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Abstract
Inspired by the definition of t-spread monomial ideals, in this paper, we introduce t-spread 
d-partite hypergraph Kt

V
 and study its edge ideal I(Kt

V
) . We prove that I(Kt

V
) has linear quo-

tients, all powers of I(Kt

V
) have linear resolution and the Rees algebra of I(Kt

V
) is a normal 

Cohen-Macaulay domain. It is also shown that I(Kt

V
) is normally torsion-free and a com-

plete characterization of Cohen-Macaulay S∕I(Kt

V
) is given.

Keywords Edge ideals of hypergraphs · Cohen-Macaulay edge ideals · Linear quotients · 
t-spread ideals · Strong persistence property · Normally torsion-free ideals
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1 Introduction

In [6], the third author together with Ene and Herzog introduced the notion of t-spread 
monomials in a polynomial ring S = �[x1,… , xn] over a field � and studied some classes 
of ideals and �-algebras generated by t-spread monomials. Let u = xi1 ⋯ xid be a mono-
mial in S and t ≥ 0 . The monomial u is called t-spread if ij − ij−1 ≥ t for all j = 2,… , d . 
A monomial ideal I ⊂ S is called t-spread if it is generated by t-spread monomials. Any 
monomial ideal in S can be viewed as 0-spread and any square-free monomial ideal as 
1-spread. After their first appearance in 2019, different classes of t-spread monomial ideals 
have been studied by many authors and recently in 2023, Ficarra gave a more generalized 
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notion of t-spread monomials by replacing the integer t with t = (t1,… , td−1) ∈ ℕ
d−1 , (see 

[7] and the reference therein).
In this paper, we study t-spread monomial ideals which appear as the edge ideals of cer-

tain d-partite hypergraphs. Let V = {V1,… ,Vd} be a partitioning of a finite set U ⊂ ℕ such 
that p < q if p ∈ Vi, q ∈ Vj with i < j . We call {i1,… , id} ⊂ U a t-spread set if ij ∈ Vj for 
all j = 1,… , d and ij − ij−1 ≥ tj−1 for all j = 2,… , d . We call the hypergraph Kt

V
 on vertex 

set V(Kt

V
) = U , a complete t-spread d-partite hypergraph if all t-spread sets of U are the 

edges of Kt

V
 . For t = (1,… , 1) , the hypergraph Kt

V
 is a complete d-partite hypergraph, see 

[1, Example 3]. The edge ideal of Kt

V
 , denoted by I(Kt

V
) , is a t-spread monomial ideal gen-

erated by those monomials whose indices correspond to the edges of Kt

V
 . It turns out that 

I(Kt

V
) admits many nice algebraic and homological properties. It is shown in Theorem 2.4 

that I(Kt

V
) has linear quotients. The ideals with linear quotients were first defined by Her-

zog and Takayama in [14] and their free resolutions were computed as iterated mapping 
cones. Using the description of Betti numbers of ideals with linear quotients given in [14], 
in Proposition 2.5, we provide an intrinsic way to compute Betti numbers of I(Kt

V
).

In Sect.  3, we study the powers and fiber cone of I(Kt

V
) . One of the main results of 

Sect. 3 is given in
Corollary 3.7 The ideal I(Kt

V
)satisfies the strong persistence property and all powers of 

I(Kt

V
)have linear resolution.

To prove Corollary 3.7, we first show that minimal generating set of I(Kt

V
) is sortable 

and I(Kt

V
) satisfies the �-exchange property with respect to sorting order, see Proposi-

tion  3.1 and Theorem  3.4. Then it follows from classical results of Fröberg [8], Sturm-
fels [19] and Hochster [16] that the Rees algebra R(I(Kt

V
)) is a normal Cohen-Macaulay 

domain, see Corollary 3.6. Then Corollary 3.7 is obtained as an application of [15, Corol-
lary 1.6] and [11, Corollary 10.1.8]. We also compute the Krull dimension of fibercone 
R(I(Kt

V
))∕�R(I(Kt

V
)) which provides the limit depth of S∕I(Kt

V
) in Theorem 3.11.

Let H be a hypergraph with vertex set V(H) . A set T ⊂ V(H) is called a transversal of 
H if it meets all the edges of H and the family of all minimal transversals of H is called 
the transversal hypergraph of H , see [1, Chapter 2]. The minimal transversals of a hyper-
graph H correspond to the minimal prime ideals of the edge ideal of H . In Sect. 4, we con-
sider Kt

V
 with V = {V1,… ,Vd} such that each Vi is an interval of integers. The description 

of the minimal primes of I(Kt

V
) is obtained by computing the minimal generating set of 

Alexander dual of I(Kt

V
) in Theorem 4.1. In Theorem 4.6, we prove that I(Kt

V
) is normally 

torsion-free which is equivalent to say that Kt

V
 is a Mengerian hypergraph. A complete 

characterization of unmixed I(Kt

V
) is given in Theorem 4.9. With the help of Theorem 4.9, 

a complete characterization of Cohen-Macaulay S∕I(Kt

V
) is obtained in Theorem 4.11.

2  t‑spread d‑partite hypergraphs and their edge ideals

A finite hypergraph H on the vertex set V(H) = [n] is a collection of edges 
E(H) = {E1,… ,Em} with Ei ⊆ V(H) for all i = 1,… ,m . A hypergraph H is called sim-
ple, if Ei ⊆ Ej implies i = j . Simple hypergraphs are also known as clutters. Moreover, if 
|Ei| = d , for all i = 1,… ,m , then H is called a d-uniform hypergraph. A 2-uniform hyper-
graph H is just a finite simple graph. A vertex of a hypergraph H is said to be an isolated 
vertex if it is not contained in any edge of H.
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A hypergraph H is a d-partite hypergraph if its vertex set V(H) is a disjoint union 
of sets V1,… ,Vd such that if E is an edge of H , then |E ∩ Vi| ≤ 1 . In particular, if H 
is a d-uniform d-partite hypergraph with a vertex partition V1,… ,Vd , then |E| = d and 
|E ∩ Vi| = 1 for each E ∈ E(H) . In this paper, all hypergraphs are simple, uniform, and 
without isolated vertices.

Next, we introduce the definition of t-spread d-partite hypergraphs. To do this, we 
give the following notation. For any integers i ≤ j , let [i, j] ∶= {k ∶ i ≤ k ≤ j} and for any 
integer n, we set [n] ∶= {1,… , n}.

