
TEXT2TEST: FROM NATURAL LANGUAGE DESCRIPTIONS TO
EXECUTABLE TEST CASES USING NAMED ENTITY

RECOGNITION

by
AHMET YASIN AKYILDIZ

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2023

TEXT2TEST: FROM NATURAL LANGUAGE DESCRIPTIONS TO
EXECUTABLE TEST CASES USING NAMED ENTITY

RECOGNITION

Approved by:

Prof. Cemal Yilmaz .
(Thesis Supervisor)

Prof. Hüsnü Yenigün .

Prof. Hasan Sözer .

Date of Approval: July 25, 2023

Ahmet Yasin Akyıldız 2023 ©

All Rights Reserved

ABSTRACT

TEXT2TEST: FROM NATURAL LANGUAGE DESCRIPTIONS TO
EXECUTABLE TEST CASES USING NAMED ENTITY RECOGNITION

AHMET YASIN AKYILDIZ

Computer Science and Engineering, Master’s Thesis, 2023

Thesis Supervisor: Prof. Cemal Yilmaz

Keywords: Mobile automation, Mobile application testing, GUI testing, Natural
Language Processing, Named Entity Recognition

In this work, we present text2test, an innovative approach for automated testing
of mobile application user interfaces (UIs). As mobile applications become increas-
ingly prevalent, ensuring robust and user-friendly UIs has become essential, leading
to a greater need for efficient testing methodologies. However, testing UIs poses
challenges due to varying screen sizes, evolving UI elements across versions, and
the need for frequent test case revisions. To address these challenges, we propose
text2test, which combines named entity recognition (NER) and semantic similarity
computations in a framework using Android APIs to execute test cases from natural
language descriptions. We bridge the gap between textual input and UI interactions
by training a NER language model to identify UI elements and actions from nat-
ural language test case descriptions. Using the DOM structure of an application,
containing XML metadata of UI elements, we accurately detect the appropriate UI
element associated with the action. Finally, using the information extracted by the
NER model and the elements detected using semantic similarity we developed a
framework that can execute test cases on Android applications. Our experiments
show that text2test achieves a 92% precision rate in identifying element-action pairs
and an average accuracy of 88% in detecting expected UI elements and a 76% success
rate to fully reproduce test cases on Android applications. Our approach stream-
lines automated UI testing, reducing manual intervention and the need for frequent
script updates and promises a solution for efficient and reliable UI testing.

iii

ÖZET

TEXT2TEST: VARLIK İSIMLERI TANIMA TEKNIKLERI KULLANARAK
DOĞAL DIL’DE YAZILMIŞ TEST CÜMLELERINDEN YÜRÜTÜLEBILIR

TEST SENARYOLARINA

AHMET YASIN AKYILDIZ

Bilgisayar Bilimi, Yüksek Lisans Tezi, 2023

Tez Danışmanı: Prof. Dr. Cemal Yılmaz

Anahtar Kelimeler: Mobil otomasyon, Mobil uygulama testi, GUI testi, Doğal Dil
İşleme, Varlık İsmi Tanıma

Bu çalışmada, mobil uygulama kullanıcı arayüzlerinin (UI’ler) otomatik testi için
yenilikçi bir yaklaşım olan text2test’i sunuyoruz. Mobil uygulamalar giderek daha
yaygın hale geldikçe, kullanıcı dostu kullanıcı arayüzlerinin sağlanması önemli hale
geldi ve bu da verimli test metodolojilerine daha fazla ihtiyaç duyulmasına yol açtı.
Bununla birlikte, değişen ekran boyutları, sürümler arasında değişen UI öğeleri ne-
deniyle test durumu revizyonları gereksinimi UI testlerini zorlaştırır. Bu zorluk-
ların üstesinden gelmek için, Varlık İsimleri Tanıma (NER) ve anlamsal benzerlik
hesaplamalarını kullanarak doğal dil cümlelerinden test senaryolarını yürüten An-
droid API’lerini kullanan bir yazılım text2test’i sunuyoruz. Doğal dil test senary-
olarının açıklamalarından UI öğelerini ve eylemleri tanımlamak için bir NER modeli
eğiterek UI öğeleri ve UI etkileşimleri arasındaki boşluğu dolduruyoruz. Bir uygu-
lamanın UI öğelerinin XML meta verilerini içeren DOM yapısını kullanarak, belir-
lenen eylemle ilişkili uygun UI öğesini doğru bir şekilde tespitini sağlıyoruz. Son
olarak, NER modelimiz tarafından çıkarılan bilgileri ve semantik benzerlik ile tespit
edilen öğeleri kullanarak, Android uygulamalarında test senaryolarını yürütebilen
bir yazılım geliştirdik. Deneylerimiz, text2test’in öğe-eylem çiftlerini belirlemede
%92’lik bir kesinlik oranı ve beklenen UI öğelerini tespit etmede ortalama %88’lik
bir doğruluk oranı ve Android uygulamalarında test senaryolarını tam olarak yeniden
oluşturmak için %76’lık bir başarı oranı elde ettiğini göstermektedir. Yaklaşımımız,
manuel müdahaleyi ve komut dosyası güncelleme ihtiyacını azaltır ve verimli ve
güvenilir UI testi için bir çözüm olanağı sunar.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Profesor Cemal Yilmaz for his endless support,
and my family and friends for supporting me throughout my work in Sabancı.

v

To my family & friends

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

1. INTRODUCTION . 1

2. RELATED WORK & BACKGROUND . 4
2.1. Software Systems Testing . 4
2.2. Named Entity Recognition. 6
2.3. Domain Specific Named Entity Extraction . 9
2.4. Element Detection . 11

3. APPROACH . 12
3.1. Element Extraction via NER Model . 13

3.1.1. Domain-Specific BERT. 13
3.1.2. NER Model . 14

3.1.2.1. Input Layer and Embeddings. 14
3.1.2.2. Bi-LSTM CRF Downstream task . 15

3.2. Element Detection with Similarity Score Calculation. 17
3.3. text2test Test Case Execution . 18

4. EXPERIMENTS . 21
4.1. Operational Framework . 21
4.2. Evaluation Framework . 22
4.3. Dataset and Subject Applications . 24

4.3.1. Dataset used in Element Extraction and Element Detection . . 24
4.3.2. Dataset used in text2test Test Case Execution 27
4.3.3. ReCDroid Comparison: . 29

4.4. Experimental Results . 29
4.4.1. Element Extraction . 30
4.4.2. Element Detection . 37

vii

4.4.3. text2test- Test Case Execution . 41
4.4.4. text2test Element Extraction Comparison to ReCDroid 44

5. CONCLUSION . 46

BIBLIOGRAPHY. 49

viii

LIST OF TABLES

Table 4.1. Classes used for text classification and their distributions 26
Table 4.2. Number of total elements and number of unique elements 27
Table 4.3. Applications used in testing text2test, the number of sentences

in each test case and information from the reported ReCDroid issue
report. 28

Table 4.4. BERT-base-cased vs UI-BERT results . 30
Table 4.5. Action and Entity predictions by Bert-base-cased model and

UI-BERT given a test sentence. bold words represent the ground
truth action in the sentence, while italic word represents the ground
truth entity. 32

Table 4.6. Signal app. experimental results for NER approach utilizing
UI-BERT model with extended features . 34

Table 4.7. Firefox app. experimental results for NER approach utilizing
UI-BERT model with extended features . 34

Table 4.8. VLC app. experimental results for NER approach utilizing
UI-BERT model with extended features . 35

Table 4.9. BERT bi-LSTM CRF Model results with Signal, Firefox and
VLC application training and test sets individually versus the combi-
nation of these training and testing sets. The entity extraction results
are exact-match results.. 36

Table 4.10. BERT bi-LSTM CRF Model results for the same approach in
Table 4.9 but partial action and element detection calculated as true
positive. 36

Table 4.11. ‘Signal & Firefox & VLC” UI-BERT _bi-LSTM_CRF model
predictions with the new parameter element . 37

Table 4.12. Element Detection Results . 38
Table 4.13. Element Detection Results . 39
Table 4.14. text2test Test Case Reproduction Results . 42
Table 4.15. Signal & Firefox & VLC UI-BERT _bi-LSTM_CRF model

prediction results on ReCDroid test sentences . 44

ix

Table 4.16. ReCDroid NLP model on Firefox and Signal test sentences 45

x

LIST OF FIGURES

Figure 1.1. An example sentence to execute (a), the corresponding screen
(b), and its POM representation (c). 3

Figure 2.1. An LSTM cell showing the four interacting layers 7

Figure 3.1. General Structure of the Proposed Approach 12
Figure 3.2. BERT Pre-training . 14
Figure 3.3. Proposed architecture for android sentences action and entity

recognition . 16

xi

1. INTRODUCTION

User interface testing is time-costly due to the need to cover every UI element func-
tionality and logical interaction flow. For example, a test suite developed for an
Android application needs 75% code-based adaptations and 100% image-based test
case adaptations because of the UI changes between the two versions. Coppola, Raf-
fero & Torchiano (2016). The need for UI adaptation in case of UI changes is also
true for other test suites developed by technical stakeholders for any Page Object
Model (POM) interface that utilizes XML or HTML documents. As a result, involv-
ing non-technical stakeholders in test automation is of great practical importance
in today’s software industry, mainly due to the ever-increasing cost of developing
executable test cases using technical stakeholders.

To this end, many approaches have been developed Liu, Lu, Cheng, Chang, Hsiao &
Chu (2014); North & others (2006); SmartBear (2019); Solis & Wang (2011), some
of which have, indeed, been quite frequently used in the field, including behaviour-
driven development (BDD) Li, Escalona & Kamal (2016); Soeken, Wille & Drech-
sler (2012) and capture-and-replay tools Bernal-Cárdenas, Cooper, Moran, Cha-
parro, Marcus & Poshyvanyk (2020). However, due to their fragile nature, both
approaches suffer when there is a change in the UI arrangement. There is still room
for improvement in the effectiveness and efficiency of these approaches.

For example, BDD allows non-technical stakeholders to develop executable test cases
using semi-structured natural language sentences. However, it only partially elimi-
nates the need for technical stakeholders as sentence-specific scripts (e.g., step defini-
tions) are still required to be developed to execute the sentences against the system
under test (SUT). An alternative approach would be to use a capture-and-replay
tool Halpern, Zhu, Peri & Reddi (2015). Although these tools are easy to learn/use
and non-technical stakeholders can develop executable test cases without requiring
any technical stakeholders, the resulting test scripts are typically fragile in the pres-
ence of user interface (UI) changes. Small changes in the UIs, such as changing
the screen size, a change in resolution and layout, and changes in labels/icons, can
break the pre-recorded scripts. Indeed, BDD also suffers from the same issue. More

1

specifically, in the presence of UI changes, the scripts responsible for executing the
sentences may need to be modified to accommodate the changes.

Our ultimate motivation is to create a UI test framework that is resilient to UI
changes, unlike BDD and capture-and-replay thus enabling non-technical stake-
holders to significantly contribute to the testing efforts with minimal help from
stakeholders.

As a general assumption, we assume that when a stakeholder prepares human-
readable test cases for functional testing, these test cases provide sufficient informa-
tion for automation, which are the UI element (entity) to be interacted with, the
type of interaction (action) and the state or the value which the UI element can be
assigned (parameter).

Our ultimate goal in this field of research is to enable non-technical stakeholders to
significantly contribute to the test automation efforts by developing executable test
cases without requiring any technical stakeholders, which are more resilient to the
changes in the UIs.

To this end, we, in this work, present an approach called text2test. At a very high
level, text2test takes as input a screen represented in the form of a page object
model (POM) and a sentence written in a natural language (in our case, in English)
describing an interaction with a UI element on the screen. The output is the word(s)
describing the action, the actual UI element on the screen on which the action
needs to be carried out and the parameter that the UI element can be assigned.
Figure 1.1 presents an example. Given the sentence tap to the call friends icon in
the menu (Figure 1.1a), which needs to be executed on the screen in (Figure 1.1b(,
the proposed approach figures out that the invite friends button needs to be clicked
since it is the most semantically similar UI element on the screen to one described in
the sentence. Then the test case execution tool developed by us performs the click
action on the invite friends element that is present on the application user interface.
In order to check if we performed the correct action on the correct UI element we
check it manually. For this purpose, a test oracle can be developed as a future work
idea.

