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Abstract— This paper explores the application of vision-based 
system identification techniques in quadrotor modeling and 
control. Through experiments and analysis, we address the 
complexities and limitations of quadrotor modeling, particularly 
in relation to thrust and drag coefficients. Grey-box modeling is 
employed to mitigate uncertainties, and the effectiveness of an 
onboard vision system is evaluated. An LQR controller is designed 
based on a system identification model using data from the 
onboard vision system. The results demonstrate consistent 
performance between the models, validating the efficacy of vision-
based system identification. This study highlights the potential of 
vision-based techniques in enhancing quadrotor modeling and 
control, contributing to improved performance and operational 
capabilities. Our findings provide insights into the usability and 
consistency of these techniques, paving the way for future research 
in quadrotor performance enhancement, fault detection, and 
decision-making processes. 
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I. INTRODUCTION 
Quadrotor modeling is inherently challenging due to its highly 
nonlinear structure. The complex dynamics involved, such as 
aerodynamic interactions, variable thrust-to-weight ratio, and 
nontrivial coupling effects, make it difficult to accurately 
represent the system mathematically. Conventional modeling 
techniques often struggle to capture the intricacies of 
quadrotors, leading to suboptimal control performance. To 
address these challenges, advanced indoor motion tracking 
systems have emerged as a preferred approach for quadrotor 
modeling [1][2]. These systems utilize vision-based techniques, 
such as cameras and markers, to track the quadrotor's motion 
with high precision and accuracy [3][4]. By leveraging visual 
information, these systems can provide valuable data for system 
identification, enabling more accurate and reliable modeling of 
the quadrotor dynamics. The utilization of vision-based 
techniques opens up new possibilities for enhancing quadrotor 
modeling and control strategies. 
System identification characterizes dynamic behavior of 
nonlinear systems like quadrotors using observed input-output 
data. It estimates mathematical models that describe the 
relationships between system inputs and outputs. The main 
purpose is to gain insights into the underlying dynamics and 
unknown parameters of the system which provide better 
understanding of system behavior [5], design effective control 
strategies [6], and making predictions about its future 
performance [7].  
In recent years, advancements in quadrotor modeling through 
system identification techniques have emerged. State-of-the-art 
studies employ advanced algorithms and data-driven 

approaches to accurately capture the quadrotor's dynamics. 
Utilizing inputs and outputs like motor speeds, control inputs, 
and position measurements, these studies estimate high-fidelity 
models that represent the quadrotor's behavior. These studies 
have explored various approaches, including parameter 
estimation [8][9], model structure selection [10], and nonlinear 
system identification methods [11], to capture the intricate 
dynamics of quadrotors. Most quadrotor modeling studies 
using system identification techniques have focused on 
advanced motion-tracking systems rather than vision-based 
approaches. Motion tracking systems like GPS or motion 
capture provide accurate data for system identification, 
enabling precise modeling of quadrotor dynamics. While there 
have been advancements in vision-based system identification 
techniques, studies specifically targeting quadrotor modeling 
using vision-based methods are limited. Therefore, further 
research is needed to explore the potential of vision-based 
system identification for quadrotor modeling. 
In this article, our goal is to explore the application of vision-
based system identification techniques in quadrotor modeling. 
Initially, we consider a known white-box model, but due to 
uncertainties in thrust and drag coefficients under different 
environmental conditions, we employ grey-box modeling. 
Carefully selecting input and output parameters, we highlight 
the significance of these coefficients in quadrotor modeling. 
We choose a suitable controller for performance comparison 
and conduct experiments to identify the black-box system 
model using data from the onboard camera and marker system. 
The results of these models, along with experimental flight 
data, are compared in a MATLAB-Simulink environment. Our 
contributions are summarized as follows: 

• Proposed a method to evaluate onboard vision system 
usability using system identification techniques. 

• Detailed the process of obtaining the quadrotor's state 
space model through grey-box identification and RLS 
parameter estimation for LQR controller design. 

