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ABSTRACT

MONTE CARLO METHODS FOR DATA PRIVACY APPLICATIONS

BARIŞ ALPARSLAN

DATA SCIENCE M.A. THESIS, MAY 2023

Thesis Supervisor: Asst. Prof. Sinan Yıldırım

Keywords: Bayesian inference, Differential privacy, MCMC

This thesis focuses on data privacy applications with Bayesian inference, particularly
Markov chain Monte Carlo (MCMC) methods for two main data privacy problems.
Firstly, we focus on statistic selection with a Fisher information, and we show that
informativeness and efficiency are closely related in the differential privacy setting.
Then, we propose a novel generative model for the private linear regression that
outshines state-of-art methods.

In this work, MCMC algorithms are specifically developed for several data pri-
vacy settings. While some of the settings enable to work with simple and efficient
Metropolis-Hastings (MH), others require more advanced sampling methods such as
Pseudo-Marginal Metropolis-Hastings (PMMH), Metropolis-Hastings with Averaged
Acceptance Ratios (MHAAR) or MH-within-Gibbs sampling. In detail, we prefer
using versions of MH, PMMH, MHAAR for the statistic selection, and derivatives
of the MH-within-Gibbs for the linear regression problem.

At the end, we conduct several numerical experiments for evaluation purposes. In
the statistic selection part, we rigorously deal with each problem setting and we
obtain that Fisher information is actually a useful tool for the differential privacy
applications for almost all possible problem definitions. For the linear regression,
both simulated and real datasets are tested, and we observe that proposed methods
beat existing algorithms in terms of efficiency and effectiveness.
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ÖZET

MONTE CARLO METODLARIYLA VERI MAHREMIYETI UYGULAMALARI

TEZ YAZARI

VERİ BİLİMİ YÜKSEK LİSANS TEZİ, MAYIS 2023

Tez Danışmanı: Dr.Öğr.Üyesi Sinan Yıldırım

Anahtar Kelimeler: Bayesci çıkarım, Diferansiyel mahremiyet, MCMC

Bu tez, iki ana veri mahremiyeti problemine Bayesci çıkarım yöntemlerini kulla-
narak odaklanmaktadır. Bayesci çıkarım yöntemleri arasından özellikle Markov
chain Monte Carlo (MCMC) ve bu metodu temel alan yaklaşımlar incelenmekte-
dir. Bahsedilen problemlerden ilki, veri mahremiyeti uygulamalarında kullanıcıya
sunulacak olan gizli verinin seçilmesi ile ilgilidir ve bunun için Fisher informa-
tion yöntemi önerilmektedir. Bu noktada bilgilendiricilik ile çıkarım metodlarının
başarısının yakından ilişkili olduğunu gösterilmiştir. Ardından, veri mahremiyetini
gözeten doğrusal regresyon için bilinen yöntemlerden daha başarılı olan yeni bir
üretici model önerilmiştir.

Bu çalışmada, MCMC algoritmaları, çeşitli veri mahremiyeti senaryoları için özel
olarak geliştirilmiştir. Bazı senaryolar basit ve verimli Metropolis-Hastings (MH)
ile çalışmayı mümkün kılarken, diğerleri Pseudo-Marginal Metropolis-Hastings
(PMMH), Metropolis-Hastings with Averaged Acceptance Ratios (MHAAR) veya
Gibbs örnekleme gibi daha gelişmiş örnekleme yöntemleri gerektirmektedir. Daha
ayrıntılı olarak, istatistik seçimi için MH, PMMH, MHAAR gibi algoritmalar uygu-
lanırken, doğrusal regresyon problemi için Gibbs örnekleme ve türevlerinin kullanıl-
ması tercih edilmiştir.

Sonunda, farklı durumları kapsayan sayısal deneyler gerçekleştirilmiştir. İstatistik
seçimi bölümünde, her bir senaryo üzerinde titizlikle durulmuş ve Fisher information
yönteminin hemen hemen tüm olası problem tanımlarında diferansiyel mahremiyet
uygulamaları için faydalı bir araç olduğu gösterilmiştir. Doğrusal regresyon için hem
simüle edilmiş hem de gerçek veri kümeleri kullanılmış ve önerilen yöntemlerin ver-
imlilik ve etkinlik açısından mevcut algoritmaları geride bıraktığı gözlemlenmiştir.

v



ACKNOWLEDGEMENTS

This work would not have been possible without my advisor, Prof. Sinan Yıldırım.
I would like to thank him and express my appreciation for his patient guidance and
valuable support throughout the journey. His wisdom and endurance taught me a
lot. I am sure that it will always help me in my future endeavours.

Also, words cannot express my gratitude to Prof. İlker Birbil for his invaluable
advices and contributions. Without his guidance, I would not have found motivation
to continue my academic studies.

Special thanks should also go to Prof. Yücel Saygın for his participation to the
thesis defense committee and his priceless feedbacks.

Finally, I am always grateful to my family for their life-time support. They have
always encouraged me regardless of my choices and I can not express how precious
this is. I have learnt a lot from their experiences and will continue to do so.

vi



vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Pseudo-Marginal Metropolis-Hastings . . . . . . . . . . . . . . . . . . 7
2.3 Metropolis-Hastings with Averaged Acceptance Ratio . . . . . . . . . 9
2.4 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Improvements on Gibbs sampling . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Collapsed Gibbs sampling . . . . . . . . . . . . . . . . . . . . 12
2.5.2 MH-within-Gibbs Sampling . . . . . . . . . . . . . . . . . . . 12

3 Differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Privacy mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Post-processing property of differential privacy . . . . . . . . . . . . . 20
3.4 Composition theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Statistic selection for differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Notation and privacy setting . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Selection based on Fisher information . . . . . . . . . . . . . . . . . . 23

4.2.1 Fisher information with additive statistic and Gaussian noise 24
4.2.2 Fisher information with additive statistic and non-Gaussian

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Fisher information based on the true marginal distribution . . 29
4.2.4 Fisher information with sequential release . . . . . . . . . . . 30

5 Bayesian inference with differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



5.1 Bayesian estimation after statistic selection . . . . . . . . . . . . . . . 36
5.1.1 MH for additive statistic and Gaussian noise . . . . . . . . . . 37
5.1.2 MH for additive statistic and non-Gaussian noise . . . . . . . 38

5.1.2.1 Pseudo-marginal MH . . . . . . . . . . . . . . . . . 39
5.1.2.2 MH with Averaged Acceptance Ratios . . . . . . . . 39

5.1.3 Exact inference based on the true posterior . . . . . . . . . . 40
5.1.4 Exact inference based on the sequential releases . . . . . . . . 41

5.2 Differentially private distributed Bayesian linear regression . . . . . . 42
5.2.1 Notation and privacy mechanism . . . . . . . . . . . . . . . . 44
5.2.2 Distributed setting . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Algorithms for Bayesian inference . . . . . . . . . . . . . . . . 47

5.2.3.1 Normally distributed features . . . . . . . . . . . . . 48
5.2.3.2 Features with a general distribution . . . . . . . . . 52

5.2.4 Variants of the proposed methods . . . . . . . . . . . . . . . . 54
5.2.4.1 Another way of dealing with non-normality . . . . . 54
5.2.4.2 What happens when we include intercept? . . . . . . 55

6 Experiments for the inference with statistic selection . . . . . . . . . . . . . . 56
6.1 Comparison of additive statistic with the Gauss mechanism . . . . . 57
6.2 Comparison of additive statistic with the Laplace mechanism . . . . . 58

6.2.1 Comparison of Algorithms 10 and 11 in terms of mixing . . . 58
6.3 Comparison of non-additive statistic . . . . . . . . . . . . . . . . . . 60
6.4 Comparison of sequential release . . . . . . . . . . . . . . . . . . . . 62
6.5 Comparison based on the initial data . . . . . . . . . . . . . . . . . . 62

7 Experiments for the private linear regression . . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 Extensions on state-of-art methods . . . . . . . . . . . . . . . . . . . 66

7.1.1 Distributed adaSSP . . . . . . . . . . . . . . . . . . . . . . . . 66
7.1.2 Distributed and multidimensional MCMC B&S . . . . . . . . . . 67

7.2 Experiments with simulated data . . . . . . . . . . . . . . . . . . . . 68
7.3 Experiments with real data . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



LIST OF TABLES

Table 6.1 IAC values of Algorithms 10 and 11 versus N . . . . . . . . . . 59
Table 6.2 MSE for median and maximum statistics . . . . . . . . . . . . 61

Table 7.1 Averaged prediction MSE for the real datasets - ϵ = 1 . . . . . 71
Table 7.2 90% CI for prediction MSE for the real datasets - ϵ = 1 . . . . 72

x



LIST OF FIGURES

Figure 4.1 F (θ) for the mean parameter of N (θ,1) when s(x) = xa. Left:
ϵ = 1, Right: ϵ = ∞ (non-private case). . . . . . . . . . . . . . . . . . 26

Figure 4.2 F (θ) for the variance parameter of N (0, θ) when s(x) = |x|a.
Left: ϵ = 1, Right: ϵ = ∞ (non-private case). . . . . . . . . . . . . . . 26

Figure 4.3 F (θ) for the width parameter of Unif(−θ,θ) when s(x) = |x|a.
Left: ϵ = 1, Right: ϵ = ∞ (non-private case). . . . . . . . . . . . . . . 27

Figure 4.4 Comparison among F1(θ), F2(θ), F3(θ). . . . . . . . . . . . . . 34

Figure 5.1 Differentially private distributed linear regression model . . . 48

Figure 6.1 MSE and (Logarithm of) F (θ) for different moments when
there is Gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 6.2 MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2

(red), under Laplace mechanism. MSE is calculated from the samples
obtained from Algorithm 10. . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 6.3 Left: F (θ) for median (blue) and maximum (red) of s(x) = |x|.
Right: Autocorrelation function (ACF) for Algorithm 12 for median
(blue) and maximum (red) at θ = 2. Privacy parameters are (ϵ,δ) =
(5,1/n2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 6.4 MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2

(red), under Laplace mechanism using sequential release. MSE is
calculated from the samples obtained from Algorithm 13. . . . . . . . 62

Figure 6.5 Left: MSE values with and without statistic selection using
initial data. Right: Box-plots (outliers removed) of selected a values
when statistic selection is performed. . . . . . . . . . . . . . . . . . . 64

Figure 7.1 Averaged prediction and estimation performances (over 50
runs). Top row: n = 105,d = 2, Bottom row: n = 105,d = 5. . . . . . . 69

Figure 7.2 Run times per iteration for MCMC algorithms . . . . . . . . . 69
Figure 7.3 Maximum mean discrepancy (MMD) results for each J and

d = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi



1. Introduction

Leveraging vast amount of data has transformed and boosted many operations in
a world of technological developments. However, rapid digitalization comes with
an undesirable result of violating human rights and the modern technology has re-
peatedly failed to protect sensitive personal information (Human, 2022; Isaak &
Hanna, 2018; Matte, Bielova & Santos, 2020; Trautman, 2022). Hence, it is ut-
terly important for the researchers and the practitioners to focus on developing
privacy-preserving data analytics solutions for the sustainable and efficient future
technologies on data science and machine learning. In fact, along with the discussion
in this thesis, various data privacy techniques have been suggested for preserving
sensitive information (Darwish, Essa, Osman & Ismail, 2022).

Among many privacy-preserving approaches, one of them, differential privacy, out-
shines other methods as it effectively enables exploiting sensitive data without vio-
lating the personal information with certain mathematical guarantees (Dwork, Roth
& others, 2014). Therefore, this thesis particularly focuses on differential privacy
applications while inferring valuable information from sensitive data to contribute
the research on data privacy technologies.

Differential privacy has also edge over other privacy techniques as many researchers
showed that it is adaptive and can be safely implemented to the well-known data an-
alytics and machine learning methods ranging from fundamentals such as regression
or classification to the advanced neural models such as generators or large language
models with transformers (Zhao & Chen, 2022a). In this regard, this thesis discusses
Bayesian inference methods, especially Markov chain Monte Carlo (MCMC), for the
differential privacy applications as they have proven to be promising by several re-
searchers (Heikkilä, Jälkö, Dikmen & Honkela, 2019; Yıldırım & Ermiş, 2019).

1.1 Contribution of the thesis
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As it was mentioned above, this thesis particularly aims to combine differential
privacy with the Bayesian inference. In this context, researchers have proposed
several methods for differentially private Bayesian estimation (Bernstein & Sheldon,
2019; Heikkilä et al., 2019; Räisä, Koskela & Honkela, 2021; Wang, 2018; Wang,
Fienberg & Smola, 2015). However, this thesis come up with novel approaches and
extend the literature. Specifically, whereas none of the works in the literature has
focused on the informativeness of the statistics for the differentially private analyis, a
part of this thesis exactly closes this gap by utilizing Fisher information for selecting
the best statistic for the differentially private inference. Indeed, we show that Fisher
information works unexpectedly well to this end in the following sections. Statistic
selection methodology is especially important for practical purposes. Using simple
distributions, we show that the conventional statistics may not be the best choices
to share the data privately.

In addition to the statistic selection technique, this thesis also proposes a novel
Bayesian approach for one of the oldest problems in the privacy literature, privacy-
preserving linear regression. A new generative hierarchical model with unique distri-
butional relations forms the foundation of the proposed method for the private linear
regression setting. The model simply corrupts summary statistics and samples from
the posterior distribution given those perturbated summary statistics using MCMC
technique. For brevity, the contributions of this thesis can be summarized as:

• An unique statistic selection methodology using Fisher information. In de-
tail, we rigorously show that the most informative statistic in terms of Fisher
information results in better performance when it is combined with Bayesian
inference with differential privacy.

• An efficient sampling method based on a novel hierarchical structure for the
private linear regression problem. In short, newly developed algorithms both
enable to work on distributed data environment, which is crucially important
in a digitalized era, and satisfactorily beat existing methods.

1.2 Outline

There are mainly four chapters in this thesis. While the first two chapters present
the foundations of this study on Markov chain Monte Carlo and differential pri-
vacy, the following chapters discuss the proposed methods in detail and provide
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well-rounded numerical experiments for the justifications. In detail, chapter 2 is
all about the definitions and the literature about Bayesian inference and Markov
chain Monte Carlo where one can find the rigorous rigorous explanations about the
utilized models. Then, chapter 3 provides details of differential privacy in depth so
that one can easily grasp the idea of differential privacy with sufficiently provided
definitions. Given the basics, chapter 4 is the first chapter presenting one of the
contributions of this thesis, the statistic selection methodology. In this part, various
privacy settings are considered to come up with a viable statistic selection method
based on Fisher information. On top of the definitions, chapter 5 discusses possi-
ble Bayesian inference methods complementing the statistic selection methodology
and the linear regression problem. Finally, chapters 6 and 7 are reserved for the
numerical experiments.
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2. Markov chain Monte Carlo

Bayesian inference usually requires employing complex probability distributions
(Brooks, 1998). One may need to clearly describe or integrate over those com-
plex distributions for obtaining the marginal distribution/expectation in order to
effectively utilize those distributions in the inference. Due to the intractability and
complexity of these integrals in most of the cases, numerical approximations are
essential (Brooks, 1998; Smith, 1991). Here, one useful Bayesian inference method
is Markov chain Monte Carlo (MCMC).

The idea of MCMC is based on constructing an elegant Markov chain that has in-
variant distribution as the target posterior distribution. With sufficiently large run,
samples coming from invariant distribution of the Markov chain can be treated as
instances of target distribution (Brooks, 1998). Those samples from target distri-
bution can then be used as numerical approximations of the required integrals or
expectations.

At this point, we need to go further and discuss Markov chains as they constitute
the foundations of the main methodology of this thesis. Markov chains can be
considered as a sequence of random variables that has the Markov property, which
means that the next sample from the chain is not affected by the past samples except
the current one. More formal definition is

Definition 1 (Markov chain (Brooks, Gelman, Jones & Meng, 2011))
Consider a sequence of random variables in set S = {X1,X2 . . .}. S forms a Markov
chain if for all n

P (Xn+1|Xn, . . . ,X1) = P (Xn+1|Xn).

Markov chains have unique limiting distributions under some conditions, and these
conditions are especially important while designing a MCMC algorithm to ensure
true convergence. Firstly, the chain should be irreducible, which means that any
state n can be reached by any other state for all n in a finite number of steps.
Secondly, the chain should be aperiodic, which means the common divisor of required
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steps to return back to the same state is 1. Finally, it should be positive recurrent,
i.e. the number of steps taken for transition back to a same state is expected to
be finite for the existence of stationary distribution (Spade, 2020). The stationary
distributions are important as one can possibly design a chain that has specific
distribution of π as the limiting distribution, and use samples from that limiting
distribution to explore the target distribution in the inference scheme.

In addition to the specifications above, most of the MCMC algorithms are designed
to satisfy reversibility and detailed balance as it ensures the existence of the desired
limiting distribution (Sharma, 2017). Detailed balance for a transition kernel Q with
respect to a distribution π is satisfied when stationary distribution π is

π(y)Q(x|y) = π(x)Q(y|x) ∀x,y ∈ X . (2.1)

There are several well-known techniques to design such Markov chains whose limiting
distribution is target distribution π(·).

2.1 Metropolis-Hastings

Metropolis-Hastings is one of the most fundamental and well-known methods for
the purpose of designing a Markov chain with a desired limiting distribution of
π(.). Roughly speaking, it requires proposal distribution as an input (Flötteröd &
Bierlaire, 2013; Hastings, 1970) to propose a sample from this distribution in each
iteration. Then, with a specific acceptance probability these proposals are either
considered as a part of the desired target distribution or they are disregarded.

One iteration of a typical MH algorithm consists of three steps and these steps are
repeated until a specified iteration number is exceeded.

1.1 Propose a new sample θ′ using current step θ from proposal distribution q(.).

1.2 Calculate acceptance probability α(θ,θ′) = min{1, π(θ′)q(θ|θ′)
π(θ)q(θ′|θ) }.

1.3 Accept the proposal with probability α(θ,θ′); otherwise, reject the proposal.
When the proposal is accepted, the current state of the Markov chain is set to
θ′, otherwise the current state is not updated and stays θ.

Note that, the acceptance probability in step 2 comes from the detailed balance in
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equation (2.1). In detail, consider a transition probability from state xt to xt+1 ̸= xt

as Q(xt+1|xt), and π(x) as the limiting distribution of the Markov chain. By the
reversibility, we have

Q(xt+1|xt)π(xt) = Q(xt|xt+1)π(xt+1).