2

Figure 1.1 An example sentence to execute (a), the corresponding screen (b), and
its POM representation (c).

We, in particular, use a well-known natural language processing (NLP) approach
called named entity recognition (NER). Researchers and data analysts widely use
NER in many domains for information retrieval Limsopatham & Collier (2016); Ma-
halakshmi, Vijayan & Antony (2018); Weber, Sänger, Münchmeyer, Habibi, Leser
& Akbik (2021). Our work is different in that we use it (and, to the best of our
knowledge, for the first time) as an aid to develop executable test cases by compiling
sentences in natural language into executable user interactions. Indeed, the results
of our initial set of experiments suggest that we can effectively use NER for this
purpose.

We organized the remainder of the paper as follows: Section 2 summarizes the
related work and provides background information; Section 3 presents the proposed
approach; Section 4 shares our empirical evaluations of the proposed approach; and
Section 5 concludes with a discussion of the success of our intended approach.

3

2. RELATED WORK & BACKGROUND

2.1 Software Systems Testing

The ever-increasing need for high-quality software systems necessitates the develop-
ment of cost-effective testing tools and processes Gao, Bai, Tsai & Uehara (2014);
Kirubakaran & Karthikeyani (2013); Muccini, Di Francesco & Esposito (2012). In
their work Muccini et al. state that the domain of mobile devices is growing exponen-
tially, which also comes together with exponential growth in the mobile application
domain. The biggest reason for this growth is that, during recent years, software
systems started to take part in crucial sectors such as banking, security and even
human health. Therefore, the necessity of software systems testing is increasing
massively. However, testing software systems is costly.

One way to reduce the cost of testing is to enable the non-technical stakeholders to
contribute to the test automation efforts significantly Liu et al. (2014); Northet al.
(2006); SmartBear (2019); Solis & Wang (2011). Behaviour Driven Development

(BDD) offers automated testing capabilities that let non-technical stakeholders ver-
ify the software’s behaviour without needing in-depth technical knowledge by utiliz-
ing BDD tools like Cucumber. Liu et al., in their research of Capture-replay testing,
show that it enables testers to quickly generate test cases by recording user interac-
tions and replaying them, reducing the time and effort required for manual testing.
This work presents a different approach to help non-technical stakeholders develop
executable and resilient test cases.

Many researchers have proposed approaches for end-to-end testing of software sys-
tems Amalfitano, Fasolino, Tramontana, De Carmine & Imparato (2012); Anand,
Naik, Harrold & Yang (2012); Costa, Paiva & Nabuco (2014); Gao et al. (2014);
Moreira & Paiva (2014); Song, Qian & Huang (2017); Su, Meng, Chen, Wu, Yang,

4

Yao, Pu, Liu & Su (2017). According to Gao et al., testing mobile applications is
challenging because of the wide range of device and platform configurations, the dy-
namic nature of mobile environments, and the intricate relationships between mobile
apps and back-end systems. The other authors suggested solutions to these prob-
lems. For instance, Amalfino et al. provided a program that builds test cases using
the extracted XML format hierarchy and extracts the GUI hierarchy of an Android
application. Costa et al. capture the mobile application’s GUI events and trans-
form them into a series of patterns. Then the authors use these patterns to create
test cases. Likewise, Song and colleagues model the components and interactions of
the application, which is then applied to simulate the application’s behaviour and
produce test cases.

Similarly, Moreira et al. suggest the PBGT tool, which automatically creates test
cases based on the model of the application using pattern recognition algorithms. On
the other hand, Anand et al. contend that traditional black-box testing is insufficient
to test smartphone applications and use concolic execution to explore the program’s
execution paths and generate inputs that meet specific coverage criteria. Finally, Su
et al. combine stochastic model-based testing with guided exploration to generate
test cases. Our work differs from those works mentioned above in that we ultimately
aim to compile instructions given in natural language to UI interactions.

A broad spectrum of domains uses NER and other NLP approaches extensively for
information retrieval purposes Mahalakshmi et al. (2018); Rocktäschel, Weidlich &
Leser (2012), including software engineering Ernst (2017); Fischbach, Vogelsang,
Spies, Wehrle, Junker & Freudenstein (2020); Granda, Parra & Alba-Sarango (2021);
Tao, Gao & Wang (2017); Zhou, Li & Sun (2020). Furthermore, there have been
significant advancements in training specialized NER models and their assessments
in recent years. Lin et al. suggested adding a neural adaptation layer to a pre-
trained NER model to adapt it to various domains Lin & Lu (2018) and Liu et al.
worked on the CrossNER framework for assessing the effectiveness of NER systems
in cross-domain scenarios. Today, several open-source libraries are available for this
purpose, including Stanford NER, NLTK, SpaCy and the BERT transformers.

NER has great potential in our application domain. For example, not only the
actions and the UI elements but also the arguments passed to the actions (e.g., enter
the text ... in the text field ...), and even the domain-specific terms (e.g., choose
... as the departure airport) can be tagged using NER, significantly increasing the
applicability of NER in UI testing domain.

Using NER in application testing is not an entirely new idea Lin, Wang & Chu
(2017a); Mahalakshmi et al. (2018); Tao et al. (2017). Tao et al. mapped natural

5

language descriptions to BDD step definitions. Their approach, however, requires
technical stakeholders for the development of the step definitions Tao et al. (2017).
Lin et al. used semantic similarity to improve the effectiveness of crawling-based
web application testing Lin et al. (2017a). Mahalakshmi et al. used NER to iden-
tify domain-specific terms in use cases so that they could infer abstract test scenar-
ios Mahalakshmi et al. (2018). However, they are not concerned with actual screens
or UI elements on these screens and the actions required for generating executable
test cases. Our work is different in that we use NER to compile natural language
descriptions for interactions eventually.

2.2 Named Entity Recognition

NER is a sub-task of natural language processing. A substantial task of NLP is
understanding a natural language text without losing any information. In this task,
NER is an information extraction method that locates and classifies named entities
into predefined categories. A simple example for NER would be “Mark Zuckerberg
is one of the founders of Facebook, a company from the United States” containing
the entities Person – Mark Zuckerberg, Company – Facebook and Location – United
States.

The improvement of NER systems began with rule-based approaches. Supervised
learning Palmer & Day (1997), semi-supervised learning Brin (1998), and unsu-
pervised learning Etzioni, Cafarella, Downey, Popescu, Shaked, Soderland, Weld
& Yates (2005) were different approaches to training NER models. However, these
early approaches needed more flexibility and performed poorly on complex data sets.
Later research worked on machine-learning approaches that worked with statistical
models to learn from annotated data. McCallum et al. implemented maximum
entropy Markov models for McCallum, Freitag & Pereira (2000) and Laffrey et al.
introduced conditional random fields (CRFs) Lafferty, McCallum & Pereira (2001)
both are probabilistic approaches to sequence labelling tasks and achieved more
robust scores that had better accuracy and recall over the rule-based approaches.

Although probabilistic approaches produced higher success rates at NER tasks, with
the popularisation of neural networks in machine learning, researchers started ex-
ploring various network architectures, which indeed did improve the scores of the
probabilistic approaches. Lample et al. evaluated convolutional neural networks
(CNNS), recurrent neural networks (RNNs) and the combination of both for NER

6

tasks. Lample, Ballesteros, Subramanian, Kawakami & Dyer (2016) A remarkable
result they emphasize is that when they use neural networks in a cascade, they out-
perform sequestered counterparts. Since the cascading of neural networks yielded
better recognition results, Ma et al. introduced a Bi-directional Long Short Term
Memory LSTM-CNN-CRF model for sequence labelling. Ma & Hovy (2016)

Long Short Term Memory (LSTM) is explicitly designed to avoid long-term
dependency problems of recurrent neural networks (RNN), which is a problem when
the gap between the relevant information and the predicted term in a sentence is
long. Karpathy, Johnson & Fei-Fei (2015) Implementing a state vector achieves
this memory. The state vector st consists of 2 parts: cell state ct, which is the
long-term memory where long-term that preserves dependencies and hidden state
ht, the short-term memory that controls the gates in a cell and decides what will go
into the long term memory. The gates controlled by the hidden state are the input
gate that is updated using it and C ′

t, where it decides which new information it is
going to store in the cell state, forget gate ft decides which information is going to
be thrown away and output ot gates. An LSTM cell can be seen in figure: 2.1

Figure 2.1 An LSTM cell showing the four interacting layers

ft = σ(Wf · [ht−1
,xt]+ bf)

it = σ(Wi · [ht−1
,xt]+ bi)

ot = σ(Wo · [ht−1
,xt]+ bo)

C ′
t = tanh(WC · [ht−1

,xt]+ bC)
7

Ct = ft ∗Ct−1
+ it ∗C ′

t

ht = tanh(ct)

Conditional Random Fields are used for building probabilistic models to seg-
ment and label sequence data. (Lafferty et al., 2001) For an input sentence
X = (x1,x2, ...,xn)and corresponding predictions of labels y = (y1,y2, ...,yn), the CRF
score for this sequence can be calculated as:

s(X,y) =
n∑

i=1
Tyi−1 ,yi +Pi,yi

Where T is the tagging transition matrix which shows the likelihood of transitioning
from tag yi−1 to yi. Then a softmax function is used to extract a conditional
probability of the path y by normalizing the above score over all possible tag paths
y′:

p(y|X) = es(Xi,y)∑
y′ es(Xi,y′)

As a last step, predict the best tag path that obtains the maximum score calculated
using the Viterbi (Viterbi, 1967) algorithm:

argmaxy′s(X,y′)

Another significant improvement in named entity recognition tasks is the utilization
of transformers, especially Bidirectional Encoder Representations (BERT). Devlin
et al. fine-tuned the BERT model on the CoNLL-2003 dataset. Devlin, Chang, Lee
& Toutanova (2019) CoNLL-2003 is a standard benchmark test for NER. Tjong
Kim Sang & De Meulder (2003) The authors reported that the BERT-based NER
model outperformed the previous state-of-the-art approaches on this task.

BERT is a powerful model that can be used successfully for text-based learning.
The bi-directional nature of BERT allows learning the word’s context from its sur-
roundings (both words from its right and left). Base BERT models are trained
with two objectives masked language modelling (MLM) and next sentence predic-
tion (NSP). MLM objective masks some percentage of the input tokens at random
and updates model weight by making predictions on these masked tokens, thus
learning contextual relationships between words. NSP objective, on the other hand,
allows the model to understand relationships between two sentences which the MLM

8

cannot capture. (Devlin, Chang, Lee & Toutanova, 2018). However, it is very com-
putationally expensive to train a new BERT model from blank for any task in
hand and requires enormous data. The effective approach of transfer-learning on
BERT models (Agrawal, Tripathi, Vardhan, Sihag, Choudhary & Dragoni, 2022)
allows BERT-based NER models to perform with higher scores, particularly when
the training data is limited.

2.3 Domain Specific Named Entity Extraction

At first glance, the main objective of named entity extraction may only seem to de-
tect entities such as persons, locations, and companies. Recently it has been used in
domain-specific areas. The language employed in a particular field or subject area is
frequently technical or specialized, with a vocabulary not used in other settings. Ap-
plying general-purpose NER models to extract named entities in such domains may
be challenging. Domain-specific NER models are trained on a specialized dataset
that contains examples of named entities and the corresponding labels within the
particular domain or topic. The specialized datasets might contain books on bio-
medicine, court cases, financial statements, and more. A domain-specific NER model
can attain higher accuracy and performance in detecting named entities within that
area or subject.