• Distinguished between control input and rotor angular 
velocities in quadrotor system modeling. 

• Highlighted the impact of thrust and drag coefficients 
on quadrotor modeling. 

The following parts of this paper is organized as Section II 
where the methodology of the study shared by following 
quadrotor modeling, controller design, and system 
identification process titles, the section III where the obtained 
experimental results are compared and discussed, and finally 
section IV where the proposed approach and highlighted ideas 
are concluded. 



II. METHODOLOGY 
The black-box quadrotor model's consistency can be assessed 
by comparing its performance to that of the grey-box system 
model under the control of an identical controller. This 
comparison investigates the usability and accuracy of the 
onboard sensing system used in the black-box modeling 
process. 

A. Quadrotor Modeling 
The quadrotor system's underactuated and nonlinear nature 
poses challenges. Despite having only four control inputs tied 
to motor speeds, quadrotors exhibit six degrees of freedom 
involving three translational and three rotational axes. This 
complexity arises when the quadrotor moves solely on the 
vertical axis, affecting attitude states. However, controlling all 
six degrees of freedom using just four inputs (thrust, roll angle, 
thrust angle, and rotor speed difference) is not feasible. 
Additional control inputs are needed to command the remaining 
axes for simultaneous control of all six degrees of freedom, 
including vertical movement, roll, pitch, and yaw. 
Assumptions are made to simplify the equations of motion and 
address external and structural disturbances impacting system 
dynamics [12][13]. Order reduction techniques can be used to 
handle the complexity and nonlinearity of the system's 12 
control states, including positions, orientation, rotational 
speeds, and linear accelerations. Assumptions regarding the 
rigid and symmetrical structure of the quadrotor and neglecting 
blade flexibility are necessary in formulating the systemic 
equations for quadrotor modeling [14]. The thrust and drag of 
each motor should be considered proportional to the square of 
the motor velocity [15]. Simplifications in the modeling process 
can be achieved by disregarding external disturbances. 
After making these assumptions, the equation of motion for 
quadrotors can be derived through sub-analyses, including 
translational kinematics, rotational kinematics, and electric-
rotor analysis. Since quadrotors are electro-mechanical systems 
with four electric rotors, these analyses incorporate electro-
mechanical considerations. In translational kinematics [16], a 
rotation matrix should be defined to transform variables 
between global and local coordinate axes:  

𝑅𝑅𝑏𝑏𝐺𝐺 = �
cψcθ cψsφsθ − cφsψ cφcψsθ + sφsψ
cθsψ sψsφsθ + cφcψ sψcφsθ − sφcψ
−sφ sφcθ cθcφ

�   (1) 

where φ,θ,ψ are roll, pitch and yaw angle.  
In addition, the rotational kinematics [17] play a crucial role in 
the quadrotor modeling process. The kinematics explain the 
relationship between body frame angular rates and Euler angles 
defined within coordinate frames. Rotational speeds (p, q, r) are 
calculated using this rotational kinematics. Thus, addressing 
rotational kinematics is as crucial as considering translational 
kinematics for accurate quadrotor system modeling. 
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Once the kinematics computations are complete, the next 
crucial step is to consider the motion equations governing the 

behavior of the motors in the quadrotor system. As quadrotors 
fall under the category of electro-mechanical systems [18], it is 
important to analyze the power, torque, and velocity equations 
in terms of current and voltage. Various factors come into play 
during motor operation, including motor torque (𝜏𝜏) , motor 
power (𝑃𝑃𝑚𝑚), torque constant (𝐾𝐾𝜏𝜏), input current (𝐼𝐼), current 
without load (𝐼𝐼0), voltage (𝑉𝑉), motor resistance (𝑅𝑅𝑚𝑚), back 
EMF coefficient (𝐾𝐾𝑣𝑣), and angular velocity (𝜔𝜔) of the motors. 
Accounting for these factors is essential in accurately modeling 
the dynamics of the quadrotor's motors. 

