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We prove local results on the p-adic density of elliptic curves over
Qp with different reduction types, together with global results on
densities of elliptic curves over Q with specified reduction types at
one or more (including infinitely many) primes. These global results
include: the density of integral Weierstrass equations which are
minimal models of semistable elliptic curves over Q (that is, ellip-
tic curves with square-free conductor) is 1/ζ(2) ≈ 60.79%, the same
as the density of square-free integers; the density of semistable el-
liptic curves over Q is ζ(10)/ζ(2) ≈ 60.85%; the density of inte-
gral Weierstrass equations which have square-free discriminant is
∏

p

(

1− 2

p2 + 1

p3

)

≈ 42.89%, which is the same (except for a dif-

ferent factor at the prime 2) as the density of monic integral cubic
polynomials with square-free discriminant (and agrees with a 2013
result of Baier and Browning for short Weierstrass equations); and
the density of elliptic curves over Q with square-free minimal dis-

criminant is ζ(10)
∏

p

(

1− 2

p2 + 1

p3

)

≈ 42.93%.

The local results derive from a detailed analysis of Tate’s Algo-
rithm, while the global ones are obtained through the use of the
Ekedahl Sieve, as developed by Poonen, Stoll, and Bhargava.
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1. Introduction

In this paper we first study purely local results on the p-adic density of
elliptic curves over Qp with different reduction types, and then apply these,
using a version of the Ekedahl Sieve, to establish several global results on
densities of elliptic curves over Q.

In the local setting, we use Tate’s Algorithm [29] to determine in
Section 2 the local density of Weierstrass equations having each possi-
ble reduction type. For example, the proportion of Weierstrass equations
over Zp which have good reduction (at p) is 1− 1/p, those with re-
duction of type Im (respectively I∗m) have density (p− 1)2/pm+2 (respec-
tively (p− 1)2/pm+7), and the density of elliptic curves over Qp which are
semistable is (1− p−2)/(1− p−10). See Propositions 2.2 and 2.5 for details.
Here we distinguish between the set of local integral Weierstrass equations
with some property, and the larger set of those which may not be minimal
models but define elliptic curves whose minimal model has the property.
For example, the density of integral Weierstrass equations defining elliptic
curves with good reduction is (1− p−1)/(1− p−10), which is greater than
the density 1− p−1 of equations which are themselves minimal models of
curves with good reduction, after allowing for non-minimal models, as the
local density of non-minimal Weierstrass equations is p−10.

We show that the local densities of minimal Weierstrass equations with
prime conductor and prime discriminant are, respectively, (p− 1)/p2 and
(p− 1)2/p3.

The local results mentioned so far all generalise immediately to any p-
adic field, replacing p in each formula with the cardinality of the residue
field.

Further local results over Qp are obtained in Section 5, again by study-
ing Tate’s Algorithm in great detail. In Theorems 5.3 and 5.6, we establish
the densities of elliptic curves over Qp with each possible conductor ex-
ponent and each possible Tamagawa number. (Note that Tate’s Algorithm
in [29] includes the determination of both these quantities.) For example
(see Theorem 5.6), among elliptic curves over Q3 with additive reduction
the densities of the possible conductor exponents f3 = 2, 3, 4, 5 are in the
ratio 189 : 366 : 122 : 61 or approximately 25.6% : 49.6% : 16.5% : 8.3%. Ex-
tending these results to general extensions of Qp is not so straightforward,
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as the analysis depends on the precise valuations of certain integers (such
as the coefficients of the discriminant of a long Weierstrass equation).

In order to pass from local results to global statements, we make use of
a version of the Ekedahl Sieve from [16] as developed by Poonen and Stoll in
[25] and further by Bhargava in [6], by Bhargava, Shankar and Wang in [9],
and elsewhere. Provided that certain conditions are met, it is often the case
that global densities may be expressed as a convergent infinite product (over
all primes) of local densities. In order to be able to apply these methods with
some flexibility, we develop them systematically in Section 3.

The global results, for elliptic curves over Q, follow in Section 4.
For a set S of Weierstrass equations with integer coefficients a =
(a1, a2, a3, a4, a6) ∈ Z5, we define the weighted density of S to be

(1) ρk(S) = lim
X→∞

#{a ∈ S | |ai| ≤ Xi}
#{a ∈ Z5 | |ai| ≤ Xi} ,

when this limit exists, where k = (1, 2, 3, 4, 6). (More general weighted densi-
ties will be defined in subsection 3.1 below.) An alternative way of expressing
density results is to define the height of a Weierstrass equation with integer
coefficients a to be

ht(a) = max
i

|ai|1/i,

and then order such equations by height; then we may say that when integral
Weierstrass equations are ordered by height, the proportion which lie in the
set S is ρk(S), whose definition may now be written as

ρk(S) = lim
X→∞

#{a ∈ S | ht(a) ≤ X}
#{a ∈ Z5 | ht(a) ≤ X} .

Each of our results will have two versions, depending on whether we restrict
to Weierstrass equations which are globally minimal, or include all equations.
(Those with zero discriminant, which define singular curves, may always be
ignored as they form a set of measure zero.)

In general, the global density exists and equals the product of the corre-
sponding local densities, provided that the local condition specified at all but
finitely many primes is to have good or multiplicative reduction. We state
here a summary of the results from Section 4, which allow more flexibility
in specifying local conditions at any finite set of primes.
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Theorem 1.1. When ordered by height, the proportion of integral Weier-
strass equations with each of the following properties is as given:

• globally minimal: 1/ζ(10) = 93555/π10 ≈ 99.9%;

• minimal models of semistable elliptic curves: 1/ζ(2) = 6/π2 ≈ 60.8%;

• minimal models of semistable elliptic curves with good reduction at all
the primes in the finite set S: ζ(2)−1

∏

p∈S
p

p+1 ;

• minimal models of elliptic curves with square-free discriminant:

∏

p

(

1− 2

p2
+

1

p3

)

≈ 42.9%.

In each case, the proportion of integral Weierstrass equations which are not
necessarily minimal models of elliptic curves with the stated property may
be obtained by multiplying by ζ(10) ≈ 1.001.

It would be interesting to extend the global results here to number fields
other than Q, which would entail several additional challenges.

1.1. Related work

Our result for the density of integral Weierstrass equations which have
square-free discriminant is—apart from a different local factor at 2—the
same as the density of monic integral cubic polynomials with square-free
discriminant: see the 2016 paper [9] of Bhargava et al., and also Theorem
6.8 in the 2007 paper [1] by Ash, Brakenhoff, and Zarrabi. We note that
this is also in agreement with a result of Baier and Browning in their 2013
paper [3] (see also Baier’s 2016 paper [2]) for short Weierstrass equations
Y 2 = X3 +AX +B with squarefree discriminant, established using quite
different methods.

In their famous 1990 paper [10], Brumer and McGuinness give heuristics
for the number of elliptic curves whose minimal discriminant is less than X,
separating the cases of positive and negative discriminant. In each case the
number is conjectured to be a constant multiple of X5/6 with a constant
which is the value of an elliptic integral divided (in each case) by ζ(10), the
latter to allow for non-minimal discriminants. This was revisited by Watkins
in 2008 in [30], who re-derives the same heuristic estimate, and also discusses
the factor ζ(10). Watkins also gives applications to the distribution of curves
by conductor instead of discriminant, and also to the distribution of odd and
even analytic ranks.
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Some similar results, including local conditions, are given in the 2001
paper [31] of Wong, who defines the height of an elliptic curve over Q to be

htc(E) = max{|c4(E)|1/4, |c6(E)|1/6},

where c4(E), c6(E) are the invariants of a minimal model for E. This is com-
parable with our height: in one direction, standard formulae for c4, c6 imply
that, for E defined by a minimal Weierstrass equation with coefficients a,
we have htc(E) ≪ ht(a). In the other direction, given a pair (c4, c6) which
satisfy Kraus’s conditions from [21], using the formulas in the first author’s
book [12, p. 61] to recover Weierstrass coefficients a from these, one obtains
ht(a) ≪ htc(E). In Theorem 1 of [31], Wong gives asymptotic expansions of
the number of curves of height up to X together with the number which are
semistable, and the number which are semistable and have good reduction
at both 2 and 3. In each case, the leading coefficient gives the value of the
density in our sense. To compare these with our results, we first need to take
into account the density of (c4, c6) pairs which satisfy Kraus’s conditions,
which may easily be seen to be 2−73−3 = 1/3456, and also the minimality
condition which leads to a factor of 1/ζ(10) = 9355/π10 = 35 · 5 · 7 · 11/π10

as in our theorem above. The density given in [31] is a rational multi-
ple of 1/π10, but with a different rational factor. We would also expect,
from our theorem above, that the density for semistable curves should be
multiplied by 1/ζ(2) = 6/π2, and that if in addition we impose the condi-
tion of having good reduction at 2 and 3, the density should be multiplied
by (2/3)(3/4) = 1/2, rather than 7/9 as in [31]. These discrepancies lead to
Wong’s statement that the proportion of semistable curves is 17.9%, com-
pared with our value of 60.85%. We should emphasize that the majority of
Wong’s results in [31] do not depend on precise values of any densities, only
that they exist and are positive.

Over general number fields, not all elliptic curves have global minimal
Weierstrass equations when the class group is non-trivial. In her 2004 pa-
per [4], Bekyel determined the density of elliptic curves defined over any
number field K which have global minimal models to be ζK(C0, 10)/ζK(10),
where ζK(s) is the Dedekind zeta function of K and ζK(C0, s) is the partial
zeta function associated to the trivial ideal class. Of course this equals 1
when the class group is trivial. Note that once again the factor of ζK(10)
appears.

Earlier work of Papadopoulos in [23] uses a close analysis of Tate’s Al-
gorithm similar to our approach in Sections 2 and 5, working over a general
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local field, but not including the quantification of the local densities which
we require.

This paper grew out of independent work of each of the authors: un-
published notes on purely local densities (at arbitrary primes) by Cremona,
and a 2017 preprint [28] on global densities (excluding conditions at the
primes p = 2 and p = 3) by Sadek. After the first version of the current
paper appeared online, we noticed a new preprint [11] by Cho and Jeong,
whose subject matter has some overlap with the current paper, but with
several differences: conditions at the primes 2 and 3 are excluded in [11],
and only conditions at finitely many primes are considered, through the use
of short Weierstrass equations. On the other hand, they consider additional
local conditions we do not, including the condition of having a fixed trace of
Frobenius ap at a prime p of good reduction, and their paper also contains
applications to the distribution of analytic ranks.

2. Local densities I

2.1. Weierstrass equations and coordinate transformations

For any integral domain R denote by

W(R) = R5 = {a = (a1, a2, a3, a4, a6)|ai ∈ R}

the set of all 5-tuples of coefficients in R of plane cubic curves Ea in long
Weierstrass form over R:

Ea : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

Denote by ∆(a) the discriminant of Ea; when ∆(a) is non-zero, Ea is a
model for an elliptic curve defined over the fraction field of R; otherwise, we
say that a is singular. Below we will also refer to the standard associated
quantities b2, b4, b6, b8, c4 and c6; together with ∆ these may all be viewed
as elements of Z[a1, a2, a3, a4, a6].

The translation group T (R) = {τ(r, s, t) | r, s, t ∈ R} acts on W(R) in
the standard way, with τ(r, s, t) induced by the coordinate substitutions
(X,Y ) 7→ (X + r, Y + sX + t); we call elements of T (R) translations.

In the case R = Zp, we make further definitions of certain subsets of
W(Zp) and subgroups of T (Zp). We denote by v the normalised p-adic val-
uation.
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Given non-negative integers vi for i = 1, 2, 3, 4, 6, define

W(v1, v2, v3, v4, v6) = {a ∈ W(Zp) | v(ai) ≥ vi for i = 1, 2, 3, 4, 6}.

To specify further that v(ai) = vi exactly, we indicate this by writing “=vi”:
for example, W(1, 1, 1, 1,=1). Below we will also need notation for subsets of
these satisfying an additional condition, for example W(1, 1, 1, 2, 2 | v(b2) =
2) and W(1, 1, 1, 2, 2 | v(∆) = 6), whose meaning should be clear.

For e, f, g ≥ 0 we define

Te,f,g = {τ(r, s, t) ∈ T (Zp) : p
e | r, pf | s, pg | t},

which is a subgroup of T (Zp) provided e+ f ≥ g, of index pe+f+g.

2.2. Local densities and Tate’s Algorithm

For each non-singular a ∈ W(Zp), the equation Ea defines an elliptic curve
over Qp. With the usual p-adic measure µ on Zp such that µ(Zp) = 1, we
have µ(W(Zp)) = 1, and for any measurable subset S ⊆ W(Zp) we refer to
µ(S) as the density (or p-adic density) of the associated set of equations Ea,
and also think of µ(S) as the probability that a randomWeierstrass equation
lies in S. Note that the subset of singular a has measure zero, and may be
tacitly ignored.

