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ABSTRACT

ON THE WALSH SPECTRUM OF ALMOST PERFECT NONLINEAR
FUNCTIONS

YAĞMUR SAK

MATHEMATICS M.A. THESIS JULY 2023

Thesis Supervisor: Asst. Prof. NURDAGÜL ANBAR MEIDL

APN functions, Walsh spectrum, Biprojective polynomials, Nonlinearity, Finite
fields

In this thesis, we study the Walsh spectrum of "Almost Perfect Nonlinear" (APN)
functions over finite fields of characteristic 2. We first give a characterization of APN
functions in terms of the Walsh spectrum. We also gather recent characterization
results of APN functions. Then, we give upper bounds for the Walsh spectrum of
two families of biprojective APN functions, which have been recently introduced by
Göloğlu. As a result, we obtain lower bounds for the nonlinearity of those APN
functions. Our method is based on Bezout’s theorem, i.e., the intersection theory of
two projective plane curves.
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ÖZET

NEREDEYSE MÜKEMMEL LİNEER OLMAYAN FONKSİYONLARIN WALSH
SPEKTRUMU ÜZERİNE

YAĞMUR SAK

MATEMATİK YÜKSEK LİSANS TEZİ, TEMMUZ 2023

Tez Danışmanı: Asst. Prof. NURDAGÜL ANBAR MEIDL

Anahtar Kelimeler: APN fonksiyoları, Walsh spektrum, Biprojektif polinomlar,
Doğrusal olmama, Sonlu cisimler

Bu tezde, karakteristiği 2 olan sonlu cisimler üzerinde tanımlanan "Neredeyse
Mükemmel Lineer Olmayan" (APN) fonksiyonların Walsh spektrumlarını inceledik.
İlk önce APN fonksiyonlarının Walsh spektrumu açısından bir karakterizasyonunu
verdik. Ayrıca, yakın zamanda verilen APN fonksiyonlarının karakterizasyonlarını
toparladık. Daha sonra, yakın zamanda Göloğlu tarafından verilen iki biprojektif
APN fonksiyon sınıfının Walsh spektrumları için üst sınırlar verdik. Sonuç olarak,
verilen bu APN fonksiyonlarının non-lineerliği için alt sınırlar elde ettik. Metodumuz
Bezout teoremine, yani iki tasarımsal düzlem eğrisinin kesişim teorisine, dayanmak-
tadır.
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1. Introduction

Vectorial Boolean functions have a wide range of uses in cryptography and coding
theory. The nonlinearity of the function measures the resistance to linear attacks,
see Matsui (1993). The higher the nonlinearity of a vectorial Boolean function, the
better its resistance to linear attacks. Almost perfect nonlinear(APN) functions
are of critical importance in symmetric cryptography since they ensure optimal
resistance to differential attacks, see Biham & Shamir (1991).

Let n and m be two positive integers, p prime, and F : Fpn → Fpm be a function.
For any a ∈ F∗

pn(F∗
pn = Fpn\{0}), the derivative DaF : Fpn → Fpm of F with respect

to a is defined by
DaF (x) = F (x+a)−F (x).

In the case m = n, if for any a,b ∈ F2n , a ̸= 0, the equation DaF (x) = b has 0 or 2
solutions, then F is called APN function. This thesis contains the characterization
of APN functions. One of the important characterizations for APN-ness is given by
Janwa-Wilson-Rodier in Janwa & Wilson (1993). A function F : F2n → F2n is APN
if and only if the following holds:

F (x)+F (y)+F (z)+F (x+y+ z) = 0 if and only if x= y or x= z or y = z.

Let F : Fpn → Fpm be a function. For λ ∈ Fpm , a function fλ : Fpn → Fp defined
by fλ(x) = Trn(λF (x)) is the component of F corresponding to λ. For a function
f : Fpn → Fp, Walsh (Fourier) transform is defined by

Wf (a) =
∑

x∈Fpn

εf(x)−T rn(ax)
p

where εp be a primitive p-th root of unity in C. The Walsh spectrum of f is the
multiset defined by

{|Wf (a)| : a ∈ Fpn}.

The Boolean function f : F2n → F2 is called bent if |Wfλ
(a)| = 2n/2. Moreover, f

is called semibent if |Wf (a)| ∈ {0,2n+1
2 } (respectively |Wf (a)| ∈ {0,2n+2

2 }) when n
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is odd (respectively n is even) for all a ∈ Fpn . If a vectorial Boolean function has
only bent and semibent components, then we say that the function has the classical
spectrum, see Pott (2016) for more details.
The nonlinearity of f : F2n → F2 is defined by

N (f) = 2n−1 − 1
2L(f), where L(f) = max

a∈F2n
|Wf (a)|.

The nonlinearity of F : F2n → F2m is defined by

N (F ) = 2n−1 − 1
2L(F ), where L(F ) = max

λ∈F∗
2m

a∈F2n

|Wfλ
(a)|

where fλ is the component of F corresponding to λ.
If N (F ) = 2n+1

2 , then F is said to be almost bent(AB). Suppose that n is odd.
Every AB function on F2n is APN, see Chabaud & Vaudenay (1994). Moreover,
if F is quadratic and APN, then F is AB, see Carlet, Charpin & Zinoviev (1998).
Suppose that n is even. If F has no bent component, then F is not APN. More-
over, if F is APN, then the number of bent components is 2(2n −1)/3 if and only if
L(F ) = 2(n+2)/2, see Berger, Canteaut, Charpin & Laigle-Chapuy (2005).
Most known quadratic APN functions have the classical spectrum. It is known
that there exists an APN function that has no classical spectrum, see Dillon (2006).
However, there is no infinite family known to have a non-classical spectrum.
In this thesis, gold and inverse functions are given as an example of APN functions.
For more infinite families of quadratic APN polynomials, see Budaghyan, Helleseth
& Kaleyski (2020).
In 2022, two infinite families of biprojective polynomial pairs are constructed in
Göloğlu (2022). We used the method introduced in Anbar, Kalaycı & Meidl (2019)
to estimate the nonlinearity of those APN functions.
The thesis is organized as follows. In Chapter 2, we introduce basic concepts and
facts related to finite fields, trace functions, and permutation polynomials. In Chap-
ter 3, we introduce APN function and the Walsh spectrum of the Boolean function.
We give the characterization of the APN function in terms of the Walsh spectrum.
We give examples of APN monomials, such as cube, gold, and inverse functions.
Then we compute the Walsh spectrum of the cube function by using the defini-
tion of the Walsh spectrum and using the dimension of its linear space. Chapter 3
contains also the further characterization of APN functions stated in Berger et al.
(2005). In Chapter 4, we give the essential definitions and theorems to state Be-
zout’s Theorem for projective curves. In Chapter 5, we state the biprojective APN
functions and determine the lower bound for the nonlinearity of two infinite families
of biprojective polynomial pairs presented in Göloğlu (2022).
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2. Preliminaries

2.1 Finite Fields

This chapter gives the main definitions and theorems which are used in the following
chapters. In this section, we will first give the definition and basic properties of finite
fields; we will then define trace and balanced functions and their related theorems.

Definition 2.1. A field is a set F, together with two binary operations of F, addition
and multiplication, denoted by “+” and “.” which satisfies the following properties:

(i) F is an abelian group under “+” with identity element 0F;

(ii) F\{0} is an abelian group under “.” with identity element 1F;

(iii) Multiplication distributes over addition, i.e., x.(y+z) = x.y+x.z for x,y,z ∈F.

Definition 2.2. The characteristic of a field F is the smallest positive integer n
such that n.1F = 0 if n exists. Then F is said to have characteristic n and is denoted
by char(F). If no such positive integer n exists, F is said to have characteristic 0.

Theorem 2.1. A finite field F has a prime characteristic.

Theorem 2.2 (Lidl & Niederreiter (1994), Chapter 2, Theorem 2.2). Let F be a
finite field. Then the cardinality |F| is pn where p is the characteristic of F with
n ∈ Z+.

Theorem 2.3 (Lidl & Niederreiter (1994), Chapter 2, Theorem 2.8). For every
finite field F, the multiplicative group F∗ of nonzero elements of F is cyclic.

Definition 2.3. The field F is called an algebraic closure of F if F is algebraic over
F and if every polynomial f(x) ∈ F[x] factors completely into linear factors in F[x].
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Now, we will give some theorems about finite fields which are necessary in the
following chapters.

Lemma 2.1. If Fq is finite with q elements and α ∈ Fq with α ̸= 0, then αq−1 = 1.
Thus, αq = α for all α ∈ Fq.

Proof. Let α ∈ Fq be a nonzero element, then α is a unit in Fq. There are q− 1
units in Fq and the set of units in Fq, say F∗

q , is a multiplicative group of order
q−1. F∗

q is a cyclic group of order q−1 since any finite multiplicative subgroup of a
field is cyclic. Then, the multiplicative order of α divides q−1 by using Lagrange’s
theorem. Thus, we have αq−1 = 1 and, by multiplying both sides with α, we obtain
αq = α.

Theorem 2.4. Let Fpn be the finite field of order pn. For any divisor s of pn − 1,
there exists y ∈ Fpn such that ord(y) = s.

Proof. Note that F∗
pn = Fpn\{0} is a multiplicative group of order pn − 1. Since

the cardinality of F∗
pn is finite, F∗

pn is cyclic. Then there exists ζ ∈ F∗
pn such that

F∗
pn =< ζ > . In particular, ord(ζ) = pn − 1. Let s be a divisor of pn − 1. Consider
y = ζ

pn−1
s ∈ F∗

pn . Then, we obtain the following equations:

ord(y) = ord(ζ)
gcd(pn−1

s ,pn −1)
= pn −1

pn−1
s

= s.

Now, we will give a useful lemma for a finite field with characteristic p.

Lemma 2.2. Let F : Fpn → Fpn be a function defined by

F (x) =
n∑

i=1
aix

i, ai ∈ Fpn .

Then F (x)pn = F (xpn).

Proof. Note that apn

i = ai since ai ∈ Fpn . Then we have the following equalities:

F (x)pn

=
(

n∑
i=1

aix
i

)pn

=
n∑

i=1
apn

i (xi)pn

=
n∑

i=1
ai(xpn

)i = F (xpn

).
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Now, we will give the definition and basic properties of the trace function which is
required to define the Walsh spectrum of the APN function.

Definition 2.4. Let α ∈ Fqn where q is a prime power and n is positive integer.
The trace function Trn : Fqn → Fq is defined by

Trn(α) = α+αq +αq2
+ · · ·+αqn−1

for α ∈ Fqn .

Theorem 2.5. The trace function, Trn : Fqn → Fq satisfies the following properties:

(i) Trn(α+β) = Trn(α)+Trn(β) where α,β ∈ Fqn ;

(ii) Trn(cα) = c Trn(α) where α ∈ Fqn and c ∈ Fq ;

(iii) Trn : Fqn → Fq is a linear function and it is onto ;

(iv) Trn(α) = nα for α ∈ Fq and n is a non-negative integer ; and

(v) Trn(αq) = Trn(α) for any α ∈ Fqn .

Proof. (i) For any α,β ∈ Fq, we have the following equalities:

Trn(α+β) = (α+β)+(α+β)q +(α+β)q2
+ · · ·+(α+β)qn−1

= α+β+αq +βq +αq2
+βq2

+ · · ·+αqn−1
+βqn−1

= (α+αq + · · ·+αqn−1
)+(β+βq + · · ·+βqn−1

)

= Trn(α)+Trn(β).

(ii) Note that cq = c for any c ∈ Fq by Lemma 2.1. For any α ∈ Fqn and c ∈ Fq, we
have the following equalities:

Trn(cα) = cα+(cα)q +(cα)q2
+ · · ·+(cα)qn−1

= cα+ cqαq + cq
2
αq2

+ · · ·+ cq
n−1

αqn−1

= c(α+αq + · · ·+αqn−1
) = c Trn(α).

(iii) From the properties (i) and (ii), Trn : Fqn → Fq is a linear function. To prove
that Trn(x) is onto, we first show the existence of an α ∈ Fqn with Trn(α) ̸= 0.
Note that Trn(α) = 0 if and only if α is a root of the polynomial Trn(x) =
x+ xq + · · · + xqn−1 ∈ Fq[x] in Fqn . Since the degree of Trn(x) is qn−1, the
polynomial can have at most qn−1 roots in Fqn . So, there must be at least one
α ∈ Fqn such that Trn(α) ̸= 0.
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Now, we will show that Trn is onto. Set Trn(α) = b ∈ Fq and let c ∈ Fq. We
will show that there exists β ∈ Fqn such that Trn(β) = c. As c

b ∈ Fq, we have

Trn

(
c

b
α
)

= c

b
Trn(α) = c

b
b= c.

(iv) By Lemma 2.1, if α ∈ Fq, then αqi = α for any positive integer i. Then we
have the following equalities:

Trn(α) = α+αq +αq2
+αq3

+ · · ·+αqn−1

= α+α+ · · ·+α = nα.

(v) For α ∈ F2n , we have the following equalities:

Trn(αq) = β+βq +βq2
+ · · ·+βqn−1

= αq +(αq)q +(αq)q2
+ · · ·+(αq)qn−1

= αq +αq2
+αq3

+ · · ·+αqn−1
+αqn

= αq +αq2
+αq3

+ · · ·+αqn−1
+α = Trn(α).

Theorem 2.6. Let Trn : Fqn → Fq be a trace function. Set Z = {α ∈ Fqn : Trn(α) =
0} and, S = {βq −β : β ∈ Fqn}. Then Z = S.

Proof. By Theorem 2.5, we observed that Trn : Fqn → Fq is an Fq-linear map. Note
that Z is equal to kernel Ker(Trn(x)) of the Trn map. By the dimension theorem,

dimFq(Fqn) = dimFq(Im(Trn(x)))+dimFq(Ker(Trn(x)))

where Im(Trn(x)) denotes the image of Trn(x). Since Trn is an onto map, we have

n= 1+dimFq(Ker(Trn(x))).

That is, dimFq(Ker(Trn(x))) = n − 1. This implies that the cardinality of
Ker(Trn(x)) is qn−1, i.e., |Z| = qn−1.

Set S = {βq −β : β ∈ Fqn}. Let φ : Fqn → Fqn be a Fq-linear map given by φ(β) =
βq −β. Then S = Im(φ). We now determine the kernel Ker(φ) of φ. An element
β ∈ Fqn is in Ker(φ) if and only if φ(β) = βq − β = 0. This holds if and only if
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βq = β, i.e., β ∈ Fq. Hence, we observed that Ker(φ) = Fq. By dimension theorem,

n= dimFq(Fqn) = dimFq(Im(φ))+dimFq(Ker(φ))

n= dimFq(Im(φ))+1.

That is, dimFq(Im(φ)) = n−1, i.e., |Im(φ)| = |S| = qn−1. Hence, |S| = |Z|. There-
fore, to show S = Z, it is enough to observe that

S = Im(φ) ⊆ Z =Ker(Trn(x)).

By Theorem 2.5, we know that Trn(β) = Trn(βq). Then we have the following:

Trn(βq)−Trn(β) = Trn(βq −β) = 0.

This implies that βq −β ∈ Z, i.e., S ⊆ Z.

Definition 2.5. Let F : Fpn → Fpm be a function. F is called balanced if for all
b ∈ Fpm , it has the same number inverse image. That is, |F−1(b)| = pn

pm = pn−m for
any b ∈ Fpm .

Remark 2.1. Note that Trn : Fqn → Fq is an onto Fq-linear map, the inverse image
of any element has the same cardinality, namely |Ker(Trn)| = qn−1. Then Trn is a
balanced function.

Lemma 2.3. The equation z2 +az+ b = 0 has a solution in F2n , a,b ∈ F2n , a ̸= 0, if
and only if Trn( b

a2 ) = 0 where Trn : F2n → F2.

