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Abstract

Researchers need a rich trove of genomic datasets that they can leverage to gain a better 

understanding of the genetic basis of the human genome and identify associations between 

phenol-types and specific parts of DNA. However, sharing genomic datasets that include sensitive 

genetic or medical information of individuals can lead to serious privacy-related consequences if 

data lands in the wrong hands. Restricting access to genomic datasets is one solution, but this 

greatly reduces their usefulness for research purposes. To allow sharing of genomic datasets while 

addressing these privacy concerns, several studies propose privacy-preserving mechanisms for data 

sharing. Differential privacy is one of such mechanisms that formalize rigorous mathematical 

foundations to provide privacy guarantees while sharing aggregated statistical information about a 

dataset. Nevertheless, it has been shown that the original privacy guarantees of DP-based solutions 

degrade when there are dependent tuples in the dataset, which is a common scenario for genomic 

datasets (due to the existence of family members).

In this work, we introduce a new mechanism to mitigate the vulnerabilities of the inference 

attacks on differentially private query results from genomic datasets including dependent tuples. 

We propose a utility-maximizing and privacy-preserving approach for sharing statistics by hiding 

selective SNPs of the family members as they participate in a genomic dataset. By evaluating 

our mechanism on a real-world genomic dataset, we empirically demonstrate that our proposed 

mechanism can achieve up to 40% better privacy than state-of-the-art DP-based solutions, while 

near-optimally minimizing utility loss.
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1. Introduction

As technologies improve the cost and scale of sequencing, it has become possible to 

sequence genomes from large cohorts of patients. Today, researchers have access to large 

genomic datasets, whereby they can study associations between variants and complex traits. 

However, as shown by earlier studies, the public availability of genomic data - even in 

anonymized form - raises serious privacy concerns [1]. Hence, many institutions (i.e., data 

owners who collect genomic data), rather than publicly releasing their genomic datasets, 

provide limited access to these datasets through queries. Such queries typically seek to 

extract statistical information about the dataset (referred to as a “statistical dataset”). They 

are formed and submitted by the researchers, computed at the data owner institution, and 

only the final results are shared with the querying researchers. One prominent example of 

such an approach is the access to the results of genome-wide association studies (GWAS) 

[2].

Although this approach provides stronger privacy protection for the dataset participants, 

previous work has shown that such statistical genomic datasets are prone to membership and 

attribute inference attacks [3]. An adversary, using the results of the queries, the genotype of 

a target, and the publicly available minor allele frequencies (MAFs) of the single nucleotide 
polymorphisms (SNPs) used in the study, can infer the membership of the target to the 

corresponding dataset (or to the case group of the corresponding GWAS) [4]. This attack 

is considered serious because in most cases, dataset participants are associated with known 

sensitive information (e.g., cancer predisposition).

Differential privacy (DP) [5] is one of the privacy protection concepts that has received 

widespread popularity for sharing aggregate statistics from human genomic datasets due 

to its theoretical guarantees [2]. Such that, even if there is only one different tuple in two 

datasets (called neighboring datasets), it is hard to differentiate between the query results of 

these two datasets. The probability of distinguishing the results of the neighboring datasets 

is controlled by a parameter called privacy budget ϵ. However, DP has a known drawback 

as it makes no assumption about the correlation between dataset tuples. This may degrade 

the privacy guarantees of DP and give the adversary a stronger ability to extract more 

sensitive information if the dataset includes dependent tuples, which is a common situation 

for genomic datasets as genomes of family members are correlated. Previous work show 

how dependency between dataset tuples may reduce the privacy guarantees of DP [6–8] 

and propose general mechanisms to tackle this problem. Recently, [9, 10] analyze and 

show the privacy risk due to the inference attacks on differentially-private query results by 

exploiting the dependency between tuples in a genomic dataset. To mitigate this privacy risk, 

[9] formalize the notion of ϵ-DP for genomic datasets with dependent tuples to avoid the 

inference of sensitive information by any adversary with prior knowledge about the tuples 

correlation.

However, to provide privacy guarantees for the dependent tuples in genomic datasets, 

existing DP-based solutions suggest changing the value of the privacy parameter ϵ (i.e., 

adding more noise to the released statistics based on the number of dependent tuples and 

the strength of relationship between them). Such higher noise amounts significantly degrade 
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the utility of the shared GWAS statistics, especially when the query results also include data 

from independent tuples in the dataset. On the other hand, medical research necessitates 

highly accurate information for high-quality and effective research outcomes. Therefore, it is 

also crucial to develop utility-preserving countermeasures for this privacy risk.

In this work, we propose a novel privacy-preserving and utility-preserving mechanism 

for sharing statistics from genomic datasets to attain privacy guarantees while taking 

into consideration the dependency between tuples. As discussed, the main reason for the 

aforementioned privacy risk is the existence of dependent tuples in the genomic datasets 

due to familial relationships. Therefore, our goal is to reduce the level of such dependency 

without significantly weakening the utility by adding more noise to the released statistics as 

proposed in the state-of-the-art mechanisms [9, 10, 6–8]. To achieve this, inspired by our 

previous work [11], we propose an optimization-based countermeasure to selectively hide 

genomic data of dataset participants to distort the dependencies (familial relations) among 

them without significantly degrading dataset query responses, thus, the utility.

