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ABSTRACT 

 

ACOUSTIC RADIATION FORCES AND TORQUES ON ELASTIC MICRO RINGS 

 

FATEMEH MALEKABADI 

 

MECHATRONICS ENGINEERING Ph.D DISSERTATION, APRIL 2023 

Dissertation Supervisor: Prof. Serhat Yesilyurt 

 

Keywords: acoustic radiation force, acoustic radiation torque, scattering, fluid-

particle interaction, finite element method 

 

 

 

 

Acoustic radiation forces (ARFs) and torques (ARTs), which arise from the scattering of 

acoustic waves by suspended particles in a fluid, have attracted considerable attention for 

manipulating particles in different fields. Considering biocompatible nature of acoustic fields 

and their potential biomedical applications such as handling biological cells, which can have 

a variety of shapes, sizes, and orientations, it is necessary to study the ARFs and ARTs on 

non-spherical particles. This dissertation analyses ARFs and ARTs on ring-shaped 

microstructures subjected to a standing wave using a finite-element method (FEM). Two 

numerical models are employed to study the viscous effects in addition to the geometrical and 

physical parameters. Significant fluctuations in ART are observed for specific combinations 

of geometric and physical characteristics as a resonance indicator. Furthermore, effects of size, 

density, and microstreaming on secondary ARFs caused by the re-scattering of the waves from 

its neighboring particles are investigated. The results reveal that microstreaming close to the 

pressure node can lead to attractive forces in the wave direction. Besides, the relative effect of 

secondary ARFs due to self-scattering is studied using segmented-ring simulations. Moreover, 

a comparison is made between FEM and chain-of-spheres method, a reduced-order and 

computationally efficient model. The torque estimations deviate dramatically; however, the 

rapid evaluations of forces match well. The thesis findings are applicable to development of 

precise, efficient, and selective acoustofluidic devices for manipulation, trapping and 

coagulation purposes for ring-like elastic microfilaments and slender bodies. These results also 

can be used in directional reinforcing of ring-shaped composites. 
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Akustik dalgaların bir akışkan içinde asılı kalan parçacıklar tarafından saçılmasından 

kaynaklanan akustik radyasyon kuvvetleri (ARF'ler) ve torklar (ART'ler), farklı alanlarda 

parçacıkları manipüle etmek için büyük ilgi çekmiştir. Akustik alanların biyouyumlu doğası 

ve biyomedikal uygulamaların potansiyeli göz önüne alındığında, biyolojik hücrelerin 

işlenmesi gibi, çeşitli şekil, boyut ve yönlere sahip olabilen, küresel olmayan parçacıklar 

üzerindeki ARF'leri ve ART'leri incelemek gerekir. Bu çalışmada, bir sonlu elemanlar yöntemi 

(FEM) kullanılarak, duran dalgaya maruz kalan halka şeklindeki mikro yapılar üzerindeki 

ARF'leri ve ART'leri analiz edilmiştir. Geometrik ve fiziksel parametrelere ek olarak viskoz 

etkileri incelemek için iki sayısal model kullanılmıştır. Bir rezonans göstergesi olarak 

geometrik ve fiziksel özelliklerin belirli kombinasyonları için ART'de önemli dalgalanmalar 

gözlemiştir. Ayrıca, dalgaların komşu parçacıklardan yeniden saçılmasının neden olduğu 

ikincil ARF'ler üzerindeki boyut, yoğunluk ve mikro akışın etkileri araştırılmıştır. Sonuçlar 

basınç düğümüne yakın mikro akışın dalga yönünde çekici kuvvetlere yol açabileceğini ortaya 

koymaktadır. Ayrıca, ikincil ARF'lerin kendiliğinden saçılma nedeniyle göreceli etkisi, parçalı 

halka simülasyonları kullanılarak incelenmiştir. Dahası, FEM ile küreler zinciri adı verilen, 

azaltılmış sıralı ve hesaplama açısından verimli bir model arasında bir karşılaştırma 

yapılmıştır. Tork tahminleri önemli ölçüde sapıyor; ancak, kuvvetlerin hızlı değerlendirmeleri 

iyi bir şekilde eşleşmektedir. Tez bulguları, halka benzeri elastik mikrofilamentler ve ince 

groveler için manipülasyon, yakalama ve pıhtılaşma amaçlarına yönelik hassas, verimli ve 

seçici akusto-akışkan cihazların geliştirilmesine uygulanabilir. Bu sonuçlar halka şeklindeki 

kompozitlerin yönlü takviyesinde de kullanılabilir. 
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1. INTRODUCTION 

 

 

Applying a suitable force to control the motion of fluids and objects at microscale may be 

based on, for instance, the transfer of energy and momentum from electromagnetics (Kummer 

et al., 2010; Cao et al., 2020), optics (Fan et al., 2014; Mallea et al., 2018), chemicals (Manjare 

et al., 2013); (Yamamoto & Shioi, 2015), or acoustic waves (Friend & Yeo, 2011; Rufo et al., 

2022). In this thesis, the focus is on the strengthening of underlying theoretical understandings 

of acoustic waves that can be applicable to life sciences, chemistry, and material development. 

The acoustic radiation force (ARF), the acoustic interaction force, and the Stokes drag from 

environmental acoustic streaming all contribute to the motion of objects in acoustic fields in 

fluids, known as acoustophoresis. 

Acoustic radiation force (ARF) is a time-averaged force exerted by sound waves on the surface 

of obstacles due to radiation pressure. Manipulation of microparticles using  ARF has received 

significant interest in recent years due to its applications in a variety of fields, including 

medicine (Rufo et al., 2022), biology (Saeidi et al., 2020), imaging (Wang, 2018), chemistry 

(Chen et al., 2022), material science for particle filtration (Fakhfouri et al., 2016), sorting 

(Wang et al., 2018), trapping (Li et al., 2021), handling (Laurell et al., 2007), mixing (Huang 

et al., 2013), and pumping (JunáHuang, 2014). Ultrasonic manipulation is a contactless 

method which can move suspended objects in a fluid (e.g., cells, bacteria, fibers, bubbles, 

droplets, swimmers) to desired positions, such as lines or patterns. 

In addition to ARF, acoustic radiation torque (ART) arises from the interaction of acoustic 

waves with the particle and the transfer of angular momentum, influencing the acoustic 

manipulation. Along with the translational displacement brought on by the ARF, the 

controllable rotation of the particle by using the ART offers an additional degree of freedom. 

Potential applications for such controlled rotation, including disease diagnosis, micro-motors, 

micro-valves, and lab-on-a chip applications, would involve micro robotic tasks. 

ARF and ART have widely been investigated on simple particle shapes. However, some of 
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these studies have taken the complex shape of particles into account generally, viscosity of the 

fluid was ignored. Thus, a more comprehensive study is needed on particles of different shapes 

that are utilized in different fields, such as biology, as biological cells have various shapes, 

sizes, and orientations in microfluidic chips. Such a study can also be helpful in reinforcing 

composites while orienting anisotropic particles. Composites, known as engineered materials, 

combine two or more basic materials. The characteristics of these constituent materials, as 

well as their relative volume fractions and configurations in the material system, lead to the 

distinctive qualities of these composites. Composites can be created to meet the specific 

geometrical, structural, mechanical, chemical, and even aesthetic requirements depending on 

the intended purpose. These synthetic materials are used in a variety of industries, including 

construction (for buildings and bridges), the automotive sector (for car bodywork), the 

aerospace and naval sector (for ships and boats), as well as biomedical fields. 

The objective of this thesis is to characterize ARFs and ARTs on ring-shaped elastic rods 

numerically, via a computational fluid dynamic (CFD) model, an indispensable tool for 

experimental design and optimization purposes. Proteins, DNA, algae, bacteria, polymers, and 

red blood cells are only a few examples of compressible objects that can be deformed into 

ring-shaped structures. Examples of images from previous studies related to ring-shaped 

structures are shown in Fig 1.1. 

Further, previous studies have mostly considered the effects of ARF and ART on a single 

particle; however, in various applications, numerous particles interact with the acoustic field. 

The interaction force, or secondary force, stems from the presence of multiple particles and 

results in an additional scattering that can influence the manipulation tasks. Hence, in order to 

obtain precise manipulation in real tasks such as in vivo ultrasonic applications, further study 

on the effects of ARFs and ARTs on multiple particles with irregular shapes is greatly needed 

as acoustic fields have been widely adopted in medical applications for their bio-compatible 

and non-invasive nature. 

Moreover, an object’s surface deformations and scattering in a viscous fluid result in 

microstreaming (also known as acoustic streaming), which affects the object’s overall ARF. 

Further investigation and understanding of microstreaming offer potential for more effective 

use of acoustofluidic devices for handling particles. Such understanding has a huge potential 

to allow researchers to either suppress or manipulate microstreaming to serve useful purposes. 

When studying microstreaming in microchannels, an inevitable physical phenomenon is the 

viscous boundary layer, 𝛿, a constrained area near a fluid-solid boundary where the fluid 
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velocity adjusts to the solid velocity. Nevertheless, the boundary layer experiences substantial 

time-averaged viscous effects that cause microstreaming and dissipation. In addition to the 

boundary-driven streaming produced by the viscous boundary layer, bulk-driven streaming 

can also occur due to viscous processes outside the boundary layer. In a microfluidic 

environment, this type of streaming was frequently disregarded in the literature, but as 

demonstrated in this thesis, it may be crucial in many circumstances with the aim of improving 

particle manipulations. 

 

 

Fig 1.1 Some applications of ring-shaped structures: (I) Active Brownian ring polymer (Mousavi et al., 2019), 

(II) sedimenting elastic rings (Gruziel-Słomka et al., 2019), (III) Particle reinforced composites (Egbo, 2021), 

(IV) Rigid toroidal inhomogeneity and its effect on composites (Krasnitskii et al., 2019), (V) Poloidal Flow and 

Toroidal Particle Ring Formation (Rezk et al., 2014), (VI) Toroidal Bubbles (Alloul et al., 2022) 

This thesis presents an analysis of acoustic radiation forces (ARFs) and torques (ARTs) on 

ring-shaped slender microstructures under a standing wave in both an inviscid fluid and a 
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viscous fluid using a three-dimensional finite-element-method (FEM) model. The influence of 

geometric and physical parameters on the primary acoustic radiation forces, torques and 

streaming is characterized. The primary acoustic radiation force is mainly caused by the 

scattered wave on a single particle, whereas the secondary force is caused by the re-scattering 

of the waves from its neighboring particles. In applications such as particle trapping, acoustic 

cavitation, acoustic coagulation and precipitation of aerosols, and biological ultrasonics, this 

secondary force is extremely significant. In particular, the effect of microstreaming on these 

primary and secondary forces is investigated in this thesis. The finite-element method (FEM) 

was used to calculate the secondary acoustic forces between two rings under a standing wave 

in an inviscid and viscous fluid. Furthermore, the FEM results were compared with a reduced-

order model called chain-of-spheres (CoS), which works very well in estimating the radiation 

forces at a fraction of the computational cost but deviates significantly in torque evaluations. 

Lastly, a segmented ring was used to understand the relative effect of secondary forces due to 

self-scattering.  

The conclusions offer guidance for improving ultrasonic control in biomedical applications as 

well as for the development of acoustic manipulation systems for biological cells and ring-like 

elastic microfilaments with arbitrary forms and orientations. Additionally, the ART produced 

by ultrasonic standing waves can improve fiber alignment, and our findings can also be applied 

to the directional reinforcement of composites in the form of rings.  
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1.1. Background 

 

 

Acoustic radiation forces (ARFs) are typically divided into two types: primary forces and 

secondary forces. The primary ARF is mainly caused by the scattered wave experienced by a 

single particle, while the secondary ARF is caused by the interactions among multiple 

particles. Secondary radiation forces, also known as interaction or Bjerknes forces, arise when 

other particles exist in a fluid medium that causes additional incident waves to be scattered 

from the particles and re-scattering among the particles (Doinikov, 2003).  

In a standing wave field, the primary ARF pulls the particle towards the pressure node or anti-

node, depending on the acoustic contrast factor (Mitri, 2010). Since the primary ARF is zero 

at the pressure node, the secondary ARF becomes the dominant force and may affect particle 

motion and orientation (Doinikov, 1996). Secondary ARFs cause particles to attract or repel 

one another, which sometimes leads to the formation of stable multi-particle structures.  

In accordance with the numerical nature of this thesis, seminal works for primary ARF in an 

inviscid fluid are introduced first; studies on primary ARF in a viscous fluid and secondary 

ARFs are then discussed, mostly through analytical and numerical studies. 

 

1.1.1. Primary Acoustic Radiation Force in an Inviscid Fluid 

 

Acoustic radiation forces (ARFs), which are caused by second-order pressure and momentum 

flux acting on a particle's surface in an inviscid fluid, are a versatile control for manipulating 

microparticles such as cells (Schmitt, 1929; Coakley et al., 1989; Haake et al., 2005; Peng et 

al., 2020), droplets and bubbles (Deshmukh et al., 2014; Li et al., 2021), particles (Glynne-

Jones et al., 2009; Gong & Baudoin, 2021; Leão-Neto et al., 2021), organisms (Kvåle Løvmo 

et al., 2021), and colloids in microfluidic devices (Glynne-Jones et al., 2013). 

ARF exerted on basic shapes like spheres and cylinders has received a great deal of attention 

in the literature. King was the first to investigate the effects of planar progressive and standing 

waves on incompressible spherical particles in an inviscid fluid (King, 1934). Gor'kov 

(Gor'kov, 1962) proposed a generalized potential for the computation of ARF for a variety of 

applications in inviscid fluids, while Yosioka and Kawasima extended King's analysis to 

compressible spheres (Yosioka & Kawasima, 1955). Simple analytical equations for ARFs  



20 
 

under travelling and standing acoustic waves were provided by Hasegawa and Yosioka 

(Hasegawa & Yosioka, 1969) and Hasegawa (Hasegawa, 1979), respectively. 

Viscous effects on ARF have been taken into account in the literature (Doinikov, 1994; 

Doinikov, 1994; Settnes & Bruus, 2012), and thermal effects on ARF have also been 

thoroughly studied (Doinikov, 1997; Doinikov, 1997; Doinikov, 1997; Karlsen & Bruus, 

2015), which is discussed in detail in the next section. For spheroidal objects, ARF has been 

investigated under different arbitrary acoustic fields: standing waves and Bessel beams (Mitri, 

2008), travelling waves (Johnson et al., 2016), Gaussian quasi-standing field (Wu et al., 2016), 

a beam of the arbitrary wavefront (Silva & Drinkwater, 2018), and transient acoustic field 

(Wang et al., 2021). 

King (King, 1935) also modeled the acoustic pressure on very thin and rigid disks; this theory 

has been further expanded for forces on disks (Xie & Wei, 2004), deformed droplets (Shi & 

Apfel, 1996), cylinders (Haydock, 2005; Mitri, 2005; Wang & Dual, 2009; Cai et al., 2010), 

and ellipsoids (Marston et al., 2006). Subsequently, experimental research focused on  the role 

of ARF in cylindrical particle trapping (Mitri, 2006). For the ARF of a Bessel beam on rigid 

oblate and prolate spheroids, Mitri established an analytical formula (Mitri, 2015). Based on 

series expansion, Mitri evaluated the ARF and ART on a viscoelastic cylinder in an inviscid 

flow (Mitri, 2016). 

Although significant research has used analytical solutions for ARF, numerical approaches are 

required, which avoid oversimplifications of the fluid and particle parameters. Numerical 

studies of ARF in the literature can be categorized into two types. The first discusses the 

subject as a fluid mechanics problem, with the acoustic field presented as a flow field. In one 

study, for example, the ARFs on cylinders were calculated using a finite volume method 

(FVM) (Wang & Dual, 2009). These findings were extremely consistent with the analytical 

calculations; however, employing the Navier-Stokes equations to solve for the entire flow field 

is very computationally costly. Such a method, therefore, is not practical, especially if only the 

radiation force computation is of interest. In another example, using a finite-difference time-

domain method based on the Lagrangian specification of the flow field, the authors  (Grinenko 

et al., 2012) calculated ARF directly from nonlinear governing equations; this method has no 

restrictions on particle geometry and no excessively restrictive boundary conditions. In another 

case, the boundary-element approach was used by Wijaya et al. (Wijaya & Lim, 2016; Wijaya 

& Lim, 2016) to investigate the ARFs and ARTs caused by acoustic radiation on spherical and 

non-spherical particles. 
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Fig 1.2. (a) Acoustophoresis of disk-shaped microparticles (Garbin et al., 2015), (b) Scattering of acoustic 

wave from a small particle (Bruus, 2012), (c) Finite element model for calculation of radiation forces on a 

compressible sphere (Glynne-Jones et al., 2013) 

In the second category of numerical simulations for ARF, perturbation methods are used to 

solve the Helmholtz equation for the acoustic field, velocity, and fluid density. This method 

is used to determine the ARF on a spherical particle in a standing acoustic field by Glynne-

jones et al. for an inviscid fluid shown in Fig 1.2. b (Glynne-Jones et al., 2013), and for a 

viscous fluid (Baasch et al., 2019). These studies used a two-dimensional axisymmetric 

geometry that takes advantage of spherical symmetry to further reduce processing 

expenses. A three-dimensional finite-element model was suggested by Garbin et al. to 

calculate the ARFs and ARTs acting on disk-shaped particles (Garbin et al., 2015). To 

prevent outgoing waves from being reflected, their fluid domain was surrounded by 

perfectly matched layers (PML), as shown in Fig 1.2a; other examples of using PMLs are 

shown in Fig 1.3. However,  studies in the literature report that proper radiation boundary 

conditions perform just as well as PMLs while requiring less computational effort, can 

be seen in Fig 1.2c (Glynne-Jones et al., 2013). In particular, for complicated three-

dimensional structures like helices at high acoustic frequencies for which the resolution 

of the acoustic field is more demanding, while perturbation-based methods are 

computationally more efficient, the computational expense may remain. Recently, 

Caldag & Yesilyurt (Caldag & Yesilyurt, 2020) introduced the chain-of-spheres (CoS) 
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reduced-order model to calculate the ARFs on thin objects in inviscid fluids by 

simulating the thin structure as a chain of tiny spheres, each of which has the same 

volume as the corresponding segment of the thin body. In this approach, the sum of the 

individual forces acting on small spheres was used to compute the overall radiation force 

on the thin structure. Depending on the incident acoustic wave type, this calculation was 

done analytically based on either plane wave-related expressions (Hasegawa & Yosioka, 

1969) or plane quasi-stationary wave formulas (Hasegawa, 1979). In comparison to the 

results obtained from the direct numerical solution for the object placed in an acoustic 

field, this method was shown to be both incredibly computationally efficient and fairly 

accurate. 