Proof. Set z = ay. Then we have z2 + az+ b = a2y2 + a2y+ b. This implies that
z2 + az+ b = 0 for some z ∈ F2n if and only if y2 + y+ b

a2 = 0. Hence, we need to
show that y2 + y+ b

a2 = 0 if and only if Trn( b
a2 ) = 0. Suppose that there exists y

such that y2 +y+ b
a2 = 0, i.e., y2 +y = b

a2 . Then we have the following.

Trn

(
b

a2

)
= Trn(y2 +y) = Trn(y2)+Trn(y) = 0,

since Trn(y2) = Trn(y).
Conversely, suppose that Tr

(
b

a2

)
= 0. By Theorem 2.6, Trn

(
b

a2

)
= 0 if and only if

b
a2 = y2 +y for some y ∈ F2n , i.e., y2 +y+ b

a2 = 0 has a solution in F2n .

Theorem 2.7. Let c∈ Fpn and εp be a primitive p-th root of unity. Let Trn : Fpn →

7



Fp defined by Trn(α) = α+αp +αp2 + · · ·+αpn−1
. Then we have the following.

∑
u∈Fpn

εT rn(cu)
p =

 pn, if c= 0;

0, if c ̸= 0.

Proof. If c= 0, then Trn(cu) = 0 for all u ∈ Fqn . Therefore, we have

∑
u∈Fpn

ε0
p =

∑
u∈Fpn

1 = pn.

If c ̸= 0, consider the function ψ : Fpn → Fpn such that ψ(u) = cu with c ∈ F∗
pn . Note

that
Ker(ψ) = {u ∈ Fpn : ψ(u) = 0} = {0}.

Then ψ is one-to-one and hence ψ is onto. Therefore, ψ is a permutation function.
Since ψ is a permutation and Trn(u) is a balanced function, Trn(cu) is a balanced
function. Then the inverse image of Trn(cu) has cardinality pn−1 for every u ∈ Fp.
Then we have

∑
u∈Fpn

εT rn(cu)
p = pn−1ε0 +pn−1ε1 +pn−1ε2 +· · ·+pn−1εp−1 = pn−1(1+ε1 +ε2 +· · ·+εp−1).

Since εp be a primitive p-th root of unity, the minimal polynomial of εp is 1 +x+
· · ·+xp−1, i.e., 1+ ε1 + ε2 + · · ·+ εp−1 = 0. Therefore,

∑
u∈Fpn

εT rn(cu)
p = pn−10 = 0.

Lemma 2.4. Let Fpn be a finite field and ξ ∈ Fpn be a primitive element of Fpn . Sup-
pose that β ∈ F∗

pn with ord(β) = s. If ξk1 ⟨β⟩ = ξk2 ⟨β⟩ for some k1,k2 ∈ 1, . . . , pn−1
s ,

then k1 = k2.

Proof. Suppose that ord(β) = s, then β can be written as β = ξ
pn−1

s j for some
positive integer j with gcd(pn − 1, j) = 1. Suppose that ξk1 ⟨β⟩ = ξk2 ⟨β⟩, and let
k1 ≥ k2 without loss of generality. Then we have the following implication.

ξk1−k2 ⟨β⟩ = ⟨β⟩ ⇐⇒ ξk1−k2 ∈ ⟨β⟩ ⇐⇒ ξk1−k2 = (ξ
pn−1

s j)l, for some l such that 1 ≥ l ≥ s

⇐⇒ ξ
pn−1

s jl−(k1−k2) = 1

8



Since ord(ξ) = pn −1,
pn −1 | p

n −1
s

jl− (k1 −k2).

Then
pn −1
s

| p
n −1
s

jl− (k1 −k2).

That is,
pn −1
s

| k1 −k2 where k1,k2 ∈ {1, . . . , p
n −1
s

}.

This holds if and only if k1 −k2 = 0, i.e., k1 = k2.

Remark 2.2. Any function F : Fpn → Fpn can be given as a polynomial PF (x) ∈
Fpn [x]. Moreover, PF (x) is unique modulo xpn −x, i.e., any function F : Fpn → Fpn

can be uniquely represented as a polynomial of degree less than pn.

Proof. By Lagrange Interpolation, any function F : Fpn → Fpn can be represented
as a polynomial PF (x) ∈ Fpn [x] of degree less than or equal to pn −1 as follows:

PF (x) =
∑

a∈Fpn

f(a)(1− (x−a)pn−1).

Note that for b ̸= a, we have (b−a)pn−1 = 1, i.e.,

f(a)(1− (b−a)pn−1) = f(a)(1−1) = 0.

For b= a, we have
f(b)(1− (b− b)pn−1) = f(b).

That is, PF (x) = f(b). Let P (x) and Q(x) be two representations of F : Fpn → Fpn

less than degree pn. Then we obtain that P (α) = Q(α) = F (α) for all α ∈ Fpn .
That is, P (α) −Q(α) = (P −Q)(α) = 0 for all α ∈ Fpn . Therefore, the polynomial
P (x)−Q(x) has pn roots. Moreover, deg(P (x)−Q(x)) ≤ pn −1 by our assumption.
This is possible if and only if P (x)−Q(x) = 0, i.e., P (x) =Q(x).
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2.2 Permutation Polynomials

In this section, we will give the definition and characterization of permutation poly-
nomials.

Definition 2.6. A polynomial f(x) ∈ Fq[x] is a permutation if its associated map
α→ f(α) is a permutation of Fq.

The following lemma characterizes a polynomial f(x) ∈ Fpn [x] being a permutation.
We will not give proof of this lemma since the proof is straightforward by definition.

Lemma 2.5. The polynomial f ∈ Fpn [x] is a permutation polynomial of Fpn if and
only if one of the following conditions holds:

(i) f is one-to-one ;

(ii) f is onto ;

(iii) f(x) = a has a unique solution in Fpn for each a ∈ Fpn .

Now, we will give Hermite’s Criteria for permutation polynomials which is used in
the following chapters. The following lemma is needed to prove Hermite’s Criteria.
Before the lemma, we must first recall the formula for the sum of the first n terms of
a geometric series. Let F be a field and let a ∈ F,a ̸= 1. Then the following identity
holds:

n−1∑
i=0

ai = 1−an

1−a
.

Lemma 2.6 (Shallue (2012), Chapter 1, Lemma 1.4). Let a0,a1, . . . ,aq−1 be elements
of Fq. Then the following two conditions are equivalent:

(i) a0,a1, . . . ,aq−1 are distinct;

(ii)
q−1∑
i=0

at
i =

 0, for t= 0,1, . . . , q−2;

−1, for t= q−1.

Proof. For fixed i with 0 ≤ i≤ q−1, consider the polynomial

gi(x) = 1−
q−1∑
t=0

at
ix

q−1−t.

10



Then we have the following.

gi(ai) = 1−
q−1∑
t=0

at
ia

q−1−t
i = 1−

q−1∑
t=0

aq−1
i = 1 for all 0 ≤ i≤ q−1

And for all b ∈ Fq such that b ̸= ai, we have the following equalities.

gi(b) = 1−
q−1∑
t=0

at
ib

q−1−t = 1−
q−1∑
t=0

(aib
−1)t = 1− 1− (aib

−1)q

1− (aib−1) = 1−1 = 0

Note that we have used the fact that aib
−1 ̸= 1 since ai ̸= b. Hence, the polynomial

g(x) satisfies the following equalities.

g(x) =
q−1∑
i=0

gi(x) =
q−1∑
i=0

1−
q−1∑
i=0

q−1∑
t=0

at
ix

q−1−t


= q.1−

q−1∑
t=0

q−1∑
i=0

at
i

xq−1−t

=

 1 if x ∈ {a0, . . . ,aq−1};

0 if x ∈ Fq\{a0, . . . ,aq−1}

Therefore, g(x) maps any element of Fq to 1 if and only if {a0, . . . ,aq−1} = Fq. Since
deg(g) ≤ q− 1, the function g maps every element to 1, this holds if and only if
g(x) = 1. That is,

q−1∑
i=0

at
i =

 0, for t= 0, . . . , q−2;

1, for t= q−1.

Theorem 2.8 ( Hermite’s Criterion). [Lidl & Niederreiter (1997), Chapter 7, The-
orem 7.4] Let Fq be of characteristic p. Then f ∈ Fq[x] is a permutation polynomial
of Fq if and only if the following two conditions hold:

(i) f has exactly one root in Fq;

(ii) for each integer t with 1 ≤ t ≤ q− 2 and t ̸≡ 0 mod p, the degree of f(x)t

mod xq −x is less than or equal to q−2.

Proof. Let f be a permutation polynomial of Fq. Since f(x) = a has exactly one
solution in Fq for each a ∈ Fq by the definition, part (i) holds. The reduction of

11



f(x)t mod xq −x is some polynomial

q−1∑
i=0

b
(t)
i xi.

Note that by Remark 2.2, b(t)q−1 = − ∑
c∈Fq

f(c)t.

Since {f(c) : c ∈ Fq} = Fq, we observe the following by Lemma 2.6.

b
(t)
q−1 = −

∑
c∈Fq

f(c)q−1 = 0 for all 1 ≤ t≤ q−2

This means that the degree of
q−1∑
i=0

b
(t)
i xi is less than or equal to q−2.

Now, suppose that (i) and (ii) are satisfied. Then (i) implies that

∑
c∈Fq

f(c)q−1 = q−1 = −1.

And (ii) implies that

−b(t)q−1 =
∑

c∈Fq

f(c)q−1 = 0 for all 1 ≤ t≤ q−2, t ̸≡ 0 mod p.

If t ≡ 0 mod p, then we can write t = t′pj where 1 ≤ t′ ≤ q− 2 and t′ ̸≡ 0 mod p.
Therefore, we obtain the following equalities.

∑
c∈Fq

f(c)t =
∑

c∈Fq

f(c)t′pj

=
∑

c∈Fq

f(c)t′
pj

= 0

Since ∑
c∈Fq

f(c)t = 0 for t= 0, . . . , q−2 and f(c)q−1 = −1, we conclude that f(x) is a

permutation polynomial of Fq by Lemma 2.6.

Lemma 2.7. The monomial xn is a permutation polynomial of Fq if and only if
gcd(n,q−1) = 1.

Proof. xn is a permutation polynomial of Fq if and only if the function f(x) = xn

is onto F∗
q . Recall that F∗

q is a cyclic group of order q− 1. Let F∗
q =< a > for some

a ∈ F∗
q . Then f is a onto if and only if < an >= F∗

q . This holds if and only if
gcd(n,q−1) = 1.

12



Lemma 2.8. Let n and k be positive integers. Then

gcd(2n −1,2k −1) = 2gcd(k,n) −1.

Proof. Assume that d= gcd(2n −1,2k −1). Then 2n ≡ 1 mod d and 2k ≡ 1 mod d.
Let s = gcd(k,n), which means that nt+ kr = s for some integers t and r. Then
2s = 2nt+kr. Therefore, we have

2s = 2nt+kr = (2n)t(2k)r ≡ 1 mod d.

That is, d divides 2s −1 where 2s −1 = 2gcd(k,n) −1.
Conversely, s | n and s | k since s = gcd(k,n). That is, there exists some integers l
and l′ such that sl= n and sl′ = k. Then we have 2sl −1 = 2n −1 and 2sl′ −1 = 2k −1.
Hence, we have the following equalities.

2n −1 = (2sl −1) = (2s −1)(2s(l−1) + · · ·+1)

2k −1 = (2sl′ −1) = (2s −1)(2s(l′−1) + · · ·+1)

That is, 2s − 1 divides gcd(2n − 1,2s − 1) where gcd(2n − 1,2s − 1) = d. Hence,
gcd(2n −1,2k −1) = 2gcd(k,n)−1.

Theorem 2.9. Let F : Fpn → Fpn be a function defined by F (x) = xt. If gcd(t,pn −
1) = s, then F (x) = c has no solution or exactly s solutions for any non-zero c.

Proof. Note that if s = 1, then we are done by Lemma 2.7. Suppose that s > 1.
Then consider the map φ : F∗

pn → F∗
pn defined by φ(x) = xt. Note that φ is a group

homomorphism. An element α ∈Ker(φ) if and only if αt = 1. Since gcd(t,pn −1) =
s, there exist s many elements, i.e., |Ker(φ)| = s. Hence, any non-zero element
c ∈ Im(φ), we have φ−1(c) = |{x ∈ Fpn : φ(x) = c}| = s, which gives the required
conclusion.
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3. Almost Perfect Nonlinear Functions and the Walsh Spectrum

3.1 APN Functions

In this section, we first give the definition of the directional derivative which is
needed to define the APN function and linear space of the function.

Definition 3.1. Let n and m be two positive integers and F : Fpn → Fpm be a
function. For any a ∈ Fpn , the (directional) derivative DaF : Fpn → Fpm of F with
respect to a is defined by

DaF (x) = F (x+a)−F (x).

Theorem 3.1. Let F : Fpn → Fpm be a function defined by

F (x) =
∑

0≤i,j≤n

cijx
pi+pj

, cij ∈ Fpn .

Then we have the following.

DaF (x)−F (a) =
n−1∑
i=1

cij(xpi

apj

+api

xpj

) for any a ∈ F∗
pn

Proof. For any a ∈ F∗
pn , we obtain the following equalities.

DaF (x) = F (x+a)−F (x) =
∑

0≤i,j≤n

cij(x+a)pi+pj

−
∑

0≤i,j≤n

cijx
pi+pj

=
∑

0≤i,j≤n

ci(x+a)pi

(x+a)pj

−
∑

0≤i,j≤n

cix
pi+pj

14



=
∑

0≤i,j≤n

ci(xpi

+api

)(xpj

+apj

)−
n−1∑
i=1

cix
pi+pj

=
∑

0≤i,j≤n

ci(xpi+pj

+xpi

apj

+api

xpj

+api+pj

)−
∑

0≤i,j≤n

cix
pi+pj

=
∑

0≤i,j≤n

ci(xpi+pj

+xpi

apj

+api

xpj

+api+pj

−xpi+pj

)

=
∑

0≤i,j≤n

ci(xpi

apj

+api

xpj

+api+pj

)

=
∑

0≤i,j≤n

ci(xpi

apj

+api

xpj

)+
∑

0≤i,j≤n

cia
pi+pj

=
∑

0≤i,j≤n

ci(xpi

apj

+api

xpj

)+F (a).

Therefore, we conclude the following.

DaF (x)−F (a) =
n−1∑
i=1

ci(xpi

a+api

x).

Remark 3.1. By Theorem 3.1, we observe that if F : Fpn → Fpm is a quadratic
function, DaF (x)−F (a) is a linear function, see Definition 3.12.

Theorem 3.2. Let f : Fpn → Fp. We define

∧(f) := {a ∈ Fpn :Daf(x) = f(x+a)−f(x) = c, for some fixed c ∈ Fp}.

That is, ∧(f) is a set consisting of a ∈ Fpn for which Daf(x) is a constant function.
Then ∧(f) is a linear space.

Proof. Firstly, for a= 0, we have Daf(x) = f(x)−f(x) = 0. Then 0 ∈ ∧(f).
Now, we will show that, if a,b ∈ ∧(f), then a+λb is also in ∧(f) for any λ ∈ Fp. We
have a+λb ∈ ∧(f) if and only if f(x+a+λb)−f(x) = c for some c ∈ Fp.

Firstly, we have the following equalities.

f(x+a+λb)−f(x) = f(x+a+λb)−f(x+λb)+f(x+λb)−f(x)

Set y = x+λb, then we have

f(x+a+λb)−f(x+λb)+f(x+λb)−f(x) = f(y+a)−f(y)+f(x+λb)−f(x).

Since a ∈ ∧(f), we have f(y+a) − f(y) is constant for all y ∈ Fpn . Say f(y+a) −
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f(y) = c for some c ∈ Fp. Moreover, we have the following equalities.

f(x+λb)−f(x) = f(x+λb)−
λ−1∑
i=1

f(x+(λ− i)b)+
λ−1∑
i=1

f(x+(λ− i)b)−f(x)

=
λ∑

i=1
f(x+(λ− i)b+ b)−

λ∑
i=1

f(x+(λ− i)b)

Set xi = x+(λ− i)b for i= 1, . . . ,λ. Then we have

f(x+λb)−f(x) =
λ∑

i=1
f(xi + b)−

λ∑
i=1

f(xi) =
λ∑

i=1
f(xi + b)−f(xi).