Then, we can also write transition probability Q(xt+1|xt) as

Q(xt+1|xt) = q(xt+1|xt)α(xt+1,xt),

where q(.) is proposal distribution given the current state, and α(xt+1,xt) is the
probability of accepting xt+1. Then, we can derive that

Q(xt+1|xt)
Q(xt|xt+1) = π(xt+1)

π(xt) ,

q(xt+1|xt)α(xt+1,xt)
q(xt|xt+1)α(xt,xt+1) = π(xt+1)

π(xt) ,

α(xt+1,xt)
α(xt,xt+1) = q(xt|xt+1)π(xt+1)

q(xt+1|xt)π(xt) . (2.2)

Then, using idea from Hastings (1970); Metropolis, Rosenbluth, Rosenbluth, Teller
& Teller (1953) and equation (2.2), one can accept the proposal with α(θ,θ′) as
in step 2. As a side note, it is possible to use a different version of acceptance
probability by still satisfying detailed balance (Barker, 1965), but the α(θ,θ′) in
step 2 is proven to be optimal by resulting in less rejection of convenient proposals
(Brooks, 1998; Peskun, 1973). Additionally, the proposal mechanism in step 1 is a
design parameter, and it may affect the efficiency of the mechanism. Some of well-
known proposal mechanisms that can be utilized effectively are (Sharma, 2017) given
below, and Algorithm 1 summarizes one iteration of Metropolis-Hastings algorithm.

• Symmetric proposals: q(θ′|θ) = q(θ|θ′), and α(θ,θ′) = min{1, π(θ′)
π(θ) }.

• Random walk: Propose θ′ = θ + ϵ, where ϵ is a probability density usually
taken as normal or uniform (Chains, 2010). When it is normally distributed,
proposal distribution is θ′|θ ∼ N (θ,σ2

q ).

• Independence sampler: q(θ′|θ) = q(θ′).

2.2 Pseudo-Marginal Metropolis-Hastings
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Algorithm 1 Metropolis-Hastings algorithm
Begin with some θ(0)

for i = 1,2, . . . do
Propose θ′ ∼ q(θ′|θ(i−1))
Accept θ′ and return θ(i) = θ′ with probability of α(θ(i−1), θ′)
else reject the proposed value and return θ(i) = θ(i−1)

Pseudo-Marginal Metropolis-Hastings (PMMH) is another method aiming to sam-
ple from a target distribution using the limiting distribution of a Markov chain.
However, PMMH further extends the MH algorithm by employing importance sam-
pling (Andrieu & Roberts, 2009), and enables to make inference with likelihood-free
approach (Warne, Baker & Simpson, 2020). In a way, PMMH mimics the original
MH algorithm (Deligiannidis, Doucet & Pitt, 2018) with the point-wise estimation
of likelihoods instead of the true likelihood, and it is more applicable to the real
cases where tractable likelihood functions are not usually available (Warne et al.,
2020). As a side note, it is sometimes called as exact-approximate MCMC method
as they are known to converge exact posterior distribution with an approximation
of ideal (but intractable) MH algorithm.

Importance sampling enables estimating the mathematical expectation of target
distribution using weighted averages of random variables from another distribution
(Tokdar & Kass, 2010). Suppose that target distribution is π(θ), for some f(θ) we
know that the following equation holds true by Monte Carlo integration (Brooks
et al., 2011);

Eπ[f(θ)] =
∫

f(θ)π(θ)dθ ≈ 1
N

N∑
i=1

f(θ(i)), θ(i) ∼ π(θ). (2.3)

For some well-defined q(.) distribution that is satisfying q(θ) > 0 when π(θ) > 0, we
can write the integration in equation (2.3) as

Eπ[f(θ)] =
∫

f(θ)q(θ)π(θ)
q(θ) dθ.

Realize that, this integration is same with taking expectation of f(θ)π(θ)
q(θ) according

to the q(.), which is

∫
f(θ)π(θ)

q(θ) q(θ)dθ = Eq[f(θ)w(θ)], where w(θ) = π(θ)
q(θ) .

Then, by using the same Monte Carlo integration strategy, we can approximate this
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integration as

Eq[f(θ)w(θ)] ≈ 1
N

N∑
i=1

f(θ(i))w(θ(i)), θ(i) ∼ q(θ). (2.4)

Therefore, it is possible to estimate Eπ[f(θ)] using samples from q(.) as in equation
(2.4). The most important advantage of importance sampling is that sampling from
q(.) is a lot easier than sampling from π(.) as it is a well-defined and tractable
distribution compared to π(.) by design. On the other hand, in most of the real-life
cases, the target distribution π(θ) and/or q(θ) are known up to some normalizing
constant where drawing true samples may not be possible. At this point, Hesterberg
(1995) proposed a more capable version of the importance sampling called as self-
normalized importance sampling. In this case, one can make small adjustment on
the importance sampling scheme. Assume that we have π(θ) = λ0π0(θ) where only
π0(θ) is known. Using the self-normalized importance methodology it is possible to
change weights w(θ) with w0(θ) = π0(θ)

q0(θ) . Then, the final Monte Carlo estimation
step becomes ∑N

i=1 f(θ(i))w0(θ(i))∑N
i=1 w0(θ)

, θ(i) ∼ q(θ). (2.5)

Coming back to the discussion of PMMH, suppose we have a likelihood function
p(y|θ), and suppose we need to use auxilary variable x for the sampling procedure,
then we have (Drovandi, Moores & Boys, 2018)

p(y|θ) =
∫

p(y|x,θ)p(x|θ)dx = Ex|θ[p(y|x,θ)] ≈ 1
N

N∑
i=1

p(y|xi, θ), x(i) ∼ p(x|θ).

Combining equations (2.4) and (2.5), it is possible to replace this likelihood with
an unbiased estimator using self-normalized importance sampling as (Andrieu &
Roberts, 2009; Beaumont, 2003; Drovandi et al., 2018)

p̂(y|θ) = 1
N

N∑
i=1

p(y|xi, θ)p(xi|θ)
q(xi)

, xi ∼ q(x), (2.6)

which can be replaced with the true-likelihood in the Algorithm 1.

All in all, a generic version of PMMH algorithm is shown in Algorithm 2 where
target distribution is π̂(θ) ∝ p̂(y|θ)p(θ).

2.3 Metropolis-Hastings with Averaged Acceptance Ratio
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Algorithm 2 Pseudo-marginal Metropolis-Hastings algorithm
Begin with some θ(0), Ẑ(0)

for i = 1,2, . . . do
Propose θ′ ∼ q(.|θ(i−1))
Propose xj ∼ qθ′(.) for j = 1, 2,..., J
Calculate Ẑ ′ = 1

N

∑N
j=1

p(y|x(j),θ(i−1))p(x(j)|θ(i−1))
qθ′(x(j))

Accept θ′ and return θ(i) = θ′, Ẑ(i) = Ẑ ′ with probability

min{1,
q(θ|θ′)
q(θ′|θ)

p(θ′)
p(θ)

Ẑ ′

Ẑ(i−1)
}

else reject the proposed variables and return θ(i) = θ(i−1), Ẑ(i) = Ẑ(i−1)

Although PMMH extends the capability of the MH algorithm by drawing samples
with estimated likelihood function, it may be computationally inefficient when the
data size grows since the number of iterations required to converge desired distri-
bution is also skyrocketed relatedly (Deligiannidis et al., 2018). Additionally, the
PMMH algorithm carries Z from the previous iteration, which may result in rejec-
tions for consecutive iterations, so its Markov chain eventually may become sticky.

One way to overcome the problem of the sticky chain is designing an MCMC algo-
rithm with correlated random variables and plugging them in the marginal accep-
tance ratio of the algorithm. The idea behind using correlated auxiliary random
variables in the likelihood function is that mimicking the original MH algorithm
with a less variated acceptance ratio (Deligiannidis et al., 2018). With a less vari-
ated acceptance ratio, this algorithm partially mitigates the problem of stickiness in
PMMH. Algorithm 3 demonstrates one iteration of the correlated pseudo-marginal
(CPM) method from Deligiannidis et al. (2018).

Realize that CPM still carries U from the previous iteration if the proposal is not ac-
cepted as in algorithm 3. Hence, the problem of stickiness is not completely resolved.
Here, a more recent class of exact-approximate MCMC algorithm called MH with
Averaged Acceptance Ratios (MHAAR) takes the stage (Andrieu, Yıldırım, Doucet
& Chopin, 2020). MHAAR also employs the likelihood-free approach like PMMH
and CPM, but it (almost) fully updates both numerator and the denominator of the
acceptance ratio independent from the decision.

There are multiple versions of MHAAR, but in the following parts of the the-
sis, we particularly mention the algorithm MHAAR-RB, which employs a "Rao-
Blackwellised" acceptance ratio (Andrieu et al., 2020). To elaborate, the Rao-
Blackwell theorem states that the expected value of the conditional distribution
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Algorithm 3 Correlated Pseudo-Marginal (CPM) - one iteration (Deligiannidis
et al., 2018)
Begin with some ρ,θ,U
for i = 1,2, . . . do

Propose θ′ ∼ q(.|θ)
Sample ε ∼ N (0d, Id), and U ′ = ρU +

√
1−ρ2ε

Calculate p̂(y|θ′,U ′), which is an estimation of p(y|θ′)

Accept (θ′,U ′) and return θ = θ′,U = U ′ with probability

min{1,
q(θ|θ′)
q(θ′|θ)

p(θ′)
p(θ)

p̂(y|θ′,U ′)
p̂(y|θ,U) }

else reject the proposed values and return the previous ones as θ = θ,U = U

E[t|u] is a less variant estimator of θ where t is an unbiased estimation and u is the
sufficient statistics of the target parameter θ, and this idea is especially effective in
particle filtering sequential Monte Carlo methodology (Blackwell, 1947; Robert &
Roberts, 2021). "Rao-Blackwellised" acceptance ratio is (Andrieu et al., 2020);

α(θ′, θ) = q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

∑
j wj∑
j w′

j

, (2.7)

where wj = L(y,θ, t(j))/qθ,θ′(t(j)), and w′
j = L(y,θ′, t(j))/qθ,θ′(t(j)), and L is a likeli-

hood function regarding the parameter and the data. All in all, MHAAR algorithm
is demonstrated in algorithm 4. Note that, correctness of the MHAAR methodology
is proven in Andrieu et al. (2020).

Algorithm 4 MH with Averaged Acceptance Ratio (MHAAR) - one iteration (An-
drieu et al., 2020)
N is sample size for u, y is data, and begin with some (θ, t)
Propose θ′ ∼ q(.|θ)
for j = 1,2, . . .,N do

If j = 1 set t(1) = t, or sample t(j) ∼ qθ′,θ(.)

Calculate wj = L(y,θ,t(j))
qθ,θ′(t(j)) , and w′

j = L(y,θ′,t(j))
qθ,θ′(t(j))

Find min{1,α(θ′, θ)} using equation (2.7)

With this probability sample k ∈ {1, . . . ,N} with probability proportional to
w′

k and return (θ′, t(k)).
Else reject and sample k ∈ {1, . . . ,N} with probability proportional to wk, and
return (θ, t(k)).
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2.4 Gibbs Sampling

Among numerous MCMC algorithms, another well-known class of MCMC algo-
rithms is Gibbs sampling, stemming from the idea of sampling with tractable
conditional distributions rather than focusing on complicated joint distributions.
This idea was first exploited in a formal manner in 1984, and it was proven that
this method converges to the desired posterior distribution just like MH algorithm
(Casella & George, 1992; Gelfand, 2000; Geman & Geman, 1984). One can classify
Gibbs sampling as a special case of MH methodology where the proposals are always
accepted, i.e. no accept-reject mechanism, but the concern is designing a Markov
chain whose invariant distribution converges to the target posterior distribution us-
ing full-conditional distributions (probability of a random variable conditioned on
all other random variables) (Walsh, 2004).

To elaborate, suppose we have a vector of random variables as (θ1, . . . , θn), and
t corresponds to the step of the algorithm as θ(t) = (θ(t)

1 , . . . , θ
(t)
n ). Additionally,

consider the full-conditional distributions as (Gelfand, 2000)

π (θi|θj ; ∀j ∈ {1, . . . ,N} where i ̸= j) ∀i ∈ {1, . . . ,N}.

Then, in each iteration, the algorithm samples θ
(t)
i from the conditional distribution

π
(

θ
(t)
i |θ(t)

j , θ
(t−1)
k ; ∀j < i,∀k > i

)
.

Usually, employing conjugate priors enables tractable full-conditional distributions
which are easier to sample from while there are other ways of drawing samples from
the full-conditionals when they are not known analytically Gelfand (2000). All in
all, algorithm 5 demonstrates the Gibbs sampling methodology clearly.

Algorithm 5 Gibbs sampler
begin with some θ(0) = (θ(0)

1 , . . . , θ
(0)
n )

for t = 1, . . . ,T do
for j = 1,2, . . .,n do

Sample θ
(t)
j from πj

(
θ

(t)
j |θ(t)

m , θ
(t−1)
k ; ∀m < j,∀k > j

)

It is possible to show that Gibbs sampler converges to an invariant distribution π.
For this purpose, assume θ = (θ1, . . . , θn),and θ̃ = (θm, θk ; ∀m < j,∀k > j), i.e. all
other parts of θ other than θj . Consider, Tj represents transition for each step with
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j = 1, . . . ,n. Then, T = T1T2 . . .Tn is a transition kernel for the Gibbs sampler as it
applies each Tj sequentially. With a Tj that satisfies the detailed balance in equation
(2.1), we have πTj = π. Therefore, transition kernel T can be written as

πT = πT1T2 . . .Tn = (πT1)T2 . . .Tn = πT2 . . .Tn = . . . = π.

Hence, π is an invariant distribution for Gibbs sampler with transition kernel of T

that satisfies the detailed balance.

2.5 Improvements on Gibbs sampling

2.5.1 Collapsed Gibbs sampling

There are some concerns about the Gibbs sampling that has been an active field of
research. One of these drawbacks is the correlation among the samples of the Gibbs
updates as it results in poor and slow convergence to the desired distribution. One
way to overcome this problem is collapsing (integrating-out) one or two components
from the chain Liu, Wong & Kong (1994). One may simply consider collapsing the
general Gibbs scheme as removing the not particulary interested variables from the
sampling chain Liu et al. (1994); Park & Lee (2022a), which can be shown as

Sample from: π(x|y,z), π(y|x,z), π(z|x,y) (General)

Sample from: π(x|y), π(y|x) (Collapsed)

The collapsed chain targets sampling from the marginalized version of complete joint
distribution by maintaining the functional compatibility Park & Lee (2022b).

2.5.2 MH-within-Gibbs Sampling

Another problem is related to the key component of algorithm: full-conditional dis-
tributions. Although Gibbs sampler is quite powerful tool for drawing samples from
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complex joint distributions, existence of the tractable conditional distributions is
crucially important for the sampling methodology. Indeed, easy-to-sample condi-
tional distributions may not be possible to obtain in a real-life scenario. In this
case, one step MH can be placed inside of a Gibbs sampling Gilks & Spiegelhalter
(1996); Martino, Read & Luengo (2015); Millar & Meyer (2000), and this is called
MH-within-Gibbs sampling. In other words, instead of directly sampling θj from
π(θj |θ̃), replacing it with a single step MH move whose invariant distribution is tar-
get posterior distribution π(θj |θ̃) is still a valid sampling method. Although initial
samples from Markov chain don’t necessarily belong to the limiting distribution,
they converge to the desired posterior distribution in the later stages of outer Gibbs
steps, so there is no need for extra iterations for the inner MH step.
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3. Differential privacy

Differential privacy (DP) is a novel and increasingly popular privacy protection
paradigm in the recent years (Dankar & Emam, 2013), and main motivation is pro-
tecting the sensitive information while enabling effective learning about the popula-
tion (Dwork et al., 2014). Differential privacy definition is based on a probabilistic
difference between the outputs of a randomised algorithm with inputs of two neigh-
boring datasets. What we mean by neighboring dataset is that Hamming distance
between those datasets is equal to 1. More formally,

Definition 2 (Hamming distance (Dwork et al., 2014; Zhao & Chen, 2022b))
Hamming distance measures the difference between two datasets by counting number
of rows in which they differ as

∥x−x′∥H =
N∑

i=1
1x1 ̸=x2

where x,x′ ∈ X = ∪∞
n=1X n, and x = (x1, . . . ,xn) ∈ X n.

Definition 3 (ϵ-Differential Privacy (Dwork, 2008; Dwork et al., 2014))
A randomized algorithm M satisfies ϵ-differential privacy if for all datasets
x,x′ ∈ X , which satisfy ∥x−x′∥H = 1, and S ⊆ Range(M)

Pr[M(x) ∈ S] ≤ eϵ ×Pr[M(x′) ∈ S]

Also, a more relaxed version of this definition is available (Dankar & Emam, 2013).
Instead of strictly forcing the ratio to be less than eϵ, it is possible to allow some
violations on the previous definition with bound δ as in definition 4.

Definition 4 (ϵ,δ-Differential Privacy (Dwork et al., 2014)) A randomized
algorithm M satisfies (ϵ,δ)-differential privacy if for all datasets x,x′ ∈ X , which
are differing at most one element, and S ⊆ Range(M)

Pr[M(x) ∈ S] ≤ eϵ ×Pr[M(x′) ∈ S]+ δ
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It is worth noting that differential privacy is strong in the sense of randomization,
but not an "absolute guarantee" about the privacy of the individuals. Instead, it
injects well-designed noise in the process of inference so that the data maintain
usability while the noise limits the leakage of the true sensitive information (Dwork,
2008). Another important point is that one can easily calibrate the level of privacy
by changing the value of ϵ or δ. For instance, smaller ϵ means that privacy concern
is high and it is quite undesirable to leak any information. Similarly, a smaller value
of δ also implies a similar constraint on privacy level.

Most of the time private data analysis with differential privacy use output perturba-
tion mechanisms, i.e. adding some noise on top of the output of a certain randomised
algorithm (Nissim, Raskhodnikova & Smith, 2007), and some of the key definitions
for differential privacy are presented in the following sections.

3.1 Sensitivity

Sensitivity indicates how large the noise should be for the sake of satisfying privacy
constraints Dwork et al. (2014).

Definition 5 (l-p Sensitivity (Dwork, McSherry, Nissim & Smith, 2006))
For a function f : X → Rd, ∆f,p of a function f is defined as

∆f,p = sup
x1:n,x′

1:n:∥x1:n−x′
1:n∥H=1

∥f(x1:n)−f(x′
1:n)∥p,

where x,x′ ∈ X .

Note that, the sensitivity in definition 5 is called "Global sensitivity" Nissim et al.
(2007), and it is also possible to define the global sensitivity using Euclidian norm
as well (Avella-Medina, 2021), so called l-2 sensitivity. Although global sensitivity
is at the core of most of the differential privacy discussions, for some data queries,
global sensitivity may be inefficient as it is likely to introduce undesirably large noise
due to independence from the observed values (Nissim et al., 2007; Sun, Zhou, Yu
& Xiong, 2020). At this point, the local sensitivity takes the stage by exploiting the
observed values in the dataset. More formal expression is in definition 6.