Zhang et al. fine-tuned a BERT model on a financial NER dataset with entities
such as company names, stock codes and general financial terms. Zhang & Zhang
(2022) Choudhary et al. showed the effectiveness of domain-specific NER models
by comparing them to the performance of base models on tweets. Ritter, Clark,
Mausam & Etzioni (2011). In order to extract menu items from online user reviews
for restaurants, Syed et al. propose the "MenuNER" method. To optimize perfor-
mance on the domain-specific job of detecting menu elements, the authors combine
extended feature vectors created by concatenating domain-adapted BERT embed-
dings, character embeddings, and part-of-speech (POS) tag features with a
Bi-LSTM+CRF model. Syed & Chung (2021)

Word Embeddings used by the authors are vector representations of words in a cor-
pus of text. They are numerical representations that capture the semantic meaning
of words and their relationships to other words in the dataset. Usually, word em-
beddings are learned by an unsupervised learning method using a large corpus of
text data. Although more conventional methods of learning word embeddings are

9

word2vec Mikolov, Chen, Corrado & Dean (2013a) and Glove Pennington, Socher
& Manning (2014), vector representations used in the last layers of BERT models
can also be helpful as word embeddings for downstream tasks. POS provides linguis-
tic information on how a word is being used within the scope of a sentence. They can
also distinguish the meaning or explain a word’s syntactic role, allowing a language
model to infer semantic information from how a syntactic role is commonly used
semantically. Character-Level Embeddings is a way to capture morphological and
structural information about words. Using CNNs, Ling et al. generated character-
level embedding representing words as sequences of vectors that capture the word’s
internal structure. Ling, Luís, Marujo, Astudillo, Amir, Dyer, Black & Trancoso
(2015) They contribute to performance improvements, especially in morphologically
rich languages. Combining different embedding types as input to the downstream
Bi-LSTM-CRF task improves the accuracy of the named entity recognition.

Although NER is a popular tool to detect entities, it has not been used in the soft-
ware testing domain. Other approaches to automated test validation use different
methods to extract entities from bug reports. Fazzini et al. automated method
named Yakusu to convert bug reports into test cases for mobile apps. Fazzini,
Prammer, d’Amorim & Orso (2018). This process involves lexicon normalization
and object standardization on the textual bug reports. Lexicon normalization re-
places non-standard words with standard action words, making it easier to parse
and understand actions. Object standardization replaces phrases referring to UI
elements with their corresponding IDs in the app’s ontology. Yakusu then examines
each clause in the bug report: if the root of the clause is a predefined action word,
it extracts an abstract action based on the clause’s dependency tree.

Another approach to extracting domain-specific named entities is to identify relevant
components and their dependencies using a dependency parser. Zhao et al. used
dependency parsing on bug reports to reproduce Android application crashes. They
extract the actions and the related elements from the bug report sentences using a
combination of dependency parsing and a rule-based approach and generate a set of
execution paths that lead to a crash. Zhao, Su, Liu, Zheng, Wu, Kavuluru, Halfond
& Yu (2022); Zhao, Yu, Su, Liu, Zheng, Zhang & G.J. Halfond (2019). Yakusu and
ReCDroid have demonstrated high success rates in extracting elements from issue
reports. However, both approaches rely on a predefined vocabulary to identify and
classify actions in issue reports.

2.4 Element Detection

10

In order to address the manual, labour-intensive configuration requirements of
crawling-based application model generation Lin, Wang & Chu (2017b) proposes
an unsupervised approach to detect the purpose of applications and UI elements in
the application using a semantic similarity-based method. Application page object
model (POM) is used to extract a vector representation of related text, and it is
matched against a labelled corpus to determine the topic and action. A TF-IDF-
based vector is used for semantic similarity calculations, which precedes the more
recent word vector-based methods. However, in the work of Lin et al. (2017b), the
general purpose of using semantic similarity is to identify the input topics of Web
application elements such as a password or email text fields, while our purpose for
semantic similarity is to detect the particular UI element for the given sentence.

A page object model or POM is a fundamental unit of test automation frame-
works like Selenium and Appium. It can be an HTML or XML file, depending on
the application under test, and it maps out an entire page as a document composed
of a hierarchy of nodes.

A well-known semantic-similarity calculation method is the Google Universal Sen-
tence Encoder. Cer, Yang, yi Kong, Hua, Limtiaco, John, Constant, Guajardo-
Cespedes, Yuan, Tar, Sung, Strope & Kurzweil (2018). The main idea is to encode
text into high-dimensional vectors that capture the semantic meaning of a given sen-
tence. Google’s AI research team introduced two versions of the encoder: the deep
averaging networks (DAN) and the transformer model. DAN averages the embed-
dings of the words in a given phrase and computes a sentence embedding; it is a quick
and practical approach to computing sentence embeddings. The transformer-based
approach takes advantage of the self-attention mechanism that captures long-range
information in the sentence and focuses on different parts of a given phrase in each
step, resulting in highly effective sentence encoding.

11

3. APPROACH

This chapter describes the architecture of text2test shown in Figure 3.1. text2test
consists of three major parts - element extraction, element detection and test case
execution. To perform element extraction we employ a well-known NLP technique
named entity recognition to extract action, entity and parameter information from
test case sentences. We are utilizing Universal Sentence Encoder’s word2vec rep-
resentation to detect entities on an application UI and calculate similarity scores.
Finally, we use information extracted from the sentences and the detected elements
from the application in our test case execution approach. Test case execution is
based on a customized depth-first search algorithm of the application from launch
till the execution of all the test cases.

Figure 3.1 General Structure of the Proposed Approach

12

3.1 Element Extraction via NER Model

Element extraction from UI test sentences is a challenging task. Given a sentence,
we require to recognize an action and a corresponding entity and, in some cases,
parameters, which are relatively unseen tokens. Overcoming this challenge requires
first adapting a base BERT model to the specific domain of applications, followed
by creating a NER approach that can handle the low data limitation of the user-
generated UI test case sentences.

3.1.1 Domain-Specific BERT

We are pre-training the BERT-base cased model from HuggingFace for our task.
(Wolf, Debut, Sanh, Chaumond, Delangue, Moi, Cistac, Rault, Louf, Funtowicz
& Brew, 2019) To pre-train the BERT-base cased model, we are using the MLM
task with sentences from our domain-specific corpus. Using MLM task on the test
sentences is basically giving the model a fill-in-the-gaps task. In our case, this helps
the model learn relationships between words seen together in UI testing sentences.
Towards this task, first, we pre-process domain-specific corpus data into training
examples following the methodology used for LM training in the original BERT
paper, then train the BERT base with the regenerated data. Pre-training allows the
model to make improved predictions on a specific domain and task while retaining its
general language understanding. (Huggingface, 2019) The domain we mention here
is the UI of a mobile platform, web or stand-alone application, and the sentences are
UI functionality test sentences specific to these applications. Moving forward, we
will call this domain-specific BERT model as UI-BERT since the fine-tuning data is
from test sentences of application UI testing. We describe the detailed information
on the domain corpus in Section 4.3.

An example from a UI test sentence is Open a new [MASK]. The pre-trained BERT
model on Books and Wikipedia corpus’ first two predictions for the masked word
are door and book, when we perform the same unmasking task with UI-BERT the
first two predictions become website and page which are the better predictions for
our case.

13

Figure 3.2 BERT Pre-training

3.1.2 NER Model

Our implementation of the NER approach to extract elements from user test sen-
tences uses the well-tested architecture of using a Bi-LSTM-CRF model as a down-
stream task to the fine-tuned UI-BERT (Dai, Wang, Ni, Li, Li & Bai, 2019) (Souza,
Nogueira & de Alencar Lotufo, 2019). Also, we are using the embedding layer tech-
nique adapted by MenuNER concatenating word embeddings with the part-of-speech
(POS) tag embedding and character embeddings (Syed & Chung, 2021), which also
utilizes a Bi-LSTM-CRF model as a downstream. See Figure3.3 for the proposed
architecture.

3.1.2.1 Input Layer and Embeddings

Word embeddings aim to represent words in a lower dimension using vectors, allow-
ing higher accuracy on NLP tasks with a much lower computational cost. (Mikolov,
Chen, Corrado & Dean, 2013b) In our work, we represent word embedding with
a concatenation of 3 different levels of embeddings: POS-tag, word and character
embeddings.

In a given sentence of word sequence S = {w1,w2....,wn}, feature vector is com-
posed of the word-level embedding ew

i ∈ Rdw , POS-feature embedding ep
i ∈ Rdp and

character-level embedding ec
i ∈ Rdc . The final word embedding is Vi = ew

i ⊕ ep
i ⊕ ec

i ,
where ew

i , ep
i and ec

i are embeddings of dimensions dw, dp and dc vector space and
i ∈ {1,2, ...,n}.

14

We obtain Word embeddings from UI-BERT. Specifically, we concatenate the
embeddings of the last four layers of UI-BERT. In their research, the authors of
BERT (Devlin et al., 2018) reported that concatenating the embeddings of the last
four layers yields the best results for a feature-based approach. This concatenation
can be achieved by mean pooling the hidden states of these layers, allowing us to
capture a given word’s semantic and syntactic features. We enhance the performance
of our NER task by creating word embeddings to properly reflect the complex and
varied meanings of words in their context.

As part of our approach, we utilize Part-Of-Speech (POS) embeddings to provide
linguistic information on how words are used within a sentence’s context. These em-
beddings enable us to distinguish a word’s meaning and syntactic role, allowing our
language model to infer semantic information from how a syntactic role is commonly
used semantically.

To improve the performance of UI-BERT, we also leverage character-level em-
beddings in our embedding layer. Our primary motivation is to use them to improve
the learning of out-of-vocabulary words. For example, if an input field is labelled as
credit_card_num in the POM of a UI but if the test sentence includes credit card,
then we believe that character level embeddings will help us capture the relationship
between the two. We are directly implementing the same approach to generate char
embedding from the CharCNN feature of the MenuNER, which is a 1-dimensional
ConvNets (Zhang, Zhao & LeCun, 2015).

3.1.2.2 Bi-LSTM CRF Downstream task

The Bidirectional Long Short Term Memory (Bi-LSTM) and Conditional Random
Fields (CRF) architecture is a commonly used model for NER tasks. We use this
architecture as a downstream task of the UI-BERT to fine-tune our NER approach,
which takes in the input embeddings explained in the previous subsection 3.1.2.1.

Long Short Term Memory (LSTM) In our implementation, we use a Bi-LSTM
network concatenating forward and backward state vectors to extract short and
long-term dependency information from a sentence in both directions to improve
the quality of our entity predictions by capturing long-term dependencies. As we
would like to identify the boundaries of named entities (which vary in length and
structure), we are utilizing the ability of LSTMs to maintain context information
over sequences of text and the ability to remember and forget information selectively.

15

In addition to their ability to hold context information, they can also handle input
sequences of variable lengths. Handling variable length sequences is necessary for
our application, where the length of named entities can vary significantly.

Conditional Random Fields (CRF) This study uses Conditional Random Fields
(CRFs) as a significant component of our NER approach. We select CRFs because
they can model the relationships between nearby labels, enabling more precise and
reliable predictions of named entities. CRFs explicitly describe the likelihood of
each label given its neighbours’ labels and the probability of each label given the
input. CRFs can manage numerous label types at once, making them an ideal choice
for classifying both named entities and their corresponding labels. With the use of
CRFs, we aim to enhance the precision and functionality of our NER system on a
global scale.

Figure 3.3 Proposed architecture for android sentences action and entity
recognition

16

3.2 Element Detection with Similarity Score Calculation

After the NER model tags the words, the next step is to use the words tagged with
the element labels (i.e., the element words) to identify the actual UI element on the
screen. In the identification step, we compute the semantic similarities between the
element words extracted from the test sentence and the attributes extracted from the
POM structure of the given screen. We opted to evaluate the proposed approach
on the Android platform for this work. As such, we obtain the POM models of
the screens by using Android Debugging Bridge Developers (2021). However, the
proposed approach readily applies to other POM models, which can be obtained
from different mobile and Web platforms.