 

1.1.2. Primary Acoustic Radiation Forces in a Viscous Fluid 

 

Computation of acoustic radiation force (ARF) in a viscous fluid is more challenging than for 

inviscid fluids due to the emergence of nonlinear phenomena such as streaming which affect 

the momentum transfer between the acoustic field and the particles. However, the viscosity 

of the surrounding fluid plays a significant role in achieving precise, efficient, and robust 

particle control in practical applications in medicine, biophysics, industry, and material 

science. 

The influence of the viscosity and viscous boundary layer on the ARF acting on a spherical 

particle was studied initially by Westervelt (Westervelt, 1951; Westervelt, 1957). This 

researcher calculated ARF for fixed spheres which were small in comparison to the 

acoustic wavelength and viscous boundary layer. Later work (Zhuk, 1983; Zhuk, 1984) 

investigated ARF on a spherical particle that was free to move in a low viscous fluid, but 

similar to previous studies, this work ignored the compressibility of the particle and 

acoustic streaming. The authors concluded that viscosity could not be ignored under the 

condition of 𝑎 ≫ 𝛿, where 𝛿 is boundary layer thickness, 

𝛿 = √(2휂) (𝜌0𝜔)⁄ (1-1)

Subsequently, Danilov considered acoustic streaming in a viscous fluid on a spherical 

particle, but these analytical studies were for limited cases and disregarded, for example,  

heavy particles (Danilov, 1985; Danilov, 1986). ARF was derived for a rigid sphere in a 

viscous fluid by Doinikov (Doinikov, 1994) for an arbitrary particle size without any 
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limitation on its movement. Later, the compressibility of the spherical particle as well as 

the viscosity of the fluid, was regarded for computation of ARF (Doinikov, 1994). This 

work was expanded to develop (Doinikov, 1997)  a general formula for a spherical particle 

in a viscous fluid considering thermal effects. The formula from this work can be used in 

any symmetric acoustic wave for any spherical particle with specific limitations on its size 

with respect to the wavelength and boundary layer thickness, 𝛿 ≪ 𝑎 ≪ 𝜆 and 𝑎 ≪ 𝛿 ≪ 𝜆.  

As a result of advancements in microfabrication technologies that enable the integration 

of acoustic fields and microfluidic chips, ARF has become more attractive for 

manipulation of small particles. Thus, Settnes and Bruus (Settnes & Bruus, 2012) 

corrected analytically computed acoustic radiation force on a compressible spherical 

particle in a viscous fluid to encompass any particle with 𝑎, 𝛿 ≪ 𝜆. Their solution has 

proven applicable to lab-on-a-chip applications that manipulate micrometre-sized 

particles (Xie et al., 2019). Such applications include cell separation (Laurell et al., 2007), 

trapping (Hultström et al., 2007; Svennebring et al., 2009; Cai et al., 2020), cell sorting 

(Svennebring et al., 2009), compressibility analysis (Fu et al., 2021), and ultrasonic 

levitation (Jeger-Madiot et al., 2022) as in these cases 𝛿~𝑎 ≪ 𝜆. Settnes and Bruus 

developed their analytical expression based on the second-order perturbation theory of the 

Navier Stokes equations for the viscous boundary layer of the particle, neglecting acoustic 

streaming (second-order viscosity). They utilized the Gorkov’s analysis (Gor'kov, 1962) 

for a  compressible fluid far away from the particle and an incompressible fluid near the 

particle in the viscous boundary layer. They defined the acoustic contrast factor dependent 

on the viscosity of the fluid as well as on the density ratio of the particle and its 

surrounding fluid. Then, Karlsen and Bruus (Karlsen & Bruus, 2015) extended the 

previous work by considering both viscous and thermal effects on droplets and 

compressible particles. 
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Fig 1.3. (a) Numerical simulations to find acoustic forces on rigid cylinders (Wang & Dual, 2009), (b) Finite-

element modeling for calculation of acoustic forces on heavy compressible spheres (Baasch et al., 2019) 

Muller et al. created a multi-step finite-element model for the acoustophoretic motion of 

spherical particles suspended in a microfluidic device subjected to ultrasonic waves. To 

determine the ARF, they first solved for first-order acoustic fields, then used the first-

order field to compute the second-order fields. In order to compute the particles’ paths, 

the evaluated forces were then applied to them (Muller et al., 2013). 

Recently, Qiao et al. investigated the ARF analytically on a compressible sphere in a 

viscous fluid. They derived a general formula applicable to real applications in which 

compressible spherical particles are free to move in a viscous fluid; they confirmed their 

theoretical results experimentally. For a compressible sphere, their experiments and 

simulations showed that the ARF is dependent on incident sound pressure,  acoustic wave 

frequency, and fluid viscosity (YupeiQiao et al., 2021). Moreover, many researchers have 

analyzed the ARF on rigid and compressible spheres exerted by different types of waves 

that have the potential for applications in various fields, including Bessel beam (Mitri, 

2009), travelling waves (Johnson et al., 2016), and transient acoustic fields (Wang et al., 

2021).  

While the analytical solutions mentioned above are only relevant to basic shapes, there 

are two main categories of numerical solutions that can be used to determine the ARF on 

any shape. In the first method, the acoustic wave is introduced as a pressure wave in a 

domain of compressible fluid to resolve entire flow fields under acoustic waves through 

the complete solution of the Navier-Stokes equations. One related study, Wang & Dual, 

through a 2-D finite volume method-based (FVM) model, assessed the ARF and viscosity 
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effects for cylindrical objects (Wang & Dual, 2009). For various geometric parameters, 

their conclusions were in excellent agreement with their analytical computations. Their 

simulation for a basic structure like a cylinder took hours to complete since the forces 

were calculated from the total solution of compressible Navier-Stokes equations, in which 

viscous effects led to enhanced ARF compared to inviscid fluids. Also, Wang & Dual 

developed their numerical simulations to calculate the radiation force for rigid cylinders 

in slightly viscous fluids to study the effect of arbitrary wave types (Wang & Dual, 2011). 

Their results showed that the ARF is much greater than in plane travelling waves 

compared to plane stationary waves. Authors’ analytical solution, which agreed with their 

FVM numerical solutions for ARF and ART, was derived based on shear stress. 

In the second method of numerical solutions for viscous fluid, the perturbation approach 

is combined with Helmholtz equations derived from the first-order time-harmonic 

extension of Navier Stokes equations. This method greatly simplifies the solution 

procedure and dramatically lowers the processing cost. Muller et al. investigated ARF 

using such a numerical method in two steps. In the first step, first-order thermoacoustic 

equations were solved, and in the second step, the results from the first step were utilized 

as source terms for solving second-order equations, which led to computing the net ARF 

on the particles (Muller et al., 2012). The authors computed particle velocities numerically 

using the particle-tracking method. Their model depicted that acoustophoretic particle 

motion varied from being dominated by streaming-induced drag to being dominated by 

ARFs as a result of being a function of particle size, channel geometry, and material 

parameters. Later, the ARF on a spherical object was computed using a 2-D axisymmetric 

finite element method (FEM) model by Baasch et al. (Baasch et al., 2019). They evaluated 

first-order fields through a frequency domain study. Then, second-order fields were 

computed using the calculated first-order fields. Time-averaged ARF was obtained via 

these first- and second-order fields. They demonstrated that the ARF resulted 

predominantly from acoustic microstreaming when the viscous boundary layer thickness 

to particle radius ratio was sufficiently high, and the particle was adequately dense. Their 

results confirmed Doinikov’s analysis (Doinikov, 1994), in which the second-order 

viscosity (microstreaming) contributed to moving heavy particles towards a pressure 

antinode in contrast to light particles that tend to move to pressure nodes. 

As seen from the literature review, although many studies have focused on sphere particles 

in viscous fluids, only a few publications have been related to ARF on non-spherical 

particles in viscous fluids. Even though, similar to spherical particles, analysis of ARF on 
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non-spherical particles has received much theoretical interest. In one such study, Hahn et al. 

numerically simulated the arbitrary shape of rigid particles in a viscous fluid to calculate ARF 

and ART to predict particle motion (Hahn et al., 2015). They used a semi-analytical method 

alongside the numerical method to predict complex particle rotation and translation inside 

experimental micro-devices. In another numerical study, Pavlic et al. numerically examined 

the influence of particle shape and density on ARF and microstreaming (Pavlic et al., 

2022). They considered a spherical particle with protruding crowns on its surface. Their 

findings showed a transition from viscous scattering to microstreaming dominance, which 

resulted from the density-dependency nature of ARF. In this study, as a deviation of the 

particle from a spherical shape approached the thickness of the viscous boundary layer, 

the impact of shape on viscous contributions to ARF decreased. The authors concluded 

that theoretical models for spherical particles could approximate ARF reasonably under 

such conditions. Moreover, they revealed that extremely asymmetric shape disturbances, 

like crowns with sharp edges, nevertheless resulted in noticeable viscous contributions for 

large dense particles of greater than viscous boundary layer thickness. 

 

1.1.3. Secondary Forces 

 

Secondary ARFs among microparticles can be crucial in various applications, such as in the 

design of microfluidic devices for particle manipulation (Mohapatra et al., 2018), sorting (Gao 

et al., 2020), and separation (Gao et al., 2020; Vargas-Jiménez et al., 2021). In these 

applications, multiple particles are often present in the same region, and the interaction among 

particles can affect their behavior and movement. Secondary forces can either enhance or 

inhibit the primary radiation forces acting on each particle. 

In microfluidic devices for cell sorting, ARFs can separate cells based on their size, density, 

and other physical properties. However, the presence of multiple cells in the same region can 

lead to the formation of clusters and unpredictable particle motion, which can interfere with 

the sorting process. A recent study (Gao et al., 2020) showed that secondary ARFs had a 

significant impact on behavior of particles in microfluidic devices. In this study, secondary 

forces helped break up particle clusters, which enhanced separation efficiency. They proposed 

several strategies to mitigate the effect of secondary ARFs, such as optimizing the channel 

geometry and introducing secondary acoustic waves to counteract the primary ARFs. Overall, 
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they highlighted the importance of considering the effect of secondary ARF in the design of 

microfluidic devices for particle manipulation and presented potential solutions to improve the 

performance and accuracy of these devices. 

Secondary ARFs can also play a role in mixing and stirring fluids in microfluidic devices. By 

manipulating the secondary ARFs between microparticles, a group of particles can be 

manipulated, sorted or separated, which can have applications in areas such as drug delivery 

and chemical synthesis. Therefore, the significance of secondary ARFs among microparticles 

depends on the specific application and behavior of the particles involved. In cases where the 

presence of multiple particles can affect the efficiency or accuracy of the manipulation process, 

the investigation and control of secondary ARFs may be necessary. The secondary ARF has a 

great deal of importance in applications such as particle trapping (Ng et al., 2017), acoustic 

cavitation (Altay et al., 2020), acoustic coagulation (Li et al., 2014) and precipitation of 

aerosols and biomedical ultrasonics (Wang et al., 2018; Wu et al., 2019). Thus, predicting 

secondary ARF has become critical in developing new precise applications. 

In the last decade, secondary ARFs have received considerable attention. Bjerknes' pioneering 

work on bubble-bubble interactions (Bjerknes, 1906) in an inviscid flow with an analytical 

expression for secondary ARF was followed by other studies on bubble interaction at both 

short inter-distances (Embleton, 1962; Zheng & Apfel, 1995; Doinikov & Zavtrak, 1996; 

Doinikov, 1996) and at long inter-distances (Zhuk, 1985; Doinikov, 1999; Doinikov, 2002). 

Crum (Crum, 1975) investigated the secondary ARFs between bubbles experimentally and 

theoretically, demonstrating that the secondary ARF between air bubbles was relatively small 

compared to the primary ARF, especially at bubble radii of less than 1 mm. Zheng and Apfel 

(Zheng & Apfel, 1995) derived an expression for the secondary ARF between two fluid 

particles. Doinikov and Zavtrak studied the secondary ARF between bubbles (Doinikov & 

Zavtrak, 1995) and bubble-rigid particles (Doinikov & Zavtrak, 1996) numerically and 

analytically using multiple expansions. 

Also, at inter-distances comparable to a particle’s size, the behavior of ARF between a gas 

bubble and a liquid droplet was studied (Doinikov, 1996). As the distance between the bubble 

and the droplet decreased, the interaction force increased in magnitude. It even changed its 

sign depending on the density ratio of the liquid to the surrounding fluid. Later, viscosity’s 

effect on bubbles’ interactions was studied in the literature (Doinikov, 1999; Doinikov, 2002). 

The separation distance between the bubbles was assumed to be significantly greater than their 

radii, and the surrounding medium was supposed to be an incompressible viscous liquid. 
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Bubble translational oscillations, the vorticity of the linear scattering field, and acoustic 

streaming were incorporated into a more precise formula for the contact force. It was 

demonstrated that viscous effects could lead micro-bubbles to repel one another across a 

reasonably wide parameter range. 

The secondary ARF on rigid particles was studied by Embleton (Embleton, 1962) and Nyborg 

(Nyborg, 1989); they showed that repulsive secondary ARFs between rigid spheres decreased 

with increasing distance between the particles aligned in a wave direction. Mohapatra 

calculated the secondary ARFs for a pair of polystyrene particles within the Rayleigh limit and 

observed the same trend (Mohapatra et al., 2018).  Sepehrirahnama proposed an analytical 

solution for both a single sphere and multiple spheres in viscous fluids subjected to an 

acoustic standing wave (Sepehrirahnama et al., 2015; Sepehrirahnama et al., 2016), in 

contrast to previous analytical solutions (Doinikov, 1994; Settnes & Bruus, 2012) that 

were limited to a single sphere. Silva and Bruus (Silva & Bruus, 2014) suggested a general 

analytical model for compressible particles with no restriction on the distance among the 

particles. Zhuk investigated the secondary ARFs between rigid spheres for various propagation 

directions of incident wave (Zhuk, 1985). 

Few experimental studies have measured secondary ARFs (Yasui et al., 2008; Garcia-Sabaté 

et al., 2014). These studies showed that interacting with surrounding bubbles greatly 

influenced bubble pulsation under an ultrasonic horn. The interaction between bubbles 

significantly reduced the tendency of bubbles to expand during the ultrasound rarefaction 

phase. 
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Fig 1.4.  Finite-element modeling of secondary forces between spheres (Hoque & Sen, 2020) 

 

Despite a wide range of studies utilizing analytical solutions for secondary ARF calculations, 

numerical methods are necessary to solve the problem without oversimplifying particle size, 

acoustic wavelength and fluid viscosity. The secondary ARF and ART between spheroidal 

particles were calculated using the boundary element method (BEM) in the literature (Wijaya 

et al., 2018). Their numerical findings demonstrated that, as in the case of two spheres, the 

secondary ARF predominated over the primary ARF when the spheroids were close to the 

pressure nodal plane. On the other hand, even when the spheroids were close to one another, 

the interparticle torque was negligible compared to the primary torque. These findings also 

offered a preliminary analysis of how biological cells, the majority of which are not spherical, 

agglomerate and arrange themselves close to the pressure node. Recently, Hoque et al. showed 

that secondary ARFs between spheres with different geometrical configurations depended on 

the distance between the particles relative to the direction of acoustic waves with experiments 

and numerical analysis using the FEM method, as shown in Fig 1.4 (Hoque & Sen, 2020). 

