metric, significant 

differences were obtained in the cases of matrix size 5 (Table 27), med consistency (Table 

28), and missing ratio 0.2 (Table 8). In cases matrix size 5 and med consistency, the 

algorithms NEC = 0, importance = 1 and NEC = 0, importance = 2 demonstrated 

significantly better results compared to other algorithms. However, for the missing ratio 

0.2 case, only NEC = 0, importance = 2 dominated statistically over another algorithm. 

In terms of the MCIV metric, significant differences emerged in the cases of matrix size 

5 (Table 9), med consistency (Table 29), high consistency (Table 30), missing ratio 0.2 

(Table 10), missing ratio 0.3 (Table 31), and missing ratio 0.5 (Table 32). The algorithms 

NEC = 0, importance = 1 and NEC = 0, importance = 2 displayed significantly better 

results in these cases.  

Nine cases out of 30 indicated statistically significant differences. In these cases, 

generally, the algorithms NEC = 0, importance = 1 and NEC = 0, importance = 2 showed 

better performance. They do not create a statistically significant difference between each 

other. However, in one case only the NEC = 0, importance = 2 algorithm displayed 

superiority over the NEC = 4, importance = 1 algorithm. Moreover, the importance level 

of the dominated algorithm was 1. Therefore, the NEC = 0, importance = 2 algorithm was 

selected among the TLET algorithms. 

The algorithms with having NEC parameters as zero displayed statistically superiority 

over the algorithms with having NEC parameters as two and four in the cases where 

statistically significance difference exists. This result might propose that a rise in the NEC 



43 

 

value diminishes the MCIV and GCIV-VW performances. However, depending only on 

the importance values there was not any dominance over the algorithms. Although the 

importance parameter does not severely affect these metrics, its variation might create 

differences under certain cases (e.g., missing ratio 0.2 case based on GCIV-VW). 

 

5.1.3.  All Algorithms Comparisons 

Eight algorithms, namely Harker, Dematel, Sparse Eigenvector, Metropolis-Hastings, 

Heat-Bath, SLLS, TLT-NEC=0, and TLET-NEC=0, importance = 2 were statistically 

compared based on four metrics, including GCIV-VW, MCIV, Kendall's tau, and central 

processing unit time. 40 cases resulted in 28 different comparisons among the eight 

algorithms were considered. Due to limited space and conciseness, only the cases where 

there was a statistical difference between any of the algorithms were included in the 

tables. Initially, the tables corresponding to GCIV-VW, MCIV, and Kendall's tau metrics 

were presented and discussed below (Table 11, 12, and 13) and in the appendix (Table 33 

and 34) for comparing the accuracy of the algorithms. While comparing the accuracy, 

comparisons of the algorithms were investigated extensively since the results had been 

close. Therefore, some additional tables were indicated after statistical comparisons based 

on these 3 metrics. Subsequently, the tables associated with central processing unit time 

were revealed and discussed in order to compare computation time performance. The 

representation and purpose of the tables align with the TLET Comparisons section. 

Table 11 Results of the Tukey HSD test for matrix size 25 case based on GCIV-VW 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 

imp = 2 

Sparse 
Eigenvector 

-0.001 
0.871 

0 
0.996 

0.001 
0.504 

-0 
0.999 

0 
0.999 

0 
0.999 

0 
0.996 

Metropolis 
Hastings 

 0.001 
0.414  

0.002 
0.019 

0 
0.995 

0.001 
0.531 

0.001 
0.513 

0.001 
0.403 

Heat Bath   0.001 
0.921 

-0.001 
0.88 

-0 
1.00 

-0 
1.00 

0 
1.00 

SLLS    -0.001 
0.161  

-0.001 
0.854 

-0.001 
0.865 

-0.001 
0.926 

Harker     0.001 

0.939 

0.001 

0.932 

0.001 

0.873 

Dematel      0 
1.00 

0 
1.00 

TLT-NEC=0       0 
1.00 
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Table 12 Results of the Tukey HSD Test for med consistency case based on MCIV 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.003 
0.07 

-0.001 
0.863 

0 
1.00 

-0 
1.00 

-0 
1.00 

-0 
1.00 

0 
1.00 

Metropolis 
Hastings 

 0.001 
0.795 

0.003 
0.017 

0.003 
0.108 

0.003 
0.083 

0.002 
0.169 

0.003 
0.048 

Heat Bath   0.002 
0.584 

0.001 
0.923 

0.001 
0.888 

0.001 
0.968 

0.001 
0.794 

SLLS    -0.001 
0.999  

-0 
1.00 

-0.001 
0.993 

-0 
1.00 

Harker     0 
1.00 

-0 
1.00 

0 
1.00 

Dematel      -0 
1.00 

0 
1.00 

TLT-NEC=0       0 
1.00 

 

Table 13 Results of the Tukey HSD Test for high consistency case based on MCIV 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 

Eigenvector 

-0.006 

0.028 

-0.002 

0.931 

0.001 

0.993 

-0 

1.00 

0 

1.00 

-0 

1.00 

0.001 

1.00 

Metropolis 
Hastings 

 0.003 
0.472 

0.007 
0.001 

0.005 
0.063 

0.006 
0.014 

0.005 
0.036 

0.006 
0.009 

Heat Bath   0.003 
0.476 

0.002 
0.983 

0.002 
0.85 

0.002 
0.952 

0.003 
0.783 

SLLS    -0.002 
0.963  

-0.001 
0.999 

-0.002 
0.987 

-0.001 
1.00 

Harker     0.001 
1.00 

0 
1.00 

0.001 
0.999 

Dematel      -0.001 

1.00 

0 

1.00 

TLT-NEC=0       0.001 
1.00 

 

Statistically significant differences were not observed in most cases. Out of a total of 30 

cases, only in five cases (Table 11, 12, 13, 33 and 34) at least one statistically significant 

difference was acquired. The cases where statistically significant differences were 

obtained are as follows, matrix size 25 based on GCIV-VW (Table 11), med consistency 

based on MCIV (Table 12), high consistency based on MCIV (Table 13), matrix size 5 

based on MCIV (Table 34), and matrix size 25 based on Kendall (Table 33). Even though 

statistically significant differences were obtained in these cases, the occurrences of these 

differences are limited. In the cases of matrix size 25 based on Kendall, matrix size 5 



45 

 

based on MCIV, and matrix size 25 based on GCIV-VW, the only statistically significant 

difference acquired was that the SLLS algorithm outperforms the Metropolis Hastings 

algorithm. In the case of med consistency based on MCIV, the SLLS and the TLET-NEC 

= 0, importance = 2 algorithms dominate the Metropolis Hastings algorithm. Lastly, in 

the case of high consistency based on MCIV, the Sparse Eigenvector, the SLLS, the 

Dematel, the TLT-NEC = 0, and the TLET-NEC = 0, importance = 2 algorithms have 

superiority over the Metropolis Hastings algorithm. The algorithms achieved similar 

statistical outcomes in three performance metrics in most of the cases. The Metropolis 

Hastings algorithm is dominated in cases where statistical differences were observed, 

while the SLLS algorithm dominates. Moreover, the second algorithm that has most 

superiority over the Metropolis Hastings algorithm is the TLET-NEC = 0, importance = 

2 algorithm. 