The key idea of our proposed “selective hiding” mechanism is to hide some selected SNPs 

of family members (as they join the genomic dataset during the dataset collecting step) to 1) 

reduce the kinship relationship between them, and 2) keep the utility of the shared GWAS 

statistics high. We consider a static genomic dataset, which has no updates, and hence the 

released private statistics depend on the one-time updated GWAS dataset. By doing so, the 

constructed GWAS dataset includes only the obfuscated genomes of the dependent tuples. 

Thus, in case of a data breach, familial relationships between the GWAS participants are also 

protected. Also, the proposed method selectively hides only the dependent tuples, keeping 

the genomes of independent tuples intact (which improves utility).

We assume that a potential adversary can use side-channel leaks as public records, social 

media sites, or own prior knowledge about the family members who participated in a 

genomic study for performing a targeted attack (i.e., aimed at a specific, small group of 

people). The adversary uses this information along with the published GWAS statistics in 

order to infer sensitive attributes about the dataset participants. Even if the adversary is 

not sure about the participation of the family members in the dataset or the dependencies 

between the dataset participants (i.e., kin relationships), the adversary can infer the kinship 

coefficient between dataset participants by issuing several well-designed queries to the 

dataset. We evaluate the proposed algorithm against such an adversary by using real-life 

genomic datasets. Our proposed DP-based mechanism can prevent the adversary from 

utilizing the dependencies among the dataset tuples to infer more sensitive attributes about 

dataset participants. In other words, we are aiming at achieving the privacy and utility 

guarantees of the standard DP assuming all the participants of the dataset are independent, 

without increasing the added noise to the query results. Hence, using our mechanism allows 

releasing any differentially private genomic query over GWAS. These queries include but are 

not limited to 1) count or cohort discovery: to query how many participants in the dataset 

satisfy given criteria, 2) χ2 and p-values association tests: compute χ2 and p-value statistics 

for an SNP, or 3) minor allele frequency (MAF): to compute the frequency of which the 

rare nucleotide occurs at a particular SNP. Considering our adversarial scenario (discussed 

in detail in Section 3), our results show that the proposed approach can near-achieve both 
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the privacy and utility guarantees of standard DP (i.e., under independent tuples assumption) 

compared to existing work. As a result of our proposed countermeasure, dataset owners will 

share data realizing that the privacy of the dataset participants, including families, will be 

protected. Also, families will be more open to donating their data to medical datasets for 

research knowing their privacy is uncompromised. Finally, researchers will know that they 

receive high-utility information from medical datasets.

The rest of this paper is organized as follows. Section 2 presents related prior works on 

genomics privacy, DP mechanisms under dependent tuples, and our contributions. Section 3 

explores our privacy threat model, followed by Section 4, which explains our approach. In 

Section 5 we evaluate our proposed strategy and compare it to the state-of-art mechanisms. 

Section 6 presents conclusions and highlights future research directions that are pointed by 

this paper.

2. Related Work

In this section, we summarize the state-of-the-art published studies on genomic privacy and 

differential privacy in particular.

2.1. Privacy of Genomic Data

In recent years, privacy-preserving publishing of genomic data has received much attention. 

One of the widely-used promising privacy-preserving solutions is the DP framework. DP 

provides rigorous mathematical mechanisms for limiting the information leakage through 

adding noise to the statistics results in GWAS [2, 12, 13]. We provide all the theoretical 

details about DP in Section 1.2 in the Supplementary Materials. Existing works basically 

utilize the privacy guarantee of DP as a protective measure against inference attack scenarios 

(e.g., membership attack discovered by [4]) even if the attacker has access to external 

auxiliary information. [12, 13, 2] proposed differentially-private algorithms to release the 

aggregate human genomic statistical results from genomic datasets as GWAS. Using a 

controlled amount of noise from Laplace distribution [14], helps enhance the privacy of all 

participants in a GWAS. In these algorithms, researchers submit genomic queries e.g., cell 

counts, MAF, p-value and χ2 statistics, and receive the query results in a privacy-preserving 

manner through DP algorithms. However, these proposed DP mechanisms assume that all 

the dataset tuples are independent, which may degrade the privacy guarantees when such 

correlations exist between the tuples in the dataset.

2.2. Differential Privacy under Dependent Tuples

The adversary can exploit auxiliary channels to get information about the tuples correlation 

within the genomic dataset. [15] was the first to show this DP vulnerability. Therefore, 

they propose the Pufferfish framework [16] as a generalization of DP to handle this threat. 