Definition 6 (Local sensitivity (Nissim et al., 2007)) For f : X → Rd,
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∆f,local at x is the smallest value that satisfies

∥f(x)−f(x′)∥1 ≤ ∆f,local(x)

in other words
∆f,1,local(x) = max∥f(x)−f(x′)∥1

where ∥x−x′∥H = 1, and x,x′ ∈ X .

To make the difference between local and global sensitivity clear, we want to provide
examples for some of the well-known data queries.

Example 1 (Local and Global sensitivity of a median query (Nissim et al., 2007))
Suppose we have a function f which returns the median of input, and we have a set
of sorted values defined as

S = {xi ∈ [0,A], xi ≤ xi+1 ∀i ∈ {1, . . . ,N}}.

Also, for simplicity, assume that N is odd as it makes it easier to calculate median.
Therefore, for all possible values of x in S global sensitivity is maximum change
between median values of two neighbouring datasets, which is A Nissim et al. (2007).
In other words,

∆Global,f,1 = A.

Then, assume x = (x1, . . . ,xm, . . . ,xN ) and xm = T < A where median is xm. Also,
x1, . . . ,xm−1 = 0 while xm+1 . . .xN = T . Then, the local sensitivity on given datasets,
as the definition 6 states, is Nissim et al. (2007)

∆Local,f,1(x) = max(xm −xm−1,xm+1 −xm) = T < A.

Realize that local sensitivity is more efficient for injecting noise compared to the
global sensitivity for this case as it introduces less noise.

Example 2 (Local and Global sensitivity of a maximum query (Nissim et al., 2007))
Suppose we have a function f which returns the maximum of input, and we have a
set of sorted values defined as

S = {xi ∈ [0,A], xi ≤ xi+1 ∀i ∈ {1, . . . ,N}}.

Maximum possible change in the function of maximum query for any x,x′ ∈ S is A,
so

∆Global,f,1 = |f(x)−f(x′)| = A.
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Then, again assume a dataset x where T < A, and the values are

x = {0, . . . ,0}∪{T }.

Considering the local sensitivity for the maximum query on given dataset Nissim
et al. (2007),

∆Local,f,1(x) = max(xn,xn −xn−1) = T < A.

Again, local sensitivity is more efficient to use than the global sensitivity for this
case.

While the local sensitivity results in less variance than the global sensitivity because
of the dependency of the dataset rather than the global population bounds for
some cases, directly using local sensitivity instead of a global sensitivity violates
the definition 4 (Sun et al., 2020). To prove this, we can assume a case with two
neighbors and sorted datasets on set S as

x = {x1 = . . .xm+1 = 0, xm+2 = . . .xn = T },

x′ = {x1 = . . .xm = 0, xm+1 . . .xn = T }.

If one uses local sensitivity for adding noise on top of the median, the probability
of receiving non-zero answer from D1 is 0 because ∆Local,median,1(x) = max(xm −
xm−1,xm+1 − xm) = 0, so noise is 0 and median information is directly reachable.
More interestingly, however, ∆Local,median,1(x′) = max(xm −xm−1,xm+1 −xm) = T ̸=
0, so it is possible to get non-zero answer from private median query on x′ as the
noise is not 0 anymore Nissim et al. (2007). Hence, the definition 4 is not satisfied.
In other words, for small values of δ

Pr[f(x) ∈ S] ≰ eϵ ×Pr[f(x′) ∈ S]+ δ

Here, there exists a well-designed and safe-to-share upper bound on the local sensi-
tivity called as "smooth bounds". Formally,

Definition 7 (Smooth bounds on local sensitivity (Nissim et al., 2007))
A function F : X → R+ is smooth bound on local sensitivity if

F (x) ≤ ϵβF (y) and F (x) ≥ ∆Local,f,1(x) ∀x,y ∈ X ,

where β > 0, and ∥x−y∥H = 1.

The smallest F that satisfies definition 7 is Fβ,f (x) =
maxy∈Dn(∆Local,f,1(y).e−βd(x,y)), where d(x,y) stands for hamming distance
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between x and y (Nissim et al., 2007). Note that, Fβ,f (x) is called "smooth
sensitivity", and it is possible to adjust α and β values to add calibrated noise via
privacy mechanisms.

3.2 Privacy mechanisms

Differential privacy mechanisms utilize the sensitivity while perturbating the statis-
tics with random noise to mask the output of a query (Dwork et al., 2014). Some
of the well-known noise-adding methods are Laplace, Exponential and Gauss mech-
anisms, and these are named after the distributions used for perturbation.

The first definition is the Laplace mechanism. The Laplace mechanism employs
Laplace distribution and obtains pure differential privacy with δ = 0.

Definition 8 (Laplace mechanism (Dwork et al., 2014)) Given a function
f : X 7→ Rd, the randomized algorithm M(x) is (ϵ,0)-DP if

M(x) = f(x)+Vi where Vi ∼ Lap(∆f,1/ϵ) for i = 1, . . . ,d.

Note that Lap(∆f,1/ϵ) = 1
2∆f,1

exp( −x
∆f,1/ϵ).

The Laplace mechanism is one of the most popular differential privacy mechanisms
as it limits the attacker’s ability to obtain sensitive information thanks to the pure
differential privacy with δ = 0, and truncating the Laplace distribution allows using
interactive queries with bounds (Croft, Sack & Shi, 2022).

Another well-known privacy mechanism is Gaussian mechanism. As the Gaussian
distribution has many nice properties, such as adding two Gaussian distributions
produces another Gaussian distribution (Dwork et al., 2014), this mechanism is also
popular for differential privacy applications. On the other hand, differing from the
Laplace mechanism, the Gaussian mechanism satisfies the relaxed version of privacy
definition (see definition 4) with δ > 0 using some scaled version of l-2 sensitivity
(Dwork et al., 2014).

Definition 9 (Gaussian mechanism (Dwork et al., 2014)) For ϵ ∈ (0,1),
randomized algorithm M(x) is (ϵ,δ)-DP if

M(x) = f(x)+Vi where Vi ∼ N (0,σ2) for i = 1, . . . ,d,
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where σ is bounded below as

σ ≥ c∆f,2/ϵ, and c2 > 2ln(1.25/δ)

Note that this definition is only available when ϵ ∈ (0,1). Fortunately, Balle &
Wang (2018) extended the definition so that all the ϵ values greater than 0 can be
included. They came up with an algorithm (Algorithm 1 in (Balle & Wang, 2018))
that numerically calculates calibrated σ value using the analytical Gaussian cumu-
lative distribution function. The analytical method also alleviates the drawbacks
of the classical Gauss mechanism as it performs better when ϵ −→ 0, and introduces
lower noise compared to the classical method.

For the Gaussian mechanism, it is also possible to come up with another differential
privacy definition rather than the classical (ϵ,δ)-DP in definition 4, and this is called
Gaussian differential privacy (Dong, Roth & Su, 2022).

The Gaussian differential privacy definition is based on differentially private trade-off
functions. One can simply define a trade-off function as

Definition 10 (Trade-off function (Dong et al., 2022)) Given M(x) and
M(x′) are the noisy outcomes of the randomized algorithm M , where x and x′ are
neighboring datasets. Trade-off for M(x) and M(x′) is

T (M(x),M(x′))(α) = inf{βϕ : αϕ ≤ α}

Where βϕ and αϕ are Type I and Type II errors of hypothesis test of whether the
noisy outcome comes from x or x′.

Now, consider another privacy definition based on the trade-off function.

Definition 11 (f-differential privacy (Dong et al., 2022)) Given f is another
trade-off function, the randomized algorithm M is a f-differentially private if

T (M(x),M(x′)) ≥ f.

Hence, f-differential privacy introduces a lower bound for type II error to make
D1 and D2 indistinguishable. As a result, when the trade-off for any randomized
algorithm M using neighboring datasets D1 and D2 as input is bounded below to
satisfy the definition 11, outcomes of the M become hard to differentiate from each
other, so it is differentially private.

Finally, we can define the Gaussian differential privacy combining definition 10 and
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definition 11.

Definition 12 (Gaussian differential privacy (Dong et al., 2022))
Consider randomized algorithm M for neighboring datasets x,x′ ∈ X as
M(x) = f(x) + Vi where Vi ∼ N (0,∆2

f,2/ϵ2), for i = 1, . . . Then, M is ϵ-Gussian
differentially private (ϵ-GDP) because

T (M(x),M(x′)) ≥ Gϵ where Gϵ = T (N (0,1),N (ϵ,1)).

Other than ϵ-GDP, there is also a term called "zero-concentrated differential privacy
(zCDP)" which aims to minimize the distance between the outputs of a randomized
algorithm, and it is also possible to design a Gaussian mechanism satisfying zCDP
with a specific noise calibration (Bun & Steinke, 2016). Also, one can also use
generalized Gaussian distribution, which provides parametric flexibility to standard
normal distribution to model either heavier or lighter tails (Dytso & Shamai, 2018),
while designing a Gaussian mechanism (Liu, 2019). However, zero-concentrated
differential privacy and generalized Gaussian differential privacy is not closely related
to the discussion in this thesis. Therefore, they are not presented in detail.

As Gaussian and Laplace mechanisms, exponential mechanism also plays a crucial
role in differential privacy applications since it was designed for highly sensitive
outputs that would easily be destroyed with noise (Dwork et al., 2014; McSherry &
Talwar, 2007), and it has many applications from optimization to machine learning
(Bassily, Smith & Thakurta, 2014; Gopi, Lee & Liu, 2022; Zhu & Yu, 2019). Also,
differing from Gaussian mechanism, exponential mechanism satisfies pure differential
privacy with δ = 0 like in the Laplace mechanism. Although exponential mechanism
is a crucial method for some of the applications, the problem setting in this thesis is
not a well-fit for the exponential mechanism. Hence, the definition is not presented
in this thesis.

3.3 Post-processing property of differential privacy

Given the privacy mechanisms and their key drivers, sensitivity definitions, one also
needs to ensure whether further operations on the private output relaxes the privacy
guarantees since most of the inference problems require to work on the outputs of
the randomized algorithm repeatedly. Fortunately, differential privacy algorithms
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are protected from the further risks of privacy loss, i.e. an attacker can not increase
the privacy loss by using the output of a privatized algorithm repeatedly, which is
called "post-processing" (Dwork et al., 2014). A formal definition is

Definition 13 (Post-processing (Dwork et al., 2014)) Consider a random-
ized algorithm M1 : Xn 7→ O1 that satisfies (ϵ,δ)-DP and produces O1 as an out-
put. Given another randomized algorithm M2 : O1 7→ O2 that is independent from
Xn, M = (M1oM2) is also (ϵ,δ)-DP. To justify, consider x and x′ as neighboring
datasets, and any event E ⊆ O2. Given another set S = {o ∈ O1 : M2(o) ∈ E},

P [M2(M1(x)) ∈ E] = P [M1(x) ∈ S]

≤ eϵP [M1(x′) ∈ S]+ δ

= eϵP [M2(M1(x′)) ∈ E]+ δ

3.4 Composition theorem

This particular feature of differential privacy concerns the combination of private
algorithms, and it is especially important as real-life cases may require releasing
many sensitive information by running more than one algorithms on same datasets,
and one may need to combine various noise mechanisms together to form more
capable inference tool (Vadhan & Wang, 2021). However, one may need to be
careful while designing composite algorithm since the DP parameters (ϵ,δ) for each
individual algorithm are required to be reduced to satisfy (ϵ,δ)-DP on the overall
(Dwork et al., 2014). More formally,

Definition 14 (Basic composition (Dwork et al., 2014)) Given Mt as a
(ϵt, δt)-DP algorithm for t ∈ {1, . . . ,n}. Then, Mcomposite = (M1,M2, . . . ,Mn) is also
a differentially private algorithm with parameters (∑n

t=1 ϵt,
∑n

t=1 δt).
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4. Statistic selection for differential privacy

As mentioned in chapter 3, the data holder adds noise on top of a randomized
algorithm that is using sensitive information as input to preserve differential privacy
(Dwork, 2008). Then, the analyst is required to work on the noisy output of that
specific randomized algorithm. While the differential privacy definition suggests
that any randomized algorithm satisfies the desired protection if the noise is well-
designed, the informativeness and utility of the study conducted by the analyst are
also crucial in privacy-preserving data analytics (Oberski & Kreuter, 2020). Hence,
it is important to discuss which function of the data should be used while releasing
the noisy output so that the utility of the study is maximized while not sacrificing
privacy. As we discuss in the below, one way of choosing best statistic is using Fisher
information, a well-known mathematical measure of information. Discussion in this
section is published at Alparslan & Yıldırım (2022), a journal article at Statistics
and Computing in 2022.

4.1 Notation and privacy setting

Consider a data setting as X1, . . . ,Xn ∼ Pθ, where Pθ is any distribution with θ ∈ Θ,
and each Xi contains sensitive information of an individual. Also, for the case of
batch sharing, we introduce a statistic of the data as Sn(X1:n), where Sn maps the
input data of n dimension to real output as Sn : X n 7→ Rds with ds ≥ 1. To protect
sensitive information, we design to release the statistic Sn with some calibrated noise
as

Y = Sn(X1:n)+V where V ∼ Pϵ,Sn . (4.1)

Pϵ,Sn is a distribution for privacy mechanism whose parameters are determined by ϵ

and sensitivity of Sn. Additionally, it is also possible to design a sequential releasing
case where each Xi is shared with some noise as

22



Yi = s(Xi)+V where V ∼ Pϵ,s. (4.2)

4.2 Selection based on Fisher information

One way of measuring the informativeness of a certain statistic is the Fisher in-
formation, which captures the amount of information that the obtained data in-
cludes about the desired parameter Chao, Sally Ward & Ober (2016). Thanks to
the Bernstein-von Misses theorem, posterior distribution of a parameter is approx-
imately normally distributed when the number of observations converges to the
infinity, and covariance matrix of this distribution is inversely related to the Fisher
information (definition 15) of that certain parameter (Kleijn & Van der Vaart, 2012;
Vaart, 1998). Then, owing to the Bernstein-von Misses theorem, one can effectively
utilize Fisher information in the Bayesian estimation setting as higher Fisher infor-
mation means less variated estimator in the long run. In the following parts, we
define/derive Fisher information for various cases combining various noise mecha-
nisms and candidate statistics.

Definition 15 (Fisher information (Schervish, 1995))

F (θ) = E
[
−∂2logpϵ,Sn(Y |θ)

∂θ∂θT

]
,

= E
[
γϵ,Sn(θ;Y )γϵ,Sn(θ;Y )T

]
,

where

γϵ,Sn = logpϵ,Sn(Y |θ)
∂θ

,

pϵ,Sn(Y = y|θ) =
∫

pϵ,Sn(y|x1:n)
n∏

i=1
p(xi|θ)dx1:n.

Under some regularity conditions;

2.1 The partial derivative of P (Y |θ) exists almost everywhere.

2.2 The integral of P (Y |θ) can be differentiated w.r.t. θ.

2.3 The support of P (Y |θ) doesn’t depend on θ.

Calculation of Fisher information given in definition 15 is closely contingent upon
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the noise distribution, and the type of the statistic in equations (4.1), (4.2).

While using additive statistic for the differential privacy mechanism allows tractable
calculation thanks to the normal approximation, it is also possible to use non-
Gaussian noise or non-additive statistics where the Fisher information is not an-
alytically available. In this case, one can efficiently utilize Monte Carlo integration
in equation (2.3) to approximate the value numerically.

4.2.1 Fisher information with additive statistic and Gaussian noise

The first case is built upon additive statistic and Gaussian noise where the Fisher
information is analytically available. In detail, consider

Sn(X1:n) = 1
n

n∑
i=1

s(Xi),

Y = Sn(X1:n)+V where V ∼ N (0,
∆2

s,2
n2ϵ2 I), (4.3)

where ∆2
s,2 is l-2 sensitivity of function s. Note that this mechanism doesn’t satisfy

(ϵ,δ)-DP in definition 4, instead it is designed for ϵ-GDP in definition 12.

As Sn(X1:n) is simply an average operation, it asymptotically follows the normal dis-
tribution by the central limit theorem (CLT). Following the notation from Bernstein
& Sheldon (2018), we define mean and covariance of s(X) as

µs(θ) = Eθ [s(X)] , Σθ = Varθ [s(X)] .

Then, the normal approximation for Sn(X1:n) is

Sn(X1:n) ∼ N (µs(θ),Σθ/n).

Using equation (4.3), we can derive the distribution of Y as

Y ∼ N (µs(θ),Σθ/n+
∆2

s,2
n2ϵ2 I).

Given the fact that Y has a well-defined Gaussian distribution, the task of deriving
Fisher information of θ on the distribution of Y is relatively straightforward as Fisher
information for multivariate normal distribution is available in a closed form (Malagò
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& Pistone, 2015). Considering the transformation θ 7→
[
µs(θ),Σθ/n+ ∆2

s,2
n2ϵ2 I

]
,

[F (θ)]i,j = ∂µs(θ)T

∂θi
Hs,ϵ,n(θ)−1 ∂µs(θ)

∂θj
+ tr(G)

2

where Hs,ϵ,n(θ) := Σs(θ)
n + ∆2

s,2
n2ϵ2 I is the covariance of Y and

G = 1
n2

(
Hs,ϵ,n(θ)−1 ∂Σs(θ)

∂θi
Hs,ϵ,n(θ)−1 ∂Σs(θ)

∂θj

)
.

At this point, we want to provide some examples to demonstrate the Fisher infor-
mation for some common inference cases.

Example 3 (Mean of the normal distribution) Consider the distribution of
X ∼ N (θ,1), and X takes values in between (0,A). Technically, this means that
X has truncated normal distribution, but for the sake of tractability of the calcu-
lation, we choose θ values far away from A so that the data bounds has negligible
effects on the calculations. The reason we introduce bounds for the data is that we
need to derive l-2 sensitivity for s(X). Also, consider s(X) = xa where a is an
odd integer, we focus on a = {1,3} for this example, and ∆s,2 = Aa . Using higher
moments of the normal distribution, mean and variance values are

µs(θ),Σs(θ) =

θ,1 a = 1

θ3 +3θ,9θ4 +36θ2 +15 a = 3.

Fortunately, taking the derivation w.r.t θ is straightforward as

∂µs(θ)
∂θ

,
∂Σs(θ)

∂θ
=

1,0 a = 1

3θ2 +3,36θ3 +72θ a = 3.

In the following figure, we compare F (θ) when a = 1 and a = 3 for ϵ = 1 and ϵ = ∞.
We use n = 100 and A = 10, and make a comparison for various θ values.

According to the figure 4.1, while s(x) = x is more informative for non-private case
(ϵ = ∞), s(x) = x3 becomes more informative for higher values of θ under tight
privacy constraints (ϵ = 1).

