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ABSTRACT

A METHOD FOR GROUP ACTIVITY RECOGNITION IN VOLLEYBALL VIDEOS
WITH EXTENSIONS TO DOMAIN GENERALIZATION

BERKER DEMIREL

COMPUTER SCIENCE AND ENGINEERING M.S. THESIS, JULY 2023

Thesis Supervisor: Assist. Prof. Dr. Huseyin Ozkan

Keywords: Group activity recognition, Domain generalization, Additive
disentanglement, Remix strategy, Reannotations

In this thesis, we present two novel methods to address the challenges of group activ-
ity recognition and domain generalization: DECOMPL and ADRMX, respectively. Our
primary focus is on the recognition of group activities in volleyball videos. We argue
that previous temporal methods have not shown significant performance improvements
that justify their additional computational cost, which scales linearly with the number
of frames. To tackle this, we propose DECOMPL, a non-temporal method that lever-
ages both visual and coordinate features from a single frame to classify the activity in a
video. For the task of group activity recognition in volleyball videos, we introduce sev-
eral problem-specific contributions. These include utilizing horizontal flips to exploit the
symmetry of activities, decomposing labels to provide additional feedback through sub-
tasks, and employing a heuristic to split team features. Furthermore, during our study
of the Volleyball dataset, which is widely used in recent literature, we realized that the
labeling scheme degrades the group concept, reducing them to the level of individual
actions. We correct for this by providing new reannoations that emphasize the group con-
cept. DECOMPL demonstrates remarkable performance on both the Volleyball dataset
and the Collective Activity dataset, showcasing its effectiveness in group activity recog-
nition. Our approach is on par with temporal methods, highlighting its potential in this
field. In addition to group activity recognition, we also investigate the domain general-
ization problem, as videos often come from different domains due to variations in camera
orientation and background or due to even the team side change in volleyball videos.
ADRMX, our proposed method for domain generalization, incorporates domain variant
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features along with domain invariant ones with an additive disentanglement. To enhance
the robustness of our model, we introduce a novel data augmentation technique called
remix strategy, which operates on the latent space to generate synthetic instances. On
the DomainBed benchmark, ADRMX achieves state-of-the-art performance among 14
algorithms, as measured by average accuracy across seven well-known datasets.
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ÖZET

ALAN GENELLEŞTIRME UZANTILARIYLA VOLEYBOL VIDEOLARINDA
GRUP AKTIVITE TANIMA İÇIN BIR YÖNTEM

BERKER DEMIREL

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ
2023

Tez Danışmanı: Dr. Öğr. Üyesi Huseyin Ozkan

Anahtar Kelimeler: Grup etkinlik tanıma, Alan genelleme, Toplamsal ayrıştırma,
Yeniden birleştirme stratejisi, Yeniden etiketleme

Bu tezde, DECOMPL ve ADRMX adında sırasıyla grup etkinlik tanıma ve alan genelleme
problemlerini ele alan iki yaklaşım sunuyoruz. Başlangıçta temel odak noktamız voley-
bol videolarında grup etkinliklerinin tanınması üzerineydi. Önceki çalışmaların, video-
ların zamansal özelliklerinden ek hesaplama maliyetlerini tazmin edecek kadar büyük per-
formans iyileştirmelerini gösteremediğini savunuyoruz. Videodaki kare sayısıyla doğru
orantılı olan ek hesaplama maliyetini performansta önemli ölçüde bir düşüş görme-
den gidermek için önerdiğimiz DECOMPL, tek bir karedeki görsel ve koordinat özel-
liklerini kullanarak sınıflandırma yapıyor. Voleybol videolarında grup etkinliği tanıma
problemi için, bazı probleme özgü katkılar sunuyoruz. Bunlar, etkinliklerin simetrisini
kullanmak için yatay döndürmelerden yararlanma, etiketleri ayrıştırarak problemi alt-
problemlere bölme, ve takım özelliklerini elde etmek için buluşsal bir yöntemle kare-
deki insanları takımlara atama gibi unsurları içeriyor. Ayrıca, literatürde yaygın olarak
kullanılan Voleybol veri kümesini incelerken kullanılan etiketleme yönteminin örnek-
lerdeki grup kavramını azalttığını ve onları bireysel oyuncuların hareketleri seviyesine
indirgediğini fark ettik. Bu sorunu ele almak için, veri kümesini grup kavramını vurgu-
layarak yeniden etiketledik. DECOMPL, Volleyball ve Collective Activity veri kümeleri
üzerinde dikkate değer bir performans sergileyerek, grup etkinlik tanıma konusundaki
başarısını göstermektedir. Yaklaşımımız, zamansal yöntemlerle aynı seviyede olup bu
alandaki potansiyelini vurgulamaktadır. Videoların farklı alanlardan geldiğini gözlem-
lediğimiz için, grup etkinlik tanıma probleminin yanısıra, alan genelleme problemini de
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çalıştık. Alan genelleme için önerdiğimiz yöntem ADRMX, alan değişken özellikleri
ve alan durağan özelliklerini birleştirerek toplamsal bir ayrıştırmayla birlikte kullanmak-
tadır. Modelimizin dayanıklılığını artırmak için örtülü uzayda çalışan yeniden birleştirme
stratejisi adlı yeni bir veri arttırma tekniği sunuyoruz. DomainBed değerlendirme testi
üzerinde, ADRMX, yedi tanınmış veri kümesindeki ortalama doğruluk ölçütüne göre 14
algoritma arasında en iyi performansı sergilemektedir.
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1. INTRODUCTION

Deep learning has drawn significant attention due to its remarkable success across var-
ious domains, including natural language processing [13, 61, 73], image recognition
[29, 68, 15], object detection [25, 24, 62], segmentation [28, 63, 87], and video classi-
fication [67, 75, 18]. The advancement of deep architectures has led to extracting highly
effective features, enabling breakthroughs in these tasks. In natural language process-
ing, deep learning techniques are utilized in machine translation, sentiment analysis, and
question-answering systems, which are shown to surpass traditional approaches by a wide
margin. Similarly, in image recognition, deep architectures have achieved remarkable re-
sults, as demonstrated by their superior performance in the prestigious ImageNet chal-
lenge [64]. These architectures have also been proven invaluable in object detection,
where the goal is not only to recognize objects but also to precisely localize them within
an image. By incorporating deep learning techniques, approaches such as Faster R-CNN
[62] have achieved unprecedented accuracy in this area.

As we strive for further advancements, researchers have turned their attention to more
complex challenges. Video classification, in particular, has emerged as a captivating field
of study. Videos present unique difficulties due to their temporal nature, requiring models
to understand and analyze dynamic visual sequences. With the abundance of video data in
various domains, including surveillance [40], video understanding [52], and autonomous
vehicles [9], effective video classification techniques are in high demand.

These problems can be further categorized based on their complexity. One can consider,
for instance, the task of recognition, which encompasses subcategories such as action
recognition [49, 1, 19] and activity recognition [11, 4, 33]. While action recognition has
been extensively studied, activity recognition presents a more intricate challenge. In ac-
tion recognition, the focus is on identifying and classifying actions performed by a single
main actor. The task involves understanding the actions being performed by that individ-
ual. In contrast, activity recognition introduces a higher level of complexity by involving
multiple actors who collectively contribute to the activity in a harmonious and system-
atic manner. As such, activity recognition demands a deeper level of comprehension
compared to action recognition, as it requires the observation of multiple actors within a
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scene or frame. The ultimate goal is to discern the specific activity that emerges from the
combined actions of these individuals.

In this thesis, we first focus on the challenging task of group activity recognition in vol-
leyball videos. It is a problem that lies in the intersection of video processing and activity
recognition. Recognizing group activities in volleyball videos requires addressing the
complexities arising from the interactions among multiple actors. Building upon prior
research and identifying its strengths and limitations, we propose a novel method that
exploits the problem structure, assigns weights to the actors on a frame based on their
contribution to the activity, considers the spatial configuration of the actors and is non-
temporal. Unlike most existing methods, our approach exploits the problem structure
by dividing teams using a heuristic approach and exploiting the symmetry of the scene.
Notably, in volleyball videos, flipping frames horizontally yields another instance with
the side information of the labels flipped. To capture actor-level importance, we employ
an attention mechanism, enhanced with pooling to accommodate variable-length actors.
Additionally, in contrast to existing literature, we aim to incorporate the relative positions
of the actors through our convolutional coordinate block 2.3.2, enabling our model to in-
corporate global-level information. Notably, our approach intentionally avoids relying on
temporality. Instead, we make activity predictions based on a single frame alone. We
argue that the existing methods struggle to effectively extract temporal features, resulting
in limited performance gains. By omitting temporal information, we significantly reduce
training time while maintaining performance at a negligible loss.

Secondly, it is worth noting that volleyball videos are sourced from various domains,
encompassing matches played by different teams on different courts. Additionally, dif-
ferences in backgrounds, camera orientations, and occlusions further contribute to the
variability within the dataset. The horizontal flip approach we utilized for volleyball
videos can be seen as a domain generalization technique -which is indeed more than a data
augmentation- that increases generalizability thanks to the problem symmetry. In light of
these observations, we recognize the significance of exploring the domain generalization
problem. The domain generalization problem [51, 43] challenges the assumption that
train and test set following similar distributions. Considering the real-world systems, be-
ing robust to the distributional changes is crucial. Given multiple source domains, domain
generalization aims to create robust models that provide generalization to the new unseen
domains. To achieve that, most of the prior work focuses on extracting domain invari-
ant features to mitigate the effects of distributional changes between domains. However,
such approaches may limit generalization to the intersection of source domains which
can hinder performance when there are domain specific characteristics that can carry over
between domains. In the latter part of this thesis, we propose a method that models both
domain-specific and domain-invariant features in an additive fashion. By adopting this
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architecture, we can harness the advantages of domain-specific features while maintain-
ing robustness to distributional shifts. Additionally, we introduce a novel remix strategy
that capitalizes on the properties of our architecture. As the relationship between domain-
specific and domain-invariant features is additive, we can merge the domain features of
one instance with the domain-invariant features of another instance, where they belong to
different domains but share the same label.