Since b∈ ∧(f), we have f(xi +b)−f(xi) is constant for all i= 1, . . . ,λ, say f(xi +b)−
f(xi) = ci. This means that f(x+λb)−f(x) is constant, namely f(x+λb)−f(x) =
λ∑

i=1
ci. Then we have the following.

f(x+a+λb)−f(x) = f(y+a)−f(y)+f(x+λb)−f(x) = c+
λ∑

i=1
ci

This means that f(x+a+λb)−f(x) is constant. Therefore, a+λb is in ∧(f). Hence,
∧(f) is a linear space.

Now, we will make some observations on the derivative function and then give the
definition of the almost perfect nonlinear function.

Remark 3.2. Consider the derivative DaF : F2n → F2n of F with respect to a ∈ F2n .
Let x0 be a solution of DaF (x) = b where b ∈ F2n . Set y0 = x0 +a. Then we have
the following equalities.

DaF (y0) =DaF (x0 +a) = F (x0 +a+a)+F (x0 +a)

= F (x0)+F (x0 +a) =DaF (x0) = b

Hence, we obtain that y0 = x0 +a is also a solution of DaF (x) = b.

Remark 3.3. Let {x0,x1,x2} be the set of solutions of DaF (x) = b for a,b∈ F2n with
a ̸= 0. Assume that x0,x1,x2 are distinct. Since x0 is a solution of DaF (x) = b,
then x0 + a is also a solution by Remark 3.2, i.e., x0 + a ∈ {x0,x1,x2}. Without
loss of generality, say x1 = x0 +a. Moreover, since x2 is a solution of DaF (x) = b,
the element x2 + a is also a solution. Then either x2 + a = x0 or x2 + a = x1. If
x2 +a= x0, then x2 = x0 +a= x1, which is impossible since x1 and x2 are distinct.
Hence, x2 +a= x1. However, this implies that x2 = x1 +a= x0 +a+a= x0, which
is also a contradiction. Hence, the inverse image of b under DaF (x) is disjoint union
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of sets {x,x+a} for x ∈ F2n .

Definition 3.2. Let F : F2n → F2n be a function. If for any a,b ∈ F2n with a ̸= 0,

DaF (x) = F (x+a)+F (x) = b

has 0 or 2 solutions, then F is APN.

Corollary 3.1. Let F be any function on F2n . Then F is APN if and only if for
any nonzero a ∈ F2n , the set {DaF (x) : x ∈ F2n} has cardinality 2n−1.

Proof. By Remark 3.3, the cardinality of the preimage of DaF (x) is the distinct
union of the sets with two elements. We know that F is APN if and only if DaF (x) =
b has 0 or 2 solutions for all a,b ∈ F2n with a ̸= 0. Then for every b ∈ F2n , there are
at most two solutions xb, xb + a of DaF (x) = b. That is, for every element of the
image Im(DaF (x)) of DaF (x), there are exactly two elements xb, xb +a such that
DaF (xb) +DaF (xb +a) = b. Hence, F is APN if and only if |{DaF (x),x ∈ F2n}| =
2n−1.

Now, we will give the characterization of APN functions stated in Janwa & Wilson
(1993).

Theorem 3.3 (Janwa-Wilson-Rodier Theorem). Let F : F2n → F2n be a function.
F is APN if and only if the following holds:

F (x)+F (y)+F (z)+F (x+y+ z) = 0 if and only if x= y or x= z or y = z.

Proof. Note that if x= y, we have

F (x)+F (y)+F (z)+F (x+y+ z) = F (x)+F (x)+F (z)+F (z) = 0

since characteristic is 2. Similarly, if x= z or y = z, we have

F (x)+F (y)+F (z)+F (x+y+ z) = 0.

Suppose that there exist pairwise distinct x,y,z ∈ F2n satisfying

(3.1) F (x)+F (y)+F (z)+F (x+y+ z) = 0.

Now, we will show that F is not APN. As x ̸= y, we have y = x+a for some a ∈ F∗
2n .
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Then Equation 3.1 implies that F (x)+F (x+a)+F (z)+F (z+a) = 0. That is,

DaF (x) =DaF (z) = b for some b ∈ F2n .

Then the elements x, x+ a, z, z+ a lie in the inverse image of b under DaF . By
our assumption, we have x ̸= x+a = y and x ̸= z, i.e., the inverse image of b ∈ F2n

contains at least 3 distinct elements of F2n . Hence, we have a contradiction by the
definition of APN.

3.2 Walsh Spectrum and Nonlinearity

In this section, we will give the Walsh spectrum and the nonlinearity of the function.
We need the definition of the components of the vectorial function to define the
Walsh spectrum of the function.

Definition 3.3. Let F : Fpn → Fpm be a function. For λ ∈ F∗
pm , a function fλ :

Fpn → Fp defined by
fλ(x) = Trn(λF (x))

is called the components of F corresponding to λ.

Definition 3.4. Let f : Fpn → Fp be a function and εp be a primitive p-th root of
unity in C. For any a ∈ Fpn , we define Wf : Fpn → C by

Wf (a) =
∑

x∈Fpn

εf(x)−T rn(ax)
p .

Wf is called the Walsh (Fourier) transform of f , and Wf (a) is called the Walsh
coefficient of f at a. The Walsh spectrum of f is the multiset defined by

{|Wf (a)| : a ∈ Fpn}.

Remark 3.4. If p= 2, then εp = −1. Hence, Wf (a) is an integer for all a ∈ F2n .

Lemma 3.1. Let f : Fpn → Fp be a function. The function f is balanced if and only
if Wf (0) = 0.
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Proof. By definition of Wf , we have

Wf (0) =
∑

x∈Fpn

εf(x)+T rn(0)
p =

∑
x∈Fpn

εf(x)
p .

For β ∈ Fp, set cβ = |{x ∈ Fpn : f(x) = β}|. Then we can write the following:

Wf (0) =
∑

x∈Fpn

εf(x)
p =

∑
β∈Fpn

cβ ε
β
p .

Suppose that f is a balanced function. By definition of balancedness, each β ∈ Fp

has the same number inverse image, i.e., cβ = pn−1. Then we have the following
equalities.

Wf (0) =
∑

β∈Fp

pn−1εβ
p = pn−1ε0

p +pn−1ε1
p + · · ·+pn−1εp−1

p

= pn−1(ε0
p + ε1

p + · · ·+ εp−1
p )

Since εp be a primitive p-th root of unity, the minimal polynomial of εp is φ(x) =
1+x+ · · ·+xp−1, i.e., 1+ ε1

p + ε2
p + · · ·+ εp−1

p = 0. Therefore,

Wf (0) =
∑

β∈Fp

pn−1εβ
p = 0.

Conversely, suppose that Wf (0) = 0. Then εp is a root of the polynomial g(x) =
c0 + c1x+ · · · + cp−1xp−1 ∈ Z[x]. Therefore, g(εp) = 0 if and only if φ(x) divides
g(x). Then g(x) = f(x)φ(x) for f(x) ∈ Z[x]. Since g(x) and φ(x) have the same
degree, f(x) is constant. This means that g(x) = αφ(x) for some α ∈ Z , i.e.,
c0 = c1 = · · · = cp−1. Hence, f is balanced.

Definition 3.5. Let f : F2n → F2 be a function. The nonlinearity N (f) of f is
defined by

N (f) = 2n−1 − 1
2L(f) where L(f) = max

a∈F2n
|Wf (a)|.

Let F :F2n →F2n be a function and let fλ :F2n →F2, λ∈F∗
2n , denote its components

such that fλ(x) = Trn(λF (x)). The nonlinearity of F is defined by

N (F ) = 2n−1 − 1
2L(F ) where L(F ) = max

λ∈F∗
2n

L(fλ) = max
λ∈F∗

2n

a∈F2n

|Wfλ
(a)|.

Definition 3.6. Let F : F2n → F2n be a function. If L(F ) = 2n+1
2 , then F is said to
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be almost bent (AB). That is, F is AB if and only if |Wfλ
(a)| ∈ {0,2n+1

2 } for any
a ∈ F2n and λ ∈ F∗

2n .

Note that AB functions exist when n is odd only.

Definition 3.7. Let f : Fpn → Fp be a function.

(i) If |Wf (a)| = pn/2 for all a ∈ Fpn , then f is called bent.

(ii) If |Wf (a)| ∈ {0,pn+k
2 } for all a ∈ Fpn and some non-negative integer k with

0 ≤ k ≤ n, then f is called plateaued (k-plateaued).

(iii) For p > 2, the function f is called semibent if k = 1.

(iv) For p= 2, we observed in Remark 3.4 that Walsh coefficients should be integers.
Hence for p = 2, the function is called semibent if k = 1 in the case that n is
odd, and k = 2 in the case that n is even.

Definition 3.8. If a vectorial Boolean function has only bent and semibent com-
ponents, then we say that the function has the classical spectrum.

Note that bent functions achieve the upper bound on nonlinearity. Now, we give
a characterization of bent functions in terms of the directional derivative of the
function. For this, we continue with the definition of the Hadamard matrix and
useful lemma.

Definition 3.9. Let H = (hij)1≤i,j≤k where hij ∈ C. Then H∗ = (hji)1≤i,j≤k is
called an Hermitian transpose of H where hij is the complex conjugate of hij .

Definition 3.10. LetH be the matrix of size k×k. H is called a complex Hadamard
matrix if HH∗ = kIk.

Remark: If H is a Hadamard matrix, then H is invertible.

Consider H = (hu,z)u,z∈F2n such that hu,z = ε
T rn(uz)
p .

Claim: H is a complex Hadamard matrix.

Proof. Let Ru1 and Ru2 be the rows of H corresponding to u1,u2 ∈ Fpn , respec-
tively. Then u1,u2 entry of HH∗ is given by

Ru1.Ru2 =
∑

z∈Fpn

εT rn(u1z)
p ε−T rn(u2z)

p =
∑

z∈Fpn

εT rn((u1−u2)z)

=

 pn, if u1 = u2;

0, otherwise
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by Theorem 2.7. That is, HH∗ = pnI. Hence, H is a complex Hadamard matrix.

Lemma 3.2. Let h : Fpn → R be a function. Then

ψ(u) =
∑

z∈Fpn

h(z)εT rn(uz)
p = h(0) for all u ∈ Fpn

if and only if h(z) = 0 for all z ∈ Fpn \{0}.

Proof. Suppose that
ψ(u) =

∑
z∈Fpn

h(z)εT rn(uz)
p = h(0)

for all u ∈ Fpn . This implies that

(3.2)
∑

z∈Fpn

z ̸=0

h(z)εT rn(uz)
p = 0

for all u ∈ Fpn . Note that Equation 3.2 gives a linear combination of the columns of
H, and this contradicts the invertibility of H. Hence h(z) = 0 for all z ∈ Fpn\{0}.
The converse of the statement is straightforward.

Theorem 3.4. A function f : Fpn → Fp is bent if and only if Daf(x) = f(x+a) −
f(x) is balanced for all a ∈ F∗

pn.

Proof. By definition, f : Fpn → Fp is bent if and only if |Wf (u)| = pn/2. Note that

|Wf (u)|2 = (
∑

x∈Fpn

εf(x)−T rn(ux)
p )(

∑
y∈F2n

ε−f(y)+T rn(uy)
p ) =

∑
x,y∈F2n

εf(x)−f(y)+T rn(u(y−x))
p .

Set y = x+a, i.e., a= y−x. Then we have the following equalities.

|Wf (u)|2 =
∑

x,a∈F2n

εf(x)−f(x+a)+T rn(ua)
p =

∑
a∈F2n

εT rn(ua)
p

∑
x∈F2n

εf(x)−f(x+a)
p(3.3)

Suppose that Daf = f(x+a)−f(x) is balanced for all a ∈ F∗
pn , then

WDaf (0) =
∑

x∈Fpn

εf(x)−f(x+a)
p = 0

by Lemma 3.1. If a= 0, we have

∑
x∈Fpn

εf(x)−f(x)
p =

∑
x∈Fpn

ε0
p =

∑
x∈Fpn

1 = pn.
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Then we have

|Wf (u)|2 = pn +
∑

a∈F∗
pn

εT rn(ua)
p

∑
x∈Fpn

εf(x)−f(x+a)
p = pn.

Therefore, f is bent by definition. Conversely, suppose that f is bent, i.e., |Wf (u)|2 =
pn. Set

h(a) =
∑

x∈Fpn

εf(x)−f(x+a)
p .

Note that
h(0) =

∑
x∈Fpn

ε0
p = pn.

Then by the Equation 3.3, we have the following.

|Wf (u)|2 =
∑

a∈Fpn

h(a)εT rn(ua)
p = pn = h(0)

Then by Lemma 3.2, we have h(a) = 0 for all a ∈ Fpn \{0}. That is,

∑
x∈Fpn

εf(x)−f(x+a)
p = 0.

This holds if and only if f(x)−f(x+a) is balanced.

Theorem 3.5 (Perseval’s Identity). Let f : Fpn → Fp be a function. Then

∑
u∈Fpn

|Wf (u)|2 = p2n

Proof. Let εp be primitive p-th root of unity. Note that the following equalities for
|Wf (u)|2 hold.

∑
u∈Fpn

|Wf (u)|2 =
∑

u∈Fpn

 ∑
x∈Fpn

εp
f(x)−T rn(ux)


 ∑

y∈Fpn

εp
−f(y)+T rn(uy)


=

∑
x,y∈Fpn

εf(x)−f(y)
p

∑
u∈Fpn

εp
T rn(u(y−x)).

Set z = y−x, i.e., y = x+ z. Then we have

∑
u∈Fpn

|Wf (u)|2 =
∑

x,z∈Fpn

εf(x)−f(x+z)
p

∑
u∈Fpn

εp
T rn(uz)
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=
∑

x,z∈Fpn

z ̸=0

εf(x)−f(x+z)
p

∑
u∈Fpn

εp
T rn(uz) +

∑
x∈Fpn

εf(x)−f(x)
p

∑
u∈Fpn

εp
0

= 0+pnpn = p2n

by Theorem 2.7.

Lemma 3.3. Let f : Fpn → Fp is a k-plateaued function. Then the number of a∈ Fpn

satisfying |Wf (a)| = p
n+k

2 is equal to pn−k.

Proof. Set S = {a ∈ Fpn : |Wf (a)| = p
n+k

2 }. By Parseval’s identity, we have the
following equations.

p2n =
∑

a∈Fpn

|Wf (a)|2 =
∑
a∈S

(p
n+k

2 )2 = |S|.pn+k

That is, |S| = p2n

pn+k = pn−k.

3.3 Characterization of APN Functions over Odd Dimensional Spaces

We give the characterization of APN functions in the case n odd by using the
Sidelnikov-Chabaud-Vaudenay bound, see Sidelnikov (1971) and Chabaud & Vau-
denay (1994).

Theorem 3.6 (The Sidelnikov-Chabaud-Vaudenay bound). Let F be a function
from F2n to F2m with m≥ n−1, then

N (F ) ≤ 2n−1 − 1
2

√
3.2n −2−2(2n −1)(2n−1 −1)

2m −1 .

Proof. Let fλ : F2n → F2 be the component of F such that fλ(x) = Trn(λF (x)) for
nonzero λ ∈ F2m . By Perseval’s identity,

∑
b∈F2n

Wfλ

2(b)| = 22n.

By Definition 2.1.5, we have N (F ) = 2n−1 − 1
2L(F ) where L(F ) = max

λ∈F∗
2m

L(fλ) and
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L(fλ) = max
b∈F2n

|Wfλ
(b)|. Therefore, our target is to estimate:

max
λ∈F∗

2m

b∈F2n

|Wfλ
(b)| = max

λ∈F∗
2m

b∈F2n

|
∑

x∈F2n

(−1)fλ(x)+T rn(bx)|.