Example 4 (Variance of the normal distribution) This time, consider X ∼
Pθ = N (0, θ), and take X ∈ [−A,A]. Using the same assumption with example 3,
effect of A on the calculations are negligible as it is a large number. For s(X) = |x|a,
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Figure 4.1 F (θ) for the mean parameter of N (θ,1) when s(x) = xa. Left: ϵ = 1,
Right: ϵ = ∞ (non-private case).

mean and covariance values are approximately

µs(θ) = EPθ
(|x|a) = (2θ)a/2 1√

π
Γ
(

a+1
2

)
,

Σs(θ) = VarPθ
(|x|a) = (2θ)a

[
1√
π

Γ
(2a+1

2

)
− 1

π
Γ2
(

a+1
2

)]
.

Taking the derivative w.r.t θ is also easy-to-handle:

∂µs(θ)
∂θ

= 2a
2 a

2 θ(a−2)/2 1√
π

Γ
(

a+1
2

)
,

∂Σs(θ)
∂θ

= 2aaθa−1
[

1√
π

Γ
(2a+1

2

)
− 1

π
Γ2
(

a+1
2

)]
.

Then, we take A = 100, and n = 100. Like in the example 3 for various θ values
with epsilon = 1 and ϵ = ∞ can be seen in the figure 4.2.
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Figure 4.2 F (θ) for the variance parameter of N (0, θ) when s(x) = |x|a. Left: ϵ = 1,
Right: ϵ = ∞ (non-private case).

According to figure 4.2, s(X) = x2 is more informative for all θ values when privacy
is not the concern. On the other hand, s(X) = |x| takes the lead when ϵ = 1.
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Example 5 (Width of the uniform distribution) Differing from the normal
distribution, now consider uniform distribution. In other words, X ∼ Pθ =
Unif(−θ,θ) with X ∈ [−A,A]. Note that, Fisher information for the width parame-
ter of uniform distribution doesn’t exist as it violates regularity conditions 1 and 3
in definition 15, but it does exist for marginal distribution of Y given differentiable
µs(θ),Σs(θ) since support of P (Y |θ) doesn’t depend on θ because of the normal ap-
proximation.

Once we use s(X) = |x|a as in the previous example, the mean and covariance values
become

µs(θ) = θa

a+1 , Σs(θ) = θ2aa2

(a+1)2(2a+1) .

The derivatives w.r.t. θ are:

∂µs(θ)
∂θ

= a

a+1θa−1,

∂Σs(θ)
∂θ

= 2a3

(a+1)2(2a+1)θ2a−1.

Given µs(θ),Σs(θ) and their derivatives, figure 4.3 compares F (θ) with different a

and ϵ values using n = 100 and A = 10.
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Figure 4.3 F (θ) for the width parameter of Unif(−θ,θ) when s(x) = |x|a. Left: ϵ = 1,
Right: ϵ = ∞ (non-private case).

Using figure 4.3, one can obtain that while s(X) = x2 is the best for non-private
case, s(X) =

√
|x| and s(X) = |x|0.1 dominates the other statistics when the privacy

level is increased to ϵ = 1.

This example demonstrates a promising fact for the mentioned statistic selection
model as it applies even for the well-known cases where the Fisher information
doesn’t exist properly.
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4.2.2 Fisher information with additive statistic and non-Gaussian noise

Until now, the Gaussian mechanism enabled us to perform analytical comparison
without estimating the value of F (θ). However, when the mechanism changes and
the noise becomes non-Gaussian things get complicated. More specifically, the prob-
ability distribution of pϵ,Sn(Y = y|θ) in definition 15 is not tractable anymore, hence
the derivative of logarithm w.r.t. θ would also be analytically incalculable although
Sn(X1:n) is still approximately Gaussian. Fortunately, Monte Carlo estimators can
be efficiently employed to approximate the value of F (θ) numerically.

Let us first define the problem setting which is similar to the previous case in section
4.2.1 with only a difference as

Sn(X1:n) = 1
n

n∑
i=1

s(Xi),

Y = Sn(X1:n)+V where V ∼ non-Gaussian distribution. (4.4)

Since the additive statistic still allows us to use normal approximation for the dis-
tribution of Sn(X1:n), we define a new random variable as U = Sn(X1:n). Then, we
have

fSn(U = u|θ) ∼ N (u; µs(θ),Σs(θ)/n). (4.5)

Additionally, we can define gϵ,Sn(Y |U) as the conditional distribution of Y given U ,
so the marginal density of Y given θ calculated at Y = y and U = u is

pϵ,Sn(y|θ) =
∫

pϵ,Sn(y|u,θ)fSn(u|θ)du,

=
∫

gϵ,Sn(y|u)fSn(u|θ)du. (4.6)

This is because p(y|u,θ) = p(y,u,θ)
p(u,θ) = p(y|u)p(u|θ)p(θ)

p(u|θ)p(θ) = p(y|u).

By combining equation (4.6) and the Fisher’s identity Douc, Moulines & Stoffer
(2013),

γϵ,Sn(θ;y) = ∂ logpϵ,Sn(Y |θ)
∂θ

=
∫ ∂ logp(y,u|θ)

∂θ
p(u|y,θ)du,

=
∫ ∂

[
logfSn(u|θ)+ loggϵ,Sn(y|u)

]
∂θ

p(u|y,θ)du

=
∫ ∂ logfSn(u|θ)

∂θ
p(u|y,θ)du, (4.7)

where the integral is taken with respect to the posterior distribution p(u|y,θ) ∝
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fSn(u|θ)gϵ,Sn(y|u). Note that p(y,u|θ) = fSn(u|θ)gϵ,Sn(y|u) since

p(y,u|θ) = p(y|u,θ)p(u|θ)p(θ)
p(θ)

= p(y|u)p(u|θ)

= fSn(u|θ)gϵ,Sn(y|u).

Accurate estimation of the score vector in equation (4.7) is vital as it is a key
element of F (θ) as in definition 15. For this purpose, it is possible to employ several
methods to estimate integral, namely one can use importance sampling, rejection-
based sampling or approximate sampling (via MCMC approaches).

A Monte Carlo estimator of F (θ) based on the self-normalized importance sampling
(See chapter 2, section 2.2) is given in Algorithm 6.

Algorithm 6 Monte Carlo estimation of F (θ) for (4.4) - normal approximation for
fSn(u|θ).
Input: θ: parameter; n: data size; N , M : Monte Carlo parameters
Output: F̂ (θ): Estimate of F (θ)
for i = 1, . . . ,N do

Sample y(i) ∼ pϵ,Sn(y|θ)
for j = 1, . . . ,M do

Sample u(j) ∼ qθ(·), calculate wj = fSn(u(j)|θ)gϵ,Sn(y(i)|u(j))/qθ(u(j)) using
(4.5).

Calculate γ̂ϵ,Sn(θ;y(i)) =∑M
j=1

∂ logfSn(u(j)|θ)
∂θ

wj∑N
j′=1 wj′

using (4.5).

return F̂ (θ) = 1
N

∑N
i=1 γ̂ϵ,Sn(θ;y(i))γ̂ϵ,Sn(θ;y(i))T .

4.2.3 Fisher information based on the true marginal distribution

As we mentioned above, Algorithm 6 employs normal approximation for the statistic
Sn(X1:n) using CLT (See equation (4.4)). On the other hand, normal approximation
may not be viable for Sn(X1:n) as moments µs(θ),Σs(θ) may not be tractable, or
one can prefer using non-additive statistic, like median or maximum, for Sn(X1:n)
as in

Sn(X1:n) = max
i

s(Xi) or Sn(X1:n) = median(s(Xi)).

Non-additive statistic for Sn(X1:n) not only affects conditional distribution of
p(Sn(X1:n)|θ), but sensitivity calculation for privacy mechanism also differs as we
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discussed in chapter 3, section 3.1. More specifically, for some non-additive statistics
smooth sensitivity provides safe and more efficient way of perturbation as in defini-
tion 7. As an example, smooth sensitivity with the Laplace mechanism is obtained
by a noise distribution

V ∼ Laplace(∆smooth
Sn,β /α)

Y = Sn(X1:n)+V

While it is still possible to estimate score vector as before, the distribution of
Sn(X1:n) is not tractable anymore, so notation differs from the previous algorithm
that exploits U = Sn(X1:n) ∼ N . This time, there is no particular benefit of using
hidden variable U , instead we resort X1:n. Then, the method exploits observations of
x

(j)
1:n from the population distribution rather than u(j) for the calculation of smooth

sensitivity. As a result of elimination of hidden variable U from the model, the Fisher
score vector can be derived using the exact marginal distribution in definition 15
and the Fisher’s identity (Douc et al., 2013), which is

γϵ,Sn(θ;y) = ∂ logpϵ,Sn(Y |θ)
∂θ

=
∫ ∂ logp(y,x1:n|θ)

∂θ
p(x1:n|y,θ)dx1:n,

=
∫ ∂ [logp(x1:n|θ)+ logp(y|x1:n)]

∂θ
p(x1:n|y,θ)dx1:n,

=
∫ ∂ logp(x1:n|θ)

∂θ
p(x1:n|y,θ)dx1:n,

=
∫

(
n∑

i=1

∂ logp(xi|θ)
∂θ

)p(x1:n|y,θ)dx1:n, (4.8)

where p(x1:n|y,θ) ∝ pϵ,Sn(y|x1:n).

Note that, pϵ,Sn(y|x1:n) is density function V that is evaluated at y −Sn(x1:n) from
equation (4.4).

Such an integral can be numerically calculated using self-normalized importance
sampling (See chapter 2, section 2.2) with samples of X1:n as in Algorithm 7.

4.2.4 Fisher information with sequential release

Until now, we discussed about how Fisher information is defined for summary statis-
tics (additive and non-additive) considering a single release Sn(X1:n) with a cali-
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Algorithm 7 Monte Carlo estimation of F (θ) - exact marginal distribution
Input: θ: parameter; n: data size; N , M : Monte Carlo parameters
Output: F̂ (θ): Estimate of F (θ)
for i = 1, . . . ,N do

Sample y(i) ∼ pϵ,Sn(y|θ)
for j = 1, . . . ,M do

for t = 1, . . . ,n do
Sample x

(j)
t ∼ p(x|θ).

Set wj = pϵ,Sn(y(i)|x(j)
1:n).

Calculate γ̂ϵ,Sn(θ;y(i)) =∑M
j=1

(∑n
t=1

∂ logp(x(j)
t |θ)

∂θ

)
wj∑M

j′=1 wj′
.

return F̂ (θ) = 1
N

∑N
i=1 γ̂ϵ,Sn(θ;y(i))γ̂ϵ,Sn(θ;y(i))T .

brated noise. However, it is also possible to design a sequential release mechanism
where each s(Xi) is altered with noise as in equation (4.2), which is sometimes re-
ferred as local model Kasiviswanathan, Lee, Nissim, Raskhodnikova & Smith (2008).
In a sequential model, an ϵ-DP privacy with the Laplace mechanism looks like

Y = s(Xi)+V where V ∼ Laplace(∆s,1/ϵ). (4.9)

Note that, in equation (4.9), it is obvious that local model adds more noise because
of the lack of n in the denominator.

Revisiting the marginal distribution of Y, this time we can write it for each Yi whose
probability density is

pϵ,s(y|θ) =
∫

p(x|θ)gϵ,s(y|s(x))dx, (4.10)

where gϵ,s(y|s(x)) is the probability density of Y given s(X) calculated at y, which is
equivalent of calculating the probability density of Pϵ,s in equation (4.2) at y −s(x).
We prefer integration over x instead of on s(x) as p(x|θ) is assumed to be available
in the problem setting.

Similar to the equation (4.8), one can calculate Fisher information as

γϵ,Sn(θ;y) = ∂ logpϵ,Sn(Y |θ)
∂θ

=
∫ ∂ logp(y,x|θ)

∂θ
p(x|y,θ)dx,

=
∫ ∂ [logp(x|θ)+ logp(y|x)]

∂θ
p(x|y,θ)dx,

=
∫ ∂ logp(x|θ)

∂θ
p(x|y,θ)dx, (4.11)

where p(x|y,θ) ∝ p(x|θ)gϵ,s(y|s(x)).
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Algorithm 8 demonstrates the application of self-normalized importance sampling
for the sequential release case.

Algorithm 8 Monte Carlo estimation of F (θ) for (4.2)
Input: θ: parameter; n: data size; N , M : Monte Carlo parameters
Output: F̂ (θ): Estimate of F (θ)
for i = 1, . . . ,N do

Sample y(i) ∼ pϵ,s(y|θ)
for j = 1, . . . ,M do

Sample x(j) ∼ qθ(x) and calculate wj = p(x(j)|θ)gϵ,s(y(i)|s(x(j)))/qθ(x(j)).

Calculate γ̂ϵ,s(θ;y(i)) =∑M
j=1

∂ logp(x(j)|θ)
∂θ

wj∑M
j′=1 wj′

.

return F̂ (θ) = n
N

∑N
i=1 γ̂ϵ,Sn(θ;y(i))γ̂ϵ,Sn(θ;y(i))T .

To further clarify local model with sequential release and compare with the batch
release we want to give an example setting including three separate scenarios based
on binary randomized responses.

Example 6 (Binary responses) Consider a Bernoulli distribution for Pθ, that is
population distribution of i.i.d Xi’s from i = 1, . . . ,n as

Pθ(Xi) =

1, θ

0, 1− θ.

In a non-private setting, maximum likelihood estimator for θ is X̄. However, for
the private estimation, it may be different. Therefore, we want to calculate Fisher
information for the following three mechanisms.

3.1 We consider releasing Y1, . . . ,Yn ∈ {0,1}, where

Yi =

Xi,
eϵ

1+eϵ

1−Xi
1

1+eϵ

This mechanism safely provides ϵ-DP. To justify, consider two neighboring
datasets D1 = {x1, . . . ,xn−1,1} and D2 = {x1, . . . ,xn−1,0}, and a randomized
algorithm M : {0,1} 7→ S ∈ {0,1}. After fixing a case for Y , due to the inde-
pendence, we can write that

P (Y = 1|D1) = p(y = 1|xn = 1)
n−1∏
i=1

p(yi|xi),

P (Y = 1|D2) = p(y = 1|xn = 0)
n−1∏
i=1

p(yi|xi),
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where p(y = 1|xn = 1) = eϵ

1+eϵ and p(y = 1|xn = 0) = 1
1+eϵ . Hence,

P [M(D1) = 1 ∈ S]
P [M(D2) = 1 ∈ S] = P (Y = 1|D1)

P (Y = 1|D2) = eϵ ≤ eϵ.

This is the end of justification as the proportion above demonstrates that this
mechanism satisfies definition 4 with δ = 0.

Additionally, we know that

τ := P (Y = 1) = θeϵ

1+ eϵ
+ 1− θ

1+ eϵ
= θeϵ +(1− θ)

1+ eϵ
,

logp(y|θ) = y lnτ +(1−y) ln(1− τ).

Therefore, Fisher information of Y1, . . . ,Yn in this case is

F1(θ) = nE
[
−∂2 logp(Y |θ)

∂θ2

]
= nα2

τ(1− τ) , where α = eϵ −1
eϵ +1 .

3.2 Another alternative to releasing Yi’s as above, one can also consider disclosing
θ̂2 = Z̄ = 1

n

∑N
i=1 Zi, where

Zi = Xi +Vi given that Vi ∼ N (0,1/ϵ2).

Note that, each Xi is perturbated with a noise drawn from normal distribu-
tion with a variance of 1/ϵ2. According to the Gaussian mechanism in defini-
tion 12, this type of noise satisfies ϵ-GDP as ∆X,2 = 1. Hence, owing to the
post-processing property of differential privacy in definition 13, the mechanism
releasing θ̂2 is also differentially private.

By the central limit theorem, we can say that θ̂2 ∼ N (θ,θ(1− θ)/n+1/(ϵ2n)),
and after some algebraic operations Fisher information is approximately

F2(θ) = E

−∂2 logp(θ̂2|θ)
∂θ2

≈ n(θ(1− θ)+1/ϵ2)+(1−2θ)2

[θ(1− θ)+1/ϵ2]2 .

3.3 Finally, as we discussed in previous sections with particular focus on summary
statistics, this time consider releasing noisy average θ̂3 where

θ̂3 = X̄ +V, where V ∼ N (0,1/(n2ϵ2)).

Note that, this mechanism adds smaller noise comparing with the previous
case, which results in improvement in the Fisher information as in the follow-
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ing equation.

Similarly, θ̂3 ∼ N (θ,θ(1 − θ)/n + 1/(ϵ2n2)), and Fisher’s information is ap-
proximately

F3(θ) = E

−∂2 logp(θ̂3|θ)
∂θ2

≈ n(θ(1− θ)+1/(ϵ2n))+(1−2θ)2

[θ(1− θ)+1/(ϵ2n)]2 .
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Figure 4.4 Comparison among F1(θ), F2(θ), F3(θ).

Figure 4.4 compares Fisher information for these three cases using n = 100. It
demonstrates that for the small ϵ values releasing randomized responses(F1(θ)) is bet-
ter than releasing the average of noisy responses (F2(θ)), while in the same ϵ regime
releasing the noisy average (F3(θ)) is better than randomized responses (F1(θ)).
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5. Bayesian inference with differential privacy

So far, differential privacy and Bayesian computation has been extensively studied by
many researchers as Bayesian estimation can be efficiently utilized without violating
privacy constraints and exceeding the privacy budget (Dimitrakakis, Nelson, Zhang,
Mitrokotsa & Rubinstein, 2017). Posterior sampling under the private setting is
easy-to-handle as it is similar to non-private setting and satisfies differential privacy
under some necessary and sufficient conditions (Dimitrakakis et al., 2017). More
on that, Wang et al. (2015) shows that Bayesian model with bounded likelihood is
consistent and differentially private. Hence, there exists variety of research products
spanning wide range from optimization (Kharkovskii, Dai & Low, 2020; Kusner,
Gardner, Garnett & Weinberger, 2015; Li, Chen, Liu & Carin, 2019; Ryffel, Bach &
Pointcheval, 2022) to the machine learning problems (Bernstein & Sheldon, 2019; Ju,
Awan, Gong & Rao, 2022b; Wang, 2018; Zhang, Bu, Chen & Long, 2021) combining
Bayesian inference with differential privacy.