Following the Pufferfish, several studies [17, 18] provide perturbation mechanisms to handle 

the correlation between tuples for various applications. Recently, [6] show that an adversary 

can utilize the pairwise dependencies within a location dataset to predict the participant’s 

location from the differentially private query results [6]. To mitigate this privacy threat, [6] 

propose a Laplace mechanism defined as dependent differential privacy (DDP) to tack le 
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the pairwise correlation between any two tuples in the dataset. To improve the privacy and 

utility guarantees of [6], [8] present a new definition of the DDP, which can handle numeric 

and non-numeric queries, to address any adversary with arbitrary correlation knowledge. 

Moreover, [9] discuss attribute and membership inference attacks against differential privacy 

mechanisms, when the datasets include dependent tuples. As a countermeasure for these 

attacks, [9] adjust the global sensitivity of the query before applying Laplace perturbation 
mechanism (LPM) to the query results.

2.3 Contribution of This Work

DP-based solutions that aim at addressing the privacy risks due to the existence of dependent 

tuples in statistical datasets (including GWAS), require the addition of high noise values 

to the results of statistics queries. Hence, it causes a significant loss in the utility of the 

query responses. In this work, we propose a different approach to address the same problem. 

Our proposed solutions rely on one-time selective masking of genomic loci in a GWAS 

dataset to 1) decrease the estimated kinship coefficients between relatives in the dataset, 2) 

provide privacy against an adversary that utilizes correlations in the published statistics, and 

3) provide privacy for dataset participants (e.g., against kinship inference) in case the dataset 

is breached. Other recent studies have attempted to propose general mechanisms to tackle 

kinship privacy such as [19], which target interdependent privacy in their work. Here, we 

compare our model (in terms of privacy and utility) with the existing similar approaches 

(e.g., [9] under the same goal of sharing DP-based query results from genomic datasets with 

dependent tuples. Our results show that the proposed scheme provides both better privacy 

and higher utility than the existing solutions.

3 System and Threat Models

The dataset owner maintains a statistical dataset D and responds to users’ statistical queries. 

To provide statistical information about the dataset in a privacy-preserved way, the dataset 

owner computes randomized query results A D  using LPM-based DP (as in Section 1.2 in 

the Supplementary Materials), and sends it back to the users. The adversary in our scenario 

can be one of the users. The adversary can send various statistical queries to the dataset. In 

recent work, we discuss the vulnerability of dependent tuples in a statistical dataset due to 

different statistical queries (e.g., count, MAF, χ2 statistics) and [10, 9]. Here, for simplicity, 

we focus on a “count query”, in which the adversary forms its query asking about the sum 

of values of a specific SNP j among the dataset participants sharing the same demographic 

data, such as location or age (we assume an SNP value of 0, 1, or 2, representing the 

number of its minor alleles). Limiting the scope of the query to a small number of dataset 

participants allows the adversary to have a higher inference power about the sensitive 

genomic information of a target, especially if the query result is computed over the target 

and target’s family members. The kinship data is not available in the GWAS studies due 

to the sensitivity of family information. However, we consider a realistic targeted attack 

scenario in which the adversary may know that a family participated in a genomic study. 

The adversary can infer the participation of the family members using other side-channel 

leaks as public records, social media sites, or personal knowledge for performing a targeted 

attack (aimed at a specific, small group of people). Alternatively, the adversary can also 
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estimate the kinship coefficients between the dataset participants using the responses to its 

well-designed queries. We show the results of kinship coefficients estimation in Section 5 

in the Supplementary Materials. With the availability of such information, considering an 

attribute inference attack, in which 1) the adversary does not have any prior knowledge 

about genotypes of individuals in the dataset, and 2) the goal of the adversary is to infer 

genomic data of a target individual using the released query results, we have the following 

assumptions:

• The adversary knows the membership information of all individuals in the 

dataset. The membership of an individual in a dataset means that the 

corresponding individual is included in the dataset.

• The adversary knows the dependencies (e.g., kinship coefficient) between the 

individuals in the dataset. As discussed, the adversary can obtain this information 

from side-channel leaks or by estimating the kinship coefficients between the 

dataset participants using the responses to its queries.

4 Proposed Work

Let dataset D includes N individuals and m SNPs. We assume a statistical query to the 

dataset is computed over q dataset participants, including a target i and other p dataset 

participants q = 1 + p . Di
j represents the value of SNP j for target individual i and Dp

j

represents the sum of the SNP j values for other p  participants that are involved in the 

query computation. We let δ  be the added Laplace noise with scale 2/ϵ. Set F F = f
includes individuals from the same family (i.e., target i and his/her family members), and 

set U U = u  includes the other unrelated members (non-relatives) in the dataset. Note that 

there may be more than one family in the dataset and the privacy risk for each family can be 

shown similarly. Therefore, for the sake of simplicity, we assume the dataset includes only 
one family. We show the overview of the proposed algorithm in Figure 1. We provide all the 

notations we use in Table 1 in Section 2 in the Supplementary Materials.

Similarly to the previous work [11], we assume family members share their data in a 

sequential order during the data collection process. For each new incoming family member 

to the dataset, we hide some selected SNPs to decrease kinship coefficients among family 

members and preserve their familial privacy. The main differences between this work are:

• The original selective sharing scheme in [11] considers a publicly available 

dataset and it aims to reduce the kinship coefficients between the dataset 

participants to hide the familial relationships. Here, the statistical dataset is not 

public. Therefore, our aim is not to specifically hide the relation of participants. 