For example,

(2) µ(W(v1, v2, v3, v4, v6)) = 1/pv1+v2+v3+v4+v6 ,

while if any of the vi is replaced by =vi, then the measure should be multi-
plied by (1− 1/p); so for i = 6,

(3) µ(W(v1, v2, v3, v4,=v6)) = (p− 1)/pv1+v2+v3+v4+v6+1,

and similarly for i = 1, 2, 3, 4.
We write T = T (Zp) for the rest of this section. The action of T on

W(Zp) is measure-preserving and also leaves the discriminant, and c4 and c6,
invariant. Translations induce isomorphisms of elliptic curves (when ∆ ̸= 0).

Given some property or type T of isomorphism classes of elliptic curves
over Qp, we associate a subset WT (Zp) ⊆ W(Zp):

WT (Zp) = {a ∈ W(Zp) | Ea is smooth and has type T},
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and define the density of curves with property T as the p-adic measure of
this set.

Definition 1. The local density ρT (p) of elliptic curves over Qp with type T
is the p-adic measure µ(WT (Zp)) of the associated subset WT (Zp) ⊆ W(Zp):

ρT (p) = µ(WT (Zp)).

In this section p is fixed and we abbreviate: WT = WT (Zp) and ρT =
ρT (p).

The types of interest to us are the following Kodaira types of reduction
of elliptic curves over Qp:

• I0 (good reduction);

• I≥1 (bad multiplicative reduction, of type Im for some m ≥ 1);

• bad additive reduction; with subtypes II, III, IV, II∗, III∗, IV∗, I∗0, I
∗
≥1,

the latter meaning type I∗m for some m ≥ 1.

We call these types finite, since, as we will see below (see Proposition 2.3),
we only need know the coefficients a to finite p-adic precision in order to
determine whether the curve Ea has each of these reduction types, provided
that Ea is a minimal model. Moreover, the condition that Ea is minimal
also only depends on a to finite precision (modulo p6 suffices). Note that I≥1

and I∗≥1, the unions of types Im and I∗m for all m ≥ 1 respectively, are finite
in this sense. However, while for each fixed m it is true that finite p-adic
precision suffices to detect the individual types Im and I∗m, this precision
depends on m. For this reason we do not regard these types as finite, and
for some of our results it will be necessary to consider these together, rather
than individually.

Note that while each model Ea with ∆(a) ̸= 0 defines an elliptic curve
over Qp whose type is well-defined, the set of a ∈ WT (Zp) for which Ea is
itself a minimal model is a strictly smaller subset, with a smaller density,
since scaling (replacing each ai by pniai for some n ≥ 1) does not change the
isomorphism class of Ea. We will relate these two densities.

Define

WM = {a ∈ W(Zp) | Ea is a minimal model},

call a ∈ WM minimal, and setWN to be the complementW(Zp) \WM . This
complement contains the set W(1, 2, 3, 4, 6) of all “trivially non-minimal” a,
satisfying pi | ai for i = 1, 2, 3, 4, 6, which has measure p−16. It is clear that
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the action of T preserves minimality, so T maps both WM and WN to
themselves.

Proposition 2.1.

1) The subgroup of T preserving W(1, 2, 3, 4, 6) is T2,1,3.
2) Each orbit of T on WN contains an element of W(1, 2, 3, 4, 6).

3) µ(WM ) = 1− p−10.

Proof. (1) follows from the standard formulas linking the coefficients a to the
transformed coefficients a

′ after translation by τ(r, s, t) ∈ T ; in case p ≥ 5
this is almost trivial, and it is straightforward to check for p = 2 and p = 3.
See the proof of Theorem 5.3 for details.

(2) follows directly from Tate’s algorithm [29], in which, given any non-
minimal a, one constructs a sequence of translations taking a to some a

′ ∈
W(1, 2, 3, 4, 6).

(3): from (2), since T2,1,3 has index p6 in T , it follows that WN is par-
titioned into p6 disjoint subsets, each a translation of W(1, 2, 3, 4, 6) by an
element of one coset of T2,1,3. Since µ(W(1, 2, 3, 4, 6)) = 1/p16, it follows that
µ(WN ) = p6/p16 = 1/p10 and hence µ(WM ) = 1− 1/p10. □

For each type T , we set WM
T = WT ∩WM , the set of a ∈ W(Zp) for

which Ea is a minimal model of an elliptic curve of type T , and make the
following definition:

Definition 2. The local density ρMT = ρMT (p) of minimal Weierstrass equa-
tions defining elliptic curves over Qp of type T is the p-adic measure of
WM

T :

ρMT = µ(WM
T ) = µ(WT ∩WM ).

Although the properties we consider are invariants of elliptic curves up
to isomorphism over Qp, and not properties of specific models or equations,
we can still determine local densities by studying Weierstrass models, by
relating ρT and ρMT . For example, the model Ea will have bad reduction
modulo p when ∆(a) ≡ 0 (mod p), but the curve over Qp which this model
defines may still have good reduction if the model is non-minimal.

Just as all non-minimal a can be translated into the set W(1, 2, 3, 4, 6),
which is defined by simple valuation conditions on the coefficients, Tate’s
algorithm implies that, for each type T , there is a “base set” BT also defined
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by valuation conditions, such that

a is minimal and of type T ⇐⇒ a has a translate in BT .

In the following proposition and table, we define such a set BT ⊆ W(Zp) for
each finite type T , and give its measure and the subgroup TT ⊆ T which
stabilises it. For example, in the first line of the table for T = I0 (good re-
duction), we have BT = W(0, 0, 0, 0, 0 | v(∆) = 0), since the only condition
required for good reduction apart from integrality (all coefficients have val-
uation ≥ 0) is that the discriminant has valuation zero. This condition is
invariant under all translations, so TI0 = T0,0,0 = T .

Proposition 2.2. For each minimal a ∈ W(Zp) there exists τ ∈ T such
that τ(a) ∈ BT for exactly one of the base sets BT in the following table.
The table also shows the measure µ(BT ), the stabiliser TT and its index, and
the measure ρMT = µ(WM

T ). The last row refers to the set of non-minimal a,
which has density 1/p10, with base set the set of trivially non-minimal a.
The discriminant of the cubic x3 + a2x

2 + a4x+ a6 is denoted1 ∆̃.

T BT µ(BT ) TT [T : TT ] ρMT
I0 W(0, 0, 0, 0, 0 | v(∆) = 0) (p− 1)/p T0,0,0 1 (p− 1)/p
I≥1 W(0, 0, 1, 1, 1 | v(b2) = 0) (p− 1)/p4 T1,0,1 p2 (p− 1)/p2

II W(1, 1, 1, 1,=1) (p− 1)/p6 T1,1,1 p3 (p− 1)/p3

III W(1, 1, 1,=1, 2) (p− 1)/p7 T1,1,1 p3 (p− 1)/p4

IV W(1, 1, 1, 2, 2 | v(b6) = 2) (p− 1)/p8 T1,1,1 p3 (p− 1)/p5

I∗0 W(1, 1, 2, 2, 3 | v(∆̃) = 6) (p− 1)/p10 T1,1,2 p4 (p− 1)/p6

I∗≥1 W(1,=1, 2, 3, 4) (p− 1)/p12 T2,1,2 p5 (p− 1)/p7

IV∗ W(1, 2, 2, 3, 4 | v(b6) = 4) (p− 1)/p13 T2,1,2 p5 (p− 1)/p8

III∗ W(1, 2, 3,=3, 5) (p− 1)/p15 T2,1,3 p6 (p− 1)/p9

II∗ W(1, 2, 3, 4,=5) (p− 1)/p16 T2,1,3 p6 (p− 1)/p10

W(1, 2, 3, 4, 6) 1/p16 T2,1,3 p6

Proof. The conditions defining each basic set BT in the table are equivalent
to the exit conditions in Tate’s algorithm. The density of BT is given by (2)
or (3) when there is no extra condition (such as v(b6) = 2 for type IV); the
extra condition always has the effect of multiplying the density by 1− 1/p.
For type I0 this is Proposition 5.2, while for types I≥1, IV, and IV∗ see (9),
(10), and (11) in Section 5 respectively.

1For p ̸= 2 we have v(∆̃) = v(∆) for a ∈ W(1, 1, 2, 2, 3), but this is not the case
when p = 2.
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The last column is the product of the index [T : TT ] and the measure of
BT , since the subset of a of type T is the disjoint union of [T : TT ] translates
of BT .

The side conditions for types I≥1, IV and IV∗ ensure that a certain
quadratic has distinct roots modulo p, while that for I∗0 ensures that a certain
cubic has distinct roots modulo p. In the algorithm, if the exit condition for
types I0, I≥1, IV, I∗0 and I∗≥1 fails, a translation is required before continuing,
and hence the stabiliser becomes smaller, by index p except in the first step
when the index is p2.

Tate’s Algorithm itself takes an arbitrary a ∈ W(Zp) and applies to it
a sequence of translations, each well-defined up to an element in the next
stabiliser, until it has been transformed into one of the base sets BT , at
which point one concludes that the reduction type is T , or that the equation
was not minimal.

Additional detail will be given in the proof of Theorem 5.3 below. □

The next proposition implies that for each of the finite2 types T , the
condition that a ∈ WM

T only depends on the class of (ai (mod p6)) in
(Zp/p

6Zp)
5. We denote this product by W(Zp/p

6) and the image of a in
W(Zp/p

6) by a(p6); there are p30 classes in W(Zp/p
6), each of measure

1/p30. Similarly for WN .

Proposition 2.3. Let a,a′ ∈ W(Zp) be such that a(p6) = a
′(p6). Then

a ∈ WM ⇐⇒ a
′ ∈ WM ,

and for each finite type T we have

a ∈ WM
T ⇐⇒ a

′ ∈ WM
T .

Proof. This again follows from Tate’s Algorithm. At each step the exit crite-
rion is a test for membership of one of the basis sets BT , which only depends
on a(p6). Also, whenever a coordinate transformation τ(r, s, t) is required,
in each case it is taken from the finite set of cosets of one of the subgroups
Te,f,g. It is clear that the action of T is well-defined on W(Zp/p

6), in the
sense that for each τ ∈ T , a(p6) = a

′(p6) implies τ(a)(p6) = τ(a′)(p6).
It follows that the outcome of the algorithm (up to the point of deter-

mining that the initial a was non-minimal, and excluding the exact index m
for types Im and I∗m) also only depends on the initial value of a(p6). □

2Recall that we do not consider the individual types Im and I∗m as finite.
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Corollary 2.4. For each finite type T ,

ρMT = N(T )/p10

where N(T ) = pk − pk−1 for some integer k with 1 ≤ k ≤ 10, depending on
the type T , such that

#{a ∈ WM
T | 0 ≤ ai < p6 for i = 1, 2, 3, 4, 6} = p20N(T ).

Proof. This follows immediately from the table above. □

The precise index m for types Im and I∗m when m ≥ 1 depends on the
discriminant valuation which can be arbitrarily large, so no fixed p-adic
precision will suffice to determine this value in all cases. However, for later
reference we can determine the densities of these types for each m:

Proposition 2.5. For each m ≥ 1 we have ρMIm = (p− 1)2/pm+2 and ρMI∗
m
=

(p− 1)2/pm+7.

Proof. Consideration of Tate curves shows that ρMIm = p · ρMIm+1
. Explicitly,

in [13, §2.2], the first author proved that if pm | ∆, then there is a transla-
tion of the form τ(r, 0, t) to a Weierstrass model such that pm divides all
of a3, a4, a6, b4, b6, and b8. For such a model we have v(∆) = m ⇐⇒ v(b8) =
m ⇐⇒ v(a6) = m. Hence the relative density of models of type I≥m+1

within those of type I≥m is 1/p. Since
∑

m≥1 ρ
M
Im

= ρMI≥1
= (p− 1)/p2 (see

Proposition 2.2), the first result follows.
For the second result, a careful analysis of Tate’s algorithm (see the

proof of Theorem 5.3 below) again shows that the density is reduced by a
factor of p when m increases by 1, since the criterion for increasing m is
that a certain monic quadratic has a repeated root modulo p, which has
probability 1/p. □

The preceding proof shows that

BIm = W(0, 0,m,m,= m | v(b2) = 0),

with measure (p− 1)2/p3m+2 and stabiliser of index p2m. In Section 5 we
will show that

BI∗m =

{

W(1,=1, k + 1, k + 2, 2k + 2 | v(b6) = 2k + 2) if m = 2k − 1;

W(1,=1, k + 2, k + 2, 2k + 3 | v(b8) = 2k + 4) if m = 2k;

with measure (p− 1)2/p2m+11 and stabiliser of index pm+4.
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Hence we have an explicit upper bound on the p-adic precision to which
we must know a ∈ W(Zp) in order to determine the type of Ea, provided
that a is minimal, for all finite types. This is false without the minimality
condition—that is, we cannot replace the subsets WM

T by WT in Proposi-
tion 2.3—since scaling (replacing each ai by pniai for some n ≥ 1) does not
change the isomorphism class of Ea. Later we will consider a to higher p-
adic precision in order to handle non-minimal models. On the other hand,
for most finite types, lower p-adic precision than a(p6) is required: for ex-
ample, to distinguish between good reduction, multiplicative reduction and
additive reduction of a minimal model only requires knowledge of a (mod p).
However the individual finite types of additive reduction require successively
higher precision, as does the condition of minimality itself, and to treat all
finite types uniformly it is more convenient to work modulo p6.