In addition to these statistical significance tests the algorithms' average performances 

were ranked based on the Kendall, GCIV-VW, and MCIV metrics for each 30 cases. The 

algorithms displaying the best and worst two average performances in each case were 

demonstrated in the tables below (14, 15 and 16) and in the appendix chapter (35, 36 and 

37). "x" in the table shows that the algorithm in corresponding case is either one of the 

two best performing algorithms or one of the two worst-performing algorithms. The 

algorithms were indicated in rows, while the cases were shown in columns. 

Note 4: In the tables the abbreviations are as follows, “N” for matrix size, “MR” for 

missing ratio, and “Con” for consistency.  
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Table 14 The best two algorithms in terms of mean based on GCIV-VW 

 N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

Sparse  
Eigenvector X          

Metropolis 
Hastings 

          

Heat Bath       X    

SLLS  X X X X X X X X X 

Harker           

Dematel X    X X    X 

TLT-NEC = 0           

TLET  
NEC = 0, imp = 2 

 X X X    X X  

 

Table 15 The best two algorithms in terms of mean based on MCIV 

 N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

Sparse  

Eigenvector 
              X     

Metropolis 

Hastings 
                    

Heat Bath                     

SLLS X X X X X X X X X X 

Harker                     

Dematel       X             

TLT-NEC = 0                     

TLET  
NEC = 0, imp = 2 X X X   X X X   X X 
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Table 16 The worst two algorithms in terms of mean based on GCIV-VW 

 N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

Sparse  
Eigenvector                     

Metropolis 
Hastings X X X X X X   X X X 

Heat Bath X     X   X   X X   

SLLS                     

Harker   X X   X   X     X 

Dematel                     

TLT-NEC = 0             X       

TLET  
NEC = 0, imp = 2 

                    

Based on the tables indicating the best two algorithms (Table 14, 15 and 35), the SLLS 

algorithm appears most frequently, followed by the TLET-NEC = 0, importance = 2 

algorithm. These two algorithms were also the most two algorithms that have statistically 

significant dominance over. Moreover, these two algorithms were not observed as the 

worst two algorithms in terms of average performance in any case. Based on the tables 

demonstrating the two worst algorithms (Table 16, 36 and 37), the Metropolis Hastings 

and the Heat Bath algorithms are displayed generally as the two worst algorithms in terms 

of average performance based on these metrics. Among these two algorithms, the Heat 

Bath algorithm is seen once as among two best algorithms (missing ratio 0.5 based on 

GCIV-VW (Table 14)), while the Metropolis Hastings algorithm could not be observed 

as one of the best two algorithms in any case. 

There is diversity in the algorithms exhibiting the best/worst two average performances 

on a case basis. However, this diversity is limited. Certain algorithms, namely SLLS and 

TLET-NEC = 0, importance = 2, Metropolis Hastings and Heat Bath were the best/worst 

two performances on average in a considerable number of cases.  

SLLS and TLET-NEC = 0, importance = 2 algorithms, which have most frequent 

demonstration among the best two performances on average basis across these three 
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metrics, were analyzed further to identify their superiority over each other on an instance 

basis. The number of instances where one algorithm outperformed the other per case was 

determined. The results were indicated in the following tables (Table 17, 18 and 19). The 

numbers in the tables display the quantity of superiority instance over the other algorithm 

in case basis. The tables do not show instances where there is equality, but they can be 

extracted by subtracting the column sum from the total number of simulations. 

Note that in missing ratio cases there are 900 instances, in matrix size and consistency 

cases there are 1200 instances. 

Table 17 The number of instances that algorithms have better performance in each case 

based on GCIV-VW 

GCIV-VW N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

SLLS 623 680 764 524 499 517 527 651 660 756 

TLET  
NEC = 0, imp = 2 562 520 436 376 401 383 358 543 539 436 

 

Table 18 The number of instances that algorithms have better performance in each case 

based on MCIV 

MCIV N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

SLLS 1176 1200 1200 900 900 900 876 1192 1197 1187 

TLET  
NEC = 0, imp = 2 1 0 0 0 0 0 1 1 3 0 

 

Table 19 The number of instances that algorithms have better performance in each case 

based on Kendall 

Kendall N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

SLLS 33 268 370 160 161 178 172 52 248 371 

TLET  
NEC = 0, imp = 2 

21 186 220 89 105 110 123 25 189 213 
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The MCIV outcomes were as expected because of the objective function utilized in SLLS. 

The SLLS algorithm objective aims to minimize the logarithmic quadratic error between 

the pairwise comparison matrix derived from the decision maker (A) and the theoretical 

pairwise comparison matrix (W) and MCIV reveals the disparity between A and W. 

Nevertheless, it is important to remember that the SLLS algorithm was not able to 

establish statistically significant dominance over the TLET-NEC = 0, importance = 2 

algorithm in any case. Moreover, according to Kendall and GCIV-VW results the SLLS 

algorithm has more competitive performance than the TLET-NEC = 0, importance = 2 

algorithm. However, the TLET algorithm still provides a considerable number of 

advantages. Therefore, there might be a reason for choosing TLET-NEC = 0, importance 

= 2 in some conditions. 

The statistically significance test results in the 10 cases according to the algorithms 

computation time performance are shown below (Table 20, 21 and 22) and in the 

appendix (38, 39, 40, 41, 42, 43 and 44). Note that the differences are provided in units 

of seconds. 

Table 20 Results of the Games Howell test for matrix size 5 case based on central 

processing unit time 

 Metropolis 

Hastings 
Heat Bath SLLS Harker Dematel 

TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.005 
<0.001 

-0.008 
<0.001 

-0.019 
<0.001 

0 
0.997 

-0 
0.994 

0 
0.194 

0 
0.611 

Metropolis 
Hastings 

 -0.003 
0.136 

-0.014 
<0.001 

0.005 
<0.001 

0.005 
<0.001 

0.005 
<0.001 

0.005 
<0.001 

Heat Bath   -0.011 
0.001 

0.008 
<0.001 

0.008 
<0.001 

0.008 
<0.001 

0.008 
<0.001 

SLLS    0.019 
<0.001  

0.019 
<0.001 

0.019 
<0.001 

0.019 
<0.001 

Harker     -0 
0.825 

0 
0.55 

0 
0.944 

Dematel      0.0002 

0.033 

0 

0.181 

TLT-NEC=0       -0 
0.992 
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Table 21 Results of the Games Howell test for matrix size 25 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.042 
<0.001 

-0.079 
<0.001 

-0.18 
<0.001 

-0 
0.478 

-0 
1.00 

-0.002 
<0.001 

-0.031 
<0.001 

Metropolis 

Hastings 
 -0.037 

<0.001 

-0.138 

<0.001 

0.041 

<0.001 

0.042 

<0.001 

0.04 

<0.001 

0.011 

0.21 

Heat Bath   -0.101 
<0.001 

0.078 
<0.001 

0.079 
<0.001 

0.077 
<0.001 

0.048 
<0.001 

SLLS    0.18 
<0.001  

0.18 
<0.001 

0.179 
<0.001 

0.149 
<0.001 

Harker     0 
0.537 

-0.001 
<0.001 

-0.03 
<0.001 

Dematel      -0.002 
<0.001 

-0.031 
<0.001 

TLT-NEC=0       -0.029 
<0.001 

 

