
REINFORCEMENT LEARNING FOR TEXT CLASSIFICATION: AN
EVALUATION OF POLICY-GRADIENT METHODS WITH

VARIOUS TOPOLOGIES

by
EMRE BATUHAN BALOĞLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2023

REINFORCEMENT LEARNING FOR TEXT CLASSIFICATION: AN
EVALUATION OF POLICY-GRADIENT METHODS WITH

VARIOUS TOPOLOGIES

Approved by:

Prof. Dr. Berrin Yanıkoğlu .
(Thesis Supervisor)

Asst. Prof. Dr. Onur Varol .

Asst. Prof. Dr. Vahid Tavakol Aghaei .

Date of Approval: July 26, 2023

EMRE BATUHAN BALOĞLU 2023 ©

All Rights Reserved

ABSTRACT

REINFORCEMENT LEARNING FOR TEXT CLASSIFICATION: AN
EVALUATION OF POLICY-GRADIENT METHODS WITH VARIOUS

TOPOLOGIES

EMRE BATUHAN BALOĞLU

Computer Science and Engineering M.S. THESIS, JULY 2023

Thesis Supervisor: Prof. Dr. Berrin Yanıkoğlu

Keywords: reinforcement learning, natural language processing, text classification

Usage of reinforcement learning (RL) in natural language processing (NLP) tasks has
gained momentum in recent years. In this thesis, we present an improved approach
to the task of text classification through the integration of various deep learning
topologies such as transformers and large language models (LLMs) into the feature
extraction process within a reinforcement learning framework. In this proposed
method, the RL policies are trained to observe a portion of the text and determine
whether to classify the text or to proceed to the next part of the document. The
policies were optimized with the REINFORCE (Williams, 1992) algorithm utilizing
a designed reward signal. The effectiveness of the proposed method was evaluated
and compared against other state-of-the-art models on standard text classification
benchmark datasets, demonstrating the superiority of the proposed approach in
terms of efficiency while losing little performance in accuracy. The results indicate
that the use of the LLMs in the feature extraction process, coupled with RL policies
with designed reward signals, provides a promising avenue for the development of
effective and efficient text classification models.

iv

ÖZET

METİN SINIFLANDIRMASI İÇİN PEKİŞTİRMELİ ÖĞRENME:
POLİTİKA-GRADYAN METOTLARININ FARKLI TOPOLOJİLER

ÜZERİNDE DEĞERLENDİRİLMESİ

EMRE BATUHAN BALOĞLU

Bilgisayar Bilimi ve Mühendisliği YÜKSEK LİSANS TEZİ, TEMMUZ 2023

Tez Danışmanı: Prof. Dr. Berrin Yanıkoğlu

Anahtar Kelimeler: pekiştirmeli öğrenme, doğal dil işleme, metin sınıflandırma

Pekiştirmeli öğrenmenin (RL) doğal dil işleme (NLP) görevlerindeki kullanımı son
yıllarda hız kazanmıştır. Bu tezde, dönüştürücüler (transformer) ve büyük dil mod-
elleri (LLM’ler) gibi çeşitli derin öğrenme topolojilerinin, özellik çıkarma sürecine
bir pekiştirmeli öğrenme çerçevesi içinde entegre edilmesiyle, metin sınıflandırma
problemine geliştirilmiş bir yaklaşım sunuyoruz. Önerilen yöntemde, pekiştirmeli
öğrenme politikaları, bir metin bölümünü gözlemlemek ve metni sınıflandırmak
veya metnin bir sonraki bölümüne geçmek konusunda karar vermek için eğitilir.
Politikalar, REINFORCE (Williams, 1992) algoritmasıyla optimize edilir ve bunun
için tasarlanmış bir ödül sinyali kullanılır. Önerilen yöntemin etkinliği, standart
metin sınıflandırma veri kümeleri üzerinde, diğer güncel modellerle karşılaştırılarak
değerlendirildi ve önerilen yaklaşımın verimlilik açısından üstünlüğü ve tutarlılık
açısından küçük bir performans kaybı gösterdiği görülmüştür. Sonuçlar, büyük
dil modellerinin özellik çıkarma sürecinde kullanılması ve tasarlanmış ödül sinyali
ile pekiştirmeli öğrenme politikalarının birleştirilmesinin etkili ve verimli metin
sınıflandırma modellerinin geliştirilmesi için umut verici bir yol sağladığını göster-
mektedir.

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to every individual
that have supported the completion of my master thesis. Without their guidance,
encouragement, and assistance, this work would not have been possible.

First and foremost, I am deeply indebted to my thesis supervisor, Berrin Yanıkoğlu,
for her invaluable guidance and mentorship throughout this research endeavor. Her
expertise, patience, and steadfast support have been irreplaceable in shaping and
refining this thesis. I am truly grateful for her constructive feedback and insightful
suggestions.

I would like to extend my gratitude to the members of my thesis committee, Onur
Varol and Vahid Tavakol Aghaei, for their time, expertise, and valuable inputs during
the evaluation and review process.

I am also thankful to Department of Computer Science in Sabanci University for
providing the necessary resources and facilities that enabled me to carry out this
study. The well-equipped library, access to research databases, and technical support
were vital in gathering relevant information and conducting the required analysis.

I would like to extend my sincere appreciation to the Turkish Scientific and Techno-
logical Research Council (TUBITAK) for awarding me the scholarship that funded
my master’s studies. I am grateful for their recognition of the importance of aca-
demic pursuits and their commitment to nurturing future scholars and researchers.

Furthermore, I am indebted to my family for their unwavering love, support, and
understanding throughout my academic journey. Their constant encouragement,
belief in my abilities, and sacrifices have been the driving force behind my success.

Additionally, I would like to express my sincere appreciation to my friends Kerem
Örs, Ozan Can Şahin and Vehbi Kepkep who have been a source of motivation,
encouragement, and intellectual stimulation.

In conclusion, I extend my deepest gratitude to all those who have played a part,
big or small, in the completion of this master thesis. Their support, encouragement,
and assistance have been truly invaluable, and I am humbled by their contributions.

Thank you all.

vi

To Mustafa Kemal Atatürk
Whose ideas guide me in life.

vii

TABLE OF CONTENTS

LIST OF ALGORITHMS . x

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

1. INTRODUCTION . 1
1.1. Related Work on Text Classification with Reinforcement Learning . . . 2
1.2. Reinforcement Learning on Classification and other NLP Tasks 4

2. BACKGROUND . 6
2.1. Deep Natural Language Processing . 6

2.1.1. Feature Extraction . 6
2.1.2. Neural Language Models . 9
2.1.3. Deep Neural Network Topologies . 10

2.1.3.1. Convolutional Neural Networks . 10
2.1.3.2. LSTM . 10

2.1.4. Transformer . 11
2.2. Reinforcement Learning . 12

2.2.1. Definitions and Notations . 13
2.2.2. Value-Based Approaches . 15

2.2.2.1. Q-Learning . 16
2.2.2.2. Deep Q-Learning . 17

2.2.3. Policy-Based Approaches. 20
2.2.3.1. REINFORCE (Monte Carlo Policy Gradient) 20

2.2.4. Advanced Methods . 21
2.2.4.1. Advantage Actor Critic (A2C) . 21
2.2.4.2. Proximal Policy Optimization (PPO) 23

viii

3. DATASETS . 26
3.1. IMDB Movie Reviews Dataset . 26

3.1.1. Examples from IMDB reviews . 26
3.2. AG News Dataset . 27

3.2.1. Examples from AG News . 27

4. Methodology . 29
4.1. Environment . 29
4.2. Overview of the Policies . 30
4.3. Action Spaces . 31
4.4. Reward Functions . 32
4.5. Feature Extractors . 32
4.6. Episodic Memory Component . 33
4.7. Policy Models . 34

5. Results and Discussion . 35
5.1. Policy Behaviours . 35

5.1.1. Policy Behaviours on Reward Functions on Different Data 35
5.1.1.1. Policy Decisions on Sample Reviews with Skip-Twice

Strategy . 36
5.2. Baseline Model Performance . 40
5.3. Performances of our Implemented Topologies . 42

5.3.1. DistilBERT + LSTM . 42
5.3.2. RoBERTa + LSTM . 44
5.3.3. Overview of the Model Performances . 45

5.4. Conclusion and Future Work . 48

BIBLIOGRAPHY. 50

ix

LIST OF ALGORITHMS

Algorithm 1. Q-Learning . 16
Algorithm 2. Deep Q-Learning (Double DQN with Experience Replay) . . 18
Algorithm 3. REINFORCE (Monte Carlo Policy Gradient) 21
Algorithm 4. Advantage Actor Critic (A2C) . 23
Algorithm 5. Proximal Policy Optimization . 25

x

LIST OF TABLES

Table 3.1. Dataset Statistics . 26

Table 5.1. Performances of the topologies on test sets . 46
Table 5.2. Training/Inference Time and FLOP statistics of the topologies 47

xi

LIST OF FIGURES

Figure 2.1. Neural network topology of the first introduced word embed-
dings: The shared parameters across the words are learned with back-
propagation (Bengio et al., 2003). 8

Figure 2.2. The Transformer Architecture (Vaswani et al., 2017) 11
Figure 2.3. Process of Reinforcement Learning . 13
Figure 2.4. Overview of A2C algorithm . 22

Figure 4.1. Overview of one episode . 31

Figure 5.1. Policy correctly predicts Negative by skimming and stopping
reading early . 37

Figure 5.2. Policy correctly predicts Negative by skimming and stopping
reading early . 38

Figure 5.3. Policy correctly predicts Positive by skimming and stopping
reading early . 40

Figure 5.4. CNN Topology’s training performance on IMDB dataset (left
to right: Accuracy, Precision, Recall, F1 Score) . 41

Figure 5.5. CNN Topology’s training performance on AG News dataset
(left to right: Accuracy, Precision, Recall, F1 Score) 41

Figure 5.6. CNN + LSTM topology performance on two datasets’ valida-
tion split . 42

Figure 5.7. DistilBERT Topology’s training performance on IMDB
dataset (left to right: Accuracy, Precision, Recall, F1 Score) 43

Figure 5.8. DistilBERT Topology’s training performance on AG News
dataset (left to right: Accuracy, Precision, Recall, F1 Score) 43

Figure 5.9. DistilBERT + LSTM topology performance on two datasets’
validation split . 43

Figure 5.10. RoBERTa Topology’s training performance on IMDB dataset
(left to right: Accuracy, Precision, Recall, F1 Score) 44

Figure 5.11. RoBERTa Topology’s training performance on AG News
dataset (left to right: Accuracy, Precision, Recall, F1 Score) 44

xii

Figure 5.12. RoBERTa + LSTM topology performance on two datasets’
validation split . 45

xiii

LIST OF ABBREVIATIONS

CNN: convolutional Neural Network

LLM: Large Language Model

LSTM: Long-Short Term Memory

ML: Machine Learning

NLP: Natural Language Processing

RL: Reinforcement Learning

RLHF: Reinforcement Learning from Human Feedback

RNN: Recurrent Neural Network

xiv

1. INTRODUCTION

Text classification is one of the essential and challenging tasks for natural language
processing (NLP) research, with its ramifications spanning sentiment analysis, spam
detection, topic classification, and more. Concurrently, Reinforcement Learning
(RL), lauded for its robust generalization capabilities and its alignment with evolu-
tionary neuroscientific paradigms, has found increasing applicability across various
facets of machine learning. The parallels between RL’s non-stationary environments
and the ever-evolving corpus of languages, as well as agents’ decision-making pro-
cesses under uncertainity and the employment of unseen or partially observed texts
in NLP, posit reinforcement learning a good approach for addressing NLP challenges
(Ramamurthy et al., 2023; Silver et al., 2021).