The two densities ρT and ρMT are related as follows.

Proposition 2.6. For each finite type T ,

ρT =
p10

p10 − 1
ρMT .

Proof. Recall from Proposition 2.1 that the set W(1, 2, 3, 4, 6) of trivially
non-minimal a has measure p−16, and the set WN of all non-minimal a is
the union of p6 translates of W(1, 2, 3, 4, 6) under a set of translations τ
which are coset representatives for T2,1,3 in T .

The scaling map (a1, a2, a3, a4, a6) 7→ (pa1, p
2a2, p

3a3, p
4a4, p

6a6) is a
bijection from WT to WT ∩W(1, 2, 3, 4, 6), so µ(WT ∩W(1, 2, 3, 4, 6)) =
p−16µ(WT ). Hence

µ(WT ∩WN ) = p6µ(WT ∩W(1, 2, 3, 4, 6)) = p−10µ(WT ),

so µ(WT ∩WM ) = (1− p−10)µ(WT ) and hence ρMT = (1− p−10)ρT . □

Writing this relation as ρT = ρMT
∑∞

k=0 p
−10k, we now give an interpre-

tation of each term of the series in terms of the “level of non-minimality”
for a ∈ W(Zp), which we now define.

Definition 3. Let a ∈ W(Zp) with ∆(a) ̸= 0. The level λ(a) of a is defined
by

λ(a) =
1

12
(v(∆(a))− v(∆min(Ea))) ,

where ∆min(Ea) is the discriminant of a minimal model for the elliptic
curve Ea.
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With this definition, a is minimal if and only if λ(a) = 0, and W(Zp)
is the disjoint union of “level sets” Wk = {a ∈ W(Zp) | λ(a) = k}, together
with the set of singular a. Let WT,k = WT ∩Wk.

Proposition 2.7. For each k ≥ 0,

µ(Wk) = (1− p−10)/p10k

and

µ(WT,k) = ρMT /p10k.

Proof. For k = 0 the first statement follows from the table and the second
is by definition, using WM

T = WT,0 and the definition of ρMT . Proceeding by
induction, scaling by p maps Wk to Wk+1 ∩W(1, 2, 3, 4, 6) whose measure
is µ(Wk+1)/p

6. Hence µ(Wk)/p
16 = µ(Wk+1)/p

6, so µ(Wk+1) = µ(Wk)/p
10.

Similarly when we restrict to any fixed finite type T , we obtain µ(WT,k+1) =
µ(WT,k)/p

10. □

This proof implies the following generalisation of the statements above
that minimality of a, and the type of Ea when minimal, only depend on a

(mod p6).

Corollary 2.8. Let k ≥ 0.

1) The class of a (mod p6(k+1)) determines λ(a) exactly if λ(a) ≤ k.

2) When λ(a) ≤ k, the type T of Ea depends only on a (mod p6(k+1)),
and each WT,k is the union of p20N(T ) classes modulo p6(k+1).

For example, when k = 2, knowing a (mod p18) we can distinguish be-
tween the cases λ(a) = 0, λ(a) = 1, λ(a) = 2 or λ(a) ≥ 3, and in all but the
last case can also determine the type of Ea from a (mod p18); but to distin-
guish between λ(a) = 3 and λ(a) ≥ 4 we would need to know a (mod p24).

3. General results relating p-adic densities and

global densities

Our aim is to use the local density results of the previous section to obtain
global density results for integral Weierstrass equations. This is straightfor-
ward if we only impose conditions at finitely many primes, the conclusion
being in general that the global density is given, as one would expect, by
the finite product of the local densities. This remains true when the local
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conditions are genuinely p-adic, and not only given by congruences to fi-
nite powers of each prime. However, when we impose local conditions at all
primes, the passage from local to global densities is considerably more sub-
tle. Some general methods in this direction have been developed, notably the
“Ekedahl Sieve” introduced by Ekedahl in [16], and the approach of Poonen
and Stoll in their paper [25] on the Cassels-Tate pairing on Abelian Varieties
(see also the shorter note [26] by the same authors just on this issue). For
applications to the existence of rational points on hypersurfaces, the results
of Poonen and Voloch in [27] are often applicable, as for example in the case
of plane cubic curves in the paper [7] of the first author with Bhargava and
Fisher.

In the prior work mentioned so far, only uniform densities were used; in
the case of quadrics in n variables, treated by the first author with Bhar-
gava, Fisher, Jones, and Keating in [8], a different probability distribution
was required at the real place, requiring additional analysis there. Further
refinements to the methods may be found in the work of Bhargava, for ex-
ample in [6]. Furthermore, some specific cases not covered by these have
been handled individually, for example in the work of Bhargava such as his
results with Shankar and Wang on square-free discriminants in [9].

The results and approaches of the papers cited cannot easily be applied
directly in our situation, without additional discussion: for example, we need
the flexibility to adjust local conditions at finitely many primes, and to
introduce weights. For this reason, while our account in the rest of this
section is firmly based on this prior work, it is almost self-contained, the main
exception being the proof of the codimension 2 criterion of Proposition 3.5.

3.1. Global densities I: finitely many p-adic conditions

The standard definition of the uniform density of a subset Z ⊆ Zd is as
follows: we define the density of Z to be

ρ(Z) = lim
X→∞

#{a ∈ Z | |ai| ≤ X ∀i}
#{a ∈ Zd | |ai| ≤ X ∀i}

= lim
X→∞

(2X)−d#{a ∈ Z | |ai| ≤ X ∀i},
(4)

if the limit exists. Similarly, we define the upper density ρ(Z) and lower
density ρ(Z), replacing the limit by lim sup or lim inf respectively.
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More generally given any vector of positive real weights k =
(k1, k2, . . . , kd) with sum k =

∑d
i=1 ki, we can define a weighted density

ρk(Z) = lim
X→∞

#{a ∈ Z | |ai| ≤ Xki ∀i}
#{a ∈ Zd | |ai| ≤ Xki ∀i}

= lim
X→∞

2−dX−k#{a ∈ Z | |ai| ≤ Xki ∀i}.
(5)

Note that neither the existence nor the value of this limit is affected if we
scale the weight vector k by any positive real factor. When all the weights
are equal we recover the uniform density as a special case.

We first determine the density of any subset Z ⊆ Zd defined by congru-
ence conditions at a finite set of primes, where it is given by a simple counting
formula not depending on the weights. Let M ≥ 1 and let Σ ⊆ (Z/MZ)d be
an arbitrary subset. One way to define such a set is locally, by choosing a
finite set of primes p, a power pe of each, and a subset Σp ⊆ (Z/peZ)d. Then
set M =

∏

p p
e and Σ =

∏

p|M Σp, where we identify Z/MZ with
∏

p Z/p
eZ

by the Chinese Remainder Theorem.
Given Σ, define Z(M,Σ) = {a ∈ Zd | a (mod M) ∈ Σ}, and denote

its weighted density by ρk(M,Σ) = ρk(Z(M,Σ)) (or simply ρ(M,Σ) =
ρ(Z(M,Σ)) in the case of uniform density).

Proposition 3.1. For all positive weights k = (k1, . . . , kd) and all subsets
Σ ⊆ (Z/MZ)d we have

ρk(M,Σ) =
#Σ

Md
.

In particular, this is independent of k.

Proof. For X > 0, set Z(M,Σ;X) = Z(M,Σ) ∩∏d
i=1[−Xki , Xki ]. For 1 ≤

i ≤ d, set bi = ⌊Xki/M⌋, where, ⌊x⌋ denotes the integer n such that n ≤
x < n+ 1. Then

Mbi ≤ Xki < M(bi + 1),

and the interval [−Xki ,+Xki ] contains between 2bi and 2(bi + 1) complete
sets of residue classes modulo M . Hence the box Zd ∩∏d

i=1[−Xki , Xki ] con-
tains between 2d

∏

bi and 2d
∏

(bi + 1) complete sets of residue classes, each
of which contains #Σ elements of Z(M,Σ). So #Z(M,Σ;X) satisfies

2d#Σ
∏

bi ≤ #Z(M,Σ;X) ≤ 2d#Σ
∏

(bi + 1).

Now
∏

bi is approximately equal to
∏

Xki/M = Xk/Md (where k =
∑d

i=1 ki), so we approximate #Z(M,Σ;X) by 2d#ΣXk/Md, and bound the
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error by noting that
∏

(bi + 1)−∏

bi is a sum of 2d − 1 terms each bounded
above by Xk−min ki/Mn for some n ≤ d− 1. This gives

∣

∣

∣

∣

#Z(M,Σ;X)

2dXk
− #Σ

Md

∣

∣

∣

∣

= O(X−min ki),

with implied constant depending on the weights, M and Σ but not X. The
result follows on letting X → ∞. □

In the uniform case (d = k and all ki = 1), we see from this proof that

#Z(M,Σ;X) =
#Σ

Md
· (2X)d +O(Xd−1).

The sets Z(M,Σ) considered so far are cut out by congruence conditions
at a finite set of primes (those which divide M), each congruence being
modulo some finite power pe. Our next step is to consider sets determined
by a finite number of local p-adic conditions.

Let S be any set of primes (possibly including all primes). We may
impose local p-adic conditions at all p ∈ S by specifying a measurable subset
U ⊆ ∏

p∈S Zd
p. Embedding Z diagonally into

∏

p∈S Zp, this gives a subset

U ∩ Zd of Zd, which we denote Z(U). When S contains all primes we denote
∏

p∈S Zp by Ẑ, and the local conditions are determined by a measurable

subset of Ẑd.
For example, we may take U =

∏

p∈S Up, where for each p ∈ S we have

a measurable subset Up ⊆ Zd
p; we now have

Z(U) = ∩p∈S(Up ∩ Zd) = {a ∈ Zd | a ∈ Up ∀p ∈ S}.

Set

(6) ρk(U) := ρk(Z(U)),

and similarly define the upper and lower densities ρk(U) and ρk(U). The
results which follow relate these densities with the measure µ(U), which in
the special case equals

∏

p∈S µ(Up), and we consider whether the equality

ρk(U) = µ(U) holds. It is easy to show that the inequality

(7) ρk(U) ≤ µ(U)
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always holds, where U denotes the closure of U . See Lemma 1.1 in [16],
where3 Ekedahl defines densities by counting the intersection with [1, X]d

rather than [−X,X]d, but the result is the same.
From now on, we always take U to be a subset of the form

∏

p∈S Up with

Up ⊆ Zd
p measurable, and boundary of measure zero: µ(∂(Up)) = 0. When S

is finite, the density of Z(U) = U ∩ Zd always exists and equals the measure
µ(U).

Proposition 3.2. Let S be a finite set of primes, for each p ∈ S let Up ⊆
Zd
p with µ(∂(Up)) = 0, and set U =

∏

p∈S Up. Then for an arbitrary weight
vector k,

ρk(U) =
∏

p∈S
µ(Up).

Remark. Note that this is essentially contained in the proof by Poonen and
Stoll in Lemma 20 of [25], but there they include a condition at the infinite
place and do not have weights. When the infinite place is included we expect
the density to depend on the weights. By restricting our attention to sets
defined by conditions only at the finite places we obtain a simplification.

Proof. Set M =
∏

p∈S p. For λ ≥ 1, define

Yλ = {a ∈ Zd | (∀p ∈ S)(∃ap ∈ Up) : a ≡ ap (mod pλ)}.

Then ρk(Yλ) = #Σλ/M
dλ by Proposition 3.1, where Σλ is the reduction

modulo Mλ of Yλ, noting that Yλ is a union of complete residue classes
modulo Mλ.

The sets Yλ are nested (Yλ+1 ⊆ Yλ), their intersection is the closure
of Z(U), which has the same measure as Z(U) by our assumption on the
boundary measures. Hence ρk(U) = limλ→∞ ρk(Yλ) = limλ→∞#Σλ/M

dλ =
∏

p µ(Up), where the last equality follows by the Chinese Remainder Theo-
rem and the definition of the p-adic measure. □

3.2. Alternative choices of global density

The results of the previous subsection show that, provided that we only
consider subsets Z ⊆ Zd defined by local conditions at finitely many primes,

3As noted in Remark 4.13(1) of [15], Ekedahl omits the closure, without which
the inequality fails, for example with U = Zd.
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weighted density does not depend on the weight vector, so is the same as
uniform density.

A different independence on the choice of a real probability distribution
of the global form of p-adic density was also noted in [8] by the first au-
thor with Bhargava et al.. Let D be a sufficiently well-behaved4 probability
distribution on Rd, so

∫

Rd D(x)dx = 1. Then for Z ⊆ Zd, define

ρD(Z) = lim
X→∞

∑

a∈Z D(a/X)
∑

a∈Zd D(a/X)
.

To recover our original (unweighted) definition take D = U , the uniform
distribution on the box [−1, 1]d.