We discuss the proposed methods, DECOMPL for group activity recognition and
ADRMX for domain generalization, in detail on upcoming chapters. For the group ac-
tivity recognition, although our work focuses more on the Volleyball dataset (VD) [33],
we present our method’s performance on the Collective Activity dataset (CAD) [11] as
well to show that its scope is not limited to the volleyball videos. Furthermore, during our
work on the VD, we identified an erroneous labeling scheme that undermines the concept
of group activities within the dataset. To rectify this issue, we conducted a reannotation
process for approximately 10% of the VD and provide comprehensive explanations in
Section 2.4. In the context of the domain generalization problem, we evaluate our novel
approach using the DomainBed benchmark [27]. This benchmark allows for a fair and
comprehensive evaluation of different methods on seven well-known datasets. By lever-
aging the DomainBed benchmark, we assess the effectiveness and generalizability of our
proposed method against existing state-of-the-art approaches. We aim to contribute valu-
able insights to the fields of group activity recognition and domain generalization, paving
the way for future advancements and applications in these areas.

Our main contributions and highlights are as follows.

• DECOMPL utilizes MIL pooling [34] with multi heads for the GAR problem as
the first time in the literature. Unlike other state-of-the-art methods [82, 86], DE-
COMPL is end-to-end.

• We decompose the GAR for volleyball into subproblems by exploiting the mirror
symmetry across the team sides and introduce auxiliary labels. Benefiting from the
extra information, representation capacity of the model is improved.

• By dropping the temporality, we reduced the number of required floating point
operations to 10% of the nearest competitor, with only negligible loss (less than
0.3%) on the accuracy side.

• In our extensive experiments and ablation studies with the widely used bench-
mark Volleyball dataset in [33], DECOMPL achieves 93.8% GAR performance (the
second highest) for the original VD, and 95.2% (the highest) for the reannotated
version. Our coordinate branch (using only the configuration of players) single-
handedly performs up to 73% accuracy without any visual information, which is on
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par with most of the early deep learning based solutions.

• Although this VD is very popular in the literature, we encountered systematic la-
beling flaws in its ground truth. We manually reannotated (497 examples were cor-
rected out of 4821), discussed the semantics of each label and reported the results
for the methods in [82, 86, 45] with the new annotations.

• We propose a novel architecture called ADRMX, which effectively disentangles the
relationship between domain features and domain invariant features in an additive
manner.

• Leveraging the additive relationship, we introduce a data augmentation technique
that enables the mixing of instances from different domains within the latent space.

• The effectiveness of ADRMX is demonstrated by achieving state-of-the-art perfor-
mance in the DomainBed [27] benchmark. Notably, accross the seven datasets,
ADRMX achieves an impressive average accuracy of 67.6%, surpassing the per-
formance of previous approaches.
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2. DECOMPL: Decompositional Learning with Attention Pooling for Group

Activity Recognition from a Single Volleyball Image

2.1 Introduction

Group activity recognition (GAR) refers to the identification of the collective activity
performed by a group of individuals in a given short video clip [11, 4, 22, 33, 60, 76,
78, 81]. For the goal of GAR, unlike action recognition [49, 1, 19], one should jointly
consider multiple individual actions that are statistically dependent both spatially and
temporally. Even when the GAR problem can be reduced to finding the most critical
actor’s (i.e., individual’s) action, that action typically depends on the configuration as
well as the actions of other actors in the scene. Hence, considering the individual actions
jointly and extracting the higher level semantic information is important. Such higher
level representations appear as a key component in several other areas as well, e.g., social
behavior analysis [52], surveillance systems [40], sports video analysis [14, 60], social
robots [54] and even autonomous driving [9]. The GAR studies can benefit from the ideas
and approaches developed in these areas. However, exclusively in the spatio-temporal
GAR problems, it is challenging to efficiently build up the spatial as well as temporal
relations among individuals based solely on the processing of videos that are short in
time.

In this chapter, we propose a novel technique, called DECOMPL, which tackles the GAR
problem for volleyball videos only in the spatial dimension. Changing the problem setting
from spatio-temporal to only spatial has its own advantages and limitations. It eases
the computation by a significant margin and reduces the problem into discovering the
relations of individuals in the input image. On the other hand, solving the problem with
less information is obviously more challenging. Although the pose (of an individual)
and the spatial configuration of poses are static in a given image and has no temporal
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Figure 2.1 Group activity recognition using RGB image and bounding box coordinates.
Visual representation is captured by the attention mechanism and the complementary po-
sition features are modelled with the proposed coordinate block.

dimension, it is known to be highly predictive of the corresponding action in time [49, 19].
Here we hypothesize that, conditioned on the spatial information, dropping the temporal
dimension in favor of computation gains should not be losing much information regarding
GAR in volleyball videos.

Our technique (Figure 2.1), DECOMPL, consists of two information processing branches,
the visual branch and the coordinate branch, for extracting person1 level visual features
(encoding the individual actions based on their static poses) and person level spatial loca-
tion features (encoding the spatial configuration of the individuals). On the visual branch,
we incorporate the VGG backbone [68] with RoI align [28] to extract the person level
features from an image. A multi-head attention pooling module [34] also assigns im-
portance weights to the extracted person level features. As for the other branch, we use
i) a coordinate module to extract the coordinates and the corresponding spatial location
features for each individual, and ii) a single attention pooling module to combine the ex-
tracted coordinate based features with respect to their attention weights. The information
flowing over these two branches is aggregated for each image, and a second aggregation
across images reveals our final GAR decision for the short video clip in hand. In this GAR
process, DECOMPL exploits the decomposable structure in the volleyball videos, thanks
to the mirror symmetry across the team sides, by introducing certain sub-classification
tasks. In addition to deciding on the group activity label, we also decide which team side
does the corresponding activity and what kind of activity has been seen without the side
information. With these sub-classification tasks, DECOMPL achieves to reinforce the
supervision loss signal and increases its representation capacity.

1We use the words “individual", “actor", “player" or “person" interchangeably with slight contextual differences.
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2.2 Related Work

Early GAR methods typically used convolutional neural networks (CNN) and in-
put the CNN features to recurrent neural networks (RNN), several examples include
[33, 66, 4, 60, 32, 30]. Newer approaches like relational modules and graph CNNs have
been used to capture the group level information more powerfully [32, 3, 76, 30, 59]. Re-
cently, attention models, particularly transformers, have been utilized to detect the most
important actors in the scene [60, 81, 22, 45]. We observe that these GAR methods can
be grouped into three categories with respect to the input they use: RGB only, keypoint
only and mixed.

RGB only methods take only an RGB image as input. A 2-stage deep hierarchical model
that utilizes LSTMs was used in the RGB method of [33] to form representations at the
temporal level for individuals as well as groups. Likewise, [66] also used 2-level LSTMs,
but minimizes an energy score to get the group activity predictions. In [4], the predictions
were based on a fully-convolutional network module that generates multiscale features
(with resizing procedures) that are fed to an RNN to model temporality. Certain other
methods have utilized graph convolutional networks (GCNs) to infer relations among
individuals [32, 3, 76, 30, 59]. GCNs in [76] created an actor-relation graph to simulta-
neously combine relations between spatial and visual features. Similarly, [30] created a
graphical representation and combines with state, action and reward ideas inspired by re-
inforcement learning. Further, [16] found the most critical actor by using a self-attention
module. It used an additional graph attention to model the relational information among
agents with an I3D backbone [10], and capture the temporal context. Spatial features
were discovered in [82] with a CNN backbone and processed via dynamic relation and
dynamic walk reasoning modules.

Keypoint only methods use coordinate-based keypoint representation of the actors, and
also the ball trajectories [83, 22, 71, 58, 86]. The method in [83] directly used the spatial
coordinates of actor joints, and created a relation module and an attention mechanism to
describe the image frame with a single feature vector. In addition to the pose skeleton,
the ball tracklets were utilized in [58] to learn the interactions between individuals. [86]
proposed to use a multiscale transformer to perform compositional learning from tokens
of ball tracklets and keypoint coordinates.

Finally, mixed methods typically use multiples of RGB, optical flow, and keypoint inputs
[3, 59, 81, 45] together. Spatial and temporal features were extracted in [59] by using
the self-attention mechanism and then utilized as a conditional random field. A clustered
spatio-temporal transformer can also be effectively used as an encoder-decoder mecha-
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nism for building the relations across features [45].

Our method falls in the category of RGB only methods. We utilize a single RGB image
per video clip during training; whereas in the testing phase, we obtain the classification
output through a simple averaging of the independent decisions from frames of the test
video clip. Since the final decision does not give weight to any particular frame, and
since there is no joint consideration of frames, our method does not exploit temporal
modeling. Moreover, we do not use any optical flow, keypoint, or pose information.
For these reasons, our method is computationally much simpler and faster in run time
compared to the other methods, while providing a GAR accuracy that is on par with the
highest performance figures reported in the literature.
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2.3 Method

The proposed technique DECOMPL is demonstrated in Fig. 2.2. The task is to recognize
the group activity in a short volleyball video clip that is given together with the box co-
ordinates of the players. During testing, our algorithm produces GAR decisions for each
frame first, and then an aggregation across all frames yield the final GAR decision. In the
training phase, GAR decisions are made based on individual frames that are uniformly
sampled from short video clips, with each decision based solely on the visual and coordi-
nate features of the selected frame. DECOMPL splits the task into two different branches,
the visual and the coordinate branches.