To compute the semantic similarities, we, in particular, utilize the text and content-
description attributes (if present) of the elements in the POM model. To compare
semantic similarity approaches, we first utilize UI-BERT to compute the word
embeddings of the element words from test sentences and each attribute present in
the POM and calculate the cosine similarity between each embedding. Secondly, we
extract the embeddings utilizing the DAN and transformer version of the Google
Universal Sentence Encoder and again calculate cosine similarity.

One observation we make is that the semantic similarity models are typically trained
by using proper natural language sentences, such as the ones with verbs, objects, and
subjects, rather than the segments of sentences, which is the case in this work. We,
therefore, compute the semantic similarity in two different manners; as-is similarity
and action-added similarity.

The former approach directly compares the element words extracted from the test
sentence with the attributes extracted from the POM model using cosine similarity
of their average word embeddings.

On the other hand, the latter approach concatenates the element words and the
POM attributes with the action word before seeking semantic similarity. Concate-
nation gives us two generated sentences: the concatenation of action and element
words and the concatenation of action and POM attribute. Given these two sen-
tences, we calculate each sentence’s average word embedding and compute the cosine
similarity between the resulting vectors.

Each approach obtains the maximum similarity measure by the element word and an
attribute pair. As mentioned, a POM element can have text and content-description
attributes. We calculate the similarity scores for both and take the maximum of

17

these two. Once the similarity score for each POM element is calculated, the higher
the score between the pairs, the more likely it is for the POM attribute to be the
extracted UI element from the sentence.

3.3 text2test Test Case Execution

The goal of this section is to fully and automatically execute test cases for an appli-
cation under test (AUT) using the action, entity and parameters that are extracted
using the element extraction approach in section 3.1 and matching the extracted
entity to the elements on the application’s UI using element detection approach ex-
plained in section 3.2 and performing the action on the corresponding UI element.

To execute test sentences text2test implements a customized depth-first search (DFS)
algorithm to traverse through the elements of AUT using Appium. It explores the
elements based on similarity scores between extracted entity name and element
names on the AUT UI, performing specified actions on the found element of each
test sentence.

Algorithm 1 outlines the algorithm of text2test’s DFS exploration. The algorithm
begins by launching the AUT (Line 1) and then reads the first test sentence and
extracts the action, entity and parameter (Lines 4-5). Here it is important to note
that we expect each test sentence contains a pair of action and entity words except
for rotate action and if applicable the sentence may also have a parameter to apply. It
then retrieves the current POM of the AUT’s UI and finds the top 3 similar elements
by comparing all the elements to the entity extracted from the test sentence (lines
7-8).To determine whether a UI component matches a test case entity, text2test
utilizes Word2Vec Mikolov et al. (2013a), a word embedding technique, to check if
the name (i.e., the displayed text) of a UI component is semantically similar to the
extracted entity name. The model uses a score in the range of [0,1] to indicate the
degree of semantic similarity between words (1 indicates an exact match). We used
a relatively low score, 0.3, as the threshold. We observed that using a high threshold
may cause no similar entities to be found. For example, the similarity score of “add
new item” an entity from a test sentence and fab_add_new_item the description of
the element found on the POM is 0.311 due to the addition of the “_” in between
the words.

Once we read the initial sentence corresponding to the AUT’s landing page and

18

Algorithm 1: text2test DFS Algorithm
Data: AUT , test sentences
Result: number of correct actions on elements equals the total number of

test sentences
1 Launch AUT ;
2 visited← an empty set to hold visited elements;
3 path← an empty array to hold the correct path of actions and elements;
4 sent← sentence[0] from test sentences;
5 act,ent,param← elementExtraction(sent);
6 POM ← currentPOM() AUT landing page;
7 top3Similar← elementDetection(ent,POM);
8 DFSTree add top3Similar;
9 while DFSTree isn’t empty do

10 if goToPath then
11 Launch AUT ;
12 executePath(path);
13 if numberOfCorrectEntities = numberOfSentences then
14 return Completed;
15 else
16 node← DFSTree.pop();
17 Add node to visited;
18 if performAct(act, node) then
19 addToPath(act, node);
20 numberOfCorrectEntities += 1
21 sent← next sentence from test sentences;
22 act,ent,param← elementExtraction(sent);
23 POM ← currentPOM();
24 if elementDetection(ent, POM) = 0 then
25 goToPath = True;
26 numberOfCorrectEntities -= 1
27 else
28 DFSTree add top3Similar;

29 return numberOfCorrectEntities;

19

extract the top 3 similar elements and the action to be performed, text2test enters
a loop to perform a depth-first search iteratively. (lines 9-28). At each iteration,
text2test selects the most relevant UI element and performs the corresponding action.
Once the relevant UI element is found and the interaction with it is successful we add
that UI element to the correct path of execution with its action pair and increment
the number of correctly interacted entities (lines 18-20). If none of the UI elements
match the entity of the test case sentence we decide that the last interacted element
was an incorrect element and we set a goToPath flag as True and decrement the
number of correctly interacted elements (lines 24-26). If the goToPath flag is set to
True, that means that we need the take the next possible element from our stack
and interact. So text2test relaunches the AUT and executes all its previous correct
actions on the UI elements and continues from the next element in the stack lines(10-
12). The backtracking ensures the top 3 similar elements we detected on the AUT
POM are interacted from most similar to least similar until a correct element is
found. This loop executes until the number of correctly interacted entities reaches
the total number of sentences and this is considered as the test execution steps are
completed successfully (lines 13-14) otherwise it continues to read a test sentence to
find its action, entity and parameter, get the current AUT POM and try to interact
with similar UI entities.

20

4. EXPERIMENTS

This chapter describes the data sets used in the experiments and the system config-
uration. Then we will present the results of our element extraction NER approach
and discuss the effects of different layers and features used. On top of this, we will
share the results of our proposed element detection approaches. Moreover, we will
present the results of the text2test complete approach for test case generation. Fi-
nally, we will be comparing the entity recognition capabilities of our NER approach
with Zhao et al. (2019)’s work since it is the closest approach that executes test
cases from natural language sentence descriptions to ours.

4.1 Operational Framework

We perform the NER model training and evaluation using Google Colab. The
machine allocated to us from Google Colab machine has a 1 socket connected to two 2
cores of an Intel(R) Xeon(R) CPU running at 2.20 GHz with 2 threads per core. For
both applications on Google Colab, we are also utilizing an NVIDIA Tesla T4 GPU.
The Colab notebook uses 18.04.6 LTS (Bionic Beaver) and has a Python version
of 3.8.16. We use PyTorch as our machine learning framework for both tasks with
the following Python package versions transformers=4.12.3 allennlp=2.8.0 PyTorch-
lightning=1.3.8 and all the dependencies that come with them. Also, for both tasks,
we use the BERT base cased model and OpenNLP for POS tagging in NER.

The element detection process and the text2test test case execution are performed
on a MAC M1 Pro with Apple Silicon, with 16 GB of RAM running the macOS op-
erating system. In the element detection process, we calculate semantic similarities
in two folds, using the fine-tuned NER model we trained and the Google Universal
Sentence Encoder. In the text2test test case execution process we use the appium-
python-client=1.0.2 Python package to automate the execution of test cases to test

21

various mobile applications.

4.2 Evaluation Framework

Our experimentation aims to evaluate the following:

• the success of extracting the action, the element and the parameter words for
a given test sentence.

• rank the POM attributes on a given screen as the most similar to the extracted
UI entity .

• how well can we combine element extraction and element detection in order
to execute test cases from given sentences and POM pairs?

• comparison of the effectiveness of our element extraction approach compared
to the ReCDroid framework.

As explained in Section 3.1 and Section 3.2, we can describe our approach with
two steps following each other. We carried out separate evaluations for these steps.
Initially, for the information extraction step, we measured the performance of our
NER model depending on how accurately our model detects the action, element,
and parameter words for a given test sentence. We obtained the ground truth for
element extraction and approaches by human annotation. The annotation identified
and labelled the action, element, and parameter words. For the element identification
step, we measured the performance depending on the calculated similarity rank of
the pre-determined correct element for detected element words (we expect the correct
element to have the highest similarity score).

To evaluate the success of the element extraction step (Section 4.4.1), we use pre-
cision, recall, and F-measure metrics, which are well-known metrics frequently used
for evaluating similar machine learning models:

Precision(P) = TP
TP +FP

Recall(R) = TP
TP +FN

22

Fscore = Precision×Recall
Precision +Recall

More specifically, the precision of a prediction made for label l is computed as the
ratio of the correctly labelled words to all the words labelled with l by the NER
model. In contrast, the recall is computed as the ratio of the correctly labelled
words to all the words that needed to be labelled with l. Moreover, the F-measure
is computed, giving equal importance to both precision and recall. Note that all of
these metrics assume a value between 0 and 1 inclusive. The higher the value, the
better the proposed approach is. Furthermore, we report the precision, recall, and
F-measures for two types of element extraction calculations.

The first approach, complete matching, accepts a true positive on an element if the
predicted and ground truth elements match precisely. The second approach, partial
matching, determines a true positive if the predicted entity span from the model
overlaps with the entity span of the ground truth entity in the sentence. To explain
this further, when we are using partial matching, we consider a predicted entity to
be a true positive if there is any overlap between the predicted entity span (the
range of words identified by the model as the entity) and the ground truth entity
span (the range of words that actually represent the entity in the sentence). To
illustrate this we can consider the ground truth entity set as default browser, which
we will see as a UI item, and if the predicted entity is default browser. In this case,
although the ground truth and the predicted entity are not an exact match, there
is an overlap in default browser in both spans. Therefore, using a partial matching
approach we count this example as a true positive.

To evaluate the success of the element detection step (Section 4.4.2), we compute
the accuracy of the predictions. Note that the output of this step is a ranked list of
UI elements ordered by their semantic similarity scores. To compute the accuracy,
we check whether the actual UI element addressed by the test sentence is in the
top k of the reported list. More specifically, given k (in our case, 1 ≤ k ≤ 3), the
accuracy of the predictions is computed as the percentage of the test sentences, the
UI element of which appears in top k predictions.

(4.1) Nk = (#occurrencesof theprecise element in topx)
(Total number of elements in test set)

The formula 4.1 explains the calculation of an N score of a NER model-similarity
calculation pair used in the element detection step.

23

Also, we execute test sentences on an AUT with our test reproduction framework
text2test. We evaluate the success of the test case as how many successful test
sentences are executed. This means that from each test sentence in a test case, first,
we identify the correct action, element and parameter, secondly, we identify the
correct element on the corresponding screen and lastly interact with that element
successfully. We calculate the individual success ratio for each application as the
percentage of successfully executed sentences out of the total number of sentences
for a particular application. Finally, give a total success ratio as the number of
completely executed tests for an application to the total number of applications.

Finally, in the last part of our evaluations, during the evaluation against the ReC-
Droid framework, we are using the same metrics that we are using for the element
extraction step. Then, we compare how well both approaches perform against each
other.

4.3 Dataset and Subject Applications

4.3.1 Dataset used in Element Extraction and Element Detection

We used a well-known open-source instant messaging application Signal, a prevalent
free web browser backed by Mozilla Firefox and cross-platform media player software
VLC in these experiments as our subject applications. Getting enough sample
sentences that contain action and elements was the main challenge to procure our
dataset. Towards this goal, we choose these applications because they are all open-
source with considerable amounts of reported issues and we can fetch user-reported
issues using GitHub Issues API. A well-written issue report contains reproduction
steps to describe the problem at hand and reproduction steps are the point of interest
as they contain similar sentences to test cases. All these 3 applications mentioned
above contain ample amounts of reproduction steps that we can collect using an
automated script. The sentences in these reproduction steps are similar to test case
sentences for UI verification and they include sufficient elements and actions in many
different screens, which helped us obtain comprehensive evaluations.

Bert-Finetuning: In the first step of our NER approach, we pre-train BERT base

24

cased model with sentences from our application domain. We call this step BERT-
finetuning to the application domain. We used all 400000 issue sentences from
GitHub without any modification to be used in a masked language modelling (MLM)
task finetuning the base model. This training allows the base model to generalize
better on the domain at hand while retaining its general language understanding.