Instead, our goal is to reduce the kinship coefficients so that (1) privacy 

vulnerability (caused by the sharing of statistics computed over dependent 

tuples) is minimized, and (2) the utility of the shared statistics still remains 

high. As a result, we exclude the outlier constraints part (details provided in the 

Supplementary Materials, Section 1.1) in the optimization model. We focus on 

satisfying the kinship constraints only. For completeness, below we describe the 
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part of the formulation and the approach that we propose in [11] and we also use 

here.

• We design the proposed method to hide overlapping regions among the family 

members first and solve the optimization later. The goal is to have better privacy 

and higher utility.

To reduce the kinship coefficient, we hide positions based on their SNP configurations. 

Hence, we use a notation to denote the positions with different SNP configurations for 1) 

an individual, and 2) a family. For an individual i, a particular genomic position can hold 

a SNP configuration si, where si takes values in {0, 1, 2}. We denote the total number of 

positions the individual owns with SNP configuration si as nsi (e.g., n0 is the number of 

positions with SNPs’ value of 0). nsi shows how many genomic locations are 1) recessive 

homozygous, 2) heterozygous, and 3) dominant homozygous. For the setting of representing 

more than one individual, we refer to all genomic positions (with their SNP configuration) 

for all individuals from the family members. For example, if we have a family of three 

members, n121 indicates the number of positions in which the first individual’s SNP value is 

1, the second’s is 2, and the third’s is 1. If an individual i can hold any of the SNP values 

(i.e., si = 0, 1, or 2), we denote si with *.

To calculate the kinship coefficient between two individuals i and k, we use the robust 

kinship estimator proposed by [20]:

ϕik = 2n11 − 4 n02 + n20 − n* 1 + n1 * /4n1 * (1)

when n1 * ¡ n* 1, it means that ktℎ individual has more heterozygous positions than the 

itℎ member. n11 presents the number of genomic positions where both individuals are 

heterozygous. n20 and n02 indicate the number of SNPs when the individuals i and k hold 

homozygous dominant SNPs (e.g., si = 0) or homozygous recessive SNPs (e.g., si = 2).

Our solutions find the appropriate positions to hide based on the SNP configuration. We 

define a variable, xsi, to denote the number of a particular SNP configuration we need to hide 

from the most recent entrants (i.e., last arrived family member). Using Equation 2, one can 

easily calculate x11; the number of heterozygous genomic positions to be removed in order to 

decrease the kinship coefficient down to a preset ϕ′ value between two individuals, as:

x11 = 2n11 − 4 n02 + n20 − n1* + 1 − 4ϕik
′ n*1

2 1 − 2ϕik
′ (2)

To have a kinship coefficient lower than a preset Φ, Equation (2) can be cast as an integer 

programming problem as follows:

min x11
subject to
2n11 − 4 n02 + n20 − n1 * + (1 − 4Φ)n* 1 ≤ (2 − 4Φ)x11
x11 ≤ n11

(3)
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min x101 + x111 + x121 + x110 + x112
s.t.
2n11 * − 4 n02 * + n20 * − n1 * * + (1 − 4Φ)n* 1 * ≤ (2 − 4Φ)x11 * − x101 − x121
2n1 * 1 − 4 n2 * 0 + n0 * 2 − n1 * * + (1 − 4Φ)n* * 1 ≤ (2 − 4Φ)x1 * 1 − x110 − x112
2n* 11 − 4 n* 02 + n* 20 − n* * 1 + (1 − 4Φ)n* 1 * ≤ (1 − 4Φ)x11 * + 2x111 − x1 * 1
x11 * = x111 + x110 + x112
x1 * 1 = x111 + x101 + x121
x101, x111, x121, x110, x112 ∈ Z ≥ 0 .

(4)

We show how to select the kinship coefficient threshold Φ in Section 7 in the Supplementary 

Materials. Equation 4 shows the extended optimization model (in Equation 3) for a three 

members family.The objective function in the mixed integer programming model (shown in 

Equation 4) minimizes the number of SNP positions we need to hide, subject to kinship 

constraints derived using the kinship formula in [20]. For larger families with more than 

two members, the optimization model considers all the pairwise kinship coefficients among 

the related members. We use CPLEX (IBM Inc.) to solve the mixed-integer programming 

problem [21]. In our model, the number of constraints increases exponentially with the 

augmentation of family size, thus, becoming more difficult. We show an estimate of the 

time and memory requirements of the optimization model considering the different number 

of i) family members and, 2) SNPs, in Section 8 in the Supplementary Materials. The 

optimization model is run regularly when a new family member arrives at the dataset. 

First, we consider the overlapping SNP positions among the family members in the dataset. 