In the visual branch, a VGG backbone is used to extract the visual features of the frame,
from which the individual level features are obtained via the RoI align [28] and projected
onto a D-dimensional space of X ∈ RN×D. Here, N = 12 is the number of players. To
capture the team level features, we sort the feature list with respect to the x-coordinates of
the boxes players are in and obtain two sublists: left team features and right team features.
These team level features are fed into the multi-head attention pooling network (Section
2.3.1) to get Xl ∈RD and Xr ∈RD. The frame level features Xvisual (output of the visual
branch) is obtained by concatenating Xl and Xr.

In the coordinate branch, only the bounding boxes are processed to furnish the model with
the configuration of the players in the scene. Since the player configuration is indepen-
dent of the visual features, these two branches can be computed concurrently. The box
coordinates of the players, Xb ∈RN×4, are fed into our coordinate module to capture the
distance relations of the players. We use the same embedding dimension to project the
location features onto Xloc ∈ RN×D and the embedded location features are then pooled
using the attention pooling (Section 2.3.1). As we only want to represent the relative po-
sitions of the players in the input frame, features are not split before the pooling. Hence,
the coordinate feature vector Xcoordinate ∈RD is passed as output directly.
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2.3.1 Attention Pooling

Since a scene summary should reflect the significant players’ features to a larger degree,
we consider that a weighted pooling of the player features is necessary for a compact rep-
resentation. The max pooling is not appropriate as it eliminates the higher level semantic
information and applies hard selection in an index-wise fashion. The mean pooling can-
not weigh the important actors suitably, ending up with a summary that has a low signal
to noise ratio. Therefore, simple poolings like max and mean operators are too naive to
obtain the necessary information from the frame. Further, since it is hard to order the
players on the court plane (a parsing issue), it is important to achieve permutation in-
variance in the weighting scheme. In order to solve these issues, we adopt the attention
pooling mechanism of [34] which is trainable, permutation invariant, and which can as-
sign weights to the players with respect to their contributions (importances) to the final
GAR accuracy.

Given the input of embeddings X = {x1, ...,xN}, the process of attention pooling can be
formulated as:

Xpooled =
N∑

i=1
aixi,

where

ai = exp{w⊤ tanh(V x⊤
i )}∑N

j=1 exp{w⊤ tanh(V x⊤
j )}

.

Here, w ∈RL×1 and V ∈RL×D where L is the hidden dimension and tanh(.) is the non-
linear hyperbolic tangent. Our algorithm uses the attention pooling as is on the coordinate
branch. For the visual branch, we extend this approach to multiple heads; and the output
of each pooling head is stacked and projected onto the original dimension.
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2.3.2 Coordinate Module

Our coordinate module takes the box coordinates Xb ∈RN×4 as input and first sorts them
from left to right. Then, the pairwise difference vectors are generated for each individual
Xpd ∈ RN×N×4. Each difference vector is projected onto a real number by sharing the
weights to extract their value in the current configuration. For that, we apply a convolution
kernel of size 4 with stride 4. Considering closer players have more in common in terms
of the information that they supply to the configuration, the coordinate module convolves
the features to get semantically higher level information. Output of the convolutional
layers are in the end projected onto the D-dimensional space to get coordinate features
Xc ∈RN×D.

2.3.3 Multiple Loss Signals

There are mainly two losses that guide in the volleyball activity recognition: activity
loss and individual loss [3, 4, 32, 33, 60, 66]. In DECOMPL, we utilize the symmetric
property of the label structure and introduce auxiliary labels by decomposing the origi-
nal ones. Each clip has its own side label (left / right), sideless team activity (pass, win,
set, spike) and side-sensitive group activity labels (left spike, right win) as well as in-
dividual activity labels (setting, blocking). Therefore, it is possible to make the output
of the visual and coordinate branches more representative. Individual activity labels are
inferred by only using the embedded vector after RoI align whereas the other labels are
obtained through the inputs Xcoordinate and Xvisual. Then, side, sideless team activity
and side-sensitive group activity decisions of the visual classifiers are fused with the ones
of coordinate classifiers, using the learnable parameters λs, λg, and λt. This allows our
model to incorporate the configuration information with the visuals. Note that without the
visual information, the model cannot distinguish players; whereas without the coordinate
information, the model is agnostic to the relative positions. Hence, both are required for
an effective solution.

Our end-to-end network is optimized with the total loss

Ltotal = Lindividual +Lgroup +β(Lside +Lteam),

where β is a hyperparameter.
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(a) (b)

Figure 2.3 Some examples of flawed labeling from the original Volleyball dataset [33].
Indices represent the order of action performed by a player. The main players are indi-
cated with yellow bounding boxes. (a) is annotated as right-pass activity while the true
annotation is right-set. (b) is an instance of left-set activity while the true annotation is
left-pass.

2.4 Volleyball Dataset (VD): Reannotations

In our performance evaluations, we conducted extensive experiments with the VD of [33]
which is also widely used for GAR in the literature and publicly available. This dataset
originally contains 55 volleyball videos with 4830 labeled frames (3493 / 1337 for training
/ testing). Each clip is labeled with one of the 8 side-sensitive group activity categories:
right set, right spike, right pass, right win-point, left set, left spike, left pass and left win-
point. Moreover, the centered frame in each clip is annotated with 9 individual action
labels: waiting, setting, digging, falling, spiking, blocking, jumping, moving and stand-
ing. However, when looked into carefully, one can see that the train and test sets contain
some outliers. The dataset has a few video clips whose point of view is not a regular
horizontal perspective. Despite that this dataset is very popular and has been used in a
number of previous studies, e.g., [82, 3, 45], we realize that there exist falsely labeled
clips. Also, adopting a different labeling approach may result in a more useful dataset for
group activity recognition.

Particularly, we observe that clips were labeled -especially the “set” and “pass” examples-
based mostly on the pose of the main acting player in the scene. For instance, a clip was la-
beled as “pass” if the main player is bumping no matter where the ball goes after her/him.
However, while annotating, the position of the ball after an action must be considered as
well to emphasize the group activity. Similarly, a player being in an overhand pass pose
might not necessarily mean that the activity is set. These activities have higher level se-
mantic meanings that must be taken into account while labeling rather than looking solely
into the pose of a player. The labeling scheme in VD may reduce the problem to pose es-
timation which might degrade the “group” concept in the activity detection. Therefore,
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we decided to reannotate the data, as another contribution of the presented study.

According to our interpretation, the group activity label “spike” means that the ball passes
to the other side in a “comfortable” position. It should be comfortable in order to distin-
guish a “spike” from a “pass” because, in quite a few examples in VD, the ball is for-
warded to the other side just to save the point. This is mostly observed in situations where
the defending team has difficulties in defending. If the ball is passed to the other side in
a defensive manner, we reannotated it as “pass”. We also reannotated a clip as “pass” if
the player who is acting touches the ball with only defensive intention or s/he is the first
player who touches the ball after the last touch of the opponent team. In this way, we take
both the semantic meaning and the group concept back to the annotations. To annotate a
clip as “set”, we followed if the main actor in the scene is forwarding the ball to the one
who is going to spike it. Lastly, “win-point” and left/right discrimination have no flaw in
the original annotations; but there are random labeling errors as well which we corrected.
The number of changes in our reannotations and the new statistics can be observed from
Table 2.1.

Group Activity Class Before After
Right set 644 596
Right spike 623 640
Right pass 801 830
Right win-point 295 297
Left set 633 605
Left spike 642 654
Left pass 826 831
Left win-point 367 368

Table 2.1 Distribution of the group activity labels before and after reannotations.

(a) (b)

Figure 2.4 Some examples of random errors from the original Volleyball dataset [33]. The
main actors are indicated with yellow bounding boxes. (a) is annotated as left-set activity
while the true annotation is right-set. (b) is an instance of right-pass activity while the
true annotation is left-pass.

After removing 9 video clips due to the change in the camera angle, the refined dataset has
4821 clips. We performed a total of 497 reannotations which is approximately %10 of the
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whole dataset. 381 out of 497 reannotations were a result of the deviation between the way
we reannotated and the original annotations. We believe that our reannotations are more
meaningful and useful from the GAR perspective, as described above. The residual 116
reannotations, which is approximately %2.4, were due to the random labeling errors in the
original VD. For example, 29 of these random errors are coming from side mismatch (i.e.
when the activity is on the left side but the label says right or vice versa). Errors like these
impede the training process of a statistical learner, and also its performance evaluation.

We provide visual examples in the following to illustrate the scheme that we applied in
our reannotations and the random labeling errors in the original VD that we corrected.

2.4.1 Examples of Our Reannotation Scheme

Our reannotation scheme systematically deviates from approximately the %10 fraction of
the original annotations. We believe that for those examples, diverging from the original
labeling process increases the quality of the dataset by representing instances more accu-
rately. These are typically the labels that claim “set" rather than “pass" or vice versa. The
following examples are gathered from three different matches and annotation differences
like these can be found in all matches.

Fig. 2.3a can be seen as an example of an original annotation “pass" where our annotation
is rather a “set". It can be seen from the figure that the common theme is setting a position
to the spikers. The way the opponent team prepares to defend with blocks and the pose of
the potential spikers are indicators of that theme. Therefore, we cannot decide just by the
bumping pose of the actor but need to evaluate the scene as a “group”.

On the other hand, Fig. 2.3b was originally labeled as “set" instead of our labeling choice
“pass". If one investigates the image, s/he observes that there is a player who has hit the
ball and now descending and the actor’s team has blockers in front of that player. This
gives us the information that the opponent team has spiked and the actor is meeting the
ball. Since the actor is the first player who touches the ball after the opponent team, we
should label these images as “pass".
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2.4.2 Examples of the Corrected Random Errors

Random errors in the original VD generally seem to be due to the lack of attention of the
annotator. We corrected these errors which include annotating frames as “right" instead of
“left", “spike" instead of “pass" etc. None of such error types are dominant to the others.
Namely, one might not expect that the number of times the annotation is mistakenly given
as “spike" instead of “pass" significantly exceeds the number of times that is given as
“set" instead of “spike". Thus, these errors are not systematic.