Table 22 Results of the Games Howell test for high consistency case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.022 
<0.001 

-0.046 
<0.001 

-0.071 
<0.001 

-0 
0.88 

0 
0.997 

-0.001 
0.002 

-0.011 
<0.001 

Metropolis 
Hastings 

 -0.023 
0.028 

-0.049 
<0.001 

0.022 
<0.001 

0.022 
<0.001 

0.022 
<0.001 

0.011 
0.026 

Heat Bath   -0.025 
0.413 

0.045 
<0.001 

0.046 
<0.001 

0.045 
<0.001 

0.034 
<0.001 

SLLS    0.071 

<0.001  

0.071 

<0.001 

0.07 

<0.001 

0.06 

<0.001 

Harker     0 
0.461 

-0 
0.125 

-0.011 
<0.001 

Dematel      -0.001 
<0.001 

-0.011 
<0.001 

TLT-NEC=0       -0.011 
<0.001 

 

Based on central processing unit time, the SLSS algorithm was dominated by all other 

algorithms in 5 cases (Table 20, 21, 39, 40 and 44). Other 5 cases it was dominated by 

all except the Heat Bath algorithm (Table 22, 38, 41, 42 and 43). The Heat Bath and 

Metropolis Hastings algorithms generally displayed inferior performance compared to 

algorithms other than SLSS. The inferior performance of the SLSS, the Heat Bath and 

the Metropolis Hastings algorithms might be related to their convergence (termination) 
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parameters selected by this research. However, for precise convergence, the termination 

parameter must be strict, which may increase the converge time of the algorithms. The 

Sparse Eigenvector, the Harker and the Dematel algorithms generally had superiority. 

However, the TLT and TLET algorithms demonstrated their superiority on a case basis 

depending on the number of paths found by these algorithms. For example, in the case of 

matrix size 5, where the number of possible paths is low (Table 20), the TLT algorithm 

outperformed the Dematel algorithm, while there is no statistically significant difference 

observed with the Sparse Eigenvector and the Harker algorithms. Furthermore, there is 

no statistically significant difference between the TLET algorithm and the Dematel, the 

Harker, and the Sparse Eigenvector algorithms in this case. However, in the case of 

matrix size 25, where the number of possible paths is high (Table 21), the Dematel, the 

Harker, and the Sparse Eigenvector algorithms outperformed the TLT and the TLET 

algorithms. 

Although there are statistically significant differences between algorithms, the central 

processing unit time of the algorithms are generally within acceptable levels. For 

example, in the matrix size 25 case the SLSS algorithm instance having a maximum 

computation time had 10.48 seconds computation time. However, these numbers may 

become significant when increasing the number of instances or dealing with more 

extreme cases. 

Note that central processing unit time is highly dependent on how algorithms are coded. 

An expert in coding can achieve better computation time. Consequently, the mean 

differences between algorithms may alter. In this study, objectivity was tried to be ensured 

by coding the algorithms by a single reference person. 

 

5.2. Empirical Experimental Design 

 

Numerical studies enable us to generate different experimental conditions and to compare 

algorithms’ performances. Compared to empirical studies, in numerical studies data 

might be generated more quickly and easily. However, despite efforts to reflect real 

eliciting processes, real-world situations include uncertainties and unknowns. Therefore, 
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in this study, along with numerical experimental design, comparison of algorithms was 

also conducted in empirical experimental design. 

The data obtained from the empirical experiment, which is applied on 30 Sabancı 

University students, was cleaned. Although the countries' geographical sizes were 

selected in order to reflect expert knowledge, the students may not have had a tendency 

towards this cultural knowledge. Furthermore, the experiment and algorithms are 

dependent on principles, namely connectivity, consistency, and applicability. The 

incomplete methodologies include the connectivity assumption. Therefore, the first 

matrix that is assigned by the participants must form a connected graph to compare 

algorithms. In order to use the PCMs created by participants, their CR values must be less 

than or equal to 0.1. The participants were required to fill the cells in the matrices in a 

readable manner, adhering to the Saaty scale. Moreover, when completing the second 

matrix, it was necessary to maintain the filled cells of the first matrix for coherency.  

In order to analyze consistency, the second matrices composed by the participants were 

utilized. The reason for using the second matrices rather than the first was completeness 

of the second matrices. Consistency check is important since it allows to understand the 

attitude exhibited by the participants in responding to the experiment and their knowledge 

to a degree. It was assumed that the inconsistent filling of the matrices by the participants 

indicated that they did not pay sufficient attention to the experiment, or they have 

inadequate knowledge about the subject. 8 participants out of 30 did not assign sufficient 

consistency. In addition to this metric, the Kendall metric was examined to assess the 

knowledge of the participants. Thus, one data for which the Kendall metric was calculated 

negatively by all the algorithms, was eliminated. Furthermore, 3 data were eliminated 

because of the lack of connectivity of the first matrix and 3 data were removed due to not 

adhering to the experimental applicability. Consequently, 15 data remained. The number 

of acceptances and non-acceptances along with reasons are tabulated below (Table 23). 
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Table 23 The number of acceptances and non-acceptances 

Explanations Amounts 

Participants 30 

Acceptances 15 

Non-Acceptances 

• Consistency 

• Connectivity 

• Applicability 

• Kendall 

15 

8 

3 

3 

1 

Priority vectors of these accepted 15 data’s first matrix were derived by the 15 incomplete 

AHP methodologies namely the existing six algorithms in the literature and the nine 

proposed parametric algorithms. Priority vectors of 15 data’s second matrix were 

calculated by the Saaty eigenvector method. As a result, 16 different priority vectors were 

obtained for each data, and they were assessed utilizing the true priority vector based on 

three metrics including Kendall, GCIV-VW and MCIV.  

One of the objectives of this experiment is to compare incomplete AHP methodologies. 

The second objective is to determine the decision maker's attitude towards uncertain 

pairwise comparisons. Should the decision maker predict the uncertain pairwise 

comparisons, or should the prediction process be left to the incomplete AHP 

methodologies? The decision maker's prediction process on the missing entries was 

simulated by asking the participants to compose the second matrix in this experiment. 

Algorithm performances based on each metric are presented in the tables below (Table 

24, 25 and 26). The algorithm that achieves the best outcome for each data in each metric 

is highlighted in bold. The mean values of the 15 performances of each algorithm 

according to each metric are provided in the bottom row of the corresponding tables. The 

algorithms that yield one of the two best mean results is emphasized in bold in this row.  

Note that the MCIV metric developed for incomplete AHP methodologies. Therefore, 

when examining this metric, the priority vectors obtained from the second matrices using 

the Saaty eigenvector method were not considered. Consequently, only incomplete AHP 

methodologies were compared according to MCIV.  
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The TLT - NEC = 0 algorithm among the TLT algorithms, the TLET-NEC = 0, 

importance = 2 algorithm among the TLET algorithms yielded the best mean 

performance, like in the numerical experimental design, in terms of these three metrics. 