One of the foremost challenges in NLP today is the development of lightweight and
efficient solutions. Such solutions are imperative not only for their intrinsic value
but also for their critical application in scenarios like mobile applications, prompt-
response customer services, and real-time sentiment classification. Thus, in this
thesis, we scrutinize the potential applications of reinforcement learning within the
domain of text classification. We intend to reduce the computation cost of models
in training and inference time, whilst preserving performance on the conventional
classification metrics. Using the study of Yu et al. (2018) as our main inspiration,
we explore different approaches and architectures from both RL and NLP domains.
We propose new feature extractors and reward signals to achieve this objective and
we these architectures on two widely used benchmark datasets.

Emerging research shows success of using reinforcement learning on text classifica-
tion tasks. For instance, Xu et al. (Xu et al., 2019) achieve significant results using
policy gradient approach in an adversarial setting for semantic classification task.
Moreover, Yang et al. (Yang et al., 2018a) show good progress on multi label text
classification by formulating the problem as a Markov Decision Process and using
an encoder-decoder model with self-critical policy gradient algorithm.

1

1.1 Related Work on Text Classification with Reinforcement Learning

Although there are few detailed investigations made on this subject, we observe
that efforts to combine RL on different machine learning approaches including NLP
is growing. Several studies have been performed on using RL on text classification
tasks, and on these studies we generally encounter two approaches to incorporate RL
for text classification task. One approach is to use RL agents directly as predictors
for the task using classification models such as support vector machines or neural
networks as state-action parameters, and the other approach is to use RL agents as
feature generators/extractors for classification models, again using different models
as parameter space.

As one of the first attempts to solve text classification problem with RL, Dulac-
Arnold et al. (2011) formulate the problem as a sequential decision-making process
with an RL agent, which is a predictor for class labels. Given a sample text, a
Markov Decision Process is created where each state is a sentence from the given
text, and actions are whether to classify a label to the text or continue to the next
sentence or stop. The agent skims through the states sentence-by-sentence deciding
an action, starting from the first sentence of the text. The agent is trained through
Approximate Policy Iteration with Rollouts. (Lagoudakis and Parr, 2003) algorithm,
and able to achieve better performance than traditionally trained models.

Following this study, Yu et al. (2018) propose a similar scheme exploiting RNNs with
Gated Recurrent Unit (GRU) and policy gradient algorithm (Williams, 1992), addi-
tionally adding an action to re-read a given text chunk. Correspondingly, Martinez
et al. (2020) make use of Partially-Observable Markov Decision Processes (POMDP),
propose strategies of prioritized sampling, prioritized storing and random episode
initialization to address the agent’s memory imbalances in a similar problem formu-
lation.

In another investigation, Mao et al. (2019) use RL agents as predictors, mainly
focusing on hierarchical text-classification, where samples have more than one label
given in a tree or directed acyclic graph (DAG). Unlike to the study of Yang et al.
(2018a), label order is important in the context of this study. They made use of
TextCNN (Kim, 2014), HAN(Yang et al., 2016) and bow-CNN (Johnson and Zhang,
2015), using hidden state parameters of the models as states of a RL agent. Given
sample text and labels as a hierarchy in a DAG, starting from the root node, the
agent decides whether to assign the current label in the node to the given text,
thus generating a sequence of labels. The agent traverses the entire DAG, receiving

2

F1 score between the generated sequence of labels and the ground truth ones as
feedback signal at each time step.

On the other hand, RL is incorporated into text classification on some studies by
introducing generative schemes in the model training steps. Xu et al. (2019) utilized
an generative-adversarial reinforcement training scheme to achieve robust sentiment
classification task. They introduce a long-short term memory (LSTM) based gen-
erator, which generates action sequences given any sentence, as an RL agent. Each
action sequence has the same length as the given sentence and the agent decides an
action; whether to change a word with one of its synonym, subordinate, superior or
neighbor word or introduce no change. Through this, the agent aims to confuse the
classifier, receiving a positive or negative feedback signal based on the predictions
of the classifier. Here, when the classifier makes a correct prediction, the agent re-
ceives a negative reward, and conversely the agent receives a positive reward when
the classifier makes an incorrect prediction. This creates an generative-adversarial
training scheme improving the performance of the classifiers.

Likewise, Chai et al. (2020) employed another generative design, intending to gen-
erate descriptions for the labels that models differentiate. Main architecture used
in this design is BERT (Devlin et al., 2018), which is both used to generate these
descriptions and for text representation for classifier models. They suggested that
given proper descriptions, improvements will be observed on model performances.
They apply three methods to generate descriptions for labels: Firstly, preparation
of hand-crafted descriptions by area experts, which is highly labor intensive and
suboptimal. Secondly, generating a substring of a given text, by using an RL agent
that decides start and end indexes of the substring. Lastly, generating a sequence
of words with another RL agent, where the action of the agent is the generation
of words in a sequence-to-sequence (seq2seq) manner. The agents on both of these
schemes receive the probability of models’ making a correct prediction as a feedback
signal from the classifier as a reward, where the classifiers get the BERT represen-
tation of the text concatenated to label descriptions for each label.

Moreover, Yang et al. (2018a) addressed the multi-label classification problem, where
samples can have more than one label. They refer to the major challenges on this
task, that are exploiting the internal correlations of the labels and heeding the swap-
ping invariance problem, when order of the labels is unimportant. Main approach
they give in their study was to use an Encoder-Decoder architecture consisting of
one Bidirectional-LSTM layer as an encoder, and two unidirectional LSTM layers
as decoders, latter acting as an RL agent. The agent generates a sequence of labels,
and gets a feedback signal as the F1 score between the generated labels and the

3

real labels of the sample. F1 score provides the flexibility of swapping invariance
to some degree, while other parts of the encoder-decoder structure captures the
internal correlations of the labels.

Furthermore, Wang et al. (2019) focus on document-level aspect sentiment classifi-
cation. They build a hierarchical RL scheme inspired by human cognitive process.
They use two RL agents for selecting aspect-relevant clauses in given text, and for
selecting sentiment-relevant words from the clauses that the first agent generates.
Then, a classifier takes the outputs of these agents as selected clauses and words,
and provides a feedback signal for them, based on the performance of this classifier.

In summary, different approaches have been employed for text classification tasks.
We see that generative models trained with an RL scheme tend to enhance the
model performance as in Xu et al. (2019), Chai et al. (2020), Yang et al. (2018b),
Wang et al. (2019) in classification tasks, while some RL agents as predictors can
also perform well as in Mao et al. (2019).

1.2 Reinforcement Learning on Classification and other NLP Tasks

Due to the scarcity of research in applications of RL in text classification, we also
review the research in broader applications of RL in classification tasks. RL has been
considered a favorable candidate for classification tasks for at least some decades
(Lagoudakis and Parr, 2003), (Wiering et al., 2011) and is posited on various clas-
sification tasks such as vehicle classification from images (Zhao et al., 2017), 3D
medical image classification (Zhu et al., 2022), emotion classification from face im-
ages Li and Xu (2020), video anomaly detection (Mansour et al., 2021) and class
imbalanced classification (Lin et al., 2020).

Reinforcement Learning has been attempted to be used in other NLP tasks as well.
Satija and Pineau (2016) and Xia et al. (2016) and Wu et al. (2018) perform a general
study of RL training on neural machine translation (NMT) task, while Qian et al.
(2018) leverages RL on NMT task in a multimodal setting. Kreutzer et al. (2020)
utilize offline RL with human feedback on sequence-to-sequence NLP tasks such
as machine translation, semantic parsing, summarization and dialogue generation.
Mao et al. (2020) focus on document summarization with RL, Chan et al. (2019)
implement RL with adaptive rewards for neural keyphrase generation.

4

Furthermore, RL has been incorporated in the fine-tuning of the large language
models such as ChatGPT (Christiano et al., 2023), GPT-4 (OpenAI, 2023) etc.
with the methodology Reinforcement Learning from Human Feedback (RLHF)
(Bradley Knox and Stone, 2008; Christiano et al., 2017; MacGlashan et al., 2017;
Ziegler et al., 2019). RLHF is an approach that leverages human guidance to improve
the learning process of reinforcement learning agents. RLHF incorporates human
feedback, either in the form of explicit instructions or evaluative signals, to guide
the agent’s learning process. By incorporating human feedback, RLHF enables the
generation of more coherent and contextually appropriate language by LLMs.

To conclude, the expanding interest in the amalgamation of RL and NLP underscores
the potential for transformative advancements in this domain. As the fusion of these
dynamic fields promises novel methodologies and solutions, our study endeavors to
propose agile topologies for text classification, through comprehensive analysis and
experimentation.

5

2. BACKGROUND

We make use of deep learning, natural language processing (NLP) and reinforce-
ment learning (RL) in this study. We utilize deep neural network topologies such as
convolutional neural networks (CNN), recurrent neural networks (RNN) especially
long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997), Transform-
ers and transformer based pretrained large language models for our purposes.

2.1 Deep Natural Language Processing

For our baseline models and the parts of our proposed model training schemes we
use deep natural language processing methods, that integrate deep neural networks
into NLP tasks. NLP is a subfield of computer science, artificial intelligence, and
linguistics that focuses on the interactions between human language and computer
programs, which has been a challenging effort for computer scientists and AI re-
searchers (Goldberg and Hirst, 2017). Many approaches have been developed to
solve the problems in NLP tasks. We will briefly mention the history of some of
these approaches, and latest ones we use such as recurrent neural networks, trans-
formers and language models.

2.1.1 Feature Extraction

In all machine learning tasks, one needs to represent the data being used numerically,
even if there are some parts of the data that are not in fact given so, such as
categorical variables like gender of customers or the review text of a movie criticism.
Finding relevant information from data and converting this information into valuable

6

and meaningful numerical representations is a tedious process. This process is in
general called feature extraction and the models that are used for this process is
called feature extractors. In order to represent text in a meaningful and numerical
way, various methods have been developed throughout the several past decades.