In Fig. 2.4a and Fig. 2.4b, it is clear that the side information is mistakenly annotated.
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2.5 Experiments

In this section, we provide a detailed description of the Collective Activity dataset (CAD),
present the implementation details of DECOMPL, and evaluate its performance by com-
paring it with state-of-the-art methods from the literature. Our results are based on the
Volleyball dataset [33] and Collective Activity dataset [11], and the results for VD include
both the original and corrected annotations. Moreover, an ablation study is presented to
demonstrate the performance contribution of each block in our model.

2.5.1 The Collective Activity Dataset

The dataset contains a total of 2511 clips extracted from 44 short video sequences, fea-
turing 5 different collective activities: crossing, walking, waiting, talking, and queueing.
For each clip, the centered frame is labeled with bounding boxes and respective individ-
ual action classes which can be N/A or one of the five different activities. To align with
prior research, the activity labels for “walking” and “crossing” are merged into a single
category called “moving”.

2.5.2 Implementation Details

We use PyTorch [56] for the implementation, and follow the prior works [4, 82] for ex-
tracting the annotations and reading the images. We resize images to 720× 1280 for the
VD and 360×640 for the CAD, and use horizontal flip augmentation. We also use several
(T = 10) successive images from the same video following the prior works. However, this
is only for additional augmentation since our method does not rely on temporality as it
uniformly samples a single frame from a given time window. VGG-16 [68] backbone is
used with RoI align [28] (crop size = 4×4) to extract visual features of the actors with a
dimension of D = 128. Due to the additional labels and team structure used in the VD,
the model architecture differs slightly between the VD and CAD. For the VD, we use the
attention pooling of 2 heads for the visual branch and 1 head for the coordinate branch,
while for the CAD we used a single head attention pooling mechanism for the visual
branch. We use hidden dimension of 512 for all attention modules. Due to the difference
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in the number of classification tasks between the datasets, our model for the VD has 3
classification heads while the model for the CAD has only 1. All classification heads are
linear projections onto the label dimension in the corresponding dataset. The losses from
different classification tasks are combined with β = 1 for the VD. For both datasets, we
use ADAM optimizer [37] with a learning rate of 0.0001 which drops by a factor of 2
every 30 epochs, for a total of 120 epochs. All experiments are conducted on 2 RTX 3090
GPUs with a batch size of 8.

Model Input Backbone VD CAD

HDTM [33] RGB AlexNet 81.9 81.5
CERN [66] RGB VGG-16 83.3 87.2
stagNet [60] RGB VGG-16 89.3 89.1
RCRG [32] RGB VGG-16 89.5 -
SSU [4] RGB Inception-v3 90.6 -
SACRF [59] RGB ResNet-18 90.7 94.6
PRL [30] RGB VGG-16 91.4 -
Ehsanpour [16] RGB I3D 93.1 89.4
ARG [76] RGB Inception-v3 92.5 91.0
HiGCIN [79] RGB ResNet-18 91.5 93.4
DIN [82] RGB VGG-16 93.6 -
GroupFormer [45] RGB Inception-v3 94.1 93.6

Zappardino [83] Keypoint OpenPose 91.0 -
GIRN [58] Keypoint OpenPose 92.2 -
AT [22] Keypoint HRNet 92.3 -
POGARS [71] Keypoint Hourglass 93.9 -
COMPOSER [86] Keypoint HRNet 94.6 96.2

CRM [3] Mixed I3D 93.0 85.8
TCE+STBiP [81] Mixed VGG-16/HRNet 94.7 -
SACRF [59] Mixed I3D/AlphaPose 95.0 95.2
GroupFormer [45] Mixed I3D/AlphaPose 95.7 96.3

DECOMPL RGB VGG-16 93.8 95.5

Table 2.2 Comparisons with SOTAs on the Volleyball dataset with original annotations.
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2.5.3 Comparison with the State-of-the-Art (SOTA)

The Volleyball Dataset. In order to fairly compare with the previous results reported
by the prior work (cf. the SOTA methods in Table 2.2), we first evaluated DECOMPL
on the original VD (i.e., original annotations). Although we do not exploit temporality,
our method is the 2nd best performing (Table 2.2) among the RGB-only methods with
a 93.8% GAR accuracy. This accuracy is comparable with that of the best performing
one, where the difference is in a margin of only 0.3%. Moreover, our methods performs
also comparably with most of the keypoint only methods and even with certain other
mixed methods. Considering the mistakes in the annotations, it would not be reliable to
compare the performances based on the original VD. Therefore, we reproduced the results
of the compared methods (Table 2.3), with publicly available codes 2 3, with our corrected
annotations.

Table 2.3 shows that DECOMPL achieves an impressive performance of 95.2% GAR
accuracy. It is the 2nd highest; yet if we drop the ball tracklets from COMPOSER, our ac-
curacy is the highest among the 4 compared methods. In particular, our method surpasses
DIN by 0.9%, which is a prominent RGB-only method, without using any temporal infor-
mation. Since we could not reproduce the reported results from GroupFormer for mixed
inputs, it is excluded from the analysis. Table 2.2 and Table 2.3 demonstrate that while
the earlier state of the arts DIN and GroupFormer with RGB-only input struggle to ben-
efit from the corrected annotations with only 0.7% and 0.35% respectively, DECOMPL
achieves to gain more with a jump of 1.4% in accuracy. Remarkably, all of the methods,
in general, benefit from the annotation correction. Overall, we emphasize that only the
RGB only methods are comparable to ours, in this respect, our method achieves the sec-
ond highest performance in Table 2.2 (original erroneous annotations) and the highest in
Table 2.3 (corrected annotations).

The Collective Activity Dataset. While our primary focus is on the Volleyball dataset,
we also conducted experiments on the Collective Activity dataset to demonstrate the ef-
fectiveness of DECOMPL. Unlike the Volleyball dataset, CAD does not contain sub-task
labels nor a team structure that allows us to split actors in the scene. Therefore, we used
a single multi-headed attention block as opposed to two -one for each team- to extract
frame features from the dataset. Despite these challenges, DECOMPL achieved a high
level of performance with an accuracy of 95.5%, which represents a 0.9% improvement in
the RGB category and the third-best overall result when keypoint and mixed methods are
included. The CAD dataset presents a particular challenge due to the potential ambiguity

2https://github.com/JacobYuan7/DIN-Group-Activity-Recognition-Benchmark

3https://github.com/hongluzhou/composer
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Model Input Accuracy

SACRF [59] RGB 92.8
DIN [82] RGB 94.3
GroupFormer [45] RGB 94.45
COMPOSER [86] Keypoint 96.26
COMPOSER [86] w/o ball Keypoint 94.39

DECOMPL RGB 95.2

Table 2.3 Comparisons with SOTAs on the Volleyball dataset with corrected annotations.

Model #Params FLOPs

ARG [76] 25.182M 5.436G
AT [22] 5.245M 1.260G
HiGCIN [79] 1.051M 184.992G
SACRF [59] 29.422M 76.757G
DIN [82] 1.305M 0.311G
COMPOSER [86] 11.102M 0.777G
GroupFormer [45] 81.52M 10.99G

DECOMPL 0.65M 0.031G

Table 2.4 Computational complexity analysis performed without the backbone and em-
bedding layer.

between the "waiting" and "moving" categories when processing individual frames, as it
is not ideal to capture the motion from a single frame. This places a disadvantage for our
model in comparison to others exploiting temporality. Nevertheless, our results highlight
the power of the attention pooling mechanism for group activity recognition.

2.5.4 Computational Complexity Analysis

In addition to the FLOPS analysis provided by [82], for both mixed and keypoint-only
categories, we further provide the FLOPS and number of parameters for GroupFormer
and COMPOSER, two of the most competitive state-of-the-art methods in these cate-
gories in Table 2.4. The reported numbers exclude the parameters from the backbone
and embedding layer to ensure comparability with prior work. DECOMPL has by far the
lowest computational cost by requiring only 0.031 GFLOPs for a forward pass. Without
sacrificing accuracy, it is a remarkable achievement to reduce the number of floating point
operations to 10% of the second lowest method. It can be seen that modeling temporality
has its costs on the both computational complexity and the number of parameters. DE-
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COMPL is the lightest model in terms of the number of parameters by having only 0.65
million parameters.

2.5.5 Ablation Study

The results of our ablation study (Table 2.5 and Table 2.6) are obtained by averaging 5
runs on the validation set of the reannotated VD.

Ablation Accuracy

only coordinate module 73.5
w/o coordinate module 94.8
w/o multiple loss signals 94.7
max pooling 94.6
mean pooling 94.7
DECOMPL 95.2

Table 2.5 Ablation study on the coordinate module and multiple loss signals.

Regarding the coordinate module, Table 2.5 reports the GAR accuracies for the two cases
of (i) only the coordinate module and (ii) our method without the coordinate module. As
demonstrated, the coordinate module single-handedly achieves 73.5% which is remark-
able considering it does not use any visual information. The configuration that players
are in contains significant information that should not be overlooked. Moreover, when the
coordinate module is not used, the overall performance of our method drops (by 0.4%)
to 94.8% which is significant as further improvements are more challenging to attain at
higher levels. Regarding the use of multiple loss signals (Table 2.5), we find that exploit-
ing the decomposable structure of the problem reinforces the representation capacity. The
2 additional loss signals on top of the group activity and individual activity losses help
to increase the accuracy by 0.5%. As for the number of heads of the attention pooling,
stacking up multiple attention pooling blocks up to 2 heads is observed in Table 2.6 to
give the best performance. A slight degrade is observed for stacking further up to 4 and
8. Finally, two popular permutation invariant pooling techniques are explored. The max
pooling is outperformed slightly by the mean pooling, cf. Table 2.5. Our results demon-
strate the effectiveness of assigning weights to the players in a learnable manner. The
attention pooling allows our model to represent the scene better and therefore, an increase
of 0.5% in accuracy is observed.
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Heads Accuracy

1 94.8
2 95.2
4 94.7
8 94.8

Table 2.6 Comparisons of the number of heads in the attention layer.