Therefore, only the TLT - NEC = 0 algorithm and TLET - NEC = 0, importance = 2 

algorithm were demonstrated as TLT and TLET respectively. 

In the tables below, the Sparse Eigenvector algorithm is demonstrated as "SE", the 

Metropolis Hastings algorithm is represented as "MH", the Heat Bath algorithm is 

denoted as "HB". 

Table 24 Results of the empirical design according to Kendall metric 

 Saaty SE MH HB SLLS Harker Dematel TLT TLET 

A1 0,21 0,29 0,27 0,30 0,30 0,22 0,32 0,32 0,32 

A2 0,37 0,37 0,37 0,30 0,31 0,37 0,37 0,37 0,37 

A3 0,54 0,52 0,56 0,56 0,56 0,52 0,54 0,54 0,54 

A4 0,08 0,09 0,05 0,07 0,10 0,09 0,10 0,08 0,10 

A5 0,10 0,10 0,10 0,10 0,14 0,12 0,10 0,10 0,10 

A6 0,54 0,45 0,45 0,47 0,47 0,43 0,43 0,43 0,43 

A7 0,54 0,52 0,56 0,54 0,49 0,52 0,50 0,52 0,52 

A8 0,49 0,16 0,14 0,14 0,16 0,16 0,20 0,22 0,18 

A9 0,24 0,28 0,24 0,31 0,28 0,28 0,28 0,28 0,28 

A10 0,31 0,35 0,33 0,39 0,35 0,35 0,37 0,37 0,37 

A11 0,28 0,31 0,30 0,30 0,30 0,31 0,30 0,30 0,31 

A12 0,16 0,20 0,18 0,20 0,20 0,20 0,22 0,22 0,22 

A13 0,16 0,27 0,17 0,23 0,23 0,29 0,27 0,29 0,27 

A14 0,40 0,44 0,44 0,42 0,45 0,39 0,45 0,45 0,45 

A15 0,10 0,26 0,16 0,20 0,24 0,24 0,26 0,26 0,26 

Mean 0,302 0,307 0,288 0,302 0,305 0,300 0,314 0,316 0,315 

 

The algorithm exhibiting the best performance according to Kendall had demonstrated 

variability across dataset. However, on average, the two algorithms that performed the 

best were the TLT and TLET algorithms. However, the Metropolis Hastings algorithm 

displayed the lowest mean performance. 
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Table 25 Results of the empirical design according to MCIV metric 

 SE MH HB SLLS Harker Dematel TLT TLET 

A1 1,020 1,022 1,021 1,020 1,020 1,020 1,021 1,020 

A2 1,075 1,076 1,074 1,073 1,076 1,076 1,076 1,076 

A3 1,071 1,080 1,077 1,070 1,072 1,071 1,071 1,071 

A4 1,022 1,023 1,022 1,022 1,023 1,022 1,022 1,022 

A5 1,141 1,133 1,131 1,132 1,142 1,142 1,142 1,142 

A6 1,095 1,097 1,099 1,094 1,095 1,095 1,095 1,095 

A7 1,079 1,078 1,079 1,078 1,080 1,079 1,079 1,079 

A8 1,062 1,062 1,060 1,060 1,064 1,062 1,063 1,061 

A9 1,122 1,128 1,122 1,121 1,124 1,124 1,124 1,124 

A10 1,072 1,074 1,073 1,072 1,072 1,072 1,072 1,072 

A11 1,044 1,044 1,044 1,043 1,044 1,044 1,044 1,044 

A12 1,059 1,060 1,060 1,058 1,059 1,059 1,059 1,059 

A13 1,011 1,011 1,011 1,011 1,011 1,012 1,012 1,011 

A14 1,034 1,035 1,035 1,034 1,035 1,034 1,035 1,034 

A15 1,054 1,064 1,056 1,053 1,055 1,058 1,060 1,054 

Mean 1,064 1,066 1,064 1,063 1,065 1,065 1,065 1,064 

The algorithm that demonstrates the highest performance based on MCIV did not show 

variability across datasets. It was the SLLS algorithm as expected due to the objective 

function of SLLS. On average, the Sparse Eigenvector and the SLLS algorithms were the 

top two performing algorithms. However, the Metropolis Hastings algorithm exhibited 

the lowest mean performance. 

Table 26 Results of the empirical design according to GCIV-VW metric 

 Saaty SE MH HB SLLS Harker Dematel TLT TLET 

A1 1,661 1,713 1,646 1,661 1,702 1,734 1,680 1,676 1,696 

A2 1,660 1,627 1,615 1,649 1,672 1,618 1,621 1,615 1,622 

A3 1,556 1,499 1,429 1,433 1,492 1,485 1,478 1,476 1,478 

A4 1,623 1,711 1,758 1,737 1,741 1,728 1,723 1,725 1,721 

A5 1,773 1,765 1,742 1,740 1,756 1,767 1,768 1,768 1,768 

A6 1,556 1,398 1,416 1,432 1,402 1,401 1,401 1,402 1,403 

A7 1,227 1,226 1,223 1,229 1,237 1,245 1,229 1,228 1,229 

A8 1,340 1,868 1,826 1,837 1,842 2,146 1,823 1,791 1,859 

A9 1,678 1,666 1,646 1,668 1,703 1,652 1,644 1,644 1,651 

A10 1,526 1,529 1,490 1,487 1,524 1,532 1,530 1,530 1,531 

A11 1,647 1,643 1,649 1,655 1,668 1,642 1,646 1,647 1,644 

A12 1,938 1,940 1,928 1,931 1,923 1,936 1,932 1,931 1,934 

A13 1,825 1,589 1,586 1,589 1,594 1,583 1,605 1,605 1,601 

A14 1,373 1,374 1,390 1,393 1,373 1,401 1,371 1,371 1,374 

A15 1,660 1,506 1,502 1,504 1,544 1,557 1,524 1,524 1,531 

Mean 1,603 1,604 1,590 1,596 1,612 1,628 1,598 1,596 1,603 
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The algorithm that shows the highest performance according to GCIV-VW exhibited 

variability across datasets. The Metropolis Hastings and TLT algorithms are the two 

algorithms that performed best on average. Conversely, the Harker algorithm 

demonstrated the lowest mean performance.  

After examining the best performances based on each data and mean, the metric 

performances were compared utilizing statistical tests such as Tukey's HSD and Games 

Howell in order to analyze statistically significant differences. Consequently, no 

statistically significant differences were observed among the mean performances of the 

algorithms. The Tukey's HSD test results for each metric were presented in the appendix 

chapter (Table 45, 46 and 47).  
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6. CONCLUDING REMARKS AND FUTURE WORK 

 

 

The contribution of this research can be summarized in four main aspects. First of all, six 

algorithms from the incomplete analytic hierarchy process (AHP) literature were 

introduced and comparatively analyzed in several experimental conditions. Secondly, two 

novel parametric heuristics, namely TLT and TLET that are suitable for the incomplete 

AHP framework, were developed. Nine methodologies were generated from these 

parametric heuristics by assigning different parameters. Three of them by referencing 

TLT and six of them by referencing TLET were developed. These nine algorithms and 

the six existing algorithms were also compared in different experimental conditions. 