It follows from [8, §2] that ρD(Z) is independent of the distribution D.
A similar result (with a similar proof) would hold for an analogous weighted
definition of ρD(Z):

ρD,k(Z) = lim
X→∞

∑

a∈Z D(. . . , ai/X
ki , . . . )

∑

a∈Zd D(. . . , ai/Xki , . . . )
.

For the applications in this paper, we are not concerned with constraints
at the infinite place, so will not need this generality, but it might be useful
in other applications. For example, we could compute the density of elliptic
curves over R with positive and negative discriminant, and hence include a
fixed sign of the discriminant in density results for elliptic curves over Q.
This will depend on the distribution.

3.3. Global densities II: infinitely many p-adic conditions

We will closely follow the form of the Ekedahl Sieve used by Poonen and
Stoll, referring to their paper [25, §9.3] as needed. We find it convenient
to discuss their results in terms of the notion of an admissible family to
encapsulate the critical condition in equation (10) of [25, Lemma 20] but
not given a name there.

Let d ≥ 1, and let U =
∏

Up ⊆ Ẑd be a subset determined by a family of
subsets Up ⊆ Zd

p, one for each rational prime p. As before, we suppose that
each Up is measurable, and assume that the boundaries have measure zero.

4Piecewise smooth and rapidly decaying, in the sense that D(x) and all its partial
derivatives are O(|x|−N ) for all N > 0.
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For each M > 0 define

ZM (U) = {a ∈ Zd | a ∈ Up for some prime p > M}
=

⋃

p>M

(Up ∩ Zd).

For a positive weight vector k, set ρkM (U) = ρk(ZM (U)).

Definition 4. The family U is admissible with respect to k, or k-
admissible, if limM→∞ ρkM (U) = 0.

We will omit k from the notation when all the weights are equal.

Example 1. Let Up = p2Zp for all p. The associated set U =
∏

p Up is ad-
missible.

Proof of admissibility in this example uses the fact that
∑

p µ(Up) con-
verges; however, this is not sufficient for

∏

Up to be admissible. The next
example, where µ(Up) = 0 for all p but still U is not admissible, was shown
to us by Michael Stoll.

Example 2. For n ≥ 1 let pn be the nth prime, and define Upn
= {n},

the singleton set. Then µ(Up) = 0 for all p, but ZM (U) contains all positive
integers n except for the finitely many for which pn ≤ M , so its density for
each M is the same as the density of the set of all positive integers, namely
1/2. So the limit is not zero and U =

∏

Up is not admissible.

It will be useful to have simple sufficient criteria for a family to be
admissible. First we note the following easy consequences of the definition.

Lemma 3.3. 1) Let U ′ =
∏

U ′
p be a second family such that U ′

p = Up for
all but finitely many primes p. Then U is k-admissible if and only if
U ′ is k-admissible, for any weight vector k.

2) Let U ′ =
∏

U ′
p be a second family with U ′ ⊆ U (that is, U ′

p ⊆ Up for
all p). Then k-admissibility of U implies k-admissibility of U ′.

Proof. The first statement holds, since ZM (U) = ZM (U ′) for all M greater
than the largest prime p for which Up ̸= U ′

p; the second is clear, since
ZM (U ′) ⊆ ZM (U). □
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Let S be any set of primes. Define

ρk(U , S) = ρk({a ∈ Zd | a ∈ Up ⇐⇒ p ∈ S}),

the density of the set of integer vectors which lie in the distinguished subset
Up precisely for the primes in S. Taking S to be the set of all primes, we
have ρk(U , S) = ρk(U) as defined in (6). In what follows we will use the
subsets Up to encode conditions to be avoided, so that the density we are
most interested in is ρk(U , ∅), which we hope under certain conditions to
equal

∏

p(1− sp), where sp = µ(Up).
The result from [25] which we will use is the following: for admissible

families, the density exists and equals the measure, so we have the desired
product formula.

Proposition 3.4. Let U =
∏

Up be an admissible family with respect to the
weight vector k, with sp = µ(Up) and µ(∂Up) = 0. Then

∑

p sp converges,
and for every finite set S of primes,

(8) ρk(U , S) =
∏

p∈S
sp

∏

p/∈S
(1− sp).

In particular, the density of the set of a ∈ Zd which do not lie in Up for any
prime p is ρk(U , ∅) = ∏

p(1− sp), and ρk(U , S) = 0 if S is infinite.

Proof. Replacing Up by its complement in Zd
p for p ∈ S gives another ad-

missible family by Lemma 3.3, and the general formula (8) follows from the
same result for this latter family. Hence we may assume that S = ∅.

To ease notation we omit the superscript k, writing ρ for ρk.
Assume that Up = ∅ for all p > M for someM . Let U ′

p be the complement

of Up in Zd
p. Now

ρ(U , ∅) = ρ(
∏

p≤M

U ′
p) =

∏

p≤M

(1− sp),

by Proposition 3.2. This gives (8) since sp = 0 for all p > M .
Hence, we have in general for each M > 0,

ρ(
∏

p≤M

U ′
p) =

∏

p≤M

(1− sp).
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Now Z(
∏

p U
′
p) ⊆ Z(

∏

p≤M U ′
p); the sets Z(

∏

p≤M U ′
p) form a decreasing

nested sequence whose intersection as M → ∞ is Z(
∏

p U
′
p). The comple-

ment is

Z(
∏

p≤M

U ′
p) \ Z(

∏

p

U ′
p)

= {a ∈ Zd | a /∈ Up for all p ≤ M ; a ∈ Up for some p > M}
⊆ ZM (U),

whose density tends to zero by the admissibility condition. Hence

ρ(U , ∅) = ρ(Z(
∏

p

U ′
p)) = lim

M→∞
ρ(

∏

p≤M

U ′
p) = lim

M→∞

∏

p≤M

(1− sp) =
∏

p

(1− sp)

as required. □

Note that it follows from Proposition 3.4 that the density ρk(U , S) is
independent of the weight vector k, being equal to a product which does
not depend on k, provided that U is k-admissible.

Example (Example 1 continued). Proposition 3.4, together with the
admissibility statement of Example 1, implies the well-known result that the
density of the set of square-free integers is 1/ζ(2). Since U =

∏

p2Zp defines
an admissible family, with sp = 1/p2, the density of square-free integers is
ρ(U , ∅) = ∏

p(1− 1/p2) = 1/ζ(2).

Closed subschemes of Zd of codimension at least 2 determine admissible
conditions. The following is the simplest example:

Example 3. The set of coprime pairs (a, b) ∈ Z2 has density 1/ζ(2).

This is a special case (with d = 2, f = X1 and g = X2) of the follow-
ing much more general result of Poonen and Stoll (see [25, Lemma 21]),
which will be crucial for our applications in the next section. Note that the
proof given in [25] simply states that it follows immediately from a result of
Ekedahl (Theorem 1.2 of [16]) applied to the closed subscheme of the affine
scheme Ad

Z
cut out by f = g = 0, making use of the fact that the subscheme

has codimension 2. However, while it is clear that Ekedahl’s theorem im-
plies that the product formula holds in this situation, for our applications
in the next section we need to know that

∏

Up is admissible, so that we
can adjust the p-adic condition at p = 2 and p = 3. It is hard to extract this
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precise statement from Ekedahl’s proof, but the necessary details have been
supplied by Bhargava in [6, Theorem 3.3] which we use instead.

Proposition 3.5. Let f, g ∈ Z[X1, . . . , Xd] be coprime polynomials. Let
U =

∏

Up where

Up = {a ∈ Zd
p | f(a) ≡ g(a) ≡ 0 (mod p)}.

Then U is k-admissible, for all weight vectors k.

Proof. The Z-scheme Y cut out by f = g = 0 has codimension 2. In the case
of uniform weights, we may apply Bhargava’s estimate [6, Theorem 3.3] (with
n = d, k = 2, B = [−1, 1]d, r = X) to see that the cardinality of ZM (U)
is O(Xd/(M logM) +Xd−1), and hence ρM (U) = O(1/(M logM)) which
tends to 0 as M → ∞.

For the general case, we note that (as remarked by Bhargava et al. in
[9, p. 4]), his result [6, Theorem 3.3] also holds in the weighted case. □

Remark. It has been observed by Bhargava (see the remarks on page 4
of [9] by Bhargava et al. for a similar observation) that among families
U =

∏

Up with µ(Up) = O(1/p2), it is necessary to distinguish between those
where Up is defined by two independent “mod p” conditions, as in Proposi-
tion 3.5, and those defined by a single “mod p2” condition. An example of
the latter is to take a single square-free polynomial f ∈ Z[X1, . . . , Xd] and
define Up to be the subset of a ∈ Zd

p where f(a) ≡ 0 (mod p2), in order to

determine the density of the set of a ∈ Zd such that f(a) is square-free. In
the former case, the family is k-admissible for any weights k, but in the
latter case additional work is needed in order to establish k-admissibility for
suitable k and f , to conclude that the global weighted density is the product
of local densities. The example treated in [9], of monic integral polynomials
with square-free discriminant, is of the latter type.

Moreover, as discussed by Bhargava in [6, §1.3], a general result that the
global density exists for all square-free f and is given by the product formula,
is closely related to the abc-conjecture. In [18], Granville proved that the abc-
conjecture implies the result for polynomials in one variable and arbitrary
degree (the case of quadratics is easier, and for cubics was established by
Hooley in [19], these cases being unconditional). In [24], Poonen proves this
also for multivariable polynomials, using an unconditional reduction to the
univariate case.
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The simplest example where we require5 non-uniform weights to estab-
lish k-admissibility is the following. This example is closely related to the
density of monic cubics in Z[X] with square-free discriminant, and we give
details in the following example as a similar technique will be required in the
next section when we consider the density of integral Weierstrass equations
with square-free discriminant.

Example 4. Let S = {(a, b) ∈ Z2 | a3 − b2 is square-free}, cut out by the
local conditions U =

∏

Up where Up = {(a, b) ∈ Z2
p | a3 ≡ b2 (mod p2)}. We

show that U is k-admissible for the weights k = (2, 3), and hence that S has
density given by the product formula

ρk(S) =
∏

p

(

1− 2/p2 + 1/p3
)

.

Write Up as the disjoint union U ′
p ∪ U ′′

p , where U ′
p = pZ2

p and U ′′
p = {(a, b) ∈

Z2
p | p ∤ ab, p2 | a3 − b2}. Set U ′ =

∏

U ′
p and U ′′ =

∏

U ′′
p .

Lemma 3.6. µ(Up) = 2/p2 − 1/p3.

Proof. Clearly µ(U ′
p) = 1/p2. To compute µ(U ′′

p ) it suffices to consider a, b
modulo p2 and note that there is a bijection between {(a, b) ∈ ((Z/p2Z)∗)2 |
a3 = b2} and (Z/p2Z)∗ given by (a, b) 7→ b/a with inverse t 7→ (t2, t3). Hence
µ(U ′′

p ) = ϕ(p2)/p4 = 1/p2 − 1/p3. □

In the language of [9] by Bhargava et al., a3 − b2 is “strongly divisible” by
p2 for (a, b) ∈ U ′

p but only “weakly divisible” for (a, b) ∈ U ′′
p . The proof of k-

admissibility for U ′ =
∏

p Up is easier, and holds for arbitrary weights, while
that for U ′′ =

∏

p U
′′
p is more subtle, and only works when 3k1 ≤ 2k2. The

choice (2, 3) for the weights is natural, considering that the discriminant of
the cubic X3 − 3aX + 2b is 108(a3 − b2). Hence, apart from the conditions
at 2 and 3 requiring adjustment, the density of S would give the density
of monic cubics with square-free discriminant, with weights matching the
natural ones for the coefficients of a monic univariate polynomial. The main
result in [9] gives the density of monic polynomials in Z[X] with square-free
discriminant as the product of local densities, in arbitrary degree, the result
for degree 3 being that the density is 1

2

∏

p≥3(1− 2/p2 − 1/p3), agreeing

with our formula ρ(S) =
∏

p(1− 2/p2 − 1/p3) except for the local density

at 2. In [9], the weights used for monic cubics X3 + a1X
2 + a2X + a3 are

k = (1, 2, 3), consistent with our choice of weights k = (2, 3) for S.

5See, however, the remark at the end of this section.
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In showing that U ′ and U ′′ are admissible, we may ignore the set Z0

of pairs (a, b) ∈ Z2 with a3 = b2 (that is, pairs of the form (t2, t3) for some
t ∈ Z), as well as those for which ab = 0, since these form a subset of density
zero.

We first show that U ′ is admissible, with arbitrary positive weights k1, k2.
(This also follows from Proposition 3.5.) For this we must estimate the
cardinality of the set

⋃

p>M

{(a, b) ∈ pZ2 \ Z0 : |a| ≤ Xk1 , |b| ≤ Xk2},

divide by 4Xk1+k2 and let X → ∞ to obtain an estimate for the tail den-
sity ρM (U ′). The pth set in the union has cardinality O((Xk1/p)(Xk2/p)) =
O(Xk1+k2/p2), and is empty for p > Xmin(k1,k2), so the union has cardinality

O(
∑

M<p≤Xmin(k1,k2)

Xk1+k2/p2).