2.6 Discussion

In this chapter, we proposed a novel group activity recognition (GAR) technique, DE-
COMPL, for volleyball videos. DECOMPL effectively complements the visual informa-
tion with the spatial configuration of the players. Our experiments show that exploiting
the problem structure by using multiple auxiliary losses improves the model’s representa-
tion capacity significantly. We also presented the erroneous annotations on the Volleyball
dataset (which is widely used in the literature) and provided the corrected reannoations in
a systematic way. Among the state-of-the-art RGB only methods, DECOMPL achieves
the best GAR performance with the corrected reannoations and the second best GAR
performance with the original annotations.
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3. ADRMX: Additive Disentanglement of Domain Features with Remix Loss

3.1 Introduction

Over the past decade, deep learning systems have achieved remarkable success accross
different tasks. However, their performance is often evaluated under the assumption that
train and test data follow the same, or similar distributions [29, 38, 68, 70]. In real-
world scenarios the assumption that train and test data are independent and identically
distributed is violated due to the changes in background, illumination, occlusion, scale,
camera angle and other factors. These distributional change between train and test set
are commonly referred to as domain shift [55]. Addressing the domain shift problem has
become a significant focus of research, as conventional deep neural network architectures
tend to learn and adapt to the specific statistical properties of the training data, which
may not be present in the test set [53, 80, 42]. Consequently, such conventional models
that are exclusive to the training sets usually fail to generalize well to unseen domains.
To tackle this challenge, numerous studies are performed within two different scenarios:
domain adaptation [20, 8], and domain generalization [51, 43]. Unlike domain adaptation,
domain generalization models do not assume access to the target domain during training.
Therefore, the objective is to extract essential and transferable knowledge from the source
domains, enabling effective generalization to unseen target domains. This makes domain
generalization particularly more challenging, as the models should learn to capture the
underlying essence of the data and generalize to different data statistics.

In this chapter, we present a novel approach called Additive Dientanglement of Domain
Features with Remix Loss (ADRMX), which tackles the domain shift problem under
domain generalization scenario. Our method disentangles domain variant and domain in-
variant features in an additive manner, allowing the model to capture the contextual char-
acteristics of objects. Moreover, by exploiting the additive modeling, we can effectively
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Figure 3.1 Example images from the PACS dataset [43] showcasing the persistence of
domain specific attributes despite significant domain shifts. The first row displays images
of the elephant class, while the second row features images of the horse class from the art
and cartoon domains, respectively.

blend domain-specific features from different samples with domain invariant features, en-
riching the data in the latent space. This not only populates the training data but also
ensures the network adapts to diverse distributions by incorporating instances from mul-
tiple sources. We hypothesize that, in contrast to previous works [20, 46, 21], incorporat-
ing domain variant features alongside domain invariant features provides an "additional"
guide that improves generalization. Figure 3.1 demonstrates that even when domains are
significantly different, they can share certain characteristics, and learning domain-specific
information from one domain can potentially improve performance on others.

Our technique (Figure 3.2), ADRMX, consists of two backbones for label and domain fea-
ture extraction. They are meant to fulfill the label classification and domain classification
tasks effectively with their corresponding losses. After subtracting domain features from
label features, we adopt an adversarial learning setting where resulting features cannot
identify domain characteristics while retaining the label relevant information [20]. The
additive modeling of the relationship between label features and domain features allows
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us to introduce a data augmentation technique, remix strategy. The remix strategy utilizes
two instances from different domains but with the same label, by merging the domain
features of one instance with domain invariant features of another using a simple addition
operation. To facilitate the model’s generalization to data with diverse distributional char-
acteristics, we employ the same classification head for both the label features and remixed
samples. In this way, ADRMX is regularized with augmented data without introducing
additional parameters.
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3.2 Related Work

Domain Generalization (DG) has become a prominent research area focusing on develop-
ing models that can generalize to new domains without relying on labeled data from the
target domain.

In this section, we discuss the prior work on DG research in five main categories: dis-
tribution alignment, advesarial learning, domain mixup, meta learning, and contrastive
learning.

3.2.1 Distribution Alignment

Several methods have been proposed to align the features by regularizing statistical prop-
erties of different sources [69, 44, 65, 39]. [69] proposed an effective approach to extract
features from sources by matching their second-order statistics using a nonlinear transfor-
mation. This approach serves as a strong baseline, as provided by [27] which minimizes
both the mean and covariance differences. Similarly, [44] employed an architecture that
minimizes the maximum mean discrepancy between pairs of any source domains utilizing
an RBF kernel. On the other hand, [65] leveraged robustness by aiming to minimize the
worst-case training loss over source domains. The optimization gives higher importance
to the respective domain when it incurs a higher loss. [39] addressed the distributional
shift problem by introducing risk extrapolation. This technique penalizes the network for
instances that introduce losses that are lower or higher than the mean, allowing fairness
interpretations as it equalizes the risk across different groups.

3.2.2 Adversarial Learning

Adversarial training is an intuitive way to extract invariant features from different domains
[21, 47, 53]. The pioneering work [20] and [21] tried to extract features by making the
features discriminative for the label prediction task while simultaneously making them
indistinguishable across domains. They introduced a gradient reversal layer for domain
classification task which enables joint training of a feature extractor and a domain classi-
fier. [47] extended this idea assuming that the conditional distribution remains the same
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across different domains. Their approach incorporated class prior-normalized, and class-
conditional domain classification losses to regularize the feature extractor. Explicitly con-
sidering the conditional distribution further enhanced the model’s ability to generalize to
unseen domains. [53] argued that feature extractor’s inductive bias can be eliminated by
disentangling style and context features. They proposed a style-agnostic network that
aims to learn representations robust to domain-specific style variations. By separating
the style and context information, the model becomes more resilient to changes in style
across domains, leading to improved generalization performance.

3.2.3 Domain Mixup

Recently, [84] has gained significant attention due to its effectiveness as an augmentation
technique. It improves the generalization properties of the network by training it with
convex combinations of pairs of samples and their labels. [80] built upon this idea by
mixing up pairs of source domains in the context of domain generalization. In that way,
the network is trained with the convex combinations of pairs of samples from different
domains and labels, enhancing its ability to handle domain shifts. In a different vein,
[77] proposed a Fourier-based approach that exploits that the semantic information is
preserved in the phase of the Fourier transform across different domains. By applying an
amplitude mixup strategy, they interpolated between different styles while preserving the
underlying semantic information.

3.2.4 Meta Learning

Domain generalization problem has also been studied in the context of meta learning
frameworks [42, 5]. [42] introduced a model-agnostic training procedure to address do-
main shifts. Their approach involves synthesizing potential test domains during training
to calculate the meta objective. This meta objective ensures that the algorithm’s steps
aim to decrease the synthesized test error, leading to strong generalization performance.
Similarly, [5] proposed a method that models the optimization process where steps for
a domain are performed only if they achieve a good performance on the other domains.
By doing so, they guaranteed that each optimization step contributes to achieving good
cross-domain generalization.
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3.2.5 Contrastive Learning

Several studies have proposed contrastive learning-based approaches [36, 50]. These
methods intuitively facilitate robustness as they attempt to increase the proximity of
features belonging to samples with the same class, with respect to a metric. [50]
introduced a method to exploit the Siamese architecture along with a contrastive semantic
alignment loss, which regularizes the distances between samples from different domains
but the same class label, and different domains and class labels. On the other hand, [36]
highlighted the significance of resolving negative pair sampling to improve generalization
performance. They introduced a supervised contrastive learning technique which only
uses positive pairs mitigating the challenges emerged from uninformative negative
samples.

Our method (ADRMX) falls into adversarial learning category while utilizing supervised
contrastive loss [35]. Unlike the methods in the prior work, we sought to leverage domain
specific features -along with the domain invariant features- that could aid in generaliza-
tion. Specifically, ADRMX introduces an additive modeling that selectively includes or
removes domain information from the feature vector, consisting of two parallel feature
extractors for label and domain features. Additive modeling allows many manipulations
such as removing and adding other domains, applying orthogonality consistency checks
between domain and label features and so on.
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3.3 Method

In this section, we begin with our motivation before delving into the proposed approach’s
details. Generalizing to unseen domains is a challenging task which has led the literature
to explore methods for extracting domain-invariant features. In that way, by leveraging
the mutual information across the source domains, the model can effectively generalize
without overfitting the domain-specific features. For instance, in some domains, color
distribution may be a significant feature that helps the model capture the label, whereas in
other domains, it may not hold the same importance. In that case, an unregularized model
would capture an information from that particular domain which is not useful to others.
However, it is important to note that not all domain-specific label-relevant features are
necessarily worthless. Figure 3.1 contains horse and elephant instances from art and
cartoon domains in PACS dataset [43]. As they have similar specific color patterns and
object compositions, features learned from art paintings can be beneficial for model to
recognize objects in cartoons.

To tackle this, we propose a model that is able to handpick the relevant information by
disentangling domain variant and domain invariant features in an additive fashion. This
additive modeling allows our model to represent label features, domain features and
domain invariant features in which we subtract domain features from label features to ob-
tain domain invariant features. Therefore, the model is not limited to using only domain
invariant features, but rather can potentially incorporate beneficial domain-specific and
label-relevant information. Moreover, the simple element-wise subtraction enables the
model to remove domain-specific information from the label, obtaining domain invariant
features. These domain invariant features can then be combined with another domain’s
features by element-wise addition, effectively mimicking its label features.