While the field is extremely active with many works, some of them, especially the
ones using MCMC methods for Bayesian inference, particularly concerns this thesis
as we are more focused on Monte Carlo methods for the differential privacy applica-
tions. In that sense, Heikkilä et al. (2019) proposes a generalized scheme for MCMC
application in differential privacy setting using Renyi differential privacy, which is a
form of privacy based on distributional distance, and Wang et al. (2015) focuses on
stochastic gradient Langevin dynamics, a method for solving optimization problems.
However, both of them employed non-exact MCMC where the samples converges to
the posterior distribution asymptotically. On the contrary, Yıldırım & Ermiş (2019)
proposes MCMC scheme using penalty algorithm to target posterior distribution
under differential privacy. As stationary distribution of penalty algorithm remains
exact target posterior distribution, their method demonstrates an application of ex-
act MCMC. Then, Räisä et al. (2021) develops Hamiltonian Monte Carlo based on
the exact MCMC in Yıldırım & Ermiş (2019).

One common property of the works mentioned above is that they rely on continuous
noise perturbation as they release noisy outputs in every iteration. However, this
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may not be possible all the time due to the practical concerns. Fortunately, differing
from those works, one can also share data once and for all. For instance, Foulds,
Geumlek, Welling & Chaudhuri (2016) uses Gibbs sampling to sample new value of
the parameter using data that is privatized only once. Ju et al. (2022b) also uses
privatized data in a similar way for Gibbs sampling but with a purpose of linear
regression. Gong (2019) employs EM algorithm for maximum likelihood estimator
within the Bayesian framework.

In this chapter, firstly, we present Bayesian inference methods developed to work har-
monically with the statistic selection methods mentioned in chapter 4. Then, inde-
pendent from the statistic selection discussion, we change our focus to the Bayesian
linear regression problems by proposing various algorithms based on MCMC meth-
ods.

5.1 Bayesian estimation after statistic selection

The idea of sampling comes from approximate Bayesian computation in Gong (2019),
while the EM algorithm mentioned previously may not be feasible when exact pos-
terior expectations don’t exist. On the other hand, MCMC methods in chapter 2
can be easily combined with statistic selection with Fisher information that was
presented in chapter 4. Hence, this section is resorted for the proposed MCMC
algorithms. Note that discussion in this section is a part of the same publication at
Alparslan & Yıldırım (2022).

In detail, for the batch and sequential settings described in equations (4.1),(4.11)
respectively, it is possible to write posterior distribution for the target parameter θ

as,

p(θ|y) ∝ η(θ)pϵ,Sn(y|θ), (batch setting)

p(θ|y1:n) ∝ η(θ)
n∏

i=1
pϵ,s(yi|θ), (sequential setting)

where η(θ) represents the prior density of θ, and pϵ,Sn(y|θ), pϵ,s(yi|θ) are likelihoods
of the observations. Also note that, the likelihood for the batch setting was defined
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in the previous chapter as

pϵ,Sn(y|θ) =
∫

pϵ,Sn(y|x1:n)
n∏

i=1
p(xi|θ)dx1:n, (batch setting)

pϵ,s(y|θ) =
∫

p(x|θ)gϵ,s(y|s(x))dx, (sequential setting)

Following algorithms uses above posterior distributions to cover all the cases of
statistic selection i.e. additive/non-additive statistics and Gaussian/non-Gaussian
noises.

5.1.1 MH for additive statistic and Gaussian noise

To design an inference method for this part, one can also exploits the coherence
between normal approximation and the Gaussian noise as in section 4.2.1 in chapter
4. Remember that

Sn(X1:n) = 1
n

n∑
i=1

s(Xi),

Y = Sn(X1:n)+V, where V ∼ N (0,
∆2

s,2
n2ϵ2 I).

and using the normal approximation for Sn(X1:n), it is easy to obtain that

Y ∼ N (µs(θ),Σθ/n+
∆2

s,2
n2ϵ2 I).

Therefore, posterior density of θ given y can be identified as

p̂ϵ,Sn(θ|y) ∝ η(θ)N (y;µs(θ),Hs,ϵ,n(θ)). (5.1)

where Hs,ϵ,n(θ) := Σs(θ)
n + ∆2

s,2
n2ϵ2 I. Here, the multiplication of prior and likelihood

densities is not necessarily tractable, and one can use MCMC methods to sample
from the posterior distribution effectively. More specifically, Metropolis-Hastings
(MH) algorithm explained in chapter 2 can be properly adapted to this setting as
the prior is assumed to be available. Algorithm 9 demonstrates an application of
MH.
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Algorithm 9 MH for the posterior distribution in (5.1) - one iteration
Input: Current sample: θ; privately shared statistic: y, privacy level: ϵ
Output: New sample
Propose θ′ ∼ q(·|θ)
Accept the proposal and return θ′ with probability

min
{

1,
q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

N (y;µs(θ′),Hs,ϵ,n(θ′))
N (y;µs(θ),Hs,ϵ,n(θ))

}

otherwise reject the proposal and return θ.

5.1.2 MH for additive statistic and non-Gaussian noise

In the previous case, Gaussian noise and additive statistic produce approximately
normal distribution for the likelihood function of the shared statistic. However,
when non-Gaussian noise used as a privacy mechanism, posterior density is not
normal distribution anymore, and it is not tractable. On the other hand, additive
statistic still allows to use normality assumption for Sn(X1:n). As we discussed in
the previous chapter, let’s define U = Sn(X1:n), and joint distribution as

π(θ,u|y) ∝ η(θ)fSn(u|θ)gϵ,Sn(y|u). (5.2)

Note that, sampling from π(θ,u|y) corresponds to sampling from pϵ,Sn(θ|y) when it
is marginalized as
∫

π(θ,u|y)du =
∫

η(θ)fSn(u|θ)gϵ,Sn(y|u)du,

= η(θ)
∫

fSn(u|θ)gϵ,Sn(y|u)du = η(θ)p(y|θ) from equation (4.6)

= η(θ)p(y|θ) ∝ pϵ,Sn(θ|y).

One of the possible ways of sampling from joint distribution of π(θ,u|y) is using
Gibbs sampling, specifically MH-within-Gibbs sampling as conditional densities re-
quired to update may not be tractable (See chapter 2). In detail, the method would
have two step update mechanism, which is

4.1 Update u using p(u|θ,y) ∝ fSn(u|θ)gϵ,Sn(y|u),

4.2 Update θ using p(θ|u,y) ∝ η(θ)fSn(u|θ).

However, MH-within-Gibbs update mechanism may not be efficient when u,θ and
y are highly dependent to each other as it requires more step to escape from the
initial phase (Rajaratnam & Sparks, 2015). Fortunately, it is possible to use exact-
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approximate MCMC algorithms such as PMMH and MHAAR from chapter 2. Re-
call, those algorithms mimic the original MH algorithm using sample-based estima-
tors of MH acceptance ratio, and they can overcome the problem of dependency
between the variables or non-tractable true-likelihood distributions.

5.1.2.1 Pseudo-marginal MH

Remember that PMMH uses importance sampling to approximate likelihood func-
tion when it is not analytically available Andrieu & Roberts (2009). An example of
PMMH algorithm targeting the joint distribution in equation (5.2) with intractable
likelihood pϵ,Sn(θ|y) is shown in Algorithm 10.

Algorithm 10 PMMH for the posterior distribution in (5.2) - one iteration
Input: Current sample: (θ, Ẑ), number of proposals for u: N privately shared

statistic y
Output: New sample
Propose θ′ ∼ q(·|θ)
Sample u(j) ∼ qθ′(·) for j = 1, . . . ,N .
Calculate Ẑ ′ = 1

N

∑N
j=1 fSn(u(j)|θ)gϵ,n(y|u(j))/qθ′(u(j)) using (4.5).

With probability min
{

1, q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

Ẑ′

Ẑ

}
, return (θ′, Ẑ ′); otherwise, reject and return

(θ, Ẑ).

5.1.2.2 MH with Averaged Acceptance Ratios

While PMMH algorithm effectively replaces MH algorithm even when the parts of
the posterior distribution is intractable, it sometimes results in sticky Markov chain
as we discussed in chapter 2. Additionally, performance of PMMH is closely con-
tingent upon the variability of acceptance ratio (Andrieu & Vihola, 2012; Andrieu
et al., 2020; Yıldırım, Andrieu & Doucet, 2018). Fortunately, there is a more re-
cent version of exact-approximate MCMC algorithm which still uses likelihood-free
approach but almost completely updates the variables to circumvent the problem
of stickiness (Andrieu et al., 2020), and has acceptance ratio whose variance is not
increased by n when proposal distribution for θ is scaled. Algorithm 11 targets the
posterior distribution in equation (5.2) using MHAAR-Rao-Blackwellised method
described in chapter 2,section 2.3.
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Algorithm 11 MHAAR-RB for the posterior distribution in (5.2) - one iteration
Input: Current sample: (θ,u); number of proposals for u: N ; privately shared

statistic: y
Output: New sample
Propose θ′ ∼ q(·|θ)
for j = 1, . . . ,N do

If j = 1 set u(1) = u; otherwise sample u(j) ∼ qθ,θ′(·).
Using (4.5), calculate

wj = fSn(u(j)|θ)gϵ,n(y|u(j))
qθ,θ′(u(j))

, w′
j = fSn(u(j)|θ′)gϵ,n(y|u(j))

qθ,θ′(u(j))

With probability min
{

1, q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

∑N
j=1 w′

j∑N
j=1 wj

}
; sample k ∈ {1, . . . ,N} with probability

proportional to w′
k and return (θ′,u(k)). Otherwise, reject the move, sample k ∈

{1, . . . ,N} with probability proportional to wk, and return (θ,u(k)).

Note that, this algorithm works properly when the proposal distribution for u sat-
isfies qθ,θ′(u) = qθ′,θ(u) for all θ,θ′ and u as explained in Andrieu et al. (2020).

5.1.3 Exact inference based on the true posterior

When the distribution of Sn(X1:n) is not available, or the parameters µS(θ),ΣS(θ)
are not tractable, using previously presented algorithms is not possible to make
estimations. In this case, similar to the chapter 4, one can use x1:n instead of
u = Sn(x1:n). Then, posterior distribution in equation (5.2) can be represented as

π(θ,x1:n|y) ∝ η(θ)p(x1:n|θ)pϵ,Sn(y|x1:n). (5.3)

As a side note, if the distribution of p(x1:n|θ) is known, augmentation with u in
equation (5.3) is still possible.

Moreover, using lower-level representation allows to use distributions that don’t de-
pend on θ, hence MHAAR methodology Andrieu et al. (2020) which has advantages
over PMMH as mentioned. For this purpose, consider Zi ∼ µ(.) with the transfor-
mation of

Zi
i.i.d∼ µ(·) ⇒ Xi = φθ(Zi) i.i.d∼ Pθ, i ≥ 1, (5.4)

Note that, Zi’s are simply generators of X, and with the proper φθ(.), it is possible
to consider them as a sequence of random variables from well-defined probability
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distribution. With this new representation, joint distribution in equation (5.3) be-
comes

π(θ,z1:n|y) ∝ η(θ)hϵ,Sn(y|z1:n, θ)
n∏

t=1
µ(zt), (5.5)

where hϵ,Sn(y|z1:n, θ) = pϵ,Sn(y|x1:n), with xi = φθ(zi). More importantly, however,
π(θ,z1:n|y) corresponds to our target distribution p(θ|y) when it is marginalized in
a way that

∫
π(θ,z1:n|y)dz1:n = η(θ)

∫
hϵ,Sn(y|z1:n, θ)

n∏
t=1

µ(zt)dz1:n,

= η(θ)p(y|θ) ∝ pϵ,Sn(θ|y).

Hence, the task is designing a MCMC algorithm targeting π(θ,z1:n|y). Inspiring from
Andrieu et al. (2020), Algorithm 12 does this using averaged acceptance ratios.

Algorithm 12 MHAAR for the posterior distribution in (5.5) - one iteration
Input: Current sample: (θ,z1:n), subset size: m < n, number of samples for z1:n:

N , privately shared statistic: y.
Output: New sample
Propose θ′ ∼ q(·|θ)
Set z

(1)
1:n = z1:n and propose z

(2)
1:n, . . . , z

(N)
1:n ∼ µ(·).

Sample k ∈ {1, . . . ,N} with probability proportional to hϵ(y|z(k)
1:n, θ′).

Accept θ′, z
(k)
1:n as the new sample with probability

min
{

1, q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

∑N
i=1 hϵ(y|z(i)

1:n,θ′)∑N
i=1 hϵ(y|z(i)

1:n,θ)

}
; otherwise reject and repeat (θ,z1:n) as

the new value.

5.1.4 Exact inference based on the sequential releases

Until now, we focused on inference with summary statistics using notation of Sn,
however, one may prefer adding noise sequentially. Recall that, in equation (4.2) we
have

Yi = s(Xi)+V, where V ∼ Pϵ,s.

In this setting, it is also possible to use lower-level latent variables Zi from Algorithm
12 that enables MHAAR methodology. Then, using the same transformation in

41



equation (5.4), the joint distribution can be adjusted as

π(θ,z1:n|y1:n) ∝ η(θ)
n∏

t=1
µ(zt)hϵ(yt|zt, θ), (5.6)

where hϵ(yt|zt, θ) = gϵ,s(yt|s(φθ(zt))) which corresponds to the gϵ,s(yt|s(xt)) in equa-
tion (4.10). As we justified in proposition ??, one can draw samples from posterior
distribution in equation (5.6) with the following acceptance ratio Andrieu et al.
(2020); ∏n

t=1
∑N

i=1 hϵ(yt|z(i)
t , θ′)∏n

t=1
∑N

i=1 hϵ(yt|z(i)
t , θ)

.

Note that, only difference between acceptance ratio in previous section is the product
over each shared statistics, and this is feasible because each (yt, zt) pair is indepen-
dent. In a similar vein, Algorithm 13 differs from the Algorithm 12 while updating
z1:n. Since each zt uniquely determines yt, one should sample each z

(kt)
t seperately.

Algorithm 13 MHAAR for the posterior distribution in (5.6) - one iteration
Input: Current sample (θ,z1:n), number of samples for z1:n: N , privately shared

sequence: y1:n.
Output: New sample
Propose θ′ ∼ q(·|θ)
for t = 1, . . . ,n do

Set z
(1)
t = zt and propose z

(2)
t , . . . , z

(N)
t ∼ µ(·).

Calculate the acceptance probability α = min
{

1, q(θ|θ′)
q(θ′|θ)

η(θ′)
η(θ)

∏n
t=1
∑N

i=1 hϵ(yt|z(i)
t ,θ′)∏n

t=1
∑N

i=1 hϵ(yt|z(i)
t ,θ)

}
.

Sample v ∼ Unif(0,1).
if v < α then

Return (θ′, z1:n = (z(k1)
1 , . . . , z

(kn)
n )), where each kt ∈ {1, . . . ,N} is sampled with

probability proportional to hϵ(yt|z(kt)
t , θ′).

else
Return (θ,z1:n = (z(k1)

1 , . . . , z
(kn)
n )), where each kt ∈ {1, . . . ,N} is sampled with

probability proportional to hϵ(yt|z(kt)
t , θ).

5.2 Differentially private distributed Bayesian linear regression

In addition to the Bayesian inference on top of the statistic selection presented in
chapter 4, one can also focus on inference independent from the statistic selection
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using well-known methods such as linear regression. Note that all the work in this
section is published at Alparslan, Yıldırım & İlker Birbil (2023).

While differential privacy has become gold-standard for privacy applications lately
(Dankar & Emam, 2013; Zhao & Chen, 2022a), there are a few works that directly
concerns differential privacy and linear regression. However, some of the ideas from
the privacy literature can still be applied on regression domain. As an example,
empirical risk minimization (ERM) can be utilized as a way of solving regression
problem by minimizing expected value of a loss function over certain dataset (Vap-
nik, 1991). More importantly, it can be safely combined with differential privacy
(Bassily et al., 2014; Kuru, Birbil, Gürbüzbalaban & Yıldırım, 2020; Wang, Chen &
Xu, 2019). On the other hand, Bayesian approach through posterior sampling in-
troduces uncertainty and further increases the capability of the prediction model by
safely satisfying the privacy guarantees with a careful prior selection (Dimitrakakis
et al., 2017; Zhang, Rubinstein & Dimitrakakis, 2016). Hence, more recent studies,
including this thesis, employed advanced MCMC methods for Bayesian inference
and they are also well-fit for the privatized linear regression problems (Foulds et al.,
2016; Heikkilä et al., 2019; Ju, Awan, Gong & Rao, 2022a; Wang et al., 2015; Yıldırım
& Ermiş, 2019).

Other than the methods allowing to work on regression problems indirectly, some of
the works directly emphasized on differentially private linear regression by propos-
ing variety of methods from objective perturbation to private gradient descent. For
instance, Kifer, Smith & Thakurta (2012); Zhang, Zhang, Xiao, Yang & Winslett
(2012) proposed adding noise on the objective function of regression problem to
satisfy ϵ-DP in equation 3. Bernstein & Sheldon (2019); Wang (2018) suggested
sufficient statistics perturbation method that basically add noise on top of the or-
dinary least squares solution of linear regression. Finally, Liu, Jain, Kong, Oh &
Suggala (2023); Varshney, Thakurta & Jain (2022) improved differentially private
stochastic gradient algorithms and implemented to the linear regression case which
outperformed some of the state-of-art algorithms.

In this thesis, we consider a sufficient statistics perturbation method for the ordinary
least squares solution of linear regression as in Wang (2018). Unlikely with that
work, we particulary consider a hiearchical model and Bayesian inference, specifically
Gibbs sampling (See chapter 2), similar to the one in Bernstein & Sheldon (2019).
However, our model also differs from Bernstein & Sheldon (2019) with the summary
statistics and resulting hierarchical structure which leads significant performance
improvement and remarkable computational advantages.
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5.2.1 Notation and privacy mechanism

Linear regression is simply a linear equation that consists of predictors and the
response variable which models the dependency on the given data. As a general
notation from Myers & Montgomery (1997), one can define a linear regression model
as

yi = β0 +
d∑

t=1
xi,tβt + ei i = 1, . . . ,n, (5.7)

where ei’s are generally chosen as i.i.d. random sequence from a normal distribu-
tion (Myers & Montgomery, 1997). Also, ordinary least squares and the maximum
likelihood estimator of β is (Myers & Montgomery, 1997)

β̂ = (XT X)−1XT y, (5.8)

where X = [xT
1 , . . . ,xT

n ]T and y = [y1, . . . ,yn]T . Note that {(xi,yi) : i = 1, . . . ,n} where
xi ∈ X ⊆ Rd×1 and response variables yi ∈ Y ⊆ R. Normal linear regression model
can also be described in matrix notation as

yi = xT
i θ + ei, ei

i.i.d∼ N (0,σ2
y), i = 1, . . . ,n,

where θ is regression coefficient which corresponds to β in equation (5.7). Addition-
ally, we assume that xi’s identically and independently come from a distribution
Px where it can be assumed as a normal distribution, but we will consider the case
where the distribution of xi is not normal in the following sections. In a matrix no-
tation using the same X and y from the ordinary least squares solution in equation
(5.8), one can represent the same model with

y = Xθ + e, e ∼ N (0,σ2
yI).