Sentence Classification to Gather Applicable Test Sentences: Moving for-
ward from all the collected issue sentences from GitHub we need to create data sets.
Initially, we started manually combing through all the sentences in the reproduc-
tion steps. As mentioned before the sentences in the reproduction steps of an issue
contains similar test sentences that we are trying to execute. However manually
creating data sets was time-consuming, error-prone and tedious. Thus we opt to
manually analyze 1821 issue reports and then use them to train a text classification
model. Then use this text classification model to automatically create the remaining
data sets. We classified the reproduction steps into five classes in Table 4.1. The
first three classes Green, Yellow, Orange are sentences that we can use to train,
validate and evaluate our NER model.

In particular, utilizing our text classifier we determined the sentences that indicated
action on a UI element. The text classifier analyzed about 4000 issue reports for
Signal; about 6761 issue reports for Firefox; and about 2000 for VLC and filtered the
issue reproduction steps. We performed this step to identify sentences that contain
action and entity elements in an automated manner. Please note that the sentences
that do not contain action and entity elements do not contribute to the purpose
of this approach. We are trying to detect action and entity elements from a given
test sentence and match the element found in that sentence to a UI element of the
application. Thus we removed sentences containing prerequisites or observations
that do not contain action and entity pairs and also eliminated the code samples
and crash outputs. This classification process makes sure we are only using data
with action and entity pairs and it does not affect the evaluation process and the
generality of the results.

25

Class Information Distribution
Green simple sentences that include a verb from the

given action list and a noun or a noun phrase
from the given elements list that the action will

be use used on

13.3%

Yellow complex sentences. some part of the sentence
contains a verb from the action list and a noun or

a noun phrase from the elements list that the
action will be use used on

11.0%

Orange complex sentence. does not necessarily contain an
action verb or an element noun. With some

sentence modification, it can be turned into a
green or a yellow sentence

35.6%

Red a sentence that contains a prerequisite or
observation or additional information and does

not contain an action verb or element pair

14.7%

Black code or crash outputs 25.5%

Table 4.1 Classes used for text classification and their distributions

Element extraction: The sentence classification model identified a total of 4581
sentences, 689 from Signal, 2884 from Firefox and 1008 from VLC to be used for the
NER model for element detection. Out of which 3918 (85%) sentences (2101 Firefox
sentences, 583 Signal sentences, 852 VLC sdentences) were used as the training set,
and the remaining sentences (15%) were used as the test set. We labelled the dataset
using IOB (Inside, Outside, Beginning) format first presented by Ramshaw and
Marcus. Ramshaw & Marcus (1995) These sentences that we collected had action
and entity labels, how ever did not contain enough samples of parameter labels.
We are using issue report sentences, where usually, the failure happens if there
is a faulty functionality with the UI element. So the problem can be reproduced
before the user can input a parameter. That is why we are not able to collect enough
parameter labels. So we decided to generate sentences that contain parameter labels,
and towards this goal, we introduced 404 new sentences to the Firefox application
and 50 new sentences to the VLC application similar to the parameter examples
in the collected issue reports. We did not introduce new sentences to the Signal
application, we did not generate sentences for Signal, because in the test sentences
that we collected from the issue reports there were no parameter examples that
can be used to generate further sentences. Table 4.2 shows the number of total
and unique action, entity and parameter elements in our data, which shows a high
number of unique elements for each class which is important to help the NER model
to disambiguate entities and reduce confusion.

26

Number of Label Types Firefox Signal VLC
of Action Labels 3964 679 1003
of Unique Action Labels 545 132 336
of Element Labels 3703 675 974
of Unique Element Labels 2247 435 785
of Parameter Labels 412 - 78
of Unique Parameter Labels 373 - 70

Table 4.2 Number of total elements and number of unique elements

Element detection: In this part of the experimentation we picked 200 sentences
from the data sets we created. The distribution of these sentences is 40 sentences
from Signal, 80 from Firefox and 80 from VLC. Then we manually collected the
POM models of the corresponding application screens.

4.3.2 Dataset used in text2test Test Case Execution

For the complete approach text2test, we used 20 different applications mentioned
in the ReCDroid paper that we were able to launch in our system configuration
described in Section 4.1. For these 20 applications, the authors provided 24 issue
reports that have reproductions steps. We use these issue reports as test cases for
each application for the purpose of text2test. Since we aim to detect an element and
interact with it given a sentence and a POM pair, we modified some test sentences.
The reason for this modification is due to some technical reasons our system not
being able to run the exact version of the mentioned application and we needed a
newer version of the subject application, where the item name is modified. Also, to
get the application to the correct screen mentioned in the issue report, we added
some preliminary sentences to these issue reports (usually 1 or 2 sentences at the
beginning). In particular, our approach takes as input a screen and the instructions
to be executed on them. However, issue reports almost always do not start from the
landing page of an application. So these preliminary sentences make sure text2test
can reach the screen related to the beginning of the issue report. Table 4.3 reports
the applications we are using. For only 3 applications, we had to modify the item
that was mentioned in the ReCDroid issue report.

27

Application
Name

of Test
Sentences

Application Description Contains
Exact Item

ACV 6 Comic Book Reader Modified
anymemo 7 Flash Card Study App YES
anymemo2 9 Flash Card Study App YES
asciicam 9 ASCII Webcam YES

birthdroid 7 Birthday Reminder YES
car_report 14 Car Cost Tracker YES

dagger 1 Dagger Android Extension YES
fastadapter 1 RecyclerView Creator YES
fastadapter2 8 RecyclerView Creator YES
flashCards 7 Flash Card Study App Modified
librenews 5 News Notification App YES
librenews2 6 News Notification App YES
librenews3 5 News Notification App YES

markor 8 Text Editor NO
memento 6 Organizer App YES

news 3 News Reader YES
odb 3 Onboard Diagnostic Reader YES

openhab 6 Home Automation App YES
openSudoku 11 Sudoku Game YES

qksms1 8 Messaging App YES
qksms2 4 Messaging App YES

screenRecord 8 Screen Recorder App Modified
shuttle 6 Music Player YES
tagmo 3 NFC tag manager YES

transistor 3 Radio App YES

Table 4.3 Applications used in testing text2test, the number of sentences in each
test case and information from the reported ReCDroid issue report.

An example test case for the ACV application is as follows:

• Sentence 1: click continue - act: click - ent: continue

• Sentence 2: click ok - act: click - ent: ok

• Sentence 3: click menu - act: click - ent: menu

• Sentence 4: choose "open" - act: choose - ent: "open"

28

• Sentence 5: go to directories like Android - act: go - ent: directories, Android

• Sentence 6: long-press a folder, like "data" - act: long-press - ent: folder, data

Sentences 1 and 2 are preliminary sentences added to the test case. These sentences
are used to get the application to the initial state in the issue report. Sentences 3, 4
and 6 are sentences that we used as-is. Sentence 5 is an example where we modified
the sentence. The original sentence was go to directories like /tmp, however as
mentioned before the application version that ran on our system did not have a
/tmp folder, so we replaced the folder with an existing one. Also, sentence 5 is
a good example where the NER approach guessed two entities in a sentence. It
guessed directories and Android as entities in this sentence, where Android is the
correct one. We designed an algorithm to handle these types of situations.

4.3.3 ReCDroid Comparison:

Finally, we are comparing our element extraction approach 3.1 to the element ex-
traction of ReCDroid. We are doing this comparison to understand the effectiveness
of our approach on the RecDroid test sentences. Also, we are trying to see the
effectiveness of the dependency parser used by ReCDroid to identify elements. The
comparison between our text2test element extraction approach and ReCDroid com-
prises 2 steps. In the first step, we used the test sentences from the Signal, Firefox
and VLC, ran them through the ReCDroid framework with the help of a wrapper
developed by us and collected the extracted action and entity words. In the second
step, we performed element extraction with our trained NER approach on the 94
sentences that ReCDroid is using as test sentences from crash reports. We discuss
the results of these comparisons in Section 4.4.4

4.4 Experimental Results

This section starts with discussing experiments conducted to improve element ex-
traction in user interface (UI) applications using BERT fine-tuning and neural net-
work architectures. Initially, we compare the BERT-base cased model from Hug-
gingface with our fine-tuned model UI-BERT. Then we perform an ablation study

29

on NER architecture and analyze the effects of adding new features to the embed-
ding layer. The results show that fine-tuning BERT models increases the success of
element extraction, but adding POS and char embeddings does not improve entity
recognition, which we will discuss in detail later in the section. In this section,
we also compare our NER approach with ReCDroid and analyze the entity detec-
tion and action detection scores. As a final experiment for element extraction, we
discuss adding a new element, parameter, to the training data and evaluate the
NER model’s performance. After extracting element words from test sentences,
we share the results of element detection between extracted words and UI element
attributes from the screen’s POM model using two similarity calculation methods:
"as-is" and "action-added." We experiment with Universal Sentence Encoder and the
UI-BERT models and report our detection results. Finally, we will share the exper-
imental results of text2test and discuss this approach’s success on several Android
Applications.

4.4.1 Element Extraction

In our experiments, the first item we look into is the effects of BERT fine-tuning.
Specifically, we are comparing the predictions made using the BERT-base cased
model from Huggingface with the fine-tuned model UI-BERT. As explained in
Section 3.1.1, training the base model with unlabelled issue report sentences with
an MLM objective will improve the adaptation of the NER approach to the domain,
and it will have a better understanding of the word features and the semantic rela-
tionships. At this point, we are only training a model with BERT and an ArgMax
layer to make predictions; we are not utilizing the Bi-LSTM-CRF architecture to
see the effects of UI-BERT without any other layers in the NER approach.

BERT-base-cased UI-BERT
precision recall F-score precision recall F-score

Signal
ACT 0.9608 0.9899 0.9751 0.9608 0.9899 0.9751
ENT 0.6186 0.6697 0.6432 0.6911 0.7798 0.7328

Firefox
ACT 0.865 0.9423 0.9020 0.9288 0.9721 0.9500
ENT 0.6299 0.7219 0.6728 0.6899 0.7415 0.7148

VLC
ACT 0.8703 0.9321 0.8917 0.9227 0.9009 0.9117
ENT 0.6088 0.7136 0.6597 0.7336 0.6709 0.7009

Table 4.4 BERT-base-cased vs UI-BERT results

30

Overall, Table 4.4 shows that fine-tuning of BERT models UI-BERT increases the
success of the element extraction task. We are seeing a profound increase in the
entity recognition F-scores for Signal, Firefox and VLC applications which have a
9, 4 and 4 point increase, respectively. When we compare the action recognition
F-scores, we see an increase in Firefox and VLC. Our investigation shows that the
Signal application’s training sentences are usually shorter and contain only one verb.
The average number of words in the Signal application is 4 words per sentence,
compared to the 7 words per sentence for Firefox and 8 words per sentence for
VLC. Since Signal application sentences contain only one action, it is easier for both
models to make correct predictions for the action labels.

Contrary to this, training sentences of Firefox and VLC have longer sentences that
sometimes have more than one verb and applying fine-tuning helps to increase action
recognition F-score by 5 and 2 points. We can further investigate the effect of
domain adaptation in Table 4.5. Sentences 1, 2, and 3, the base BERT model
cannot make an entity prediction on the sentence or misses an entity completely
since these entities are just ordinary words; however, after fine-tuning UI-BERT
can extract an entity or both entities from the sentences. Sentences 4, 5, 6, and
7 are examples of entities containing more than one word. The base BERT model
cannot label every word in an entity, because of the data it is originally trained
on it cannot correctly decide on domain-specific multi-word entities. Fine-tuning of
UI-BERT allows it to label these multi-word entities correctly since it has seen not
identical but a similar sequence of words in its fine-tuning where we are adapting the
base-BERT to UI-BERT. Finally, sentence 8 is an example of base BERT model
false prediction on the work tab, a frequent word in Firefox and usually tagged as
an entity. However, in this case, it should not be an entity since it just gives extra
information on the needed action.