Definition 2.1 Let H be a d-partite hypergraph with V(H) ⊆ [n] , and V = {V1,… ,Vd} be 
a family defining partitioning of V(H) such that if p ∈ Vi and q ∈ Vj with i < j , then p < q . 
Let t = (t1,… , td−1) ∈ ℕ

d−1 . An edge E of H is called a t-spread edge if 

(∗)  E = {i1, i2,… , id} with ij ∈ Vj for all j = 1,… , d , and ij − ij−1 ≥ tj−1 for all 
j = 2,… , d.

 A d-partite hypergraph H is called t-spread if each edge of H is t-spread. Moreover, H 
is called a complete t-spread d-partite hypergraph and denoted by Kt

V
 if all E ⊆ V(H) 

satisfying (∗) belong to E(H).
Let 1 = (1,… , 1) . A complete 1-spread d-partite hypergraph is just a complete d-par-

tite hypergraph as studied in [1]. The class of complete d-partite hypergraphs have many 
nice combinatorial properties. We refer reader to [1] for more information.

Let S = �[x1,… , xn] be a polynomial ring over a field � and I be a monomial ideal in 
S. Throughout the following text, the unique minimal generating set of a monomial ideal 
I will be denoted by G(I) . The support of a monomial u, denoted by supp(u) , is the set 
of variables that divide u. Moreover, we set supp(I) =

⋃
u∈G(I) supp(u) . Let H be a hyper-

graph on V(H) = [n] . The edge ideal of H is given by

Definition 2.2 [7] Let t = (t1, t2,… , td−1) ∈ ℕ
d−1 . A monomial 

xi1xi2 ⋯ xid ∈ S = �[x1,… , xn] with i1 ≤ i2 ≤ ⋯ ≤ id is called t-spread if ij − ij−1 ≥ tj−1 for 
all j = 2,… , d . A monomial ideal in S is called a t-spread monomial ideal if it is generated 
by t-spread monomials.

Note that a 0-spread monomial ideal is just an ordinary monomial ideal, while a 1
-spread monomial ideal is just a square-free monomial ideal. When t = (t,… , t) for 
some fixed integer t ≥ 0 , then t-spread monomial ideal is t-spread introduced in [6]. In 
the following text, we will assume that ti ≥ 1 for all 1 ≤ i ≤ d − 1 . It follows from the 
above definitions that the edge ideal of a t-spread d-partite hypergraph is a t-spread 
monomial ideal. To illuminate these definitions, we provide the following example.

Example 2.3 Let t = (3, 2, 4) and V = {V1,V2,V3,V4} with 
V1 = {1, 2, 3},V2 = {5, 7},V3 = {8, 9, 11} and V4 = {12, 13} . Then the minimal generators 
of the edge ideal of Kt

V
 are as follows:

I(H) = (
∏
j∈Ei

xj ∶ Ei ∈ E(H)).
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x1x5x8x12 x2x5x8x12
x1x5x8x13 x2x5x8x13
x1x5x9x13 x2x5x9x13
x1x7x9x13 x2x7x9x13 x3x7x9x13
The ambient ring of I(Kt

V
) in this case is S = �[x1, x2, x3, x5, x7, x8, x9, x12, x13] . Indeed, 

we can remove 11 from V3 to exclude the isolated vertices.

The edge ideals of Kt

V
 have many nice algebraic and combinatorial properties. Let I be a 

homogenous ideal in S = �[x1,… , xn] with graded minimal free resolution

where for all i = 0,… , p , the free S-module �i is equal to 
⨁

j S(−j)
�i,j(I) . Recall that �i,j(I) is 

the (i, j)-th graded Betti number of I and the rank of �i is called the i-th Betti number of I 
and denoted by �i(I) . Then the ideal I is said to have d-linear resolution if �i,j(I) = 0 for all 
i and all j ≠ d.

We first prove that I(Kt

V
) has linear resolution. To do this, we show that I(Kt

V
) has linear 

quotients. Recall that an ideal I ⊂ S = �[x1,… , xn] is said to have linear quotients if G(I) 
admits an ordering u1,… , ur such that the colon ideal (u1,… , ui−1) ∶ (ui) is generated by 
variables for all i = 2,… , r . It is known from [14, Theorem 1.12] or [11, Propositon 8.2.1] 
that an ideal generated in a single degree has linear resolution if it admits linear quotients.

Theorem 2.4 The ideal I(Kt

V
) has linear quotients.

Proof Let >lex denote the lexicographical order induced by the total order 
x1 > x2 > ⋯ > xn . Furthermore, let t = (t1,… , td−1) ∈ ℕ

d−1 and set I = I(Kt

V
) and let 

G(I) = {u1,… ur} ordered such that u1 >lex u2 >lex ⋯ >lex ur . We need to show that 
(u1,… , ui−1) ∶ (ui) is generated by variables for all i = 2,… , r . To do this, it is enough 
to show that for all 1 ≤ j ≤ i − 1 , there exists xp ∈ (u1,… , ui−1) ∶ (ui) such that xp divides 
uj∕ gcd(uj, ui).

Let j < i and ui = xi1xi2 ⋯ xid and uj = xj1xj2 ⋯ xjd with i1 < i2 < ⋯ < id 
and j1 < j2 < ⋯ < jd . On account of uj >lex ui , there exists some � such 
that j1 = i1, j2 = i2,… , j

�−1 = i
�−1 and j

�
< i

�
 . Note that j

�
, i
�
∈ V

�
 . Let 

v = xj
𝓁
(ui∕xi

𝓁
) = xi1xi2 ⋯ xi

𝓁−1
xj

𝓁
xi

𝓁+1
⋯ xid . We have j

�
− i

�−1 = j
�
− j

�−1 ≥ t
�−1 

and i
�+1 − j

�
≥ i

�+1 − i
�
≥ t

�
 . This shows that v corresponds to a t-spread edge of 

Kt

V
 . Hence, v ∈ G(I) and v = uk for some k < i . This completes the proof because 

xj
�
∈ (u1,… , ui−1) ∶ (ui) and xj

�
 divides uj∕ gcd(uj, ui) .   ◻

Let I be a monomial ideal with linear quotients with respect to the ordering u1,… , ur of 
G(I) . If I is generated in a single degree d, then I has linear resolution as shown in [14]. Fol-
lowing [14], we define

Using [14, Lemma 1.5], we can conclude that

In the following proposition, we give a description of set(u) when u ∈ G(I(Kt

V
)) . For any 

S ⊆ [n] , we set min S to be the smallest integer in S, and max S to be the largest integer in S.