Dividing by 4Xk1+k2 and letting X → ∞, this is bounded above
by

∑

p>M 1/p2 and hence tends to 0 as M → ∞.
Now we show that U ′′ is k-admissible for k = (2, 3); the same argument

is valid whenever 3k1 ≤ 2k2, but not for equal weights. We estimate the
cardinality of the set

⋃

p>M

{(a, b) ∈ Z2 \ Z0 : |a| ≤ X2, |b| ≤ X3, p ∤ ab, p2 | a3 − b2},

and show that, after dividing by 4X5 and letting X → ∞, the resulting
tail density ρM (U ′′) tends to 0 as M → ∞. The pth set in this union is
empty for p >

√
2X3, since p2 ≤ |a3 − b2| ≤ 2X6. Let p be a prime with

M < p ≤
√
2X3. For each integer a with p ∤ a, the number of solutions b to

the congruence b2 ≡ a3 (mod p2) is either 2 or 0, according to whether a is
a quadratic residue or not modulo p, as it follows from Hensel’s Lemma that
(since p ∤ b) each solution modulo p lifts uniquely to a solution modulo p2.
Since each residue class modulo p2 has 2X3/p2 +O(1) representatives b in
the interval [−X3, X3], the number of pairs (a, b) to be counted (for each a)
is 4X3/p2 +O(1), or zero. Hence the cardinality of the set above is at most

∑

M<p≤
√
2X3

(2X2)(4X3/p2 +O(1)).
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The main term is

8X5
∑

M<p≤
√
2X3

(1/p2),

which after dividing by 4X5 and letting X → ∞ is 2
∑

p>M 1/p2, which
tends to 0 as M → ∞ as required.

Each of the remaining terms is of size O(X2); as the number of terms is
at most π(

√
2X3) = O(X3/ logX) (by the Prime Number Theorem), their

sum is O(X5/ logX). Dividing by 4X5 and letting X → ∞, we see that the
contribution of these error terms is negligible.

If the weights are (k1, k2) with k1/k2 > 2/3, then the total contribution
of the error terms in the last part of the proof is no longer negligible.

Remark. Although the proof we have given here for the density of square-
free values of a3 − b2 does not work with equal weights, the result also holds
in this case, but the proof is considerably deeper. We are grateful to Manjul
Bhargava for explaining this to us.

Instead of a3 − b2 we consider square-free values of −4a3 − 27b2, the
discriminant of the cubic x3 + ax+ b. Embed the space of such cubics with
integer coefficients into the larger space of all binary cubic forms over Z,
on which GL2(Z) acts, leaving the discriminant invariant. In this larger
space, ordering cubic forms by their height (the maximum absolute value
of the coefficients), one can show that the density of those with square-free
discriminant is the expected product of local densities, by showing that the
associated tail densities tend to zero. Finally, the number of solutions to
the Thue equation F (x, y) = 1 for a binary cubic form F over Z is bounded
by 10 (Evertse gave the bound 12 in 1983 in [17], and this was improved
to 10 by Bennett in 2001 in [5]). Hence each GL2(Z)-orbit of binary cubic
forms contains at most 10 with leading coefficient 1, and possibly fewer
with coefficients of the form 1, 0, a, b, so the tail density estimates for binary
cubic forms also apply to square-free discriminants of cubic polynomials
x3 + ax+ b.

4. Global densities for elliptic curves

We now apply the results of the previous section in dimension d = 5, together
with the local densities determined in Section 2, to determine global densities
of integral Weierstrass equations satisfying certain combinations of local
conditions.
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Recall from Section 2 that W(Z) = Z5 is the space of all Weierstrass
equations with coefficients in Z, and now consider elliptic curves over Q de-
fined by long integral Weierstrass equations Ea for a = (a1, a2, a3, a4, a6) ∈
W(Z). In common with other work on density results for elliptic curves, we
use weighted densities with weights

k = (1/12, 2/12, 3/12, 4/12, 6/12) = (1/12, 1/6, 1/4, 1/3, 1/2),

so for X > 0 we define

E(X) = {a ∈ W(Z) | |ai| ≤ Xi/12 for i = 1, 2, 3, 4, 6}.

We have #E(X) ∼ 32X4/3, as the sum of the weights is 4/3.
For any subset U ⊆ W(Z) recall that the (weighted) density ρk(U) of U

was defined (see (5)) as

ρk(U) = lim
X→∞

#E(X) ∩ U

#E(X)
.

By homogeneity, the density is unchanged if we use the weight vec-
tor (1, 2, 3, 4, 6) instead of (1/12, 1/6, 1/4, 1/3, 1/2), as we did in the In-
troduction (1). Since the weight vector will remain fixed throughout this
section, we simplify notation by writing ρ(U) for ρk(U) in what follows. How-
ever, apart from the result about square-free discriminants (Theorem 4.6),
it is not hard to see that the results of this section are independent of the
weights, since we impose no condition at the infinite place and otherwise
rely only on Proposition 3.5.

4.1. Global densities with a condition at a single prime

Fix a prime p. For each local type T (p) of elliptic curves over Qp,
let WT (p)(Z) = WT (p)(Zp) ∩W(Z) and WM

T (p)(Z) = WM
T (p)(Zp) ∩W(Z). The

global density ρZT (p) of type T (p) can now be defined as the density

of WT (p)(Z). There are two versions, the second one including the mini-
mality condition at p.

Definition 5. Set ρZT (p) = ρ(WT (p)(Z)) and ρZMT (p) = ρ(WM
T (p)(Z)).

In words, ρZT (p) is the density of the set of integral Weierstrass equations

defining elliptic curves with reduction type T (p) at the prime p, while ρZMT (p)
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is the density of the set of integral Weierstrass equations which are minimal
at the prime p and models of elliptic curves with reduction type T (p).

These global densities are equal to the corresponding p-adic densities,
both with and without the minimal condition at p:

Theorem 4.1. Let T (p) be one of the finite p-adic types (as listed in Propo-
sition 2.2, depending only on a modulo p6). Then

ρZT (p) = ρT (p)

and

ρZMT (p) = ρMT (p).

Proof. Write T = T (p). The first statement follows from Proposition 3.2,
with Up = WT (Zp) and Uq = W(Zq) for all primes q ̸= p.

By definition we have ρZMT = ρ(WM
T (Z)), and the latter is equal to ρMT

by Proposition 3.1 with modulus p6, giving the second statement. □

Example 5. The density of elliptic curves over Q with good reduction at 2
(with no restrictions at any other primes) is

(1− 2−1)/(1− 2−10) = 29/(210 − 1) = 512/1023 ≈ 50.0%.

Example 6. The density of elliptic curves over Q with additive reduction
of type III∗ at 5 (with no restrictions at any other primes) is

(52 − 5)/(510 − 1) = 5/2441406.

4.2. Global densities with conditions at finitely many primes

Let S be a finite set of primes, and for each p ∈ S fix a finite reduction
type T (p). Applying Proposition 2.7 with Proposition 3.1 and Proposi-
tion 3.2 we immediately obtain the following.

Theorem 4.2. Let S be any finite set of primes, and for each p ∈ S let
T (p) be a finite reduction type.

1) The density of integral Weierstrass equations which for all p ∈ S are
minimal at p with reduction type T (p) is

∏

p∈S ρMT (p).

2) The density of elliptic curves over Q whose reduction type at p is T (p)
for all p ∈ S is

∏

p∈S ρT (p).
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Example 7. The density of elliptic curves over Q with good reduction at
both 2 and 3 (with no restrictions at any other primes) is

29(2− 1)39(3− 1)/(210 − 1)(310 − 1) = 839808/2516921 ≈ 33.37%.

Example 8. Let p1, p2 and p3 be distinct primes. The density of elliptic
curves over Q with good reduction at p1, multiplicative reduction at p2 and
additive reduction at p3 (with no restrictions at any other primes) is

(

1− p−1
1

1− p−10
1

)(

p−1
2 − p−2

2

1− p−10
2

)(

p−2
3 − p−10

3

1− p−10
3

)

.

4.3. Global densities with conditions at infinitely many primes

To obtain density results with conditions at infinitely many primes, we may
use Proposition 3.4, provided that the excluded sets Up ⊂ W(Zp) form an ad-
missible family. The previous subsection dealt with the simplest case where
almost all Up were empty.

Recall the standard invariants c4, c6 ∈ Z[a1, a2, a3, a4, a6] of a Weierstrass
model Ea. As elements of Z[a1, a2, a3, a4, a6], they are both irreducible (being
linear in a4 and a6 respectively), and coprime. The results in this subsection
follow from the following.

Lemma 4.3. For each prime p, define Up ⊆ W(Zp) by

Up = {a ∈ W(Zp) | c4(a) ≡ c6(a) ≡ 0 (mod p)}.

Then the family U =
∏

Up is admissible.

Proof. Since c4 and c6 are coprime, we may apply Proposition 3.5. □

For p ≥ 5, the condition c4 ≡ c6 ≡ 0 (mod p) is equivalent to the Weier-
strass model Ea being non-minimal or of bad additive reduction6, so, for
p ≥ 5, we have Up = U ′

p where

U ′
p = W(Zp) \

(

WM
I0 ∪WM

I≥1

)

.

Since µ(U ′
p) = 1− (ρMI0 + ρMI≥1

) = 1/p2 for all primes p, it follows that

µ(Up) = 1/p2 for all p ≥ 5. One may also check that µ(Up) = 1/p for p = 2, 3,

6Note that for p = 2 and p = 3 one can have good reduction when p | c4 and p | c6,
for example 11a1 for p = 2 and 17a1 for p = 3. Also, c4 and c6 are not coprime as
polynomials over F2 or F3.

http://www.lmfdb.org/EllipticCurve/Q/11a1
http://www.lmfdb.org/EllipticCurve/Q/17a1
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using c4 ≡ a41 and c6 ≡ a61 (mod 2), and c4 ≡ (a21 + a2)
2 and c6 ≡ −(a21 +

a2)
3 (mod 3), but we will not need these values.
Recall that an elliptic curve is called semistable at a prime p if its reduc-

tion type is either good (type I0) or multiplicative (type I≥1), and semistable
if it is semistable at all primes.

Theorem 4.4.

1) The density of integral Weierstrass equations which are minimal mod-
els of semistable elliptic curves is 1/ζ(2) ≈ 60.79%.

2) The density of semistable elliptic curves over Q is ζ(10)/ζ(2) ≈
60.85%.

Proof. Let U =
∏

Up and U ′ =
∏

U ′
p be as above. Since U is admissible

by Lemma 3.5, so is U ′ by Lemma 3.3. Also, µ(U ′
p) = 1/p2 for all p, by

Proposition 2.2 (as noted above). Taking S = ∅ in Proposition 3.4 gives the
density stated, since

∏

p(1− 1/p2) = 1/ζ(2).
For the second part we let U ′′

p be the set of Weierstrass models of curves
with additive reduction. This is a subset of Up, since Up includes not only
these models but also non-minimal models of curves with good or multiplica-
tive reduction. Now the local density of curves with good or multiplicative
reduction is (1− p−2)/(1− p−10), so µ(U ′′

p ) = 1− (1− p−2)/(1− p−10). Ap-
plying Proposition 3.4 again yields the desired density as

∏

p(1− µ(U ′′
p )) =

∏

p(1− p−2)/(1− p−10) = ζ(10)/ζ(2). □

We can obtain further global density results by changing the local con-
ditions at any finite set of primes, provided that we know the associated
local densities. The only constraint on results provable in this way is there-
fore that, at all but finitely many primes, the condition we impose is that
of semistability, i.e., good or multiplicative reduction. As in the two parts
of Theorem 4.4, if we also impose conditions of minimality at all primes,
this will not affect the convergence criteria, merely dividing the global
density by

∏

p(1− p−10)−1 = ζ(10) = π10/93555 ≈ 1.000994575. This estab-
lishes the following.

Theorem 4.5. Let S be any finite set of primes, and for each p ∈ S let
T (p) be a finite reduction type.

1) The density of integral Weierstrass equations which are global minimal
models of elliptic curves over Q whose reduction type at p is T (p) for
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all p ∈ S, and which are semistable at all other primes, is

ζ(2)−1
∏

p∈S
ρT (p)/(1− p−2).

2) The density of elliptic curves over Q whose reduction type at p is T (p)
for all p ∈ S and which are semistable at all other primes is

ζ(10)ζ(2)−1
∏

p∈S
ρT (p)/(1− p−2).

4.4. Curves with square-free discriminant

A Weierstrass equation has square-free discriminant if and only if it is min-
imal and of reduction type I0 or I1. These have local density 1− 1/p and
(p− 1)2/p3, by Propositions 2.2 and 2.5 respectively, so the local density
of those with square-free discriminant is 1− 2/p2 + 1/p3. Hence the set Up

of Weierstrass equations with discriminant divisible by p2 has local density
2/p2 − 1/p3. By comparison with the case of square-free discriminants of
monic cubic polynomials (see Example 4 in the previous section), we expect
U =

∏

Up to be admissible. This is indeed the case, provided that we use
appropriate weights, as specified at the start of this section.

Theorem 4.6. 1) The density of integral Weierstrass equations whose
discriminant is square-free is

∏

p

(

1− 2

p2
+

1

p3

)

≈ 42.89%.