One straightforward approach to encode the textual data is to use one-hot encoding.
Here, we can treat each individual letter or word as one category and encode the data
accordingly. However, since the number of distinct words in a document can be huge,
the one-hot encoding approach will introduce an extremely large dimensionality to
the data which will also probably be severely sparse. This is not a feasible way to
extract features and generally not used in NLP tasks.

Thus, many methods are developed to extract features from textual data in a feasible
way. One of the first such methods in NLP is the Bag-of-Words (BOW) approach.
Here, we look at the number of appearances of the words within the text, as a
feature, this approach is also known as unigram modeling. We can also look at the
number of appearances of any number of consecutive words, aka n-gram modeling
for n consecutive words, which may be computationally dense but can extract more
detailed information about the text.

We can also use quantities based on external information, for example on words that
appear frequently in one document, yet appear scarcely in other documents. This
way we can distinguish words that are generally common, (like stopwords a, an,
the) from words that are associated to the document’s topic. To do this, when using
the bag-of-words approach, it is common to use TF-IDF (Term Frequency-Inverse
Document Frequency) weighting (Manning et al., 2008). Consider a document d

which is part of a larger corpus D. The term frequency (TF) of a word w in d is

(2.1) #d(w)∑
w̃∈d #d(w̃)

where #d(w) is the number of appearances of word w in document d. Instead of
using this as a feature for the word w, we multiply this with its inverse document
frequency (IDF) where IDF of document d is defined as

(2.2) log
|D|

|{d ∈D,w ∈ d}|

Thus, instead of using the count or frequency of a word, TF-IDF method uses the
combined feature

(2.3) #d(w)∑
w̃∈d #d(w̃) · log

|D|
|{d ∈D,w ∈ d}|

7

for each word w.

Another method, which we extensively make use of in our study, is to use word
embeddings, which is introduced in Bengio et al. (2003) for the first time. The
method of word embeddings is a way of representing words as dense vectors of real
numbers, instead of representing them as one-hot vectors. These vectors capture the
meaning and context of the words, so that words with similar meanings will have
similar vectors, after training a machine learning model using them.

Figure 2.1 Neural network topology of the first introduced word embeddings: The
shared parameters across the words are learned with backpropagation (Bengio

et al., 2003).

The parameters for the mapping of words to vectors will be learned through back-
propagation depending on the task of the model. This allows the model to learn
relationships between words and use them to make predictions about the text. The
purpose is to create a language model using neural networks with shared parameters
for the mapping of words to vectors and obtain the word embeddings as a by-product.
Here, neural network attempts to calculate n-gram probabilities of each word, given
the context. This model and other topologies and adopted this approach induced
competent word embeddings, where words with similar meanings are positioned
closer together in a high dimensional vector space.

8

2.1.2 Neural Language Models

Language models (LMs) are models that are trained on large amounts of text data
to predict the next word or a phrase in a sequence. These models are used in
language generation, machine translation, and speech recognition. The goal of a
language model is to assign a probability to a sequence of words, indicating how
likely it is that those words would appear in a given context. This allows the model
to generate text that is coherent and sounds natural to a human reader. As part of
LMs, neural language models (NLMs) make use of neural networks in their models.
As a by-product of NLMs we can obtain extracted features for each word from the
textual data.

Neural Language Models are firstly established in Bengio et al. (2003) but were un-
able to be adopted extensively until the emergence of larger computational power
and big data. Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014),
which introduced highly capable methodologies for representing words as dense and
continuous vectors, incorporating the idea of word embeddings in Bengio et al.
(2003), utilizing large corpora. Word2Vec model generates a language model either
with Continuous Bag-of-Words (CBOW) model, where the goal is to predict an un-
seen word given past and future words that is present in the sentence, or Continuous
Skip-Gram model, where the goal is to predict words in a certain range that come
before or after given one word. On the other hand Pennington et al. (2014) use
a global logbilinear regression model which blends global matrix factorization and
local context window methods.

However, as NLP tasks grew in complexity, the limitations of these static word
embeddings became apparent. To address these limitations, the transformer-based
models emerged after the emergence of transformer topology (Vaswani et al., 2017).
These models are pre-trained on large-scale corpora to learn contextualized repre-
sentations. This led to the development of avant-garde models like the Generative
Pre-trained Transformer (GPT) series (Radford and Narasimhan, 2018) and the
Bidirectional Encoder Representations from Transformers (BERT) series (Devlin
et al., 2018), which achieved state-of-the-art performance on a wide range of NLP
benchmarks. These models leverage the self-attention mechanism to capture depen-
dencies between words, enabling them to grasp both local and global context. The
success of GPT and BERT variants has demonstrated the potential of pre-training
language models on large amounts of unlabeled text data and fine-tuning them on
specific tasks.

9

2.1.3 Deep Neural Network Topologies

As all topologies we use in our methodoloy are based on neural networks, we also
briefly mention the history of some topologies.

2.1.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (Fukushima, 1980; LeCun et al., 1998), with
their topology inspired by the visual cortex, is widely used in feature extraction espe-
cially for image analysis and understanding. The fundamental principle underlying
CNNs is the application of convolution operations, which are small, learnable filters
that scan through input data, extracting salient features while preserving spatial
relationships. LeCun et al. (1998) introduced CNNs as a means of recognizing
handwritten characters, showcasing the application of CNNs from pixels of images.
Researchers also have demonstrated the effectiveness of these networks in sequence
processing, particularly for tasks involving text classification and sentiment analysis.
By integrating word embeddings into CNNs, these models can effectively capture
contextual relationships between words (Kim, 2014).

2.1.3.2 LSTM

LSTM (Long Short-Term Memory) (Hochreiter and Schmidhuber, 1997) is a type
of recurrent neural network (RNN) topology that was introduced in 1997. It is
designed to address the issue of vanishing gradients in traditional RNNs, which can
cause the model to struggle with long-term dependencies in sequential data. LSTM
uses a gating mechanism that allows the model to selectively remember or forget
information from previous time steps, making it well-suited for processing sequential
data with long-term dependencies.

10

2.1.4 Transformer

Transformer (Vaswani et al., 2017) which is a powerful neural network architecture
that was introduced in 2017. It was designed to address the limitations of tradi-
tional recurrent neural networks (RNNs) and convolutional neural networks (CNNs)
in processing sequential data. Transformers are based on the self-attention mech-
anism, which allows the model to selectively attend to different parts of the input
sequence, making it more efficient and effective at handling long-range dependencies
in sequential data.

Figure 2.2 The Transformer Architecture (Vaswani et al., 2017)

The Transformer architecture consists of two main components: the encoder and
the decoder. Both the encoder and decoder are composed of multiple layers, each
of which contains two sub-layers: a self-attention layer and a feed-forward neural
network layer.

11

The self-attention layer computes the attention weights between all input tokens,
allowing the model to weigh the importance of each token in the context of the entire
input sequence. This is done by computing a weighted sum of the values, where the
weights are determined by a softmax activation function over the dot product of the
query and key vectors.

The feed-forward neural network layer applies a linear transformation followed by
a non-linear activation function, such as the rectified linear unit (ReLU), to the
output of the self-attention layer.

Here is the mathematical equation for the self-attention mechanism:

(2.4) Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V

where Q, K, and V are the query, key, and value vectors, respectively, and dk is the
dimensionality of the key vectors.

The output of the self-attention layer is passed through a residual connection and
layer normalization, before being fed into the feed-forward neural network layer. The
output of the feed-forward neural network layer is again passed through a residual
connection and layer normalization, before being fed into the next layer.

The decoder also includes an additional multi-head attention layer, which attends
to the encoder output, allowing the decoder to generate output tokens based on the
context of the entire input sequence.

2.2 Reinforcement Learning

We also incorporate some ideas from Reinforcement Learning in our proposed models
hence we will give a brief summary of this field as well. Formally, Reinforcement
Learning is a framework for solving control tasks by building AI, more often called
agents that learn from a simulation environment by interactions through trial and
error and receiving positive or negative rewards as unique feedback. The process of
RL can be summarized in one diagram:

12

Figure 2.3 Process of Reinforcement Learning

• Initially, agent receives state S0 from the environment.

• Based on S0, agent takes action A0.

• Environment changes into a new state S1, as a result of agent’s action.

• Agent receives reward R1 from the environment.

• Agent receives state S1 from the environment.
...

The agent’s goal is to maximize its cumulative reward aka expected return, as the
theory of reinforcement learning is based on the reward hypothesis (Silver et al.,
2021; Sutton and Barto, 2018) in which all goals that agent might have can be
described as the maximization of the expected return.

2.2.1 Definitions and Notations

Here, we give the necessary definitions and notations in the RL terminology.

Initially, the environment has a state space, denoted S which is the set of all possible
states that the agent can go to.

The agent has an action space, denoted A, which is the set of all possible actions
that agent can take. The action space can be discrete or continuous depending on
the cardinality of A.

We assume that the environment the agent interacts with has Markov Property
which implies that the agent needs only the current state to decide what action to

13

take, at any time step.

The cumulative reward at time step t, denoted Gt is written

Gt :=
∞∑

k=0
γk · rt+k+1

where γ ∈ [0,1] is the discount rate applied to rewards and rt is the reward obtained
by the agent at time step t. We apply discount as the rewards that come sooner are
more predictable than long term rewards.

The policy π is the function that decides for the agent which action to take, given the
state it is in. In all RL problems, we aim to approximate the agent’s policy to the
optimal policy π∗, which maximizes the expected return if the agent acts according
to it. The policy of an agent can be deterministic, i.e the policy will always return
the same action at a given state:

a = π(s), a ∈ A, s ∈ S

or stochastic, i.e the policy will output a probability distribution over actions:

π(a|s) = P [a|s], a ∈ A, s ∈ S

We can train our agents mainly with two different approaches: policy-based ap-
proaches and value-based approaches. In policy-based approaches, we learn a policy
function directly, where this function maps each state to the best corresponding
action at that state, or a probability distribution over A. On the other hand, in
value-based approaches we train a value function denoted νπ(s) that maps a state
to the expected value of being at that state.