(1)0 → �p

�p

����������→ �p−1 → ⋯ → �1

�1

����������→ �0

�0

����������→ I → 0,

set(uk) = {i ∶ xi ∈ (u1,… , uk−1) ∶ (uk)} for k = 2,… , r.

𝛽i,i+d(I) = |{𝛼 ⊆ set(u) ∶ u ∈ G(I) and |𝛼| = i}|.
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Proposition 2.5 Let u = xk1xk2 ⋯ xkd ∈ G(I(Kt

V
)) with t = (t1, t2,… , td−1) and i1 = minV1 . 

With the notations introduced above, set(u) is the union of [i1, k1 − 1] ∩ V1 and 
[kj−1 + tj−1, kj − 1] ∩ Vj for j = 2,… , d.

Proof Let � ∈ set(u) . Following Theorem 2.4, there exists v ∈ G(I(Kt

V
)) such that v >lex u 

and (v) ∶ (u) = (x
�
) . This gives v = (u∕xkj )x� for some 1 ≤ j ≤ d and xkj , x� ∈ Vj . Since 

v >lex u , we must have � ≤ kj − 1 . If j = 1 , then � ∈ [i1, k1 − 1] . Moreover, if 2 ≤ j ≤ d , 
then kj−1 + tj−1 ≤ � because v is a t-spread monomial, and hence 
� ∈ [kj−1 + tj−1, kj − 1] ∩ Vj.

On the other hand, if � ∈ [i1, k1 − 1] ∩ V1 or � ∈ [kj−1 + tj−1, kj − 1] ∩ Vj for any 
j = 2,… , d , then set v = (u∕xkj )x� for all j = 1,… , d . In both cases, v ∈ G(I(Kt

V
)) and 

v >lex u . Therefore, x
�
∈ (v) ∶ (u) , and hence � ∈ set(u) , as required.   ◻

3  The powers and the fiber cone of I(Kt

v
)

Let � be a field and Sd be the �-vector space generated by all monomials of degree d 
in the polynomial ring S = �[x1,… , xn] . Let u, v ∈ Sd and uv = xi1xi2 ⋯ xi2d with 
i1 ≤ i2 ≤ ⋯ ≤ i2d−1 ≤ i2d . Set u� = xi1xi3 ⋯ xi2d−1 and v� = xi2xi4 ⋯ xi2d . The map

is called the sorting operator. A pair (u, v) ∈ Sd × Sd is called sorted if sort(u, v) = (u�, v�) . 
A subset A ⊂ Sd is called sortable if sort(A × A) ⊆ A × A . Furthermore, an r-tuple of 
monomials (u1,… , ur) ∈ Sr

d
 is called sorted if for any 1 ≤ i < j ≤ n , the pair (ui, uj) 

is sorted. In other words, if we write the monomials (u1,… , ur) as u1 = xi1 ⋯ xid , 
u2 = xj1 ⋯ xjd , … , ur = xl1 ⋯ xld , then (u1,… , ur) is sorted if and only if

Proposition 3.1 The set G(I(Kt

V
)) is sortable.

Proof Assume that u, v ∈ G(I(Kt

V
)) and uv = xi1xi2xi3xi4 ⋯ xi2d−1xi2d with 

i1 ≤ i2 ≤ ⋯ ≤ i2d . Since supp(u) and supp(v) correspond to the edges of Kt

V
 , it fol-

lows that i1, i2 ∈ V1, i3, i4 ∈ V2,… , i2d−1, i2d ∈ Vd . Consequently, u� = xi1xi3 ⋯ xi2d−1 and 
v� = xi2xi4 ⋯ xi2d are monomials associated to the edges of a complete d-partite hypergraph. 
It only remains to show that u′ and v′ are t-spread. We show that u′ is a t-spread mono-
mial and the argument for v′ follows in a similar fashion. For any 1 ≤ l ≤ d − 1 , we have 
i2l−1 ≤ i2l ≤ i2l+1 and at least two of the variables among xi2 l−1 , xi2 l , xi2 l+1 belong to either 
supp(u) or supp(v) . Using the fact that u and v are t-spread monomials, this implies that 
i2 l+1 − i2 l−1 ≥ i2 l+1 − i2 l and i2 l+1 − i2 l−1 ≥ i2 l − i2 l−1 , we obtain the desired conclusion.  
 ◻

Let I ⊂ S be an ideal generated by the monomials of same degree. Here, set 
T = �[{tu ∶ u ∈ G(I)}] and �[I] = �[u ∶ u ∈ G(I)] . Consider the �-algebra homomorphism

sort ∶ Sd × Sd → Sd × Sd which maps (u, v) ↦ (u�, v�),

(2)i1 ≤ j1 ≤ ⋯ ≤ l1 ≤ i2 ≤ j2 ≤ ⋯ ≤ l2 ≤ ⋯ ≤ id ≤ jd ≤ ⋯ ≤ ld.



 A. Musapaşaoğlu et al.

1 3

The kernel of � is called the defining ideal of �[I] . If G(I) is a sortable set, then it follows 
from [19] or [5, Theorems 6.15 and 6.16] that there exists a monomial order <sort such that 
the defining ideal of �[I] admits the reduced Gröbner basis consisting of binomials of the 
form tutv − tu� tv� , where sort(u, v) = (u�, v�).

Corollary 3.2 The �-algebra �[I(Kt

V
)] is a Koszul and Cohen-Macaulay normal domain.

Proof As discussed above, with respect to >sort , the Gröbner basis of the defining ideal of 
�[I(Kt

V
)] contains quadratic binomials. Due to Fröberg [8], we conclude that �[I(Kt

V
)] is 

Koszul and due to a theorem of Sturmfels [19] we obtain �[I(Kt

V
)] is normal, see also [5, 

Theorem 5.16]. Therefore, �[I(Kt

V
)] is Cohen-Macaulay domain by [16, Theorem 1].  

 ◻

Our next goal is to establish I(Kt

V
) has the strong persistence property and its pow-

ers have linear resolution. Remember an ideal I is said to satisfy the strong persistence 
property if (Ik+1 ∶ I) = Ik for all k ≥ 1 , see [15] for more information. In addition, an 
ideal I is said to satisfy the persistence property if:

In [15], it is proved that an ideal with strong persistence property has the persistence 
property.