Thirdly, these 15 algorithms’ performances were assessed using six metrics that are 

appropriate for the incomplete AHP framework. Five of these were existing metrics from 

literature and they were taken into consideration. The remaining metric, namely MCIV, 

was developed for the incomplete AHP framework in this study. Among these metrics, 

five of them measure accuracy, and one of them assesses computational time. The 

relationships between the accuracy metrics were analyzed. 

Lastly, two experimental setups consisting of one numerical and one empirical setup were 

introduced within the incomplete AHP framework. In the numerical experimental setup, 

10 different experimental cases were generated based on matrix size, consistency, and 

missing ratio. In these 10 cases, 15 algorithms were statistically compared according to 

several metrics, including Kendall’s tau, MCIV, GCIV-VW, and central processing unit 

time. The empirical setup was conducted with the participation of 30 Sabancı University 

students. In this setup, the 15 incomplete AHP methodologies were statistically compared 

among themselves based on different metrics including Kendall’s tau, MCIV, GCIV-VW. 
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In addition, the decision maker's attitude towards uncertain pairwise comparisons were 

also examined by using Kendall’ tau and GCIV-VW metrics. 

In the numerical experimental design, firstly the three TLT algorithms and six TLET 

algorithms were statistically compared among themselves and decided the best of the TLT 

and TLET one.  Subsequently, these two selected algorithms and the six existing 

algorithms were statistically compared. The algorithms generally demonstrated close 

comparative results in terms of the Kendall, MCIV, and GCIV-VW metrics. However, in 

some experimental cases, the TLET and the SLSS algorithms exhibited statistical 

superiority. On the other hand, according to central processing unit time statistical 

differences among the algorithms were observed in each experimental case. The SLSS 

algorithm exhibited the worst performance based on central processing unit time due to 

its convergence time in each case. 

In the empirical experimental design, the algorithms exhibited no statistically significant 

differences. However, there was diversity on the algorithms that perform one of the best 

two algorithms according to mean in each metric. In contrast to the numerical 

experimental setup, there is an additional algorithm to understand the decision maker's 

attitude towards uncertainty. Based on the comparative results of empirical experimental 

design, it could be preferable for the decision maker to rely on incomplete AHP 

methodologies than to make predictions about uncertain comparisons. 

While the empirical experimental design results showed some alignment with the 

numerical experimental design results, they also exhibited differences in several metrics 

performance. For instance, the fact that the TLET algorithm performed among the top 

two algorithms in terms of the Kendall metric and that the SLSS algorithm was among 

the top two algorithms in terms of the MCIV metric indicates the consistency of the 

experimental design outcomes. However, inconsistency arose in the GCIV-VW metric, 

in which the Metropolis Hastings algorithm performed among the best two algorithms in 

the empirical experimental design but among the worst two algorithms in the numerical 

experimental design. This discrepancy might have appeared due to the presence of 

uncertainties in the real-world situations or factors in the empirical experimental design 

such as the limited number of participants or their lack of knowledge about the subject of 

the experiment. 



59 

 

As a future research direction, a sensitivity analysis can be conducted on the parametric 

heuristics. Different path lengths and various importance parameter values can be 

analyzed based on the performance metrics and obtained tradeoffs. Another option is to 

conduct a more comprehensive empirical experiment by involving a larger number of 

participants with more domain knowledge. An additional option to consider could be 

exploring relationships between metrics utilizing different principles, aside of correlation 

such as polynomial or nonlinear relationships. 

 

 

  



60 

 

 

BIBLIOGRAPHY 

 

Achlioptas, D., Molloy, M., Moore, C., & Van Bussel, F. (2005). Rapid mixing for lattice 

colourings with fewer colours. Journal of Statistical Mechanics: Theory and 

Experiment, 2005(10), P10012. 

Ahmed, F., & Kilic, K. (2022). A Basic Algorithm for Generating Individualized 

Numerical Scale (BAGINS). arXiv preprint arXiv:2211.08740. 

Amiri, M. P. (2010). Project selection for oil-fields development by using the AHP and 

fuzzy TOPSIS methods. Expert systems with applications, 37(9), 6218-6224. 

Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G., & Quattrociocchi, W. 

(2015). Science vs conspiracy: Collective narratives in the age of 

misinformation. PloS one, 10(2), e0118093. 

Bozóki, S., Fülöp, J., & Rónyai, L. (2010). On optimal completion of incomplete pairwise 

comparison matrices. Mathematical and computer modelling, 52(1-2), 318-333. 

Cao, D., Leung, L. C., & Law, J. S. (2008). Modifying inconsistent comparison matrix in 

analytic hierarchy process: A heuristic approach. Decision Support Systems, 44(4), 

944-953. 

Carmone Jr, F. J., Kara, A., & Zanakis, S. H. (1997). A Monte Carlo investigation of 

incomplete pairwise comparison matrices in AHP. European journal of operational 

research, 102(3), 538-553. 

Chamodrakas, I., Batis, D., & Martakos, D. (2010). Supplier selection in electronic 

marketplaces using satisficing and fuzzy AHP. Expert systems with 

applications, 37(1), 490-498. 

Choo, E. U., Wedley, W. C., & Wijnmalen, D. J. (2016). Mathematical Support for the 

Geometric Mean when Deriving a Consistent Matrix from a Pairwise Ratio 

Matrix. Fundamenta Informaticae, 144(3-4), 263-278. 

Crawford, G. B. (1987). The geometric mean procedure for estimating the scale of a 

judgement matrix. Mathematical Modelling, 9(3-5), 327-334. 

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment 

matrices. Journal of mathematical psychology, 29(4), 387-405. 

Davis, J. M. (1958). The transitivity of preferences. Behavioral science, 3(1), 26-33. 

Dobrow, R. P. (2016). Introduction to stochastic processes with R. John Wiley & Sons. 

Emrouznejad, A., & Marra, M. (2017). The state of the art development of AHP (1979–

2017): A literature review with a social network analysis. International journal of 

production research, 55(22), 6653-6675. 

Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle 

formations. IEEE transactions on automatic control, 49(9), 1465-1476. 



61 

 

Gomez-Ruiz, J. A., Karanik, M., & Peláez, J. I. (2010). Estimation of missing judgments 

in AHP pairwise matrices using a neural network-based model. Applied 

Mathematics and Computation, 216(10), 2959-2975. 

Harker, P. T. (1987a). Alternative modes of questioning in the analytic hierarchy 

process. Mathematical modelling, 9(3-5), 353-360. 

Harker, P. T. (1987b). Incomplete pairwise comparisons in the analytic hierarchy 

process. Mathematical modelling, 9(11), 837-848. 

Hayrapetyan, L. R. (2019). RANDOM CONSISTENCY INDICES FOR ANALYTIC 

HIERARCHY PROCESSES. International Journal of Business, Marketing, & 

Decision Science, 12(1). 

Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic 

hierarchy process. Expert systems with applications, 38(11), 14336-14345. 

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93. 

Korpela, J., & Lehmusvaara, A. (1999). A customer oriented approach to warehouse 

network evaluation and design. International Journal of Production 

Economics, 59(1-3), 135-146. 

Kusumawardani, R. P., & Agintiara, M. (2015). Application of fuzzy AHP-TOPSIS 

method for decision making in human resource manager selection 

process. Procedia computer science, 72, 638-646. 