𝑃𝑃𝑚𝑚 = (τ+Kτ I0)(Rt I0Rm+τRm+KτKvω)
𝐾𝐾𝜏𝜏2

                 (3) 

In addition to the mentioned computations, another crucial 
assumption must be made regarding the quadrotor's behavior. 
The quadrotor's stability is compromised and its power 
consumption and motor performance are directly affected when 
the required current changes during movements other than 
hovering. Therefore, these calculations should be performed 
considering an optimal usage style, particularly the hover 
position. Moreover, it is important to incorporate the physical 
specifications of the quadrotor and environmental effects 
[12][13], such as air density, into the motion equations. At this 
stage, the drag force (𝐹𝐹𝑑𝑑) , drag coefficients (𝐾𝐾𝑑𝑑) and thrust 
coefficient (𝐾𝐾𝑇𝑇) play a significant role and must be accurately 
determined to obtain a proper model. These coefficients are 
essential in capturing the dynamics of the quadrotor accurately. 
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In the literature, various methods have been proposed to 
estimate the drag [19] and thrust [20] coefficients. While 
numerical approximations are available, the most precise values 
are obtained through experimental tests. The following steps 
outline the procedure for conducting these experiments: 

1) Thrust Coefficient Effect 
The ratio between the square of the engine speed and the 
resulting thrust force which is also called as thrust coefficient 
(𝐾𝐾𝑇𝑇), can be determined by equation of motion when quadrotor 
is in a hover position. In hover position the thrust force (𝑇𝑇) can 
be written in terms of propeller diameter (𝐷𝐷), linear velocity of 
the propellers, Δ𝑣𝑣  is the velocity of air accelerated by the 
propellers which is generally assumed as equal to 2𝑣𝑣, and 𝜌𝜌 is 
the air density that is assumed as 1.225𝑘𝑘𝑚𝑚/𝑚𝑚3 [21].  

𝑇𝑇 = 𝜋𝜋
4
𝐷𝐷2𝜌𝜌𝑣𝑣Δ𝑣𝑣                                    (5) 

Then the thrust coefficient can be found from:  
𝑇𝑇 = 𝐾𝐾𝑇𝑇𝜔𝜔2                                        (6) 

By following these steps, the thrust force of the utilized 
quadrotor is computed as: 

𝐾𝐾𝑇𝑇 = 𝑇𝑇
𝜔𝜔2 = 105.0588𝑁𝑁

2.0944𝑒𝑒+03𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠 
= 2.3950𝑒𝑒 − 05            (7) 

2) Drag Coefficient Effect  
The drag force, also referred to as air resistance, is generated 
when air particles are pushed by the propellers of the quadrotor. 
This force acts in the opposite direction to the UAV's movement 



and is influenced by factors such as air density, propeller 
characteristics, and engine rotation speed. Although there are 
operational differences between the thrust force and drag force, 
mathematically, the only distinction lies in the coefficients they 
are multiplied by.  
To determine the drag coefficient, a test bench is typically 
required; however, analytical methods [15] and system 
identification techniques can also be utilized to converge or 
estimate this value. In our experiments, we estimated the drag 
coefficient as b=6.8429e-07.  