To achieve our goal, we first recall the definition of l-exchange property, see [13] or 
[5, Sec 6.4] for more details. Let T and � be the same as above and < be a monomial 
order defined on T. A monomial tu1 tu2 ⋯ tuN ∈ T  is called a standard monomial of ker� 
with respect to <, if tu1 tu2 ⋯ tuN ∉ in<(ker𝜙).

Definition 3.3 The monomial ideal I ⊂ S is said to satisfy the l-exchange property with 
respect to the monomial order < on T if the following two conditions hold: let tu1 tu2 ⋯ tuN 
and tv1 tv2 ⋯ tvN be two standard monomials of ker� with respect to < such that 

 (i) degxi u1u2 ⋯ uN = degxi v1v2 ⋯ vN , for i = 1,… , q − 1 and q ≤ n − 1,
 (ii) degxq u1u2 ⋯ uN < degxq v1v2 ⋯ vN.

Then there exist some j and � with q < j ≤ n such that xqu�∕xj ∈ I.
Theorem 3.4 The ideal I(Kt

V
) satisfies the l-exchange property with respect to the sorting 

order <sort.

Proof Let tu1 tu2 ⋯ tuN and tv1 tv2 ⋯ tvN be two standard monomials of ker� with respect to 
<sort and t = (t1, t2,… , td−1) . It can be seen from Proposition 3.1 together with (2) that the 
N-tuples with t-spread monomials (u1, u2,… , uN) and (v1, v2,… , vN) are sorted. Assume 
that the products u1u2 ⋯ uN and v1v2 ⋯ vN satisfy both conditions in Definition 3.3. The 
condition (i) together with (2) gives

and the condition (ii) of Definition 3.3 implies that there exists � with 1 ≤ � ≤ N such that

� ∶ T → �[I] defined by tu ↦ u for u ∈ G(I).

Ass(I) ⊆ Ass(I2) ⊆ ⋯ ⊂ Ass(Ik) ⊆ ⋯ .

(3)degxi u� = degxi v� , for 1 ≤ i ≤ q − 1 and for all 1 ≤ � ≤ N,
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Following (3) and (4), we can write

with jp > q . To complete the proof, it is enough to show that w = xqu�∕xjp ∈ I(Kt

V
) . Note 

that q and jp belong to Vp . Moreover, q − jp−1 ≥ tp−1 because v� is t-spread and 
jp+1 − q ≥ jp+1 − jp ≥ tp because jp > q . This yields that w is a t-spread monomial, as 
desired.   ◻

Let I = I(Kt

V
) and R = S[{tu ∶ u ∈ G(I)}] . We define a monomial order on R as follow-

ing: if u1, u2 ∈ S and v1, v2 ∈ T  , then u1v1 > u2v2 if and only if u1 >lex u2 or u1 = u2 and 
v1 >sort v2 , where >lex denotes the lexicographical order on S induced by x1 > ⋯ > xn . 
Let R(I) = ⊕j≥0I

jtj ⊆ S[t] be the Rees ring of I. The Rees ring R(I) has the following 
presentation

with xi ↦ xi for 1 ≤ i ≤ n and tu ↦ ut for u ∈ G(I) . Let P = ker� . Then we have the 
next result.

Corollary 3.5 Let > be the monomial order on R as defined above. The reduced Gröbner 
basis of P consists of the binomials of the following form: 

(1) tutv − tu� tv� , where sort(u, v) = (u�, v�);
(2) xitu − xjtv , where i < j , xiu = xjv , and j is the largest integer for which xiv∕xj ∈ G(I).

Proof According to [13, Theorem 5.1] (or see [5, Theorem 6.24]), it is enough to show 
that I(Kt

V
) is sortable and satisfies the l-exchange property with respect to >sort as noted in 

Proposition 3.1 and Theorem 3.4.   ◻

Following the similar argument as in the proof of Corollary 3.2, we obtain the fol-
lowing corollary.

Corollary 3.6 The Rees algebra R(I(Kt

V
)) is a normal Cohen-Macaulay domain.

We are in a position to state the main result of this section in the next corollary.

Corollary 3.7 The ideal I(Kt

V
) satisfies the strong persistence property and all powers of 

I(Kt

V
) have linear resolution.

Proof The strong persistence property of I(Kt

V
) can be deduced from [15, Corollary 1.6] 

and Corollary 3.6. Moreover, Corollary 3.5 together with [11, Corollary 10.1.8] provides 
that all the powers of I(Kt

V
) have linear resolution, as claimed.   ◻

Here, we determine the limit depth of I(Kt

V
) . By a theorem of Brodmann [2], 

depthS∕Ik is constant for large enough k. This constant value is known as the limit 
depth of I, and denoted by limk→∞ depthS∕Ik . The minimum value of k for which 

(4)degxq u𝛼 < degxq v𝛼 .

u� = xj1xj2 ⋯ xjp ⋯ xjd and v� = xj1xj2 ⋯ xjp−1xqxkp+1 ⋯ xkd ,

� ∶ R = S[{tu ∶ u ∈ G(I)}] → R(I),



 A. Musapaşaoğlu et al.

1 3

depthS∕Ik = depthS∕Ik+t for all t > 0 is called the index of depth stability and denoted 
by dstab(I) . Let � be the graded maximal ideal of S. The analytic spread of an ideal 
I ⊂ S is the Krull dimension of the fiber cone R(I)∕�R(I) and denoted by �(I).

Definition 3.8 ( [15], Definition 3.1) Let I ⊂ S be a monomial ideal in S = K[x1,… , xn] 
and G(I) = {u1,… , ur} . Then the linear relation graph Γ of I is the graph with the edge set

and the vertex set V(Γ) =
⋃

{i,j}∈E(Γ){i, j}.

An ideal I ⊂ S is said to have linear relations if I is generated in degree d and 
�1,j(I) = 0 for all j ≠ d + 1 . We employ the following lemma to compute �(I(Kt

V
)).

Lemma 3.9 ( [3, Lemma 5.2]) Let I be a monomial ideal with linear relations generated in 
a single degree whose linear relation graph Γ has r vertices and s connected components. 
Then �(I) = r − s + 1.

We are now ready to determine the analytic spread of I(Kt

V
) in the following lemma.

Lemma 3.10 Let Kt

V
 be a complete t-spread d-partite hypergraph and |V(Kt

V
)| = r . Then 

�(I(Kt

V
)) = r − d + 1.