One advantage of the matrix notation is that it becomes easier to observe summary
statistics sufficient to obtain ordinary least squares estimation, which are defined as

S := XT X, z := XT y.

Here, there is an important observation regarding the summary statistic.

Proposition 1 For the normal linear regression model, we have

z|S,θ,σ2
y ∼ N (Sθ,Sσ2

y).
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Proof. We know that,

E[z|X,θ,σ2
y ] = E[XT Xθ +XT e] = Sθ, (5.9)

Cov(z|X,θ,σ2
y) = XT Xσ2

y = Sσ2
y , (5.10)

Since moments of conditional distribution of z only depends on S,θ,σ2
y , we can write

the density as
p(z|X,θ,σ2

y) = N (z;Sθ,Sσ2
y).

Next, define the function f : Rn×d 7→ [0,∞) with f(X) = p(z|X,θ,σ2
y) and let

CS,θ,σ2
y

= {X : XT X = S}, Since the function f is constant over CS,θ,σ2
y
, we can

write

p(z,S) =
∫

C
S,θ,σ2

y

fp(S|X)p(X)dX,

= f
∫

C
S,θ,σ2

y

p(S|X)p(X)dX,

= fp(S).

Then, we can arrange the terms and get

p(Z,S)
p(S) = f,

p(Z|S) = N (z;Sθ,Sσ2
y).

Another important point is that a well-designed noise injection on top of S and z

satisfies differential privacy constraints while inferring β̂ owing to the composition
and post-processing property. Also, working with privatized S and z throughout
the MCMC algorithm doesn’t increase the cost of privacy (Foulds et al., 2016).
Therefore, the privacy setting is

Ŝ = S +σsM,

ẑ = z +σzv.
(5.11)

To satisfy (ϵ,δ)-DP overall, similar to the Bernstein & Sheldon (2019), we consider
releasing S and z as a vector by utilizing same noise variance. However, different
from Bernstein & Sheldon (2019), we consider using Gauss mechanism as it leads
tractable updates in the further stages of Gibss sampling. Then, M is a d × d

symmetric matrix with upper triangular elements coming from distribution N (0,1)
as in Dwork, Talwar, Thakurta & Zhang (2014), and v ∼ N (0, Id). Additionally, we
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prefer calibrating noise variances using the analytic Gauss mechanism from Balle &
Wang (2018) as it ensures (ϵ,δ)-DP for wide range of ϵ. Therefore, we have,

σS = σZ = ∆szσ(ϵ,δ), (5.12)

where σ(ϵ,δ) is numerically calculated using algorithm from Balle & Wang (2018),
and ∆sz is combined l-2 sensitivity as

∆sz =
√

∥X∥4 +∥X∥2∥Y ∥2,

where ∥X∥ = maxx∈X ∥x∥2 and ∥Y ∥ = maxy∈Y |y|.

While our model has common features with the model in Bernstein & Sheldon
(2019), there are also differences worth noting. In Bernstein & Sheldon (2019), the
central limit theorem (CLT) is applied to

[
S,z,yT y

]
, leading to a normality assump-

tion for the whole vector, but this approximation requires fourth order moments as
a result of inner products. In contrast, we use the exact conditional distribution
p(z|S,θ,σ2) thanks to Proposition 1, and this distribution is easily identifiable with-
out striving with over demanding calculations. Moreover, we do not require a noisy
version yT y, hence have a slight advantage of using less privacy-preserving noise.
Additionally, carefully adjusting the prior distributions for the model variables may
eliminate the need for normality assumption for a part of sufficient statistics in
Bernstein & Sheldon (2019). In this regard, we use the following prior distributions

θ ∼ N (m,C), σ2
y ∼ IG(a,b), Σx ∼ IW(Λ,κ), (5.13)

where IG stands for Inverse-Gamma distribution, and IW represents Inverse-
Wishart distribution. Note that all the distributional parameters (m,C,a,b,Λ,κ)
are predefined model hyper-parameters.

5.2.2 Distributed setting

Recently, many data analytics problems require working on massive datasets where
computational burden is increased dramatically. Also, it becomes challenging to
store huge amount of information in just one location due to practical and security
concerns. Therefore, both data analysts and data holders are more inclined to
prefer distributed methods rather centralized solutions (Verbraeken, Wolting, Katzy,
Kloppenburg, Verbelen & Rellermeyer, 2020). Although there are more than one
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possible way of distributed analysis, working only on the local data is a common
practice in these days (Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov,
Kiddon, Konečnỳ, Mazzocchi, McMahan & others, 2019; Dean, Corrado, Monga,
Chen, Devin, Mao, Ranzato, Senior, Tucker, Yang, Le & Ng, 2012; Zhang & Lin,
2015) not only for computational advantages but also the fact that data partitioning
improves security. In this context, consider the privacy term called "pan-privacy"
from Dwork, Naor, Pitassi, Rothblum & Yekhanin (2010) where private data for each
individual is stored sequentially, and original data is not available. For this case,
pan-privacy can be used to ensure protection of sensitive information when data is
partitioned and recorded sequentially. Given all these motivations, we extend our
focus of private linear regression to the distributed setting where data is partitioned
independently among various data holders. More formally, consider a dataset with
J ≥ 1

(X,y) = {(Xj ,yj);j = 1, . . . ,J}, (5.14)

where number of rows in each Xj is nj with n = n1 + . . . + nJ . Similar to the non-
distributed setting in (5.11), this time each data node j shares its own summary
statistics Sj and zj in a privacy preserving way as

Ŝj = Sj +σsMj ,

ẑj = z +σzvj , vj ∼ N (0, Id).
(5.15)

Note that perturbations on the summary statistics are applied on independent parts
of the data. Therefore, σs,σz are all same with non-distributed case presented in
equation (5.12). Moreover, Ŝj and ẑj are statistically more informative than their
aggregates ∑J

j=1 Ŝj and ∑J
j=1 ẑj as their sums are not sufficient statistics of noisy

versions with respect to θ. Therefore, once the data is partitioned, directly using
the noisy versions of the summary statistics with a distributed learning approach is
more preferable than aggregating them and continue as a non-distributed setting.

All in all, hierarchical structure depicting the distributed model described above can
be seen in figure 5.1

5.2.3 Algorithms for Bayesian inference

After presenting the distributed model and privacy setup, we focus on Bayesian anal-
ysis aiming to estimate θ given the noisy summary statistics {(Ŝ1, ẑ1), . . . ,(ŜJ , ẑJ)}.
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Figure 5.1 Differentially private distributed linear regression model

Roughly, we consider a MCMC methodology that samples from the posterior dis-
tribution of the model variables described in hierarachical model given the noisy
statistics like we have discussed in section 5.1. For this purpose, distribution of
S is vital and closely depends on the distribution of x ∼ Px. While specifying Px

as a normal distribution results in exact Wishart distribution for S, it is a strong
assumption and may not hold in the real cases. Also, non-Gaussian Px either re-
quires CLT approximation using up to fourth moments (Bernstein & Sheldon, 2019;
Wilson & Ghahramani, 2011), or one may fix S with point estimation of it and use
it as a true value which eliminates the p(S|Σ) in the sampling chain, and so Px

becomes out of concern. In the following parts, we discuss both perspectives where
Px is normal and unidentified.

5.2.3.1 Normally distributed features

As features are normal, we can consider Px = N (0,Σx) and the prior of Σx ∼
IW(Λ,κ). Therefore S|Σx ∼ W(Σx,n) Wilson & Ghahramani (2011) where the
distributed structure is defined in equation (5.14). Therefore, the posterior distri-
bution of the variables θ,Σx,σ2

y ,S1:J , z1:J from figure 5.1 can be derived using the
independence between each data nodes as

p(θ,σ2
y ,Σx,S,z|ẑ, Ŝ) ∝ p(θ)p(σ2

y)p(Σx)
J∏

j=1
p(zj |θ,σ2

y ,S)p(Sj |Σx)p(Ŝj |Sj)p(ẑj |zj)

(5.16)

Directly sampling from (5.16) is not possible as it is quite complicated. Hence, one
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can design a Gibbs sampler to sample from the posterior distribution (See chapter
2). On the other hand, after some numerical experiments, we realized that posterior
parameters θ and z1:J has undesirably high correlation that makes the sampling
chain sticky as it was mentioned in chapter 2, section 2.4. Therefore, collapsing
(integrating out) the latent variable z1:J from the chain is an option to reduce the
effect of correlated variables in the chain (Liu et al., 1994). Therefore, the joint
distribution without including z1:J is

p(θ,σ2
y ,Σx,S|ẑ, Ŝ) ∝ p(θ)p(σ2

y)p(Σx)
J∏

j=1
p(Sj |Σx)p(Ŝj |Sj)p(ẑj |S,θ,σ2

y), (5.17)

where p(ẑ|S,θ,σ2
y) = N (ẑ;Sθ,Sσ2

y + σ2
zId). Roughly, the reduced model still carries

the effect of z1:J but indirectly so that correlation problem that is occurring because
of updating one of them conditional to the other one is eliminated.

To design a sampling method for the joint posterior distribution in equation (5.17),
one can work with the full conditional distributions, and update the values iteratively
as usual in Gibbs sampling. Therefore, firstly, we need to derive full-conditional
distributions for the model variables, which are

5.1 p(Σx|S1:J , Ŝ1:J , ẑ1:J) ∝ p(Σx)∏J
j=1 p(Sj |Σx).

5.2 p(S1:J |Ŝ1:J ẑ1:J ,Σx,σ2
y , θ) = ∏J

j=1 p(Sj |Ŝj ẑj ,Σx,σ2
y , θ) owing to the factoriza-

tion, and each factor is p(Sj |Ŝj ẑj ,Σx,σ2
y , θ) ∝ p(ẑj |S,θ,σ2

y)p(Sj |Σx)p(Ŝj |Sj).

5.3 p(θ|σ2
y , ẑ1:J ,S1:J) ∝ p(θ)∏J

j=1 p(ẑj |S,θ,σ2
y).

5.4 p(σ2
y|ẑ1:J ,S,θ) ∝ p(σ2

y)∏J
j=1 p(ẑj |S,θ,σ2

y).

At this point, it is worth mentioning that some of the posterior distributions enjoy
closed form representations.

Proposition 2 p(Σx|S1:J , Ŝ1:J , ẑ1:J) ∼ IW(Λ+∑J
j=1 Sj ,κ+n)

Proof. We know that

p(Σx|S1:J , Ŝ1:J , ẑ1:J) ∝ p(Σx)
J∏

j=1
p(Sj |Σx)

= |Λ|dκ/2

2dk/2Γd(κ
2 )

|Σx|−(d+κ+1)/2e− 1
2 tr(ΛΣ−1

x )
J∏

j=1

|Sj |(nj−d−1)/2e− 1
2 tr(Σ−1

x Sj)

2njd/2|Σx|nj/2Γd(nj/2)

∝ |Σx|−
n
2 − (d+κ+1)

2 e− 1
2 (
∑

tr(Σ−1
x Sj)+tr(ΛΣ−1

x ))

∝ |Σx|−
(d+κ+n+1)

2 e− 1
2 tr((

∑
Sj+Λ)Σ−1

x ).
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Therefore, we have

Σx|S1:J ,S1:J , ẑ1:J ∼ IW

Λ+
J∑

j=1
Sj ,κ+n

 .

Proposition 3 p(θ|σ2
y , ẑ1:J ,S1:J) ∼ N (mp,Σp), where

Σ−1
p =

J∑
j=1

Sj(σ2
ySj +σ2

zI)−1Sj +C−1, mp = Σp

 J∑
j=1

Sj(σ2
ySj +σ2

zI)−1ẑj +C−1m

 .

Proof. The posterior of θ is proportional to

p(θ|S1:J ,σ2
y , ẑ1:J) ∝ N (θ;m,C)p(ẑ1:J |S1:J , θ,σ2

y).

For the second factor, we have

p(ẑ1:J |S1:J , θ,σ2
y) ∝

J∏
i=1

p(ẑj |Sj , θ,σ2
y) =

J∏
i=1

N
(
ẑj ;Sjθ,σ2

ySj +σ2
zI
)

∝
J∏

i=1
exp

{
−1

2(ẑj −Sjθ)T (σ2
ySj +σ2

zI)−1(ẑj −Sjθ)
}

∝ exp

−1
2

θT

∑
j

Sj(σ2
ySj +σ2

zI)−1Sj

θ −2θT

∑
j

Sj(σ2
ySj +σ2

zI)−1ẑj

 .

Reorganising the terms, we end up with

p(θ|S1:J ,σ2
y , ẑ1:J) ∝ exp

{
−1

2
[
θT Σ−1

postθ −2θT Σ−1
postmpost

]}

where Σ−1
post = ∑

j Sj(σ2
ySj + σ2

ZI)−1Sj + C−1 and mpost = Σpost[
∑

j Sj(σ2
ySj +

σ2
zI)−1ẑj)+C−1m]. Therefore,

θ|S1:J ,σ2
y , ẑ1:J ∼ N (mpost,Σpost).

In contrast to the θ and Σx, full-conditional distributions of S and σ2
y don’t yield

a tractable distributions. As we mentioned in the chapter 2, this is one of the
drawbacks of Gibbs sampling since easy-to-handle conditional distributions may not
be available all the time. To alleviate this problem, one can implement one-step MH
algorithm targeting to sample from these intractable distributions, which is called
MH-within-Gibbs as explained in chapter 2.

Firstly, for the case of S, the factorization enables updating each Sj seperately.
Therefore, one can propose Sj ∼ W(Sj/α,α), which has mean Sj and variance de-
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termined by α. The main reason behind using Wishart proposal is that it is a general
practice in the literature for the covariance matrix update as Wishart distribution
is conjugate prior of normal likelihood. Then, the proposed value of S′

j is either ac-
cepted or rejected like in classic MH structure. For brevity, algorithm 14 describes
one iteration of the sampling procedure.

Algorithm 14 Metropolis-Hastings algorithm for updating Sj - one iteration
Begin with current Sj ,α
Propose S′

j ∼ W(Sj/α,α)
Accept S′

j and return with probability of

p(Sj |S′
j)

p(S′
j |Sj)

p(ẑj |S′
j , θ,σ2

y)p(S′
j |Σx)p(Ŝj |S′

j)
p(ẑj |Sj , θ,σ2

y)p(Sj |Σx)p(Ŝj |Sj)

else reject the proposed value and return Sj

Fortunately, there is a closed form representation for the first part of acceptance
probability, which is

p(S|S′)
p(S′|S) = |S|(α−d−1)/2|S|α/2e−tr[aS′−1S]/2

|S′|(α−d−1)/2|S′|α/2e−tr[αS−1S′]/2 =
(

|S|
|S′|

)α−(d+1)/2
eα(tr[S−1S′]−tr[S′−1S])/2.

Although Algorithm 14 theoretically converges to the desired posterior distribution
of Sj , a key parameter for proposal mechanism, α, may be hard to find for the user.
Hence, one can implement adaptive scaling on the hyperparameter α, which makes
the chain even more efficient. In this regard, Andrieu & Thoms (2008) proposes
a recursive algorithm that simply tries to fix acceptance probability of the method
using a gradient-like approach on the parameter α. With the recursive update on
α, one can set the acceptance probability to a certain value, and make the initial
stages of the chain more useful for the true convergence (Andrieu & Thoms, 2008).

Secondly, we can use simple random-walk with normal distribution (See chapter 2)
for designing a MH mechanism to update σ2

y . Algorithm 15 represents a one-step
update procedure in detail.

Hence, the MCMC sampling strategy for distributed linear regression with normally
distributed features, which we call MCMC-normalX, is available in Algorithm 16.

5.2.3.2 Features with a general distribution
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Algorithm 15 Metropolis-Hastings algorithm for updating σ2
y - one iteration

Begin with current σ2
y , and input σ2

zprop
Propose (σ2′

y ) ∼ N (σ2
y ,σ2

zprop)
Accept (σ2′

y ) and return with probability of

p(σ2′
y )∏J

j=1 p(ẑj |S,θ,σ2′
y )

p(σ2
y)∏J

j=1 p(ẑj |S,θ,σ2
y)

else reject the proposed value and return σ2
y

Algorithm 16 MCMC-normalX - one iteration
Input: Current values of S1:J , θ, σ2

y , Σx; observations Ŝ1:J ,ẑ1:J ; noise variances σ2
s ,

σ2
z ; proposal parameters a, σ2

q ; hyperparameters a,b,κ,Λ, m, C.
Output: New sample of Σx,S,σ2

y , θ
Sample Σx using Proposition 2.
for j = 1,2, . . .J do

Update Sj using one iteration of Algorithm 14.
Sample θ using Proposition 3.
Update σ2

y using one iteration of Algorithm 15.

Normality assumption of the features in the previous model may not be realistic or
applicable. Additionally, updating Sj for each j in each iteration may be computa-
tionally inefficient. Therefore, one may suggest using an estimator to fix the value of
Sj during the whole course of the estimation, which removes the normality assump-
tion. Indeed, after several experiments, we realized that estimating the value of Sj at
the beginning, and continue with the same value throughout the iterations results in
highly accurate and efficient sampling strategy compared to the cumbersome model,
MCMC-normalX, especially when the number of nodes J increases.

Clearly, the most important point is the estimation method that replaces the up-
dating step of Sj if it is used as fixed. For this purpose, we can simply consider
Ŝj (noisy version of Sj) for estimating Sj . However, the problem is that Ŝj is not
necessarily a positive (semi)-definite matrix, which is a must for taking inverse. To
tackle this problem, we suggest taking the nearest positive semi-definite matrix in
terms of Frobenius norm1. Higham (1988) proposes a way to do this which basically
uses eigen-decomposition. Consider Ŝj = EDET where E is a matrix of eigenvectors
and D is a diagonal matrix with eigenvalues in the diagonals. Then, the nearest pos-
itive semi-definite matrix according to the Frobenius norm is S̃j = ED+ET , where
D+ is a diagonal matrix with D+(i, i) = max{D(i, i),0}. As a side note, taking the

1Frobenius norm for matrix A = (aij) can be denoted as ∥A∥F = (
∑

i,j a2
ij)1/2 Pfeiffer, Kapla & Bura

(2021).
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Algorithm 17 MCMC-fixedS - one iteration
Input: Current values of θ, σ2

y ; observations Ŝ1:J , ẑ1:J ; noise variance σ2
z , and

hyperparameters a, b, m, C.
Output: New sample of σ2

y , θ.
Use S1:J = S̃1:J throughout.
Sample θ using proposition 3.
Update σ2

y using one iteration of Algorithm 15.

Algorithm 18 Bayes-fixedS-fast
Input: Ŝ1:J , ẑ1:J ; noise variance: σ2

z ; estimate σ̃2
y of σ2

y ; hyperparameters: m, C.
Output: Estimate θ̂.
for j = 1,2, . . .J do

Calculate the estimate S̃j for Sj using Ŝj .
Calculate Σj = S̃j(σ̃2

yS̃j +σ2
zI)−1S̃j .