14

2.2.2 Value-Based Approaches

The value of a state is the expected discounted return the agent can get, if it starts
at that state and act according to the policy afterwards. The state-value function
under a policy π, with which we calculate the value of a state at time step t, is given
as

νπ(s) = Eπ[Gt|St = s], ∀s ∈ S

The action-value function under a policy π, in which we calculate the value of a
state-action pair St,At at time step t is given as

(2.5) Qπ(s,a) = Eπ[Gt|St = s,At = a]

However, one can easily see that calculating the expected return for each state-action
pair can be a tedious task, especially on environments with large state spaces. To
overcome this issue, we make use of Bellman Equation. The main idea of this
equation comes from the agent’s decision problem it faces at each state. We can
break this decision problem into smaller subproblems with Bellman’s optimality
principle (Bellman, 2003) and assume that value of a current state is equal to the
sum of immediate reward the agent gets coming to that state and discounted value
of the following state. We can rigorously define this as

(2.6) νπ(s) = Eπ[Rt+1 +γ ·νπ(St+1)|St = s]

There are mainly two different strategies on how to train a value function for value-
based approaches or a policy function for policy-based approaches. In Monte Carlo
Methods, we use an entire episode before updating the function we approximate:

(2.7) ν(St)← ν(St)+α · [Gt−ν(St)]

where α is the hyperparameter for learning rate. On the other hand with Temporal
Difference Learning, we use only a step of agent’s interaction (St,At,Rt+1,St+1) to
update the function. As we don’t traverse through the entire episode we estimate
Gt by adding the reward the agent gets with the discounted value of the next state.
This estimation is called bootstrapping:

(2.8) ν(St)← ν(St)+α · [Rt+1 +γ ·ν(St+1−ν(St)]

15

2.2.2.1 Q-Learning

Q-Learning (Watkins, 1989) is an off-policy value-based algorithm that uses Tem-
poral Difference (TD) learning to train its agent by approximating an action-value
function, called Q-Function. To summarize, this algorithm creates a table for each
state-action pair called the Q-Table and updates the values at each time step using
TD learning. Main update equation is a modified version of the equation in TD
learning (2.8):

(2.9) Q(St,At)︸ ︷︷ ︸
new estimation

← Q(St,At)︸ ︷︷ ︸
former estimation

+α · [Rt+1 +γ ·max
a

Q(St+1,a)︸ ︷︷ ︸
TD target

−Q(St,At)]

︸ ︷︷ ︸
TD error

where α is the hyperparameter for learning rate.

Algorithm 1: Q-Learning
Input : policy π, num_episodes ∈ Z+, α > 0, {ϵi} decaying rates of

exploration
Output: Approximated value function Q (Q≈ qπ

∗ if number of episodes is
sufficiently large)

1 Initialize Q arbitrarily. (e.g. Q(s,a) = 0, ∀s ∈ S,∀a ∈ A)
2 for i← 1 to num_episodes do
3 ϵ← ϵi

4 Observe S0

5 t← 0
6 while St is not terminal do
7 Choose action At using policy derived from Q (ϵ-greedy)
8 Take action At, observe Rt+1, St+1

9 Q(St,At)←Q(St,At)+α · (Rt+1 +γ ·max
a

Q(St+1,a)−Q(St,At))
10 t← t+1
11 end
12 end
13 return Q;

As we see in pseudocode, different policies are used for acting (ϵ-greedy policy)
and updating (greedy, deterministic policy), which is why Q-Learning is called an
off-policy method.

16

2.2.2.2 Deep Q-Learning

Using a table for each state-action pair can become ineffective, even infeasible in
large state space environments. In this case, one approach to overcome this issue is
to approximate the Q-values of a Q-table using a parameterized Q-Function, such
as a neural network.

Thus, Deep Q-Learning algorithm makes use of deep neural networks to estimate
different Q-values for every possible state-action pair (Mnih et al., 2013). Differently
from Q-Learning algorithm, we need to create a loss function between the Q-value
predictions and the Q-target (TD target in (2.9)) and use gradient-descent to
update the parameters in the neural network.

We define the Q-Target at time step t by

(2.10) yt := rt +γ ·max
ā

Q̂(ϕt+1, ā; θ̄)

where ϕt+1 is the representation of the St+1 calculated by the neural network with
parameters θ̄, and Q̂ is the target action-value function. Using this, we define Q-Loss
by

(2.11) yt−Q(ϕt,at;θ)

where similarly ϕt is the representation of the St calculated by the neural network
with parameters θ, and Q is the action-value function being approximated.

We will give a slightly modified version Deep Q-Learning algorithm which provides
more stability and efficiency. The algorithm has two phases:

• Sampling: The agent perform actions, and the observed experiences (states,
rewards) are stored in replay memory.

• Training: Selecting a small batch of experiences randomly, agent learns from
the batch using a gradient descent update.

This training process might suffer from instability as a result of combining a non-
linear Q-value function approximation and bootstrapping (2.8). Therefore, we give
a modified version of the Deep Q-Learning algorithm in which we apply some mod-
ifications.

17

Algorithm 2: Deep Q-Learning (Double DQN with Experience Replay)
Input : C,N,T,num_episodes ∈ Z+

Output: Approximated value function Q
1 Initialize replay memory D with capacity N
2 Initialize action-value function Q with random weights θ

3 Initialize target action-value function Q̂ with random weights θ̂ = θ

4 for i← 1 to num_episodes do
5 Initialize sequence s1 = {x1} and processed sequence ϕ(s1) = ϕ1, where x1 is

the observation of made by the agent.
6 for t← 1 to T do
7 With probability ϵ select a random action at, otherwise select

at = argmax
a

Q(ϕ(st),a;θ)

8 Execute action at, observe reward rt, next observation xt+1

9 Set st+1 = st,at,xt+1 and process ϕt+1 = ϕ(st+1)
10 Store transition (ϕt,at, rt,ϕt+1) in D
11 Sample random mini-batch of transitions (ϕj ,aj , rj ,ϕj+1) ∈D

12

Set yj =


rj if episode terminated at step j +1

rj +γ ·max
ā

Q̂(ϕj+1, ā; θ̄) otherwise.

13 Perform a gradient descent step using (yj−Q(ϕj ,aj ;θ))2 with respect to
θ (MSE Loss)

14 Reset Q̂←Q
15 end
16 end
17 return Q;

You might have noticed that we are using two different sets of neural network pa-
rameters for target action-value function and the action-value function that is being
trained. This a modification that is being added to vanilla Deep Q-Learning which
is called Double Deep Q-Learning (Double DQL) (van Hasselt et al., 2015), which
we describe in more detail with other modification’s details:

• Experience Replay: In online RL the agent usually interacts with the
environment, get experiences, learn from the experiences and then discard
them. With experience replay (Schaul et al., 2015), we create a buffer that
saves experience samples (the states, actions and rewards that agent gets)
that can be reused during training. This allows the agent to learn from

18

individual experiences multiple times, avoid forgetting previous experiences
and reduce correlation between them.

• Fixed Q-Target: When we calculate the TD error (loss) we calculate the
difference between TD target (the target policy) and the current estimation
of Q. Since we do not know what Q-target is actually is, we estimate it
with Bellman equation (2.6). The problem in training neural networks with
the general setting of Q-Learning (2.9) is that we use the same parameters
for estimating TD-target and Q-value, resulting in a significant correlation
between TD-target and parameters. This implies that at every training step,
Q-values change but target values also change. To overcome this issue, we use
Double DQNs.

• Double Deep Q-Networks: Double DQNs aka double learning handles the
problem of overestimation of Q-values. In Q-Learning setting (2.9) we don’t
actually know that the action with the highest Q-value is actually the best
action to take and if non-optimal actions are regularly given high Q-value
estimations, the learning will become ineffective. To prevent this, two net-
works can be used to decouple the action selection from the target Q-value
generation. Using DQN network to select the best action to take (line 7 in
Deep Q-Learning) and using Target network to calculate the target Q-value of
taking that action at the next state (line 12 in Deep Q-Learning) can prevent
the problems we mention. Overall, Double DQN reduce the overestimation of
Q-values and provides more stable and faster learning process for the agent.

19

2.2.3 Policy-Based Approaches

Here, we give some of the policy-based RL algorithms, in which a policy function
is approximated directly. Unlike value-based methods, which strive to determine
the value of each state or action, policy-based methods seek to identify the optimal
policy directly without intermediating the value functions, offering a direct and often
more intuitive pathway to solving complex reinforcement learning problems.

2.2.3.1 REINFORCE (Monte Carlo Policy Gradient)

REINFORCE algorithm (Williams, 1992), also known as Monte Carlo Policy Gra-
dient uses an estimated return from an episode to update its parameters θ.

πθ(a|s) = P [a|s,θ]

where πθ(at|st) denoted the probability of agent selecting action at given the policy
and state st.

To measure the performance of the policy, we define an objective function

(2.12) J(θ) := EJ∼π[R(τ)]

where
R(τ) =

∞∑
k=0

γk · rt+k+1

We make use of the Policy Gradient Theorem to find the best parameters θ and
maximize the cumulative expected reward.

Theorem 2.2.1 (Policy-Gradient Theorem) Given a policy πθ, the gradient of
the objective function defined as in (2.12) is

∇θJ(θ) =∇θ

∑
s∈S

dπ(s)
∑
a∈A

Qπ(s,a)πθ(a|s)

∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s,a)∇θπθ(a|s)

where dπ(s) is the on-policy distribution of the states (the fraction of time spent in
each state), Qπ(s,a) is the action-value function as in (2.5), S the state space and
A the action space. Here, ∇θπθ(a|s) gives us the direction of the steepest increase,

20

using which we can change the parameters of the policy πθ

Algorithm 3: REINFORCE (Monte Carlo Policy Gradient)
Input : A differentiable policy parameterization πθ, step size α number of

episodes N , where α,N ∈ Z+, discount factor γ.
Output: Approximated policy πθ

1 Initialize policy parameters θ with random weights (or to 0).
2 for i← 1 to N do
3 Generate an episode S0,A0,R1, ...,ST −1,AT −1,RT following πθ(·|·)
4 for t← 1 to T do
5 G←∑T

k=t+1 γk−t−1Rk

6 θ← θ +αγtG∇log[πθ(At|St)]
7 end
8 end
9 return πθ;

As it can be seen in the pseudocode, the parameters of the policy are updated with
the equation derived from Policy-Gradient Theorem.

2.2.4 Advanced Methods

Some of the latest RL algorithms do not fall in the category of policy-based or
value-based approaches, which we will give brief summaries in this section.

2.2.4.1 Advantage Actor Critic (A2C)

In REINFORCE algorithm, we calculate the return R(τ) with Monte Carlo sam-
pling. Since the trajectories can lead to different returns due to the stochasticity of
the environment, policy and the returns, we often encounter high variance. That
is, starting from the same state can lead agent to obtain completely different returns.

To reduce this variance problem, Mnih et al. (2016) introduce a combination of
policy based and value based methods, the Actor-Critic method. In this setting, we
train two function approximators:

21

• A policy that controls how the agent acts: πθ(s,a)

• A value function to assist the policy updates by evaluating the action taken
by agent: q̂w

Figure 2.4 Overview of A2C algorithm

As it can be seen in figure 2.4, at each time step, both the policy πθ (actor) and the
value function q̂w (critic) receives state St from the environment. Meanwhile, the
value function also receives the action At that is taken by the policy after receiving
St. The value function then computes the value of taking At at St. Also, the action
At causes the agent (actor + critic) to go and observe a new state St+1 and reward
Rt+1 from the environment.