Once the number of positions and their configurations is determined by the optimization 

procedure, we select these positions from the overlapping region among the first-degree 

relatives e.g., the overlapping region between the mother-son and the father-son. If the 

number of required SNPs to hide is larger than the number of SNPs in the overlapping 

region (i.e., not enough SNPs exist in the overlapping region), we run the model to randomly 

remove the rest of the SNPs (i.e., outside the overlapping region) from the family members. 

Since the dataset is not public, we assume that the dataset owner knows the previously 

removed SNPs from the former arrivals. If not, alternatively, after completing the data 

collection, the dataset owner can 1) identify the families, and 2) process the genomes one 

by one to apply the selective hiding process, before sharing any statistical query from the 

dataset.

Hiding the overlapping SNPs among the family members allows to (1) preserve higher 

utility guarantees: it reduces the kinship estimation between multiple family members by 

hiding less number of SNPs, and (2) preserve higher privacy guarantees: it hides multiple 

SNPs for an SNP position to confuse a potential adversary trying to know sensitive 

information from the query results. Figure 2 shows how to hide from the new SNP set 

by choosing the SNPs overlapped with the previously hidden set. Note that the adversary 

(who sends statistical queries to the dataset) cannot observe the hidden SNPs as the dataset 

is not published.

In the following, we provide a toy example describing Figure 2 and how the proposed 

selective hiding process work for the individuals in the Manual Corpas family tree 

(described in detail in Section 5.1 and the family tree is shown in Figure 3).
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1. Manual Corpas arrives at the dataset (or his genome is processed the first). No 

SNPs are hidden from his genome.

2. When the father arrives (or the father’s genome is processed), we first calculate 

the number of required SNPs to be hidden from the father using the optimization 

model with the aim of reducing the kinship between the son and the father. Then, 

we find the available SNPs that we can hide from the father.

3. When the mother arrives, we also calculate the number of required SNPs to be 

hidden using the optimization model. We locate the available SNPs to be hidden 

from the mother in order to decrease the kinship coefficient between the son and 

the mother.

4. We determine the SNPs that lie in the overlapping region between the available 

SNPs that can be hidden from the father and the available SNPs that can be 

hidden from the mother since these SNPs are proven to contribute the most to the 

kinship coefficient between the son, father, and mother.

5. We start hiding from the father. We pick the required SNPs from the overlapping 

region, and the rest of the SNPs are selected randomly.

6. Then, we hide the mother’s SNPs that lie in the overlapping region. After 

removing these SNPs, the mother and the son’s kinship coefficient is then 

decreased by one familial degree compared to their original value. No need to 

hide extra SNPs from the mother. (This step shows how the heuristic approach 

minimizes the random selection).

7. If the aunt arrives later, we run the optimization model for four people in such 

a way that kinship coefficients between both aunt-mother and aunt-son decrease 

while preserving the decreased kinship coefficients as in the previous steps.

After repeating this selective hiding process for each dataset participant, sequentially, 

all (required) records in the dataset become obfuscated and the dataset can now accept 

statistical queries. We consider here the count query by the users (or the adversary). 

Following the attack scenario proposed by [9], to limit the number of dataset members 

included in the query results, the adversary sends its query specified by some demographic 

properties (e.g., age, address). Dataset owner computes the result of the query on the dataset 

with missing SNPs (missing SNPs of some dataset participants are due to the proposed 

selective hiding algorithm). Dataset owner reports (1) the query result (sum of all SNP 

values for the dataset participants that are considered in the query computation), and (2) the 

number of dataset participants that are used to compute the query results q . Note that if a 

dataset participant is involved in the query computation, but its corresponding SNP has been 

hidden (due to the proposed selective hiding algorithm), that participant still contributes to 

the number of dataset participants q, which are used to compute the query result (i.e., from 

the adversary’s point of view, the query is still computed over q individuals). In a response 

to a count query for an SNP j, the dataset owner computes a noisy query result Dpi
j , by 

adding Laplace noise with parameter 2/ϵ. The query result includes the sum of the SNP j
values for a target i Di

j  and other p participants included in the query results Dp
j . We assume 

that the adversary has access to 1) auxiliary information about the membership of each 
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participant including the target i, and 2) familial relationship R between the target and other 

individuals in the dataset (that is computed over the obfuscated dataset with the hidden SNPs 

and released as metadata by the dataset owner). After receiving the noisy query result Dpi
j , 

the adversary can use the coin change algorithm [22] to obtain all possible partitions of total 

count (for SNP values) as a combination of the set {0, 1, 2}, where each partition should 

only include ≤ p + 1  individuals. Next, for each valid partition, the adversary validates all 

the unique permutations using Mendel’s law. Once validated, the adversary computes the 

probability of each permutation from Mendel’s law by considering potential values of SNP 

j (0, 1, and 2) for the target i. Hence, the adversary can infer the value of Di
j for target i

using the SNP values of dependent people related to the target that is used to compute the 

query result, as shown in [9]. We show an example of how to perform an attribute inference 

attack using the count query results in Section 4 in the Supplementary Materials. To evaluate 

the privacy and utility performance of our proposed selective hiding algorithm, we use the 

correctness and utility loss metrics (explained in detail in Section 5.3) over a real-world 

genomic dataset to show the robustness of our mechanism. We next discuss our evaluation in 

detail.