Another study compared two numerical approaches for calculating secondary ARFs on small 

spheres (Simon et al., 2019). Both of these approaches were based on the finite-element 

method:  one of the methods utilized Gor’kov’s potential approach (Gor'kov, 1962) in a 2D 

axisymmetric geometry, while the other used a tensor integral method for the evaluation of the 

force in 3D geometry. The evaluated results of both models matched the analytical approaches. 
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Fluid viscosity, another critical factor, was considered using an analytical approach by other 

authors (Sepehrirahnama et al., 2016). These researchers observed that secondary ARF 

increased when the viscosity of the fluid was considered. However, they found it challenging 

to incorporate all the abovementioned factors using analytical approaches. Recently, the effect 

of microstreaming on the secondary ARF between elastic spherical particles was investigated 

numerically (Pavlic et al., 2022). It was illustrated that the microstreaming near the pressure 

node could result in attractive secondary ARF in the direction of the standing wave if one or 

both particles are smaller or comparable to 𝛿. Similar behavior was demonstrated when one 

of the particles' density was sufficiently greater than the density of the other particle. 
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1.2. Novelties of the Thesis 

 

 

Despite widespread acoustophoresis applications, understanding the underlying physics 

behind ARF on non-spherical particles still needs to be completed, and further research is 

required to utilize its potential fully. Since particles in real life frequently have non-spherical 

shapes, a comprehensive study is needed to predict the motion of such objects. Acoustic 

radiation force (ARF) and torque (ART) on rings are complex phenomena that have not been 

studied in the literature. Different models are utilized to compute the relevant ARFs and ARTs 

in both inviscid and viscous fluids to fully understand the motion of flexible rods and loops 

such as rings subjected to acoustic waves. The present thesis aims to investigate the effect of 

different parameters, such as viscosity, geometry, and physical parameters, on the ARF and 

ART acting on rings and the secondary ARF that arise between rings. The novelty of this thesis 

lies in its comprehensive investigation of the ARFs and ARTs on rings. It provides insights 

into the behavior of shapes that are more complex than spheres and cylinders, which may have 

applications in fields such as cell manipulation, in which the cell’s shape is often more 

complex than a simple sphere. In this dissertation, the influence of viscosity, including 

microstreaming, on ARFs and ARTs acting on rings in a standing wave is numerically 

analyzed.  

In addition to viscosity, the geometry and the material of the ring, as a representative of elastic 

properties of the structure, is also a crucial parameter that affects ARF and ART. This thesis 

aims to investigate the effect of different ring geometries on ARF and ART, including minor 

and major radii and orientation. These results may have applications in the design of acoustic 

tweezers, where different geometries may be used to trap or manipulate particles of different 

sizes. Furthermore, the present thesis also considers the effect of physical parameters such as 

frequency, contrast factor, and phase of the acoustic wave on ARF and ART acting on rings. 

Investigating these parameters and their interaction with viscosity and geometry may provide 

a complete understanding of the behavior of acoustic forces and torques on rings. In another 

study, the ARF and ART results of the FEM method are compared with the computational 

chain-of-spheres approach on the rings with various materials. This method reduces the 

computational expense compared to the numerical methods of 3D structures, while the 

computational cost in the FEM method is a critical restriction. Then, self-scattering behavior 

between segments of the ring using the FEM method showed that self-scattering between the 

segments does not significantly affect local forces. In contrast, the elastic behavior of the entire 
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slender structure has a more significant effect. 

Another novelty of this thesis is its focus on the interaction forces between rings. The influence 

of viscosity, microstreaming, and elasticity on secondary ARFs between rings are investigated. 

The results of this study may have applications in fields where the interaction between particles 

and their neighboring particles can affect the efficiency and accuracy of the manipulation 

process and control of multiple particles. Furthermore, this study contributes to a better 

understanding of the underlying physics of microstreaming, which is an essential factor in 

various applications such as mixing and stirring fluids. Overall, investigating the interaction 

forces between rings and their dependence on different parameters represents a significant and 

novel contribution to the field of acoustofluidic.   

In summary, the novelty of this thesis lies in investigating the effect of viscosity, geometry, 

and physical parameters on primary and secondary ARF and ART on rings. By considering 

these parameters simultaneously, this thesis aims to provide a comprehensive understanding 

of the behavior of ARF and ART on complex shapes. It may have applications in various 

fields, such as cell manipulation, acoustic tweezers, particle separation, and composite 

reinforcement. 

 

The findings of this thesis have resulted in several publications that are provided below: 

 

• Malekabadi, F., H. O. Caldag and S. Yesilyurt (2023). "Acoustic radiation forces and 

torques on elastic micro rings in standing waves." Journal of Fluids and Structures 118: 

103841. 

 

• Malekabadi, F., H. Caldag, S. Yesilyurt, "Acoustic radiation forces and torques on 

compressible micro rings in standing waves. ", APS Division of Fluid Dynamics 

(DFD) Conference (November 2022), Phoenix, AZ  

 

• Malekabadi, F., S. Yesilyurt, "Numerical Determination of Primary and Interparticle 

Acoustic Radiation Force Between a Pair of Rings in a Standing Wave, International 

Ultrasonics Symposium (IUS 2020), Las Vegas, Nevada  
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2. Methodology 

 

This chapter briefly introduces the numerical methods used to simulate ARF and ART 

computations in viscous and inviscid fluids. The aim of this thesis is not to develop these 

computational techniques. However, instead, the methods are implemented to investigate the 

impact of various parameters on behavior of ring-shaped particles. Moreover, the governing 

equations used in the numerical methods are presented. 

 

2.1. Governing equations 

 

 

Generally, the conservation laws of mass, momentum, and energy can be used to generate the 

governing equations that describe fluid motion. However, in this thesis that thermal effects 

are not considered; the Navier–Stokes equations govern the fluid motion:  

𝜌𝜕𝑡𝑣 = −∇𝑝 − 𝜌(𝑣 ⋅ ∇)𝑣 + 휂∇2𝑣 + 𝛽휂∇(∇ ⋅ 𝑣) (2-1) 

and the continuity equation is: 

 𝜕𝑡𝜌 = −∇ ⋅ (𝜌𝑣) (2-2)  

where 𝑣 is the velocity field, 휂, and 𝛽 are dynamic and bulk viscosity, respectively. The fluid 

density, 𝜌, is a function of only pressure 𝑝: 

 𝜌 = 𝜌(𝑝) (2-3) 

 

 

2.1.1. Perturbation Theory 

 

The linearized compressible Navier-Stokes equations are utilized to calculate the ARF on 

small particles in fluids as it was used in the literature, e.g. (Glynne-Jones et al., 2013; Baasch 

et al., 2019). If thermal effects are disregarded, the density is only dependent on pressure, p. 

The perturbation method requires expanding the physical fields in series: 

𝜌 = 𝜌0 + 𝜌1 + 𝜌2 + ⋯ (2-4) 
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𝑝 = 𝑝0 + 𝑐𝑎
2𝜌1 + 𝑝2 + ⋯ (2-5) 

𝒗 = 0 + 𝒗1 + 𝒗2 + ⋯ (2-6) 

where 𝑣 is the velocity vector, 𝑐𝑎 is the speed of sound inside the fluid, 𝜌 and 𝑝 are the fluid's 

density and pressure, respectively. The subscript 0 denotes the values in a quiescent fluid, so 

𝑣0 = 0. The subscripts in the terms denote the order of the terms. If all the fields inside the 

fluid are time-harmonic in the first order, the first-order fields can be written as follow: 

𝜌1(𝑟, 𝑡) = 𝜌1(𝑟)𝑒−𝑖𝜔𝑡 (2-7) 

𝑝1(𝑟, 𝑡) = 𝑐𝑎
2𝜌1(𝑟)𝑒−𝑖𝜔𝑡 (2-8) 

𝒗1(𝑟, 𝑡) = 𝒗1𝑒−𝑖𝜔𝑡 (2-9) 

where 𝑓 is the frequency, 𝑡 is the time, and 𝜔 = 2𝜋𝑓 is the angular velocity of the acoustic 

field; the acoustic wavelength is defined as 𝜆 = 𝑐𝑎/𝑓. 

 

2.1.1.1. First Order Perturbation Equations 

 

First-order continuity and Navier Stokes equations are resulted from replacing the first-order 

perturbed fields in the governing equations of Eqs. (2-1) and (2-2) (Glynne-Jones et al., 2013): 

𝜕𝑡𝜌1 = −𝜌0∇ ⋅ 𝒗1,  (2-10) 

𝜌0𝜕𝑡𝒗1 = −𝑐𝑎
2∇𝜌1 + 휂∇2𝑣1 + 𝛽휂∇(∇ ⋅ 𝑣1) (2-11) 

𝜌0𝜕𝑡𝒗1 = −𝑐𝑎
2∇𝜌1, for an inviscid iluid 𝜇, 𝛽 = 0 (2-12) 

the time derivative is denoted by the subscript “𝑡” in the expression. 

 

2.1.1.2. Second Order Perturbation Equations 

 

The time-averaged second-order continuity equations and Navier Stokes equations are 

obtained by replacing the second-order expansions in Eqs. (2-10) and (2-11),  

𝜌0∇ ⋅ 〈𝒗2〉 = −∇ ⋅ 〈𝜌1𝒗1〉 (2-13) 

휂∇2𝑣2 + 𝛽휂∇(∇ ⋅ 〈𝑣2〉) − ∇〈𝑝2〉 = 〈𝜌1𝜕𝑡𝑣1〉 + 𝜌0〈(𝑣1 ⋅ ∇)𝑣1〉 (2-14) 

−∇〈𝑝2〉 = 〈𝜌1𝜕𝑡𝒗1〉 + 𝜌0〈(𝒗1 ⋅ ∇)𝒗1〉, for an inviscid fluid  𝜇, 𝛽 = 0 (2-15) 

"〈   〉"  shows the time average over a full period, 𝜏, described as  
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〈𝑋〉 =
1

𝜏
∫ 𝑑𝑡 𝑋(𝑡)

𝜏

0

 

 

 

2.1.2. Deformation of Solid Particles 

 

Newton's second law provides the equilibrium equations for solid mechanics stating the 

balance between forces and changes in motion (linking the body forces and stresses). Stresses 

and strains vary throughout a material relating to displacement through Hook’s law. Typically, 

Hooke's law for linear elasticity is expressed as follows: 

𝜎 = 𝐶: 휀 (2-16) 

The constitutive tensor C is a fourth-order tensor in this case, while the stress, 𝜎 , and strain 

tensors, 휀 are second-order tensors. A contraction spanning two indices is indicated by the 

character ":". The same equation can be written as follows in a notation where the indices are 

displayed: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙 (2-17) 

Using Einstein summation convention  

𝜎𝑖𝑗 = ∑ ∑ 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙

3

𝑙=1

3

𝑘=1

(2-18) 

 

Typically, motion’s equation is expressed in terms of the Cauchy stress tensor as follows: 

𝜌𝑝

𝜕2𝑢

𝜕2𝑡
= ∇ ⋅ σ + 𝐹𝑣 (2-19) 

where  𝐹𝑣 is a body force per unit deformed volume, and 𝜌𝑝 is the density of the solid material. 

 

2.1.3. Boundary and Coupling Conditions 

 

In acoustics, the specific acoustic impedance of a material (𝑍 = 𝜌𝑐), represented by the 

subscripts 1 and 2, defines the conditions at a planar interface between materials 1 and 2. By 

using the reflection (𝑅12) and transmission (𝑇12) coefficients for the pressure (Lenshof et al., 

2012). 
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𝑅12 =
𝑍2 − 𝑍1

𝑍2 + 𝑍1
          and         𝑇12 = 1 − 𝑅12 (2-20) 

 

respectively, which are held for an incident plane wave originating from material 1 and moving 

in a direction normal to their interface. 𝑅12 and 𝑇12 can provide information on the kind of 

boundary condition that could be used to replace one of the material domains in the modelling;  

To explain further, for 𝑅12 ≈ −1 at the water-air interface, the acoustically-soft-wall boundary 

condition can take the place of the air domain, which implies 𝑝1 = 0 on the water at the 

interface; On the other hand, for 𝑅12 ≈ 1, where the water domain is being substituted, the 

acoustically-hard-wall boundary condition is applied to the air at water-air interface (𝑛 ⋅ 𝑣1 =

0  enforced on the air, which 𝑛 is a unit vector normal to the interface). 

The acoustically-hard-wall boundary condition for viscous fluids corresponds to the no-slip 

boundary condition, further restricting the velocity component tangential to the interface. 

Additionally, the no-slip boundary condition is applicable when the system is being 

constrained through velocity by equating the fluid's velocity to the interface's velocity at the 

interface. 

Moreover, when two materials are modeled, coupling conditions must be applied at the 

interface. Typically to couple a viscous fluid and a compressible solid, continuity of velocity 

and stresses are assumed at the interface (Doinikov et al., 2017). Similarly, to couple an 

inviscid fluid and a compressible solid, normal velocity and normal stress components must 

be matched, and the tangential component of the shear stress in the solid must disappear at the 

interface  (Jr., 1951). 

 

 

2.2. Acoustic Radiation Forces on a Ring 

 

A physical phenomenon known as acoustic radiation force (ARF) occurs when an acoustic 

wave interacts with an obstruction in its path, disturbing the pressure and momentum transfer. 

Acoustic Radiation Force (ARF) consists of two kinds of forces: primary and secondary forces. 

Primary forces arise when a single particle presents in an acoustic field and directs the particles 

away from the sound source. Secondary forces result from additional scattering from the 

multiple particles in the acoustic field that will cause attraction/repulsion between particles. 
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2.2.1. Primary Acoustic Radiation Forces 

 

The pressure field on an object’s surface is used to compute the force of acoustic radiation 

acting on it. The pressure field is evaluated by solving Helmholtz equations. The equation for 

a one-dimensional wave is: 

 

𝜕2𝑝

𝜕𝑧2
−

1

𝑐0
2

𝜕2𝑝

𝜕𝑡2
= 0 (2-21) 

where 𝑐0 is the sound’s velocity in the fluid, t represents time, z is the component of the 

Cartesian coordinate system, and p is the acoustic pressure. The solution to the given equation 

is: 

𝑝 = 𝑝𝑎sin (𝜔𝑡 ± 𝑘𝑧) (2-22) 

in which the pressure wave’s amplitude, 𝑝𝑎, the wave number is 𝑘 =
2𝜋

𝜆
, and the angular 

frequency is 𝜔 = 2𝜋𝑓. A tiny object will disturb this acoustic field, and the overall pressure 

will have a background and scattered components: 

𝑝 = 𝑝𝑏 + 𝑝𝑠𝑐 (2-23) 

Many authors have preferred the perturbation theory for calculating the acoustic radiation 

force due to its efficiency and accuracy (Glynne-Jones et al., 2013; Garbin et al., 2015; Baasch 

et al., 2019). 

 

 

2.2.1.1. In a viscous fluid 

 

The time-averaged acoustic radiation force can be calculated by an integration over the particle 

surface 𝑆(𝑡): 

𝐹𝑖 = ⟨∫ 𝜎𝑖𝑗 ⋅ 𝑛𝑗  𝑑𝑆
𝑆(𝑡)

⟩    (2-24) 

where 𝜎𝑖𝑗 is the stress tensor for 𝑖 = 1, 2, 3 and 𝑗 = 1, 2, 3, 𝑛𝑗  is j-th component of the surface's 

outward normal vector and 〈 … 〉 shows the time average over a total period, and repeated 
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indices imply summation. For a viscous fluid, by integrating over a fixed surface surrounding 

particle, one can get the time-averaged acoustic radiation force up to second order (Doinikov, 

1994): 

𝐹𝑟𝑎𝑑 = ∫ 〈𝜎2 − ρ0(𝑣1𝑣1) ⋅ 𝒏〉
𝑆0

𝑑𝑆 (2-25) 

The subscript of 𝜎 is not to be confused with the double-digit notation at Eq. (2-17), where 

the subscript indicates the order: 

𝜎2 = 𝑝2𝐼 + 휂(∇𝑣2 + (∇𝑣2)𝑇) (2-26) 

 

2.2.1.2. In an inviscid fluid 

 

For an inviscid flow, the viscosity is set to zero, so the second-order stress tensor is obtained 

as (Bruus, 2012): 

〈𝜎2〉 = −〈𝑝2〉𝐼 = − (
1

2𝜌0𝑐0
2

〈𝑝1
2〉 −

𝜌0

2
〈|𝑣1|2〉) 𝐼 (2-27) 

The simplified time-averaged acoustic radiation force can be written as: 

𝐹𝑟𝑎𝑑 = − ∫ {〈𝑝2 + ρ0(𝑣1𝑣1) ⋅ 𝒏〉
𝑆0

}𝑑𝑆 (2-28) 

where 𝒏 is the outward normal vector of the surface. Whenever two vectors are next to one 

another, as 〈𝑣1𝑣1〉 are in Eq. (2-15), the tensor product is implied, and below is the formula 

for the time-averaged second-order acoustic pressure: 

〈𝑝2〉 = (
1

2𝜌0𝑐0
2

〈𝑝1
2〉 −

𝜌0

2
〈|𝑣1|2〉) (2-29) 

 

2.3. Acoustic Radiation Torques on a Ring 

 

Time-averaged acoustic radiation torque can be computed from the following formulae:  

𝛕𝑟𝑎𝑑 = − ∫ (𝐫 − 𝐫0) × 𝐹𝑟𝑎𝑑𝑑𝑆
𝑆0

(2-30)  

where 𝐫 represents the location of a point on surface 𝑆0 and 𝐫0 represents ring’s center-of-
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mass. 

 

 

 

 

2.3.1. Secondary Radiation Forces on a Ring 

 

When 𝐹𝑟𝑎𝑑 is written without a subscript, it should be inferred that the force is in the 

propagation direction of the acoustic wave and it is for a single ring only, primary force. The 

secondary radiation force is calculated with a set of two computations for each case. First, a 

single ring is placed in the domain to obtain the primary radiation force, 𝐹𝑝
𝑟𝑎𝑑. Second, the 

second ring is placed in the domain, which allows us to calculate the total radiation force, 

𝐹𝑡
𝑟𝑎𝑑. The secondary radiation force 𝐹𝑠

𝑟𝑎𝑑 is the difference between the total and primary 

forces: 

𝐹𝑠
𝑟𝑎𝑑 = 𝐹𝑡

𝑟𝑎𝑑 − 𝐹𝑝
𝑟𝑎𝑑 (2-31) 

where 𝐹𝑡
𝑟𝑎𝑑 and 𝐹𝑝

𝑟𝑎𝑑 are obtained from Eqs. (2-25) and (2-28) for the viscous and inviscid 

fluid, respectively. In this study, secondary radiation forces in the z-direction are investigated. 