22

Algorithm 4: Advantage Actor Critic (A2C)
Input : Differentiable parameterizations πθ, q̂w, step sizes α,β number of

episodes N , where α,β,N ∈ Z+, discount factor γ.
Output: Approximated policy πθ, value function q̂w

1 Initialize parameters θ,w with random weights (or to 0).
2 for i← 1 to N do
3 t← 1
4 Initialize St (first state of the episode)
5 S← St

6 while S is not terminal do
7 At ∼ πθ(·|S)
8 Actor takes action At, observe new state St+1 and reward Rt+1

9 Critic takes At and St and computes q̂w(St,At)
10 θ← θ +α∇θ[logπθ(St,At)]q̂w(St,At) (update parameters of actor)
11 With updated parameters, actor takes At+1 given St+1

12 w← w +β[Rt+1 +γtq̂w(St+1,At+1)− q̂w(St,At)] ·∇wq̂w(St,At) (update
parameters of critic)

13 t← t+1
14 S← St

15 end
16 end
17 return πθ, q̂w;

2.2.4.2 Proximal Policy Optimization (PPO)

In Proximal Policy Optimization (PPO)(Schulman et al., 2017), the policy network
is updated using a clipped surrogate objective function, which helps to prevent
drastic policy updates that can lead to instability. The objective is to maximize the
expected cumulative reward as it is in all RL tasks, while ensuring that the policy
update remains within a specified range, by constraining the policy update. Clipped
surrogate objective is defined as

(2.13) Lclip(θ) := Et[min(rt(θ)Ât, clip(rt(θ),1− ϵ,1+ ϵ)Ât)]

23

where
rt(θ) = πθ(At|St)

πθold
(At|St)

is the fraction that measures the difference between old and updated policy param-
eters given that At the action taken by and St the state observed the agent at time
step t. With clip function, maximum amount of deviation that can be made in each
parameter updated can be controlled:

clip(rt(θ),1− ϵ,1+ ϵ) =


1− ϵ, if rt(θ) < 1− ϵ

rt(θ) if 1− ϵ≤ rt(θ)≤ 1+ ϵ

1+ ϵ if 1+ ϵ < rt(θ)

In the PPO algorithm in each iteration, a batch of trajectories is collected by ex-
ecuting the current policy in the environment, consisting of sequences of states,
actions, rewards, and next states. These collected trajectories are used to compute
advantages Ât in each time step t, estimating the relative value of taking a specific
action compared to the average action value in that state. Advantages provide a
measure of how much better or worse an action is compared to the average action,
taking into account the expected cumulative reward. We give details on a later vari-
ant called Generalized Advantage Estimation (GAE) developed in (Schulman et al.,
2018), incorporating both immediate and future rewards, GAE provides a more ac-
curate estimation of the advantages and helps to improve the learning efficiency of
RL algorithms. Given δV

t := rt +γV (St+1)−V (St), GAE is defined as

(2.14) Ât = ÂGAE(γ,λ) :=
∞∑

l=0
(λγ)lδV

t+l

where γ,λ are hyperparameters for discount and bias-variance tradeoff and V is the
value function estimate of the critic part of the algorithm.

The value network is trained to estimate the expected cumulative reward, which is
used to compute advantages. By minimizing the mean squared error (MSE) loss
between the predicted values and the actual rewards, the value network learns to
approximate the expected cumulative reward accurately.

The policy network is updated using the clipped surrogate objective which aims to
maximize the probability of taking actions that yield higher advantages while si-
multaneously constraining the policy update within a specified range. This prevents
large policy updates that could result in a large deviation from the previous policy
and lead to instability. Thus, PPO ensures that the new policy is not too different
from the old policy, providing a more stable learning process.

24

Algorithm 5: Proximal Policy Optimization
1 Initialize policy network πθ and value network Vϕ with random weights
2 Initialize hyperparameters λ,θ,ϵ ∈ [0,1]
3 repeat
4 for actor← 1 to N do
5 Run policy πθold

old in environment for T time steps
6 Compute advantages Â1, ..., ÂT using the generalized advantage

estimation (GAE) with (2.14)
7 end
8 Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤NT

using (2.13)
9 θold← θ

10 until convergence;

25

3. DATASETS

There are two datasets that are used as benchmarks for text classification this study
that are also used in (Yu et al., 2018) which is our main inspiration.

Dataset # Classes # Train-
ing/Validation

Samples

Test
Samples

IMDB Movie
Reviews

2 30000 25000

AG News 4 120000 9600

Table 3.1 Dataset Statistics

3.1 IMDB Movie Reviews Dataset

For sentiment analysis, we use the large movie review dataset (Maas et al., 2011)
which is an extensive corpus designed for binary sentiment classification, featuring a
significantly larger volume of data compared to previous benchmark datasets (Pang
and Lee, 2005). The dataset consists of 25,000 highly polar movie reviews allocated
for training, and an equal number for testing.

3.1.1 Examples from IMDB reviews

Review 1: “First off let me say, If you haven’t enjoyed a Van Damme movie since
bloodsport, you probably will not like this movie. Most of these movies may not

26

have the best plots or best actors but I enjoy these kinds of movies for what they
are. This movie is much better than any of the movies the other action guys (Segal
and Dolph) have thought about putting out the past few years. Van Damme is
good in the movie, the movie is only worth watching to Van Damme fans. It is
not as good as Wake of Death (which i highly recommend to anyone of likes Van
Damme) or In hell but, in my opinion it’s worth watching. It has the same type of
feel to it as Nowhere to Run. Good fun stuff!” (Label: Negative)

Review 2: “The story centers around Barry McKenzie who must go to England
if he wishes to claim his inheritance. Being about the grossest Aussie shearer ever
to set foot outside this great Nation of ours there is something of a culture clash
and much fun and games ensue. The songs of Barry McKenzie(Barry Crocker) are
highlights.” (Label: Positive)

3.2 AG News Dataset

AG News dataset (Zhang et al., 2015) is a compendium comprising over one million
news articles sourced from in excess of 2000 news outlets within a period of one
year, as compiled by ComeToMyHead which is an academic news search engine that
has been operational since July 2004. The dataset is made available by the aca-
demic community exclusively for research in data mining (clustering, classification,
etc.), information retrieval (ranking, search, etc.), XML, data compression, data
streaming, and all other non-commercial undertakings.

3.2.1 Examples from AG News

News Article 1: Sony said Thursday that it would begin selling eight new
television models outfitted with semiconductors designed to produce sharper
images, including two with a lighting system that the company says is the world’s
first. (Category: Science & Technology)

News Article 2: “The president’s plan to partially privatize Social Security

27

probably won’t adversely impact financial markets, even if the program entails
hundreds of billions of dollars in debt”, Treasury Secretary John W. Snow said
Friday. (Category: Business)

News Article 3: Liverpool were left stunned as Lomana LuaLua grabbed a
dramatic stoppage-time equaliser to earn Portsmouth a 1-1 draw at Anfield.
Goalkeeper Jerzy Dudek, back in the side with Chris Kirkland injured, looked.
(Category: Sports)

News Article 4: Passengers face more delays, British Airways has cancelled
four domestic flights as the effects of yesterday’s problems continued to disrupt
operations from Heathrow. (Category: World)

28

4. Methodology

Here, we describe our methodology of training RL policies for text classification
tasks. As we discussed previously in Section 1, our objective is to create agile and
lightweight topologies that can make inference and be trained rapidly. We train the
policies with REINFORCE (Monte Carlo Policy Gradient) algorithm as explained in
Section 2.2.3.1 using the components we designed. The components of our training
scheme are the environment that the policies interacts with, the action spaces of the
policies which it can select an action based on each observation it gets, the reward
functions which are used as feedback signals in the parameter updates of the agent,
the feature extractors that the agent uses to create a numerical representation of
the observations it makes and episodic memory component allows the agent to keep
track the previously made observations and actions taken.

4.1 Environment

For each text classification dataset D= {(si, li)}ni=1 where (si, li) is a text-label pair,
we create an environment that agent will interact. Given a text sample from the
dataset, we create an observation for the agent as follows:

• Tokenize and numerically encode the textual input using either a manual to-
kenizer or a pretrained tokenizer. Pad or truncate the obtained sequences so
that each sequence has the same length M .

• Select chunk length m and split the tokenized vectors into chunks of this
length. For the last chunk, we pad the vector into the suitable size with zeros.
(m is an hyperparameter that can be tuned).

Applying these for each text sample we obtain a new set as E = {c1, c2, ..., cn} where
n is the number of samples in the data and ci = [ci1 , ci2 , ..., cim] the chunks in the

29

text sample. It should also be noted that for each i = 1,2, ...,n,j = 1,2, ...,m we have
cij = wij1 ,wij2 , ...,wijk

, the words/tokens in the chunk where k = M
m is the number

of tokens in each chunk. At each time step, the agent observes extracted features
from feature extractor which takes cij as an input, and takes an action from the
action space.

4.2 Overview of the Policies

We define three policies to solve the text classification task efficiently by deciding
to stop reading, reread or skip some parts of the text. We define stop policy that
chooses the stop or continue reading, classifier policy and next policy.
At each time step, stop policy decides to stop or continue reading. If stop action is
taken classifier policy predicts a label , otherwise next policy chooses the number
of chunks that will be skipped. All policies observe the extracted features from the
feature extractor in this scheme.

Initially, the topology observes text chunk at position n with feature extractor. Stop
policy decides the action continue , prompting the next policy which decides to skip
k chunks. Then feature extractor observes the text chunk at position n+k, causing
the stop policy to take action stop. Prompted by this, classifier policy makes a
prediction of the observed texts so far. Note that all policies use the outputs of the
feature extractor using the outputs of the feature extractor as input and meanwhile,
hidden and cell states of the LSTM are kept in memory until the end of the episode.

30

Figure 4.1 Overview of one episode

4.3 Action Spaces

We define three action spaces for three policies we use in our training scheme. We
define AS = {stop,continue} the action space for the stop policy.
Given the data D = {(si, li)}ni=1, we know that each si has a unique label
li ∈ {label1, ..., labelp} where p is the number of possible labels. Hence, we define
the action space for the classifier policy as AC = {label1, ..., labelp}.

Lastly, we define AN = {next0,next1, ...,nextk} for the next policy.