2) The density of elliptic curves over Q whose minimal discriminant is
square-free is

ζ(10)
∏

p

(

1− 2

p2
+

1

p3

)

≈ 42.93%.

For p ̸= 2, the local density (1− 2/p2 + 1/p3) is exactly the same as that
of monic cubic polynomials over Zp with square-free discriminant (see [9]
and [1, Theorem 6.8]). Hence, by [9, Theorem 1.1], the theorem states that
the probability that a random integral Weierstrass equation has square-free
discriminant is (after taking the discrepancy for p = 2 into account) equal
to 5/4 times the probability that a random monic integral cubic polynomial
has square-free discriminant.
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Proof. The proof follows the argument given in Example 4 above, taking
the additional variables into account. We again write Up as a disjoint union
Up = U ′

p ∪ U ′′
p , where

U ′
p = W(Zp) \WM

I≥0
,

is the set of Weierstrass equations with bad additive reduction at p or non-
minimal at p, and

U ′′
p = WM

I≥2

is the set of Weierstrass equations with multiplicative reduction at p of
Type Im for some m ≥ 2. Admissibility of U ′ =

∏

U ′
p has already been es-

tablished in the proof of Theorem 4.4, so we consider admissibility of U ′′ =
∏

U ′′
p . Ignoring p = 2 and 3, as we may by Lemma 3.3, the condition for

belonging to U ′′
p is that p ∤ c4, c6 but p

2 | ∆, or equivalently p2 | c34 − c26. This
is a “mod p2 condition”, in contrast to membership of U ′

p which is a “mod p
condition”.

Regarding ∆ as a polynomial in a6 with coefficients in Z[a1, a2, a3, a4],
it has degree 2 with leading coefficient −432 = −2433 and discriminant c34.
(Note that c4 ∈ Z[a1, a2, a3, a4] does not depend on a6.) Hence for each fixed
(a1, a2, a3, a4) ∈ Z4 with p ∤ c4, there are at most 2 solutions for a6 (mod p)
to the congruence ∆ ≡ 0 (mod p), each of which lifts to a unique solution
to ∆ ≡ 0 (mod p2).

Secondly, each term in ∆ has weight 12 when we give ai weight i, so
for a bounded by |ai| ≤ Xi/12, each monomial appearing in ∆ is bounded
by X, and hence |∆| ≤ BX, where B is the sum of the absolute values of the
coefficients of ∆. (In fact, B = 1714, but the actual numerical coefficient is
unimportant.) It follows that if a satisfies the weighted bounds, p2 | ∆ and
∆ ̸= 0, then p ≤ (BX)1/2.

To compute the tail density ρkM (U ′′), we must estimate the cardinality
of the set

⋃

p>M

{a ∈ Z5 : |ai| ≤ Xi/12, p ∤ c4, p
2 | ∆},

and we may ignore a with ∆ = 0 as these have zero density. The pth set
in this union is empty unless p ≤ (BX)1/2. For each p below this bound,
the number of 4-tuples (a1, a2, a3, a4) satisfying the bounds is O(X10/12) =
O(X5/6), and each 4-tuple determines at most two values of a6 (mod p2),
hence O(X1/2/p2) +O(1) values of a6 also satisfying |a6| ≤ X1/2. Adding
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over all p with M < p ≤ (BX)1/2, the main term is

O(X5/6)
∑

M<p≤(BX)1/2

O(X1/2/p2) = O(X4/3)
∑

M<p≤(BX)1/2

1/p2,

contributing at most
∑

p>M 1/p2 to the tail density. Each error term

is O(X5/6) and the number of terms is O(π((BX)1/2)) = O(X1/2/ logX),
so the total error is O(X4/3/ logX) which is o(X4/3) and hence negligible.

This completes the proof that U ′′ is admissible, and the rest of the state-
ment of the Theorem follows as before. □

Remark. It is perhaps worth noting what are the properties of the dis-
criminant polynomial ∆(a1, a2, a3, a4, a6) which ensure that the above proof
works.

Firstly, it is isobaric with respect to certain positive weights of the vari-
ables ai (meaning that each monomial has the same weight). We use these
weights of the variables (scaled by 1/12 to make the total weight of ∆ equal
to 1, but that is unimportant) as the weights used to define the density.

Secondly, we used the fact that ∆ has degree only 2 in one of the vari-
ables, a6. Careful examination of the proof above reveals that, in order to
show that the error terms were negligible, it was crucial that the exponent
1/2 on the bound for this variable matched the exponent on the bound
on p, which in turn came from the fact that our condition was that ∆ was
square-free.

As with square-free values of the discriminant of a cubic polynomial x3 +
ax+ b, it is possible that Theorem 4.6 also holds using equal weights on the
coefficients ai, but we have not tried to prove this. One approach might be
to embed the space of Weierstrass cubics in the larger set of ternary cubic
forms over Z, for which this result is known: see [9].

We would also expect the methods used here to be able to establish the
density of monic integer quartic polynomials whose discriminant is cube-free,
using the natural weights rather than equal weights, since that discriminant
has degree 3 in the constant coefficient, but that determining the density
of square-free discriminants of quartic (and higher degree) monic integer
polynomials would be harder; indeed, the methods used in [9] to evaluate
this (in arbitrary degree) are much deeper.
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4.5. Curves with prime-power conductor (or discriminant)

Finally in this section, we consider elliptic curves with a single prime of bad
reduction.

Fix X > 0, and consider first elliptic curves with a single prime p < X
of bad multiplicative reduction, good reduction at all other primes q < X,
and no restriction at primes q > X. That is, we consider elliptic curves of
conductor N = pN ′ where N ′ has no prime factors less than X. This set has
density

∑

p≤X



(1/p− 1/p2)
∏

q≤X,q ̸=p

(1− 1/q)



 =





∑

p≤X

1/p









∏

q≤X

(1− 1/q)



 .

As X → ∞, the first factor
∑

p≤X(1/p) ∼ log logX, while
∏

q≤X(1−
1/q) ∼ e−γ/ logX, where γ is Euler’s constant. Hence the density
is O(log logX/ logX), and tends to 0 as X → ∞.

Hence the density of elliptic curves with prime discriminant is also zero,
as these are a subset of those with prime conductor.

A small modification of this argument applies to curves of prime power
conductor (equivalently, prime power discriminant). For each X, the set of
curves with precisely one prime p ≤ X of bad reduction has density

∑

p≤X



1/p
∏

q≤X,q ̸=p

(1− 1/q)



 =





∑

p≤X

1/(p− 1)









∏

q≤X

(1− 1/q)



 .

Since 1/(p− 1)− 1/p = 1/p(p− 1) and
∑

1/p(p− 1) converges, the asymp-
totics are unchanged.

5. Local densities II

In this section we extend the local density results of Section 2 to include
the distribution of conductor exponents fp and Tamagawa numbers cp, for
each type of reduction. Consequent global results may be obtained using the
methods of Sections 3 and 4.

The results here are all obtained by following in detail the steps of Tate’s
Algorithm, as originally given in [29]. Our methods are similar to those em-
ployed by Papadopoulos in [23], where he establishes congruence conditions
on the Weierstrass coefficients ai for each Kodaira reduction type. As Pa-
padopoulos observes, for p ≥ 5 the type is completely determined by the
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valuations of the invariants c4, c6 and ∆; for p = 3 one can make use of the
coefficients bi, while for p = 2 one is forced to consider all the ai. Since the ex-
pression for ∆ as a polynomial in the ai has 26 terms, this would be tiresome
to do by hand, and we use computer algebra to assist us. The reader may
find Sage code to verify the claims made in this section at [14]. The main
differences between the results of this section and those of Papadopoulos are
that we quantify each step in order to find the p-adic density of each case,
while on the other hand Papadopoulos works in the more general context of
a local field and not just Qp itself.

Throughout, p will denote a fixed prime; in the results and proofs we
often need to consider p = 2 and p = 3 separately.

All curves with good reduction at p have fp = 0 and cp = 1. It is well-
known that the density of Weierstrass equations which have good reduction
is 1− 1/p. The first author first learned the following fact from Hendrik
Lenstra (who showed him a different proof from the one which follows), but
as we do not know a suitable reference we include a proof here.

Lemma 5.1. Let q be a prime power. Of the q5 Weierstrass equations
over Fq, precisely q4 are singular.

Proof. Weierstrass equations define irreducible cubic curves, and by Bezout’s
Theorem, they can have at most one singular point, which is not the unique
point at infinity, and hence is one of the q2 points in the affine plane. For each
of these, the number of equations having the specified point as its singular
point is the same (by translation), so it suffices to count equations for which
P = (0, 0) is singular. Now P lies on the curve if and only if a6 = 0, and
then P is singular if and only if a3 = a4 = 0, so there are q2 equations for
which P is singular, and q4 singular equations in all. □

Recall from Section 2 the notation

W(v1, v2, v3, v4, v6) = {a ∈ W(Zp) | v(ai) ≥ vi for i = 1, 2, 3, 4, 6}.

Proposition 5.2. The density of Weierstrass equations over Zp which have
good reduction is

µ(W(0, 0, 0, 0, 0 | v(∆) = 0)) = 1− 1/p.

Proof. Immediate from Lemma 5.1. □

For the bad reduction types the distributions of fp and cp are as follows.
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Theorem 5.3 (Distribution of conductor exponents and Tamagawa
numbers by reduction type). Within each bad reduction type, whose
density is given by Proposition 2.2, the relative densities of each possible
conductor exponent and Tamagawa number are as follows. Where two pos-
sibilities are given for the Tamagawa number, the density is split equally
between them.

1) Multiplicative reduction types, all p:

Type fp cp relative density absolute density

Im each m ≥ 1 1 (p− 1)/pm (p− 1)2/pm+2

Im split 1 m 1/2 (p− 1)/(2p2) (total, all m)
non-split, m even 1 2 1/(2(p+ 1)) (p− 1)/(2p2(p+ 1))
non-split, m odd 1 1 p/(2(p+ 1)) (p− 1)/(2p(p+ 1))

2) Additive reduction types:
p ≥ 5:

Type fp cp relative density

II,II∗ 2 1 1

III,III∗ 2 2 1

IV, IV∗ 2 1 or 3 1

I∗0 2 1 (p+ 1)/(3p)
2 2 1/2
2 4 (p− 2)/(6p)

I∗m 2 2 or 4 1

p = 3:

Type fp cp relative density

II,II∗ 3 1 2/3
4 1 2/9
5 1 1/9

III,III∗ 2 2 1

IV,IV∗ 3 1 or 3 2/3
4 1 or 3 2/9
5 1 or 3 1/9

I∗0 2 1 4/9
2 2 1/2
2 4 1/18

I∗m 2 2 or 4 1
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p = 2:

Type fp cp relative density

II 4 1 1/2
6 1 3/8
7 1 1/8

II∗ 3 1 1/2
4 1 1/4
6 1 1/4

III,III∗ 3 2 1/2
5 2 1/4
7 2 1/8
8 2 1/8

IV,IV∗ 2 1 or 3 1

I∗0 4 1 or 2 1/2
5 1 or 2 1/4
6 1 or 2 1/4

I∗m 3 2 or 4 1/2
4 2 or 4 1/4
5 2 or 4 1/16
6 2 or 4 1/8
7 2 or 4 1/16

In the proof we use the following elementary counting lemmas; the second
is Lemma 3 in [7].

Lemma 5.4. Let q be a prime power. Of the q2 monic quadratics f ∈ Fq[X],

• q have a double root;

• q(q − 1)/2 have distinct roots in Fq;

• q(q − 1)/2 have conjugate roots in Fq2.

Lemma 5.5. Let q be a prime power. Of the q3 monic cubics g ∈ Fq[X],

• q2 have a multiple root, of which
· q have a triple root (necessarily in Fq);
· q(q − 1) have a double root and a single root (both in Fq);

• q3 − q2 have distinct roots, of which
· q(q − 1)(q − 2)/6 have distinct roots in Fq;
· q2(q − 1)/2 have one root in Fq and two conjugate roots in Fq2;
· q(q2 − 1)/3 have conjugate roots in Fq3.
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5.1. Proof of Theorem 5.3

During the course of the proof, we will fill in details which were only sketched
in the proof of Proposition 2.2.

We follow the steps of Tate’s Algorithm. Recall from Section 2 the no-
tation T = T (Zp) = {τ(r, s, t) | r, s, t ∈ Zp}. We also set n = v(∆).

Initially there are no conditions except integrality of the coefficients, so
we start inW(0, 0, 0, 0, 0). At each step, we either exit the algorithm based on
a divisibility test; or, we divide into subcases. The exit criteria always occur
with probability 1/p. The division into subcases is always into p subcases,
except at the beginning where there are p2 subcases, one for each possibility
for the singular point mod p. The subcases occur with equal probabilities,
and the relative densities within each subcase are independent of the specific
subcase: for example, when there is bad reduction, each of the p2 points in
the affine Fp-plane is equally likely to be the unique singular point, and
the densities of each bad reduction type do not depend on which point is
singular.