Lee, S. H. (2010). Using fuzzy AHP to develop intellectual capital evaluation model for 

assessing their performance contribution in a university. Expert systems with 

applications, 37(7), 4941-4947. 

Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison 

test?. Korean journal of anesthesiology, 71(5), 353-360. 

Li, X., Han, Z., Zhang, R., Zhang, Y., & Zhang, L. (2020). Risk assessment of hydrogen 

generation unit considering dependencies using integrated DEMATEL and TOPSIS 

approach. International Journal of Hydrogen Energy, 45(53), 29630-29642. 

Menci, M., Oliva, G., Papi, M., Setolal, R., & Scala, A. (2018, June). A suite of distributed 

methodologies to solve the sparse analytic hierarchy process problem. In 2018 

European control conference (ECC) (pp. 1447-1453). IEEE. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). 

Equation of state calculations by fast computing machines. The journal of chemical 

physics, 21(6), 1087-1092. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychological review, 63(2), 81. 

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in 

networked multi-agent systems. Proceedings of the IEEE, 95(1), 215-233. 

Oliva, G., Setola, R., & Scala, A. (2017). Sparse and distributed analytic hierarchy 

process. Automatica, 85, 211-220. 

Oliva, G., Setola, R., Scala, A., & Dell’Olmo, P. (2019). Sparse analytic hierarchy 

process: an experimental analysis. Soft computing, 23, 2887-2898. 



62 

 

Ratner, B. (2009). The correlation coefficient: Its values range between+ 1/− 1, or do 

they?. Journal of targeting, measurement and analysis for marketing, 17(2), 139-

142. 

Saaty, T. (1972). An eigenvalue allocation model for prioritization and planning. In 

Working paper, Energy Management and Policy Center, University of 

Pennsylvania.  

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of 

mathematical psychology, 15(3), 234-281. 

Saaty, T. L. (1994). A ratio scale metric and the compatibility of ratio scales: The 

possibility of arrow's impossibility theorem. Applied Mathematics Letters, 7(6), 51-

57. 

Saaty, T. L., & Vargas, L. G. (1998). Diagnosis with dependent symptoms: Bayes 

theorem and the analytic hierarchy process. Operations research, 46(4), 491-502. 

Shen, K. Y., & Tzeng, G. H. (2015). Combined soft computing model for value stock 

selection based on fundamental analysis. Applied Soft Computing, 37, 142–155. 

Si, S. L., You, X. Y., Liu, H. C., & Zhang, P. (2018). DEMATEL technique: A systematic 

review of the state-of-the-art literature on methodologies and 

applications. Mathematical Problems in Engineering, 2018, 1-33. 

Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy 

process. Management science, 26(7), 641-658. 

Wu, K. J., Liao, C. J., Tseng, M. L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward 

sustainability: using big data to explore the decisive attributes of supply chain risks 

and uncertainties. Journal of Cleaner Production, 142, 663-676. 

Zhou, X., Hu, Y., Deng, Y., Chan, F. T., & Ishizaka, A. (2018). A DEMATEL-based 

completion method for incomplete pairwise comparison matrix in AHP. Annals of 

Operations Research, 271, 1045-1066. 

  



63 

 

 

APPENDIX  

 

The tables related to the TLET Comparisons section are as below. 

Table 27 Results of the Tukey HSD test for matrix size 5 case based on GCIV-VW 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  
imp = 1 

-0.014 
0.05 

-0.017 
0.004 

0 
1.00 

-0.01 
0.368 

-0.012 
0.161 

NEC = 2,  
imp = 1 

 -0.003 
0.999 

0.014 
0.04 

0.004 
0.995 

0.002 
1.00 

NEC = 4,  
imp = 1 

  0.017 
0.003 

0.007 
0.824 

0.005 
0.965 

NEC = 0,  
imp = 2 

   -0.01 
0.323 

-0.012 
0.135 

NEC = 2,  
imp = 2 

    -0.002 
1.00 

 

Table 28 Results of the Tukey HSD Test for med consistency case based on GCIV-VW 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  
imp = 1 

-0.006 
0.059 

-0.007 
0.005 

0 
1.00 

-0.005 
0.135 

-0.006 
0.021 

NEC = 2,  
imp = 1 

 -0.001 
0.998 

0.006 
0.056 

0.001 
1.00 

-0.001 
1.00 

NEC = 4,  
imp = 1 

  0.007 
0.005 

0.002 
0.983 

0.001 
1.00 

NEC = 0,  
imp = 2 

   -0.005 
0.13 

-0.006 
0.02 

NEC = 2,  
imp = 2 

    -0.001 
1.00 
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Table 29 Results of the Tukey HSD test for med consistency case based on MCIV 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  

imp = 1 

-0.005 

<0.001 

-0.007 

<0.001 

0 

1.00 

-0.005 

<0.001 

-0.006 

<0.001 

NEC = 2,  
imp = 1 

 -0.002 
0.57 

0.005 
<0.001 

0.001 
1.00 

-0.001 
0.973 

NEC = 4,  
imp = 1 

  0.007 
<0.001 

0.002 
0.211 

0.001 
0.995 

NEC = 0,  

imp = 2 
   -0.005 

<0.001 

-0.006 

<0.001 

NEC = 2,  
imp = 2 

    -0.002 
0.753 

 

Table 30 Results of the Tukey HSD test for high consistency case based on MCIV 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  
imp = 1 

-0.01 
<0.001 

-0.013 
<0.001 

0 
1.00 

-0.008 
<0.001 

-0.01 
<0.001 

NEC = 2,  
imp = 1 

 -0.004 
0.497 

0.01 
<0.001 

0.001 
0.996 

-0.001 
1.00 

NEC = 4,  

imp = 1 
  0.013 

<0.001 

0.005 

0.089 

0.003 

0.761 

NEC = 0,  
imp = 2 

   -0.008 
<0.001 

-0.011 
<0.001 

NEC = 2,  
imp = 2 

    -0.002 
0.952 

 

Table 31 Results of the Tukey HSD test for missing ratio 0.3 case based on MCIV 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  
imp = 1 

-0.005 
0.198 

-0.007 
0.027 

0 
1.00 

-0.005 
0.336 

-0.006 
0.079 

NEC = 2,  

imp = 1 
 -0.002 

0.998 

0.005 

0.19 

0.001 

1.00 

-0.001 

1.00 

NEC = 4,  
imp = 1 

  0.007 
0.026 

0.002 
0.987 

0.001 
1.00 

NEC = 0,  
imp = 2 

   -0.005 
0.325 

-0.006 
0.076 

NEC = 2,  

imp = 2 
    -0.001 

0.999 
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Table 32 Results of the Tukey HSD test for missing ratio 0.5 case based on MCIV 

 NEC = 2, 
imp = 1 

NEC = 4, 
imp = 1 

NEC = 0, 
imp = 2 

NEC = 2, 
imp = 2 

NEC = 4, 
imp = 2 

 

NEC = 0,  

imp = 1 

-0.004 

0.433 

-0.008 

0.002 

0 

1.00 

-0.003 

0.876 

-0.004 

0.435 

NEC = 2,  
imp = 1 

 -0.004 
0.634 

0.005 
0.421 

0.001 
0.999 

0 
1.00 

NEC = 4,  
imp = 1 

  0.008 
0.002 

0.005 
0.197 

0.004 
0.631 

NEC = 0,  

imp = 2 
   -0.003 

0.868 

-0.005 

0.423 

NEC = 2,  
imp = 2 

    -0.001 
0.999 

 

The tables related with All Algorithms Comparisons section are as below. 