31

4.4 Reward Functions

We make use of three reward functions as discussed in Yu et al. (2018), Yu et al.
(2017), Ramamurthy et al. (2023). After each action of the stop policy, an action
is taken either by classifier policy or next policy. Thus, the rewards at time step t

given action at ∈ AC ∪AN and correct label lt is calculated as follows:

R1t :=

−L(y, ŷ)−αFt, if t is the final step

−αFt otherwise

where L is the cross-entropy loss between predicted and real label and Ft is the
FLOP count for that step, normalized with α hyperparameter (Yu et al., 2018).
We also define

R2t :=


+1, if a correct prediction is made

−1, if an incorrect prediction is made

0, otherwise

as in Yu et al. (2017).

4.5 Feature Extractors

We make use of several different deep neural network topologies in order to extract
features from the observations.

We use convolutional neural networks in our effort to reproduce the results in Yu
et al. (2018) so as to use it as a baseline. As the details are not given, we choose
embedding size as 100 for the embedding layer and do not use pretrained word
embeddings. We feed the output of the embedding layer to a convolutional layer
with 128 filters and kernel size 5.

For our novel topologies, we replace the convolutional neural networks with trans-
formers and transformer-based language models. We implemented vanilla trans-
former with various hyperparameters and several language models for the feature
extractor. However, we will only give details on the two best performing ones, which

32

are DistilBERT (Sanh et al., 2020) and RoBERTa (Liu et al., 2019).

DistilBERT is one of the finest language models introduced in 2019. It is a smaller
and faster version of the popular BERT model, achieved by removing certain layers
and using distillation technique to transfer the knowledge from the larger model to
the smaller one. It has accomplished similar performance to BERT on a range of
NLP tasks while requiring less computation and memory, making it a favourable
choice for our application where efficiency is a priority and we have limited compu-
tational power.

On the other hand, RoBERTa (Robustly Optimized BERT Pretraining Approach) is
a variant of the BERT that modifies key hyperparameters in BERT, such as removing
the next-sentence pretraining objective, and training with larger mini-batches and
different learning rate schedules. It is also trained on an extended version of the
BookCorpus dataset (Zhu et al., 2015). These modifications enabled RoBERTa to
achieve competitive performance on various NLP benchmarks, hence we extensively
employ this model in the extractor as well.

4.6 Episodic Memory Component

We make use of LSTM for the episodic memory component of our topology which
is designed to empower the agent to effectively retain and recall text chunks that
have been previously encountered during its traversal. The LSTM is structured to
accept outputs from feature extractors, together with a hidden state and the a cell
state. These states are initiated as zero-tensors in the beginning of each episode
and are updated and are forwarded to the LSTM again until the end of an episode
within each forward pass. The outputs of LSTM are fed as inputs to the policy
networks that produce the actions in the RL scheme. When a classification is made,
the states are reinitialized as zero-tensors as it indicates the end of the episode.

However, in ablation studies we made where the LSTM was not utilized as the
episodic memory component, we detect that topology displayed difficulty in two ar-
eas: first, in generating accurate classifications using state representations from the
feature extractors; and second, in establishing a cohesive policy for navigating the
text throughout episodes. The primary issue was the model’s tendency towards mak-
ing seemingly random decisions on all policies in the absence of an episodic memory
component. This propensity towards randomness suggests the overall topology’s

33

inability to identify and learn from patterns, emphasizing the pivotal role of the
LSTM as episodic memory.

4.7 Policy Models

For all policy models, we make use of fully-connected neural networks with three
hidden layers of 64 units, with input dimension the same as the output dimension of
the extractor, and the output dimension as the length of action space for the corre-
sponding policy. For each hidden layer we use ReLU activation function except the
output layer, in which we use Softmax activation. We choose these hyperparameters
exactly same as in Yu et al. (2018).

34

5. Results and Discussion

In this chapter we share our results and discuss the performance of our proposed
scheme. As the tasks we use our architecture to solve is classification, we use the
metrics accuracy, precision, recall and F1 score, commonly used in classification
tasks, to measure and benchmark the performance of our proposed scheme. First,
we examine the behaviours learned by the policies with different topologies we im-
plemented.

5.1 Policy Behaviours

5.1.1 Policy Behaviours on Reward Functions on Different Data

We observe mainly three different behaviours on policies when trained on the defined
rewards. We see these behaviours on both reward functions R1 and R2 and found
little meaningful correlation between behaviour change and using R1 or R2.

Firstly, we observe that the agent only reads the first chunk to make a classification
without reading the remaining part of the samples. We see this behaviour mostly
on AG News dataset, in which we observe that it is relatively simpler to make a
prediction with the initial part of the news articles. This behaviour is also seen if we
increase the α parameter that penalizes the reading other chunks in R1 too much
as well but only on IMDB data. We refer this behaviour as First-Chunk Focus.

Secondly, we observe that the agent reads as much as it can before making a pre-
diction, regardless of the FLOP penalty given in the reward function R1. We see
this behaviour mostly on IMDB data where we observed that the reviews are more

35

difficult to classify and users can take their time before they write sentences relevant
to their sentiments in the reviews. We name this behaviour as Full-Read Tendency.

Lastly, we observe that the agent always decides to skip two chunks four times before
making a classification. This is the best behaviour and closest one as attributed in
Yu et al. (2018), which we think that is a local optimum policy difficult to encounter
or reproduce. This behaviour is encountered with R1 reward which we interpret as
a way to optimize FLOP penalty and classification performance. We will use the
mnemonic Skip-Twice Strategy for this behaviour.

5.1.1.1 Policy Decisions on Sample Reviews with Skip-Twice Strategy

Now, we give some examples on how the policies behave on sample reviews with
Skip-Twice Strategy. To make it easier to follow, we give the parts of text observed
by the agent in bold.

Review 1: “I am still shuddering at the thought of EVER seeing this
movie again have seen action films have even liked quite few of them but
this one goes over the top. Not only does it have the worst male actor ever
Sly Stallone playing the lead role but the plot of the movie is so stupid
from the beginning why not rob the money while the plane is on the ground would
be hell of lot easier that it requires person with IQ less than his shoe
number to believe it. Furthermore the plot has no real twists at all three
year old kid could guess what comes next It is set of cliches of action genre with
Sly performing even worse than his other movies he was better even in Rambo III
if you watch that movie as comedy rather than action film Now there is an actor
who can act surprised sad anything else than his basic face would still like
to point out that this movie has two factors that might make some people
like it EXPLOSIONS are outstanding but then you can see better on the th of July
LANDSCAPES are magnificient but then there are documentaries about the Alps
and Himalayas so you can see better sights that way rather than waste time on this
flick. Go watch some other movie instead there are hundreds even thousands better
action movies.”

36

“I am still shuddering at the thought of EVER see-
ing this movie again have seen action films have”

“the worst male actor ever Sly Stallone playing the
lead role but the plot of the movie is so stupid”

“easier that it requires person with IQ less than his
shoe number to believe it. Furthermore the plot has”

“action genre with Sly performing even worse than his
other movies he was better even in Rambo III if you”

“else than his basic face would still like to
point out that this movie has two factors that”

Negative

Skip two chunks

Skip two chunks

Skip two chunks

Skip two chunks

Classify

Figure 5.1 Policy correctly predicts Negative by skimming and stopping reading
early

Review 2: “Within the realm of Science Fiction two particular themes
consistently elicit interest were initially explored in the literature of pre
cinematic era and have since been periodically revisited by filmmakers and writers
alike with varying degrees of success The first theme that of time travel has held
an unwavering fascination for fans of film as well as the written word
most recently on the screen with yet another version of the G Wells classic The Time
Machine The second theme which also manages to hold audiences in thrall
is that of invisibility which sparks the imagination with it seemingly
endless and myriad possibilities And this theme too has again become the basis for
film adapted from another G Wells classic The Invisible Man the realization
of which here is Hollow Man directed by Paul Verhoeven and starring
Kevin Bacon and Elisabeth Shue Sebastian Caine Bacon and his colleagues have
for some time been conducting experiments for the S Government exploring
the possibility and practicality of invisibility which they have at last
achieved in number of the primates upon which they have tested their method
They have in fact progressed to the point that effecting the invisibility is assured their

37

only problem now is bringing the subject back to the original visual state of being
It a problem however that Caine after diligent effort and too many hours in the lab
has solved or so he thinks And when the application of his theory on live subject is
successful he decides to present the results to the board of directors in an effort to
thereby maintain the funding necessary for the continuation of the project. At the
last minute though Caine demurs fearing that control of the project will be wrested
from him before they can proceed to the next level the testing of human subject And he
takes it upon himself to become that subject securing the assistance of his research
team by telling them that they ve been given approval by the board to do so But
something goes wrong and Caine becomes trapped in his cloak of invisibility and
as he and his team struggle to find the solution to his considerable dilemma before
it too late it all begins to take toll on Caine mind And suddenly his fear of losing
funding and control becomes inconsequential as he finds himself facing the imminent”
(...remaining part truncated after 400 words)

Within the realm of Science Fiction two particular themes consis-
tently elicit interest were initially explored in the literature of pre

theme that of time travel has held an unwavering fas-
cination for fans of film as well as the written word

which also manages to hold audiences in thrall is that of in-
visibility which sparks the imagination with it seemingly endless

The Invisible Man the realization of which here is Hollow Man
directed by Paul Verhoeven and starring Kevin Bacon and

Government exploring the possibility and practicality of invisibility
which they have at last achieved in number of the primates upon

Negative

Skip two chunks

Skip two chunks

Skip two chunks

Skip two chunks

Classify

Figure 5.2 Policy correctly predicts Negative by skimming and stopping reading
early

38

Review 3: Can Scarcely Imagine Better Movie Than This. Hey before
you all go Chick Flick on me am very Large Strong Masculine Macho Man
who happens to think this was one of the better movies of the last years. The acting
was Superb and the Story was Marvelous This is wonderful medicine
for the heart and soul The Acting could not have been better nor the movie better
cast have known for Good while that Mercedes Ruehl along with Holly Hunter
Joan Plowright Dame Edith Evans Sissy Spacek Judi Dench is among
the greatest actresses ever to appear on film And of course Cloris Leachman also
in this film in my view may in fact exceed them all in the shear magnum of
her talent and varied roles she has appeared in over the years At any rate
this was an Amazing cast This film was like book that you cannot lay down and when
you have reached the last page wish for more still more cannot for the
life of me understand why this film here on the IMDb only rates That rating
here is utterly Amazing to me Or perhaps not Perhaps in fact do understand it ever
so well and that is what makes me really sad It makes me ever so sad that films like
American Beauty Leaving Las Vegas Sexy Beast and Fight Club ratings skyrocket
off the charts in popularity when they in fact at least in this viewers opinion should
have received an rating that is for Rubbish Hey k realize there are lot of different
stories in this world for lot of different audiences but it is sad commentary when
this lovely powerful extraordinarily Directed Acted and written film seems to be over
looked It obviously was at the Academy Awards as well How Sad And How predictable
My summation is that if you want to see powerful Happy Sad beautiful story watch
preferably own this film (...remaining part truncated after 400 words)

39

Can Scarcely Imagine Better Movie Than This Hey
before you all go Chick Flick on me am very

The acting was Superb and the Story was Marvelous
This is wonderful medicine for the heart and soul

Mercedes Ruehl along with Holly Hunter Joan Plowright Dame Edith
Evans Sissy Spacek Judi Dench is among the greatest actresses

exceed them all in the shear magnum of her talent
and varied roles she has appeared in over the years

you have reached the last page wish for more still
more cannot for the life of me understand why this

Positive

Skip two chunks

Skip two chunks

Skip two chunks

Skip two chunks

Classify

Figure 5.3 Policy correctly predicts Positive by skimming and stopping reading
early

Upon examining the action statistics associated with the Skip-Twice Strategy, it
becomes evident that the policies consistently opt to bypass two chunks on four
occasions before proceeding with classification, showcasing this behavior at any mo-
ment after only a few training iterations. This indicates that the policies don’t
genuinely discern which portions of the text are salient for the classification task.
Instead, they select a baseline quantity of chunks to use, in our case specifically five
chunks or approximately 100 words, and then execute the classification based on
this confined selection. We depict this as a result of a convergence to a rare local
optimality which enables to topology to maximize the expected reward by reading
only five chunks, avoiding the penalty for the reading more text in R1 whilst making
enough observations to make correct predictions.