Good reduction. The exit condition is n = 0: then fp = 0 and cp =
1. This occurs with probability 1− 1/p, by Proposition 5.2. Otherwise
(with probability 1/p), we divide into p2 equiprobable subcases, proceed-
ing with the case where the point (0, 0) is singular (modulo p). So now
a ∈ W(0, 0, 1, 1, 1).

Since ∆ is invariant under the whole translation group T , the exit con-
dition is well-defined. We claim that the stabiliser of W(0, 0, 1, 1, 1) in T
is T1,0,1. In one direction this is obvious from the transformation formulas
for τ(r, s, t), which for convenience we recall here:

a′1 − a1 = R1 = 2s

a′2 − a2 = R2 = −sa1 + 3r − s2

a′3 − a3 = R3 = ra1 + 2t

a′4 − a4 = R4 = −sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

a′6 − a6 = R6 = ra4 + r2a2 + r3 − ta3 − t2 − rta1.

If p divides all of r, t, a3, a4, a6, then it divides a′3, a
′
4, a

′
6 also. Conversely, sup-

pose that τ(r, s, t) preserves W(0, 0, 1, 1, 1). Then R3 ≡ R4 ≡ R6 ≡ 0, and

r3 ≡ (rs− t)R3 + rR4 − 2R6 (mod p)

implies r ≡ 0; then −t2 ≡ R6 ≡ 0 implies t ≡ 0.
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Multiplicative reduction. Given a ∈ W(0, 0, 1, 1, 1), the exit condi-
tion v(b2) = 0 is that f = y2 + a1y − a2 has distinct roots modulo p. By
Lemma 5.4, this occurs with probability 1− 1/p, so

(9) µ(W(0, 0, 1, 1, 1 | v(b2) = 0) =
p− 1

p
µ(W(0, 0, 1, 1, 1) = (p− 1)/p4.

Note that this condition is invariant under T1,0,1, since b′2 = b2 + 12r ≡ b2
(mod p). In this case, fp = 1 and the type is Im where m = n ( = v(∆)),
while the value of cp depends on the parity ofm and on whether the reduction
type is split or non-split, which in turn depends on whether or not the roots
of f lie in Fp.

In the split case, cp = m, with density 1
2(p− 1)2/pm+2, for each m ≥ 1.

Relative to the total density of Type I≥1, this is (p− 1)/2pm.
In the non-split case, cp = 1 for odd m, with total density 1

2

∑∞
k=0(p−

1)2/p2k+3 = (p− 1)/2p(p+ 1), while cp = 2 for even m, with total density
1
2

∑∞
k=1(p− 1)2/p2k+2 = (p− 1)/2p2(p+ 1). Relative to the total density of

Type I≥1, these are p/2(p+ 1) and 1/2(p+ 1) respectively.
Otherwise, v(b2) ≥ 1 and we move on to the types of additive reduction;

after another transformation taking the double root of f (mod p) to 0, we
have a ∈ W(1, 1, 1, 1, 1). This translation has the form τ(0, s, 0) ∈ T1,0,1 with
s unique modulo p, so the stabiliser of W(1, 1, 1, 1, 1) is cut down from T1,0,1
to T1,1,1.

For a ∈ W(v1, v2, v3, v4, v6) we follow Tate’s notation in [29] and write
ai,vi

= p−viai. In the course of the proof, there are many claims of the form
∆ ≡ ∗ (mod pk), where the right-hand side is in Z[a1, a2, a3, a4, a6], and the
claim is made under the assumption that pvi | ai for 1 ≤ i ≤ 6; such claims
can all be verified by expanding the difference of both sides and checking
that every term has valuation at least k. In all cases, the coefficients of every
term are not divisible by any primes other than 2 and 3, which explains why
these primes often need separate treatment. While it would be possible to
give a simpler proof for p ≥ 5 only, in term of the invariants c4 and c6, we
will treat all primes in as uniform a way as possible, for clarity. All these
claims may be checked using the Sage code at [14].

Additive reduction, Type II. Given a ∈ W(1, 1, 1, 1, 1), the exit condi-
tion for Type II is v(a6) = 1. This is well-defined since for a ∈ W(1, 1, 1, 1, 1)
and τ ∈ T1,1,1 we have v(a′6 − a6) ≥ 2.

In this case we have cp = 1 and fp = n. Given a ∈ W(1, 1, 1, 1, 1), we find
that ∆ ≡ −2433a26 (mod p3); so n ≥ 2, and when the exit condition holds
(so that v(a6) = 1), we have n = 2, provided that p ≥ 5.



✐

✐

“5-Cremona” — 2023/9/2 — 1:57 — page 452 — #40
✐

✐

✐

✐

✐

✐

452 J. E. Cremona and M. Sadek

For p = 3, we have ∆ ≡ −a34 (mod 34), so n ≥ 3, with n = 3 ⇐⇒
v(a4) = 1, which has relative probability 2/3. Otherwise, a ∈ W(1, 1, 1, 2,=
1), with ∆ ≡ −3a22a6 (mod 35), so n ≥ 4, with n = 4 ⇐⇒ v(a2) = 1, since
v(a6) = 1; this case happens with relative probability (1/3)(2/3) = 2/9. Oth-
erwise, a ∈ W(1, 2, 1, 2,=1), with ∆ ≡ −33a26 (mod 36), so n = 5 with the
remaining relative probability 1/9.

For p = 2, we have ∆ ≡ a43 (mod 25), so n ≥ 4, and n = 4 ⇐⇒ v(a3) =
1, which has relative probability 1/2. Otherwise, a ∈ W(1, 1, 2, 2,=1),
with ∆ ≡ a41a

2
4 − 24a26 ≡ a41a

2
4 − 26 (mod 27), so n ≥ 6, with n = 6 ⇐⇒

v(a41a
2
4) = 6; this case happens when either v(a1) ≥ 2 or v(a4) ≥ 3, so

with relative probability (1/2)(3/4) = 3/8. Assuming that both v(a1) = 1
and v(a4) = 2, we find that ∆ ≡ 27 (mod 28), so n = 7 with the remaining
relative probability 1/8.

Otherwise, we have a ∈ W(1, 1, 1, 1, 2), with unchanged stabiliser T1,1,1.

Additive reduction, Type III. Given a ∈ W(1, 1, 1, 1, 2), the exit condi-
tion for Type III is v(a4) = 1. This is well-defined since for a ∈ W(1, 1, 1, 1, 2)
and τ ∈ T1,1,1 we have v(a′4 − a4) ≥ 2.

In this case we have cp = 2 and fp = n− 1. Now we have ∆ ≡ −26a34
(mod p4), so n = 3 and fp = 2 for p ≥ 3, since v(a4) = 1.

For p = 2 and a ∈ W(1, 1, 1,=1, 2), we have ∆ ≡ a43 (mod 25), so n ≥ 4,
with n = 4 ⇐⇒ v(a3) = 1, which happens with relative probability 1/2.
Otherwise, a ∈ W(1, 1, 2,=1, 2), and we have ∆ ≡ 22a41 (mod 27), so n ≥ 6,
with n = 6 ⇐⇒ v(a1) = 1; this case has relative probability (1/2)(1/2) =
1/4. Otherwise, a ∈ W(2, 1, 2,=1, 2), and we have ∆ ≡ 28(a22,1 + a43,2 +
a26,2) (mod 29), so n ≥ 8, with n = 8 ⇐⇒ 2 ∤ a2,1 + a3,2 + a6,2; this case
has relative probability (1/4)(1/2) = 1/8. Finally, assuming that a6 ≡
2a2 + a3 (mod 8) (so that a6,2 ≡ a2,1 + a3,2 (mod 2)), we find that ∆ ≡ 29

(mod 210), so n = 9 with the remaining relative probability 1/8.
The relative probabilities for n = 4, 6, 8, and 9 (respectively, f2 = 3, 5, 7,

and 8) are therefore 1/2, 1/4, 1/8, and 1/8.
Otherwise, we have a ∈ W(1, 1, 1, 2, 2), with unchanged stabiliser T1,1,1.

Additive reduction, Type IV. Given a ∈ W(1, 1, 1, 2, 2), the exit con-
dition for Type IV is that the quadratic f = y2 + a3,1y − a6,2 has distinct
roots modulo p, or equivalently that v(b6) = 2. This condition is well-defined,
since for τ ∈ T1,1,1 we have v(b′6 − b6) ≥ 3. Using Lemma 5.4 again, we have

(10) µ(W(1, 1, 1, 2, 2 | v(b6) = 2)) =
p− 1

p
µ(W(1, 1, 1, 2, 2)) = (p− 1)/p8.



✐

✐

“5-Cremona” — 2023/9/2 — 1:57 — page 453 — #41
✐

✐

✐

✐

✐

✐

Densities for Weierstrass models of elliptic curves 453

Now fp = n− 2, and cp = 1 or 3, according to whether the roots of f are
in Fp or not, which have relative probability 1/2 each; it remains to deter-
mine the possible values of the discriminant valuation n and their relative
densities.

For a ∈ W(1, 1, 1, 2, 2 | v(b6) = 2), we have ∆ ≡ −33b26 (mod p5), so for
p ̸= 3 we have n = 4 and fp = 2.

For p = 3, we have ∆ ≡ −a32b6 (mod 36), so n ≥ 5, with n = 5 ⇐⇒
v(a2) = 1. Otherwise, a ∈ W(1, 2, 1, 2, 2 | v(b6) = 2), and we have ∆ ≡ b34
(mod 37). Note that b4 = a1a3 + 2a4, so v(b4) ≥ 2. Hence n ≥ 6, and
n = 6 ⇐⇒ v(b4) = 2 ⇐⇒ a4 ̸≡ a1a3 (mod 33). Assuming that a4 ≡ a1a3
(mod 33), so that v(b4) ≥ 3, we find that ∆ ≡ −33b26 (mod 38), so n = 7.
Thus for p = 3, we have n = 5, 6, or 7 and f3 = 3, 4 or 5 with relative prob-
abilities 2/3, 2/9, and 1/9 respectively.

Otherwise, v(b6) ≥ 3, so the quadratic y2 + a3,1y − a6,2 has a repeated
root. A transformation τ in a unique coset of T1,1,2 in T1,1,1 takes the root
to 0 and hence the coefficients into W(1, 1, 2, 2, 3), with stabiliser T1,1,2.

Additive reduction, Type I∗
0
. Given a ∈ W(1, 1, 2, 2, 3), the exit con-

dition for Type I∗0 is v(disc(g)) = 6, where g = x3 + a2x
2 + a4x+ a6. Equiv-

alently, the condition is that g1(x) = g(px)/p3 = x3 + a2,1x
2 + a4,2x+ a6,3

should have distinct roots in Fp, since v(disc(g1)) = v(disc(g))− 6. Note that
after transforming the equation by τr,s,t ∈ T1,1,2, g1(x) becomes g1(x+ r/p),
so the condition is well-defined.

Now, cp is equal to one more than the number of roots of g1 in Fp. By
Lemma 5.5, this number is 0, 1 or 3 with relative probabilities (p+ 1)/(3p),
1/2 and (p− 2)/(6p) respectively. We have ∆ ≡ 16 disc(g) (mod p7), so for
p ̸= 2, the exit condition implies n = 6, and then fp = n− 4 = 2.

Now let p = 2. For a ∈ W(1, 1, 2, 2, 3), we have disc(g) ≡ a26 − a22a
2
4

(mod 27), so the exit condition implies a6 ̸≡ a2a4 (mod 27). Assuming that
a6 ̸≡ a2a4 (mod 27), we find that ∆ ≡ a41a

2
4 − a43 (mod 29), so n ≥ 8, with

n = 8 ⇐⇒ a3,2 ̸≡ a1,1a4,2 (mod 2). Assuming further that a3,2 ≡ a1,1a4,2
(mod 2), we have ∆ ≡ 28a1 (mod 210), so n ≥ 9, with n = 9 if and only
if v(a1) = 1. When v(a1) ≥ 2, then also v(a3) ≥ 3, and these imply that
∆ ≡ 210 (mod 211), giving n = 10.

The preceding analysis shows that for type I∗0 curves when p = 2 we
have n = v(∆) = 8, 9, or 10, and respectively f2 = 4, 5, or 6, with relative
probabilities 1/2, 1/4, and 1/4.

Additive reduction, Type I∗
m
, m ≥ 1. The exit condition for type I∗0

fails when g1(x) has a repeated root modulo p. We can move this root
to zero using a transform in a unique coset of T2,1,2 in T1,1,2, after which
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a ∈ W(1, 1, 2, 3, 4), with stabiliser now T2,1,2. The condition for type I∗m is
that the repeated root is only a double root, which (after the transform) is
that v(a2) = 1.

Looking at the details of Tate’s algorithm in this case, it proceeds in a
sequence of substeps: at each substep the value of m is incremented; there
is an exit condition that a monic quadratic mod p has distinct roots; and
the value of cp depends on whether this quadratic has roots in Fp (in which
case cp = 4) or not (cp = 2). So, overall, each of these two values occurs in
half the cases, by Lemma 5.4. Moreover, the stabiliser index increases by a
factor of p at each stage, since when the quadratic has a double root we can
move it to 0 with a transform in a uniquely determined coset of an index p
subgroup of the current stabiliser.