Proof Let I = I(Kt

V
) and V = {V1,… ,Vd} . Using Theorem  2.4 and [3, Lemma 5.2], it 

is enough to show that Γ(I) has r vertices and d connected components. Let ai = minVi 
and bi = maxVi , for all i = 1,… , d . Let h, k ∈ Vi for some i. Since Kt

V
 does not have iso-

lated vertices, this implies that the sets {a1,… , ad} and {b1,… , bd} are t-spread edges 
in Kt

V
 . Then u = xa1 ⋯ xai−1xhxbi+1 ⋯ xbd and v = xa1 ⋯ xai−1xkxbi+1 ⋯ xbd are also t-spread 

edges in Kt

V
 . This shows that xku = xhv ; hence, {h, k} ∈ E(Γ) and V(Γ) = r . Moreover, it 

follows from the definition of Kt

V
 that for i ≠ j and h ∈ Vi and k ∈ Vj , we have the edge 

{h, k} ∉ E(Γ) . Therefore, Γ has exactly d connected components, as required.   ◻

We now give the last result of this section in the following theorem.

Theorem 3.11 Let Kt

V
 be a complete t-spread d-partite hypergraph and |V(Kt

V
)| = r , and S 

be the ambient ring of I(Kt

V
) . Then

and dstab(I(Kt

V
)) ≤ r − d.

Proof Let I = I(Kt

V
) . Then it follows from Corollary  3.6 and a result of Eisenbud 

and Huneke [4] that limk→∞ depth(S∕Ik) = r − �(I) . From Lemma  3.10, we have 
r − �(I) = r − (r − d + 1) = d − 1 as required. In addition, using [15, Theorem  3.3] and 
Lemma 3.10, we see that depth(S∕Ir−d) = d − 1 . It is shown in [12, Proposition 2.1] that 
if all powers of an ideal have linear resolution, then depthS∕Ik ≤ depthS∕It for all k < t . It 
follows now from Corollary 3.7 that dstab(I) ≤ r − d . This completes the proof.   ◻

E(Γ) = {{i, j} ∶ there exist ut, um ∈ G(I) such that xiut = xjum},

lim
k→∞

depth(S∕I(Kt

V
)k) = d − 1,
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4  Normally torsion‑free and Cohen‑Macaulay I(Kt

v
)

In this section, our main goal is to show that I(Kt

V
) is normally torsion-free and give a com-

plete characterization of Cohen-Macaulay I(Kt

V
) for V = {V1,… ,Vd} such that each Vi is 

of the form [ai, bi] for some integers ai, bi ∈ ℤ
+ . To this aim, we begin with the description 

of minimal prime ideals of I(Kt

V
) and view Kt

V
 as a simplicial complex. For more details on 

simplicial complexes, we refer the reader to [11].
Given a square-free monomial ideal I ⊂ R , the Alexander dual of I, denoted by I∨ is 

given by I∨ =
⋂

u∈G(I)(xi ∶ xi ∈ supp(u)) . The minimal generators of I∨ correspond to the 
minimal prime ideals of I. Below we give a description of G(I(Kt

V
)∨).

Theorem  4.1 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . 
Then G(I(Kt

V
)∨) consists of the following monomials: 

 (i) 
∏
k∈Vi

xk for all i = 1,… , d ; and,

 (ii) (
∏p

i=j

∏
k∈Vi

xk)∕(
∏p−1

i=j
vqi

∏p

i=j+1
vq�

i
) , for all 1 ≤ j < p ≤ d and for each sequence 

of nonnegative integers qj,… , qp−1 satisfying 

 where vq
�
=
∏1+q

�

r=1
xi

�
+n

�
−r, for � = j,… , p − 1 and vq�

�

=
∏q�

�

r=0
xi

�
+r, for 

� = j + 1,… , p.

Proof Let Δ be the simplicial complex on V(Kt

V
) such that IΔ = I(Kt

V
) be the Stanley-Reis-

ner ideal of Δ . Let F(Δ) be the set of facets of Δ . For any F ∈ Δ , we set xF =
∏

i∈F xi . It 
follows from [11, Lemma 1.5.4] that the standard primary decomposition of IΔ is given by

where PF̄ is the monomial prime ideal generated by the variables xi with i ∈ F̄ = V(Kt

V
)⧵F . 

Therefore, using [11, Corollary 1.5.5], it is enough to show that F(Δ) is the disjoint union 
of F1 and F2 , defined below: 

 (i) F1 = {F1,… ,Fd} , where Fi =
⋃d

j≠i, j=1
Vj for all i = 1,… , d,

 (ii) For all 1 ≤ j < p ≤ d , set Aj,p ∶=
⋃d

i∉{j,…,p}, i=1
Vj . For each sequence of nonnegative 

integers qj,… , qp−1 satisfying conditions (5) and (6), we set 

 and 

(5)i
�
+ q�

�
< i

�
+ n

�
− 1 − q

�
for j + 1 ≤ � ≤ p − 1,

(6)i
�
+ q�

�
− (i

�−1 + n
�−1 − 1 − q

�−1) = t
�−1 − 1 for � = j + 1,… , p,

IΔ =
⋂

F∈F(Δ)

PF̄ ,

Bq
�
∶= {i

�
+ n

�
− 1 − q

�
,… , i

�
+ n

�
− 1} ⊊ V

�
for � = j,… , p − 1,

Bq�
�

= {i
�
,… , i

�
+ q�

�
} ⊊ V

�
for � = j + 1,… , p.
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 Then we get 

The condition (6) translates into the following: for each � = j,… , p − 1 we have 
maxBq�

�+1
−minBq

�
= t

�
− 1 . In the construction of elements in F2 , it is enough to deter-

mine the integers qj,… , qp−1 , because q′
�
 is uniquely determined from q

�−1 , for all 
� = j + 1,… , p , by using the equality in (6).

First, we show that F1 ⊆ F(Δ) . For any Fi ∈ F1 , we have Fi ∩ Vi = � . Therefore, 
xFi

∉ IΔ . Moreover, for any k ∈ Vi , using the assumption that Kt

V
 does not contain any iso-

lated vertices, we obtain that Fi ∪ {k} contains a t-spread edge, and hence xFi
xk ∈ IΔ and 

Fi ∈ F(Δ).
Now, assume that F ∈ F2 , where F = Aj,p ∪ (

⋃p−1

�=j
Bq

�
) ∪ (

⋃p

�=j+1
Bq�

�

) for some 
1 ≤ j < p ≤ d and qj,… , qp−1 . We here show that F ∈ Δ . On contrary, if xF ∈ IΔ , then F 
contains a t-spread edge, say G = {k1,… , kd} . Then kj ∈ Bqj

 because G ∩ Vj ⊆ F ∩ Vj = Bqj
 . 