Calculate mj = S̃j(σ̃2
yS̃j +σ2

zI)−1ẑj .

Calculate Σ−1
post =∑J

j=1 Σj +C−1, mpost = Σpost
(
C−1m+∑J

j=1 mj

)
.

return θ̂ = Σ−1
postmpost

nearest positve semi-definite matrix according to the Frobenius norm as an estima-
tion of Sj is equivalent of taking the maximum likelihood estimation of Sj since the
likelihood p(Ŝj |Sj) is normally distributed. Hence, a detailed representation of this
methodology, which we call MCMC-fixedS, is available in Algorithm 17.

Algorithm 17 eliminates the need of normality assumption by removing the update
of S as the distribution of Px only concerns the distribution of p(S|Σx). Additionally,
Algorithm 17 is computationally more efficient than the Algorithm 16 as one of the
parts requiring MH sampling is already removed from the sampling strategy. How-
ever, one can go further and take out the other MH part from the chain to make it
even faster. After several numerical experiments, we realized that replacing σ2

y with
a crude estimator σ̃2

y = ∥Y∥/3 results in higher efficiency. This method, Bayes-fixed
S-fast, still utilizes Bayesian perspective while estimating θ, but doesn’t update S.
Also, it is faster than the other algorithms. In fact, Bayes-fixedS-fast is not even
a MCMC algorithm, instead it is an one-step calculation of θ̂ given the estimations
of Sj , σ2

y and hyperparameters.

5.2.4 Variants of the proposed methods
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While it is possible to remove key part regarding normality assumption from the
chain to deal with non-normal features, one can also use averaging to obtain approx-
imately normal data. Additionally, linear regression models also include bias term,
or so called intercept parameter. Proposed algorithms mostly ignore the existence
of the intercept term whereas including it in the model may affect the distributional
assumption negatively. As a result, we resort this section for the discussion possible
variants of the models. On the other hand, we consider these models as hypothetical
and possibly useful for future studies while we don’t include them in the evaluation
and numerical experiments.

5.2.4.1 Another way of dealing with non-normality

When xi, i = 1, . . . ,n are not normal, another approach is based on modifying the
data to such that the rows of the modified feature matrix, called Xav, are averages
of k > 1 original features in X, and thus approximately normal, by the CLT. Specif-
ically, let n be divisible by k so that m = n/k is an integer. Consider the m × n

matrix

A = 1√
k


11×k 01×k . . . 01×k

01×k 11×k . . . 01×k
... ... . . . ...

01×k 01×k . . . 11×k


m×n

,

Then the matrix Xav = AX corresponds to constructing a shorter m × d matrix
whose i’th column is the average of the rows (i − 1)k + 1, . . . , ik of X (scaled by
1/

√
k to preserve the norm). When k is large enough, we can make normality

assumptions for the rows of Xav. Further, we consider

yav := Ay = Xavθ +Ae,

whose mean is Xavθ and covariance AAT σ2
y . But, we have AAT = Im, so the covari-

ance is σ2
yIm. Therefore, the same hierarchical model in Figure 5.1 can be used for

X ′, y′ with their respective summary statistics

zav = (Xav)T yav, Sav = (Xav)T Xav,

as well as the noisy versions of those summary statistics to provide a given level of
privacy. Note that Sav and zav have the same sensitivities as S and z, hence the
same noise variances are needed for privacy. However, there is less information in
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Sav and zav due to averaging.

5.2.4.2 What happens when we include intercept?

Intercept parameter corresponds to appending xi with a 1 from the left. Then,

S = XT X becomes S0 =
 n nx̄T

nx̄ S

, where x̄ = 1
n

∑n
i=1 xi. Also, note that S = (n−

1)Σ̂x + nx̄x̄T where Σ̂x is the sample covariance. Under the normality assumption
for xi’s, x̄ ∼ N (m,Σx/n) and (n − 1)Σ̂x ∼ W(n − 1,Σx) are independent and have
known distributions. Therefore, we can write a model that includes b = x̄, Σ̂x, and S0

where S0 replaces S in the standard model. More specifically, we have the following
hierarchical model:

θ ∼ N (m,C), Σx ∼ IW(Λ,κ), Σ̂x|Σx ∼ W(n−1,Σx), b|Σx ∼ N (µ,Σx/n),

z|θ,Σ2
y, Σ̂, b ∼ N (S0θ,S0σ2

y), Ŝ|Σ̂, b = N (S0,σ2
sI), ẑ|z = N (z,σ2

zI)

with

S0 =
 n nbT

nb (n−1)Σ̂+nbbT

 .
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6. Experiments for the inference with statistic selection

In this chapter, we would like to demonstrate effectiveness of our statistic selection
method using numerical simulations. While doing so, we emphasize that statistic
selection methodology with Fisher information presented in chapter 4 actually sug-
gests a strategy that leads less error when it is combined with the inference method
mentioned in chapter 5. To this end, each different scenario in statistic selection
topic is analyzed separately in the following sections.

One can easily obtain the performance of a Bayes estimator using mean squared
error (MSE) as higher MSE means more dispersion from the desired results in terms
of variance and bias. More specifically, given θ̂(Y ) =E(θ|Y ), and θ∗ is the true value
of sample statistic, MSE for Bayes estimator is

MSE = EY [(θ̂(Y )− θ∗)2],

= Var(θ̂(Y ))+Bias2(θ̂(Y )).

Note that, MSE definition above requires an integral calculation over the distribution
of Y . Remembering the equation (2.3) in chapter 2, it is approximately equals to

EY [(θ̂(Y )− θ∗)2] ≈ 1
M

M∑
i=1

((θ̂(Y (i))− θ∗)2),

where M independent samples of Y (i) are drawn from the distribution p(Y |θ∗). All
of the results and discussions in this section are published at Alparslan & Yıldırım
(2022).

6.1 Comparison of additive statistic with the Gauss mechanism
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This part concerns when the summary statistic is designed as additive statistic and
the noise perturbation is the Gaussian mechanism. In this section, we focus on
the example in 4 in chapter 4 where Pθ = N (0, θ), X ∈ [−A,A], and s(X) = |x|a.
As a side note, the following comparison is also true for other possible cases, but
variance of a normal distribution is particularly is a well-known problem in statistical
analysis, which justifies our reasoning behind focusing on this particular case.

To make the comparison easy-to-follow, consider a ∈ {1,2} as we used in example
4, and remember that s(X) = |x| was more informative than its counterpart when
there is DP noise or vice versa. Following that, we carry out the comparison between
the MSE values of estimation by Algorithm 9 when a = 1 and a = 2 respectively to
obtain the harmony between statistic selection methods and Bayesian estimation.
During the simulation runs, we take A = 10 to wash out the effect of boundedness
on the sensitivity calculations, n = 100, θ∗ = 2, M = 103. More importantly, we use
an uninformative prior on θ and random-walk for the proposal, which eliminates
the parts other than the likelihoods in the acceptance probability calculation. After
running the MH algorithm K = 105 iterations and averaging the output samples to
obtain a single estimation, we obtain the values in figure 6.1.
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Figure 6.1 MSE and (Logarithm of) F (θ) for different moments when there is Gaus-
sian noise.

One can easily deduce from the figure that MSE values of the estimations agrees with
the suggestion of the statistic selection methodology for all privacy levels. Realize
that, F (θ) for s(X) = |x| is always highe, and accordingly MSE of the estimation
when a = 1 is always lower than the counterpart. Hence, Fisher information is
actually a prominent and neat way of selecting a summary statistic for differentially
private Bayesian analysis.

6.2 Comparison of additive statistic with the Laplace mechanism
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This time, additive statistic is shared with Laplace noise rather than the Gaussian
noise while implementing the same example in the previous section with the same
structure (Pθ = N (0, θ), X ∈ [−A,A], s(X) = |x|a). Also, remember that, s(X) = |x|
is more informative when ϵ = 1.

Target of the comparison is still same, i.e. whether the more informative statistic
according to Fisher information also results in better performance when it is utilized
by a MCMC strategy or not. Differing from the previous section, one can use either
Algorithm 10 or Algorithm 11 as an inference tool while we prefer conducting this
comparison with Algorithm 10 due to its simplicity. However, in the following part
we compare both of these algorithms in terms of their mixing properties in detail,
and as expected Algorithm 11 beats over. All in all, after using the same parameters
and averaging over M = 102 noisy observations, results are obtained in figure 6.2.
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Figure 6.2 MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2 (red), under
Laplace mechanism. MSE is calculated from the samples obtained from Algorithm
10.

As in the case where additive statistic and Gaussian noise employed, figure 6.2 also
reveals that Fisher information actually suggests the true statistic to share with
noise when more effective Bayesian analysis is desired to be carried out for the
combination of additive statistic and Laplace mechanism.

6.2.1 Comparison of Algorithms 10 and 11 in terms of mixing

As it was presented in chapter section 5.1 in chapter 5, it is possible to make inference
with both Algorithms 10 and 11 for the case of additive statistic and non-Gaussian
(Laplace) noise. Hence, a discussion on the comparison of the performances of these
two algorithms for the same problem is noteworthy.
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There are several methods to asses the performance of a MCMC algorithm. For
instance, one can check the convergence status of a chain for a certain amount of it-
erations (Robert & Casella, 2004). Various diagnostic methods have been proposed
for this purpose such as Kolmogorov-Smirnov test (Lehmann & D’Abrera, 1998), or
naive visual checks on the plots visualizing the evolution of the samples according
to iterations. However, other than these diagnostic tools, one can also check inte-
grated auto-correlation (IAC) time, which is the asymptotic variance of an average
of samples generated by the MCMC algorithm relative to that of the average of i.i.d
samples from the target distribution. Roughly, IAC is an effective measure of mixing
behavior of the chain, and the larger IAC means the more samples are needed to
converge and truly represent the target distribution (Foreman-Mackey, Hogg, Lang
& Goodman, 2013). Hence, smaller IAC time is favorable.

For the comparison in previous section, we have a winner statistic, s(x) = |x|. There-
fore, while comparing IAC times of these algorithms we focus on the case where a = 1.
Also, due to computational complexity, we just compare them when DP parameter
ϵ = 5. In terms of algorithmic specifications, both of them still uses random-walk
proposal and uninformative prior. Additionally, the importance sampling parame-
ter for Algorithm 10 is taken as qθ(u) = fSn(u|θ), whereas the symmetric proposal
distribution of u in Algorithm 11 is taken as qθ,θ′(u) = fSn(u|(θ + θ′)/2). Table 6.1
shows the values of IAC times of the algrorithms compared to various N where it
denotes the number of particles per iteration.

Table 6.1 IAC values of Algorithms 10 and 11 versus N

N Algorithm 10 Algorithm 11
2 44.03 17.99
5 28.19 17.10
10 21.11 16.13
20 18.16 15.44
50 15.32 13.78
100 16.42 15.86

It is clear that Algorithm 11 performs better for all values of N , and this difference
is a result of sophisticated structure of MHAAR. More specifically, one can state
that completely refreshing all variables improves the mixing property of the chain.

6.3 Comparison of non-additive statistic
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In the previous section, we changed the noise mechanism while keeping the summary
statistic same. However, in this part, the main focus is shifted to the non-additive
statistics as in chapter 4 and chapter 5. Specifically, we consider following statistics
for the inference;

Sn(X1:n) = max{s(Xi); i = 1, . . . ,n}, (6.1)

Sn(X1:n) = median{s(Xi); i = 1, . . . ,n} (6.2)

Remember that, as it was discussed in chapter 3, adding noise on top of the non-
additive statistics based on global sensitivity is ineffective since global sensitivity
is indenpendent from data size n and it may easily get out of control which may
result in excessively large noise on the summary statistic. Hence, we consider using
smooth sensitivity derived in definition 7 by setting As = maxx∈X s(x), and letting
minx∈X s(x) = 0. Therefore, the smooth sensitivity for the maximum in (6.1) is
given by,

∆smooth
max,β (x1:n) = max{e−kβbk;k = 0, . . . ,n},

with bk = max{As − sn−k, sn − sn−k−1}. For the median in in (6.2), the smooth
sensitivity is

∆smooth
med,β (x1:n) = max{e−kβbk;k = 0, . . . ,n}

with bk = max{sm+i − sm+i−k−1; i = 0, . . . ,k + 1}. Note that, in both calculations,
s1, . . . , sn are the sorted values of s(x1), . . . , s(xn) so that 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ As.

For the sake of completeness, this implementation is also based on the example 4
where Pθ = N (0, θ), X ∈ [−A,A] and s(x) = {|x|,x2}, but with a small difference
of just using s(x) = |x| as it is the winner statistic up-until now. Additionally, we
prefer using Laplace mechanism for the comparison. Since the normality assumption
on the distribution of Sn(X1:n) is not feasible anymore, Gaussian noise doesn’t lead
us to the closed form. Therefore, we stick up with the base definition of DP using
Laplace noise for this case.

For the experiment, we use Algorithm 12, and we take the parameters as n = 100, δ =
1/n2,M = 100, and N = 104 for latent particles. Differing from the previous compar-
isons, we only focus on ϵ = 5 because of the high computational cost of the smooth
sensitivity calculations. At the end, table 6.2 demonstrates the MSE values accord-
ing to various θ values for these non-additive statistics. These results clearly shows
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that median statistic is way more efficient than the maximum statistic in terms of
MSE.

Table 6.2 MSE for median and maximum statistics

Sn(X1:n) θ = 0.5 θ = 1 θ = 2
median 0.027 0.061 0.391
max 10.80 15.57 22.64

Now, comparison of the Fisher information is required to justify our statistic selec-
tion method. Figure 6.3 concludes the discussion by admitting the obvious superi-
ority of median statistic also in terms of the Fisher information calculated by using
Algorithm 7.
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Figure 6.3 Left: F (θ) for median (blue) and maximum (red) of s(x) = |x|. Right:
Autocorrelation function (ACF) for Algorithm 12 for median (blue) and maximum
(red) at θ = 2. Privacy parameters are (ϵ,δ) = (5,1/n2).

In addition to the F (θ), right part of the figure 6.3 presents auto-correlation function
(ACF) calculated at θ = 2 and averaged over 5 runs for each noisy observation. ACF
is also an useful measure of the mixing behavior of the MCMC algorithm. After
plotting the values according to the iteration number, one can obtain oscillations
around 0 for ACF, which means that samples from the chain have smaller correla-
tion among them, so they convergence faster to the desired posterior distribution.
Therefore, MSE calculations are reliable.

6.4 Comparison of sequential release
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Following the same outline, this time our focus is the case where noisy observations
are released sequentially. As it was discussed in section 5, Algorithm ?? is designed
to sample θ from the posterior distribution in equation (5.6).

Experimental structure in this section is almost same with the one including ad-
ditive statistic with Laplace mechanism. Namely, we employ the same structure
in example 4, which is Pθ = N (0, θ), X ∈ [−A,A], s(x) = {|x|,x2}, and we Laplace
mechanism for the privacy protection. Additionally, some of the hyper-parameters
for the experiments are n = 100,M = 104, and N = 104 for number of latent particles.
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Figure 6.4 MSE (left) and F (θ) (right) for s(x) = |x| (blue) and s(x) = x2 (red),
under Laplace mechanism using sequential release. MSE is calculated from the
samples obtained from Algorithm 13.

Figure 6.4 demonstrates the comparison of the statistics s(x) = |x|,x2, and the
results are aligned with the previous observations. Namely, the one reveals more
information about the posterior distribution results in terms of Fisher information
also results in less MSE during the Bayesian inference.

6.5 Comparison based on the initial data

Up until now, all the experiments initially assume that one statistic is more in-
formative than the other and measures their efficiency in terms of the MSE based
on this assumption. However, there may be a case where one statistic does not
clearly outperform the other statistics according to the Fisher information which
may result in confusion while using the statistic selection scheme. In fact, one of the
examples described before (Example 5) resembles this situation for the width of an
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uniform distribution. One may think that it is possible to use prior information on
θ to measure informativeness of the statistics. However, this is only the case when
informative prior is utilized for the inference as the name suggests. On the other
hand, throughout the numerical comparisons, we only consider uninformative priors
to simplify estimation procedure. Hence, we need more sophisticated approach for
this cases to enhance capabilities of our statistic selection method.

The method accounting initial data simply starts by splitting the whole sensitive
data into two parts as X1:n0 and Xn0+1:n, where n0 < n is a small fraction of n.
The first part is used for getting initial information about θ by determining baseline
informativeness of the statistics using Fisher information. After deciding the best
statistic using the initial chunk, rest of the data is used for learning the value of θ

based on the initial information. More specifically, assuming the summary statistic
is additive (non-additive statistic is also applicable with small change) and ϵ-DP,
the method has following steps;

• Based on the arbitrarily chosen s0 (for instance s0(x) = |x|), calculate noisy
observation using X1:n0

Y0 = 1
n0

n0∑
i=1

s0(Xi)+V0,

where V0 is the privacy-preserving noise arranged to satisfy ϵ-DP for the initial
chunk of data.

• Using a non-informative prior distribution η(θ), we obtain samples
θ

(1)
0 , . . . , θ

(M)
0 from the posterior distribution of θ conditional on Y0 = y0.

• We use those samples for statistic selection: For each candidate statistic s, we
calculate its score as

1
M

M∑
i=1

F −1
s (θ(i)

0 ),

where Fs(θ) is the Fisher information for when s is used. The above average
is the approximation to

∫
F −1(θ)p(θ|y0)dθ.

• Among the candidates, the statistic with the lowest score is selected for sharing
the remaining part of the data, Xn0+1:n. Call the selected statistic s∗. The
remaining data is shared as

Y1 = 1
n−n0

n∑
i=n0+1

s∗(Xi)+V1,

where V1 is the privacy-preserving noise arranged to satisfy ϵ-DP for the re-
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maining part of the data. Note that, since X1:n0 and Xn0+1:n are disjoint,
performing ϵ-DP operations on each part separately satisfies ϵ-DP overall.

• Based on Y0 = y0 and Y1 = y1 (and the respective statistics that are used to
generate them), we perform Bayesian estimation of θ with the prior distribu-
tion η(θ).

Since s∗ is obtained with a careful consideration on the prior information about
the effectiveness of the statistics, estimation of θ using s∗ is expected to be more
accurate than just using arbitrary s0 for whole inference process.

We compare this method with the no statistic selection, which is only utilizing s0,
for the setting explained in example 5. Namely, Pθ = Unif(−θ,θ), X ∈ [−A,A], and
the aim is inferring θ. For the simulation purpose, we consider n = 100, n0 = 10,
and s0(x) = |x|. In terms of statistic selection, our purpose is deciding on most
informative one among the set s(x) = {|x|a; a = 0.1,0.2, . . . ,2}. For the true value of
θ∗ = 0.1,0.2, . . . ,1, we compare MSE values with the estimated theta valuse based
on the y1.