We have fp = n−m− 4. We treat separately the cases p ≥ 3, where we
will see that fp = 2 always, and p = 2. The case p ≥ 3 is well-known (see
Kraus [22] or Kobayashi [20]), but we include the details here since the
analysis is similar to that required for p = 2.

Write

Wodd(k) = W(1,=1, k + 1, k + 2, 2k + 2),

Weven(k) = W(1,=1, k + 2, k + 2, 2k + 3),

so initially, a ∈ W(1,=1, 2, 3, 4) = Wodd(1). The exit conditions are:

• for a ∈ Wodd(k): that y
2 + a3,k+1y − a6,2k+2 has distinct roots over Fp,

or equivalently that v(b6) = 2k + 2, and for p = 2 to v(a3) = k + 1;

• for a ∈ Weven(k): that x2 + a4,k+2x+ a6,2k+3 have distinct roots
over Fp, equivalently that v(b8) = 2k + 4, or that v(a4) = k + 2 when
p = 2.

First assume that p ̸= 2. For a ∈ Wodd(k) we have ∆ ≡ −24a32b6
(mod p2k+6); since v(a2) = 1, when the exit condition v(b6) = 2k + 2 holds,
for p ̸= 2 we have n = 2k + 5 exactly. Hence n = m+ 6 and fp = 2. Oth-
erwise, after shifting the double root to 0 by a suitable translation, we
arrive in Weven(k), where ∆ ≡ −24b8a

2
2 (mod p2k+7); when the exit con-

dition v(b8) = 2k + 4 holds, we have v(24b8a
2
2) = 2k + 6, so n = 2k + 6.

Again, n = m+ 6 and fp = 2. Otherwise, after another shift we arrive in
Wodd(k + 1), so we increment k and repeat.

Hence for p ≥ 3, we always have fp = 2.
Now let p = 2. Again, the value of m is initialized to 1 and we proceed re-

cursively; at each stage we either exit (always with relative probability 1/2),
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or increment m. The recursive steps alternate in nature depending on the
parity of m; after the first three cases (m = 1, 2, 3) which are slightly differ-
ent, all the remaining cases may be dealt with generically.

At first,m = 1 with a ∈ Wodd(1) = W(1,=1, 2, 3, 4), where we have ∆ ≡
a43 (mod 29). When the exit condition v(a3) = 2 holds, we have n = 8 and
f2 = 3, and Type I∗1.

Otherwise, v(a3) ≥ 3, and we shift y so that the quadratic y2 + a23,2y −
a6,4 has double root at y ≡ 0 (mod 2), so that a ∈ Weven(1) = W(1,=
1, 3, 3, 5), and we increment m to 2.

Now we have ∆ ≡ a41a
2
4 (mod 211), so n ≥ 10. When the exit condition

v(a4) = 3 holds, either v(a1) = 1, giving n = 10 and f2 = 4; or v(a1) ≥ 2,
and a ∈ W(2,=1, 3,=3, 5). In the latter case, ∆ ≡ a43 + 212 (mod 214), so
n = 12 if v(a3) ≥ 4, and n = 13 if v(a3) = 3. Hence for Type I∗2 we have n =
10, 12, or 13 (respectively, f2 = 4, 6, or 7) with relative probabilities 1/2, 1/4,
and 1/4.

Otherwise, when the exit condition atm = 2 fails, we have v(a4) ≥ 4, and
we shift x so that the quadratic x2 + a4,3x+ a6,5 has double root at x ≡ 0
(mod 2), so that a ∈ Wodd(2) = W(1,=1, 3, 4, 6) and we increment m to 3.

Now we have ∆ ≡ 2a41a
2
3 (mod 212), so n ≥ 11. When the exit condition

v(a3) = 3 holds, either v(a1) = 1, giving n = 11 and f2 = 4; or v(a1) ≥ 2, and
a ∈ W(2,=1,=3, 4, 6). In the latter case, ∆ ≡ 212 (mod 213), so n = 12 and
f2 = 5. Hence for Type I∗3, we have n = 11 or 12 (respectively, f2 = 4 or 5)
with equal probability.

Now let m = 2k ≥ 4, with a ∈ Weven(k), and exit condition v(a4) = k +
2. Then ∆ ≡ a41a

2
4 (mod 22k+9), so n ≥ v(a41a

2
4) = 2k + 8. Assuming that

the exit condition v(a4) = k + 2 holds, we have n = 2k + 8 = m+ 8 and
f2 = 4, provided that v(a1) = 1. Otherwise, v(a1) ≥ 2, and now ∆ ≡ 22k+10

(mod 22k+11), so n = 2k + 10 = m+ 10 and f2 = 6. Thus for m = 2k ≥ 4
we have f2 = 4 or f2 = 6, with equal probability.

If the exit condition fails, v(a4) ≥ k + 3, and we may shift x so that
the quadratic x2 + a4,k+2x+ a6,2k+3 has its double root at x ≡ 0 (mod 2),
so also v(a6) ≥ 2k + 4 and a ∈ Wodd(k + 1). Incrementing both k and m so
that m = 2k − 1, we have a ∈ Wodd(k).

Next, m = 2k − 1 ≥ 5, with a ∈ Wodd(k) and exit condition v(a3) = k +
1. Now, ∆ ≡ 2a41a

2
3 (mod 22k+8), so n ≥ v(2a41a

2
3) = 2k + 7. Assuming that

the exit condition v(a3) = k + 1 holds, we have n = 2k + 7 = m+ 8 and
f2 = 4, provided that v(a1) = 1. Otherwise, v(a1) ≥ 2, and now ∆ ≡ 22k+9

(mod 22k+10), so n = 2k + 9 = m+ 10 and f2 = 6. Thus form = 2k − 1 ≥ 5,
we again have f2 = 4 or f2 = 6 with equal probability.
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If the exit condition fails, v(a3) ≥ k + 2, and we may shift y so that
the quadratic y2 + a3,k+1y − a6,2k+2 has double root at y ≡ 0, so that a ∈
Weven(k), and we increment m to 2k and recurse.

Taking all Types I∗m for m ≥ 1 together, we find that f2 = 3, 4, 5, 6, or 7
with relative probabilities 1/2, 1/4, 1/16, 1/8, and 1/16.

This completes the analysis of type I∗m.

Additive reduction, Type IV∗. The exit condition for type I∗m fails
when the cubic g(x) has a triple root; after the transform moving the root
to 0, this means that v(a2) ≥ 2, so a ∈ W(1, 2, 2, 3, 4), with the same sta-
biliser as for W(1,=1, 2, 3, 4), namely T2,1,2.

The exit condition for type IV∗ is that f = y2 + a3,2y − a6,4 has distinct
roots modulo p, or equivalently v(b6) = 4, which happens with probabil-
ity 1− 1/p. Thus

(11) µ(W(1, 2, 2, 3, 4 | v(b6) = 4)) =
p− 1

p
µ(W(1, 2, 2, 3, 4)) = (p− 1)/p13.

Now, cp = 1 or cp = 3, depending on whether the roots are in Fp or not, and
these have equal probability by Lemma 5.4.

To compute fp = n− 6, we first note that for a ∈ W(1, 2, 2, 3, 4) we have
∆ ≡ −33b26 (mod 39); when v(b6) = 4, this implies that n = 8 and fp = 2
provided that p ̸= 3.

Now consider p = 3. We have v(b2) ≥ 2, v(b4) ≥ 3, and ∆ ≡ b34
(mod 310), so n ≥ 9, and n = 9 ⇐⇒ v(b4) = 3, which is equivalent to
a4,3 ̸≡ a1,1a3,2 (mod 3), so has relative probability 2/3. Assuming that
a4,3 ≡ a1,1a3,2 (mod 3), we find that ∆ ≡ −34b2b6 (mod 310). Hence n ≥ 10,
with n = 10 ⇐⇒ v(b2) = 2 ⇐⇒ a21,1 + a2,2 ̸≡ 0 (mod 3). Assuming fur-
ther that a2,2 ≡ −a21,1 (mod 3), we have ∆ ≡ −33b26 (mod 312), so n = 11
exactly. Hence for p = 3 we have n = 9, 10, or 11 (respectively, f3 = 3, 4,
or 5) with relative probabilities 2/3, 2/9, and 1/9.

Additive reduction, Type III∗. When the exit condition for type IV∗

fails, we move the root of the quadratic to 0 using a transform in a unique
coset of T2,1,3 in T2,1,2 to arrive in W(1, 2, 3, 3, 5) with stabiliser T2,1,3.

The exit condition for type III∗ is v(a4) = 3. In all cases we have cp = 2.
To compute fp = n− 7, we first note that for a ∈ W(1, 2, 3, 3, 5) we have
∆ ≡ −26a34 (mod p10); when v(a4) = 3, this implies that n = 9 and fp = 2,
provided that p ̸= 2.

Let p = 2. For a ∈ W(1, 2, 3, 3, 5) we now have ∆ ≡ a41a
2
4 (mod 211),

so n ≥ 10, and when the exit condition v(a4) = 3 holds, we have n =
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10 ⇐⇒ v(a1) = 1. Assuming that v(a1) ≥ 2, so a ∈ W(2, 2, 3, 3, 5), we have
∆ ≡ a43 (mod 213), so n ≥ 12, with n = 12 ⇐⇒ v(a3) = 3. Assuming fur-
ther that v(a3) ≥ 4, so a ∈ W(2, 2, 4, 3, 5), we have ∆ ≡ 24(22a41 + 26a22 +
a26) ≡ 214(a41,2 + a22,2 + a26,5) (mod 215), so n ≥ 14, with n = 14 ⇐⇒ a6,5 ̸≡
a1,2 + a2,2 (mod 2). Assuming that a6,5 ≡ a1,2 + a2,2 (mod 2), we find that
∆ ≡ 215 (mod 216), so that n = 15.

Hence for p = 2 we have n = 10, 12, 14, or 15 (respectively, f2 = 3, 5, 7,
or 8) with relative probability 1/2, 1/4, 1/8 and 1/8.

Additive reduction, Type II∗. When the exit condition for type III∗

fails we are in W(1, 2, 3, 4, 5) with the same stabiliser T2,1,3, since T2,1,3 pre-
serves the condition v(a3) = 3.

The exit condition for type II∗ is v(a6) = 5. In all cases we have cp = 1,
and fp = n− 8.

For a ∈ W(1, 2, 3, 4, 5), we have ∆ ≡ −2433a26 (mod p11), so when the
exit condition holds we have n = 10 and f = 2 for all p ≥ 5.

Let p = 3. Now, v(b2) ≥ 2, and ∆ ≡ −a6b
3
2 (mod 312); hence n ≥

11, with n = 11 ⇐⇒ v(b2) = 2 ⇐⇒ a2,2 ̸≡ −a21,1 (mod 3). Assuming that
a2,2 ≡ −a21,1 (mod 3), we find that ∆ ≡ b34 (mod 313), so n ≥ 12, with n =
12 ⇐⇒ v(b4) = 3 ⇐⇒ a4,4 ̸≡ a1,1a3,3 (mod 3). Assuming further that
a4,4 ≡ a1,1a3,3 (mod 3), we find that ∆ ≡ −33a6 (mod 314), so n = 13.
Hence for p = 3 we have n = 11, 12, or 13 (respectively, f3 = 3, 4, or 5) with
relative probabilities 2/3, 2/9, and 1/9.

Finally, let p = 2. Now ∆ ≡ a61a6 (mod 212), so n ≥ 11, with n =
11 ⇐⇒ v(a1) = 1. If v(a1) ≥ 2, then ∆ ≡ a43 (mod 213), so n ≥ 12, with
n = 12 ⇐⇒ v(a3) = 3. If also v(a3) ≥ 4, then ∆ ≡ 214 (mod 215), so n =
14. Hence for p = 2 we have n = 11, 12, or 14 (respectively, f2 = 3, 4, or 6)
with relative probability 1/2, 1/4 and 1/4.

When the exit condition for type II∗ fails we are in W(1, 2, 3, 4, 6) with
the same stabiliser T2,1,3.

This completes the proof of Theorem 5.3. □

5.2. Distribution of conductor exponents

Finally, we collect together the possible conductor exponents over all reduc-
tion types, to find the overall density of each. Here we omit non-minimal
models, so the densities add up to 1− 1/p10.

Theorem 5.6 (Overall distribution of conductor exponents). The
overall densities of conductor exponents fp for minimal Weierstrass models
over Zp are as follows:
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1) Good and multiplicative reduction

fp density

0 1− 1/p
1 1/p− 1/p2

2) Additive reduction.
p ≥ 5.

fp density

2 1/p2 − 1/p10

p = 3. The following densities add up to 59040/312 = 1/32 − 1/310:

fp density

2 15120/312

3 29280/312

4 9760/312

5 4880/312

p = 2. The following densities add up to 1020/212 = 1/22 − 1/210:

fp density

2 144/212

3 150/212

4 297/212

5 84/212

6 213/212

7 99/212

8 33/212

Proof. Immediate from 5.3. □
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