5 Evaluation

5.1 Dataset Description

For the evaluation, our dataset D contains partial DNA sequences from two sources:

• 1000 Genomes phase 3 data [23]

• Manuel Corpas Family Pedigree [24]

1000 Genomes Phase 3 data—We use data from 1000 Genomes Phase 3 [23], to obtain 

data for the unrelated individuals from the same or different population of the target and 

his family members. We extract the genotypes from chromosome 22 for 176 participants 

from the European population using the Beagle genetic analysis package [25] to convert the 

values of genotypes to 0, 1, or 2 according to the number of minor alleles for each SNP.

Manuel Corpas (MC) Family Pedigree—Manuel Corpas [24] released his and his 

family members’ genomes for research purposes. The dataset contains the DNA sequences 

in variant call format (VCF) for the father, mother, son (Manuel Corpas), daughter, and aunt. 

The family tree of the individuals in this dataset is illustrated in Figure 3. We choose the 

son to be the target and we use the genomic records of his first and second-degree family 

members (father, mother, and aunt).

We extract the common SNPs from all MC family members and 1000 Genomes members 

for the evaluation of the proposed algorithm. Finally, we combine the family genomic data 

with the unrelated individuals.

5.2 Evaluation Settings

To evaluate the proposed countermeasure against the attribute inference attack, we defined 

a case-control dataset D. D includes N individuals N = 180  from the European population 
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from the 1000 Genomes project dataset and MC family, in which N
2 = 90  are cases and 

N
2 = 90  controls. As discussed in Section 3, the adversary aims to infer m SNPs for a target 

i using the results of queries over dataset D. Here, we assume that the adversary knows 1) 

the true number of participated individuals (i.e., true number of SNPs) in the query result, 

and 2) the kinship coefficients of the dataset participants (e.g., from the metadata of the 

dataset). Note that kinship coefficients shared by the dataset are computed after the proposed 

selective sharing algorithm (reflecting the actual kinship coefficients in the final dataset), 

and hence they are obfuscated to provide robustness.

5.3 Evaluation Metrics

To evaluate the performance of the proposed algorithm against attribute inference attacks, 

we use the correctness metric. Utilizing the notion of the expected estimation error, the 

correctness of the adversary quantifies the difference distance (Dist) between 1) Di
j, which is 

the true value of SNP j for the target individual i, and 2) Di
j
, which is the inferred value of 

SNP j for the target individual i by the adversary. We can compute the probabilities for Di
j

using the Mendelian inheritance probabilities for an SNP i given all the potential SNP values 

(i.e., 0, 1, or 2) for Di
j. We compute the correctness for all m targeted SNPs of the target i as 

follows:

C = 1 − ∑
j = 1

m
P Di

j Dpi
j Dist Di

j, Di
j , (5)

To quantify the utility loss (in terms of the quality or accuracy of the shared query 

responses) due to the proposed mechanism, we calculate the average change in the actual 

query result Dpi
j  and the noisy query result Dpi

j
 considering all m targeted SNPs as follows:

U = 1
m ∑

j = 1

m
Dist Dpi

j , Dpi
j , (6)

5.4 Experimental Results

In an inference attack, we assume the differentially private query results are computed by 

accounting for (1) target i and multiple first and second-degree family members in F; and (2) 

target i, multiple family members in F, and multiple other unrelated members (non-relatives) 

in U. We evaluate the performance of the attack under two assumptions:

• Independent assumption (w/o dep): the adversary assumes that there is no 

correlation between the participants in D.

• Dependent assumption (w/ dep): the adversary utilizes the familial relationships 

between the participants in D to perform the genome reconstruction for target i.

We also compare the proposed algorithm with the one proposed in [9], which aims to adjust 

the privacy parameter of DP to provide privacy guarantees for the dependent tuples in the 
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dataset. According to [9, 10], if all the tuples in the dataset are independent, then the noisy 

query output achieves DP with the same privacy budget ϵ. However, if the dataset includes 

dependent tuples, one needs to augment the scale of Laplace noise using a smaller ϵ value 

(or a larger query sensitivity) to achieve DP. Using the notion of the “leaked information” 

ratio for different privacy budgets ϵ, [9] adjust the global sensitivity of the query to mitigate 

the information leaks resulting from the attribute inference attack. In the following, we (1) 

compare the dependent (referred to as “no hiding w/ dep” in the figure) and independent 

assumptions (referred to as “no hiding w/o dep” in the figure) to show the vulnerability due 

to independent assumption, (2) show the performance of our proposed mitigation algorithm 

(by hiding selective SNPs from the family members) against an adversary that uses the 

dependencies in its attack (referred to as “selective hiding” in the figure), (3) hide random 

SNPs (without using any optimization) from the family members rather than selective 

hiding, to show the benefits of selective hiding (referred to as “random hiding” in the figure), 

and (4) compare the proposed mitigation algorithm with the one in [9] to assess the proposed 

algorithm (referred to as “dependent sensitivity” in the figure).