If p = j + 1 , then by using the condition (6), it immediately follows that for any choice of 
kj ∈ Bqj

 , there is no suitable kj+1 ∈ Bq�
j+1

 such that kj+1 − kj ≥ tj−1 . If p > j + 1 , then the con-
dition (6) gives that kj+1 ∈ Bqj+1

 . Using the condition (6) repeatedly in a similar way, we 
obtain kp−1 ∈ Bqp−1

 . However, there is no suitable kp ∈ Bq�
p
 such that kp − kp−1 ≥ tp−1 , a con-

tradiction. Consequently, we get F ∈ Δ.
In what follows, we demonstrate that F ∈ F(Δ) . Note that

Let a ∈ V(Kt

V
) ⧵ F . Then a ∈ Vs for some j ≤ s ≤ p . Set

When s = j , then we remove the condition on kr for r = j,… , s − 1 , and similarly, when 
s = p , then we remove the condition on kr for r = s + 1,… , p . Using conditions (5) and (6) 
together with the assumption that Δ has no isolated vertices, we obtain that kr − kr−1 ≥ tr−1 
for all r = 2,… , d . Therefore, G = {k1,… , kd} ⊆ F ∪ {a} is a t-spread edge, and hence 
xG ∈ IΔ , as required.

It remains to check that F(Δ) ⊆ F1 ∪ F2 . This is equivalent to show that for every face 
G of Δ there exists a facet F ∈ F1 ∪ F2 such that G ⊆ F . Let G ∈ Δ such that G ∩ Vk = Uk 
for all k = 1,… , d . If Uk = � for some k, then G ⊆ Fk ∈ F1 . Now, assume that Uk ≠ ∅ for 
all k = 1,… , d . Set ak = minUk and bk = maxUk for all k = 1,… , d . In the rest of the 
proof, we will use the following fact repeatedly:

(∗) If there exist a ∈ V
�
 and b ∈ V

�+1 such that b − a < t
�
 and 

a + t
�
− 1 < i

�+1 + n
�+1 − 1 , then by letting q

�
= i

�
+ n

�
− 1 − a , and using the condition 

(6), there is a unique q�
�+1

 such that b < i
�+1 + q�

�+1
.

F2 = {Aj,p ∪ (

p−1⋃
�=j

Bq
�
) ∪ (

p⋃
�=j+1

Bq�
�

) for all 1 ≤ j < p ≤ d and qj,… , qp−1}.

V(Kt

V
) ⧵ F = (Vj ⧵ Bqj

) ∪

(
p−1⋃
l=j+1

(
Vl ⧵

(
Bq�

�

∪ Bq
�

))
∪
(
Vp ⧵ Bq�

p

)
.

kr =

⎧
⎪⎪⎨⎪⎪⎩

ir, if r = 1,… , j − 1,

ir + nr − 1 − qr, if r = j,… , s − 1,

a, if r = s,

ir + q�
r
, if r = s + 1,… , p,

ir + nr − 1, if r = p + 1,… , d.
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Case(1): If there exists some k with bk+1 − ak < tk , then it follows from the statement 
(∗) that for a suitable choice of qk we have Uk ⊆ Bqk

 and Uk+1 ⊆ Bq�
k+1

 . Since Ui ⊆ Vi ⊂ Ak,k+1 
for all i = 1,… , k − 1, k + 2,… , d , we can deduce that G ⊆ Ak,k+1 ∪ Bqk

∪ Bq�
k+1

∈ F2 , as 
desired.

Case(2): Assume that bk+1 − ak ≥ tk for all k = 1,… , d − 1 . Since G ∈ Δ , we know 
that G does not contain any t-spread edge. In particular, {a1,… , ad} ⊆ G is not a t-spread 
edge. This yields that there exists some k ∈ {2,… , d} for which ak+1 − ak < tk . We choose 
minimum j ≥ 1 for which aj+1 − aj < tj . Note that M = {a1, a2,… , aj} ⊂ G such that, 
ai+1 − ai ≥ ti , for all i = 1,… , j − 1 . In the discussion below, we aim to construct a suitable 
F ∈ F2 such that G ⊂ F . To this aim, we perform the Step j as introduced below.

Step j: We set ej ∶= aj and ej+1 ∶= min{a ∈ Uj+1 ∶ a − ej ≥ tj} . Note that 
{a ∈ Uj+1 ∶ a − ej ≥ tj} ≠ � because bj+1 − aj ≥ tj . We define ej+r recursively as 
ej+r = min{a ∈ Uj+r ∶ a − ej+r−1 ≥ tj+r−1} such that

There exists some p > j + 1 for which {a ∈ Uj+r ∶ a − ej+r−1 ≥ t} = � , that is, for some 
p > j + 1 we have bp − ep−1 < tp−1 , otherwise, M ∪ {ej+1,… , ed} ⊆ G is a t-spread edge in 
G, a contradiction. Choose minimum p > j + 1 such that bp − ep−1 < tp−1.

Subcase(2.1): If for all j + 1 ≤ l ≤ p − 1 we have i
�+1 − e

�
< t

�
 , then take c

�+1 ∈ V
�+1 

such that c
�+1 − e

�
= t

�
− 1 for � = j,… , p − 1 . This gives us j,  p and qj,… , qp as 

described in statement (∗) for which e
�
∈ V

�
 and c

�+1 ∈ V
�+1 with c

�+1 − e
�
< t

�
 . Moreo-

ver, Ui ⊆ Aj,p for all i ∉ {j,… , p} , and Uj ⊆ Bqj
 , Up ⊆ Bq′

p
 , and U

�
⊆ Bq

�
∪ Bq�

�

 for all 
� = j + 1,… , p − 1 . Hence, this implies that

and we are done.
Subcase(2.2): If for some j + 1 ≤ l ≤ p − 1 , i

�+1 − e
�
≥ t

�
 , then replace M with 

M ∪ {ej+1,… , e
�
, a

�+1} ⊂ G . In this case, there exists a minimum j� ≥ � + 1 such that 
aj�+1 − aj� < tj� . Otherwise, M ∪ {a

�+2,… , ad} ⊆ G is a t-spread edge, a contradiction. 
Repeat Step j by replacing j with j′.