Set

A= max
λ∈F∗

2m

b∈F2n

 ∑
x∈F2n

(−1)fλ(x)+T rn(bx)

2

,

C =
∑

λ∈F∗
2m

b∈F2n

 ∑
x∈F2n

(−1)fλ(x)+T rn(bx)

2

,and

B =
∑

λ∈F∗
2m

b∈F2n

 ∑
x∈F2n

(−1)fλ(x)+T rn(bx)

4

.

Then we have AC ≥B. That is, A≥ B
C . In other words,

max
λ∈F∗

2m

b∈F2n

Wfa(b)2 ≥

∑
λ∈F∗

2m

b∈F2n

Wfa(b)4

∑
λ∈F∗

2m

b∈F2n

Wfa(b)2

Set B′ = ∑
λ∈F2m

b∈F2n

( ∑
x∈F2n

(−1)fλ(x)+T rn(bx)
)4

. Note that B = B′ − 24n. Now, we esti-

mate B′.

B′ =
∑

λ∈F2m

b∈F2n

 ∑
x∈F2n

(−1)fλ(x)+T rn(bx)

4

=
∑

λ∈F2m

b∈F2n

∑
x,y,z,t∈F2n

(−1)fλ(x)+fλ(y)+fλ(z)+fλ(t)+T rn(b(x+y+z+t))

=
∑

x,y,z,t∈F2n

∑
λ∈F2m

(−1)T rm(λ(F (x)+F (y)+F (z)+F (t)) ∑
b∈F2n

(−1)T rn(b(x+y+z+t)))
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By Theorem 2.7, we have the following equalities.

∑
λ∈F2m

(−1)T rm(λ(F (x)+F (y)+F (z)+F (t)) =

 2m, if F (x)+F (y)+F (z)+F (t) = 0;

0, otherwise.

∑
b∈F2n

(−1)T rn(b(x+y+z+t)) =

 2n, if x+y+ z+ t= 0;

0, otherwise.

Then we conclude the following.

B′ = 2n+m|{(x,y,z, t) ∈ (F2n)4 : x+y+ z+ t= 0 and F (x)+F (y)+F (z)+F (t) = 0}|

Set t= x+y+ z. Then we have the following.

B′ = 2n+m|{(x,y,z) ∈ (F2n)3 : F (x)+F (y)+F (z)+F (x+y+ z) = 0}|

≥ 2n+m|{(x,y,z) ∈ (F2n)3 : x= y or x= z or y = z}|(3.4)

= 2n+m (3|{(x,x,y) : x,y ∈ F2n}|−2|{(x,x,x)} : x ∈ F2n}|)

= 2n+m(3.22n −2.2n)

Hence, we obtain B = B′ − 24n ≥ 2n+m(3.22n − 2.2n) − 24n. Then we can write the
following inequality.

A= max
λ∈F∗

2m

b∈F2n

Wfλ
(b)2 ≥ 2n+m(3.22n −2.2n)−24n∑

λ∈F∗
2m

b∈F2n

Wfλ
(b)2

But by Parseval’s identity, for λ ∈ F∗
2m , we have

∑
b∈F2n

Wfλ
(b)2 = 22n.

Hence, we obtain

∑
λ∈F∗

2m

b∈F2n

Wfλ
(b)2 =

∑
λ∈F∗

2m

22n = (2m −1)22n.

Hence

A≥ 2n+m(3.22n −2.2n)−24n

(2m −1)22n
= 2m(2n3−2)−22n

2m −1(3.5)

= 3.2n.2m −2m+1 −22n

2m −1 = 3.2n −2−2(2n −1)(2n−1 −1)
2m −1 ,

25



which gives the desired inequality.

Corollary 3.2. Let F : F2n → F2n be a function. Then

max
λ∈F∗

2m

b∈F2n

|Wfλ
(b)| ≥ 2

n+1
2 .

Proof. By Equation (3.5), we have

A≥ 3.2n −2−2(2n−1 −1) = 3.2n −2−2n +2 = 2n+1.

That is, max
λ∈F∗

2n

b∈F2n

|Wfa(b)| ≥ 2n+1
2 .

Corollary 3.3. Let n be an odd integer. Then fλ is semibent for all nonzero λ∈F2n

if and only if max
λ∈F∗

2n

b∈F2n

|Wfa(b)| = 2n+1
2 . That means equality holds in Equation 3.4, i.e.,

F is APN. Hence, for n odd, F is AB if and only if F is APN.

By Corollary 3.3, we know that in the case n odd, a function F : F2n → F2n is APN
if and only if F is almost bent. From now on, we consider the case n even while
working on APN functions F : F2n → F2n .

3.4 Sum-of-square Indicator

The sum-of-square indicator that is related to the Walsh spectrum is introduced in
Zhang & Zheng (1996). In this section, we will give the definition and some related
theorems of sum-of-square indicator which are needed to characterize APN functions
in the following sections.

Definition 3.11. Let f be a Boolean function on F2n . Then the sum-of-square
indicator is defined by

v(f) =
∑

a∈F2n

WDaf
2(0).

Theorem 3.7. Let f be a Boolean function on F2n. Then

v(f) =
∑

a∈F2n

WDaf
2(0) = 2−n

∑
a∈F2n

Wf
4(a).
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Proof. We have the following equations.

∑
a∈F2n

Wf
4(a) =

∑
a∈F2n

 ∑
x∈F2n

(−1)f(x)+T rn(ax)

×

 ∑
y∈F2n

(−1)f(y)+T rn(ay)



×

 ∑
z∈F2n

(−1)f(z)+T rn(az)

×

 ∑
t∈F2n

(−1)f(t)+T rn(at)



=
∑

a∈F2n

 ∑
x,y,z,t∈F2n

(−1)f(x)+f(y)+f(z)+f(t)+T rn(a(x+y+z+t))



=
∑

x,y,z,t∈F2n

(−1)f(x)+f(y)+f(z)+f(t) ∑
a∈F2n

(−1)T rn(a(x+y+z+t)).

Set c= x+y+ z+ t. If c ̸= 0, then

∑
a∈F2n

(−1)T rn(a(x+y+z+t)) =
∑

a∈F2n

(−1)T rn(ac) = 0

by Theorem 2.7. If c= x+y+ z+ t= 0, then set t= x+y+ z. Then we have

∑
a∈F2n

Wf
4(a) = 2n

∑
x,y,z∈F2n

(−1)f(x)+f(y)+f(z)+f(x+y+z) , by Theorem 2.7 .

Set y = x+ b, then we have the following equalities.

∑
a∈F2n

Wf
4(a) = 2n

∑
x,z,b∈F2n

(−1)f(x)+f(x+b)+f(z)+f(z+b)

= 2n
∑

b∈F2n

 ∑
x∈F2n

(−1)f(x)+f(x+b)

 ∑
z∈F2n

(−1)f(z)+f(z+b)



= 2n
∑

b∈F2n

WDbf
2(0) = 2n

∑
a∈F2n

WDaf
2(0)

The following lemma states the relation between the plateaued level and the sum-
of-square indicator of the Boolean function.

Lemma 3.4. If f : F2n → F2 is k-plateaued, then v(f) = 22n+k.
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Proof. Since f is k-plateaued, |Wf (a)| ∈ {0,2n+k
2 }. Then we have the following

equalities by Theorem 3.7 and Lemma 3.3.

v(f) = 2−n
∑

a∈F2n

Wf
4(a) = 2−n.2n−k.(2

n+k
2 )4

= 2−n.2n−k.22n+2k = 22n+k

3.5 Quadratic Functions

In this section, we will give the definition of quadratic functions and the Walsh
spectrum in terms of the dimension of its linear space.

Definition 3.12. Let F : Fpn → Fpn be a function defined by F (x) = xd for an
integer d with 0 ≤ d ≤ pn − 1. We can write d in a unique way such that d =
d0 +d1p+ · · ·+dn−1pn−1 where 0 ≤ di ≤ p−1 for all i= 1, . . . ,n. Then the algebraic
degree of F , which we call simply the degree of F , is defined by deg(F ) =

n−1∑
i=0

di.

Let F (x) =
n∑

t=0
ctx

t. Then deg(F (x)) =max{deg(xt) : ct ̸= 0}.
Note that linear and affine functions are degree 1, and functions of (algebraic) degree
2 are called quadratic.

Recall 3.1. Let f : Fpn → Fp. Recall that by Theorem 3.2,

∧(f) = {a ∈ Fpn :Daf(x) = f(x+a)−f(x) = c, for some fixed c ∈ Fp}.

Note that f(x+a)−f(x) is a constant function if and only if f(x+a)−f(x)−f(a)
is a constant function. Then we can write

∧(f) = {a ∈ Fpn : f(x+a)−f(x)−f(a) is a constant function}.

In the case f(0) = 0, we observe that if x= 0 or a ∈ ∧(f), then

f(x+a)−f(x)−f(a) = 0.

Hence,
∧(f) = {a ∈ Fpn : f(x+a)−f(x)−f(a) = 0}.
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Lemma 3.5. Let f : Fpn → Fp be a function such that f(0) = 0. Then g(z) = f(z)−
Trn(βz) is a linear function on ∧(f) for any β ∈ Fpn .

Proof. We need to show that g(z1 + z2) = g(z1) + g(z2) for any z1, z2 ∈ ∧(f). Note
that f(z1 +z2)−f(z1)−f(z2) = 0 since z2 ∈ ∧(f). That is, f(z1 +z2) = f(z1)+f(z2).
Then we have the following equalities.

g(z1 + z2) = f(z1 + z2)−Trn(β(z1 + z2))

= f(z1)+f(z2)−Trn(βz1)−Trn(βz2)

= f(z1)−Trn(βz1)+f(z2)−Trn(βz2)

= g(z1)+g(z2)

Hence, g(z) is a linear function on ∧(f).

Now, we will give an important theorem that gives the Walsh spectrum of
the function in terms of the dimension of its linear space. We will use this the-
orem to calculate the Walsh spectrum of the APN functions in the following sections.

Theorem 3.8. Let f : Fpn → Fp be a quadratic function with f(0) = 0. Then
|Wf (β)| ∈ {0,pn+s

2 } where s is a dimension of ∧(f).

Proof. Note that

|Wf (β)|2 = (
∑

x∈Fpn

εf(x)−T rn(βx)
p )(

∑
y∈Fpn

ε−f(y)+T rn(βy)
p ) =

∑
x,y∈Fpn

εf(x)−f(y)−T rn(β(x−y))
p .

Set z = x−y, i.e., x= y+ z. Then we have the following equalities.

|Wf (β)|2 =
∑

z,y∈Fpn

εf(y+z)−f(y)−T rn(βz)
p

=
∑

z∈Fpn

ε−T rn(βz)
p

∑
y∈Fpn

εf(y+z)−f(y)
p

=
∑

z∈Fpn

εf(z)−T rn(βz)
p

∑
y∈Fpn

εf(y+z)−f(y)−f(z)
p

Note that since f is a quadratic function, f(y+z)−f(y)−f(z) is a linear function
on Fpn , see Remark 3.1. We have the following by Theorem 2.7.

∑
y∈Fpn

εf(y+z)−f(y)−f(z)
p =

 pn, if f(y+ z)−f(y)−f(z) = 0;

0, otherwise.
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This means that

∑
y∈Fpn

εf(y+z)−f(y)−f(z)
p =

 pn, if z ∈ ∧(f);

0, otherwise.

Therefore, we have
|Wf (β)|2 = pn

∑
z∈∧(f)

εf(z)−T rn(βz)
p .

Since f(z)−Trn(βz) is a linear function on ∧(f) and |∧ (f)| = ps by Theorem 2.7:

∑
z∈∧(f)

εf(z)−T rn(βz)
p =

 ps, if f(z)−Trn(βz) = 0;

0, otherwise.

Hence,

|Wf (β)|2 =

 pn+s, if f(z)−Trn(βz) = 0;

0, otherwise.
.

Therefore, we have |Wf (β)| ∈ {0,pn+s
2 }.

Now, we will give some theorems related to APN-ness in terms of the Walsh spectrum
and the sum-of-square indicator.

Theorem 3.9. Let F : F2n → F2n be a quadratic function, and let fλ : F2n → F2,λ ∈
F∗

2n, denote its component function such that fλ = Trn(λF (x)). Then for any a ∈
F∗

2n , ∑
λ∈F2n

W 2
Dafλ

(0) ≥ 22n+1.

Moreover, F is APN if and only if for all nonzero a ∈ F2n

∑
λ∈F2n

W 2
Dafλ

(0) = 22n+1.

Proof. Note that Dafλ(x) = fλ(x)+fλ(x+a), then we have the following equalities.

∑
λ∈F2n

W 2
Dafλ

(0) =
∑

λ∈F2n

 ∑
x∈F2n

(−1)fλ(x)+fλ(x+a)

 ∑
y∈F2n

(−1)fλ(y)+fλ(y+a)



=
∑

λ∈F2n

 ∑
x,y∈F2n

(−1)fλ(x)+fλ(x+a)+fλ(y)+fλ(y+a)
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=
∑

λ,x,y∈F2n

(−1)T rn(λ(F (x)+F (x+a)+F (y)+F (y+a))

=
∑

x,y∈F2n

∑
λ∈F2n

(−1)T rn(λ(DaF (x)+DaF (y)))

Note that, by Theorem 2.7,

∑
λ∈F2n

(−1)T rn(λ(DaF (x)+DaF (y))) =

 2n, if DaF (x) =DaF (y);

0, if DaF (x) ̸=DaF (y).

Therefore,

∑
λ∈F2n

W 2
Dafλ

(0) = 2n | {(x,y) ∈ F2n ×F2n :DaF (x) =DaF (y)} | .

For a given x, there exist 2 pairs (x,y) of the form (x,x),(x,x+ a) such that
DaF (x) =DaF (y). Then

(3.6)
∑

λ∈F2n

W 2
Dafλ

(0) = 2n2n2+2n#{(x,y) :DaF (x) =DaF (y),x ̸= y,x ̸= y+a},

which means that ∑
λ∈F2n

W 2
Dafλ

(0) ≥ 22n+1.

Note that by Equation 3.6, ∑
λ∈F2n

W 2
Dafλ

(0) = 22n+1 if and only if the following holds:

DaF (x) =DaF (y) if and only if x= y or x= y+a.

In other words, ∑
λ∈F2n

W 2
Dafλ

(0) = 22n+1 if and only if F is APN by definition.

Before the following corollary, recall that for a Boolean function f on F2n ,

v(f) =
∑

a∈F2n

WDaf
2(0).

Corollary 3.4. Let F : F2n → F2n be a function and let fλ : F2n → F2,λ ∈ F2n ,
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denote its component function such that fλ = Trn(λF (x)). Then

∑
λ∈F∗

2n

v(fλ) ≥ (2n −1)22n+1.

Moreover, F is APN if and only if

(3.7)
∑

λ∈F∗
2n

v(fλ) = (2n −1)22n+1.

Consequently, if v(fλ) = 22n+1 for all nonzero λ, then F is APN.

Proof. Set
A=

∑
a∈F∗

2n

∑
λ∈F2n

W 2
Dafλ

(0).

By Theorem 3.9, we have

∑
λ∈F2n

W 2
Dafλ

(0) ≥ 22n+1.

Then A≥ 22n+1(2n − 1). Since W 2
D0fλ

(0) =W 2
Daf0

(0) = 2n for any a and λ, we can
write

(3.8) A=
∑

a∈F∗
2n

∑
λ∈F2n

W 2
Dafλ

(0) =
∑

λ∈F∗
2n

∑
a∈F2n

W 2
Dafλ

(0) =
∑

λ∈F∗
2n

v(fλ).

Then we have
A=

∑
λ∈F∗

2n

v(fλ) ≥ (2n −1)22n+1,

which gives the first claim of the theorem. For the second part, by Theorem 3.9, F
is APN if and only if for a nonzero a ∈ F2n

∑
λ∈F2n

W 2
Dafλ

(0) = 22n+1.

Therefore, by Equation 3.8,

A=
∑

λ∈F∗
2n

v(fλ) = (2n −1)22n+1.