 
Fig. 1. Quadrotor Motion without Drag Coefficient 

The drag and thrust coefficients play a crucial role in 
determining the dynamics of the quadrotor. Numerous 
publications suggest that the drag coefficient can be disregarded 
in calculations due to its relatively small value. In our 
experimental investigations, we observed that excluding the 
drag coefficient did not adversely affect the control of position, 
roll, and pitch. However, it is important to note that in the 𝑈𝑈4 
equation, the drag coefficient is utilized to determine the yaw 
moment. Consequently, neglecting this coefficient may result 
in continuous rotation around the yaw axis, even if the 
quadrotor achieves the desired position and maintains hover. 
The findings from our experiments conducted in this context 
corroborate this statement. 
Once the translational and rotational dynamics, accounting for 
aerodynamic effects and motor torques, are derived, it becomes 
necessary to expand the calculations to include gyroscopic 
effects and the torque exerted on the roll, pitch, and yaw axes. 
This extension allows for a more comprehensive understanding 
of the quadrotor's behavior and dynamics. When all these 
computations solve in a line, the equation of the motion for a 
quadrotor can be obtained as: 
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where 𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧 is quadrotor body moment of inertia in all axes, 𝐽𝐽𝑟𝑟 
is rotor moment of inertia, 𝑙𝑙 is length of the quadrotor arms, 𝑚𝑚 
is gravitational acceleration, and 𝐹𝐹𝑔𝑔,𝐹𝐹𝑇𝑇𝐺𝐺 ,  and 𝐹𝐹𝑇𝑇𝑏𝑏  are gravity 
force, total thrust force in the global frame, and body frame 
respectively [22].    
As it can be seen from the aforementioned steps, the quadrotor 
modeling is pretty challenging operation that needs many 

assumptions. Therefore, the obtained models do not always 
fully become compatible with actual systems.  

B. Controller Desing 
To control the grey-box and black-box systems in a simulated 
environment, linear controllers (PID and LQR) were designed 
based on the known model of the grey-box system. Experiments 
were conducted to construct both state space and transfer 
function models using system identification techniques, 
allowing estimation of unknown parameters within the grey-
box system. The appropriate Q and R values for the LQR 
controller were determined using the state space model. 
Additionally, a multi-PID controller was applied to the transfer 
function model to compare the resulting positional outputs. 

1) LQR Controller Design 
System identification methods offer various approaches to 
estimate missing parameters of a system or controller based on 
the available data. In cases where only partial data is known, 
online estimation techniques like RLS (Recursive Least 
Squares) and Gradient Descent can be used. RLS, with its 
forgetting factor, provides better parameter estimation results, 
while Gradient Descent is more effective in reducing error to a 
desired level. Another model type, known as Model Reference 
Adaptive Control (MRAC), prioritizes performance over 
parameter estimation in tracking or regulation tasks. These 
approaches are useful for online parameter estimation without 
access to the full dataset. In the experiments conducted, state 
space matrices based on n4sid were obtained since all the data 
is available at this stage. 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝐴𝐴𝑑𝑑(𝑑𝑑) + 𝐵𝐵𝐵𝐵(𝑑𝑑) + 𝐾𝐾𝑒𝑒(𝑑𝑑)                    (9) 
𝑦𝑦(𝑑𝑑) = 𝐶𝐶𝑑𝑑(𝑑𝑑) + 𝐷𝐷𝐵𝐵(𝑑𝑑) + 𝑒𝑒(𝑑𝑑)                     (10) 

During the process, due to the complexity of analyzing 24 
transfer functions between 4 inputs and 6 outputs, a grey-box 
model of the quadrotor is designed. System identification 
techniques are implemented to determine the state matrices of 
the grey-box model for the quadrotor. The LQR controller 
requires the Q and R parameters, along with the states. These 
parameters, known as performance matrices, determine the 
trade-off between energy consumption and system 
performance. The Q matrix, representing performance effort, is 
assigned a high value for critical system performance without 
concern for energy consumption. Alternatively, when energy 
consumption is equally important as system performance, the 
coefficients R and Q are chosen to be close to each other, 
typically between 0 and 1. To achieve the desired outcome, the 
Q and R parameters were adjusted multiple times until Q=1 and 
R=0.001 were determined. By utilizing the states and these 
parameter values, the feedback gain 𝐾𝐾𝑓𝑓 can be calculated using 
the relevant MATLAB command:  

�𝐾𝐾𝑓𝑓𝑆𝑆𝑆𝑆� = 𝑑𝑑𝑙𝑙𝑞𝑞𝑟𝑟𝑦𝑦(𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝑄𝑄,𝑅𝑅)                 (11) 
Moreover, the reference gain 𝐾𝐾𝑟𝑟  can be computed by using the 
expression below:  

𝐾𝐾𝑟𝑟 = (𝐵𝐵𝑇𝑇𝑆𝑆𝐵𝐵 + 𝑅𝑅)−1 𝐵𝐵𝑇𝑇   �𝐼𝐼 − �𝐴𝐴 − 𝐵𝐵𝐾𝐾𝑓𝑓   �𝑇𝑇  �
−1

 𝐶𝐶𝑇𝑇 𝑄𝑄   (12) 
From these equalities, the reference (𝐾𝐾𝑟𝑟 ) and feedback (𝐾𝐾𝑓𝑓 ) 
gains are computed. 