Table 33 Results of the Tukey HSD test for matrix size 25 case based on Kendall 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 

Eigenvector 

0.003 

0.761 

0.001 

1.00 

-0.003 

0.826 

0.001 

1.00 

-0.001 

1.00 

-0.001 

1.00 

-0.001 

1.00 

Metropolis 
Hastings 

 -0.002 
0.958 

-0.006 
0.048 

-0.002 
0.943 

-0.004 
0.524 

-0.004 
0.524 

-0.004 
0.459 

Heat Bath   -0.004 
0.514 

-0 
1.00 

-0.002 
0.99 

-0.002 
0.99 

-0.002 
0.982 

SLLS    0.004 
0.56  

0.002 
0.955 

0.002 
0.955 

0.002 
0.973 

Harker     -0.002 
0.994 

-0.002 
0.994 

-0.002 
0.988 

Dematel      0 
1.00 

-0 
1.00 

TLT-NEC=0       -0 
1.00 
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Table 34 Results of the Tukey HSD test for matrix size 5 case based on MCIV 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT 

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.003 
0.071 

-0.002 
0.751 

0 
1.00 

-0 
1.00 

-0 
1.00 

-0.001 
0.991 

0 
1.00 

Metropolis 
Hastings 

 0.001 
0.896 

0.003 
0.021 

0.003 
0.129 

0.003 
0.131 

0.002 
0.439 

0.003 
0.056 

Heat Bath   0.002 
0.485 

0.001 
0.871 

0.001 
0.873 

0.001 
0.995 

0.002 
0.698 

SLLS    -0.001 
0.999  

-0.001 
0.998 

-0.001 
0.92 

-0 
1.00 

Harker     -0 
1.00 

-0.001 
0.999 

0 
1.00 

Dematel      -0.001 
0.999 

0 
1.00 

TLT-NEC=0       0.001 
0.983 

 

Table 35 The best two algorithms in terms of mean based on Kendall 

 N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

Sparse  
Eigenvector 

                    

Metropolis 
Hastings 

                    

Heat Bath                     

SLLS X X X X X X X X X X 

Harker                     

Dematel       X   X         

TLT-NEC = 0 X       X   X   X   

TLET  
NEC = 0, imp = 2   X X         X   X 
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Table 36 The worst two algorithms in terms of mean based on MCIV 

 N 5 N 15 N 25 
MR 
0.2 

MR 
0.3 

MR 
0.4 

MR 
0.5 

Low 
Con 

Med 
Con 

High 
Con 

Sparse  
Eigenvector                     

Metropolis 
Hastings X X X X X X X X X X 

Heat Bath X X X X X X X X X X 

SLLS                     

Harker                     

Dematel                     

TLT-NEC = 0                     

TLET  
NEC = 0, imp = 2 

                    

 

Table 37 The worst two algorithms in terms of mean based on Kendall 

 N 5 N 15 N 25 
MR 

0.2 

MR 

0.3 

MR 

0.4 

MR 

0.5 

Low 

Con 

Med 

Con 

High 

Con 

Sparse  
Eigenvector                     

Metropolis 
Hastings X X X X X X X   X X 

Heat Bath   X X X X X   X X   

SLLS                     

Harker X           X     X 

Dematel                     

TLT-NEC = 0               X     

TLET  
NEC = 0, imp = 2 
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Table 38 Results of the Games Howell test for matrix size 15 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.019 
<0.001 

-0.046 
<0.001 

-0.064 
<0.001 

-0 
0.997 

-0 
1.00 

-0 
0.058 

-0.003 
<0.001 

Metropolis 

Hastings 
 -0.026 

0.007 

-0.044 

<0.001 

0.019 

<0.001 

0.019 

<0.001 

0.019 

<0.001 

0.016 

<0.001 

Heat Bath   -0.018 
0.545 

0.046 
<0.001 

0.046 
<0.001 

0.045 
<0.001 

0.042 
<0.001 

SLLS    0.064 
<0.001  

0.064 
<0.001 

0.064 
<0.001 

0.061 
<0.001 

Harker     0 
1.00 

-0 
0.296 

-0.003 
<0.001 

Dematel      -0 
0.144 

-0.003 
<0.001 

TLT-NEC=0       -0.003 
<0.001 

 

Table 39 Results of the Games Howell test for low consistency case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 

NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.025 
<0.001 

-0.042 
<0.001 

-0.098 
<0.001 

-0 
0.703 

-0 
0.703 

-0.001 
<0.001 

-0.011 
<0.001 

Metropolis 
Hastings 

 -0.017 
0.08 

-0.074 
<0.001 

0.025 
<0.001 

0.025 
<0.001 

0.024 
<0.001 

0.013 
0.001 

Heat Bath   -0.057 
0.017 

0.042 
<0.001 

0.042 
<0.001 

0.041 
<0.001 

0.03 
<0.001 

SLLS    0.098 
<0.001  

0.098 
<0.001 

0.098 
<0.001 

0.087 
<0.001 

Harker     0 

1.00 

-0.001 

0.002 

-0.011 

<0.001 

Dematel      -0.001 
0.002 

-0.011 
<0.001 

TLT-NEC=0       -0.011 
<0.001 
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Table 40 Results of the Games Howell test for med consistency case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.019 
<0.001 

-0.045 
<0.001 

-0.094 
<0.001 

-0 
1.00 

0 
1.00 

-0 
0.024 

-0.011 
<0.001 

Metropolis 

Hastings 
 -0.026 

<0.001 

-0.075 

<0.001 

0.019 

<0.001 

0.019 

<0.001 

0.019 

<0.001 

0.008 

<0.001 

Heat Bath   -0.049 
0.015 

0.045 
<0.001 

0.045 
<0.001 

0.044 
<0.001 

0.033 
<0.001 

SLLS    0.094 
<0.001  

0.094 
<0.001 

0.093 
<0.001 

0.082 
<0.001 

Harker     0 
1.00 

-0 
0.033 

-0.011 
<0.001 

Dematel      -0.0005 
0.024 

-0.011 
<0.001 

TLT-NEC=0       -0.011 
<0.001 

 

Table 41 Results of the Games Howell test for missing ratio 0.2 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.02 
<0.001 

-0.037 
<0.001 

-0.079 
<0.001 

-0 
1.00 

-0 
0.805 

-0 
0.442 

-0.012 
<0.001 

Metropolis 
Hastings 

 -0.018 
0.075 

-0.06 
0.005 

0.02 
<0.001 

0.019 
<0.001 

0.019 
<0.001 

0.008 
0.07 

Heat Bath   -0.042 
0.192 

0.037 
<0.001 

0.037 
<0.001 

0.037 
<0.001 

0.025 
<0.001 

SLLS    0.079 

<0.001  

0.079 

<0.001 

0.079 

<0.001 

0.067 

<0.001 

Harker     -0 
0.921 

-0 
0.625 

-0.012 
<0.001 

Dematel      -0 
0.999 

-0.012 
<0.001 

TLT-NEC=0       -0.012 
<0.001 
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Table 42 Results of the Games Howell test for missing ratio 0.3 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.017 
<0.001 