Thanks to we have finite number of partitions, this process must be terminated after 
a finite number of steps. If the desired j and p are obtained, then we construct a suitable 
F ∈ F2 with G ⊂ F as described in Case(2.1). If the desired j and p are not obtained, then 
G contains a t-spread edge in G, a contradiction.   ◻

We illustrate the construction of monomials of the forms (i) and (ii) in Theorem 4.1 in 
the following example.

Example 4.2 Let V = {V1,V2,V3,V4} with V1 = [1, 2] , V2 = [4, 6] , V3 = [8, 10] , 
V4 = [12, 13] , and t = (3, 4, 3) . One can easily see that the minimal generators of the edge 
ideal of Kt

V
 are as follows:

{a ∈ Uj+r ∶ a − ej+r−1 ≥ tj+r−1} ≠ � for some 1 < r < d − j.

G ⊆ Aj,p ∪ (

p−1⋃
�=j

Bq
�
) ∪ (

p⋃
�=j+1

Bq�
�

),
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x1x4x8x12
x1x4x8x13
x1x4x9x12
x1x4x9x13
x1x4x10x13
x1x5x9x12 x2x5x9x12
x1x5x9x13 x2x5x9x13
x1x5x10x13 x2x5x10x13
x1x6x10x13 x2x6x10x13
Following Theorem 4.1, the minimal generators of I(Kt

V
)∨ are given as follows: 

  (i) The monomials of the form (i) described in Theorem 4.1 are x1x2, x4x5x6, x8x9x10, and 
x12x13.

 (ii) The construction of monomials of the form (ii) described in Theorem 4.1 is given 
in the following table.

Accordingly, we get

j p q
j
,… , q

p−1 , q�j+1,… , q
�
p

u

1 2 q
1
= 0 , q�

2
= 0 x

1
x
5
x
6

1 3 q
1
= 0 , q�

2
= 0 , q

2
= 0 , q�

3
= 1 x

1
x
5
x
10

q
1
= 0 , q�

2
= 0 , q

2
= 1 , q�

3
= 0 x

1
x
9
x
10

1 4 q
1
= 0 , q�

2
= 0 , q

2
= 0 , q�

3
= 1 , q

3
= 0 , q�

4
= 0 x

1
x
5
x
13

q
1
= 0 , q�

2
= 0 , q

2
= 1 , q�

3
= 0 , q

3
= 0 , q�

4
= 0 x

1
x
9
x
13

2 3 q
2
= 0 , q�

3
= 1 x

4
x
5
x
10

q
2
= 1 , q�

3
= 0 x

4
x
9
x
10

2 4 q
2
= 0 , q�

3
= 1 , q

3
= 0 , q�

4
= 0 x

4
x
5
x
13

q
2
= 1 , q�

3
= 0 , q

3
= 0 , q�

4
= 0 x

4
x
9
x
13

3 4 q
3
= 0 , q�

4
= 0 x

8
x
9
x
13

As an immediate consequence of Theorem  4.1, we obtain the following corollary, 
which will be used to prove the normally torsion-freeness of I(Kt

V
).

Corollary 4.3 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . If 
v ∶=

∏d

j=1
xij , then v ∈ 𝔭⧵𝔭2 for all � ∈ Min(I(Kt

V
)).

Proof Let v =
∏d

j=1
xij . The minimal prime ideals of I = I(Kt

V
) correspond to the minimal 

generators of I∨ described in statements (i) and (ii) of Theorem 4.1. The minimal primes 
corresponding to the generators of the form (i) are �i = (xk ∶ k ∈ Vi) and v ∉ �2

i
 for all 

i = 1,… , d . Moreover, each generator of I∨ of the form (ii) is constructed by fixing j, p and 

Ass(I(Kt

V
)) = {(x1, x2), (x4, x5, x6), (x8, x9, x10), (x12, x13), (x1, x5, x6), (x1, x5, x10),

(x1, x9, x10), (x1, x5, x13), (x1, x9, x13), (x4, x5, x10), (x4, x9, x10),

(x4, x5, x13), (x4, x9, x13), (x8, x9, x13)}.
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qj,… , qp . Let � be a minimal prime of I corresponding to a generator of the form (ii). Then 
xik ∈ � if and only if k = j , as required.   ◻

We recollect the following lemma, which will be used repeatedly in the next proposi-
tion and Theorem 4.6.

Lemma 4.4 ( [17, Lemma 3.12]) Let I be a monomial ideal in a polynomial ring 
S = �[x1,… , xn] with G(I) = {u1,… , um} , and h = x

b1
j1
⋯ x

bs
js

 with j1,… , js ∈ {1,… , n} be 
a monomial in S. Then I is normally torsion-free if and only if hI is normally torsion-free.

In order to establish Theorem 4.6, we require the following auxiliary proposition. For a 
given square-free monomial ideal I ⊂ �[x1,… , xn] , we denote by I ⧵ xi the ideal generated 
by those elements in G(I) that do not contain xi in their support.

Proposition 4.5 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = 2 with Vj = {ij, ij + 1} for all j = 1,… , d . Then 
I(Kt

V
) is normally torsion-free.

Proof To simplify the notation, set I ∶= I(Kt

V
) . We proceed by induction on d. If d = 1 , 

then there is nothing to show. Hence, assume that d > 1 and that the result holds for any 
complete t-spread (d − 1)-partite hypergraph. Choose an arbitrary element � ∈ Min(I) and 
set v ∶=

∏d

j=1
xij . It follows at once from Corollary 4.3 that v ∈ 𝔭 ⧵ 𝔭2 . We show that I ⧵ xr 

is normally torsion-free for each xr ∈ supp(v) . Without loss of generality, we let V1 = {1, 2} 
and we prove that I ⧵ x1 is normally torsion-free. It is not hard to check that I ⧵ x1 = x2L 
where L is the edge ideal of t-spread d-partite hypergraph with vertex partition 
V� = {V �

2
,… ,V �

d
} such that, for all i = 2,… , d , the set V ′

i
 is obtained from Vi after remov-

ing the isolated vertices, if any. One can conclude from the inductive hypothesis that L is 
normally torsion-free. Here, using Lemma 4.4 implies that I ⧵ x1 is normally torsion-free. It 
follows now from [18, Theorem 3.7] that I is normally torsion-free, as claimed.   ◻

Theorem  4.6 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . 
Then I(Kt

V
) is normally torsion-free. In particular, I(Kt

V
) is normal.