Privacy Performance—In Figure 4, we evaluate the effect of different values of the 

privacy budget, ϵ, on the adversary’s correctness in inferring the targeted m SNPs. We also 

analyze the robustness of our proposed mechanism to the inference attack and compare it 

with the most similar existing work [9]. Here the query results include the statistics from 

the family members only. We start including 1 first-degree family member with the target i. 
First, we include the mother to the query results as in Figure 4(a), then we include the father 

of the target as in Figure 4(b)). Third, we include both the father and the mother in the query 

results, as in Figure 4(c). Last, we consider a second-degree family member (aunt of target i) 
in the query results along with the father and the mother of the target (Figure 4(d)).

Using the results of count queries over the case-control dataset D, we make the following 

key observations: (1) The correctness of the adversary with the knowledge of the data 

dependency is up to 50% more compared to the case in which the adversary does not 

consider the data dependency in the query results (Figure 4). (2) In accordance with the 

results of [10], the most accurate inference of the adversary is achieved when the query 

computation includes target i along with his father and mother (Figure 4(c)). Including a 

second-degree family member as in (Figure 4(d)) can enlarge the range of possible SNP 

values for the target, and hence make it more difficult to accurately infer the correct SNP 

value with a high probability. (3) Proposed selective hiding mechanism achieves better 

privacy for various privacy budgets, compared to the random hiding for different family 

members included in the query results, as illustrated in Figure 4.

Figure 5 shows the effect of different values of ϵ on adversary’s success in terms of 

its correctness in inferring m SNPs of the target i. We increase the number of non-

relatives (from 5 to 20) that are included in the query computation along with first-degree 

family members of the victim. From these experimental results, we make the following 

observations:

1. In accordance with our previous observations in Figure 4, the probability of 

inferring the true value of the targeted m SNPs slightly increases (mostly 2%
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−20%) depending on the knowledge of the adversary about the dependency 

between tuples, as the value of the privacy budget, ϵ, increases from 0.1 to 5. 

Hence, even when including a different number of non-relatives in the query 

results (e.g., the size of U changes from 5 to 20), there is a significant increase 

in the correctness of the adversary if the adversary has the knowledge of the 

data dependency, as shown Figure 5. However, in Figure 5, we observe that the 

difference between the correctness of the inferred SNPs with and without the 

knowledge of the data dependency is about 3 times less than when the query 

results include data for only family members of the target i (Figure 4).

2. Applying our proposed countermeasure by selectively hiding the family 

members’ SNP values is superior to the dependent sensitivity mechanism in 

terms of correctness metric. Compared to the optimal DP privacy guarantees, 

in which we consider all the tuples to be independent ((No hiding w/o dep) 

in Figure 5), our proposed mechanism achieves (~5%) less privacy, while 

dependent sensitivity mechanism achieves (~15%) less privacy guarantees under 

the same privacy budget, ϵ.

3. Randomly hiding the SNPs of the family members results in achieving less 

privacy guarantees, even if we compare it with the correctness results of the 

attribute inference attack, where no hiding method is applied (e.g., no hiding w/ 

dep in (Figure 5(a) and (b) for privacy budget, ϵ > 2.5).

Next, Figure 6 shows the effect of different values of the privacy budget, ϵ, used in DP, on 

the correctness of the adversary, when we apply the selective hiding mechanism for family 

SNPs, considering a different number of family members to be included in the query results. 

The results illustrate the association between the privacy budget, ϵ, and the correctness 

of the adversary for inferring the actual values of the targeted m SNPs. The probability 

of inferring the correct values increases significantly (by 30%) as the budget privacy, ϵ, 

increases from 0.1 to 5, as shown in Figure 6. This is expected as the more ϵ values we 

use in the LPM-based DP, the less the added noise, and hence increasing the success of the 

inference attack. The choice of the parameter ϵ is difficult: values reported in the literature 

vary from as little as 0.01 to as much as 7 according to [26] or up to 100 according to [12], 

based on the required levels of privacy and utility for the given use case.

Finally, we explore the robustness of the selective hiding mechanism for a different number 

of related and unrelated people in the query results, without applying differential privacy. 

Figure 7 shows the relationship between the number of family members (as in Figure 

7(a)) or the number of non-relatives (as in Figure 7(b)) in the query results and the 

probability of inferring the true SNPs value by the adversary when we apply selective hiding 

mechanism. The results show that increasing the number of family members or unrelated 

individuals included in the query result, using selective hiding mechanism slightly decreases 

the correctness of the adversary, thus improving privacy.