In the following sections, we provide problem description, proposed architecture to en-
able additive disentanglement, remix loss that is used to benefit from populated data, and
training procedure we follow in detail.
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3.3.1 Problem Description

The problem in domain generalization is to develop a model that can effectively gener-
alize to unseen domains. To evaluate the model’s generalization ability, an experimental
setup is typically created by training the model on multiple source domains and evaluating
its performance on an unseen domain. To assess the model’s performance on each domain
individually, cross-domain testing is performed, where the model is evaluated on each do-
main separately, and the average performance across all domains determines the model’s
success. Therefore, more formally, given the source domains D = {D1,D2, . . . ,DS}, and
the target domainDT ; the objective of domain generalization algorithm is to learn a model
using the source domains and perform well on the target domain. Here, each domain Di

represents a dataset {(xi
k,yi

k)}Ni
k=1 for each i = 1,2, . . .S,T , where Ni is the number of in-

stances in the domain Di, and (xi
k,yi

k) denotes the input and output pair of the kth sample
of the ith domain.

3.3.2 Additive Modeling

Figure 3.2 demonstrates the disentanglement of domain-specific and label features in our
proposed approach. Given an image xi, we employ two different backbones to extract
features: xlabel = fθlabel

(xi) and xdomain = fθdomain
(xi). These backbones are trained

with cross entropy loss, using their corresponding image and domain label. From the
cross entropy objective, we can infer that xlabel captures both domain variant and domain
invariant features related to label, while xdomain represents the domain-specific features.
To disentangle the domain-specific information from the label features, we perform an
element-wise subtraction:

xdinv = xlabel−xdomain

To optimize the domain invariant features xdinv, we utilize adversarial domain discrimi-
nation loss, cross entropy loss and contrastive loss. This subtraction operation effectively
prunes the domain-specific features while preserving the label information. Thus, xdinv

contains the label information without the domain-specific features. Consequently, this
design encourages the model to focus on extracting all the relevant information necessary
to recognize an instance in xlabel.

Optimizing xdinv with cross entropy ensures its effectiveness in performing the classifica-
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tion task. In this context, the domain-specific features serve as an "additional" guide, pro-
viding supplementary information to further improve classification performance. More-
over, while optimizing xlabel and xdinv, we employed in-batch supervised contrastive loss
[35] as well to reduce the distance of the positive samples in the latent space. Such a
metric-based loss is known to increase generalization [36, 50] as it encourages compact
decision boundaries.

(3.1) Lcont =
N∑

i=1

−1
|P (i)|

∑
p∈P (i)

log exp(zi · zp)∑
a∈A(i) exp(zi · za)

where A(i) denotes the index set of all samples except the ith, P (i) denotes the index
set of positive samples for i, and |P (i)| is its cardinality. Each z denotes the normalized
latent feature vector for either xlabel or xdinv.

3.3.3 Remix Loss

Exploiting the additive structure, we can utilize the domain invariant features xdinv and
incorporate them with another sample’s domain features, x′

domain. This allows us to remix
data by combining samples from different domains but with the same labels.

(3.2) xremixed = xdinv +x′
domain

Here, x and x′ represent samples from different domains but with same labels. This
method enables us to populate data by remixing in-batch samples during training. We can
then use xremixed with the same classification module that maps xlabel to the logits. The
addition of remixed samples further regularizes our model by enhancing its robustness to
mixed samples from different domains. This can be seen as a form of data augmentation
in the latent space, similar to the concept of mixup [84]. Notably, by leveraging weight
sharing, we avoid increasing the complexity of the proposed model.

To compute the remix loss, we use the cross entropy loss as the classification objective:

(3.3) Lremix =−
∑

yi log(ŷi)
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where, ŷ = fclf (xremixed) represents the predicted logits obtained from the classifica-
tion module. By incorporating the remix loss alongside the existing cross entropy loss,
ADRMX learns more robust and discriminative representations and improve overall clas-
sification performance.

3.3.4 Training Procedure

The training procedure consists of optimizing two different losses in an alternating fash-
ion, following the approach outlined in [20]. Similar to the generator-discriminator archi-
tecture in [26], we alternate between steps for the generator and discriminator losses.

In the generator loss, we combine several losses. These include the cross entropy losses
related to the classification tasks, remix loss, contrastive loss, and discriminator loss.
The discriminator loss, which detects the domain of xdinv, is negated and scaled by a
hyperparameter λ.

In the alternating step, we focus on optimizing the discriminator loss, which consists
solely of the discriminator’s cross entropy loss on domain classification. The generator
and discriminator losses can be expressed as follows:

(3.4) Ltotal_gen = LCE +Lremix +Lcont−λ ·Ldisc

(3.5) Ltotal_disc = Ldisc

This alternating optimization procedure allows the generator to focus on improving the
classification, contrastive, and remix objectives while taking into account the domain dis-
crimination, guided by the discriminator loss. On the other hand, the discriminator, aims
to correctly classify the domain of xdinv samples. By iteratively optimizing these losses,
the model learns to disentangle domain-specific and domain-invariant features, incorpo-
rate remixing for data augmentation, and improve its overall performance in domain gen-
eralization tasks. During inference, class probabilities are obtained solely by utilizing the
label encoder and label classifier.
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3.4 Experiments

In this section, we provide implementation details of ADRMX, and present the experi-
ments conducted using the [27] environment, consisting of 7 datasets. Moreover, state-of-
the-art comparison and an ablation study are performed to demonstrate the effectiveness
of the model and its individual components.

3.4.1 Implementation Details

We use the DomainBed [27] environment which provides a modular and easy-to-modify
PyTorch [56] codebase. Any proposed algorithm can be included in the environment by
inheriting from the Algorithm class and overriding update and predict methods. Our
proposed algorithm is integrated by simply filling in the necessary components. Pre-
trained ResNet-50 [29] with ImageNet [12] weights is used as a backbone architecture
for both label and domain feature encoders. These backbones transform the images into
a 2048 dimensional latent space. To facilitate the domain discrimination, we employ the
adversarial learning technique as described in the Appendix A of [20]. This technique
incorporates a GAN-like mechanism that replaces the gradient reversal layer with two
different loss functions for the domain classifier [26]. By alternating between these loss
functions, positive and negative updates are performed. We optimize our network using
the ADAM [37] optimizer. Note that we determined the hyperparameters for each indi-
vidual dataset using [27]’s random hyperparameter search, except for DomainNet [57].
The selection was based on the train domain validation set performance for each config-
uration. However, due to limited computational resources and the large search space, the
number of hyperparameter configurations had to be restricted.

In the case of DomainNet, conducting an extensive hyperparameter search was infeasible
due to the dataset’s size. Therefore, we adopted the hyperparameters from TerraIncog-
nita as a reasonable choice without performing a hyperparameter search. TerraIncognita
was selected because it is the second largest dataset, providing a valuable baseline for
comparison.
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3.4.2 Experiments on DomainBed

After carefully examining the model selection criteria proposed by [27], we adopt train
domain validation method for our experiments. It is efficient in two main ways: (1) it
eliminates the need for performing cross domain testing, which significantly reduces the
computation time; and (2) unlike oracle (test domain validation) selection method, it does
not peek at the test set during performance evaluation, preserving the integrity and fairness
of the evaluation process.

DomainBed benchmark includes a total of 7 datasets.

• ColoredMNIST is a synthetic dataset which builds on the MNIST handwritten
digit classification dataset [41]. It has 3 domains {+90%,+80%,−90%} with two
labels, where the percentages indicate the degree of correlation between color and
label. The dataset comprises 70.000 images with a resolution of 2×28×28 [2].

• RotatedMNIST is constructed using MNIST as well. There are 6 domains obtained
with 15% rotations ranging from 0 to 90 degrees. The dataset includes 10 classes
and consists of 70.000 images with a resolution of 1×28×28 [23].

• PACS is a dataset which introduces a larger domain shift compared to the oth-
ers, as it requires extracting higher semantic information to distinguish the same
object from different domains. It consists of 9.991 instances across 4 domains
{photo,art,cartoon,sketch} and includes 7 classes. The images have a resolu-
tion of 3×224×224 [43].

• VLCS is built by merging 4 datasets {Caltech101, PASCAL VOC, LabelMe,

SUN09} each of which serves as a domain. The dataset contains a total of 10.729
examples with a resolution of 3×224×224 and 5 classes [17].

• OfficeHome has 15.588 images across the domains {art,clipart,product,real}.
The images in the dataset have a resolution of 3× 224× 224 and belong to 65
categories of everyday objects [74].

• TerraIncognita is a dataset consisting of wild animal photographs, it in-
troduces 4 domains based on the location where the images were captured
{L100,L38,L43,L46}. It is the second largest dataset in DomainBed benchmark
comprising 24.788 images with a resolution of 3× 224× 224 and 10 different
classes [6].

• DomainNet is the largest dataset in the benchmark containing 586.575 instances
from six domains {clipart, infograph,painting,quickdraw,real,sketch}. The
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dataset spans across 345 distinct classes, and each image has a resolution of 3×
224×224 [57].

DomainBed provides the performances of 14 algorithms on the aforementioned datasets.
For a fair comparison, we compare the methods evaluated in the same exact conditions,
which include using the train domain validation model selection, limiting the number of
hyperparameter configurations, using fixed backbone options and applying the same data
augmentation techniques. For each hyperparameter configuration, we average the results
of 3 runs with different random initializations to report the final performance.