Corollary 3.5. Berger et al. (2005) Let n be even and let fλ : F2n → F2, λ∈ F∗
2n , be
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the component functions defined by fλ = Trn(λF (x)). Suppose that fλ is plateaued
for all λ ∈ F∗

2n . Let B be the number of fλ, which are bent. Then we have the
following.

(i) If B = 0, then F is not APN.

(ii) If F is APN, then B ≥ 2(2n −1)/3 with equality if and only if L(F ) = 2(n+2)/2.
Conversely, if B = 2(2n −1)/3 and L(F ) = 2(n+2)/2 then F is APN.

Proof. (i) Assume that there is no λ ̸= 0 such that fλ bent, i.e., B = 0. We know
that |Wfλ

(a)| = {0,2n+k
2 } since fλ is plateaued. Since fλ is not bent for nonzero

λ and n is even, k ≥ 2 . Let S be a number of a such that |Wfλ
(a)| = 2n+k

2 .
Then by Lemma 3.3, S = 2n−k. Moreover, v(fλ) = 22n+k by Lemma 3.4. Then
v(fλ) = 22n+k ≥ 22n+2 since k ≥ 2. This shows that

∑
λ∈F∗

2n

v(fλ) ≥ (2n −1)22n+2.

Therefore, F is not APN by Corollary 3.4.

(ii) Suppose that F is APN. Then there exists λ ∈ F∗
2n such that fλ is bent by (i),

i.e., |Wfλ
(a)| = 2n

2 for all a ∈ F2n . Therefore, we have

v(fλ) = 2−n
∑

a∈F2n

Wfλ

4(a) = 2−n
∑

a∈F2n

22n = 2−n2n22n = 22n

by Theorem 3.7. Now, suppose that there exists λ ∈ F∗
2n such that fλ is not

bent. Then |Wfλ
(a)| ∈ {0,2n+k

2 } for some k ≥ 2 since n is an even integer, i.e.,
2n+2

2 divides |Wfλ
(a)| for all a ∈ F2n .

If fλ is kλ-plateaued for kλ ≥ 2, we have v(fλ) = 22n+kλ by Lemma 3.4. Suppose
that B is the number of bent components and A is the number of non-bent
components. Then A+B = 2n − 1. Since F is APN, by Corollary 3.4, we
obtain the following equalities.

(3.9)
∑

λ∈F∗
2n

v(fλ) = (2n −1)22n+1 =B22n +
∑

λ∈F∗
2n

22n+kλ =B22n +N22n+2

for some integer N ≥ A. Then we have

∑
λ∈F∗

2n

v(fλ) = (2n −1)22n+1 =B22n +N22n+2

=B22n +4N22n

= 22n(B+4N).
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This implies that

B+4N = (2n −1)22n+1

22n
= 2(2n −1).

Since A+B= 2n −1 and N ≥A, we have N+B≥ 2n −1, i.e., N ≥ (2n −1)−B.
By using this fact, we can write the following implications.

2(2n −1) =B+4N ≥B+4[(2n −1)−B]

⇒ 2(2n −1) ≥B+4(2n −1)−4B

⇒ 2(2n −1) ≥ 4(2n −1)−3B

⇒ 3B ≥ 2(2n −1)

⇒B ≥ 2
3(2n −1)

Now, suppose that F is APN, and B = 2
3(2n − 1), i.e., A = 1

3(2n − 1). If we
write B in Equation 3.9, we obtain the following equations.

(2n −1)22n+1 = 2
3(2n −1)22n +N22n+2

N22n+2 = (2n −1)22n+1 − 1
3(2n −1)22n+1

= (2n −1)22n+1
(

1− 1
3

)
= (2n −1)22n+1 2

3

Therefore, N = 1
3(2n − 1), i.e., N ≥ A. That is, any non-bent component is

2-plateaued. This holds if and only if L(F ) = 2n+2
2 . For the last part of the

corollary, assume that B = 2(2n − 1)/3 and L(F ) = 2(n+2)/2. That is, any
non-bent component is 2-plateaued. Then v(fλ) = 22n+2 for any non-bent
component fλ, by Lemma 3.4. Therefore, we have the following equations by
Equation 3.9.

∑
λ∈F∗

2n

v(fλ) =B22n +A22n+2 = 2
3(2n −1)22n + 2n −1

3 22n+2

= 2n −1
3 (22n+1 +22n+2) = 2n −1

3 (22n+1 +2.22n+1)

= 2n −1
3 22n+13 = (2n −1)22n+1

This means that F is APN by Corollary 3.4.
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3.6 Further Characterization of APN Functions

In this section, we will give a further characterization of APN functions in terms of
the sum of square indicator and permutation polynomials.

Theorem 3.10. Let r be a divisor of n. Let F : F2n → F2n be any function. Assume
that F ∈F2r [x]. If for some a∈F2r , there exists y ∈F2n\F2r such that y2r +y+a ̸= 0,
and

F (y)+F (y+a) = β for some β ∈ F2r ,

then F is not APN.
Consequently, if F is APN with F (x) = xd, then gcd(d,2n − 1) = 1 for odd n and
gcd(d,2n −1) = 3 for even n.

Proof. Let G(x) = F (x) +F (x+ a). Since F (x) lies in F2r [x] and a ∈ F2r , the
polynomial G(x) is also lies in F2r [x]. Suppose that there exists y ∈ F2n\F2r such
that y2r +y+a ̸= 0, and y satisfies G(y) = β for some β ∈ F2r . That is,

G(y) = F (y)+F (y+a) = β for some β ∈ F2r .

If we take the 2r-th power of both sides, we have

G(y)2r

= (F (y)+F (y+a))2r

= F (y)2r

+F (y+a)2r

= β2r

.

Since F ∈ F2r , by Lemma 2.1 and 2.2, we can write

F (y)2r

+F (y+a)2r

= F (y2r

)+F (y2r

+a2r

) = F (y2r

)+F (y2r

+a) = β.

We have y2r ̸= y since y ̸∈ F2r , and we have y2r ̸= y+a since y2r +y+a ̸= 0. Hence,
y2r

/∈ {y,y+a}. Then y2r is another solution of G(y) = β. This implies that y,y+
a,y2r

,y2r +a are pairwise distinct solutions of G(y) = β. Therefore, F is not APN
by definition.
For the last part of the theorem, suppose that F is an APN function defined by
F (x) = xd. Set s = gcd(d,2n − 1). Note that F is in F2[x]. Assume that s > 1. By
Theorem 2.4, there exists y ∈ F∗

2n such that ord(y) = s. Note that since s > 1, we
have y /∈ F2.

Consider the function G : F2n\{0,1} → F2n\{0,1} defined by G(x) = x+1
x . If G(x) =

G(y), i.e., x+1
x = y+1

y , then xy+ y = xy+x. Therefore, x = y, i.e., G is one-to-one
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on F2n\{0,1}. Hence, G is a bijection on F2n\{0,1}.
Set y = z+1

z as y ∈ F2n\{0,1}. Note that yd = 1 since ord(y) = s = gcd(d,2n − 1).
Then we obtain the following implications.

F (y) = yd = (z+1)d

zd
= 1 ⇐⇒ (z+1)d = zd ⇐⇒ (z+1)d + zd = 0

Therefore, we have z ∈ F2n\F2 such that F (z+1)+F (z) = 0.
Assume that n is odd. Set r= 1 and a= 1. Then for β = 0, we have F (z+1)+F (z) =
0. Moreover, by Lemma 2.3, z2 + z+1 ̸= 0 since Trn(1) = 1. Then by the first part
of the theorem, F is not APN. This contradicts the assumption. Hence, s must be
1 for odd n.
Assume now that n is even. If F is APN, by the first part of the theorem z2 +z+1 =
0. Since T 2 +T + 1 is irreducible over F2, the root z of T 2 +T + 1 is in F2(z) = F4.
Then z+1

z = y ∈ F22\F2, which means that ord(y) = 3. Hence, s must be 3 for even
n.

Theorem 3.11. Let F : F2n → F2n be any function such that F (x) = xd. Let fλ :
F2n → F2, λ ∈ F2n, denote its component fλ = Trn(λF (x)). Set s = gcd(d,2n − 1)
and 2n −1 = us. Let ξ be a primitive element of F2n . Then

(3.10) WDafλ
(0) =WD1f

λad
(0)

for all a,λ ∈ F∗
2n. Moreover,

v(fλ) = 22n + s
u∑

k=1
W 2

D1f
λξkd

(0).

Proof. For any nonzero a ∈ F∗
2n , we have the following equalities.

WDafλ
(0) =

∑
x∈F2n

(−1)fλ(x+a)+fλ(x)

=
∑

x∈F2n

(−1)T rn(λ(F (x+a)+F (x))

=
∑

x∈F2n

(−1)T rn(λ((x+a)d+xd))

=
∑

x∈F2n

(−1)T rn(λad( (x+a)d

ad + xd

ad ))

=
∑

x∈F2n

(−1)T rn(λad(( x
a +1)d+( x

a )d))
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Set y = x
a . Then we have

WDafλ
(0) =

∑
y∈F2n

(−1)T rn(λad((y+1)d+yd)) =
∑

y∈F2n

(−1)T rn(λad(F (y+1)+F (y))

=
∑

y∈F2n

(−1)f
λad(y+1)+f

λad(y) =WD1f
λad

(0),

which gives the first claim of the theorem.

Let ξ be a primitive element of F2n . By definition of v(fλ),

v(fλ) =
∑

a∈F2n

W 2
Dafλ

(0) =W 2
D0fλ

(0)+
∑

a∈F∗
2n

W 2
Dafλ

(0) = 22n +
∑

a∈F∗
2n

W 2
Dafλ

(0).

Let H be the subgroup of F∗
2n generated by β ∈ F∗

2n with order s. Then β is of the
form β = ξ

2n−1
s l where gcd(l,2n −1) = 1 and H = ⟨β⟩. Then

F∗
2n =

2n−1
s⊔

k=1
ξkH.

For any α,γ ∈ ξkH , k = 1, . . . , 2n−1
s , we have the following:

α = ξkβi = ξkξ
2n−1

s li,

γ = ξkβj = ξkξ
2n−1

s lj .

Then
αd = (ξkξ

2n−1
s li)d = ξkdξ

2n−1
s lid = ξkd,

γd = (ξkξ
2n−1

s lj)d = ξkdξ
2n−1

s ljd = ξkd, since s divides d.

That is, αd = γd. Then
WD1f

λαd
(0) =WD1f

λγd
(0).

By Equation 3.10,
WDαfλ

(0) =WDγfλ
(0).

Since F∗
2n is disjoint union of H, any a ∈ F2n can be uniquely written as a = ξkβj

for some k ∈ {1, . . . 2n−1
s } and j ∈ {1, . . . s}. Then we have the following equalities.
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v(fλ) = 22n +
∑

a∈F∗
2n

W 2
Dafλ

(0)

= 22n +
2n−1

s∑
k=1

s∑
j=1

W 2
D

ξkβj fλ
(0)

= 22n +
2n−1

s∑
k=1

s∑
j=1

W 2
D1f

λ(ξkβj)d
(0) by the fist part of the theorem

= 22n +
2n−1

s∑
k=1

s∑
j=1

W 2
D1f

λξkd
(0) since s|d and ord(β) = s

= 22n + s

2n−1
s∑

k=1
W 2

D1f
λξkd

(0)

= 22n + s
u∑

k=1
W 2

D1f
λξkd

(0)

Theorem 3.12. Let H be a polynomial on F2n such that H is one-to-one from
F2n\{0} to F2n. Suppose that H(e) = 0 for a unique e ̸= 0. Then the degree of H is
exactly 2n −1.

Proof. Let H(x) be the polynomial on F2n such that H is one-to-one from F2n\{0}
to F2n , and H(0) = α for some α ∈ F∗

2n . Consider the polynomial H̃(x) =H(x)+α.
Note that H̃(0) = α+α = 0. Since H is one-to-one on F2n\{0}, there exists unique
ẽ such that H(ẽ) = α. Then H̃(ẽ) = H(ẽ) +α = α+α = 0. Hence, without loss
of generality, we assume that H(0) = 0. Since H(0) = H(e) = 0, the image of H,
i.e., the set {H(x) : x ∈ F2n}, contains 2n −1 elements. Therefore, there is only one
nonzero element that is not in the image of H, say β ∈ F2n . Let P : F2n → F2n be
the polynomial defined by

P (x) =

 H(x), for x ̸= e;

β, for x= e.

Since the image of P has cardinality 2n, the polynomial P (x) is a permutation. Let
W (x) : F2n → F2n be the polynomial such that W (x) = H(x) +P (x). We have the
following conclusion.
If x ̸= e, then P (x) = H(x). Therefore, W (x) = H(x) +H(x) = 0. If x = e, then
P (e) = β and H(e) = 0. Therefore W (e) =H(e)+P (e) = β.

38



We claim that the unique representation of W modulo x2n +x is

W (x) = β((x+ e)2n−1 +1).

Note that the degree is 2n −1. Moreover, for x= e, we have W (e) = β((e+e)2n−1 +
1) = β since e+ e= 0. For x ̸= e, we have W (e) = β((x+ e)2n−1 + 1) = β(1 + 1) = 0
because (x+ e)2n−1 = 1 for (x+ e) ∈ F2n . Hence, we proved that

P (x) =H(x)+W (x) =H(x)+β((x+ e)2n−1 +1).

Since P is a permutation, its degree is less than 2n − 1 by Hermite’s criterion, see
Theorem 2.8. Then H must have the term βx2n−1 to simplify the term of degree
2n −1 in W (x).

Theorem 3.13. Let F : F2n → F2n be a function defined by

F (x) =
n−1∑
i=1

cix
2i+1, ci ∈ F2n .

Then F is APN if and only if the polynomial Q(x) = F (x)
x2 , i.e., Q(x) =

n−1∑
i=1

cix
2i−1,

is a permutation polynomial on F2n .

Proof. By Theorem 3.1, we have the following equation.

DaF (x)+F (a) =
n−1∑
i=1

ci(x2i

a+a2i

x) for any a ∈ F∗
2n .

Note that x= 0 and x= a are zeros of DaF (x)+F (a). Suppose that |Ker(DaF (x)+
F (a))| = 2s, then we have the following:

|{DaF (x)+F (a) : x ∈ F2n}| = |F2n|
|Ker(DaF (x)+F (a))| = 2n

2s
= 2n−s.

Therefore, we can conclude that {DaF (x) : x ∈ F2n} has cardinality 2n−1 if and
only if |Ker(DaF (x) +F (a))| = 2, i.e., Ker(DaF (x) +F (a)) = {0,a}. Consider the
polynomial Q(x) =

n−1∑
i=1

cix
2i−1, we can write the following equations.

DaF (x)+F (a)
xa

=
n−1∑
i=1

ci(x2i−1 +a2i−1) =
n−1∑
i=1

cix
2i−1 +

n−1∑
i=1

cia
2i−1 =Q(x)+Q(a)
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Therefore, we can write the following implications.

F is APN ⇐⇒DaF (x)+F (a) has only two solutions, namely 0,a

⇐⇒ DaF (x)+F (a)
xa

̸= 0 for all x ∈ F2n\{0,a}

⇐⇒Q(x) ̸=Q(a) for all x ∈ F2n\{0,a}

⇐=Q is one-to-one on F2n\{0}

Suppose thatQ is not permutation and F is APN. That is, there exists unique e∈F∗
2n

such that Q(e) =Q(0). Then by Theorem 3.12, deg(Q(x)) = 2n −1, a contradiction

since deg(Q(x)) = deg

(
n−1∑
i=1

cix
2i−1

)
≤ 2n−1 −1. Hence, Q is permutation if and only

if F is APN.

3.7 Examples of APN Functions and Their Walsh Spectrum

In this section, we will give some examples of APN functions which are the poly-
nomial x3(cube function), gold, and inverse functions. Then we will compute the
Walsh spectrum of the polynomial x3.