31

ID Sentence
BERT-base-cased UI-BERT

act ent act ent

1
Tap on Saved logins,
unlock it if biomet-
rics or pin is set.

tap - tap saved
logins

2
Enable files permis-
sions.

enable - enable files per-
missions

3

Turn on Wifi.
Press Try again
in the system notifi-
cation.

turn,
press

wifi turn on,
press

wifi, try
again

4
Select the option to
Open links in apps.

select open link select open links
in apps

5
Tap on Show more
on any social media
icon.

tap show tap show more

6

Disable the book-
marks sync in Sync
settings. Sync, so
the setting takes ef-
fect on all 3 devices.

disable,
Synch

bookmarks disable bookmarks
sync

7

Tap again on the
3dot menu and se-
lect Add to Home
screen.

tap, select 3dot,
home

tap, select add to
home
screen

8
Hit undo to restore
the tab.

hit undo, tab hit undo

Table 4.5 Action and Entity predictions by Bert-base-cased model and UI-BERT
given a test sentence. bold words represent the ground truth action in the

sentence, while italic word represents the ground truth entity.

Moving forward, using domain adapted UI-BERT and will be performing an ab-
lation test. As discussed in Section 3.1 introducing new features in NER systems
increases the effectiveness. This test aims to see the effects of the downstream bi-
lstm and CRF layer and, secondly, the effects of adding new POS and char features
to our embedding. Table 4.6, Table 4.7 and Table 4.8 summarize the experimental
ablation results. The impact of the bi-lstm and CRF layer addition to the BERT

32

model as a downstream task is evident; long-short term memory coming from the
bi-lstm layer combined with the CRF layer’s decision-making capabilities increases
the entity recognition in the Signal, Firefox and VLC applications with 8, 2.5 and
2.6 points respectively. This increase in F-scores for Signal application is again due
to Signal training and more concise test sentences. However, even with longer, more
complex sentences and multi-word entities, which Firefox and VLC have, we are
seeing a significant increase in the element detection capability of the model. Here
we would like to point out that the scores for action recognition are similar in all
steps ablation test. The similar action scores are because mobile applications have
a limited number of actions repeated in all sentences, giving the model a solid per-
formance. We designed our approach hypothesizing that adding new features to our
embedding layer would improve NER tasks. We expected to see this because, with a
relatively small set of sentences from the application, every new information added
would be a benefit.

Nevertheless, in our case, we did not improve the element detection results by adding
POS and char CNN features to the embedding layer. Using POS and char CNN
embeddings did not positively affect entity recognition compared to using BERT
embeddings. Since the sentences extracted from issue reports are irregular sen-
tences, which usually do not have both a subject and a complete predicate, they are
used in writing or speech as complete sentences that stand on their own. POS tag-
ging these irregular sentences with OpenNLP does not yield precise and dependable
information. Discrepancies between the POS tags assigned by the OpenNLP and
the expected POS tags in the irregular sentences extracted from issue reports mean
that certain words may not accurately reflect their grammatical role or function
in the sentence. Some verbs in imperative sentences can be interpreted as nouns.
These differences and inaccuracies in POS tagging hurt the performance of the entity
recognition system.

On the other hand, using charCNN alone did not improve the score either; our
investigation shows that it yielded a higher number of false positive predictions
while making fewer false negative predictions. Also, while (Syed & Chung, 2021)
shows that using POS and char CNN together causes a synergy and increases NER
performance, we did not see the same effect in our testing. No effect in testing
means that POS and char embeddings did not add useful information in our case.
We believe that the syntactic and morphological information they provided was
only sometimes relevant or informative for entity recognition, and the information
provided by BERT embeddings takes precedence in our case.

33

Signal
UI-BERT

precision recall F-score

argmax
ACT 0.9608 0.9899 0.9751
ENT 0.6911 0.7798 0.7328

bert_CRF
ACT 0.9800 0.9703 0.9751
ENT 0.8209 0.8088 0.8148

bert_CRF_ ACT 0.9800 0.9703 0.9751
pos ENT 0.7951 0.8083 0.8017

bert_CRF_ ACT 0.9510 0.9604 0.9557
CNN ENT 0.7946 0.7417 0.7672

bert_CRF_ ACT 0.9423 0.9703 0.9561
pos_charCNN ENT 0.8083 0.8083 0.8083

Table 4.6 Signal app. experimental results for NER approach utilizing UI-BERT
model with extended features

Firefox
UI-BERT

precision recall F-score

argmax
ACT 0.9288 0.9721 0.9500
ENT 0.6899 0.7415 0.7148

bert_CRF
ACT 0.9515 0.9444 0.9480
ENT 0.7523 0.7257 0.7387

bert_CRF_ ACT 0.9241 0.9463 0.9350
pos ENT 0.7206 0.7257 0.7231

bert_CRF_ ACT 0.9416 0.9556 0.9485
CNN ENT 0.7032 0.7381 0.7202

bert_CRF_ ACT 0.9201 0.9593 0.9393
pos_charCNN ENT 0.7172 0.7451 0.7309

Table 4.7 Firefox app. experimental results for NER approach utilizing UI-BERT
model with extended features

34

VLC
UI-BERT

precision recall F-score

argmax
ACT 0.9227 0.9009 0.9117
ENT 0.7336 0.6709 0.7009

bert_CRF
ACT 0.894 0.9151 0.9044
ENT 0.7794 0.6795 0.7260

bert_CRF_ ACT 0.9163 0.9292 0.9227
pos ENT 0.7143 0.6624 0.6874

bert_CRF_ ACT 0.9113 0.9134 0.9227
CNN ENT 0.7243 0.6811 0.7072

bert_CRF_ ACT 0.9116 0.9245 0.918
pos_charCNN ENT 0.7220 0.6880 0.7046

Table 4.8 VLC app. experimental results for NER approach utilizing UI-BERT
model with extended features

As an end product, we would like our element extraction NER approach to generalize
to all types of mobile applications. So we believe that if we train a NER system using
training data from multiple applications, the success of extraction should increase.
In our next test, toward this goal, we trained another NER model with a combination
of test sentences from Signal, Firefox and VLC. We achieved this by combining each
application’s training, validation, and test datasets and trained another NER model
with UI-BERT. The results of Table 4.9 show that combining different sentences
positively affects element extraction. Although the combined model has a lower
score than the Signal model, we have a more significant improvement than our
Firefox and VLC applications predictions.

Further examination of the predictions shows that the improvements are due to
two factors. First, combining both training sets helps improve multi-word Firefox
and VLC entities’ prediction. Secondly, in our sentences, we have words such as
option, menu and button at the end of entities, which we did not mark as a part of
an entity. For example, in the sentence Open bookmarks menu the expected entity
is bookmark; however, we realized that both only Signal and only Firefox models
sometimes predict the entity as bookmarks menu but using all training sets improves
on this behaviour.

35

precision recall F-score

Signal
ACT 0.9800 0.9703 0.9751
ENT 0.8209 0.8088 0.8148

Firefox
ACT 0.9515 0.9444 0.9480
ENT 0.7523 0.7257 0.7387

VLC
ACT 0.894 0.9151 0.9044
ENT 0.7794 0.6795 0.726

Signal & Firefox & VLC
ACT 0.9387 0.9594 0.9489
ENT 0.7308 0.7604 0.7453

Table 4.9 BERT bi-LSTM CRF Model results with Signal, Firefox and VLC
application training and test sets individually versus the combination of these
training and testing sets. The entity extraction results are exact-match results.

Investigation of BERT bi-LSTM CRF trained on Signal & Firefox & VLC sentences
showed that the false positive results usually occurred on multi-word entities, either
the model misses predicting one of the words or predicts extra words such as option,
menu, button that usually occur at the end of the element.

Our final goal is to match elements extracted from a sentence with the elements we
get from the application POM. Towards this goal, we decided that if we can extract
some of the words from multi-word elements, then this information is still helpful
in detecting elements from the POM. This thought led us also to calculate partial
element extraction results given in Table 4.10. Here the true positive is calculated
if the span of the ground truth entity in the sentence intersects with the span of
the entity prediction from the model. For all models, significantly higher scores
indicate that we are at least finding one word of multi-word elements, which was
the expected result.

precision recall F-score

Signal
ACT 0.9515 0.9800 0.9655
ENT 0.8655 0.8655 0.8655

Firefox
ACT 0.9387 0.9738 0.9560
ENT 0.8761 0.9089 0.8922

VLC
ACT 0.9260 0.9431 0.9343
ENT 0.9450 0.8112 0.8730

Signal & Firefox & VLC
ACT 0.9544 0.9733 0.9638
ENT 0.8870 0.9200 0.9032

Table 4.10 BERT bi-LSTM CRF Model results for the same approach in Table 4.9
but partial action and element detection calculated as true positive.

36

Finally, we added a new element parameter to our training data on the element
extraction testing. The parameter elements contain values that the entity elements
can hold. In this test, we combined the Signal & Firefox & VLC concatenated
training, validation, and test data, and we divided the new sentences with parameter
elements (the 454 sentences mentioned in Section 4.3 with a 70/10/20 ratio to the
data respectively). The results of the test sentences containing parameters are in
the Table. 4.11. Overall, we can conclude that the new NER model performs well
on the new parameter elements while retaining its element extraction capabilities
for the action and entity elements.

precision recall F-score

exact matching
ACT 0.9612 0.9637 0.9625
ENT 0.7477 0.7606 0.7541
PARAM 0.9390 0.8652 0.9006

partial matching
ACT 0.9740 0.9753 0.9747
ENT 0.9151 0.9272 0.9212
PARAM 0.9753 0.8977 0.9349

Table 4.11 ‘Signal & Firefox & VLC” UI-BERT _bi-LSTM_CRF model
predictions with the new parameter element

4.4.2 Element Detection

After the NER model tags the words, the next step is to use the words tagged with
the element labels (i.e., the element words) to identify the actual UI element on the
screen. In the identification step, we compute the semantic similarities between the
element words extracted from the test sentence and the attributes extracted from the
POM structure of the given screen. We opted to evaluate the proposed approach
on the Android platform for this work. As such, we obtain the POM models of
the screens by using Android Debugging Bridge Developers (2021). However, the
proposed approach readily applies to other POM models, which can be obtained
from different mobile and Web platforms.

To compute the semantic similarities, we, in particular, utilize the text and content-
description attributes (if present) of the elements in the POM model. Specifically,
we compute the semantic similarity between the element words from test sentences
and each attribute present in the POM using their word embeddings extracted from
the NER model.

37

One observation we make is that the semantic similarity models are typically trained
by using proper natural language sentences, such as the ones with verbs, objects, and
subjects, rather than the segments of sentences, which is the case in this work. We,
therefore, compute the semantic similarity in two different manners; as-is similarity
and action-added similarity.

The former approach directly compares the element words extracted from the test
sentence with the attributes extracted from the POM model using cosine similarity
of their average word embeddings. On the other hand, the latter approach con-
catenates the element words and the POM attributes with the action word before
seeking semantic similarity. Concatenation gives us two generated sentences: the
concatenation of action and element words and the concatenation of action and
POM attribute. Given these two sentences, we calculate each sentence’s average
word embedding and compute the cosine similarity between the resulting vectors.

Each approach obtains the maximum similarity measure by the element word and an
attribute pair. As mentioned, a POM element can have text and content-description
attributes. We calculate the similarity scores for both and get the similarity scores
and calculate a top 3 similarity described in 4.2. Once the similarity score for each
POM element is calculated, the higher the score between the pairs, the more likely
it is for the POM attribute to be the extracted UI element from the sentence.

Table 4.13 indicates the element detection results for three similarity calculation
approaches. We calculated the average number of elements in the analyzed screens
as ten elements.

as-is Similarity action-added similarity

BERT
N1 65.83 60.83
N2 81.67 77.50
N3 84.17 88.33

Universal Sentence Encoder
N1 72.50 73.67

Transformer
N2 79.17 82.33
N3 85.00 87.83

Universal Sentence Encoder
N1 74.17 74.17

DAN
N2 89.17 88.33
N3 91.67 91.67

Table 4.12 Element Detection Results

38

accuracy

UI-BERT
N1 65.83
N2 81.67
N3 84.17

Universal Sentence Encoder
N1 72.50

Transformer
N2 79.17
N3 85.00

Universal Sentence Encoder
N1 74.17

DAN
N2 89.17
N3 91.67

Table 4.13 Element Detection Results

We calculated the scores of all NER model-similarity calculation approach pairs
with a rank-based order depending on whether the relevant element occurred in the
most similar 3 UI elements from the screen after the comparison. This calculation
depends on the occurrence of the distinct element in the top 3, top 2, or top 1 of
the compared elements. These top 3, top 2, and top 1 scores are N1, N2, and N3 in
Table 4.13.