Table 3.1 shows that ADRMX achieved state-of-the-art performance. It outperformed the
baseline ERM [72] and even surpassed the strongest work CORAL [69], with an average
accuracy of 67.6%. Comparing with the adversarial techniques SagNet [53], DANN [21]
and CDANN [47], ADRMX remarkably achieved improvements of 0.4%, 1.5% and 2%
better than its compeers respectively. SelfReg [36] commented on the instability of adver-
sarial learning, and we addressed this issue by reducing the learning rate and increasing
the size of the discriminator network. Our experiments demonstrated that the proposed
additive disentanglement of domain and label features unraveled effective ways to regu-
larize training with different domains, such as remix loss. Due to the low learning rate,
and alternating updates -which essentially halve the iterations used for the generator’s
optimization- we had to increase the number of epochs performed on the DomainNet [57]
as our model did not reach saturation. The main reason for the increased iterations in
DomainNet is the size of the dataset, while other datasets did not require such extensions
in training. In our view, this does not violate the fairness condition since the training do-
main validation model selection method focuses on the performance on the validation set.
As shown in Table 3.3 even without the remix loss ADRMX outperforms CORAL [69]
which is the strongest algorithm among 15 evaluated, on the most challenging dataset,
DomainNet. Overall, the empirical study supports our hypothesis that additive modeling
can benefit from the domain-specific label-relevant information on top of the domain-
invariant features.
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Figure 3.3 UMAP visualization of the penultimate layer embeddings. The first row dis-
plays visualizations of domain-specific and domain-invariant features, with colors indi-
cating class labels. The second row illustrates the same embeddings, now using a color
map to represent domain labels. We observe that both features contain object information,
while the domain-specific features potentially capture multimodalities across domains.

3.4.3 Ablation Study

In this section we conduct an ablation study to assess the effectiveness of different com-
ponents and design choices in our model. Specifically, we investigate the impact of using
contrastive loss, domain variant features’ prediction, and remix loss. The results presented
in Table 3.2 and 3.3 are based on averaging 3 runs on the DomainNet [57] and PACS [43]
datasets, respectively. We visualize the penultimate layer on Figure 3.3 with respect to the
domain label for both domain variant and domain invariant features on the PACS dataset
using UMAP [48].The visualizations reveal the presence of subclusters within the same
label, representing different modalities. This suggests that the model’s representation is
capable of capturing the multi-modal nature of the data, providing a relaxation over do-
main invariant feature extraction. It is also supported by the performance evaluation in
Table 3.2 in which ADRMX performs better when domain variant features are used con-
sistently for all domains, with an increase of 1.86%.
As for the use of contrastive loss [35], we observe a performance jump of 1.21%. The
incorporation of a distance/similarity-based loss encourages the model to learn compact
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Model art cartoon photo sketch Avg

ADRMX (original) 87.69 80.55 97.74 77.53 85.87
ADRMX w/domain invariant 85.48 76.79 97.64 76.1 84.01
ADRMX w/o contrastive 87.05 78.56 97.03 76 84.66

Table 3.2 Ablation study on using contrastive loss and domain invariant features on PACS
dataset.

Model clip info paint quick real sketch Avg

ADRMX 60.8 20.9 48.6 14.1 61.8 52.4 43.1
ADRMX w/o remix loss 59.6 20.6 50.3 12.5 61.5 50.3 42.4
CORAL [69] 58.7 20.9 47.3 13.6 60.2 50.2 41.8

Table 3.3 Ablation study on remix loss and comparison with state-of-the-art on Domain-
Net dataset.

decision boundaries, leading to the extraction of more robust features with across differ-
ent domains. This finding aligns with previous work SelfReg [36], which demonstrates
the benefits of contrastive regularization in enhancing generalization performance. Fur-
thermore, we evaluate the impact of the remix loss on our model’s performance. Table
3.3 demonstrates that ADRMX achieves a significant performance jump of 0.7% on the
DomainNet dataset when trained with the remix loss.
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3.5 Discussion

In this chapter, we presented ADRMX, a domain generalization approach that disentan-
gles the domain variant and domain invariant features in an additive fashion. Unlike
previous methods, we effectively utilized domain variant features alongside the domain
invariant ones. Moreover, we introduced a latent space data augmentation technique to
further enhance the generalization capabilities of our model. Through comprehensive
experiments on the DomainBed benchmark, ADRMX demonstrated outstanding perfor-
mance compared to 14 other models across 7 diverse datasets under fair conditions. It
achieved state-of-the-art results, reaffirming its effectiveness and robustness under do-
main shift scenarios. By effectively capturing the contextual characteristics of objects
and leveraging the additive modeling approach, ADRMX showcases its potential for ad-
dressing the challenges posed by domain shift in real-world applications.
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4. CONCLUSION

In this thesis, we proposed two novel techniques, i) DECOMPL (group activity recog-
nition in volleyball videos), which leverages the problem structure and symmetry while
dropping the temporality from the modeling, to argue that temporal features extracted by
literature might come with a high cost especially for the Volleyball dataset and Collec-
tive Activity dataset, and ii) ADRMX (domain generalization), which incorporates the
domain specific features alongside the domain invariant ones, shedding light on poten-
tial benefits of domain specific features that are overlooked in previous studies. Addi-
tionally, we introduced a novel data augmentation technique, the remix strategy that en-
hances model robustness through synthetic feature generation in the presence of diverse
source domains. For group activity recognition, DECOMPL demonstrated a significant
success on both the VD and CAD. It demonstrated on-par performance on widely used
two datasets while exhibiting a training speed advantage to ×10. Notably, DECOMPL
delivered the best/second-best GAR performance with the reannotations/original annota-
tions among comparable state-of-the-art techniques. In the context of domain general-
ization, our proposed approach, ADRMX, is evaluated on the DomainBed benchmark,
in which under fair circumstances, it achieved the state-of-the-art average accuracy of
67.6% among seven popular domain generalization datasets. By effectively incorporat-
ing domain-specific features together with domain-invariant ones, ADRMX presents a
new perspective on harnessing the power of domain-specific information, which has been
largely overlooked in prior works. Our contributions extend beyond ADMRX. The ad-
ditive modeling unraveled various possibilities to regularize the training as demonstrated
by the remix strategy. Additionally, one can argue that domain specific and domain in-
variant features are independent, which results in the sum of their variances being equal
to the variance of their sum. By comparing variances, a consistency loss can be utilized to
provide additional regularization for a domain generalization model. These findings pave
the way for future advancements in the areas of group activity recognition and domain
generalization. They provide valuable insights to researchers and practitioners seeking to
improve the performance and robustness of video classification models.
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APPENDIX A

Error Analysis

Figure A.1 Examples of errors made by our model on the Volleyball dataset. The top
image shows a scenario where the spikers of the left team are lagging behind, preparing
themselves for the set. In contrast, the bottom image illustrates a situation where the
defensive coordination of the left team appears to be lacking, resulting in difficulties de-
fending the ball.

To evaluate the weaknesses of our model, we carefully selected specific instances where
our DECOMPL model fails to provide the correct classification label. In Figure A.1,
we present an example on top where the setter faces difficulties in delivering the ball
to the spikers due to the sudden attack from the right team. As a result, the spikers
on the left team experience a delay in preparing themselves. Our DECOMPL model,
which primarily focuses on the uncomfortable pose of the setter, incorrectly classifies
the action as a left-pass instead of the accurate label, which should be left-set. This
example highlights a limitation of our model’s non-temporal nature. Had the model been
able to observe the entire video clip and assess the spikers’ movement, it could potentially
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recognize the delayed preparation and assign the correct label. The finding emphasizes the
trade-off between model speed and accuracy. Although we did not encounter a significant
number of instances where the labels were ambiguous due to single-frame processing,
it is important to acknowledge that non-temporal models can indeed fail to capture the
temporal nature of certain activities.

Conversely, the bottom image in Figure A.1 presents a scenario where the coordination
of the right team is disrupted. In a short video clip, it may be challenging to determine
whether the ball was directly received from the left team or as a result of a defensive
action by the right team. In this example, our model incorrectly predicts the label as r-set,
assuming the ball came from a defensive action, whereas the true label should be r-pass,
indicating a direct ball from the left team. This highlights a limitation that even a temporal
model may not be able to resolve.

Figure A.2 Examples of errors made by our model on the Volleyball dataset. The top im-
age showcases an instance where the losing team (right) exhibits an unusually condensed
formation, while the winning team (left) remains dispersed, as they have not begun cele-
brating the score yet. Conversely, the top image shows a rare tactical combination where
the attack is set from the middle of the court instead of the sides.

In Figure A.2, we present instances that deviate from the typical patterns observed in
scenes with the same label. One can see the top image illustrates a left-winpoint scene
with unusual relative differences among the team members for both scoring and losing
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teams. It can be seen that left (scoring) team’s members have not yet gathered to celebrate
the winpoint, while the players of the right (losing) team are unexpectedly close to each
other. These atypical characteristics mislead our model, causing it to incorrectly classify
the scene as a right-winpoint. In this example, DECOMPL relied heavily on the features
extracted from our coordinate block, leading to a false classification in the end.