 

2.4. Finite Element Method Simulations 

 

 

The primary and secondary radiation forces on rings are analyzed using (FEM) model built in 

the commercial finite-element software COMSOL Multiphysics to solve the governing 

equations numerically to obtain acoustic radiation forces and torques with the given formulas 

in the previous section. 

 

2.4.1. For an Inviscid Fluid 

 

Calculating ARFs and ARTs over rings or torus analytically is quite challenging in-plane 

acoustic fields, especially when the ring is inclined relative to the plane of propagation. 

Therefore, the finite-element method is employed, which can accurately describe intricate 

three-dimensional structures like rings and is reliable when applied to linear problems. An 

elastic ring with a major radius 𝑅 and a minor radius 𝑎 is positioned in a fluid domain while 
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being rotated by an angle 휃 around the y-axis, schematically shown in Fig 2.1. Using the 

COMSOL Multiphysics program, a three-dimensional finite-element model of the ring is 

created. We employed time-harmonic formulas in the frequency domain for the pressure 

amplitude in the fluid and the displacement amplitude in the elastic solid under the assumption 

of a planar background pressure field in the z-direction that depicts standing waves. Time-

averaged forces (ARFs) and torques (ARTs) can be calculated from Eqs. (2-28) and (2-30) 

when 𝑆0 is ring surface. To provide a standing acoustic field without any reflections, planar 

non-reflection radiation boundary conditions (NRBC) are utilized (COMSOL; Givoli & Neta, 

2003). Because comparisons between NRBC and PML conditions reveal insignificant 

differences, planar NRBC is recommended over perfectly matched layers (PML) for 

computational efficiency. Furthermore, the domain size is significantly larger than the ring 

size to maintain optimal acoustic field resolution by keeping the boundaries away from the 

ring. The spherical and cylindrical fluid domains were compared to the cubic fluid domain, 

but no discernible differences were found. 

The physical and geometric parameters utilized in the simulations are listed in Tables 2.1 and 

2.2. To investigate the effect of rigidity on the ARFs and ARTs, polystyrene, copper, and 

aluminum rings are simulated as a solid domain in a fluid domain made up of water. The 

primary and secondary speeds of sound, 𝑐𝑝 and 𝑐𝑠, are applied in the equations of linear 

elasticity to define the solid particles (Graff, 2012). 

 

 

Fig 2.1. (a) Geometric parameters of the ring. (b) Ring is positioned inside a fluidic domain with radiation 

conditions at the boundaries in the simulation domain. (c) Ring rotation angle depiction, 휃. 
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Table 2.1. Fluid properties and geometric parameters for the reference ring. 

Parameter Symbol            Value Units 

Fluid density 𝜌𝑓 998.2 Kgm-3 

Fluid compressibility 𝜅𝑓 4.76× 10−10 Pa-1 

Fluid speed of sound 𝑐𝑎 1482 ms-1 

Pressure amplitude 𝑝𝑎 100 kPa 

Minor Radius 𝑎 3 𝜇𝑚 

Major Radius 𝑅 25 𝜇𝑚 

 

Table 2.2. Solid properties of materials and the geometric parameters for the reference ring. 

Parameter Symbol   Polystyrene Copper  Aluminum  Units 

Particle density 𝜌𝑝 1050 8930 2700 Kgm-3 

Particle compressibility 𝜅𝑝 4.25e-10 8.26e-12 1.42e-11 Pa-1 

Longitudinal velocity 𝑐𝑝 2400 5010 6420 ms-1 

Shear velocity 𝑐𝑠 1150 2270 3040 ms-1 

 

 

The pressure acoustics module is coupled with the solid mechanics’ module in COMSOL, and 

a non-reflecting boundary condition (NRBC) is implemented to absorb the outgoing waves. 

Background pressure leads to the acoustic field, which is imposed as a standing wave and is 

defined as follows: 
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𝑝𝑏 = 𝑝𝑎cos (𝑘(𝑧 − Δ𝑧)) (2-32) 

where 𝑧 is the axial position with respect to the direction of wave propagation, 𝑘 is the acoustic 

wavenumber, and 𝑘Δ𝑧 is the phase angle. Using acoustic-structure Multiphysics in COMSOL, 

the fluid domain is coupled with the solid domain by applying pressure from the fluid domain 

as boundary load onto the solid and acceleration from the solid domain as boundary 

acceleration onto the fluid at the solid-fluid interface. 

 

2.4.2. For a Viscous Fluid 

 

To solve the problem numerically in COMSOL, we used the following approach for the 

viscous model: 

The pre-defined interface of thermoacoustic physics coupled with solid mechanics physics 

through the thermoviscous acoustic-solid interaction interface is used to calculate the first-

order acoustic fields of Eqs. (2-10), and (2-11) a perfectly matched layer (PML) is applied to 

truncate the computational domain and ensure that the wave is not reflected back from the 

domain boundaries, as shown in Fig 2.2. The acoustic field is imposed directly in 

thermoviscous acoustic interface as a standing pressure field via background pressure and 

velocity, defined as: 

𝑝𝑏 = 𝑝𝑎cos (𝑘(𝑧 − 𝑑𝑧)) (2-33) 

𝑣𝑏 = 𝑖𝑘𝜑𝑎sin (𝑘(𝑧 − 𝑑𝑧)) (2-34) 

where 𝑧 is the axial position along the wave propagation direction and 𝑑𝑧 is the phase. 𝑘 is the 

acoustic wavenumber and 𝜑𝑎 is the potential amplitude: 

𝜑𝑎 = −
𝑝𝑎

𝑖𝜔𝜌0 + (휂𝐵 +
4
3 휂) 𝑘2

(2-35)
 

𝑝𝑎 is the pressure amplitude, and k, viscous wavenumber is defined as (Doinikov, 1994): 

𝑘 = (
1 − 𝑖𝜔 (휂𝐵 +

4
3 휂)

𝜌0𝑐0
2 )

−
1

2𝑐0
𝜔

(2-36) 

The thermoviscous acoustics interface is switched into the adiabatic mode. This will simplify 

the governing equation to the viscous problem (otherwise, it is thermoviscous, including the 
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energy equation, etc.). Thermoviscous acoustics interface should use at least quadratic 

Lagrange elements for pressure and cubic Lagrange elements for velocity (temperature is not 

solved for, as we use adiabatic formulation, so it does not matter). The order should always be 

one higher for velocity to ensure numerical stability based on the information from COMSOL. 

Further, heat capacity is set to 0 and the ratio of specific heats to 1 in the thermoviscous 

acoustics interface settings. The continuity of velocity and stress are imposed at the fluid-solid 

interfaces. In an unlimited fluid, the first-order fields are assumed to converge to background 

fields far from the particle. With frequency domain study, the first-order acoustic problem is 

solved in the frequency domain. 

Then, the laminar flow interface is implemented onto the fluid domain, excluding the particle 

and PML domain, to calculate the time-averaged second-order fields by modifying its 

governing equations by adding the right-hand side of Eq. (2-14) as volume forces to the 

domain and imposing the following boundary condition at the no-slip fluid-structure interface 

through wall boundary condition: 

〈𝑣2〉 = − 〈(∫ 𝑣1 𝑑𝑡. ∇) 𝑣1〉 (2-37) 

where the negative Stokes drift velocity on the right-hand side of Eq. (2-37) compensates for 

the first-order oscillations at the interface. Using the pressure point constraint, the streaming 

problem is limited by setting the second-order pressure field to a fixed value at any point in 

the fluid domain. To improve the discretization in the Creeping flow interface, P3+P2 

discretization is set to the entire domain; cubic discretization for the velocity to capture the 

streaming phenomenon in the viscous boundary layer and quadratic discretization for the 

pressure. The acoustic radiation forces are determined using Eq. (2-25) with the first-order 

fields from the thermoviscous acoustic interface and the second-order stress tensor from the 

creeping flow. 
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Fig 2.2. Viscous Simulation domain with the ring placed inside a fluidic domain with PML, nonreflecting 

radiation conditions at the boundaries. 

 

2.4.3. For a Pair of Particles 

 

Primary and secondary radiation forces between a pair of equal and unequal-sized rings are 

analyzed as shown in Fig 2.3 using a 2-dimensional, axisymmetric finite-element method 

(FEM) model built in COMSOL Multiphysics (Check Fig 2.3 for the representation of the 3-

dimensional geometry in 2-dimensional axisymmetric configuration). In the arrangement 

shown in Fig 2.1a-c, the rings are axially placed in the direction of propagation of the standing 

acoustic wave at the same radial position. The second ring is placed away from the pressure 

node in a symmetric fashion with respect to 𝑧 = 0, separated by a total distance of d from the 

first ring positioned at the pressure node, as shown in Fig 2.3; d is defined as the surface-to-

surface distance between the particles. The major radius is identified with 𝑅, and 𝑎 subscript 

is added to identify the ring in reference, as shown in Fig 2.3c.    

The secondary acoustic radiation forces are determined using Eq. (2-31) with primary and 

total forces computed from Eq.(2-25 and 2-28) corresponding to viscous and inviscid fluids, 

respectively. Secondary forces arose from the re-scattered waves (Silva & Bruus, 2014) and 

interactions between the two particles' acoustic microstreaming fields (Sepehrirahnama et al., 

2016). The FEM model is built based on the description in section 2.3.1. For any parameter 

set, computing the secondary forces for the two particles necessitates three simulations: one 
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simulation containing both particles and two single-particle simulations, one for each of the 

two particles. Axial symmetry can be used with the problem's definition, reducing computing 

expenses. 

 
Fig 2.3. Depiction of simulated geometries. (a)-(c) show the configuration where the rings are placed along 

the propagation axis of the acoustic field and. (a) depict the 3-dimensional geometry, (b) show the arrangement 

of the rings alongside the geometric parameters and (c) show the 2-dimensional, axisymmetric domains 

simulated with the standing acoustic field. Note that the ring or domain dimensions are not to the scale. 

 

 

 

2.4.4. Mesh Convergence 

2.4.4.1. For an Inviscid Model 

 

To investigate mesh convergence behavior of the FEM model, ARFs are determined over a 

polystyrene ring using Eq. (2-25) with implementing first- and second-order velocity and 

pressure fields. With using 𝑓 = 6 𝑀𝐻𝑧, the lowest wavelength is obtained, resulting in the 

most restrictive study in terms of mesh element sizes. 

Table 2.3. Geometric parameters of the ring used for the convergence studies of the 3D FEM model. 

Parameter Value 

Minor Radius 3𝜇𝑚 

Major Radius 25𝜇𝑚 

Rotation Angle 0° 

Frequency 6 MHz 
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Fig 2.4. Mesh on a) a ring particle, b) fluid domain. 

 

Figs 2.4a and 2.4b depict the ring geometry and the simulation setup, respectively. While a 

free tetrahedral mesh is preferred for the fluid domain, the swimmer surface has meshed with 

free triangular components. Tables 2.1 and 2.2 list the characteristics of the materials used in 

the thesis. Table 2.3 shows the geometric parameters used in the mesh convergence studies. 

Although the model has been refined to the point where the solver needs more than 300 GB of 

RAM, the initial testing with the ring model produced non-converging results.  

Further analysis revealed that the ring's and the domain's meshing should differ significantly: 

Although the elements on the ring should be as small as a few microns for an acoustic 

frequency of 2 MHz, yielding an element size to ratio close to1 600⁄ , the model is insensitive 

to meshing in the fluid domain beyond the element size of 𝜆 5⁄ . For the geometry with the 

parameters given in Table 2.3, the convergence is reached at roughly 1.2 million degrees of 

freedom (DOF), according to the convergence curve supplied in Fig 2.5. Thus, calculated force 

values are more sensitive to mesh density on the surface of the ring than the mesh in the fluid 

domain away from the ring.   

Regarding computed forces in the z-direction acquired from the finest mesh, a relative 

convergence error 𝑒 is computed: 

𝑒 = |
𝐹𝑟𝑎𝑑 − 𝐹𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡

𝐹𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡
| (2-38) 

The results of the convergence investigation for a polystyrene ring in water are shown in Fig 
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2.5. The relative error is less than 2% for 𝛿 = 0.002𝜆, corresponding to 1.25×106 degrees of 

freedom and is used for the remaining simulations given here. 

 

 

Fig 2.5.  Convergence of 𝐹𝑟𝑎𝑑 with respect to the degrees of freedom. 

2.4.4.2. For a Viscous Model 

 

A mesh convergence study is performed on the FEM model to ensure the accuracy of the 

calculations. The fluid and solid domains are meshed using triangular elements of quadratic 

order for pressure and cubic for velocity for a proper resolution. To improve the resolution of 

high-velocity gradients, a denser mesh is used inside the viscous boundary layer domain near 

the rings. The element size of the mesh is set to a fixed value, ℎ, within the viscous boundary 

layer, and a maximum element size of 10ℎ is applied to the fluid domain. The acoustic 

radiation force in the z-direction (𝐹𝑟𝑎𝑑) is depicted in Fig 2.6 for decreasing mesh element 

size, 𝛿/ℎ where 𝛿  is the thickness of the viscous boundary layer. A relative convergence error 

is calculated with respect to the result from the finest meshing as follows: 

Relative Error = |
𝐹𝑟𝑎𝑑 − 𝐹

𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡

𝐹
𝑟𝑎𝑑,𝑓𝑖𝑛𝑒𝑠𝑡

| (2-39) 
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Fig 2.6.  Mesh convergence studies with respect to the maximum element size. 

 

As presented in Fig. 2.6, the results become insensitive to the meshing when ℎ/𝛿 < 2.1𝛿 

(Relative error is less than 1% for smaller ℎ/𝛿). Thus, we use a mesh with the maximum 

element size of ℎ = 2.2𝛿 for the rest of the paper. 

 

2.4.5. Validation and Verification of the Model 

 

While no prior work has studied radiation forces on rings, the force values are compared on 

structures published in the literature to validate the model. The following three comparisons 

are made: In the first comparison, the radiation force on a ring and cylinder are compared 

following section 2.4.1 for the inviscid fluid case. In the second comparison, the acoustic 

radiation force on a sphere is compared with the findings in the literature for the viscous fluid 

model based on the model described in section 2.4.2. The third comparison is with the data 

from the literature on the two spheres' secondary force, based on the method in section 2.4.3. 

Initially, a 6 𝜇𝑚 diameter polystyrene sphere is placed in a standing acoustic field with 𝑝𝑎 =

100 𝑘𝑃𝑎 and 𝑓 = 2 𝑀𝐻𝑧. Compared to our 3-dimensional model, which calculates a radiation 

force of 0.569 𝑝𝑁, Hasegawa's model (Hasegawa, 1979) yields a value of 0.576 𝑝𝑁. The 

FEM model and the Hasegawa (Hasegawa, 1979) model's relative percentile error is 1.21, 

which indicates high accuracy. 
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Table 2.4. Comparison of 3-dimensional FEM model results with the literature 

Evaluated Term 𝐹𝑟𝑎𝑑 

FEM Model 0.569 pN 

Hasegawa Analytical 0.567pN 

 

The model is then validated by comparing the ARFs for a copper cylinder with an equivalent 

length and cross-section to the ring when 𝑎 = 1 μm. Tables 2.1 and 2.2 list the remaining 

geometric and physical parameters employed in the simulations. The magnitude of the ARF 

computed on both particles using Eq. (2-28) is compared in Fig. 2.7a. In the most tested cases, 

the ARFs match and only start to diverge somewhat at large 𝑎, corresponding to a ring that is 

less resemblant than a cylinder as 𝑎 → 𝑅. 

Secondly, to validate the viscous model, 𝐹𝑟𝑎𝑑 is calculated for a copper sphere with a radius 

of 1𝜇𝑚 positioned at 𝜆 8⁄  from the pressure node (between the pressure node and the antinode) 

in water. The agreement of the proposed FEM model in section 2.4.2, referred to as “FEM,” 

and Doinikov’s model (Doinikov, 1994) is shown in Fig 2.7b. Doinikov’s theory considers the 

first and second-order viscous effects as microstreaming around the sphere in the viscous fluid, 

and our numerical results support the second-order viscous theory of Doinikov (Doinikov, 

1994). 

  

Fig 2.7. a) comparison of our numerical model for a ring and cylinder in water b) ARF versus frequency for a 

sphere in water compared with analytical results considering viscosity effects. 
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Lastly, the secondary force versus the dimensionless center-to-center distance between spheres 

(𝑘𝑑𝑣) in an inviscid flow for a pair of particles with different sizes is compared with Hoque 

and Sen’s results (Hoque & Sen, 2020), as shown in Fig 2.8. The model parameters are as the 

reference parameters (Hoque & Sen, 2020). The results are in good agreement for most cases, 

and the difference can be tracked back to the different mesh sizes and quality at low 𝑘𝑑𝑣. 

 

Fig 2.8.The comparison of the secondary forces between spheres (sphere1: sphere2). Dashed lines are the 

simulation results, datapoints are from Hoque and Sen (Hoque & Sen, 2020). 
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3. Acoustic Radiation Forces and Torques on a Ring 

 

This chapter reports the effects of ring geometrical parameters, including ring major and minor 

radii, orientation, and its position in a standing wave, on the acoustic radiation force (ARF) 

and torque (ART) in a standing wave. Besides, the influence of the physical parameters such 

as frequency, density, and viscosity on the ARFs and ARTs acting on the ring are investigated. 

Unless otherwise stated, all results presented here use geometric and physical parameters from 

Tables 2.1 and 2.2. 