In the BERT model similarity calculation, we utilized the BERT_bi_LSTM_CRF
model, which performs best in element extraction. We can note that all our similarity
calculation methods provide acceptable results checking the N3 success rates; they
are performing over 84% N3 element detection score.

It is important to note, that both universal sentence encoder models (trained with
transformers and DAN) perform better than our BERT model. We expected the
BERT model with fine-tuned issue report sentences would provide better features
via its word embeddings and thus provide better similarity. However, the results
show that Universal Sentence Encode will be the better choice, we believe that this
is due to the low domain knowledge requirements of similarity calculation.

Both the transformer and the DAN models of Universal Encoder got over 90% N3
success. While the transformer model is expected to create better results than the
DAN model, it could not make a difference since our sentences were not that long
to understand a structure. The average number of words in test sentences is 5.3.
Therefore, the transformer model could not show better results.

Appending the detected action word to the entity words did not create a valuable
change. While as-is element detection obtained 91.67% average N3 success, action-
added element detection also had the same score. Moreover, adding the detected

39

action word to information of all elements from the DOM structure creates a fake
similarity because of the appended common words.

Moreover, we observed that the selected user’s readable information might not be
unique on an application screen. For example, in the Signal application while on a
screen of multiple messages, all the message elements had the content description
media message. It does not contain any message-specific information on the DOM
structure. Therefore, it was impossible to differentiate which message was mentioned
in the test sentences.

40

4.4.3 text2test- Test Case Execution

In this section, we combine information extraction and element detection to execute
the test cases from given sentences and POM pairs. Table 4.14 summarizes the
results of applying text2test on the 25 test cases out of 51 issue reports identified by
the authors of the ReCDroid paper. We did not include the remaining issue reports
due to the limitations of our system configuration.

41

Application
Name

Number of
sentences

Successfully
executed
sentence
count

Successful
Execution

Sentence
Success
Ratio

ACV 6 6 YES 100.0
anymemo 7 7 YES 100.0
anymemo2 9 9 YES 100.0
asciicam 9 2 NO 22.2
birthdroid 7 7 YES 100.0
car_report 14 14 YES 100.0
dagger 1 0 NO 0.0
fastadapter 1 1 YES 100.0
fastadapter2 8 8 YES 100.0
flashCards 7 7 YES 100.0
librenews 5 5 YES 100.0
librenews2 6 6 YES 100.0
librenews3 5 3 NO 60.0
markor 8 5 NO 62.5
memento 6 5 NO 83.3
news 3 3 YES 100.0
odb 3 3 YES 100.0
openhab 6 2 NO 33.3
openSudoku 11 11 YES 100.0
qksms1 8 8 YES 100.0
qksms2 4 4 YES 100.0
screenRecord 8 8 YES 100.0
shuttle 6 6 YES 100.0
tagmo 3 3 YES 100.0
transistor 3 3 YES 100.0

Table 4.14 text2test Test Case Reproduction Results

Table 4.14 presents a summary of the experiment results. Each row corresponds to
a specific application name, along with the following information:

• Number of sentences: This indicates the total number of sentences ex-
tracted from the issue report for a particular application.

• Successfully executed sentence count: This denotes the number of sen-
tences that were successfully executed as test cases using the text2test system.

42

• Successful Execution: This field indicates whether the execution of all test
cases for a given application was successful. It is marked as "YES" if all test
sentences were executed without errors and "NO" if any of the test sentences
failed to execute successfully.

• Sentence Success Ratio: This metric represents the percentage of sentences
that were successfully executed out of the total number of sentences for a
particular application.

Looking at the results, we observe that the text2test system achieved a 76% success
rate in executing all test cases of the applications. Applications like ACV, anymemo,
anymemo2, birthdroid, car_report, fastadapter, fastadapter2, flashCards, librenews,
news, odb, openSudoku, qksms, screenRecord, tagmo, and transistor achieved a
100% sentence success ratio. This indicates that all the extracted sentences were
successfully executed as test cases without any errors for these applications.

However, some applications showed lower success rates. For example, asciicam had a
sentence success ratio of 22.2%, indicating that only a small fraction of the sentences
could be executed successfully. Similarly, applications like librenews3, markor, me-
mento, and openhab also had lower sentence success ratios, indicating that a sig-
nificant number of test cases could not be executed successfully. Here are specific
reasons for the lower success rates in executing test cases for certain applications:

asciicam: The item in this application does not have a text or description field. As
a result, using the resource ID alone was not sufficient to find the correct flow and
execute the test cases accurately.

dagger: The application crashes before executing the sentence, which prevented
the successful execution of test cases.

librenews3: The entity mentioned in the sentence could not be matched with any
element on the screen. This led to difficulties in identifying and interacting with the
correct elements during test case execution.

markor: The element’s resource ID, content description, and text fields did not
contain any information. This lack of identifying information made it challenging
to accurately execute the corresponding test cases.

memento: The date-set field in this application did not have any associated text,
content description, or resource ID that could be used to interact with it during test
case execution. This limitation hindered the successful execution of test cases.

openhab: The application did not work properly, and there was no page available

43

after the initial load. This issue prevented the successful execution of test cases in
this particular application.

Out of the six applications that we could not execute test cases successfully, two
of them were due to the applications not working as expectedly. Three of the
applications did not have any descriptive information on the element that can be
used in the element detection step. And lastly, there was only one application
where the NER approach failed and predicted an incorrect element. It is important
to address these issues to improve the overall effectiveness and reliability of the
text2test system across a wider range of applications.

These results highlight the varying effectiveness of the text2test system across dif-
ferent applications. While it demonstrated high performance for most applications,
there were cases where it faced challenges in accurately executing test cases. Further
analysis and improvements could be explored to enhance the system’s performance
and address the limitations observed in specific applications.

4.4.4 text2test Element Extraction Comparison to ReCDroid

In this sub-section we are comparing our text2test element extraction approach with
Zhao et al. (2022,1). ReCDroid approach uses SpaCy (Honnibal & Montani, 2017)
dependency parser to identify grammatical patterns that describe user actions, tar-
get GUI elements from issue reports, and automatically reproduce crashes for An-
droid apps. Once they identify the user action and target GUI element, they utilize
word embeddings to determine semantic similarity with the POM element. In the
scope of element extraction, we performed two tests with ReCDroid. The first test
determines how well our Signal & Firefox & VLC BERT_bi-LSTM_CRF model
can detect the elements from the ReCDroid test sentences. The second test is to
feed the Signal & Firefox & VLC test sentences to the ReCDroid dependency parser,
analyze the patterns it finds, and extract the action and the entities.

precision recall F-score

element extraction
ACT 0.8022 0.9125 0.8538
ENT 0.6705 0.6413 0.6556

partial extraction
ACT 0.9111 0.9425 0.9266
ENT 0.8687 0.87755 0.8730

Table 4.15 Signal & Firefox & VLC UI-BERT _bi-LSTM_CRF model prediction
results on ReCDroid test sentences

44

The 4.15 Table shows the element and action detection from the 96 sentences ReC-
Droid testing includes. These 96 sentences are from crash reports of 30 different
applications. The action label F-score shows us that independent of applications
since the set of possible actions on the mobile phone UI is limited, we can achieve
an 85% score. The promising aspect of this test is the entity detection F-score of
65.6%. The NER model is not trained with entities on the 30 different applications,
but we believe that it can generalize to other applications. When we check the
partial entity matching score, it is at 87%. The 87% F-score means the model, even
though unable to detect the exact element, is aware that some part of it must be an
entity.

precision recall F-score

element extraction
ACT 0.8293 0.8097 0.8194
ENT 0.4231 0.4195 0.4213

partial extraction
ACT 0.8290 0.8095 0.8191
ENT 0.500 0.4845 0.4921

Table 4.16 ReCDroid NLP model on Firefox and Signal test sentences

The results of ReCDroid dependency parser detection actions and entities on Signal,
Firefox and VLC sentences are in Table 4.16. The action detection of the dependency
parser user by ReCDroid is commendable. It can detect single-word actions like a
tap and click select with high accuracy and is also good at understanding multi-
word actions like a double tap and long click. However, it cannot detect actions
like a swipe or a scroll, and this is due to the authors not providing grammatical
patterns including these actions. The problem with the dependency parser approach
becomes evident when we look at the entity recognition F-score of 42%. Even if we
apply the partial entity recognition approach, it achieves 49%. We believe this low
score is due to the dependency parser being only successful if the user provides
sentences with specific grammatical patterns. When the sentence does not have the
expected grammatical pattern, which user-generated issue reports sentences with
various grammatical patterns not always meeting the expected patterns, this causes
a significant issue for the system and results in lower scores.

45

5. CONCLUSION

This work aimed to create a NER model for implementing named entity recogni-
tion over user actions with applications and element detection over given sentences
and finally executing test cases on applications under test (AUT). We prepared a
training data set containing user action sentences and designed a labelling system
for application test cases. We tested the trained model with different parameters,
yielding acceptable results for future development. This novel model can be used for
automated user interface testing, a domain with a high testing requirement. More-
over, in the literature, to the best of our knowledge, this is the first time a NER
approach has been used to aid test automation for application UI testing.

Given a POM model of a screen and a free-form sentence written in a natural lan-
guage specifying an action and a related UI element on which the action needs to be
carried out, we have developed an approach based on named entity recognition and
semantic similarity computations to automatically determine the actual UI element
of interest on the screen and the action to be performed on this element and the
parameter that this element can take.

After detailed evaluations and comparisons, we observed that the proposed element
extraction approach method is accurate and open to be implemented in further
work for automation. This line of research is exciting and quite promising. We have
arrived at this conclusion by noting that in our empirical evaluations, the proposed
approach correctly determined the action words with an average F-measure of 0.97,
the actual UI elements of interest with an accuracy of 0.92 and the parameter that
the UI elements can be assigned with an accuracy of 93.

Regarding the UI element detection step, we investigated avenues for evaluating the
accuracy of different approaches for computing the semantic similarities of Google
Universal Sentence Encoder Cer et al. (2018) and BERT Devlin et al. (2018). We
also performed tests of different flavours of Google Universal Sentence encoder to
see the effect of Deep Averaging Networks (DAN) and transformers. The results
for element detection yielded a promising 0.84 N3 element detection score using the

46

trained BERT model, 0.85 N3 element detection score with Google Sentence Encoder
with transformers and over 0.91 with deep averaging networks. Interestingly, the
most straightforward variant DAN performs best in calculating semantic similarity
on UI elements, which are basic noun phrases.

In this project, to create test cases that include the user action and the interacted
entities, we used the issues of the mobile applications. Although there were around
10000 cases, we had to filter through them. At the end of this process, we extracted
around 4500 sentences to train our NER model. Then we used these cases as training
and validation data for the BERT training. However, the training samples need
to include more sentences from different applications to effectively classify named
entities. This issue is one internal threat to the project. While we cannot claim that
our NER model can generalize for all types of applications, from our evaluation, we
can conclude that we extract useful information with a certain degree of confidence.
We tried to achieve this by preparing different data sets from 3 different applications
to test the NER model. This mitigated some of the effects of having a limited number
of samples.

Another internal threat the model faces is the biased distribution of the labels.
Since most of the user’s actions with an interface are single click or tap actions, the
training data contained many more representations of this action. This distribution
is, unfortunately, present in the test data as well. However, the high score of ac-
tion detection for all BERT models shows that even though the action data has a
biased distribution, the model detects various types of actions from the semantic
information of the sentences.