Similarly, the bottom image in Figure A.2 shows a rare attacking combination from the
left team where the attack is initiated from the middle of their field, rather than the sides.
In this unique scenario, DECOMPL mistakenly labels the scene as a left-pass rather than
the correct label, left-set. This misclassification occurs since DECOMPL observes no
players on the sides are preparing themselves to spike, leading to an incorrect classifica-
tion. This example falls outside the distribution of training examples, contributing to poor
performance as our model lacks sufficient similar training instances.
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DomainBed experiments per algorithm, dataset and domain

ColoredMNIST

Model +80% +90% −90%
NAME (ours) 73.6±0.4 74.0±0.2 9.9±0.1
CORAL [69] 71.8±0.4 73.3±0.2 10.1±0.1
SelfReg [36] 72.2±0.5 73.7±0.2 10.5±0.3
Mixup [80] 72.4±0.2 73.3±0.2 10.0±0.1
MLDG [42] 71.4±0.4 73.3±0.0 10.0±0.0
ERM [72] 72.7±0.2 73.2±0.3 10.0±0.0
IRM [2] 72.0±0.3 73.2±0.0 10.1±0.2
GroupDRO [65] 72.7±0.3 73.1±0.3 10.0±0.0
MMD [46] 72.1±0.2 72.8±0.2 10.5±0.2

Table A.1 Detailed results on ColoredMNIST in DomainBed
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RotatedMNIST

Model 0 15 30 45 60 75
NAME (ours) 95.7±0.3 98.3±0.2 99.1±0.1 98.9±0.1 98.7±0.0 96.3±0.4
CORAL [69] 95.7±0.2 99.0±0.0 99.1±0.1 99.1±0.0 99.0±0.0 96.7±0.2
SelfReg [36] 95.7±0.3 99.0±0.1 98.9±0.1 99.0±0.1 98.9±0.1 96.6±0.1
Mixup [80] 96.1±0.2 99.1±0.0 98.9±0.0 99.0±0.0 99.0±0.1 96.6±0.1
MLDG [42] 95.9±0.2 98.9±0.1 99.0±0.0 99.1±0.0 99.0±0.0 96.0±0.2
ERM [72] 95.6±0.1 99.0±0.1 98.9±0.0 99.1±0.1 99.0±0.0 96.7±0.2
IRM [2] 95.9±0.2 98.9±0.0 99.0±0.0 98.8±0.1 98.9±0.1 95.5±0.3
GroupDRO [65] 95.9±0.1 98.9±0.0 99.0±0.1 99.0±0.0 99.0±0.0 96.9±0.1
MMD [46] 96.6±0.1 98.9±0.0 98.9±0.1 99.1±0.1 99.0±0.0 96.2±0.1
DANN [21] 95.6±0.3 98.9±0.0 98.9±0.0 99.0±0.1 98.9±0.0 95.9±0.5
CDANN [47] 96.0±0.5 98.8±0.0 99.0±0.1 99.1±0.0 98.9±0.1 96.5±0.3

Table A.2 Detailed results on RotatedMNIST in DomainBed

VLCS

Model C L S V

NAME (ours) 97.7±0.3 64.5±1.1 72.3±1.5 79.3±1.0
CORAL [69] 98.8±0.1 64.6±0.8 71.7±1.4 75.8±0.4
SelfReg [36] 96.7±0.4 65.2±1.2 73.1±1.3 76.2±0.7
Mixup [80] 97.9±0.3 64.5±0.6 71.5±0.9 76.9±1.3
MLDG [42] 98.1±0.3 63.0±0.9 73.5±0.6 73.7±0.3
ERM [72] 97.6±1.0 63.3±0.9 72.2±0.5 76.4±1.5
IRM [2] 97.6±0.3 65.0±0.9 72.9±0.5 76.9±1.3
GroupDRO [65] 97.7±0.4 62.5±1.1 70.1±0.7 78.4±0.9
MMD [46] 97.1±0.4 63.4±0.7 71.4±0.8 74.9±2.5
DANN [21] 98.5±0.2 64.9±1.1 73.1±0.7 78.3±0.3
CDANN [47] 97.5±0.1 65.2±0.4 73.4±1.1 76.9±0.2

Table A.3 Detailed results on VLCS in DomainBed
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PACS

Model A C P S

NAME (ours) 86.4±1.1 80.2±0.2 98.3±0.1 76.3±0.3
CORAL [69] 87.7±0.6 79.2±1.1 97.6±0.0 79.4±0.7
SelfReg [36] 87.9±1.0 79.4±1.4 96.8±0.7 78.3±1.2
Mixup [80] 86.5±0.4 76.6±1.5 97.7±0.2 76.5±1.2
MLDG [42] 89.1±0.9 78.8±0.7 97.0±0.9 74.4±2.0
ERM [72] 88.1±0.1 77.9±1.3 97.8±0.0 79.1±0.9
IRM [2] 85.0±1.6 77.6±0.9 96.7±0.3 78.5±2.6
GroupDRO [65] 86.4±0.3 79.9±0.8 98.0±0.3 72.1±0.7
MMD [46] 84.5±0.6 79.7±0.7 97.5±0.4 78.1±1.3
DANN [21] 85.9±0.5 79.9±1.4 97.6±0.2 75.2±2.8
CDANN [47] 84.0±0.9 78.5±1.5 97.0±0.4 71.8±3.9

Table A.4 Detailed results on PACS in DomainBed

Office-Home

Model A C P R

NAME (ours) 64.7±0.3 53.9±0.5 76.5±0.4 78.3±0.3
CORAL [69] 64.4±0.3 55.3±0.5 76.7±0.5 77.9±0.5
SelfReg [36] 63.6±1.4 53.1±1.0 76.9±0.4 78.1±0.4
Mixup [80] 64.7±0.7 54.7±0.6 77.3±0.3 79.2±0.3
MLDG [42] 63.7±0.3 54.5±0.6 75.9±0.4 78.6±0.1
ERM [72] 62.7±1.1 53.4±0.6 76.5±0.4 77.3±0.3
IRM [2] 61.8±1.0 52.3±1.0 75.2±0.8 77.2±1.1
GroupDRO [65] 61.6±0.7 52.9±0.2 75.5±0.5 77.7±0.2
MMD [46] 63.0±0.1 53.7±0.9 76.1±0.3 78.1±0.5
DANN [21] 59.3±1.1 51.7±0.2 74.1±0.8 76.6±0.6
CDANN [47] 61.0±1.4 51.1±0.7 74.1±0.3 76.0±0.7

Table A.5 Detailed results on Office-Home in DomainBed
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TerraIncognita

Model L100 L38 L43 L46

NAME (ours) 52.5±1.3 42±1.6 57.4±1.3 37.6±1.3
CORAL [69] 48.6±0.9 42.2±3.5 55.9±0.6 38.7±0.7
SelfReg [36] 48.8±0.9 41.3±1.8 57.3±0.7 40.6±0.9
Mixup [80] 60.6±1.3 41.1±1.8 58.5±0.8 35.2±1.1
MLDG [42] 48.5±3.3 42.8±0.4 56.8±0.9 36.3±0.5
ERM [72] 50.8±1.8 42.5±0.7 57.9±0.6 37.6±1.2
IRM [2] 52.2±3.1 43.4±2.4 57.7±1.5 38.1±0.7
GroupDRO [65] 47.2±1.6 40.1±1.6 57.6±0.9 43.0±0.7
MMD [46] 52.2±5.8 47.0±0.6 57.8±1.3 40.3±0.5
DANN [21] 49.0±3.8 46.3±1.7 57.6±0.8 40.6±1.7
CDANN [47] 49.5±3.8 44.8±1.0 57.3±1.1 38.8±1.7

Table A.6 Detailed results on TerraIncognita in DomainBed

DomainNet

Model clipart infograph painting quickdraw real sketch

NAME (ours) 60.82±0.2 20.92±0.1 48.6±0.2 14.11±0.2 61.8±0.2 52.35±0.3
CORAL [69] 58.7±0.2 20.9±0.3 47.3±0.3 13.6±0.3 60.2±0.3 50.2±0.6
SelfReg [36] 60.7±0.1 21.6±0.1 49.4±0.2 12.7±0.1 60.7±0.1 51.7±0.1
Mixup [80] 55.3±0.3 18.2±0.3 45.0±1.0 12.5±0.3 57.1±1.2 49.2±0.3
MLDG [42] 59.5±0.0 19.8±0.4 48.3±0.5 13.0±0.4 59.5±1.0 50.4±0.7
ERM [72] 58.4±0.3 19.2±0.4 46.3±0.5 12.8±0.0 60.6±0.5 49.7±0.8
IRM [2] 51.0±3.3 16.8±1.0 38.8±2.1 11.8±0.5 51.5±3.6 44.2±3.1
GroupDRO [65] 47.8±0.6 17.1±0.6 36.6±0.7 8.8±0.4 51.5±0.6 40.7±0.3
MMD [46] 54.6±1.7 19.3±0.3 44.9±1.1 11.4±0.5 59.5±0.2 47.0±1.6
DANN [21] 53.8±0.7 17.8±0.3 43.5±0.3 11.9±0.5 56.4±0.3 46.7±0.5
CDANN [47] 53.4±0.4 18.3±0.7 44.8±0.3 12.9±0.2 57.5±0.4 46.7±0.2

Table A.7 Detailed results on DomainNet in DomainBed
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Pseudocode for ADRMX

Algorithm 1 ADRMX
Input Source domains D = {D1,D2, . . . ,DS}, batch size B, number of iterations N,
number of remixed samples K
Initialize parameters θ
Output Model parameters θ

1: for i = 1 to N do
2: x, ylabel, ydomain← SAMPLEBATCH(D,B)
3: xlabel← fθlabel

(x)
4: xdomain← fθdomain

(x)
5: xdinv← xlabel−xdomain

6: calculate Ldisc for fθdisc
(xdinv))

7: if discriminator turn then
8: perform an update to minimize Ltotal_disc by 3.5
9: else

10: calculate Lcont using 3.1 for xlabel and xdinv

11: calculate LCE for fclf1(xlabel), fclf2(xdinv) and fdomain(xdomain)
12: Lremix← 0
13: for k = 1 to K do
14: Sample a pair of index i, j, where yi

label = yj
label and yi

domain ̸= yj
domain

15: combine instances to obtain xremixed by 3.2
16: calculate lremix using 3.3
17: Lremix←Lremix + lremix

18: end for
19: calculate Ltotal_gen by 3.4
20: perform an update to minimize Ltotal_gen

21: end if
22: end for
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