5.2 Baseline Model Performance

We compare our results obtained with Language Model feature extractor topologies
on the main benchmark with CNN feature extractor implemented by Yu et al. (2018).

40

On all these topologies, LSTM is used as episodic memory component for policies.
Despite employing certain techniques from closely-related study Yu et al. (2017)
to compensate for insufficient information provided in the paper, we were unable
to attain the high levels of accuracy and balance between accuracy and efficiency
purportedly achieved by the proposed model. Number of training steps, dimensions
of the LSTM layers, dimensions of the word embeddings, usage of pretrained word
embeddings are several such details that are not given in Yu et al. (2018), and no
implemented code is provided by them either. Furthermore, while the model was
reported to have superior performance when employing Advantage Actor-Critic, the
available information regarding this methodology is limited.

Regardless, we implemented the closest possible topology using the same hyperpa-
rameters given in (Yu et al., 2018), and the results we observe for this scheme shows
that the policy usually converges to Full-Read Tendency when we use reward func-
tion R2 and to First-Chunk Focus when we use reward function R1. On same rare
cases, we also observe Skip-Twice Strategy when reward function R2 is used, and
this produced the best result on the test set of IMDB.

Figure 5.4 CNN Topology’s training performance on IMDB dataset (left to right:
Accuracy, Precision, Recall, F1 Score)

Figure 5.5 CNN Topology’s training performance on AG News dataset (left to
right: Accuracy, Precision, Recall, F1 Score)

On training data we see a consistent increase on all metrics. However, the perfor-
41

mance of the topology is not as high in the test set, implying some overfitting on
the training data despite the counter-measures we applied.

(a) Performance on IMDB (b) Performance on AG News

Figure 5.6 CNN + LSTM topology performance on two datasets’ validation split

The topology achieves 0.76±0.008 accuracy on the test set of IMDB and 0.85±0.013
accuracy on the test set of AG News when trained with the two reward functions
on different seeds.

5.3 Performances of our Implemented Topologies

We use transformers and transformer based several language models as feature ex-
tractors in our experiments, where DistilBERT (Sanh et al., 2020) and RoBERTa
(Liu et al., 2019) were the most successful ones.

5.3.1 DistilBERT + LSTM

We were able to achieve performant policies when we made use of DistilBERT as the
feature extractor. Since it is a lightweight version of the BERT, we could test this
topology more thoroughly with the limited resources we had. We observe that the
policies trained with this topology mostly converge to First-Chunk Focus. We depict
this as a result of generality and robustness of DistilBERT, making it unnecessary for
the topology to read more text to successfully make predictions. Usage of reward

42

functions R1 and R2 does not seem to make difference on the behaviours on AG
News, albeit we see Skip-Twice Strategy when we use R1 and Full-Read Tendency
when R2 is used on IMDB data on some occasions. One can speculate that the
penalty applied for reading causes the policy to this behaviour change.

Figure 5.7 DistilBERT Topology’s training performance on IMDB dataset (left to
right: Accuracy, Precision, Recall, F1 Score)

Figure 5.8 DistilBERT Topology’s training performance on AG News dataset (left
to right: Accuracy, Precision, Recall, F1 Score)

(a) Performance on IMDB (b) Performance on AG News

Figure 5.9 DistilBERT + LSTM topology performance on two datasets’ validation
split

43

This topology achieves 0.81±0.011 accuracy on the test set of IMDB and 0.91±0.007
accuracy on the test set of AG News.

5.3.2 RoBERTa + LSTM

Another language model with which we accomplish propitious performance is
RoBERTa, when used as the feature extractor. We perceive that the policies in
this topology converge either to First-Chunk Focus or Full-Read Tendency indepen-
dent from the used reward function. We encounter First-Chunk Focus on AG News,
for which it can be argued that it is easier to make correct predictions with less text,
and Full-Read Tendency on IMDB which is arguably more difficult to classify.

Figure 5.10 RoBERTa Topology’s training performance on IMDB dataset (left to
right: Accuracy, Precision, Recall, F1 Score)

Figure 5.11 RoBERTa Topology’s training performance on AG News dataset (left
to right: Accuracy, Precision, Recall, F1 Score)

44

(a) Performance on IMDB (b) Performance on AG News

Figure 5.12 RoBERTa + LSTM topology performance on two datasets’ validation
split

RoBERTa + LSTM topology attains 0.84±0.008 accuracy on the test set of IMDB
and 0.9±0.004 accuracy on the test set of AG News.

5.3.3 Overview of the Model Performances

Here we give the model performances on the test datasets, when trained with two
different reward functions. We demonstrate these on Table 5.1.

In our examination of CNN + LSTM topology, policies predominantly converge to
Full-Read Tendency with reward function R2 and First-Chunk Focus with R1. How-
ever, in rare instances, Skip-Twice Strategy is encountered with R2, yielding optimal
results on the IMDB. With DistilBERT + LSTM, the prevalent tendency of poli-
cies is towards First-Chunk Focus, potentially attributable to the inherent potency
of DistilBERT. While reward functions R1 and R2 generate similar behaviors on
AG News, distinctions arise on IMDB; where, occasional emergence of Skip-Twice
Strategy with R1 and Full-Read Tendency with R2. This divergence might be influ-
enced by the penalties associated to the reading more text. For RoBERTa + LSTM,
policies consistently converge to either First-Chunk Focus or Full-Read Tendency,
regardless from the reward function. Notably, First-Chunk Focus is predominant
on AG News, due to its simplicity, while Full-Read Tendency is more common on
IMDB, where classification task is more challenging as the users tend to write long
irrelevant sentences in their reviews.

45

Topology Reward
Function

Best Accuracy
on IMDB

(whole reading
model

accuracy) /
Policy

Behaviour

Best Accuracy
on AG News

(whole reading
model

accuracy) /
Policy

Behaviour
CNN + LSTM R1 0.76 (0.82) /

Skip-Twice
Strategy

0.86 (0.91) /
First-Chunk

Focus
DistilBERT +
LSTM

R1 0.81 (0.89) /
Skip-Twice

Strategy

0.92 (0.95) /
First-Chunk

Focus
RoBERTa +
LSTM

R1 0.84 (0.9) /
Full-Read
Tendency

0.9 (0.94) /
First-Chunk

Focus
CNN + LSTM R2 0.75 (0.82) /

Full-Read
Tendency

0.86 (0.91) /
Full-Read
Tendency

DistilBERT +
LSTM

R2 0.82 (0.89) /
Full-Read
Tendency

0.91 (0.95) /
First-Chunk

Focus
RoBERTa +
LSTM

R2 0.85 (0.9) /
Full-Read
Tendency

0.9 (0.94) /
First-Chunk

Focus

Table 5.1 Performances of the topologies on test sets

46

Topology Policy
Behaviour

FLOPS
per one
forward

pass

Training
time per

epoch (20k
samples)

Inference
time (5k
samples)

CNN +
LSTM

First-Chunk
Focus

1.59 million 890s 85s

CNN +
LSTM

Full-Read
Tendency

31.98 million 1450s 131s

CNN +
LSTM

Skip-Twice
Strategy

7.99 million 1020s 99s

CNN +
LSTM

whole
reading
model

39.58 million 2133s 304s

DistilBERT
+ LSTM

First-Chunk
Focus

0.85 billion 1948s 243s

DistilBERT
+ LSTM

Full-Read
Tendency

17.18 billion 3684s 450s

DistilBERT
+ LSTM

Skip-Twice
Strategy

4.29 billion 2775s 311s

DistilBERT
+ LSTM

whole
reading
model

17.18 billion 4770s 514s

RoBERTa +
LSTM

First-Chunk
Focus

1.71 billion 4226s 414s

RoBERTa +
LSTM

Full-Read
Tendency

34.18 billion 8753s 676s

RoBERTa +
LSTM

Skip-Twice
Strategy

8.55 billion 6644s 591s

RoBERTa +
LSTM

whole
reading
model

34.20 billion 11385s 999s

Table 5.2 Training/Inference Time and FLOP statistics of the topologies

47

We also inspect the required FLOPs and training and inference time of our topologies
in Table 5.2. When we investigate the number of FLOPs per one forward pass, that
is, the FLOPs required for the topology to complete one episode, we see that we have
achieved to decrease this cost by around 95% with the policies converging to First-
Chunk Focus and by around 80% with the policies converging to Skip-Twice Strategy,
when compared to the whole reading models constructed with the same topology.
This is not an unexpected outcome as policies with these behaviours observe shorter
samples of text compared to the whole reading model. We even observe around 20%
decrease in FLOPs for CNN + LSTM topology and 1% decrease in RoBERTa +
LSTM topology with Full-Read Tendency, which seems to observe texts of the same
length as the whole reading model.

We posit that, enhancements for both training and inference times in our topologies
that converge to any behaviour is due to the reduction in the number of parameters
used in the calculations for forward and backward passes. These results show that
together with the decreased number of FLOPs, the topologies were able to introduce
faster training and inference.

5.4 Conclusion and Future Work

In conclusion, our study aimed to reproduce the results reported in Yu et al. (2018)
but encountered challenges in achieving identical outcomes. However, our findings
align closely with other institutions (Xie et al., 2019) that attempted to replicate
the results, suggesting the presence of common factors affecting the reproducibility
of the original study. Notably, by leveraging transformers and pretrained Language
Models (LLMs) as feature extractors and making use of another reward function,
we improved the accuracy of our results compared to the initial findings.