2) PID Controller Design 
The PID control method minimizes deviation between desired 
and actual values of the plant. For the highly nonlinear 
quadrotor system, separate controllers are designed for position 
and attitude control. These controllers are independent but have 
interdependent parameters. To change the quadrotor's position, 
different torques are applied to the motors, which keeps the 
quadrotor oriented on the pitch and roll axes for movements in 
the forward-backward or right-left directions. This relationship 
between motion and attitude stabilization means that attitude 
control parameters affect the quadrotor's position. Therefore, 
it's crucial for position control that these parameters quickly 
reach desired values. Placing the position control block in the 
outer loop and the attitude and altitude control block in the inner 
loop enhances the control scheme, resulting in a more robust 
diagram. In the conducted experiments, a total of six PID 
controllers were employed to regulate both position and attitude 
errors. The equations derived for this purpose are as follows: 
The thrust force 𝑈𝑈1 is determined based on the errors in the x, 
y, and z positions, whereas the attitude parameter errors are 
utilized to compute the control inputs 𝑈𝑈2, 𝑈𝑈3, and 𝑈𝑈4. 

𝑈𝑈1  =  (𝑚𝑚 + 𝐾𝐾𝑧𝑧,𝐷𝐷(𝑧𝑧𝑑𝑑  − 𝑧𝑧) + 𝐾𝐾𝑧𝑧,𝑃𝑃(𝑧𝑧𝑑𝑑  − 𝑧𝑧))𝑚𝑚/(𝐶𝐶𝜙𝜙𝐶𝐶𝜃𝜃 )     (13) 
𝑈𝑈2  =  �𝐾𝐾𝜙𝜙,𝐷𝐷(𝜙𝜙𝑑𝑑  − 𝜙𝜙) + 𝐾𝐾𝜙𝜙,𝑃𝑃(𝜙𝜙𝑑𝑑  −𝜙𝜙)� 𝐽𝐽𝑥𝑥𝑥𝑥              (14) 
𝑈𝑈3  =  �𝐾𝐾𝜃𝜃,𝐷𝐷(𝜃𝜃𝑑𝑑  − 𝜃𝜃) + 𝐾𝐾𝜃𝜃,𝑃𝑃(𝜃𝜃𝑑𝑑  − 𝜃𝜃)� 𝐽𝐽𝑦𝑦𝑦𝑦              (15) 

𝑈𝑈4  =  �𝐾𝐾𝜓𝜓,𝐷𝐷(𝜓𝜓𝑑𝑑   − 𝜓𝜓) + 𝐾𝐾𝜓𝜓,𝑃𝑃(𝜓𝜓𝑑𝑑  −𝜓𝜓)� 𝐽𝐽𝑧𝑧𝑧𝑧             (16) 

where 𝐾𝐾𝑟𝑟𝑥𝑥𝑖𝑖𝑠𝑠,𝑃𝑃𝑃𝑃𝐷𝐷 𝑡𝑡𝑦𝑦𝑡𝑡𝑒𝑒  respresents the PID gains, and 
{𝑧𝑧,𝜙𝜙, 𝜃𝜃,𝜓𝜓}𝑑𝑑 terms show the desired values. The controller for 
the x, y position comes from the error dynamics of outer loop:  