Despite the internal threats mentioned above, we can confidently conclude that both
the element extraction and element detection yielded promising results which helped
in the text2test automation step. Our main goal is to implement an automation
process where even non-technical stakeholders can easily contribute to UI testing.
Toward this goal, a test suite is created with the user assertions. This also opens a
path for test-driven development.

We presented the text2test system, which aims to automate the execution of test
cases for AUT based on information extracted from natural language test sentences.
The system employs an approach that combines element extraction and element
detection techniques to identify the relevant GUI elements and perform the specified
actions.

Through experimentation, we evaluated the effectiveness of the text2test system on
a set of test cases derived from bug reports. The outcomes demonstrated a high

47

rate of test case execution success, with the majority of applications obtaining a
success rate of 100%. However, we reported challenges in accurately executing test
cases for specific applications, primarily due to issues such as missing descriptive
information, and application crashes These findings offer valuable insights for im-
proving the text2test system and overcoming these challenges. Future development
of text2test can focus on the following: first, it can concentrate on fixing the short-
comings discovered during the experimental phase in order to further improve the
text2test system, secondly, a test oracle can be developed to automatically detect
the success of the actions performed by the test framework. It is possible to make
improvements to how cases with lacking descriptive information are handled, how
accurately items are detected, and how to handle application-specific problems like
crashes or broken elements.

Overall, the text2test system demonstrates promising capabilities in automating
the execution of test cases using natural language test sentences. By leveraging
the strengths of element extraction and element detection techniques, coupled with
an efficient DFS algorithm, the system has the potential to streamline the testing
process and improve efficiency in software development.

48

BIBLIOGRAPHY

Agrawal, A., Tripathi, S., Vardhan, M., Sihag, V., Choudhary, G., & Dragoni, N.
(2022). Bert-based transfer-learning approach for nested named-entity recog-
nition using joint labeling. Applied Sciences, 12 (3).

Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., & Imparato, G.
(2012). A toolset for gui testing of android applications. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), (pp. 650–653).

Anand, S., Naik, M., Harrold, M. J., & Yang, H. (2012). Automated concolic testing
of smartphone apps. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, (pp. 1–11).

Bernal-Cárdenas, C., Cooper, N., Moran, K., Chaparro, O., Marcus, A., & Poshy-
vanyk, D. (2020). Translating video recordings of mobile app usages into
replayable scenarios. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, (pp. 309–321).

Brin, S. (1998). Extracting patterns and relations from the world wide web. In
WebDB, (pp. 172–183).

Cer, D., Yang, Y., yi Kong, S., Hua, N., Limtiaco, N., John, R. S., Constant,
N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., &
Kurzweil, R. (2018). Universal sentence encoder.

Coppola, R., Raffero, E., & Torchiano, M. (2016). Automated mobile ui test fragility:
An exploratory assessment study on android. In Proceedings of the 2nd In-
ternational Workshop on User Interface Test Automation, INTUITEST 2016,
(pp. 11–20)., New York, NY, USA. Association for Computing Machinery.

Costa, P., Paiva, A. C., & Nabuco, M. (2014). Pattern based gui testing for mobile
applications. In 2014 9th International Conference on the Quality of Informa-
tion and Communications Technology, (pp. 66–74). IEEE.

Dai, Z., Wang, X., Ni, P., Li, Y., Li, G., & Bai, X. (2019). Named entity recognition
using bert bilstm crf for chinese electronic health records. In 2019 12th Inter-
national Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), (pp. 1–5).

Developers, G. (2021). Android debug bridge.
Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training

of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of
deep bidirectional transformers for language understanding.

Ernst, M. D. (2017). Natural Language is a Programming Language: Applying Nat-
ural Language Processing to Software Development. In Lerner, B. S., Bodík,
R., & Krishnamurthi, S. (Eds.), 2nd Summit on Advances in Programming
Languages (SNAPL 2017), volume 71 of Leibniz International Proceedings in
Informatics (LIPIcs), (pp. 4:1–4:14)., Dagstuhl, Germany. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S.,
Weld, D. S., & Yates, A. (2005). Unsupervised named-entity extraction from
the web: An experimental study. Artificial Intelligence, 165 (1), 91–134.

49

Fazzini, M., Prammer, M., d’Amorim, M., & Orso, A. (2018). Automatically trans-
lating bug reports into test cases for mobile apps. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, (pp. 141–152)., New York, NY, USA. Association for Computing
Machinery.

Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., & Freudenstein, D.
(2020). Specmate: Automated creation of test cases from acceptance criteria.
In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST), (pp. 321–331). IEEE.

Gao, J., Bai, X., Tsai, W.-T., & Uehara, T. (2014). Mobile application testing: A
tutorial. Computer, 47 (2), 46–55.

Granda, M. F., Parra, O., & Alba-Sarango, B. (2021). Towards a model-driven
testing framework for gui test cases generation from user stories. In ENASE,
(pp. 453–460).

Halpern, M., Zhu, Y., Peri, R., & Reddi, V. J. (2015). Mosaic: cross-platform
user-interaction record and replay for the fragmented android ecosystem. In
2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), (pp. 215–224). IEEE.

Honnibal, M. & Montani, I. (2017). spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing.
To appear.

Huggingface (2019). Bert model finetuning using masked language modeling objec-
tive.

Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding
recurrent networks.

Kirubakaran, B. & Karthikeyani, V. (2013). Mobile application testing — challenges
and solution approach through automation. In 2013 International Conference
on Pattern Recognition, Informatics and Mobile Engineering, (pp. 79–84).

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Interna-
tional Conference on Machine Learning.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016).
Neural architectures for named entity recognition. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, (pp. 260–270)., San Diego,
California. Association for Computational Linguistics.

Li, N., Escalona, A., & Kamal, T. (2016). Skyfire: Model-based testing with cucum-
ber. In 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST), (pp. 393–400). IEEE.

Limsopatham, N. & Collier, N. (2016). Bidirectional lstm for named entity recogni-
tion in twitter messages. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, (pp. 879–888). COLING 2016.

Lin, B. Y. & Lu, W. (2018). Neural adaptation layers for cross-domain named entity
recognition. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, (pp. 2012–2022).

Lin, J.-W., Wang, F., & Chu, P. (2017a). Using semantic similarity in crawling-
based web application testing. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST), (pp. 138–148). IEEE.

50

Lin, J.-W., Wang, F., & Chu, P. (2017b). Using semantic similarity in crawling-
based web application testing. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST), (pp. 138–148).

Ling, W., Luís, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., Black, A. W.,
& Trancoso, I. (2015). Finding function in form: Compositional character
models for open vocabulary word representation. CoRR, abs/1508.02096.

Liu, C. H., Lu, C. Y., Cheng, S. J., Chang, K. Y., Hsiao, Y. C., & Chu, W. M.
(2014). Capture-replay testing for android applications. In 2014 International
Symposium on Computer, Consumer and Control, (pp. 1129–1132). IEEE.

Ma, X. & Hovy, E. (2016). End-to-end sequence labeling via bi-directional lstm-
cnns-crf.

Mahalakshmi, G., Vijayan, V., & Antony, B. (2018). Named entity recognition for
automated test case generation. Int. Arab J. Inf. Technol., 15 (1), 112–120.

McCallum, A., Freitag, D., & Pereira, F. C. N. (2000). Maximum entropy markov
models for information extraction and segmentation. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, (pp.
591–598)., San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of
word representations in vector space.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

Moreira, R. M. & Paiva, A. C. (2014). Pbgt tool: an integrated modeling and
testing environment for pattern-based gui testing. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, (pp.
863–866).

Muccini, H., Di Francesco, A., & Esposito, P. (2012). Software testing of mobile
applications: Challenges and future research directions. In 2012 7th Interna-
tional Workshop on Automation of Software Test (AST), (pp. 29–35).

North, D. et al. (2006). Introducing bdd. Better Software, 12.
Palmer, D. D. & Day, D. S. (1997). A statistical profile of the named entity task.

In Fifth Conference on Applied Natural Language Processing, (pp. 190–193).,
Washington, DC, USA. Association for Computational Linguistics.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing
(EMNLP), (pp. 1532–1543).

Ramshaw, L. & Marcus, M. (1995). Text chunking using transformation-based
learning. In Third Workshop on Very Large Corpora.

Ritter, A., Clark, S., Mausam, & Etzioni, O. (2011). Named entity recognition in
tweets: An experimental study. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11, (pp. 1524–1534)., USA.
Association for Computational Linguistics.

Rocktäschel, T., Weidlich, M., & Leser, U. (2012). Chemspot: a hybrid system for
chemical named entity recognition. Bioinformatics, 28 (12), 1633–1640.

SmartBear (2019). What is cucumber?
Soeken, M., Wille, R., & Drechsler, R. (2012). Assisted behavior driven development

using natural language processing. In International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, (pp. 269–287).
Springer.

51

Solis, C. & Wang, X. (2011). A study of the characteristics of behaviour driven
development. In 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, (pp. 383–387). IEEE.

Song, W., Qian, X., & Huang, J. (2017). Ehbdroid: beyond gui testing for android
applications. In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), (pp. 27–37). IEEE.

Souza, F., Nogueira, R. F., & de Alencar Lotufo, R. (2019). Portuguese named
entity recognition using BERT-CRF. CoRR, abs/1909.10649.

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., &
Su, Z. (2017). Guided, stochastic model-based gui testing of android apps.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, (pp. 245–256).

Syed, M. H. & Chung, S.-T. (2021). Menuner: Domain-adapted bert based ner
approach for a domain with limited dataset and its application to food menu
domain. Applied Sciences, 11 (13).

Tao, C., Gao, J., & Wang, T. (2017). An approach to mobile application testing
based on natural language scripting. In SEKE, (pp. 260–265).

Tjong Kim Sang, E. F. & De Meulder, F. (2003). Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003, (pp. 142–147).

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
13 (2), 260–269.

Weber, L., Sänger, M., Münchmeyer, J., Habibi, M., Leser, U., & Akbik, A. (2021).
HunFlair: an easy-to-use tool for state-of-the-art biomedical named entity
recognition. Bioinformatics, 37 (17), 2792–2794.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., & Brew, J. (2019). Huggingface’s trans-
formers: State-of-the-art natural language processing. CoRR, abs/1910.03771.

Zhang, X., Zhao, J. J., & LeCun, Y. (2015). Character-level convolutional networks
for text classification. CoRR, abs/1509.01626.

Zhang, Y. & Zhang, H. (2022). Finbert-mrc: financial named entity recognition
using bert under the machine reading comprehension paradigm.

Zhao, Y., Su, T., Liu, Y., Zheng, W., Wu, X., Kavuluru, R., Halfond, W. G. J.,
& Yu, T. (2022). Recdroid+: Automated end-to-end crash reproduction from
bug reports for android apps. ACM Trans. Softw. Eng. Methodol., 31 (3).

Zhao, Y., Yu, T., Su, T., Liu, Y., Zheng, W., Zhang, J., & G.J. Halfond, W.
(2019). Recdroid: Automatically reproducing android application crashes from
bug reports. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), (pp. 128–139).

Zhou, C., Li, B., & Sun, X. (2020). Improving software bug-specific named entity
recognition with deep neural network. Journal of Systems and Software, 165,
110572.

52

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK & BACKGROUND
	Software Systems Testing
	Named Entity Recognition
	Domain Specific Named Entity Extraction
	Element Detection

	APPROACH
	Element Extraction via NER Model
	Domain-Specific BERT
	NER Model
	Input Layer and Embeddings
	Bi-LSTM CRF Downstream task

	Element Detection with Similarity Score Calculation
	text2test Test Case Execution

	EXPERIMENTS
	Operational Framework
	Evaluation Framework
	Dataset and Subject Applications
	Dataset used in Element Extraction and Element Detection
	Dataset used in text2test Test Case Execution
	ReCDroid Comparison:

	Experimental Results
	Element Extraction
	 Element Detection
	text2test- Test Case Execution
	text2test Element Extraction Comparison to ReCDroid

	CONCLUSION
	BIBLIOGRAPHY