Example 3.1. Let F : F2n → F2n be a function defined by F (x) = x3. For any
a ∈ F∗

2n , we have

DaF (x) = F (x+a)+F (x) = (x+a)3 +x3

= x3 +ax2 +a2x+a3 +x3

= ax2 +a2x+a3 = b.

Note that the equation DaF (x) = b has at most 2 solutions since deg(DaF (x)) = 2.
Hence, F (x) = x3 is APN over F2n for any integer n≥ 1 by definition.

Example 3.2. Let F : F2n → F2n be a function defined by F (x) = x2k+1. The poly-
nomial G(x) = F (x+a) +F (x) +F (a) is a linear function by Remark 3.1. Then F

is APN if and only of |Ker(G(x))| = 2. By Theorem 3.1, we have the following.

G(x) = F (x+a)+F (x)+F (a) = (x+a)2k+1 +x2k+1 +a2k+1 = ax2k

+a2k

x
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Note that 0 and a are zeros of G(x). Then {0,a} ⊆Ker(G(x)).
Suppose that gcd(k,n) = 1, i.e., gcd(2k −1,2n −1) = 1 by Lemma 2.8. For x ̸= 0 and
a ̸= 0, the following holds.

ax2k

+a2k

x= 0

⇔ ax2k +a2k
x

ax
= 0

⇔ x2k−1 +a2k−1 = 0

⇔ x2k−1 = a2k−1

⇔ x2k−1

a2k−1 =
(
x

a

)2k−1
= 1

⇔ x

a
= 1 since gcd(2k −1,2n −1) = 1

Then x= a. Hence, Ker(G(x)) = {0,a}, which means that F is APN.
Now, suppose that gcd(k,n) = s > 1, i.e., gcd(2k −1,2n −1) = 2s −1. For x ̸= 0 and
a ̸= 0,

ax2k

+a2k

x= 0 ⇔
(
x

a

)2k−1
= 1.

Set y = x
a . Then y2k−1 = 1. Therefore, there exists 2s − 1 elements that satisfy the

equation y2k−1 = 1. There exists ξ ∈F2n\{0,1} such that ξ2s−1 = 1. Then y= x
a = ξ is

a solution. That is, x= ξa is a solution of ax2k +a2k
x= 0. Note that x= ξa /∈ {0,a},

which means that |Ker(G(x))|> 2. Therefore, F is not APN.

Corollary 3.6. Let F : F2n → F2n be a function defined by F (x) = x2k+1 where k
is a positive integer. Then F is APN if and only if gcd(k,n) = 1.

Definition 3.13. The function F : F2n → F2n defined by F (x) = x2k+1 is called
Gold function.

Example 3.3. Let F : F2n → F2n be a function defined by F (x) = x2n−2. We will
show that DaF (x) = b has at most two solutions for a,b ∈ F2n and a ̸= 0 if and
only if n is odd. The equation DaF (x) = b has at most two solutions if and only if
DaF (x)+F (a) = b has at most two solutions.

DaF (x)+F (a) = F (x+a)+F (x)+F (a) = (x+a)2n−2 +x2n−2 +a2n−2 = b

Case 1: Set b = 0. Then x = a and x = 0 are solutions of DaF (x) +F (a) = 0.
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Suppose that x ̸= a and x ̸= 0. Then the following equalities hold.

F (x+a)+F (x)+F (a) = (x+a)2n−2 +x2n−2 +a2n−2

= (x+a)2n−1

x+a
+ x2n−1

x
+ a2n−1

a

= 1
x+a

+ 1
x

+ 1
a

= 0

This holds if and only if a(x+a) +x(x+a) +ax = 0. That is, x2 +ax+a2 = 0. By
Lemma 2.3, we have the following results.

• If n is even, x2 + ax+ a2 = 0 has solution since Trn(a2

a2 ) = Trn(1) = n.1 = 0.
Note that the solution is different from a and 0. Then F is not APN.

• If n is odd, then x2 + ax+ a2 = 0 has no solution in F2n since Trn(a2

a2 ) =
Trn(1) = 1. Hence, a and 0 are only solutions, and hence DaF (x) +F (a) = 0
has exactly two solutions.

Case 2: Set b ̸= 0. Then 0 and a are not solutions of DaF (x)+F (a) = b. Hence for
x ̸= a and x ̸= 0, we have the following conclusion.

F (x+a)+F (x)+F (a) = 1
x+a

+ 1
x

+ 1
a

= b

⇐⇒ ax+a(x+a)+x(x+a) = bax(x+a)

⇐⇒ a2 +x2 +ax+ bax2 + ba2x= 0

⇐⇒ (1+ ba)x2 +(a+ ba2)x+a2 = 0.

Since the degree is at most 2, there exists at most 2 solutions. Hence, we observe
that DaF (x)+F (x) = b has at most 2 solutions for all b when n is odd. That is, F
is APN for odd n.

Corollary 3.7. Let F : F2n → F2n be a function defined by F (x) = x2n−2, which is
called the inverse function. Then F is APN if and only if n is odd.

Now, we investigate the Walsh spectrum of the polynomial x3.

Example 3.4. Let F : F2n → F2n be a function defined by F (x) = x3. Then fλ :
F2n → F2, λ∈ F∗

2n denote its component fλ = Trn(λF (x)). Since F (x) is a quadratic
function, fλ(x) is also quadratic. Consider

∧(fλ) = {a ∈ F2n : fλ(x+a)+fλ(x)+fλ(a) = 0 for all x ∈ F2n}.

Recall that ∧(fλ) is a linear subspace of F2n , see Theorem 3.2. If dim(∧(fλ)) = s,
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then |Wfλ
(a)| ∈ {0,2n+s

2 } by Theorem 3.8. Now, we have the following equalities.

∧(fλ) = {a ∈ F2n : fλ(x+a)+fλ(x)+fλ(a) = 0 for all x ∈ F2n}

= {a ∈ F2n : Trn(λ(x+a)3)+Trn(λx3)+Trn(λa3) = 0 for all x ∈ F2n}

= {a ∈ F2n : Trn(λ(x3 +x2a+a2x+a3 +x3 +a3)) = 0 for all x ∈ F2n}

= {a ∈ F2n : Trn(λ(ax2 +xa2)) = 0 for all x ∈ F2n}

Then we can write the following equalities by Theorem 2.5.

Trn(λ(ax2 +xa2)) = Trn(λax2 +λxa2)

= Trn(λax2)+Trn(λxa2)

= Trn(λax2)+Trn(λ2x2a4)

= Trn(λax2 +λ2x2a4)

= Trn((λa+λ2a4)x2) = 0 for all x ∈ F2n .

Since trace is a balanced function, Trn((λa+λ2a4)x2) = 0 for all x ∈ F2n if and only
if λa+λ2a4 = 0, i.e., λa= λ2a4. This holds if and only if a3 = λ−1 for a ̸= 0.

• Case 1: If n is odd, gcd(2n − 1,3) = gcd(2n − 1,22 − 1) = 2gcd(n,2) − 1 = 1 by
Lemma 2.8. Hence, for any λ ∈ F∗

2n , there exists a unique a ∈ F∗
2n satisfying

a3 = λ−1. Hence, ∧(fλ) = {0,a}, i.e., s = 1. We conclude that |Wfλ(a)| ∈
{0,2n+1

2 } by Theorem 3.8.

• Case 2: If n is even, gcd(2n − 1,3) = gcd(2n − 1,22 − 1) = 2gcd(n,2) − 1 = 3 by
Lemma 2.8. This means that a3 = λ−1 has either no solution or has exactly 3
solutions by Theorem 2.9. That is, either |∧(fλ)| = 1, i.e., s= 0 , or |∧(fλ)| =
4, i.e., s= 2. Hence, |Wfλ

(a)| ∈ {0,2n
2 ,2n+2

2 } by Theorem 3.8.

Remark 3.5. By Corollary 3.5, there exist exactly 2(2n −1)/3 elements λ ∈ F∗
2n such

that fλ is bent.

Example 3.5. Now, we will find the Walsh spectrum of x3 by using the definition
of the Walsh coefficient.

W 2
fλ

(a) =
∑

x∈F2n

(−1)fλ(x)+T rn(ax) ∑
y∈F2n

(−1)fλ(y)+T rn(ay)

=
∑

x∈F2n

(−1)T rn(λx3)+T rn(ax) ∑
y∈F2n

(−1)T rn(λy3)+T rn(ay)

=
∑

x,y∈F2n

(−1)T rn(λ(x3+y3))+T rn(a(x+y))
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Set x+y = z, i.e., y = x+ z. Then we have

W 2
fλ

(a) =
∑

x,z∈F2n

(−1)T rn(λ(x3+(x+z)3))+T rn(az)

=
∑

x,z∈F2n

(−1)T rn(λ(x3+x3+zx2+xz2+z3)+az)

=
∑

x,z∈F2n

(−1)T rn(λzx2+λxz2+λz3+az)

=
∑

z∈F2n

(−1)T rn(λz3+az) ∑
x∈F2n

(−1)T rn(λ(zx2+xz2)).

Note that Tr(λ(zx2 +xz2)) = Tr(λzx2 +λxz2) = Trn(λzx2 +λ2x2z4) due to the fact
that Trn((λxz2)2) = Trn(λxz2). Then we have

W 2
fλ

(a) =
∑

z∈F2n

(−1)T rn(λz3+az) ∑
x∈F2n

(−1)T rn(λzx2+λ2x2z4))

=
∑

z∈F2n

(−1)T rn(λz3+az) ∑
x∈F2n

(−1)T rn(x2(λz+λ2z4)).

Note that by Theorem 2.7, we have the following.

∑
x∈F2n

(−1)T rn(x2(λz+λ2z4)) = 0 ⇐⇒ λz+λ2z4 ̸= 0

Moreover, we have the following implications by Theorem 2.7.

∑
x∈F2n

(−1)T rn(x2(λz+λ2z4)) = 2n ⇐⇒ λz+λ2z4 = 0

⇐⇒ λz = λ2z4

⇐⇒ λ−1 = z3 or z = 0

Then we have the following equality.

(3.11) W 2
fλ

(a) = 2n
∑

z∈F2n

λ−1=z3
z=0

(−1)T rn(λz3+az)

Case 1: Suppose that n is odd. Note that λz3 + az = 0 for z = 0. Moreover,
gcd(2n − 1,3) = gcd(2n − 1,22 − 1) = 2gcd(n,2) − 1 = 1 by Lemma 2.8. Therefore, for
any λ ∈ F∗

2n , there exists unique z ∈ F2n satisfying z3 = λ−1. Hence, by Equation

44



3.11, we have the following.

W 2
fλ

(a) = 2n
∑

z∈F2n

λ−1=z3
z=0

(−1)T rn(λz3+az)

= 2n
(
(−1)T rn(0) +(−1)T rn(1+az)

)
Since Trn(az) = 1 or Trn(az) = −1, we have the following conclusion.

W 2
fλ

(a) = 2n(1±1) = 2n+1 or 0

That is, |Wfλ
| ∈ {0,2n+1

2 }, i.e., for all λ∈F∗
2n , the component function fλ is semibent.

Case 2: Suppose that n is even. We have gcd(2n − 1,3) = gcd(2n − 1,22 − 1) =
2gcd(n,2) − 1 = 3 by Lemma 2.8. Therefore, for any λ ∈ F∗

2n , the equation λ−1 = z3

has either no solution or exactly 3 solutions by Theorem 3.12.
Firstly, assume that λ−1 = z3 has no solution in F2n for a nonzero λ. Then λz3 +az=
0 if and only if z = 0. By Equation 3.11, this implies that

W 2
fλ

(a) = 2n.1 = 2n,

i.e., |Wfλ
| = 2n/2. This implies that fλ is bent. Now, assume that for any λ ∈ F∗

2n ,
the equation λ−1 = z3 has exactly 3 solutions. Note that ∧(fλ) = {a ∈ F2n : fλ(x+
a)+fλ(x)+fλ(a) = 0} is a subspace of F2n and fλ is linear on ∧(fλ). Consider the
function φ(z) : ∧(fλ) → F2 defined by φ(z) = Trn(fλ(z) +az). If φ(z) = 0, then by
Equation 3.11, we have

W 2
fλ

(a) = 2n
∑

z∈F2n

z∈∧(fλ)

(−1)T rn(λz3+az) = 2n.4 = 2n+2,

i.e., fλ is semibent. If φ(z) ̸= 0, then φ(z) is balanced function. Then W 2
fλ

(a) = 0.
Hence, |Wfλ

(a)| ∈ {0,2n
2 ,2n+2

2 }.

Remark 3.6. Let A be the number of fλ components of F such that fλ is bent.
Then there exist (2n −1)−A non-bent components such that Wfλ

= 2n+2
2 , i.e., fλ’s

are 2-plateaued. By Theorem 3.4, we have v(fλ) = 22n for bent components, and
v(fλ) = 22n+2 for 2-plateaued components. By Corollary 3.4, we know that

∑
λ∈F∗

2n

v(fλ) = (2n −1)22n+1

since F is APN. Then we can write the following equalities.
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(2n −1)22n+1 =
∑

λ∈F∗
2n

v(fλ) = 22nA+(2n −1−A)22n+2

= 22n(A+222n −22 −22A).

Therefore, we can conclude that A = 2
3(2n − 1). Hence, 2

3(2n − 1) components are
bent and 2n−1

3 components are semibent, which confirms Corollary 3.5.
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4. Bezout’s Theorem and The Nonlinearity of Quadratic Functions

4.1 Bezout’s Theorem and Common Zero Sets

In this chapter, we will give the definition of affine and projective curves. Then we
will give related theorems which are necessary for the computation of the Walsh
spectrum of biprojective functions.
We recall that F is the algebraic closure of F.

Definition 4.1. An affine curve X is the zero set of a polynomial f(x,y) ∈ F[x,y].
That is,

X = {(x,y) ∈ F×F : f(x,y) = 0}.

The polynomial f(x,y) is called a defining polynomial of X and the degree of X is
the degree of f(x,y). If f(x,y) ∈ F2m [x,y], then we say X is a curve defined over
F2m .

Definition 4.2. A component of X is a curve Y such that the defining polynomial
g(x,y) of Y divides f(x,y).

Remark 4.1. Let X be a curve with the defining equation f(x,y) and ℓ be a line
given by bx−ay+ c, which is not a component of X . Suppose that P = (x0,y0) is
an intersection point of X and ℓ. We can parametrize ℓ as follows:

x= x0 +at and y = y0 + bt for t ∈ F.

As ℓ is not a factor of f(x,y), we have

f(x,y) = f(x0 +at,y0 + bt) = hmt
m + · · ·+hdt

d ∈ F[t] with hm ̸= 0.

Then m :=m(P,X ∩ ℓ) is called the intersection multiplicity of X and ℓ at P .
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Definition 4.3. For P ∈ X ,

mP (X ) := min
ℓ

{m(P,X ∩ ℓ)}

is called the multiplicity of X at P where the multiplicity is determined over all
lines ℓ through P such that they are not a factor of f(x,y).

Lemma 4.1. Hirschfeld, Korchmáros, Torres & Orihuela (2008) Let X and Y be two
plane curves such that P ∈ X ∩Y . Then X and Y intersect at P with multiplicity

m(P,X ∩Y) ≥mP (X )mP (Y),

and equality holds if and only if they do not have a common tangent line at P .

We can state Bezout’s Theorem for plane curves as follows.

Theorem 4.1 (Bezout’s Theorem). Let X and Y be two plane curves of degree d1

and d2, respectively. If X and Y do not have a common component, then

∑
P ∈X ∩Y

m(P,X ∩Y) ≤ d1d2.

By Bezout’s theorem we conclude that X and Y intersect at most d1d2 distinct
points.

Let F be a field and E1 and E2 be two extensions of F . Recall that E1 and E2 are
called linearly disjoint extensions of F if E1 ∩E2 = F .

Lemma 4.2. Bracken, Byrne, Markin & McGuire (2009) Let E1,E2 be two lin-
early disjoint finite field extensions of F. Then any F -linearly independent subset
{u1, ...,uk} of E1 is also linearly independent over E2.