�̈�𝑋 =  (𝐾𝐾𝑥𝑥,𝑃𝑃 + 𝐾𝐾𝑥𝑥,𝑃𝑃/𝑠𝑠)(𝑑𝑑𝑑𝑑  − 𝑑𝑑)                       (17) 
�̈�𝑌 =  (𝐾𝐾𝑦𝑦,𝑃𝑃 + 𝐾𝐾𝑦𝑦,𝑃𝑃/𝑠𝑠)(𝑦𝑦𝑑𝑑  − 𝑦𝑦)                    (18) 

Based on the error dynamics, the PID controllers are 
implemented in the given equations and their gains are tuned 
using Simulink Auto Tuner. Finally, the LQR and PID 
controllers are applied to the grey-box nonlinear model of the 
quadrotor, and their performances are compared under the same 
input values. As it can be seen from the following figure the 
designed LQR controller outperformed the PID controller by 
considering the state space matrices of the model, which 
capture the characteristics of the nonlinear system. 
Consequently, the LQR controller is selected to compare the 
performance of the grey-box and black-box systems in the next 
section. 

 
Fig. 2. Comparison of LQR and PID Controller on Position Control 

C. Modeling with System Identification 
System identification techniques play a crucial role in 
understanding, analyzing, and controlling dynamic systems, 
leading to enhanced system performance, fault detection, and 
informed decision-making, especially in situations where 
system details and models are not sufficiently clear. These 
techniques rely on input-output data to provide accurate models 
or estimate parameters that capture the system's characteristics. 
Therefore, the quality of the data used for system identification 
is crucial for consistent model accuracy. 
In the conducted experiments, the quadrotor's position data was 
obtained from the onboard vision system, while the attitude data 
was obtained from the onboard IMU sensor. As for the choice 
of inputs, the angular velocities of the motors and the control 
inputs derived from angular velocities, as well as other 
numerical values such as motor arm length, thrust, and drag 
coefficients, were considered as possible options. By 
employing system identification techniques, the unknown or 
challenging-to-compute parameters like drag (𝑏𝑏)  and thrust 
coefficients (𝐾𝐾𝑇𝑇 ) can be estimated, as demonstrated by the 
equations below. 

𝑈𝑈1  =  𝐾𝐾𝑇𝑇(𝜔𝜔12  + 𝜔𝜔2
2  + 𝜔𝜔3

2  + 𝜔𝜔42)                (19) 
𝑈𝑈2  =  𝑙𝑙𝐾𝐾𝑇𝑇(−𝜔𝜔2

2  + 𝜔𝜔42)                        (20) 
𝑈𝑈3  =  𝑙𝑙𝐾𝐾𝑇𝑇(−𝜔𝜔12  + 𝜔𝜔3

2)                        (21) 
𝑈𝑈4  =  𝑏𝑏(−𝜔𝜔12  + 𝜔𝜔2

2  − 𝜔𝜔3
2  + 𝜔𝜔42 )               (22) 

In this case, two scenarios were examined: when the input is 
selected as the angular velocities of the motors, and when the 
input is chosen as the control inputs with pre-known thrust and 
drag coefficients. The performance of the system responses was 
thoroughly evaluated, and the results clearly indicated that the 
estimated quadrotor model, utilizing angular velocities as 
inputs, yielded more consistent outcomes compared to the 
system model using control inputs. Therefore, the angular 
velocities of the motors are selected as input during the system 
identification process. 

 
Fig. 3. Comparative Input Type Selection Effect on System Modeling 

As mentioned in the previous section, where controller design 
was discussed, both transfer function and state space models of 
the grey-box system have been obtained and utilized for 
comparing controller performance. Considering the decision 
made in the previous section to evaluate simulation 
performance using the LQR controller, it has been determined 
that the state space model obtained from black-box system 
modeling process, is employed in the Simulink diagram. 



In the scenario, the quadrotor hovers at a desired location one 
meter away in the x, y, and z directions. Data collection 
involves using a 3D-printed component and a mirror, enabling 
the quadrotor's onboard camera to monitor a ground marker. 
Attitude data is measured with the quadrotor's onboard IMU 
sensor. The quadrotor's motor speeds are recorded during 
motion towards the target position, and position and orientation 
data are obtained using the ArUco marker method and the 
onboard IMU sensor. The collected data, including position and 
attitude information, is then input into the system identification 
toolbox. 