All the results are provided in dimensional terms in accordance with studies in the literature 

(Glynne-Jones et al., 2013; Garbin et al., 2015; Baasch et al., 2019). However, Appendix A 

provides a thorough dimensional analysis of the ARFs and ARTs on a ring using analytical 

solutions for spheres. This study helps clarify the influences of the ring’s orientation, position, 

and geometric features. 

 

3.1. Effects of the Ring’s Placement 

 

 

First, the effects of the position of the ring relative to the pressure field on the ARF and ART 

are studied. For a horizontal (휃 = 0∘) and rotated (휃 = 30∘) polystyrene ring, the 

corresponding 𝐹𝑟𝑎𝑑 profiles are depicted in Fig 3.1c, while the pressure nodes and values with 

respect to Δ𝑧 are given in Fig 3.1a and Fig 3.1b. ARF depicts a sinusoidal trend regarding the 

ring position in the standing wave. As demonstrated in Appendix A, the dependence of 𝐹𝑟𝑎𝑑  

on the position follows a sine profile. Additionally, the influence of orientation is insignificant 

on the ARF as deviations of ARF on a rotated ring from a ring that is not rotated (휃 = 0∘) are 

negligible since 𝑅/𝜆 = 0.0337 ≪ 1. As shown in Fig 3.1c, rings that experience positive ARF 

close to multiples of Δ𝑧 = 𝜆/4, pressure nodes, are pushed to those nodes. Both pressure nodes 

and antinodes are equilibrium position for the ring, however only pressure nodes are stable 

positions as 𝐹𝑟𝑎𝑑 < 0 for Δ𝑧 > 𝜆 4⁄  and vice versa. 

As shown in Fig 3.1a, the maximum ARF is observed at a distance of 𝜆/8  from the pressure 
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node, Δ𝑧 = 𝜆/8. The torque values on the ring in Fig 3.1d shows zero torque at 휃 = 0° and a 

negative (restorative) torque for all Δ𝑧 values at  휃 = 30∘. Appendix A (Eq. A8) demonstrates 

that the tilted ring with 휃 = 30∘ has a cosine dependence regarding position. With the 

maximum happening at Δ𝑧 = 𝜆/4 for ART, the force and torque profiles are out of phase. 

 

Fig 3.1. The radiation force and torque with respect to Δ𝑧 in a standing wave on a horizontal (휃 = 0∘) and tilted 

(휃 = 30∘) polystyrene ring in water for a 𝑓 =  2 𝑀𝐻𝑧. a) Color plot of the pressure amplitude, b) Change of 𝑝 

with respect to Δ𝑧 and the corresponding c) 𝐹𝑟𝑎𝑑 and d) 𝜏𝑟𝑎𝑑 profiles.   

 

Further, the work is extended to consider the viscosity, including the first and second order. 

The simulated model solves for a viscous fluid that includes microstreaming, which is a 

second-order viscous effect resulting from the presence of the particle in the acoustic field in 

the form of steady vortices around the particle. Thermal effects are disregarded following 

earlier publications (Doinikov, 1994; Doinikov, 1994; Settnes & Bruus, 2012); thus, the 

compressible Navier–Stokes equations and the continuity equation govern the motion of the 
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viscous fluid and energy equations are not solved. 

In this model, the ARF is analyzed concerning the particle’s position in the acoustic wave with 

𝑓 = 2𝑀𝐻𝑧 for a horizontal ring and a tilted ring with 휃 = 30°. As can be seen in Fig 3.2, 

similar to inviscid fluids, rotated ring experiences slightly different acoustic radiation force 

than a non-rotated ring and viscosity does not affect the behavior of the acoustic radiation 

force with changing the position of the particle.  

Moreover, as Fig 3.2 shows, the ring in a viscous fluid experiences restorative torque trying to 

align the ring toward 휃 = 0. At Δ𝑧 =
𝜆

4
, the pressure node, maximum torques occur where 

ARFs are zero, and the torque is zero at pressure antinodes, similar to the inviscid fluid. The 

results are also analogue to disk-shaped particles in the literature (Garbin et al., 2015). The 

torque is maximum in positions with the greatest fluid velocity, and in positions with zero fluid 

velocity, there is zero torque. According to Eqs. (2-33) and (2-34), pressure antinodes are 

velocity nodes with zero fluid velocity and consequently zero torque, whereas pressure nodes 

correspond to velocity antinodes that induce maximal torque. 

 

Fig 3.2. The radiation force and torque with respect to Δ𝑧 in a standing wave on a horizontal (휃 = 0∘) and 

tilted (휃 = 30∘) polystyrene ring in a viscous water for 𝑓 = 2 𝑀𝐻𝑧. a) 𝐹𝑟𝑎𝑑  and b) 𝜏𝑟𝑎𝑑 profiles.   

 

The comparison of the acoustic radiation forces and torque versus position in a standing wave 

for inviscid and viscous are plotted in Fig 3.3. In both cases, the maxima are observed when 

the ring is λ/8 away from the pressure node (the node is placed at λ/4, check Fig 3.1a). Looking 

at the direction of the force, it is noted that the force directs the polystyrene ring towards the 

pressure node for both the viscous and inviscid models. These results are consistent with the 

observations of (Baasch et al., 2019) on spherical particles. Considering viscosity at first and 

second order depicts the increased magnitude of the force as well as the torque. ARF shows 

the same sinusoidal trend (Fig 3.3a), and ART plots reveal cosine dependence with respect to 
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the position in standing wave, ∆𝑧. The torque in an inviscid fluid at 휃 = 0is always negative, 

tending to keep the ring horizontally, while ring can be stayed vertically by the acoustic 

radiation torque in a viscous fluid depending on its position for non-rotated ring. Viscosity 

contribution and its counteracting effects on velocity gradients lead to smaller torque values 

near pressure antinodes, as shown in Fig 3.3b. 

 

 

Fig 3.3. a) Comparison of the acoustic radiation forces corresponding to inviscid and viscous fluids b) Acoustic 

radiation torque comparison of viscous and inviscid fluids. 

 

3.2. Effects of the Ring Geometry 

 

 

3.2.1. Rotation Angle 

 

The ARFs and ARTs in an inviscid fluid for varying 휃 from 0° to 90˚ are plotted in Fig 3.4a 

andFig 3.4b, respectively, for both Δ𝑧 = 0 and Δ𝑧 = 𝜆/8 . For rings positioned at pressure 

nodes, 휃 variation does not affect the ARF, which is almost zero as expected, indicating that 

pressure nodes are stable equilibrium points for the rings similar to spheres. Besides, 𝐹𝑟𝑎𝑑 for  

Δ𝑧 = 𝜆/8  at 휃 = 90° deviates slightly from 휃 = 0°, the ratio of force values for 휃 = 90° and 

0° is 0.9657. Simple analysis in Appendix A shows that ARF depends on 𝐽0(2𝑘𝑅sin휃) in 

Eq.(A5); for example, for 2𝑘𝑅 = 0.424, 𝐽0(0.424 × sin휃) changes between 1 and 0.9556 for 

0° < 휃 < 90°.   

The ARTs, on the other hand, follow a parabolic trend with the minimum around 휃 = 30∘. In 

this configuration, the ART always aligns the ring horizontally as shown in Fig 3.4c, i.e., there 
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is no transition from negative to positive torque values. It should be noted that, the torque is, 

as expected, 0 for 휃 = 0∘ and 휃 = 90∘. When Δ𝑧 = 0, the torque is restorative (negative) to 

the horizontal alignment of the ring (휃 = 0, Fig 3.4c) up to 휃 = 35∘, after that value, the 

torques are positive, indicating that the ring tends to align vertically (휃 = 90∘, check Fig 3.4d). 

Moreover, the maximum amplitude of 𝜏𝑟𝑎𝑑 is larger at positive torque values, indicating 

stronger forcing to vertical alignment. The contributions of the momentum and pressure 

components to the torque, seen in Fig 3.4e for Δ𝑧 = 0, would also be of interest. It has been 

noted that the first and second-order terms in the ARF computation in Eq. (2-28), the force 

terms resulting from pressure and momentum flux, are acting antagonistically. The ring is 

rotated into a vertical alignment when the pressure-induced torque dominates at bigger 휃. 

However, at low 휃, the momentum flux component is dominant and aligns the ring 

horizontally. ART, in accordance with Eq. A8 in Appendix A has a slight sinusoidal 

dependence on the orientation angle, 휃. 

 

Fig 3.4. The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 휃. (c) shows the ring’s orientation when 휃 = 0∘ and 

(d) shows the orientation when 휃 = 90∘. The standing field is applied in the z- direction. (e) shows the pressure 

and momentum flux-driven component of the radiation torque on a polystyrene ring when Δ𝑧 = 0. 
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Fig 3.5a and Fig 3.5b shows the radiation force and torque as a surface plot while varying both 

Δ𝑧 and 휃. Fig.3.5a illustrates the harmonic nature of force and how it depends on location 

rather than rotation angle. The torque is 0 for 휃 = 0∘ and 휃 = 90∘, as would be expected (Fig 

3.5b). For other values, the torque is primarily restorative, i.e. negative or clockwise in the y-

direction (Fig 2.1c); at low 휃 , the ring aligns with the pressure wave on the xy-plane (휃 = 0, 

Fig. 3.5b). The restoring torque is the strongest when Δ𝑧 is near to an odd multiple of 𝜆/4. 

The torque value varies from negative to positive at great values of 휃, which causes the ring 

to revolve counterclockwise in the y-direction and align perpendicular to the standing wave 

(휃 = 90∘, Fig. 3.4 d). Furthermore, a zone separating the positive and negative torque values 

is observed (depicted in Fig 3.5b by a solid line). A rough approximation for the curve between 

the two regions is given by 휃 = 62.5 − 27.5 cos (
𝑘𝛥𝑧

2
). This curve indicates that by adjusting 

Δ𝑧, the ring may be rotated and maintained at any 휃.  

 

Fig 3.5. The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 휃 − Δ𝑧. The standing field is applied in the z- 

direction on a polystyrene ring in an inviscid fluid when 휃 varies between 0° and 90°. 

On the other hand, as can be seen in Fig 3.6b, considering viscosity at Δ𝑧 = 𝜆 8⁄  and 70° <

휃 < 90° the torque is negligible, and the ARF and ART are at their minimum values. Indeed, 

by increasing the 휃, the torque increases to reach its maximum at 휃 = 35° when Δ𝑧 = 𝜆 8⁄  

like inviscid study. Also, at Δ𝑧 = 𝜆 8⁄ , in both viscous and inviscid fluids, the torque is always 

negative and restorative to the horizontal alignment. 

The ARF slightly varies in a viscous fluid when the ring rotates with maxima at 휃 = 0°, and 

its variation is greater than in an inviscid fluid shown in Fig 3.6a and Fig 3.7a. Similar to 

inviscid fluid, ARF mostly depends on the position of the ring in the standing wave rather than 

the rotation angle.  
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Fig 3.6. (a,b) comparison of Acoustic radiation forces and torques of inviscid and viscous fluids  for ∆𝑧 = 𝜆
8⁄ , 

(c) Acoustic radiation torques and contribution of pressure and velocity for a polystyrene ring in viscous fluid 

for ∆𝑧 = 0, (d) Comparison of acoustic radiation torque of inviscid and viscous fluid for ∆𝑧 = 0. 

Moreover, the pressure and velocity contributions to the ART computations separately are 

shown in Fig 3.6c for ∆𝑧 = 0, meaning the ring is positioned in the velocity node of the 

standing wave. At low 휃, the pressure and velocity contributions are in the same order, but 

with increasing the rotation angle, the pressure contribution exceeds the velocity contribution. 

Initially, changing the ring orientation from 휃 = 0, second-order velocity contribution to the 

torque dominates the pressure contribution until 휃 = 30°, but with increased rotation angle, 

pressure gradient predominates the torque that leads to locating the ring in a vertical alignment. 

It can be concluded that positive torque is induced by pressure momentum dominating the 

velocity momentum. The surface plot of ARF and ART acting on a polystyrene ring, in which 

both Δ𝑧 and 휃 are varying in a viscous fluid, is shown in Fig 3.7. The torque is positive and 

tends to locate the ring to the wave direction at 30° < 휃 near the pressure antinodes (or velocity 

nodes), where the pressure gradient dominates the velocity gradients. The positive torque 

reaches its maximum at 휃 = 62° at pressure antinodes, as can be seen in Fig 3.6d and Fig 3.7b. 

However, the more significant torque is a restorative torque occurring for rings positioned in 
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the pressure nodes. The ART is zero not only at 휃 = 0°, 90° but also at separating zone. Similar 

to inviscid fluids, a zone separating the positive and the negative torque values is observed 

(depicted in Fig 3.7b).The surface plot indicates which combination of Δ𝑧 and 휃 aligns with 

the aim of applying an acoustic standing wave on a polystyrene ring. Harmonic nature of the 

ARF and ART on a polystyrene ring in a viscous fluid can be seen Fig 3.7a and Fig 3.7b. As 

it is described in Appendix A, the torque shows cosine dependency and force sinusoidal 

dependency on the rotation angle.  

 

Fig 3.7 The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 휃 − Δ𝑧. The standing field is applied in the z- 

direction on a polystyrene ring in a viscous fluid when 휃 varies between 0° and 90°. 

It can be seen that a slightly viscous fluid, such as water studied in this thesis (δ 𝑎 = 0.15⁄ ), 

does not significantly affect the behavior of the ARF and ART on a rotated ring. Therefore, 

the relation between viscosity and rotation angle is studied, as shown in Fig 3.8. It is of great 

interest in the ART plot (Fig 3.8b) that ART increases with increased viscosity; the maximum 

torque occurs at low 휃 for less viscous fluids, and the strongest torque is at higher 휃 for highly 

viscous fluids. As seen in Fig 3.8b, positive and negative torques are separated with a zero-

torque zone; in contrast to less viscous fluids, zero torque happens at higher 휃, and zero torque 

occurs at low 휃 for highly viscous fluids. Note that increased viscosity leads to a sign change 

of negative ART into positive ART at low 휃, and tends to align the ring in the wave direction. 

Fig 3.8a shows that when viscosity increases, as was expected, ARF is insensitive to 휃; on the 

other hand, enhanced positive torque in highly viscous fluids and ring alignment affects the 

ARF on the ring.  
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Fig 3.8 The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 휃 − δ 𝑎⁄ . The standing field is applied in the z- 

direction on a polystyrene ring in a viscous fluid with different viscosities when 휃 varies between 0° and 90°. 

 

Various parametric studies are performed to determine the dependency of the ARF and ART 

on the ring orientation and particle-fluid density ratio, as surface plots are displayed in Fig 3.9. 

As expected, the ART and ARF enhances when the ring particle is heavier than the fluid. Fig 

3.9a shows that the heavier ring experiences greater ARF at low 휃. However, the maximum 

torque value for the heavier ring is restorative torque at 휃 = 45°. 

 

 

Fig 3.9 The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 휃 − 𝜌𝑝 𝜌0⁄ . The standing field is applied in the z- 

direction in a viscous fluid with different densities for the ring when 휃 varies between 0° and 90° at Δ𝑧 = 𝜆 8⁄ . 

 



60 
 

3.2.2. Major and Minor Radius 

 

Minor and major ring radii's impact on the ARF and ART are shown in Fig 3.10. 𝐹𝑟𝑎𝑑  

increases quadratically with increasing 𝑎 due to the volume-dependency nature of the ARF, as 

shown in Fig 3.10a. Fig 3.10b displays the ART for the rotated ring (휃 = 30∘) with respect to 

𝑎, with increasing 𝑎 a quadratic enhanced ART is reported until 𝑎 = 4 μm, but then the torque 

exceeds two times, passes through zero, and rises above 500 𝑝𝑁 ⋅ 𝜇𝑚 at 𝑎 = 4.2 μm. 

Geometry changes influences significantly the ART and at distinct 𝑎 leads to sign change of 

the torque. At small values of 𝑎, the ring experiences a restoring torque that tends to move the 

ring to a horizontal alignment (휃 = 0°). However, after changing the sign of the ART, the 

larger ring tends to be vertically aligned by the positive torque (휃 = 90∘).  

The ART exhibits a sharp jump with increasing 𝑅 (Fig 3.12d), similar to Fig 3.10b. Besides, 

increasing the major radius of the ring raises the ARF linearly as the volume of the ring varies 

linearly with 𝑅. This ART moves rings with bigger 𝑅 toward a horizontal alignment (휃 = 0∘), 

whereas rings with smaller R are aligned vertically (휃 = 90∘). 

 

Fig 3.10. (a) Change of 𝐹𝑟𝑎𝑑 with respect to 𝑎, (b) change of 𝜏𝑟𝑎𝑑 with respect to 𝑎, (c) change of 𝐹𝑟𝑎𝑑 with 

respect to 𝑅 and (d) Change of 𝜏𝑟𝑎𝑑 with respect to 𝑅. 
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Resonance effects on the intensity of vibrations and resulting pressures cause dramatic changes 

in torque values. Near the resonance frequencies of a ring in the standing wave, the magnitude 

of local vibrations and, as a result, the local momentum flux (because velocity is the product 

of frequency and displacement amplitude) and pressure considerably rise. These effects are 

averaged out in the computation of the total ARF using Eq. (2-28) because the overall volume 

change caused by compressibility is negligible and out-of-phase displacements typically 

cancel each other out. While the ART depends on the amplitude of local vibrations, those 

effects are not cancelled out because of the cross-product with the position, as stated by Eq. 

(2-28).  