Utility Performance—Publishing statistics of genomic datasets results in utility gain 

for society as a whole. However, publishing these statistics could also result in privacy 

loss for the participants of the dataset, especially if the dataset includes correlated tuples. 
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Hence, the goal of our proposed mechanism is to ensure that the privacy loss is restricted 

to an acceptable level, without causing a high loss in the potential utility gain, when 

compared with the case of publishing the original statistical results. Using the utility loss 

metric introduced in Section 5.3, in the following we compare our proposed mechanism 

(referred to as “selective hiding” in the figure) with the existing dependent sensitivity 

countermeasure proposed in [9] (referred to as “dependent sensitivity” in the figure) and 

random hiding mechanism (referred to as “random hiding” in the figure) in terms of utility, 

using a MAF query over a dataset D with m=100 SNPs. Figure 8 and Figure 9 show 

the utility loss caused by hiding selective SNPs from the family members participating 

in the dataset D and then adding noise to achieve ϵ-DP by considering the dependence 

between tuples. As in Section 5.4, we consider the query results to include the statistics 

from the family members only (Figure 8). Then, we calculate the utility performance of the 

three mechanisms considering query results with different numbers of unrelated individuals 

(Figure 9). The results show that with smaller ϵ values, utility loss caused by the three 

mechanisms decreases. As previously discussed, the main idea of the dependent sensitivity 

mechanism [9] is augmenting the Laplace noise by decreasing the privacy budget, ϵ, value 

to achieve DP for any dataset with dependent tuples. Our proposed mechanism adds a 

significantly smaller amount of noise, when ϵ ≤ 1, and hence provides better utility. For 

example, when ϵ = 0.5, and the query results include 5 unrelated individuals along with the 

family members (Figure 9(a)), the amount of utility loss caused by our mechanism is 33% of 

utility loss caused by the dependent sensitivity.

6 Conclusion

Developing new privacy-preserving techniques that facilitate sharing the outcomes of human 

genomic studies is necessary. The main goal of such techniques is to preserve the privacy 

of dataset donors without undermining the utility of the dataset, and hence the research 

outcomes. Differential privacy-based data perturbation techniques have known privacy 

limitations while sharing statistics from a genomic dataset that contains dependent tuples. In 

this paper, we propose a “selective hiding” mechanism to mitigate the privacy risks caused 

by the correlations between the dataset tuples. We assume a strong adversary who can send 

one query about one SNP, then the dataset owner can choose the appropriate privacy budget 

ϵ to release a noisy query result according to i) the required level of privacy and utility 

of the released data, and ii) the sensitive nature of the genomic dataset. We evaluate our 

perturbation mechanism over real-world genomic datasets and proved that it can achieve 

high privacy guarantees while minimizing utility loss. Our results show that the proposed 

scheme achieves both significantly better privacy and utility than the existing DP-based 

mechanisms. However, as a limitation of any DP scheme, it is known that sending multiple 

queries per the same dataset may degrade the privacy guarantees of DP [27–30]. It may be 

possible for us to consider this setting in our future research directions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Our proposed model. (1) The dataset owner selectively hides SNPs from the family members 

included in the dataset during data collection. We consider a static genomic dataset, which is 

a one-time updated dataset. (2) The adversary sends the count queries to the dataset owner. 

(3) The dataset owner applies LPM to the query results and sends them to the adversary. 

(4) The adversary runs the attribute inference attack against the target i by using i) results 

of differentially-private count queries, ii) dependency between the target and target’s family 

members that are in the dataset D, and iii) Mendel’s law. In our threat settings, the adversary 

can obtain: i) the membership information of all dataset participants, and ii) the kinship 

coefficient between the dataset participants, from exploiting side-channel leaks.
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Fig. 2: 
Comparison of our proposed approach and the one in [11]. The orange-colored SNPs 

denote the available SNP positions that can be hidden. Green-colored areas are the removed 

regions. In the proposed approach, we aim to hide from the region with maximal overlap.
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Fig. 3: 
Manuel Corpas family tree.
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Fig. 4: 
The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in 

inferring the targeted SNPs, considering a different number of family members in F F = f
included in the noisy results of count query. The query results include (a) MT: mother 

and target, (b) FT: father and target, (c) FMT: father, mother, and target (d) FMTA: father, 

mother, target, and aunt.
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Fig. 5: 
The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in 

inferring the targeted SNPs, considering 2 first-degree relatives (father and mother) with 

different numbers of non-relatives in U U = u  included in the noisy results of count query. 

The query results include 5, 10, and 20 unrelated members in (a), (b), and (c) respectively.
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Fig. 6: 
The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in 

inferring the targeted SNPs, using a different number of family members in F F = f
included in the noisy results of count query.
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Fig. 7: 
The relationship between different numbers of (a) family members in F F = f  and (b) 

non-relatives in U U = u  included in the noisy results of count query, and the adversary’s 

correctness in inferring the targeted SNPs.
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Fig. 8: 
The effect of different values of the privacy budget, ϵ, on the utility loss caused by applying 

different mechanisms as countermeasures against the attribute inference attack, using a 

different number of family members in F F = f  included in the noisy results of MAF 

query.
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Fig. 9: 
The effect of different values of the privacy budget, ϵ, on the utility loss caused by applying 

different mechanisms as countermeasures against the attribute inference attack, using a 

different number of non-relatives in U U = u  included in the noisy results of MAF query.
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