 
Fig. 4. During Flight Data Collection 

In the experiments, attitude data was obtained from the IMU 
sensor, position data was collected using the onboard vision 
system with a ground marker, and instant motor velocities were 
recorded using the quadrotor's SDK. A total of 49,939 lines of 
input-output data were collected with a sampling time of 0.001 
seconds over 50 seconds. The data were divided into 80% for 
estimation and 20% for validation during system identification. 
Both the black-box system estimated through system 
identification and the grey-box system designed in the 
simulation environment were subjected to identical inputs for 
performance comparison. 
 

 
Fig. 5. Grey-box and Black-box Model Comparison with Same Input Signals 
and Same Controller 

III. RESULTS AND DISCUSSION  
In this paper, grey-box and black-box system models were 
obtained using system identification techniques in MATLAB 
and Simulink. The LQR controller, which performed well in the 
grey-box model, was applied to control the black-box model 
derived from onboard vision system data. Both models were 
subjected to the same input and controller effects, and their 
responses were compared with experimental data. 
The results show consistent performance among the black-box 
model, grey-box model, and experimental data from the 
onboard vision system, confirming the successful functioning 
of the camera and marker system. This instills confidence in the 
accuracy and reliability of the black-box model obtained 
through system identification. The consistent results further 
validate the effectiveness of system identification and affirm 
the functionality of the onboard camera and marker system. 
The successful integration of the LQR controller with the black-
box model highlights its compatibility and adaptability across 
different system models, showcasing its versatility and 
robustness as an effective control method. Overall, the 
comparative analysis between the grey-box and black-box 
models, along with the experimental data, demonstrates the 
reliability and effectiveness of the onboard vision system data 
in accurately representing the system dynamics. 
.   

 
Fig. 6. Comparison of Position and Attitude Responses 



IV. CONCLUSION 
In conclusion, this article explored the application of vision-
based system identification techniques in quadrotor modeling 
and control. The challenges associated with quadrotor 
modeling were identified, including the complexity of 
numerical methods and the limitations caused by assumptions. 
Future research should focus on developing more efficient 
numerical methods and sophisticated modeling techniques to 
improve quadrotor modeling. 
One of the main challenges in quadrotor modeling is the 
complexity of numerical methods. The motion equations of a 
quadrotor involve nonlinear dynamics and aerodynamic effects, 
which can be computationally intensive to solve accurately. 
Future studies can focus on developing more efficient and 
accurate numerical methods to improve quadrotor modeling. 
Another challenge lies in the assumptions made during 
quadrotor modeling. These assumptions simplify the model but 
may introduce limitations in representing the true dynamics of 
the system. Future research can explore more sophisticated 
modeling techniques that consider a broader range of factors, 
such as wind disturbances, payload variations, and 
nonlinearities, to improve the fidelity of quadrotor models. 
Uncertainties in thrust and drag coefficients were addressed 
using grey-box modeling, and further research can refine this 
approach and explore additional uncertainty quantification 
techniques. Our study validated the effectiveness of vision-
based system identification through the consistent performance 
of black-box and grey-box models using onboard vision system 
data. However, future studies should investigate alternative 
vision-based techniques, such as deep learning-based methods, 
for more accurate and robust quadrotor modeling and control. 
Overall, our research demonstrates the potential of vision-based 
system identification techniques in enhancing quadrotor 
modeling and control. By integrating onboard vision system 
data, we achieved reliable representations of quadrotor 
dynamics, contributing to improved system modeling and 
advancing quadrotor performance. Future studies can further 
explore and utilize these techniques to enhance quadrotor 
performance, fault detection, and decision-making processes. 
Additionally, addressing challenges related to numerical 
complexity, model assumptions, and uncertainty quantification 
will be crucial for improving the accuracy and fidelity of 
quadrotor models. 
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