Proof. Suppose that E1 and E2 be finite field extensions of F of degree n and s,
respectively. Let E = E1E2 be the compositum of E1 and E2. Since E1 and E2 are
linearly disjoint extensions, we have

[E : E2] = [E1 : F ] = n.

Let {u1, . . .un} be an F -basis of E1 as a vector space over F and {v1, . . . ,vs} an
F -basis of E2 as a vector space over F . Then the set {uivj : 1 ≤ i ≤ n,1 ≤ j ≤ s}
generates E as a vector space over F . Moreover, {u1,u2, . . . ,un} generates E as a
vector space over E2. Since [E :E2] = n , the set {v1, . . .vn} is a basis of E over E2.

Let {u1, . . . ,uk} be a set of F -linearly independent elements of E1. We can extend
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this set to a basis {u1, . . . ,uk, . . . ,un}. Since this set forms an E2-basis of E, its
subset {u1, . . . ,uk} is linearly independent over E2.

Lemma 4.3 (Trachtenberg (1970)). Let k be an integer with gcd(k,m) = 1, and let
f be the polynomial of the form

f(x) = C0x+C1x
2k

+C2x
22k

+ · · ·+Cdx
2dk

∈ F2m [x](4.1)

of degree 2dk. Then f(x) has at most 2d zeros in F2m .

Proof. Firstly, we will show that the set of zeros S of f(x) in F2mk forms a vector
space over F2k . Let x,y ∈ S, i.e., f(x) = f(y) = 0. Then we can write the following
equalities.

f(x+y) = C0(x+y)+C1(x+y)2k

+C2(x+y)22k

+ · · ·+Cd(x+y)2dk

= C0x+C1x
2k

+C2x
22k

+ · · ·+Cdx
2dk

+C0y+C1y
2k

+C2y
22k

+ · · ·+Cdy
2dk

= f(x)+f(y) = 0

Then x+ y ∈ S. Let α ∈ F2k and x ∈ S. Note that α2k = α by Theorem 2.5. Then
we have the following.

f(αx) = C0(αx)+C1(αx)2k

+C2(αx)22k

+ · · ·+Cd(αx)2dk

= αC0x+α2k

C1x
2k

+α22k

C2x
22k

+ · · ·+α2dk

Cdx
2dk

= αC0x+αC1x
2k

+αC2x
22k

+ · · ·+αCdx
2dk

= α(C0x+C1x
2k

+C2x
22k

+ · · ·+Cdx
2dk

) = αf(x) = 0

Then αx∈ S. Hence, S is a vector space over F2k . Moreover, S is a finite-dimensional
vector space since f can have only finitely many zeros. In fact, |S| ≤ 2dk. Let
u1,u2, . . .us be a basis for S over F2k . Since |S| ≤ 2dk, we have s ≤ d. Since
gcd(k,m) = 1, extensions F2k and F2m are linearly disjoint over F2. Then any lin-
early independent subset of F2m over F2 stays linearly independent of F2k . Hence,
the zero set Z of f(x) in F2m , which is linearly independent over F2, stays linearly
independent over F2k . Hence, |Z| = 2s ≤ 2d.

Remark 4.2. Let f1(x,y),f2(x,y) ∈ F2m [x,y] be polynomials of the form (4.1) in two
variables. Then the common zero set ZF2m (f1,f2) of f1 and f2 in F2m ×F2m is
defined by

ZF2m (f1,f2) = {(x,y) ∈ F2m ×F2m : f1(x,y) = f2(x,y) = 0}.
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In a similar way, we can observe that ZF2m (f1,f2) forms a vector space over F2.

Theorem 4.2. Let k be an integer with gcd(k,m) = 1, and let f1(x,y),f2(x,y) be
polynomials of the form (4.1) of degree 2d1k and 2d2k, respectively. If f1 and f2 do
not have any common factor, then

|ZF2m (f1,f2)| ≤ 2d1+d2 .(4.2)

Proof. Note that |ZF2m (f1,f2)| is finite dimensional vector space by Bezout’s theo-
rem since f1 and f2 do not have a common factor. Also, the assumption gcd(k,m) = 1
implies that F2m and F2k are linearly disjoint over F2. Let S = {v1, . . .vs} be a basis
for V1 = ZF2m (f1,f2) over F2. Consider the F2k-vector space V2 generated by S.
Note that for any c ∈ F2k , we have

f1(cx,cy) = cf1(x,y) and f2(cx,cy) = cf2(x,y)

as f1 and f2 are of the form (4.1). Hence, any element of V2 is a common zero of
f1 and f2 in F2m ×F2m . This means V2 = ZF2km

(f1,f2). Since F2m and F2k are also
linearly disjoint over F2, the set S is linearly independent over F2k by Lemma 4.2.
Therefore,

dimF2k
(V2) = dimF2(V1).

Note that V2 is a subset of F2km . As f1,f2 do not have any common factor, by
Bezout’s theorem, we have

|V2| ≤ deg(f1)deg(f2) = 2d1k2d2k = 2(d1+d2)k.

This means that dimF2k
V2 ≤ d1 +d2. Hence,

dimF2(V1) = dimF2k
(V2) ≤ d1 +d2,

which means
|ZF2m (f1,f2)| ≤ 2d1+d2 .

Corollary 4.1. Let k be an integer with gcd(k,m) = 1, and let f1(x,y),f2(x,y)
be polynomials of the form (4.1), which do not have a common factor. If
|ZF2km

(f1,f2)| ≤ 2kd, then ZF2m (f1,f2) ≤ 2d.

Now, we will give some definitions and theorems related to projective plane curves
which will be needed for the following chapter.
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Definition 4.4. Let F be any field. A projective plane over F is defined by the set
of all 1-dimensional linear subspaces of F3. It is denoted by P2(F).

We say that x = (x0,x1,x2) and y = (y0,y1,y2) are related by “ ∼ ” if x = λy, i.e.,
(x0,x1,x2) = (λy0,λy1,λy2). Note that the relation “ ∼ ” is an equivalence relation.

Definition 4.5. The equivalence class of (x0,x1,x2) is denoted by P = (x0 : x1 :
x2) ∈ P2. The coordinates x0, x1, and x2 are called homogeneous coordinates of the
point P .

Definition 4.6. Menon (2011) Any polynomial f ∈ F[x0,x1] of degree d can be
written as f = f0 +f1 + · · ·+fd where each fi is a homogeneous polynomial of degree
i for i= 0, . . . ,d. Then we set

f∗(x0,x1,x2) = xd
2f0 +xd−1

2 f1 + . . .x2fd−1 +fd =
d∑

i=0
xd−i

2 fi.

This process is called the homogenization of f .

Definition 4.7. A projective curve is the set of points (x : y : z) ∈ P2 such that
f(x,y,z) = 0 where f is a homogeneous polynomial. A point P = (x : y : z) is called
a point at infinity if z = 0.

Theorem 4.3 (Bezout’s Theorem). Fulton (2008) Let X and Y be two projective
plane curves of degree d1 and d2, respectively. If X and Y do not have a common
component, then ∑

P ∈X ∩Y
m(P,X ∩Y) = d1d2.

Lemma 4.4. Let X1 and X2 be two plane curves. If they do not have an intersection
point at infinity, then they have no common components.

Proof. Let X1 and X2 be curves defined by f1(x,y) and f2(x,y), respectively. Sup-
pose that X1 and X2 have a common component. Then there exists g(x,y) such
that g(x,y) divides f1(x,y) and f2(x,y). That is, the curve G defined by g(x,y) is
a component of X1 and X2. Consider the projective line ℓ defined at z = 0, i.e., the
line at infinity. By Bezout’s Theorem, there exists a point P ∈ G ∩ ℓ. This means
that P is a point at infinity lying on X1 and X2. Hence, we can conclude that if
X1 and X2 do not have an intersection point at infinity, then they have no common
components.
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4.2 Determining the Nonlinearity of a Class of Quadratic Functions

In this section, we will give the definition of directional derivative for the bivariate
form.

Definition 4.8. Let F ∈ F2m [x,y] be a polynomial of algebraic degree 2, i.e.,
quadratic. Let f be the quadratic Boolean function given in bivariate trace rep-
resentation as f(x,y) = Trm(F (x,y)). Then the directional derivative of f in the
direction of (u,v) ∈ F2m ×F2m is given by

Du,vf(x,y) = Trm(F (x+u,y+v)+F (x,y)).

Remark 4.3. Since F is quadratic, Du,vf(x,y) is affine. Consider the linear part
D̃u,vf(x,y) =Du,vf(x,y)+f(u,v). Note that D̃u,vf(x,y) can be written in the form
Trm(L1(x))+Trm(L2(y)) for some polynomials of the form (4.1):

L1(x) =
δ1∑

i=0
aix

2i

and L2(x) =
δ2∑

i=0
biy

2i

where the coefficients depend on u and v. Note that Trm(a2j ) = Trm(a) for any
j ≥ 1 by Theorem 2.5. Then we can write the following.

Trm(aix
2i

) = Trm((aix
2i

)2j

) = Trm(a2j

i x
2i+j

) for any j ≥ 0

By using this fact, we obtain the following equalities.

D̃u,vf(x,y) = Trm

 δ1∑
i=0

aix
2i

+Trm

 δ2∑
i=0

biy
2i


=

δ1∑
i=0

Trm(aix
2i

)+
δ2∑

i=0
Trm(biy2i

)

=
δ1∑

i=0
Trm((aix

2i

)2δ1−i

)+
δ2∑

i=0
Trm((biy2i

)2δ2−i

)

=
δ1∑

i=0
Trm(a2δ1−i

i x2δ1 )+
δ2∑

i=0
Trm(b2

δ2−i

i y2δ2 )

= Trm

(
δ1∑

i=0
a2δ1−i

i )x2δ1

+Trm

(
δ2∑

i=0
b2

δ2−i

i )y2δ2
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Let A(u,v) =
δ1∑

i=0
a2δ1−i

i and B(u,v) =
δ2∑

i=0
b2

δ2−i

i . Then we get

D̃u,vf(x,y) = Trm(A(u,v)x2δ1 +B(u,v)y2δ2 ).(4.3)

Note that A,B ∈ F2m [u,v]. Clearly, D̃u,vf(x,y) is zero if and only if A(u,v) =
B(u,v) = 0, i.e., ∧f is the common zero set ZF2m (A,B) of A and B.

Corollary 4.2. Let f(x,y) = Trm(F (x,y)) be a quadratic function from F2m ×F2m

to F2. Suppose that the corresponding polynomials A(u,v) and B(u,v) in (4.3) are
of the form (4.1) of degrees kd1 and kd2 for some integer k with gcd(k,m) = 1. If A
and B do not have a common factor, then f is s-plateaued with s≤ d1 +d2.
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5. Biprojective APN Functions

In this chapter, we first give the definition of biprojective polynomial. Then we
investigate the Walsh spectrum of two infinite families of (q,r)-biprojective APN
polynomial pairs that have been presented in Göloğlu (2022).

Definition 5.1. Let F (x,y) = [f(x,y),g(x,y)] ∈F2m [x,y]×F2m [x,y], with q= 2i, r=
2j , i, j ≥ 0 where

f(x,y) = a0x
q+1 + b0x

qy+ c0xy
q +d0y

q+1,

g(x,y) = a1x
r+1 + b1x

ry+ c1xy
r +d0y

r+1.

Then f(x,y) (respectively g(x,y)) is said to be a q-biprojective (respectively r-
biprojective) polynomial. In this case, F (x,y) is a (q,r)-biprojective polynomial.
We denote f(x,y) and g(x,y) by (a0, b0, c0,d0)q and (a1, b1, c1,d1)r, respectively.
Moreover, we denote F (x,y) by [(a0, b0, c0,d0)q,(a1, b1, c1,d1)r].

Theorem 5.1. Göloğlu (2022) The following (q,r)-biprojective polynomial pairs
F (x,y) = [f(x,y),g(x,y)] are APN on F2m ×F2m.

( F1 ) If gcd(3i,m) = 1, then F1 = [(1,0,1,1)2i ,(1,1,0,1)22i ] is APN.

( F2 ) If gcd(3i,m) = 1, and m is odd, then F2 = [(1,0,1,1)2i ,(0,1,1,0)23i ] is APN.

5.1 Family F1

Firstly, we start with investigating the Walsh spectrum of F1. Let

F (x,y) = F1(x,y) = [f(x,y),g(x,y)] = (x2i+1 +xy2i

+y2i+1,x22i+1 +x22i

y+y22i+1)
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where gcd(3i,m) = 1. Then the components of F (x,y) corresponding to (λ,µ) ∈
F2m ×F2m\{(0,0)} are given by:

Fλ,µ = Trm(λf(x,y)+µg(x,y)).

Recall ∧(Fλ,µ) = {(u,v) ∈ F2m ×F2m : Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v) = 0}.
We know that ∧(Fλ,µ) is a vector space over F2, see Theorem 3.2 and |WFλ,µ

| ∈
{0,pn+s

2 } where s is a dimension of ∧(Fλ,µ). Hence, we first compute Fλ,µ(x+u,y+
v)+Fλ,µ(x,y)+Fλ,µ(u,v). We have the following equations.

Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v)
(5.1)

= Trm[λf(x+u,y+v)+µg(x+u,y+v)+λf(x,y)+µg(x,y)+λf(u,v)+µg(u,v)]

= Trm[λ(f(x+u,y+v)+f(x,y)+f(u,v))+µ(g(x+u,y+v)+g(x,y)+g(u,v))]

Then we obtain the following equalities.

f(x+u,y+v)+f(x,y)+f(u,v)
(5.2)

= (x+u)2i+1 +(x+u)(y+v)2i

+(y+v)2i+1 +x2i+1 +xy2i

+y2i+1 +u2i+1 +uv2i

+v2i+1

= x2i+1 +x2i

u+xu2i

+u2i+1 +xy2i

+xv2i

+uy2i

+uv2i

+y2i+1 +yv2i

+y2i

v+v2i+1

+x2i+1 +xy2i

+y2i+1 +u2i+1 +uv2i

+v2i+1

= x2i

u+xu2i

+xv2i

+uy2i

+yv2i

+y2i

v

g(x+u,y+v)+g(x,y)+g(u,v)

= (x+u)22i+1 +(x+u)22i

(y+v)+(y+v)22i+1 +x22i+1 +x22i

y+y22i+1 +u22i+1 +u22i

v+v22i+1

= x22i+1 +x22i

u+xu22i

+u22i+1 +x22i

y+x22i

v+u22i

y+u22i

v+y22i+1 +y22i

v+yv22i

+v22i+1

+x22i+1 +x22i

y+y22i+1 +u22i+1 +u22i

v+v22i+1

= x22i

u+xu22i

+x22i

v+u22i

y+y22i

v+yv22i
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Then we can write the following equations.

Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v)

= Trm[λ(x2i

u+xu2i

+xv2i

+uy2i

+yv2i

+y2i

v)

+µ(x22i

u+xu22i

+x22i

v+u22i

y+y22i

v+yv22i

)]

= Trm[x(λu2i

+λv2i

+µu22i

)+x2i

λu+x22i

(µu+µv)

+y(λv2i

+µu22i

+µv22i

)+y2i

(λu+λv)+y22i

µv]

We set

A1 = λu2i

+λv2i

+µu22i

, A2 = λu , A3 = µu+µv, and

B1 = λv2i

+µu22i

+µv22i

, B2 = λu+λv , B3 = µv.

Then we can represent Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v) as follows.

Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v)

= Trm[xA1 +x2i

A2 +x22i

A3 +yB1 +y2i

B2 +y22i

B3]

= Trm(xA1)+Trm(x2i

A2)+Trm(x22i

A3)+Trm(yB1)+Trm(y2i

B2)+Trm(y22i

B3)

= Trm(x22i

A22i

1 )+Trm(x22i

A2i

2 )+Trm(x22i

A3)+Trm(y22i

B22i

1 )+Trm(y22i

B2i

2 )+Trm(y22i

B3)

= Trm(x22i

(A22i

1 +A2i

2 +A3))+Trm(y22i

(B22i

1 +B2i

2 +B3))

Note that Ai’s and Bi’s depend on u and v for i, j = 1,2,3. So, we set

A(u,v) = A22i

1 +A2i

2 +A3 and

B(u,v) =B22i

1 +B2i

2 +B3.