To further illustrate the consequences of vibrations approaching resonance, displacement and 

pressure amplitudes are given in Fig 3.11. The displacement field for the ring with a minor 

radius of 3.1𝜇𝑚 is depicted in Fig 3.11a, where the displacements are on the order of 

nanometers. In contrast, displacements in Fig 3.11b for the value of 𝑎 = 4.1𝜇𝑚 are on the 

order of microns, which are about four orders of magnitude more considerable than 

displacements for the value of 𝑎 = 3.1𝜇𝑚 as the indication of resonant. Likewise, the 

corresponding pressure profiles, with the maximum amplitude increasing by four orders of 

magnitude in the resonating case, are depicted in Fig 3.11c and Fig 3.11d. Moreover, for other 

asymmetrical structures like discs, resonance has revealed a substantial impact on ARTs in the 

literature (Garbin et al., 2015). 
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Fig 3.11. The displacement ((a)-(b)) and the pressure ((c)-(d)) distributions on non-resonating ((a) and (c)) and 

resonating ((b) and (d)) rings. 

 

Viscosity does not affect the volume-dependency of the acoustic radiation force, and as Fig. 

3.12 depicts, in both viscous and inviscid fluids, ARF increases linearly with the 𝑅 and 

quadratically with 𝑎. Thus, a larger ring experiences greater ARF than a smaller ring, 

particularly in a viscous fluid. The resonance behavior can be seen in both viscous and inviscid 

cases. 
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Fig 3.12. Comparison of results for viscous and inviscid fluids (a) Change of 𝐹𝑟𝑎𝑑 with respect to 𝑎, (b) change 

of 𝜏𝑟𝑎𝑑 with respect to 𝑎, (c) change of 𝐹𝑟𝑎𝑑 with respect to 𝑅 and (d) Change of 𝜏𝑟𝑎𝑑 with respect to 𝑅. 

 

 

 

3.3. Effects of the Physical Parameters 

 

This section details how the physical parameters impact the ARFs and ARTs on a tilted ring 

(휃 = 30∘). The acoustophoretic contrast factor 𝜙 is the first parameter investigated here, 

defined as (Bruus, 2012): 

𝜙(�̃�, �̌�) =
1

3
[
5�̃� − 2

2�̃� + 1
− �̃�] (3-1) 

where �̃� = 𝜌𝑝/𝜌𝑓  and �̃� = 𝜅𝑝/𝜅𝑓 are the particle-to-fluid density and compressibility ratios, 

respectively. The sensitivity analysis includes negative and positive 𝜙 values showing whether 

the particle is drawn to (𝜙 > 0) or repelled from (𝜙 < 0) a pressure node. Fig 3.13a depicts 

ARF values and its transition from negative (repulsive) to positive (attractive). The ARF 

decreases more steeply at low 𝜙 values, but the decrease rate becomes linear as 𝜙 approaches 

zero. On the other hand, the ART values presented in Fig 3.13b demonstrate that the torque is 
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at its minimal magnitude at 𝜙 ≈ 0.1. Since all torque values are negative, the torques tend to 

align the ring horizontally at all 𝜙 values. Finally, Fig 3.13c and Fig 3.13d illustrate how the 

acoustic frequency 𝑓 affects ARFs and ARTs, respectively. As ART enhances concerning 𝑓 

with a higher-order dependence, the ARF increases linearly with respect to 𝑓. Based on the 

dimensional analysis in Appendix A, the ART is predicted to scale with 𝑘2, or 𝑓2 for standing 

waves. Furthermore, at 𝑓 = 4 𝑀𝐻𝑧, there is a resonance-type behavior similar to the behavior 

shown in Fig 3.11. Insets in Fig 3.13d demonstrate the vibrating ring's deformation modes, 

which, for visual clarity, have been scaled up 5000 times (actual displacements are in the order 

of nanometers). The amplitude of the Mises stresses nearly ten folds at 𝑓 = 4 𝑀𝐻𝑧 due to the 

resonance between the polystyrene ring and the standing waves in the fluid medium. 

According to a coupled eigenfrequency analysis for the deformation of the polystyrene ring 

and the pressure in the fluid medium that reveals deformation mode with the same shape as 

the one illustrated in Fig 3.13d occurs at 𝑓 = 4.0118 𝑀𝐻𝑧, even though that the same mode 

is detected at 𝑓 = 5.221 𝑀𝐻𝑧 for free-standing rings. Other nonspherical particles in standing 

waves have also been subjected to resonance effects, including discs by Garbin et al. (Garbin 

et al., 2015) and helices by Caldag & Yesilyurt (Caldag & Yesilyurt, 2020). 
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Fig 3.13. The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with respect to 𝜙. The change of (c) 𝐹𝑟𝑎𝑑 and (d) 𝜏𝑟𝑎𝑑 with respect 

to 𝑓. Insets show the deformations (5000 times scaled-up) and Mises stresses in the rings. 

 

Moreover, the physical parameters that influence the ARFs and ARTs acting on a tilted ring 

(휃 = 30∘) in a viscous fluid are investigated. The acoustophoretic contrast factor 𝜙 

considering viscosity is defined as (Settnes & Bruus, 2012): 

𝑓1(�̃�) = 1 − �̃� , 𝑓2(𝛿, �̃�) = 𝑅𝑒 [
2[1−𝛾(𝛿)̃](�̃�−1)

2�̃�+1−3𝛾(�̃�)
] 

𝜙(�̃�, �̌�, 𝛿) =
1

3
𝑓1(�̃�) +

1

2
𝑓2(𝛿, �̃�) (3-2) 

where 𝛿 = 𝛿 𝑎⁄  and 𝛾(𝛿) = −
3

2
𝑅𝑒[1 + 𝑖(1 + 𝛿)]𝛿  and 𝛿 represents the viscous boundary 

layer thickness. Similar to inviscid fluid, negative and positive 𝜙 values indicate whether the 

particle subjected to an acoustic field is attracted (𝜙 > 0) or repelled (𝜙 < 0) from a pressure 

node. The effect of acoustic frequency, 𝑓, on ARFs and ARTs exerted on a polystyrene ring 

in viscous and inviscid fluids are compared, as shown in Figs 3.14a and 3.14b, respectively. 
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The ARF increases linearly with respect to 𝑓 in both viscous and inviscid fluids; though, 

viscous ARF is greater in magnitude as was expected. As seen in Fig 3.14b, viscous effects 

amplify ART; however, any resonance effect is not reported in the viscous fluid for this 

variation range of 𝑓.   

Fig. 3.14c depicts the contribution of the scattering, viscosity and streaming to the ARF on the 

polystyrene ring with respect to 𝑓. By using Eq. (2-28), the effect of scattered acoustic field 

from a compressible ring on ARF is calculated, named 𝐹𝑠𝑐𝑎𝑡. Computing the ARF using Eq. 

(2-25)  and stress tensor via Eq. (2-26) only in terms of first-order fields reveals the first-order 

viscosity impact on the ARF, 𝐹𝑣𝑖𝑠.To distinguish between the effect of the first-order viscous 

and microstreaming effects, 𝐹𝑠𝑡𝑟𝑒𝑎𝑚 refers to the ARF computed by using Eq. (2-25) and 

(2-26) also taking second-order fields into account. As evident in Fig. 3.14c, the second-order 

fields maintain significant impact on the ARF particularly at higher frequencies, and it is 

necessary to solve the viscous model up to the second order for manipulating particles with 

high efficiency. 

Fig. 3.14d and 3.14e  show the surface plot with respect to 𝜌0 𝜌𝑝⁄  and 𝛿 𝑎⁄ , implying the 

influence of the significant parameters in the contrast factor, density and viscosity on the ARF 

and ART. The force (Fig. 3.14d) exhibits greater force as 𝛿 approaches 4 (greater viscosity) 

also when 𝜌𝑝 with respect to 𝜌0 is high as it was expected. On the other hand, when 0.8𝜌𝑝 <

𝜌0 < 2𝜌𝑝 , the force on the particle has its minimum value. However, the other significant 

factor in Eq.(3-2), is not taken into account here, the compressibility effects, as compressibility 

can be calculated by using 𝜅𝑝 =
1

𝐾
=

1

𝜌𝑝𝑐𝑝
2 , and 𝑐𝑝  is fixed in all cases with the parameters 

given in Table 2.2. 

The torque values, plotted in Fig. 3.14e, show that the torque is minimum in magnitude at less 

dense particles. All torque values are negative, meaning that the torques tend to align the ring 

horizontally at all values. 
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Fig 3.14. Comparison of the results of viscous and inviscid fluids; The change of (a) 𝐹𝑟𝑎𝑑 and (b) 𝜏𝑟𝑎𝑑 with 

respect to 𝑓 (c) Comparison of 𝐹𝑟𝑎𝑑   with considering different contributions. The change of (d) 𝐹𝑟𝑎𝑑 and (e) 

𝜏𝑟𝑎𝑑 with respect to 𝜌0 𝜌𝑝⁄  and 𝛿 𝑎⁄ .  
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4. Secondary Forces and Scattering Effects  

 

This chapter first analyses the numerical results compared with the analytical approach of the 

Chain of spheres. Then, self-scattering on the individual ring and secondary forces on a pair 

of rings are investigated. 

 

4.1. Comparison with Chain of Spheres Approach 

 

The chain-of-spheres approach (CoS), which is developed for the computation of the acoustic 

radiation forces and torques on thin helices for micro-swimming applications (Caldag & 

Yesilyurt, 2020), is compared to the results of a finite-element (FEM) model presented in this 

thesis. Following CoS, a ring can be split into sections, and each section can be represented by 

an equal volume sphere, for which analytical ARF calculations are available (Hasegawa, 

1979). The CoS method ignores two different kinds of interaction forces: first, the forces that 

arise within the solid as a result of the higher order ring deformation modes such as bending, 

extension, stretching, and other variations on these modes which differ from the sphere 

deformation modes; and second, the forces that arise within the fluid as a result of the scattered 

waves. Those secondary effects are inherently considered using a three-dimensional modelling 

approach in the FEM model. Thus, differences between the CoS and FEM results are 

considered to be due to these secondary effects. 

In computations of the CoS method, the ring is divided into 𝑁𝑠𝑝ℎ equal segments that are 

roughly represented by spheres with the same volume as each segment, which stretches 

between 𝜑𝑗 and 𝜑𝑗+1, where 𝜑 is the azimuthal angle  and 𝑗 = 1, . . ., 𝑁𝑠𝑝ℎ − 1; the 𝑗th sphere 

is positioned at the centroid of the 𝑗th segment, which is determined by: 

𝐜𝑗 =
𝑁𝑠𝑝ℎ

2𝜋
∫ 𝐑𝛉𝐩𝑟(𝜑)𝑑𝜑 

𝜑𝑗+1

𝜑𝑗

(4-1) 

where the centerline of the ring is indicated in the reference frame by the position vector, 

𝐩𝑟(𝜑) = 𝑅[cos 𝜑 , sin 𝜑 , 0]′,  and 𝐑𝛉 is the rotation matrix for the frame rotated by 휃 with the 

ring as shown in Fig 2.1. To ensure that spheres and segments have the same volume, the 
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radius of spheres is set to 𝑎𝑠 = (
3𝜋𝑎2𝑅

2𝑁𝑠𝑝ℎ
)

1/3

. Fig 4.1 shows a basic schematic of the CoS 

methodology. 

 

Fig 4.1. Schematic of chain-of-spheres methodology. (a) Shows the original ring geometry, (b) shows the 

representation of the ring with 𝑁𝑠𝑝ℎ = 14 spheres with radius 𝑎𝑠 placed along the circle of the ring which is 𝑅 

away from the center of the ring. The circle is shown in red dashes. 

 

Hasegawa derived a simple theoretical formula for the ARF on a single compressible sphere 

for standing waves (Hasegawa, 1979): 

𝐹𝑗
𝑟𝑎𝑑 = 𝜋𝑎𝑠

2𝐸𝑌𝑠𝑡 sin(2𝑘Δ𝑧) (4-2) 

Where 𝐸 =
1

2
𝜌0𝑘2|𝐴|2 denotes the acoustic energy density (A represents the potential 

amplitude of the field) and 𝑌𝑠𝑡 is known as the acoustic radiation force function (Hasegawa, 

1979). As a result, the summations of ARFs over each sphere are used to calculate the overall 

ARF and ART: 

𝐹𝑟𝑎𝑑 = ∑ 𝐹𝑗
𝑟𝑎𝑑

𝑁𝑠𝑝ℎ

𝑗=1

(4-3) 

𝜏𝑟𝑎𝑑 = ∑ (𝐜𝑗 − 𝐫0) × 𝐹𝑗
𝑟𝑎𝑑

𝑁𝑠𝑝ℎ

𝑗=1

(4-4) 

Additional information on the CoS and in detail ARF computations in a standing field are 

discussed further in Appendix B. Comparisons between polystyrene, copper, and aluminum 
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rings considering Δ𝑧  variation for tilted rings with 휃 = 30∘ are displayed in Fig 4.2. In the 

calculations of CoS, to control the error caused by the segmentation of the ring, a convergence 

study is first conducted, and a sufficient number of segments is obtained to be 𝑁𝑠𝑝ℎ = 25. The 

results of CoS for ARF computations are in good agreement with FEM results for both 

polystyrene and copper rings, as shown in Fig 4.2a and Fig 4.2c; the agreement is much better 

for polystyrene than copper, where a maximum of 5% relative error is seen. However, as Fig 

4.2e displays, there is a poor agreement for the aluminum ring for the ARF. Similarly, ARTs 

are presented in Fig 4.2 b-f, where a dramatic difference between the FEM and the CoS results 

for polystyrene and copper rings are observed, with the discrepancy being more prominent for 

the copper ring. Interestingly, the ARTs show extremely high agreement despite the 

differences between the FEM and the CoS results for the ARFs computation of the aluminum 

ring. 

 

Fig 4.2. Comparison of the radiation forces ((a), (c) and (e)) and torques ((b), (d) and (f)) obtained from the 

FEM model and with the CoS method. (a) and (b) the results for polystyrene ring, (c) and (d) the results for 

copper ring and (e) and (f) the results for aluminum ring. 

 

4.1. Self  Scattering 

 

To clarify the differences in ART computations of CoS and FEM methods, we first verify that 

the ARF and ART contributions from each sphere in the CoS model agree with the values 

calculated from the FEM model by modeling individual ring segments in separate FEM 

simulations. Results related to these individual models are not reported here since it would not 

give any extra information and would be a repetition of  Fig 4.2a and Fig 4.2b. This study 
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confirms the main principle of the CoS technique, i.e., shows that individual ring segments 

can be taken as spheres and the corresponding force and torque computations are consistent. 

Then, using the FEM model, the radiation forces on rings made up of ten toroidal segments 

are compared. The ring-shaped toroidal segments with a 2˚ gap between them are shown in 

Fig 4.3a; this gap size has no impact on the convergence of FEM simulations. ARF results are 

shown in Fig 4.3 for segmented polystyrene, copper, and aluminum rings at the baseline 

parameters in Table 2.1 with Δ𝑧 = 𝜆/8 and 휃 = 30∘. Under the numbering in Fig 4.3a., 

segments are placed sequentially in their proper places. Therefore, to maintain each segment’s 

location, the entire ring’s location is positioned at the same Δ𝑧 = 𝜆/8 and 휃 = 30∘. Forces on 

segments are estimated for three distinct configurations: (i)  for each individual segment placed 

one at a time in the acoustic field; (ii) for all detached segments that form the ring shape as 

illustrated in Fig 4.3a; and (iii) for the entire ring made up of segments connected to one 

another. ARF values for polystyrene, copper, and aluminum rings are displayed in Fig 4.3b-d, 

respectively. The force values between the segments of the polystyrene ring, whether they are 

assembled as illustrated in Fig 4.3b or inserted one at a time individually, differ very little (less 

than.05 𝑝𝑁). This result clearly implies that self-scattering between the segments does not 

significantly affect local forces. At the same time, the elastic behavior of the entire slender 

structure does for which the maximum deviation occurs at segment 6 as high as 9.9 𝑝𝑁. 

For the copper ring, the force values for individual segments inserted one at a time vary 

somewhat between 9.05 and 10.57 𝑝𝑁 (black circles in Fig 4.3c); little discrepancies result 

from a numerical error while computing stresses around the sharp edges of segments. The 

findings are not considerably changed by mesh improvements up to 3M dof (exceeding a 140 

GB memory requirement). When the detached segments are placed in the acoustic field 

together, the forces on the segments are significantly different from those on the individual 

segments, up to 7.5 𝑝𝑁 for the first segment. Furthermore, for segments 3 − 8, the forces on 

the detached segments (red stars) are very similar to the forces on the corresponding segments 

in the ring (blue squares), with the difference being less than 1.8 𝑝𝑁. According to this finding, 

the ARF is significantly influenced by the scattering of waves between the segments. 

Lastly, for the aluminum ring, the ARF behavior is more like polystyrene than copper since 

the difference in forces on single and detached segments is less than 2.8 𝑝𝑁, as a whole, the 

deviation between the local forces on detached segments and the complete ring segments is 

smaller, reaching up to 5.8 𝑝𝑁 for the sixth segment. It is concluded that the ring being divided 

into separate segments alters the local forces without changing the overall net force. Therefore, 
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the ARF prediction of the chain-of-spheres method is near to the FEM results for the entire 

ring but fails to evaluate the ART accurately. The CoS method must be enhanced by 

integrating the connections between the spheres to capture the bending moments and the 

impacts of the scattered acoustic field in order to assess the significance of those effects. 