All in all, figure 6.5 shows the merits of the statistic selection methodology with
15000 runs for each θ∗. As it is obvious in the left-part of the figure, making an
estimation based on the carefully decided statistic increases efficiency in terms of
MSE.
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Figure 6.5 Left: MSE values with and without statistic selection using initial data.
Right: Box-plots (outliers removed) of selected a values when statistic selection is
performed.

Additionally, in the right part of the figure, one can see that range of chosen statistic
dynamically changes according to the true value of θ. Hence, utilizing arbitrarily
chosen statistic is not a wise choice as it may not be the best choice given the
simulation setting.
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7. Experiments for the private linear regression

We resort this chapter for the numerical experiments of the methods presented in
section 5.2 in chapter 5. While the focus was testing the effectiveness of the statis-
tic selection method in the previous experimental section, this time the concern is
both efficiency and the effectiveness of the inference methods in the linear regres-
sion setting described previously. For this purpose, comparison with the existing
state-of-art methods is possibly the most prominent way to measure the perfor-
mance. Up to our knowledge, two strategies from the literature outshine others,
adaSSP from Wang (2018) and MCMC-B&S from Bernstein & Sheldon (2019). In fact,
it was mentioned that Bayesian inference algorithms proposed previously for the
distributed and private linear regression problem have similarities with these two
methods. However, it is crucially important to mention that adaSSP and MCMC-B&S
are not completely applicable to the distributed setting as they are not designed
for that purpose. Therefore, they need implementation-wise extensions for the fair
comparison with our methods which can be found in detail in the following sec-
tions. As a metric for comparison, mean squared error (MSE) is again a principal
method but this time we solely focus on the prediction performances of the meth-
ods as the prediction is one of the main use-cases for the regression methods. For
measuring this prediction performance, we use E[ŷ(xtest) − ytest]2 where the whole
data is splitted as test and train accordingly. For the Bayesian methods, ŷ(xtest)
is the posterior predictive expectation of ytest at xtest. For adaSSP, we simply take
ŷ(xtest) = xT

testθ̂. In particular, this comparison is carried out for both artificial and
existing data to get more realistic evaluation at the end. Additionally, along with
the MSE, we also evaluate calibration of the posterior predictive distribution using
confidence intervals and maximum mean discrepancy (MMD) following Bernstein &
Sheldon (2019), which is

MMD2(P 1,P 2) = 1
n(n−1)

n∑
i̸=j

(k(p1
i ,p1

j)+k(p2
i ,p2

j)−k(p1
i ,p2

j)−k(p1
j ,p2

i )),
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where (p1,p2) ∼ P 1,P 2, and k(x,y) = 1
2π e− x2+y2

2 -i.e. standard normal kernel. In
short, higher value of MMD means that P 1 and P 2 are more likely to be different
distributions from each other. Since diverting from the non-private distribution
is undesirable, one can use MMD to measure the difference between private and
non-private posterior distributions. These results are published at Alparslan et al.
(2023).

7.1 Extensions on state-of-art methods

7.1.1 Distributed adaSSP

Originially, adaSSP is designed for the single data holder and is not applicable to
the multi-party data sharing case Wang (2018). The algorithm simply returns esti-
mation of the regression coefficients θ̂ as

θ̂ = (Ŝ +λI)−1ẑ. (7.1)

While the Ŝ and ẑ are the private versions of XT X and XT y respectively, regular-
ization coefficient of λ is also included and privatized to improve the performance
of the estimation. As a result of releasing three statistics with noise, due to the
composition principle in definition 14, each process utilizes (ϵ/3, δ/3)-DP. Note that
releasing regularization coefficient with noise requires non-standard operations by
employing eigenvalue of S. Hence, implementing adaSSP on a distributed data set-
ting may be intricate.

Although extending this method for the distributed problem is not straightforward,
one can easily replace the estimation in (7.1) with the aggregates as

θ̂ =
 J∑

j=1
Ŝj + I

J∑
j=1

λj

−1 J∑
j=1

ẑj

 . (7.2)

Here, Ŝj , ẑj and λj are calculated in data node j separately from the other nodes.
The estimation procedure in (7.2) does not properly account for the optimal (regu-
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larised) least squares solution but approximates it.

7.1.2 Distributed and multidimensional MCMC B&S

Like adaSSP, MCMC B&S in Bernstein & Sheldon (2019) also considers J = 1, and the
vector ss = [vec(S), z = XT y,u = yT y] is perturbed with privacy-preserving noise to
generate the observations of the model. For J ≥ 1, the following natural extension
can be considered for generating perturbed observations ŝs = [vec(Ŝj), ẑj , ûj ] along
with

Ŝj = Sj +σdpMj , ẑj = zj +vj , vj ∼ N (0,σ2
dpId), ûj = uj +wj , wj ∼ N (0,σ2

dp),

where σdp = σ(ϵ,δ)∆ss with ∆ss =
√

∥X ∥4 +∥X ∥2∥Y∥2 +∥Y∥4.

For the sake of completeness, we provide the further specifics of the model: We
take (θ,σ2

y) ∼ N IG(a0, b0,m,Λ0) where Λ0 = C−1 and Px = N (0,Σx) with Σx ∼
IW(Λ,κ).

During the comparisons, we set a0, b0,m,C,Λ,κ to the same values for both this
model and our proposed model that assumes normally distributed features, i.e. Px =
N (0,Σx). Then, we apply an extension of (Bernstein & Sheldon, 2019, Algorithm 1)
suited to those observations. One iteration of that algorithm includes the following
steps in order:

• Calculate the D ×1 mean vector and D ×D covariance matrix

µss = E[ss], Σss = Cov[ss].

This step requires the fourth moments of N (0,Σx).

• Sample ssj ∼ N (µ(j)
post,ss,Σ

(j)
post,ss) with

Σ(j)
post,ss = (njΣss(θ)−1 +(1/σ2

dp)I)−1, and µ
(j)
post,ss = Σ(j)

post,ss(Σss(θ)−1µss + ŝsj/σ2
dp).

• Sample Σx ∼ IW
(
Λ+∑J

j=1 Sj ,n+κ
)
.

• Sample (θ,σ2
y) ∼ N IG(an, bn,mn,Λn) by sampling σ2

y ∼ IG(an, bn), followed
by sampling θ ∼ N (mn,σ2

yΛ−1
n ) with an = a0 + n/2, bn = 0.5u + mT C−1m −

67



mT
n Λnmn, and

Λn = Λ0 +
J∑

j=1
Sj , mn = Λ−1

n

 J∑
j=1

zj +Λ0m

 .

Note that the first step requires utilizing moments of N (0,Σx) upto fourth de-
gree, and calculating these values becomes complicated when the data dimension
increases. Indeed, original method in Bernstein & Sheldon (2019) considers only
one dimensional data case during the numerical experiments. To further extend
this algorithm and enable higher dimensions for the fair comparison, we consider
moment calculation method in Triantafyllopoulos (2002).

7.2 Experiments with simulated data

In this section, we evaluate performances of the proposed methods when the data is
generated artificially with pre-specified parameters. For this purpose, two different
configurations can be proposed, (n = 105,d = 2) and (n = 105,d = 5) to measure
the change in the performances with problem size. To handle data bounds for the
sensitivity calculations, both for simulated and real data, we set ∥X∥ and ∥Y ∥ to
the max of the norms over the whole dataset. For each (n,d), data generation is as
follows:

• θ ∼ N (0, Id), xi ∼ N (0,Σx), Σx ∼ IW(Λ,κ)

• With parameters of κ = d+1, scale matrix is Λ = V T V , and V is a d×d matrix
of i.i.d. variables from N (0,1).

• The response variables y are generated with σ2
y = 1.

• For the hyperparameters, we choose same Λ, κ as above and a = 20, b = 0.5,
m = 0d×1, C = (a−1)/bId.

According to the comparison results in figure 7.1, algorithms designed for gen-
eral distributions (MCMC-fixedS and Bayes-fixedS-fast) outperform adaSSP and
MCMC-B&S in almost all cases both in terms of estimation and prediction. Comparing
the full-scale algorithms MCMC-normalX and MCMC-B&S (that involve updates of S),
we observe a clear advantage of MCMC-normalX at d = 2, but MCMC-B&S becomes
more competitive at d = 5. This can be attributed to the fact that MCMC-B&S re-

68



0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-9.5

-9

-8.5

-8

-7.5

(log-)MSE: prediction, J = 1

MCMC-normalX
MCMC-fixedS
Bayes-fixedS-fast
MCMC-B&S
adaSSP

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-9

-8

-7

-6

(log-)MSE: prediction, J = 5

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-9

-8

-7

-6

-5

(log-)MSE: prediction, J = 10

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-10.5

-10

-9.5

-9
(log-)MSE: estimation J = 1

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

(log-)MSE: estimation J = 5

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-10

-9

-8

-7

-6

(log-)MSE: estimation J = 10

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-6

-5

-4

-3

-2

(log-)MSE: prediction, J = 1

MCMC-normalX
MCMC-fixedS
Bayes-fixedS-fast
MCMC-B&S
adaSSP

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-5

-4

-3

-2

-1

(log-)MSE: prediction, J = 5

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-4

-3

-2

-1

0

(log-)MSE: prediction, J = 10

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-3

-2.5

-2

-1.5

-1

(log-)MSE: estimation J = 1

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-3

-2.5

-2

-1.5

-1

(log-)MSE: estimation J = 5

0.
1

0.
2

0.
5 1 

 
2 

 
5 

 
10

 

0

-2.5

-2

-1.5

-1

-0.5
(log-)MSE: estimation J = 10

Figure 7.1 Averaged prediction and estimation performances (over 50 runs). Top
row: n = 105,d = 2, Bottom row: n = 105,d = 5.

quires the extra statistic yT y, unlike MCMC-normalX, which causes MCMC-B&S to use
more noisy statistics. This difference becomes more significant at small d, where the
relative effect of the presence of yT y on the sensitivity is more significant. Finally,
all methods improve as ϵ grows, which is expected.
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Figure 7.2 Run times per iteration for MCMC algorithms

Computation times per iteration of the MCMC algorithms MCMC-normalX,
MCMC-fixedS, and MCMC-B&S1 according to d can be seen in figure 7.2. It is ob-
vious that computational cost of MCMC-B&S is dramatically higher than proposed
MCMC algorithms. This is mostly because of the expensive moment calculations in
MCMC-B&S required for updating the vector of sufficient statistics.

In addition to the MSE, we also consider maximum mean discrepancy (MMD) for
evaluating the calibration of the learned posteriors following the method in Bernstein

1The algorithms were run in MATLAB 2021b on an Apple M1 chip with 8 cores and 16 GB LPDDR4
memory.
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& Sheldon (2019). Roughly, MMD measures the difference between two distributions
(Gretton, Borgwardt, Rasch, Schölkopf & Smola, 2012). When, learned posteriors
under the privacy constraints similar to the non-private posterior distribution, MMD
converges to zero and posteriors are reliable. The (squared) MMD between two dis-
tributions can be estimated unbiasedly using i.i.d. samples from those distributions.
Non-private and private posteriors for Bayes-fixedS-fast are in closed form and
can be sampled easily. For the MCMC models, we use every 50th sample of the
chain to avoid autocorrelation and thus obtain nearly independent samples. Plots
for MMD vs ϵ for each (J,d = 2) is presented in figure 7.3. One can easily see that
all the methods converge to the non-private posterior as ϵ increases.

Figure 7.3 Maximum mean discrepancy (MMD) results for each J and d = 2.

7.3 Experiments with real data

In addition to the simulated data, performances of the algorithms for the real
datasets are also crucially important to evaluate as these methods are mostly going
to be utilized for the real problems rather than the experimental settings. In this
regard, one of the well-known bases is UCI Machine Learning Repository. Among
many datasets, following ones are tested as they mostly include numerical values.
Additionally, they have varying data dimensions (d), which makes it possible to
observe the performance change for the different data regimes. In the following ta-
ble, one can check the selected datasets with their acronyms,number of rows and
features.
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data set n d hyperlinks

power plant energy 7655 4 view link
bike sharing 13904 14 view link
air quality 7486 12 view link

3d road 347900 3 view link

During the evaluation, we take 80% of each dataset for the learning and the rest for
testing. We present the average prediction performances (out of 50 runs) in Table
7.1 for each dataset and J with ϵ = 1. Note that due to the computational limits, we
only present single privacy level with ϵ = 1 since data holder may not want to use
smaller ϵ because of the possibility of larger corruption on the data, and similarly
higher ϵ values mean less protection, but we observe the similar pattern when we
check the results with higher ϵ. We observe that the prediction performances of the
compared methods are close, while MCMC-fixed-S and Bayes-fixed-S are arguably
the most stable ones. When J > 1 (the distributed data setting), those two methods
beat adaSSP and MCMC-B&S more satisfactorily. Note that we use the same strategy
for the data bounds as we utilized in the experiments with simulated data.

Table 7.1 Averaged prediction MSE for the real datasets - ϵ = 1

J data sets MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP

J = 1

PowerPlant 0.0129 0.0129 0.0129 0.0128 0.0139
BikeSharing 0.0024 0.0021 0.0021 0.0020 0.0107
AirQuality 0.0060 0.0057 0.0057 0.0062 0.0066

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

J = 5

PowerPlant 0.0133 0.0134 0.0134 0.0136 0.0235
BikeSharing 0.0174 0.0045 0.0045 0.0086 0.0382
AirQuality 0.0142 0.0100 0.0099 0.0130 0.0227

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

J = 10

PowerPlant 0.0142 0.0143 0.0143 0.0143 0.0351
BikeSharing 0.0812 0.0082 0.0082 0.0137 0.0526
AirQuality 0.0985 0.0117 0.0117 0.0216 0.0314

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

Although those values are convincing, it is also important to check whether they are
calibrated or not. In other words, are we going to observe similar results when we
repeat these experiments for more than 50 runs. For this purpose, one can easily
check the confidence intervals for these values. Results for 90% confidence intervals
are available in table 7.2. Confidence intervals show that prediction outputs of the
algorithms are calibrated and reliable for the evaluation. Hence, proposed methods
confidently outperform the state-of-art methods for the private linear regression
setting.
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Table 7.2 90% CI for prediction MSE for the real datasets - ϵ = 1

J data sets MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP

J = 1

PowerPlant [0.0128,0.0129] [0.0128,0.0129] [0.0128,0.0129] [0.0128,0.0129] [0.0137,0.0140]
BikeSharing [0.0021,0.0027] [0.0018,0.0024] [0.0018,0.0024] [0.0017,0.0022] [0.0106,0.0108]
AirQuality [0.0051,0.0069] [0.0048,0.0066] [0.0048,0.0066] [0.0053,0.0071] [0.0065,0.0067]

3droad [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229]

J = 5

PowerPlant [0.0132,0.0135] [0.0132,0.0136] [0.0132,0.0136] [0.0135,0.0138] [0.0234,0.0236]
BikeSharing [0.0137,0.0210] [0.0041,0.0049] [0.0040,0.0049] [0.0076,0.0095] [0.0380,0.0383]
AirQuality [0.0109,0.0175] [0.0089,0.010] [0.0089,0.0109] [0.0109,0.0151] [0.0226, 0.0229]

3droad [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229, 0.0229]

J = 10

PowerPlant [0.0139,0.0145] [0.0140,0.0146] [0.0140,0.0146] [0.0141,0.0146] [0.0349,0.0353]
BikeSharing [0.0671,0.0954] [0.0072,0.0092] [0.0072,0.0092] [0.0116,0.0158] [0.0524,0.0527]
AirQuality [0.0733,0.1236] [0.0099,0.0135] [0.0099,0.0135] [0.0175,0.0257] [0.0313,0.0315]

3droad [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229] [0.0229,0.0229]
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8. Conclusion

In this thesis, we mainly discuss applications of differential privacy using Bayesian
inference methods. There are two different but complementary perspectives in this
work. While one of them is about selection of the best statistic for releasing with
noise, The other one focuses on differential private linear regression. Both of them
relate Monte Carlo methods with differential privacy.

The statistic selection part analyzes various privacy settings including combinations
of the additive statistic or non-additive statistic and the Gaussian mechanism or
non-Gaussian mechanism. While additive statistic and Gaussian mechaism enables
tractable and closed form calculations, absence of the additivity or Gaussianity
requires more sophisticated approaches with Monte Carlo integration. One needs
to come up with a Monte Carlo estimation strategy to approximate the value of
Fisher information, and advanced MCMC methods for Bayesian inference which
enables to work with approximations of the exact posterior distributions for these
complicated cases. More importantly, proposed method can work with many types
of statistics with only necessary condition of availability of conditional distribution
of the generated output given the private statistics. At the end, they are evaluated
for various data sharing settings such as normal distribution with unknown variance
or uniform distribution with unknown width. One possible limitation of this work
occurs when the Fisher information matrix is not indicative for the informativeness
of the statistics. For this case, one can use alternative measure such as trace of the
Fisher information matrix.

Differing from the statistic selection part, other section of the thesis focuses on com-
ing up with an efficient and effective method for the private linear regression problem.
For this purpose, proposed method enables to work with distributed data setting
where multiple data holders share their own parts, and injecting less noise to preserve
privacy thanks to the novel generative structure. In detail, proposed method aims
to sample from the joint posterior distribution using MH-within-Gibbs and sequen-
tially updates model variables throughout the iterations. Methods based on this
novel structure outperforms previously developed methods for almost all possible
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cases. For the evaluation we use both artifical and real datasets to push methods to
their boundaries. However, proposed methods have one limitation mentioned in the
remark. Boundedness of normality and requirements of the data bounds for differ-
entially private analysis may be a concern. Fortunately, using the limits from given
data as we mentioned is reasonable and utilized by many researchers. Additionally,
one may possibly ask which method is the best for which case as there are three effec-
tive methods outshining state-of-art methods. MCMC-normalX is especially designed
for normally distributed features, while MCMCM-fixedS and Bayes-fixedS-fast are
proposed for non-normality. On the other hand, numerical results revelaed that
MCMCM-fixedS and Bayes-fixedS-fast are also competitive under normality. As
they are fast and easy-to-implement, we can suggest users try those versions on their
first attempts. Between the two, Bayes-fixedS-fast is faster but MCMCM-fixedS
may be safer and provides more insight since it also infers. All that being said,
MCMC-normalX should not be discarded as it is more capable on exploring Px.

As for the future extensions, one may improve the estimation strategy for Sj and
σ2

y while developing methods for the private linear regression methods with non-
normality. Also, one future work might be the application of Monte Carlo methods
and Bayesian inference on the differentially private gradient optimization problems
as they have been intensively utilized by the researchers recently.
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