Then we can compute A(u,v) and B(u,v) as follows.

A(u,v) = (λu2i

+λv2i

+µu22i

)22i

+(λu)2i

+(µu+µv)

= λ22i

u23i

+λ22i

v23i

+µ22i

u24i

+λ2i

u2i

+µu+µv

= µ22i

u24i

+λ22i

(u23i

+v23i

)+λ2i

u2i

+µ(u+v)

B(u,v) = (λv2i

+µu22i

+µv22i

)22i

+(λu+λv)2i

+µv

= λ22i

v23i

+µ22i

u24i

+µ22i

v24i

+λ2i

u2i

+λ2i

v2i

+µv

= µ22i

(u24i

+v24i

)+λ22i

v23i

+λ2i

(u2i

+v2i

)+µv
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We investigate the zeros of the polynomials A(u,v) and B(u,v) case by case depend-
ing on λ and µ.
Case 1: Let λ= 0, and hence µ ̸= 0. Then

A(u,v) = µ22i

u24i

+µ(u+v), and B(u,v) = µ22i

(u24i

+v24i

)+µv.

By Theorem 2.5, Trm(x22i
A(u,v)) +Trm(y22i

B(u,v)) = 0 for all x,y ∈ F2m if and
only if A(u,v) = B(u,v) = 0. Now, assume that X1 be the curve defined by A(u,v)
and X2 be the curve defined by B(u,v). Then (u,v) ∈ ∧(F0,µ) if and only if (u,v) ∈
X1 ∩X2. Note that the point (u : v : z) at infinity lies on X1 if and only if u= 0. That
is, (0 : 1 : 0) is the only point of X1 at infinity. And the point (u : v : z) at infinity
lies on X2 if and only if u= v. That is, (1 : 1 : 0) is the only point of X2 at infinity.
Hence, X1 and X2 have no intersection point at infinity, which means that they have
no common components by Lemma 4.4. Therefore, we can apply Theorem 4.2.

|ZF2m (A,B)| ≤ 224i

224i

= 28i

Hence, we have the following cases by Theorem 4.2.

• If m is odd, then gcd(4i,m) = 1. Hence, k = 4i, which means d1 = d2 = 1.
Therefore, we have s = dimF2∧0,µ ≤ 2. That is s = 0 or s = 2. Hence, F0,µ is
either bent or semibent, respectively.

• If m is even, we know that gcd(i,m) = 1 since gcd(3i,m) = 1. Hence, k = i,
which means d1 = d2 = 4. Therefore, we have s= dimF2∧0,µ ≤ 8.

Case 2: Let µ= 0, and hence λ ̸= 0. Then

A(u,v) = λ22i

(u23i

+v23i

)+λ2i

u2i

= (λ2i

(u22i

+v22i

)+λu)2i

,

B(u,v) = λ22i

v23i

+λ2i

(u2i

+v2i

) = (λ2i

v22i

+λ(u+v))2i

.

Note that

A(u,v) = 0 if and only if Ã(u,v) = λ2i

(u22i

+v22i

)+λu= 0,

and

B(u,v) = 0 if and only if B̃(u,v) = λ2i

v22i

+λ(u+v) = 0.

Now, assume that X1 be the curve defined by Ã(u,v) and X2 be the curve defined by
B̃(u,v). Then (u,v) ∈ ∧(Fλ,0) if and only if (u,v) ∈ X1 ∩X2. Similarly, the point of
X1 at infinity is (1 : 1 : 0) and the point of X2 at infinity is (1 : 0 : 0). Hence, X1 and

57



X2 have no intersection point at infinity, which means that they have no common
components by Theorem 4.4. Then we can apply Theorem 4.2.

|ZF2m (A,B)| ≤ 222i

222i

= 24i

Hence, we have the following cases by Theorem 4.2.

• If m is odd, then gcd(2i,m) = 1. Hence, k = 2i, which means d1 = d2 = 1.
Therefore, we have s = dimF2∧λ,0 ≤ 2. That is s = 0 or s = 2. Hence, Fλ,0 is
either bent or semibent, respectively.

• If m is even, then gcd(2i,m) = 2. Hence, k = i, which means d1 = d2 = 2.
Hence, we have s= dimF2∧λ,0 ≤ 4. That is, s= 0 or s= 2 or s= 4.

Case 3: Let λ ̸= 0 and µ ̸= 0. Then

A(u,v) = µ22i

u24i

+λ22i

(u23i

+v23i

)+λ2i

u2i

+µ(u+v), and

B(u,v) = µ22i

(u24i

+v24i

)+λ22i

v23i

+λ2i

(u2i

+v2i

)+µv.

Assume that X1 be the curve defined by A(u,v) and X2 be the curve defined by
B(u,v). Then (u,v) ∈ ∧(Fλ,µ) if and only if (u,v) ∈ X1 ∩X2. Similarly, the point of
X1 at infinity is (0 : 1 : 0) and the point of X2 at infinity is (1 : 1 : 0). Hence, X1 and
X2 have no intersection point at infinity, which means that they have no common
components by Theorem 4.4. Then we can apply Theorem 4.2.

|ZF2m (A,B)| ≤ 224i

224i

= 28i

Note that gcd(i,m) = 1 since gcd(3i,m) = 1. Hence, k = i, which means d1 = d2 = 4.
Therefore, we have s= dimF2∧λ,µ ≤ 8.

By the above calculations, we observe that for the component function corresponding
to (λ,µ) ∈F2m ×F2m\{(0,0)}, we have |WFλ,µ

| ≤ 2m+4 for all (u,v) ∈F2m ×F2m since
s= dimF2∧λ,µ ≤ 8. Hence, we obtain the following theorem.

Theorem 5.2. Let

F (x,y) = (x2i+1 +xy2i

+y2i+1,x22i+1 +x22i

y+y22i+1)

be a function on F2m ×F2m where gcd(3i,m) = 1. Then |WFλ,µ
(u,v)| ≤ 2m+4 for all

(u,v) ∈ F2m ×F2m.

In particular, by Theorem 5.2, we have the following conclusion.
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Corollary 5.1. The nonlinearity of F given in Theorem 5.2 is N (F ) ≥ 22m−1 −
2m+3.

Proof. By Definition 3.5, for the components Fλ,µ of F (x,y) corresponding to
(λ,µ) ∈ F2m ×F2m\{(0,0)}, we have

L(Fλ,µ) = max
(u,v)∈F2m×F2m

|WFλ,µ
(u,v)| ≤ 2m+4

by Theorem 5.2. Then

L(F ) = max
(λ,µ)∈F2m×F2m\{(0,0)}

L(Fλ,µ) ≤ 2m+4.

Therefore, the nonlinearity of F is

N (F ) = 22m−1 − 1
2L(F ) ≥ 22m−1 − 1

22m+4 = 22m−1 −2m+3.

5.2 Family F2

In this section, we investigate the Walsh spectrum of F2. Let

F (x,y) = F2(x,y) = (f(x,y),g(x,y)) = (x2i+1 +xy2i

+y2i+1,x23i

y+xy23i

)

where gcd(3i,m) = 1, and m is odd. Then the components Fλ,µ of F (x,y) corre-
sponding to (λ,µ) ∈ F2m ×F2m\{(0,0)} are given by:

Fλ,µ(x,y) = Trm(λf(x,y)+µg(x,y)).

Recall that

∧λ,µ = {(u,v) ∈ F2m ×F2m : Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v) = 0}.

By Equation (5.1), we have

Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v)

= Trm[λ(f(x+u,y+v)+f(x,y)+f(u,v))+µ(g(x+u,y+v)+g(x,y)+g(u,v))].

59



By Equation (5.2), we know that:

f(x+u,y+v)+f(x,y)+f(u,v) = x2i

u+xu2i

+xv2i

+y2i

u+y2i

v+yv2i

.

Also, we have the following equalities.

g(x+u,y+v)+g(x,y)+g(u,v)

= (x+u)23i

(y+v)+(x+u)(y+v)23i

+x23i

y+xy23i

+u23i

v+uv23i

= (x23i

+u23i

)(y+v)+(x+u)(y23i

+v23i

)+x23i

y+xy23i

+u23i

v+uv23i

= x23i

y+x23i

v+yu23i

+u23i

v+xy23i

+xv23i

+y23i

u+uv23i

+x23i

y+xy23i

+u23i

v+uv23i

= x23i

v+yu23i

+xv23i

+y23i

u

Then we can write the following equations.

Fλ,µ(x+u,y+v)+Fλ,µ(x,y)+Fλ,µ(u,v)

= Trm[λ(x2i

u+xu2i

+xv2i

+y2i

u+y2i

v+yv2i

)+µ(x23i

v+yu23i

+xv23i

+y23i

u)]

= Trm

[
x(λu2i

+λv2i

+µv23i

)+x2i

λu+x23i

µv)+y(λv2i

+µu23i

)+y2i

(λu+λv)+y23i

µu)
]

= Trm

(
x23i

((λu2i

+λv2i

+µv23i

)23i

+(λu)22i

+µv)+

+y23i

((λv2i

+µu23i

)23i

+(λu+λv)22i

+µu)
)

We set

A(u,v) = (λu2i

+λv2i

+µv23i

)23i

+(λu)22i

+µv , and

B(u,v) = (λv2i

+µu23i

)23i

+(λu+λv)22i

+µu.

Then we can obtain the following equalities.

A(u,v) = (λu2i

+λv2i

+µv23i

)23i

+(λu)22i

+µv

= λ23i

u24i

+λ23i

v24i

+µ23i

v26i

+λ22i

u22i

+µv

= µ23i

v26i

+λ23i

(u24i

+v24i

)+λ22i

u22i

+µv

B(u,v) = (λv2i

+µu23i

)23i

+(λu+λv)22i

+µu

= λ23i

v24i

+µ23i

u26i

+λ22i

u22i

+λ22i

v22i

+µu

= µ23i

u26i

+λ23i

v24i

+λ22i

(u22i

+v22i

)+µu
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We investigate the zeros of A(u,v) and B(u,v) case by case depending on (λ,µ) ∈
F2m ×F2m\{(0,0)}.
Case 1: Let λ= 0, and hence µ ̸= 0. Then we set

A(u,v) =: A(v) = µ23i

v26i

+µv,

B(u,v) =:B(u) = µ23i

u26i

+µu.

Note that gcd(23i − 1,2m − 1) = 1 since gcd(3i,m) = 1 by Lemma 2.8. Note that
v = 0 is a trivial solution of A(v) = 0. Suppose that v ∈ F2m is a nonzero solution of
A(v) = 0. Then we have the following implications.

A(v) = 0 ⇐⇒ µ23i

v26i

= µv

⇐⇒ µ23i−1v26i−1 = 1 since v ̸= 0

⇐⇒ (µv23i+1)23i−1 = 1 since gcd(23i −1,2m −1) = 1

⇐⇒ µv23i+1 = 1

⇐⇒ v23i+1 = µ−1

Note that in the 4-th implication, we used Lemma 2.1. We observed that
gcd(6i,m) = 1 since gcd(3i,m) = 1 and m is odd. Hence, gcd(26i − 1,2m − 1) by
Lemma 2.8. Then we obtain the following equalities.

1 = gcd(26i −1,2m −1) = gcd(23i −1,2m −1)gcd(23i +1,2m −1)

= gcd(23i +1,2m −1)

That is, gcd(23i +1,2m −1) = 1. Then v23i+1 is a permutation on F2m by Lemma 2.7.
That is, v23i+1 = µ−1 has a unique solution for any µ∈ F∗

2m . Then the solution set of
A(v) = 0 is {0,vµ} where vµ is the unique solution depending on µ ∈ F∗

2m . Similarly,
the solution set of B(u) is {0,uµ} where uµ is the unique solution depending on
µ∈F∗

2m . Therefore, the solution set of ∧0,µ is {(0,0),(0,vµ),(uµ,0),(uµ,vµ)}. Hence,
s= dimF2∧0µ = 2, i.e., F0,µ is semibent.
Case 2: Let µ= 0, and hence λ ̸= 0. Then

A(u,v) = λ23i

u24i

+λ23i

v24i

+λ22i

u22i

= (λ2i

u22i

+λ2i

v22i

+λu)22i

B(u,v) = λ23i

v24i

+λ22i

u22i

+λ22i

v22i

= (λ2i

v22i

+λu+λv)22i

Note that

A(u,v) = 0 if and only if Ã(u,v) = λ2i

u22i

+λ2i

v22i

+λu= 0,
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and

B(u,v) = 0 if and only if B̃(u,v) = λ2i

v22i

+λu+λv = 0.

Now, assume that X1 be the curve defined by Ã(u,v) and X2 be the curve defined by
B̃(u,v). Then (u,v) ∈ ∧(Fλ,0) if and only if (u,v) ∈ X1 ∩X2. Similarly, the point of
X1 at infinity is (1 : 1 : 0) and the point of X2 at infinity is (1 : 0 : 0). Hence, X1 and
X2 have no intersection point at infinity, which means that they have no common
components by Theorem 4.4. Then we can apply Bezout’s Theorem.

|ZF2m (A,B)| ≤ 222i

222i

= 24i

Since m is odd, then gcd(2i,m) = 1. Hence, k = 2i, which means d1 = d2 = 1.
Therefore, we have s= dimF2∧λ,0 ≤ 2. That is, s= 0 or s= 2. Hence, Fλ,0 is either
bent or semibent, respectively.
Case 3:Let λ ̸= 0 and µ ̸= 0. Then

A(u,v) = µ23i

v26i

+λ23i

(u24i

+v24i

)+λ22i

u22i

+µv

B(u,v) = µ23i

u26i

+λ23i

v24i

+λ22i

(u22i

+v22i

)+µu

Assume that X1 be the curve defined by A(u,v) and X2 be the curve defined by
B(u,v). Then (u,v) ∈ ∧(Fλ,µ) if and only if (u,v) ∈ X1 ∩X2. Similarly, the point of
X1 at infinity is (1 : 0 : 0) and the point of X2 at infinity is (0 : 1 : 0). Hence, X1 and
X2 have no intersection point at infinity, which means that they have no common
components by Theorem 4.4. Then we can apply Bezout’s Theorem.

|ZF2m (A,B)| ≤ 226i

226i

= 212i

Since gcd(3i,m) = 1 and m is odd, gcd(2i,m) = 1. Hence, k = 2i, which means
d1 = d2 = 3. Therefore, we have s= dimF2∧λ,µ ≤ 6.

By the above calculations, we observe that for the component function corresponding
to (λ,µ) ∈F2m ×F2m\{(0,0)}, we have |WFλ,µ

(u,v)| ≤ 2m+3 for all (u,v) ∈F2m ×F2m

since s= dimF2∧λ,µ ≤ 6. Hence, we obtain the following theorem.

Theorem 5.3. Let

F (x,y) = (x2i+1 +xy2i

+y2i+1,x23i

y+xy23i

)

be a function on F2m ×F2m where gcd(3i,m) = 1, and m is odd. Then |WFλ,µ
(u,v)| ≤

2m+3 for all (u,v) ∈ F2m ×F2m.
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In particular, by Theorem 5.3, we have the following conclusion.

Corollary 5.2. The nonlinearity of F given in Theorem 5.3 is N (F ) ≥ 22m−1 −2m.

Proof. By Definition 3.5, for the components Fλ,µ of F (x,y) corresponding to
(λ,µ) ∈ F2m ×F2m\{(0,0)}, we have

L(Fλ,µ) = max
(u,v)∈F2m×F2m

|WFλ,µ
(u,v)| ≤ 2m+3

by Theorem 5.2. Then

L(F ) = max
(λ,µ)∈F2m×F2m\{(0,0)}

L(Fλ,µ) ≤ 2m+3.

Therefore, the nonlinearity of F is

N (F ) = 22m−1 − 1
2L(F ) ≥ 22m−1 − 1

22m+3 = 22m−1 −2m+2.
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