 

Fig 4.3. (a) The depiction of the ring decomposed into segments; local acoustic radiation forces (ARF) on each 

segment of polystyrene (b), copper (c) and aluminum (d) rings. ARF on each individual segment placed in the 

acoustic field without others is shown with black circles; forces on the detached segments forming a ring (see 

the picture in (a)) is shown with red stars; and the forces on the complete ring composed of segments in contact 

are shown with blue squares. 

 

The pressure and velocity contributions to the radiation force are examined to determine how 

each one affects the movement and alignment of the rings for three different materials -

polystyrene, aluminum, and copper- each stiffer than the others. Fig 4.4 shows the separated 

contribution of the velocity and pressure terms for a polystyrene ring in water. Individual 

segments are slightly in different positions for a standing wave. As can be seen in Fig 4.4a and 

Fig 4.4c, individual segments similar to segments of detached ring experience constant local 

forces and their separated contributions are constant except for slight variations in a few 

positions. However, the contribution is dominated by pressure gradient for the individual and 

detached segments; velocity contribution predominates the force for the entire ring. Indeed, 

Fig 4.4. reveals the effect of solidity on the local acoustic radiation forces on individual 

segments of the ring; also, comparing Fig 4.4a and Fig 4.4b depicts the insignificant influence 

of self-scattering between segments. 
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Fig 4.4. Local acoustic radiation forces (ARF) on each segment of polystyrene and contribution of pressure 

and velocity terms to ARF for 𝑓 = 0.6𝑀𝐻𝑧; (a) the forces on the complete ring composed of segments in 

contact, (b) forces on the detached segments forming a ring (c) forces on each individual segment placed in 

the acoustic field without others (see the picture in Fig.4.3a) . 

 

Fig 4.5 depicts separate contributions for an aluminum ring. As a result of decreasing 

compressibility and increased density by changing the material of the ring to aluminum, 

pressure contribution grows in the order of ARF in all cases and dominates the velocity 

gradient.   
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Fig 4.5. Local acoustic radiation forces (ARF) on each segment of aluminum ring and contribution of pressure 

and velocity terms to ARF; (a) the forces on the complete ring composed of segments in contact, (b) forces on 

the detached segments forming a ring (c) forces on each individual segment placed in the acoustic field without 

others (see the picture in Fig. 4.3a). 

 

Fig 4.6 reveals the ARF on the copper ring and the effect of ring compressibility, density, and 

wave speed on the local forces and the velocity and pressure contribution. It can be seen that 

with increasing the density of the ring and decreasing compressibility, pressure contribution 

to the ARF enhances and dominates the velocity contribution even in a ring. In all three cases, 

velocity and pressure contributions-related changes are in the same order. Comparing the three 

materials reveals that compressibility increases absorption of the scattering pressure gradients, 

and local forces are affected by the compressibility factor more than the position and self-

scattering. 
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Fig 4.6. Local acoustic radiation forces (ARF) on each segment of copper ring and contribution of pressure 

and velocity terms to ARF; (a) forces on the complete ring composed of segments in contact; (b) forces on the 

detached segments forming a ring; (c) forces on each individual segment placed in the acoustic field without 

others (see the picture in Fig. 4.3a). 
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4.2. Microstreaming Effects on the Secondary Forces 

 

Microstreaming, acoustic radiation, and interaction forces on the particles all result from the 

scattering of an acoustic wave by existing multiple particles in a fluid medium. These forces 

comprise the primary acoustic radiation force (ARF) and the secondary acoustic radiation 

force, respectively, by single-particle sound scattering and acoustic particle-particle 

interactions. Scattering through viscous losses close to the particle’s surfaces results in 

microstreaming, micro-scale eddies that can affect both the primary and secondary radiation 

forces. Theoretical models of the acoustic radiation force frequently ignore microstreaming. 

The streaming flow of fluid around an oscillating object is known as microstreaming. A 

particle experiences a drag from this streaming, which is predicted to change the behavior of 

the particle. Streaming develops due to mechanisms for energy dissipation in the bulk phase, 

including energy absorption by the fluid and dissipation at interfaces between the fluid and 

solid surfaces. The fluid flow is produced by the vorticity brought on by the boundary layer 

oscillations surrounding it. 

Here, we look into how acoustic microstreaming affects the ARF acting on a pair of elastic 

ring particles in an ultrasonic standing wave. Using our finite-element model that solves 

compressible Navier stokes equations up to second order and considers the contribution of 

microstreaming. These nonlinear effects are numerically investigated for various combinations 

of elastic spheres and rings in a standing wave: sphere-sphere, sphere-ring, and ring-ring. The 

results of this section can contribute to the explanation of the high effectiveness of some seed 

particle-based acoustic trapping techniques (Hammarström et al., 2012; Habibi & Neild, 2019; 

Habibi et al., 2020), which could be further enhanced by selecting the seed particles in 

accordance with our predictions. 

 

4.2.1. Ring-Ring Interactions 

 

4.2.1.1. Rings Positioned in the Wave Direction 

 

The primary and secondary forces between a pair of rings aligned in the wave direction with 

different sizes and materials are studied using the FEM model with the perturbation method 

described in section 2.1.1. As Fig 2.3. shows, the second particle is placed away from the 

pressure nodal plane, and the first particle is always located on the nodal plane. Fig 4.7 depicts 
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the primary acoustic radiation force determined for a single ring, the total force for a pair of 

rings, and the secondary force on a second particle. In this section, only the forces in the z-

direction are reported due to the insignificant interactions in the r-direction. 

 

 

Fig 4.7. Acoustic radiation forces on particle 2 with respect to surface-to-surface distances, d, (1𝜇𝑚 𝑡𝑜 10 𝜇𝑚) 

for various sizes of the rings at 𝑓 = 500𝐾𝐻𝑧 and 𝑅 = 10𝜇𝑚 with various combination of a : (a,b,d,e) 

Polystyrene rings ,(c,f) First particle, a copper ring, centered at nodal plane; second particle is a polystyrene 

ring away from the nodal plane , (g,h) Copper rings (yellow rings represent the copper rings). 

As expected, by increasing the distance between the rings, the primary forces increase due to 

the change in the position of the rings; however, the secondary force does not depend on the 

position of the rings, and it mostly depends on d. As seen in Fig 4.7, for different vertical 

distances, d, the change in the primary forces for a single ring is small compared to the 
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secondary forces when one of the rings in the domain is from a less compressible copper 

material (Fig 4.7c and 4.7h ). For polystyrene rings, significant differences between the 

secondary and total forces in Fig 4.7a-b andFig 4.7d-e reveal that the primary force is dominant; 

the total and primary forces change in a consistent manner for both the small and large seed 

particles (𝑎1 = 0.5, 5𝜇𝑚). However, for low inter-distances, secondary force dominates for 

the small second ring whenever the tiny particle is close to the second particle, 𝑎 < 𝛿 (Fig 4.7a 

and Fig 4.7d). It results in attractive force in low inter-distances and reversal of the force 

direction with increasing d, while in other cases, the secondary force is repelling. For large d, 

the addition of the second ring does not have any significant effect on the acoustic radiation 

force on the single ring, the effect is only significant for low d in polystyrene rings, and the 

total force aligns with the primary force. The interactions are more noticeable with adding 

copper ring in the domain even at larger d values and any size of the particles (Fig 4.7c and 

Fig 4.7f) due to variation in the acoustic contrast factors; also, the results show a dramatic 

increase in the total and secondary forces magnitude. Interestingly, as shown in Fig 4.7c and 

Fig 4.7f, adding the copper ring to the domain in contrast to the polystyrene ring (Fig 4.7a-b 

and Fig 4.7d-e), induces total forces that change close to the secondary forces, meaning that 

the secondary forces predominate the primary forces. 

In our simulations, not only the first-order viscosity effect is considered, but also the 

contribution of the microstreaming around the ring is included. In addition to the viscosity, 

compressibility also influences the microstreaming, the magnitude of the acoustic radiation 

forces and the effective distance, the distance at which the impact of the second ring vanishes. 

Even in single-particle configurations, microstreaming for small particles (a<𝛿) can alter the 

direction of the ARF. Correspondingly, the microstreaming field, particularly around the 

particle producing the weaker microstreaming field, varies dramatically as the two particles 

move closer and may cause interparticle attraction. For example as shown in Fig 4.8-Fig 4.10, 

a 0.5 𝜇𝑚 polystyrene ring experiences a maximum second field velocity of 0.012 𝑚𝑚𝑠−1 and 

for a 5 𝜇𝑚 polystyrene ring, max(‖〈𝑣2〉‖) = 0.022𝑚𝑚𝑠−1,  a 0.5 𝜇𝑚 copper ring has 

max(‖〈𝑣2〉‖) = 0.021𝑚𝑚𝑠−1 and a 5 𝜇𝑚 copper ring has max(‖〈𝑣2〉‖) = 0.19𝑚𝑚𝑠−1. 

Microstreaming around the surface of the particles at different inter-distances, 𝑑 = 1,3,10 𝜇𝑚 

, can be used describe its effect on the direction and magnitude of the radiation forces. Fig 

4.8a-c show the symmetric microstreaming of a 5𝜇𝑚 repelling pair of polystyrene rings at 

different inter-distances. As shown in Fig 4.8d-f for 0.5𝜇𝑚 polystyrene rings, at 𝑑 = 1 𝜇𝑚, 

the secondary force is attractive, and at 𝑑 = 3,10 𝜇𝑚 the secondary force changes its direction 
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to repulsive by variation of the streaming pattern. 

For rings with equal 𝑎 and 𝑅 (Fig 4.8a-f), four small inner vortices are accompanied by four 

more giant vortices around them and another one in between the rings. As particles get close 

to one another (Fig 4.8b and Fig 4.8e), a pair of larger outer vortices changes to a pair of small 

vortices perpendicular to the wave direction. Fig 4.8c and Fig 4.8f show that inner vortices 

combine, and the vortices between the rings disappear as d decreases. In all cases shown in 

Fig 4.8a-f, the rings experience repulsive forces. 

 

 

Fig 4.8. Streaming patterns and second-order velocity field are shown for polystyrene rings at 𝑓 = 500𝐾𝐻𝑧 

and 𝑅 = 10𝜇𝑚 with various inter-distances, 𝑑 = 10,3,1 𝜇𝑚 respectively (a-c) for 𝑎1 = 𝑎2 = 5𝜇𝑚 , (a-c) for 

𝑎1 = 𝑎2 = 0.5𝜇𝑚 . 

 

Different sizes of particles lead to nonsymmetric streaming, as our model can capture precise 

inner vortices of various sizes, as seen in Fig 4.9. Because of this lack of symmetry, a 

transverse force creates a moment on the rings around their center, which causes the rings to 

realign themselves in a lateral arrangement. The stability results from the force between the 

rings being attractive at close ranges and repulsive at far ranges for large rings centered at the 

pressure node; however, a small ring at the pressure node led to the repulsive force to be in 

equilibrium (Fig 4.9d-f). The rings rotate around their common center and tend to realign 

themselves into the lateral configuration since the force acting on each one is transverse, equal, 

and opposite. 
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In contrast to equal-sized rings, the four inner vortices of smaller rings do not accompany the 

outer vortices in small rings, as shown in Fig 4.9. By approaching the larger ring, the vortices 

of a small ring disappear and shrink until they reach the inner vortices of the larger ring. 

Another vorticity appears around the larger ring due to reaching the smaller ring’s vortices to 

the inner vortices around the larger ring. It can be seen in Fig 4.9c that getting inside the 

viscous boundary layer of the greater seed ring leads to an attractive secondary force. 

The scaling laws of the principal acoustic radiation forces and the hydrodynamic drag force 

brought on by the induced acoustic streaming present the most significant obstacle when using 

acoustic standing wave technology for sub-micron particle manipulation. The fundamental 

acoustic radiation force rapidly declines relative to Stokes drag as particles get smaller, 

resulting in significant streaming.  

 

Fig 4.9. Streaming patterns and second-order velocity field are shown for polystyrene rings at f = 500KHz 

and R = 10μm with various inter-distances, d = 10,3,1 μm respectively (a-c) for a1 = 5μm, a2 = 0.5μm , (a-

c) for a1 = 0.5μm, a2 = 5μm. 

 

With changing one of the ring’s materials to the less compressible copper, as the velocity field 

around the copper ring is stronger than the polystyrene, the streaming pattern stays symmetric 

around it. Its streaming influences the weaker particle’s streamlines, especially when 

approaching the copper ring. The copper ring, even in smaller size due to its greater maximum 

velocity (max(‖〈𝑣2〉‖) = 0.51𝑚𝑚𝑠−1), can influence the other particle’s streamlines and 
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always results in attractive force. The symmetric streamlines of the copper ring encompass the 

second ring that is evident at close distances (Fig 4.10c and Fig 4.10f). As can be seen in Fig 

4.9 and Fig 4.10, the streamlines around two rings are not a simple superposition of the 

streamlines, and it depends on the materials of the particles, their inter-distances, and their 

sizes. 

 

 

 

Fig 4.10. Streaming patterns and second-order velocity field are shown for polystyrene and copper rings at 

𝑓 = 500𝐾𝐻𝑧 and 𝑅 = 10𝜇𝑚 with various inter-distances, 𝑑 = 10,3,1 𝜇𝑚 respectively (a-c) for 𝑎1 =

5𝜇𝑚 𝑐𝑜𝑝𝑝𝑒𝑟, 𝑎2 = 0.5𝜇𝑚 𝑝𝑜𝑙𝑦𝑠𝑦𝑟𝑒𝑛𝑒 , (a-c) for 𝑎1 = 0.5𝜇𝑚 𝑐𝑜𝑝𝑝𝑒𝑟, 𝑎2 = 5𝜇𝑚 𝑝𝑜𝑙𝑦𝑠𝑦𝑟𝑒𝑛𝑒 . 

 

 

 

4.2.2. Sphere-Sphere Interactions 

 

 

4.2.2.1. Spheres Positioned in the Wave Direction 

 

 

For a better understanding of the primary and secondary forces and microstreaming that play 

a pivotal role in manipulating bacteria and nanoparticles based on interaction-forces 

techniques (Hammarström et al., 2012; Evander et al., 2015; Gutiérrez-Ramos et al., 2018), 

interaction forces between a pair of spheres are studied in this section. The forces between a 
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pair of polystyrene spheres aligned in the wave direction with different sizes are studied using 

the FEM model with the perturbation method, as described in section 2.1.1. The second 

particle is placed away from the pressure nodal plane, and the first particle is always located 

on the nodal plane. Fig 4.11.  depicts the primary acoustic radiation force determined for a 

single sphere, the total force for a pair of spheres, and the secondary force on a second particle. 

Fig 4.11 shows that adding a particle in the pressure node can attract even larger spheres at 

close distances and repulsive at far distances; however, larger particles experience repulsive 

forces at all distances. 

 
Fig 4.11. Acoustic radiation forces shown for polystyrene spheres at 𝑓 = 500𝐾𝐻𝑧 and reported forces are 

forces on the second particle. 

 

 

 

4.2.3. Ring-Sphere Interactions 

 

4.2.3.1. Ring and Spheres Positioned in the Wave Direction 

 

The possibility of using rings as seed particles to induce the trapping of a spherical shape 

particle is examined here. A ring with 𝑎1 = 0.5, 5 𝜇𝑚 and 𝑅 = 10𝜇𝑚 is used to capture the 
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sphere with 𝑎2 = 0.5, 5 𝜇𝑚. As shown in Fig. 4.12a, the attractive force acts on the sphere by 

the larger ring that can be used for aggregation of cells and trapping purposes. However, 

Fig.4.12b reveals attractive force in close distances and switches to repulsive force in far 

distances that can be used where it is required to hold equal-sized particles in specific 

positions. 

 

 

Fig 4.12. Acoustic radiation forces shown for polystyrene sphere and ring at 𝑓 = 500𝐾𝐻𝑧 and (first particle 

is ring with  𝑅 = 10𝜇𝑚 and second particle is sphere): reported forces are forces on the second particle. 

 

As in the previous section, the material dependency of the secondary forces is examined to 

find the best seed particle under the condition of using different shapes of particles; here, the 

copper ring is added to the fluid domain including a polystyrene sphere. Fig 4.13 shows that 

the total force tends to move the polystyrene sphere in the opposing (negative). The dominant 

role of the secondary force in contributing to the total acoustic forces acting on the polystyrene 

sphere is the first salient characteristic of the plots in Fig.4.13. A packed bed may suffer 
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significantly from such repellent interparticle effects. However, the framework provided by 

another study (Silva et al., 2019) will help determine the frequencies at which a packed bed of 

seed particles is likely to be stable. 

 

 

Fig 4.13. Acoustic radiation forces shown for polystyrene sphere and copper ring at 𝑓 = 500𝐾𝐻𝑧 and (first 

particle is ring with  𝑅 = 10𝜇𝑚 and second particle is sphere). 

 

Adding the copper ring to the fluid domain results in extra radiation forces on the polystyrene 

sphere, a few scales greater than the primary radiation force, also Fig.4.13 implies that 

secondary forces dominate the ARF in all sizes for the copper ring. Streamline patterns of the 

equal-sized particles in Fig 4.14 (the radius of the sphere is the same as the minor radius of the 

ring, 𝑎 = 5𝜇𝑚) show that the streamline of the copper ring dominates the streamline pattern 

in both small and large particles. Fig 4.14c shows the streamline pattern around a copper ring 

and a polystyrene sphere at a close distance, in which the sphere can be moved with the ring’s 

streamline in outward directions. These results arose from both the Stokes drag and the 
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radiation forces. In contrast to Stokes drag, which scales with particle radius, the primary 

radiation force scales with particle volume, as depicted in section 3.2. 