-0.049 
<0.001 

-0.084 
<0.001 

-0 
0.999 

-0 
1.00 

-0.001 
<0.001 

-0.012 
<0.001 

Metropolis 

Hastings 
 -0.031 

0.004 

-0.067 

<0.001 

0.017 

<0.001 

0.017 

<0.001 

0.017 

<0.001 

0.006 

0.014 

Heat Bath   -0.036 
0.38 

0.049 
<0.001 

0.049 
<0.001 

0.048 
<0.001 

0.037 
<0.001 

SLLS    0.084 
<0.001  

0.084 
<0.001 

0.084 
<0.001 

0.073 
<0.001 

Harker     0 
1.00 

-0.001 
0.007 

-0.012 
<0.001 

Dematel      -0.001 
0.004 

-0.012 
<0.001 

TLT-NEC=0       -0.011 
<0.001 

 

Table 43 Results of the Games Howell test for missing ratio 0.4 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 

NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.023 
<0.001 

-0.044 
<0.001 

-0.091 
<0.001 

-0 
0.205 

0 
1.00 

-0.001 
0.005 

-0.011 
<0.001 

Metropolis 
Hastings 

 -0.021 
0.135 

-0.068 
0.004 

0.022 
<0.001 

0.023 
<0.001 

0.022 
<0.001 

0.011 
0.011 

Heat Bath   -0.047 
0.218 

0.044 
<0.001 

0.044 
<0.001 

0.044 
<0.001 

0.033 
<0.001 

SLLS    0.09 
<0.001  

0.091 
<0.001 

0.09 
<0.001 

0.079 
<0.001 

Harker     0 

0.075 

-0 

0.905 

-0.011 

<0.001 

Dematel      -0.001 
0.001 

-0.012 
<0.001 

TLT-NEC=0       -0.011 
<0.001 

 

  



71 

 

Table 44 Results of the Games Howell test for missing ratio 0.5 case based on central 

processing unit time 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 

imp = 2 

Sparse 
Eigenvector 

-0.028 
<0.001 

-0.046 
<0.001 

-0.097 
<0.001 

-0 
1.00 

0 
1.00 

-0.001 
<0.001 

-0.01 
<0.001 

Metropolis 
Hastings 

 -0.018 
0.102 

-0.068 
<0.001 

0.028 
<0.001 

0.028 
<0.001 

0.027 
<0.001 

0.018 
0.007 

Heat Bath   -0.051 
0.012 

0.046 
<0.001 

0.046 
<0.001 

0.045 
<0.001 

0.036 
<0.001 

SLLS    0.097 
<0.001  

0.097 
<0.001 

0.096 
<0.001 

0.086 
<0.001 

Harker     0 
0.999 

-0.001 
<0.001 

-0.01 
<0.001 

Dematel      -0.001 
<0.001 

-0.01 
<0.001 

TLT-NEC=0       -0.009 
<0.001 

 

The tables related to the Empirical Experimental Design Results section are as 

below. 

Table 45 Results of the Tukey HSD test based on Kendall in empirical design 

 Sparse 
Eigenvector 

Metropolis 
Hastings 

Heat 
Bath 

SLSS Harker Dematel 
TLT 

NEC=0 

TLET 
NEC=0, 
imp=2 

Saaty 
-0.006 
1.00 

0.013 
1.00 

-0.001 
1.00 

-0.004 
1.00 

0.002 
1.00 

-0.013 
1.00 

-0.015 
1.00 

-0.013 
1.00 

Sparse 
Eigenvector 

 0.019 
1.00 

0.005 
1.00 

0.002 
1.00 

0.008 
1.00 

-0.007 
1.00 

-0.009 
1.00 

-0.007 
1.00 

Metropolis 
Hastings 

  -0.014 
1.00 

-0.017 
1.00 

-0.011 
1.00 

-0.026 
1.00 

-0.029 
1.00 

-0.027 
1.00 

Heat Bath    -0.003 
1.00 

0.003 
1.00 

-0.012 
1.00 

-0.015 
1.00 

-0.013 
1.00 

SLSS     0.006 
1.00 

-0.009 
1.00 

-0.011 
1.00 

-0.009 
1.00 

Harker      -0.015 
1.00 

-0.017 
1.00 

-0.015 
1.00 

Dematel       -0.003 
1.00 

-0.001 
1.00 

TLT-
NEC=0 

       0.002 
1.00 
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Table 46 Results of the Tukey HSD test based on MCIV in empirical design 

 Metropolis 
Hastings 

Heat Bath SLLS Harker Dematel 
TLT  

NEC = 0 

TLET 
NEC = 0, 
imp = 2 

Sparse 
Eigenvector 

-0.002 
1.00 

-0 
1.00 

0.001 
1.00 

-0.001 
1.00 

-0.001 
1.00 

-0.001 
1.00 

-0 
1.00 

Metropolis 
Hastings 

 0.002 
1.00 

0.003 
1.00 

0.001 
1.00 

0.001 
1.00 

0.001 
1.00 

0.002 
1.00 

Heat Bath   0.002 
1.00 

-0.001 
1.00 

-0 
1.00 

-0.001 
1.00 

0 
1.00 

SLLS    -0.002 
1.00 

-0.002 
1.00 

-0.002 
1.00 

-0.002 
1.00 

Harker     0 
1.00 

-0 
1.00 

0.001 
1.00 

Dematel      -0 
1.00 

0 
1.00 

TLT-NEC=0       0.001 
1.00 

 

Table 47 Results of the Tukey HSD test based on GCIV-VW in empirical design 

 Sparse 
Eigenvector 

Metropolis 
Hastings 

Heat 
Bath 

SLSS Harker Dematel 
TLT 

NEC=0 

TLET 
NEC=0, 
imp=2 

Saaty 
-0.001 
1.00 

0.013 
1.00 

0.007 
1.00 

-0.009 
1.00 

-0.026 
1.00 

0.004 
1.00 

0.007 
1.00 

0 
1.00 

Sparse 
Eigenvector 

 0.014 
1.00 

0.007 
1.00 

-0.008 
1.00 

-0.025 
1.00 

0.005 
1.00 

0.008 
1.00 

0.001 
1.00 

Metropolis 
Hastings 

  -0.007 
1.00 

-0.022 
1.00 

-0.039 
1.00 

-0.009 
1.00 

-0.006 
1.00 

-0.013 
1.00 

Heat Bath    -0.015 
1.00 

-0.032 
1.00 

-0.002 
1.00 

0.001 
1.00 

-0.007 
1.00 

SLSS     -0.017 
1.00 

0.013 
1.00 

0.016 
1.00 

0.009 
1.00 

Harker      0.030 
1.00 

0.033 
1.00 

0.026 
1.00 

Dematel       0.003 
1.00 

-0.004 
1.00 

TLT-
NEC=0 

       -0.007 
1.00 

 

 