• We showcased the effectiveness of our policies, that obtain the behaviours
First-Chunk Focus and Skip-Twice Strategy that does not require to observe
the entirety of text to make a classification.

• We accomplished to reduce the FLOPs on average 60% in training and in-
ference for all the policy behaviours we obtained. Meanwhile, we achieved to
preserve the accuracy by only suffering on average 5% loss.

• We show that train and inference times are reduced in all behaviours, with

48

60% for First-Chunk Focus, 46% for Skip-Twice Strategy and 25% for Full-Read
Tendency on average.

To further advance the field, we propose future work that explores the use of trans-
formers with gating mechanisms as an episodic memory component demonstrated
in Parisotto et al. (2019), replacing LSTM-based approaches. We believe this shift
in architecture could potentially yield significant improvements in performance and
learning capabilities.

Additionally, training the policies using Proximal Policy Optimization (PPO) cou-
pled with Reinforcement Learning from Human Feedback as in (Ramamurthy et al.,
2023) can contribute to enhanced stability during the training process.

It is worth noting that the inability to replicate the exact results might stem from
undisclosed implementation details in the original study, such as the dimension of the
word embeddings, usage of pretrained word embeddings, dimensions of the LSTM,
or the number of training steps employed.

49

BIBLIOGRAPHY

Bellman, R. E. (2003). Dynamic Programming. Dover Publications, Inc., USA.
Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic

language model. In Journal of machine learning research.
Bradley Knox, W. and Stone, P. (2008). Tamer: Training an agent manually via

evaluative reinforcement. In 2008 7th IEEE International Conference on De-
velopment and Learning, pages 292–297.

Chai, D., Wu, W., Han, Q., Wu, F., and Li, J. (2020). Description based text
classification with reinforcement learning.

Chan, H. P., Chen, W., Wang, L., and King, I. (2019). Neural keyphrase generation
via reinforcement learning with adaptive rewards.

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., and Amodei, D. (2023).
Deep reinforcement learning from human preferences.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017).
Deep reinforcement learning from human preferences. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding.

Dulac-Arnold, G., Denoyer, L., and Gallinari, P. (2011). Text classification: A
sequential reading approach. In Lecture Notes in Computer Science, pages
411–423. Springer Berlin Heidelberg.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36:193–202.

Goldberg, Y. and Hirst, G. (2017). Neural Network Methods in Natural Language
Processing. Morgan amp; Claypool Publishers.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural com-
putation, 9:1735–80.

Johnson, R. and Zhang, T. (2015). Effective use of word order for text categorization
with convolutional neural networks.

Kim, Y. (2014). Convolutional neural networks for sentence classification.
Kreutzer, J., Riezler, S., and Lawrence, C. (2020). Offline reinforcement learning

from human feedback in real-world sequence-to-sequence tasks.
Lagoudakis, M. G. and Parr, R. (2003). Reinforcement learning as classification:

Leveraging modern classifiers. In Proceedings of the 20th International Con-
ference on Machine Learning (ICML-03), pages 424–431.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, H. and Xu, H. (2020). Deep reinforcement learning for robust emotional classifi-
cation in facial expression recognition. Knowledge-Based Systems, 204:106172.

Lin, E., Chen, Q., and Qi, X. (2020). Deep reinforcement learning for imbalanced
classification. Applied Intelligence, 50(8):2488–2502.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
50

Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011).
Learning word vectors for sentiment analysis. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 142–150, Portland, Oregon, USA. Association for
Computational Linguistics.

MacGlashan, J., Ho, M. K., Loftin, R. T., Peng, B., Roberts, D. L., Taylor, M. E.,
and Littman, M. L. (2017). Interactive learning from policy-dependent human
feedback. CoRR, abs/1701.06049.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.

Mansour, R. F., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J. A., and Leal,
N. (2021). Intelligent video anomaly detection and classification using faster
rcnn with deep reinforcement learning model. Image and Vision Computing,
112:104229.

Mao, Y., Qu, Y., Xie, Y., Ren, X., and Han, J. (2020). Multi-document summa-
rization with maximal marginal relevance-guided reinforcement learning.

Mao, Y., Tian, J., Han, J., and Ren, X. (2019). Hierarchical text classification with
reinforced label assignment. Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP).

Martinez, C., Ramasso, E., Perrin, G., and Rombaut, M. (2020). Adaptive early clas-
sification of temporal sequences using deep reinforcement learning. Knowledge-
Based Systems, 190:105290.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.

OpenAI (2023). Gpt-4 technical report.
Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for senti-

ment categorization with respect to rating scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 115–124, Ann Arbor, Michigan. Association for Computational Linguis-
tics.

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gulcehre, C., Jayakumar, S. M.,
Jaderberg, M., Kaufman, R. L., Clark, A., Noury, S., Botvinick, M. M., Heess,
N., and Hadsell, R. (2019). Stabilizing transformers for reinforcement learning.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Qian, X., Zhong, Z., and Zhou, J. (2018). Multimodal machine translation with
reinforcement learning.

Radford, A. and Narasimhan, K. (2018). Improving language understanding by
generative pre-training.

51

Ramamurthy, R., Ammanabrolu, P., Brantley, K., Hessel, J., Sifa, R., Bauckhage,
C., Hajishirzi, H., and Choi, Y. (2023). Is reinforcement learning (not) for
natural language processing: Benchmarks, baselines, and building blocks for
natural language policy optimization.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020). Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter.

Satija, H. and Pineau, J. (2016). Simultaneous machine translation using deep
reinforcement learning.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience
replay.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2018). High-
dimensional continuous control using generalized advantage estimation.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proxi-
mal policy optimization algorithms.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is enough.
Artificial Intelligence, 299:103535.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
The MIT Press, second edition.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with
double q-learning.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need.

Wang, J., Sun, C., Li, S., Wang, J., Si, L., Zhang, M., Liu, X., and Zhou, G. (2019).
Human-like decision making: Document-level aspect sentiment classification
via hierarchical reinforcement learning.

Watkins, C. (1989). Learning from delayed rewards.
Wiering, M. A., van Hasselt, H., Pietersma, A.-D., and Schomaker, L. (2011).

Reinforcement learning algorithms for solving classification problems. In
2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL), pages 91–96.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. In Machine Learning, pages 229–256.

Wu, L., Tian, F., Qin, T., Lai, J., and Liu, T.-Y. (2018). A study of reinforcement
learning for neural machine translation. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pages 3612–3621,
Brussels, Belgium. Association for Computational Linguistics.

Xia, Y., He, D., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and Ma, W.-Y. (2016). Dual
learning for machine translation.

Xie, F., Deng, W., and Liu, P. (2019). Reproduction of "fast and accu-
rate text classification" paper from iclr 2018. https://github.com/
COMP6248-Reproducability-Challenge/Fast-And-Accurate-Text
-Classification-Reproduction/tree/master.

Xu, J., Zhao, L., Yan, H., Zeng, Q., Liang, Y., and Sun, X. (2019). LexicalAT:
Lexical-based adversarial reinforcement training for robust sentiment classifi-
cation. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages 5518–5527, Hong Kong,
China. Association for Computational Linguistics.

52

https://github.com/COMP6248-Reproducability-Challenge/Fast-And-Accurate-Text-Classification-Reproduction/tree/master
https://github.com/COMP6248-Reproducability-Challenge/Fast-And-Accurate-Text-Classification-Reproduction/tree/master
https://github.com/COMP6248-Reproducability-Challenge/Fast-And-Accurate-Text-Classification-Reproduction/tree/master

Yang, P., Ma, S., Zhang, Y., Lin, J., Su, Q., and Sun, X. (2018a). A deep
reinforced sequence-to-set model for multi-label text classification. CoRR,
abs/1809.03118.

Yang, P., Sun, X., Li, W., Ma, S., Wu, W., and Wang, H. (2018b). Sgm: Sequence
generation model for multi-label classification.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierar-
chical attention networks for document classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1480–1489, San
Diego, California. Association for Computational Linguistics.

Yu, A. W., Lee, H., and Le, Q. V. (2017). Learning to skim text.
Yu, K., Liu, Y., Schwing, A. G., and Peng, J. (2018). Fast and accurate text

classification: Skimming, rereading and early stopping.
Zhang, X., Zhao, J. J., and LeCun, Y. (2015). Character-level convolutional net-

works for text classification. In NIPS.
Zhao, D., Chen, Y., and Lv, L. (2017). Deep reinforcement learning with visual

attention for vehicle classification. IEEE Transactions on Cognitive and De-
velopmental Systems, 9(4):356–367.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and
Fidler, S. (2015). Aligning books and movies: Towards story-like visual ex-
planations by watching movies and reading books.

Zhu, Z., Wang, L., Magnier, B., Zhu, L., Zhang, D., and Yu, L. (2022). Rein-
forcement learning driven intra-modal and inter-modal representation learn-
ing for 3d medical image classification. In Wang, L., Dou, Q., Fletcher, P. T.,
Speidel, S., and Li, S., editors, Medical Image Computing and Computer As-
sisted Intervention – MICCAI 2022, pages 604–613, Cham. Springer Nature
Switzerland.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D.,
Christiano, P. F., and Irving, G. (2019). Fine-tuning language models from
human preferences. CoRR, abs/1909.08593.

53

	LIST OF ALGORITHMS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Related Work on Text Classification with Reinforcement Learning
	Reinforcement Learning on Classification and other NLP Tasks

	BACKGROUND
	Deep Natural Language Processing
	Feature Extraction
	Neural Language Models
	Deep Neural Network Topologies
	Convolutional Neural Networks
	LSTM

	Transformer

	Reinforcement Learning
	Definitions and Notations
	Value-Based Approaches
	Q-Learning
	Deep Q-Learning

	Policy-Based Approaches
	REINFORCE (Monte Carlo Policy Gradient)

	Advanced Methods
	Advantage Actor Critic (A2C)
	Proximal Policy Optimization (PPO)

	DATASETS
	IMDB Movie Reviews Dataset
	Examples from IMDB reviews

	AG News Dataset
	Examples from AG News

	Methodology
	Environment
	Overview of the Policies
	Action Spaces
	Reward Functions
	Feature Extractors
	Episodic Memory Component
	Policy Models

	Results and Discussion
	Policy Behaviours
	Policy Behaviours on Reward Functions on Different Data
	Policy Decisions on Sample Reviews with Skip-Twice Strategy

	Baseline Model Performance
	Performances of our Implemented Topologies
	DistilBERT + LSTM
	RoBERTa + LSTM
	Overview of the Model Performances

	Conclusion and Future Work

	BIBLIOGRAPHY