 

Fig 4.14. Streamline patterns for polystyrene sphere and copper ring in water subjected to a  standing wave at 

𝑓 = 500𝐾𝐻𝑧 at different inter-distances: a) 𝑑 = 1𝜇𝑚 b) 𝑑 = 10 𝜇𝑚 c) 𝑑 = 1 𝜇𝑚 ; first particle is a ring with 

𝑎 = 5𝜇𝑚 and 𝑅 = 10𝜇𝑚, and second particle is a sphere with the radius of 𝑎 = 5𝜇𝑚. 
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5. Conclusions 

 

 

Manipulation of single and multiple biological objects using ultrasound waves has attracted a 

great deal of interest in the fields of biology, chemistry, physics, and medicine. This technique 

offers the potential for the precise, contact-free, and noninvasive manner of cell manipulation 

in various applications, including cellular analysis, drug deliveries, disease prognosis, and 

medical therapies. Since biological cells can be in any size, shape, or orientation, there is a 

need for a more adaptable and reliable numerical model for predicting acoustic radiation force 

and torque. Motivated by this, the numerical simulations of this thesis have provided valuable 

insights into the underlying physics and have enhanced the potential of using acoustic radiation 

forces and torques for ring-shaped particle manipulation and separation in various applications 

such as biomedical engineering and materials science. In conclusion, this research investigated 

the effects of geometry, position, direction, and physical properties on the acoustic radiation 

forces (ARFs) and torques (ARTs) induced on micro rings in a standing acoustic field in both 

viscous and inviscid fluids. ARFs and ARTs are calculated based on the perturbation method 

using the tensor integral approach, in which the first and second-order fields are obtained from 

the finite element method (FEM). 

Similar to the force on spherical particles in both inviscid and viscous fluids, the ARF is 

proportional to the volume of the ring and reaches its maximum when the ring is 𝜆/8 away 

from the pressure nodes. Varying the orientation of the ring does not significantly affect the 

ARF in both inviscid and viscous fluids. On the other hand, ART in both inviscid and viscous 

fluids is always negative, restoring the ring to the horizontal alignment for rings positioned in 

the plane standing wave at low rotation angles. However, the ART is positive, aligning the 

ring vertically for rings positioned close to pressure antinodes when the rings are rotated with 

higher rotation angles (40° < 휃 < 80°). In both inviscid and viscous fluids cases, maximum 

torques occur whereby acoustic radiation force is minimum at the pressure nodes. Viscosity 

varies the effective range of 휃 and zero-torque regions, obtaining these regions can have a 

crucial role in the selective manipulating of particles.  

Indeed, the findings show that ring position and alignment in a standing wave can affect the 

magnitude and direction of the ARF and ART acting on the ring, implying that ring position 
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in a standing wave and its alignment should be adjusted according to desired acoustophoretic 

purposes in both viscous and inviscid fluids. Furthermore, with increasing the viscosity of the 

fluid medium, the trend of variation of the ART varies; highly viscous fluids cause the 

maximum ART to occur at higher rotation angles, tending to align the ring in the wave 

direction; however, slightly viscous fluids lead to maximum restorative torque at low rotation 

angles. Moreover, heavier rings with respect to their surrounding fluid experience maximum 

restorative torques at 휃 = 45°, and more robust acoustic radiation forces at low 휃, the proper 

rotation angle can be picked concerning the manipulation aim. 

The ART tends to align the rings with respect to the plane waves depending on the geometric 

and physical factors. The ring's stable alignment could be either horizontal or vertical. For 

example, in the inviscid fluid for Δ𝑧 = 0, the negative ART tries to keep rings with orientations 

of 휃 > 35° horizontally and vertically aligned otherwise (𝜏𝑟𝑎𝑑 > 0 for 35° < 휃 < 90°), 

whereas for Δ𝑧 = 𝜆/8 the ring alignment is always horizontal. Resonance behavior of the ring 

in distinct configurations leads to tremendous ART due to dependency of the ART on local 

force distributions; The resonance behavior is also revealed in the torque findings in a viscous 

fluid; however, at a bit different value from the inviscid study. 

The ARF on a ring is also sensitive to the acoustophoretic contrast factor, attractive (𝐹𝑟𝑎𝑑 <

0) for 𝜙 < 0 and repulsive otherwise. On the other hand, the ART does not change sign with 

𝜙 for the configurations examined here, but ART reaches the minimum values at a small 

positive contrast factor. Also, the FEM results are compared to those of a chain-of-spheres 

model (COS), a reduced-order model that predicts the ARF particularly well for soft materials. 

However, the COS approach does not account for the effects of self-scattering, which results 

in inaccurate torque predictions. Separate FEM simulations for a segmented ring show the 

importance of local forces. It has been found that the elastic behavior of the solid, rather than 

self-scattering, dominates local forces for the polystyrene ring. On the other hand, self-

scattering is crucial to the local force in the case of the less compressible ring. Comparing the 

three materials reveals that compressibility increases absorption of the scattering pressure 

gradients, and local forces are affected by the compressibility factor more than the position 

and self-scattering. Finally, the secondary acoustic radiation forces and microstreaming 

revealed that using a ring in a pressure node can lead to significant attractive force in the wave 

direction in specific combinations of ring size and material, applicable to attract even other 

shapes of particles. 

Acoustophoretic manipulation and reorientation of ring-like micro filaments and other non-
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spherical thin entities are expected to benefit from the study's overall conclusions. Our analysis 

demonstrates that the overall ART on the structure is significantly influenced by the self-

scattering of acoustic waves and the bending of the thin rods. These results may be used to 

determine the orientation of the structure at equilibrium as well as orientational instabilities 

under resonance. Predictions may be used to rotate and manipulate these structures in a non-

contact way without causing any damage, which is very helpful when orienting a biological 

sample for imaging, trapping, or separating. Given the widespread use of acoustic fields in 

biomedicine, these applications can be successfully implemented to achieve efficient, robust, 

and selective manipulations. The chain-of-spheres method is beneficial for calculating 

acoustic radiation forces; however, it needs to be improved by considering internal stresses 

and acoustic wave self-scattering to provide accurate torque predictions. 

 

 

5.1. Future Work 

 

The findings of this dissertation have significant potential in many applications, such as in the 

biomedical field for cell manipulation, in the oil and gas industry for pipeline inspection, and 

material science for non-destructive testing. The following are some possible avenues of future 

work in this field. 

The thesis has focused on theoretical calculations and numerical simulations to determine the 

primary and secondary acoustic radiation forces and acoustic radiation torques on elastic rings. 

Future work could involve fabricating micro rings, designing and conducting experiments to 

validate the findings and assessing the accuracy of the theoretical and numerical methods. 

Acoustic trapping is used in various fields to manipulate and move particles using acoustic 

radiation forces and torques. This thesis has explored the potential for using primary and 

secondary acoustic radiation forces on elastic rings for acoustic trapping. Future work could 

extend the work and focus on optimizing the conditions for acoustic trapping of elastic rings 

or different shapes of particles, such as the acoustic frequency and amplitude, ring size and 

material, and fluid properties. Future work could involve exploring potential applications 

further and identifying new areas where this technique could be helpful. For example, in 

biomedicine, acoustic radiation force could be used to manipulate and sort cells or to deliver 

drugs to specific locations in the body. 

The possibility of using multiple rings in acoustic manipulation to trap or separate other 
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particles can be explored. In some cases, more than a single ring may be required to achieve 

the desired manipulation accuracy or efficiency level. Using multiple rings can provide more 

degrees of freedom and flexibility in controlling the target object's position, orientation, and 

velocity. The interaction between multiple rings can also give rise to interesting collective 

phenomena, such as self-assembly and pattern formation. Investigating the multi-ring acoustic 

manipulation system can open up new possibilities for advanced applications in various fields. 

Finally, the thesis has focused on elastic rings as the geometry of interest. Future work could 

extend the investigation to other geometries, such as rings with different shapes of cross-

sections, ribbons, or plates, and explore the primary and secondary acoustic radiation force on 

these geometries. This could provide a more comprehensive understanding of the behavior of 

elastic objects under the influence of acoustic radiation forces and torques. Further modal 

analysis and investigating the particle's mechanical response to the acoustic field, affecting its 

resonance frequency and damping, can help to achieve more efficient and selective separation 

and manipulation. The geometrical parameters can also influence the magnitude and direction 

of the radiation force and torque, as well as the mode of vibration of the particle. A systematic 

study of the radiation force and torque behaviors on rings can provide valuable insights into 

the design and optimization of acoustic manipulation devices. 
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Appendix A 

 

The general functional formula for the acoustic radiation force of a plane standing wave used 

in the literature can be written as: 

𝐹𝑟𝑎𝑑 = 𝐶𝜑𝑘𝑉𝐸𝑎𝑠𝑖𝑛(2𝑘∆𝑧)  (A1)   

where 𝐶 is a constant, 𝜑 is a function of surrounding fluid and particle material and the 

particle’s geometry and frequency of the plane wave. 𝑉 is the particle’s volume, 𝐸𝑎 is the 

acoustic energy density, and ∆𝑧 is the particle’s position in the standing wave.  

Assume a ring, which has minor radius 𝑎, major radius 𝑅, volume 𝑉, density 𝜌𝑝, speed of 

sound 𝑐𝑝, and module elasticity 𝐸, is immersed in a fluid with density 𝜌0, speed of sound 𝑐0, 

and viscosity of 𝜇, subjected to a standing acoustic wave with pressure amplitude 𝑝𝑎, 

frequency 𝑓, potential amplitude 𝜙. According to Fig A1, the ring's orientation about the x-y 

plane is indicated by 휃.  

The Eq. (A1) must be modified to create a dimensionless acoustic radiation force. Indicators 

of the length, mass, and time dimensions among all variables can be chosen as 𝑎, 𝜌0, and 𝑐0; 

the dimensionless Π numbers for the other variables are as follows: 

Π{𝑅,∆𝑧,𝜌𝑝,𝑐𝑝,𝑝𝑎,𝑓,𝜇} = { 
𝑅

𝑎
,
Δ𝑧

𝑎
,
𝜌𝑝

𝜌0
,
𝑐𝑝

𝑐0
,

𝑝𝑎

𝜌0𝑐0
2 ,

𝑎𝑓

𝑐0
,
𝛿

𝑎
} (A2)    

Other variables are not listed among the abovementioned variables, as they can be obtained 

from the given variables, such as 𝜆 =
𝑐0

𝑓
 and 𝑘 =

2𝜋

𝜆
; therefore, Π𝜆 = 𝑎/𝜆 or Π𝑘 = 𝑘𝑎 can be 

used when it is more convenient rather than Π𝑓 =
𝑎𝑓

𝑐0
. 

The dimensionless acoustic radiation force and torque can be acquired as the following 

dimensionless groups, by nondimensionalizing the pressure terms by 𝜌0𝑐0
2: 

Π{𝐹,𝜏} = {
𝐹𝑟𝑎𝑑

𝜌0𝑐0
2𝑎2

,
𝜏𝑟𝑎𝑑

𝜌0𝑐0
2𝑎3

} (A3) 

Therefore, Π terms of the force and torque are functions of the seven terms in Eq. (A2) in 

addition to rotation angle. 
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Fig. A1. Representation of the local acoustic radiation force on a tilted ring, which is approximated by a chain 

of spherical particles. 

 

Using Eqs. (A1) and (A3) , and similar to the analytical solution proposed for the spherical 

particle in a cosine standing wave in an inviscid fluid (Yosioka & Kawasima, 1955), and 

modified by other authors for viscous fluid (Settnes & Bruus, 2012), the dimensionless form 

of the force, ℱ, is driven as follows: 

ℱ =
4𝜋𝑎3𝐸𝑎𝜙𝑘 sin(2𝑘Δ𝑧)

𝜌0𝑐0
2𝑎2

 ⇒   Π𝐹 = 𝐶Π𝑝𝑎
2 Π𝑘 sin(2ΠΔ𝑧Π𝑘) 𝜙 (Π𝜌𝑝

, Π𝑐𝑝
, Π𝜇) (A4) 

where 𝜙 represents the acoustophoretic contrast factor determined by Eq (3-2), and 𝐸𝑎 =

1

4
𝑘0𝑝𝑎

2 is the acoustic energy density and 𝑘0 =
1

𝜌0𝑐0
2 is the fluid compressibility. The expression 

employed in Eq. (4-2) is more precise than the expression mentioned above for inviscid cases 

but less practical for illustrating the parametric dependences. 

The ring is assumed to be comprised of a chain of spherical particles like in Fig. A1 in order 

to determine how 휃 affects the force. To determine the total force on the rotated ring, the 

sinusoidal expression in Eq. (A4) is integrated with respect to toroidal angle 휁: 

∫ sin(2𝑘(Δ𝑧 + 𝑅sin휃sin휁)) 𝑑휁
𝜋

−𝜋

= ∫ sin(2𝑘(Δ𝑧 + 𝑅sin휃sin휁)) + sin(2𝑘(Δ𝑧 − 𝑅sin휃sin휁)) 𝑑휁
𝜋

0

= ∫ 2 cos(2𝑅𝑘 sin휁 sin휃) sin(2𝑘Δ𝑧)  𝑑휁
𝜋

0

= 2𝜋 sin(2𝑘Δ𝑧) 𝐽0 (2𝑅𝑘sin휃)                                                                 (A5) 
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Thus, the zeroth order Bessel function of the first kind 𝐽0(2𝑅𝑘sin휃) describes how the force 

acting on the ring depends on the 휃. The wave number is defined as 𝑘 =
2𝜋

𝜆
 that results in 

2𝑅𝑘𝑠𝑖𝑛휃 = 4𝜋sinθ𝑅/𝜆; for 𝑅 ≪ 𝜆, this effect is insignificant as 𝐽0(𝑥) → 1 as 𝑥 → 0. 

Therefore, the ARF on small rings slightly varies with the 휃.  

Due to volume-dependency nature of the acoustic radiation force, 𝑎2𝑅 must take place of the 

𝑎3 in Eq. (A4). In this case, the nondimensional force would be proportional to other 

dimensionless quantities because the pre-factor could be different; 

Π𝐹 ∝  Π𝑅Π𝑝𝑎
2 Π𝑘 sin(2ΠΔ𝑧Π𝑘) 𝜙 (Π𝜌𝑝

, Π𝑐𝑝
, Π𝜇) 𝐽0(4Π𝑅Π𝑘 sin 휃) (A6) 

Integrating the torque on all the spherical particles over the toroidal angle 휁, as depicted in Fig. 

A1, the influence of the 휃 on the torque is obtained: 

∫ sin(2𝑘(Δ𝑧 + 𝑅sin휃sin휁)) 𝑅cos휃sin휁 𝑑휁
𝜋

−𝜋

 

The closed form of this integral, however, cannot be calculated. But, if we take a simplified 

approach and assume that the ring is made up of two spherical particles representing the 

opposing segments arranged at 휁 = ±𝜋/2, the orientation influence on the torque can be 

approximated as follows: 

𝑇 ∝ 𝑅cos휃 (𝐹
𝜁=

𝜋
2

− 𝐹
𝜁=−

𝜋
2

) = 𝑅cos휃[sin(2𝑘(Δ𝑧 + 𝑅sin휃)) − sin(2𝑘(Δ𝑧 − 𝑅sin휃))](A7) 

The sinusoidal terms can be simplified as: 

sin(2𝑘(Δ𝑧 + 𝑅sin휃)) − sin(2𝑘(Δ𝑧 − 𝑅sin휃)) = cos(2𝑘Δ𝑧) sin(2𝑘𝑅sin휃) 

The influence of the rotation angle on the torque can be represented by sin(2𝑘𝑅 sin 휃) =

sin(4𝜋𝑅sin휃/𝜆). As a result, in the case of 𝑅 ≪ 𝜆 the total torque scales with 𝑘𝑅sin 휃. 

Therefore, the dimensionless acoustic torque for tiny rings can be expressed as follows, with 

cosine dependency on the location and sinusoidal dependence on the orientation: 

Π𝑇 ∝ Π𝑅
3 Π𝑝𝑎

2 Π𝑘
2 cos(2ΠΔ𝑧Π𝑘) sin휃 𝜙 (Π𝜌𝑝

, Π𝑐𝑝
, Π𝜇) (A8) 

The acoustophoretic coefficient, 𝜙(Π𝜌𝑝
, Π𝑐𝑝

, Π𝜇), only takes into account the compression of 

spherical particles and is not appropriate for the time-harmonic deformation of a slender 

structures. 
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To investigate the bending and resonance effects that dominate the time-harmonic torque on 

the ring in a standing wave, frequencies related to the ring bending modes should be 

considered; these frequencies depend on not only the ring geometrical parameters but also on 

the material properties. To explain further, bending frequency, 𝑓𝑏, scales with 𝑐𝑝, 1 𝑅⁄ , and 𝐼𝑦 

(𝑐𝑝 = √𝐸 𝜌𝑝⁄ , 𝐼𝑦 = 𝜋𝑎4 4⁄ ): 

Π𝑓𝑝
∝ Π𝑘 ∝ Π𝑅

−1Π𝑐𝑝
(A9) 

Thus, the corresponding torque of the resonance can be written as: 

Π𝑇 ∝ Π𝑅Π𝑝𝑎
2 Π𝑐𝑝

2 cos(2ΠΔ𝑧Π𝑘) sin휃 𝜙 (Π𝜌𝑝
, Π𝑐𝑝

, Π𝜇) (A10) 

 