Proof We first assume that |Vj| = 1 for some 1 ≤ j ≤ d , say Vj = {z} . Let I = I(Kt

V
) . Then 

we can write I = xzL such that L can be viewed as the edge ideal associated to a complete t
-spread (d − 1)-partite hypergraph. According to Lemma 4.4, I is normally torsion-free if 
and only if L is normally torsion-free. Thus, we reduce to the case |Vj| ≥ 2 for all 
j = 1,… , d . Set v ∶=

∏d

j=1
xij . Pick an arbitrary element � ∈ Min(I) . One can derive from 

Corollary 4.3 that v ∈ 𝔭⧵𝔭2 . To complete the proof, it is sufficient to establish I ⧵ xs in nor-
mally torsion-free for each xs ∈ supp(v) . To accomplish this, we use the induction on 
n ∶= |V(Kt

V
)| . On account of |Vj| ≥ 2 for all j = 1,… , d , this implies that n ≥ 2d . The case 

in which n = 2d can be deduced according to Proposition 4.5. Now, suppose that n > 2d . It 
is not hard to see that I ⧵ xs is again the edge ideal of the t-spread d-partite hypergraph 
obtained from Kt

V
 by removing all the edges that contain s. One can deduce from the induc-

tive hypothesis that I ⧵ xs is normally torsion-free. Here, in view of [18, Theorem 3.7], we 
conclude that I is normally torsion-free, as desired.
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The last assertion can be deduced according to [11, Theorem 1.4.6].   ◻

We can readily provide the following corollary inspired by Theorem 4.6. A matching 
in a hypergraph H is a family of pairwise disjoint edges, and the maximum cardinality of 
a matching is denoted by �(H) . The transversal number of a hypergraph H , denoted by 
�(H) is the minimal cardinality of a transversal of H . A hypergraph H is said to satisfy the 
König property if �(H) = �(H) , see [1, Chapter 2, Section 4].

Corollary 4.7 Let Kt

V
 be a complete t-spread d-partite hypergraph. Then I(Kt

V
) satisfies the 

König property.

Proof Based on Theorem 4.6, we get I(Kt

V
) is normally torsion-free. In addition, by virtue 

of [20, Theorem  14.3.6], one can deduce that Kt

V
 has the max-flow min-cut property. It 

follows now from [20, Corollary 14.3.18] that Kt

V
 has the packing property. On the other 

hand, by virtue of [10, Definition 2.3], we obtain I(Kt

V
) satisfies the König property. This 

completes the proof.   ◻

Next, we give a characterization of Cohen-Macaulay I(Kt

V
) . To do this, we first determine 

the height of I(Kt

V
).

Proposition 4.8 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . 
Then ht(I(Kt

V
)) = min{n1,… , nd} , where ht(I(Kt

V
)) denotes the height of I(Kt

V
).

Proof Let I ∶= I(Kt

V
) and nk = min{n1,… , nd} . Since Kt

V
 does not contain any isolated 

vertices, this yields that

are pairwise disjoint t-spread edges in Kt

V
 . Hence, we obtain the following monomials

belong to G(I) . This gives that ht(I) ≥ nk . It follows also from Theorem 4.1 that (xi ∶ i ∈ Vk) 
is a minimal prime of I with height nk . This finishes our proof.   ◻

Note that the König property of Kt

V
 can be also observed from the proof of above proposi-

tion. Indeed, the inequality �(H) ≤ �(H) holds for any hypergraph H and the t-spread edges 
given in (7) give a maximal matching in Kt

V
.

Under the assumptions of Theorem  4.1, one can compute the degree of gen-
erators of I∨ = I(Kt

V
)∨ . It is easy to see that deg

∏
k∈Vi

xk = ni for all i = 1,… , d . 
Now, let u ∈ G(I∨) of the form (ii) for some 1 ≤ j < p ≤ d and qj,… , qp . Then 
u = (

∏p

i=j

∏
k∈Vi

xk)∕(
∏p−1

i=j
vqi

∏p

i=j+1
vq�

i
) . Let h be the product of variables with indices in 

[ij, ip + np − 1]⧵(Vj ∪⋯ ∪ Vp) and w = (uh)∕h . Then degw = deg u.
We have deg h(

∏p

i=j

∏
k∈Vi

xk) = (ip + np − 1) − ij + 1 . Moreover, it follows from the con-
dition (6) that deg(h

∏p−1

i=j
vqi

∏p

i=j+1
vq�

i
) =

∑p−1

i=j
ti . We thus get

(7){i1,… , id}, {i1 + 1,… , id + 1},… , {i1 + nk − 1,… , id + nk − 1},

xi1xi2 … xid , xi1+1xi2+1 … xid+1,… , xi1+nk−1xi2+nk−1 … xid+nk−1
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Hence, we obtain

A square-free monomial ideal is said to be unmixed if its minimal prime ideals are of the 
same height. Using the description of generators of I(Kt

V
)∨ and their degrees, we obtain the 

following characterization for unmixedness of I(Kt

V
).

Theorem  4.9 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . 
Then I(Kt

V
) is unmixed if and only if n1 = ⋯ = nd = s , and for each j = 1,… , d − 1 either 

ij+1 − (ij + s − 1) > tj − 1 or ij+1 − ij = tj.

Proof Let I = I(Kt

V
) be unmixed. Then every minimal prime of I has the same height, equiv-

alently, I∨ is generated in the same degree. By Theorem 4.1, we know that every Vj corre-
sponds to a minimal generator in I∨ , and this yields n1 = ⋯ = nd . Let n1 = ⋯ = nd = s . 
We only need to show that for each j = 1,… , d − 1 either ij+1 − (ij + s − 1) > tj − 1 or 
ij+1 − ij = tj . Indeed, if ij+1 − (ij + s − 1) ≤ tj − 1 for some j, then we obtain u ∈ G(I∨) of 
the form (ii) with p = j + 1 and a suitable choice of qj and q�

j+1
 as described in statement 

(∗) in the proof of Theorem  4.1. It follows from (8) that deg u = ij+1 − ij + s − tj . Since 
deg u = s , we obtain ij+1 − ij = tj.

Now, assume that for all j = 1,… , d we have nj = s and for each j = 1,… , d − 1 either 
ij+1 − (ij + s − 1) > tj − 1 or ij+1 − ij = tj . Then all generators of I∨ of the form (i) have 
same degree s. If I∨ has no generator of the form (ii), then the proof is complete. Otherwise, 
let u ∈ G(I∨) of the form (ii) for some j, p and qj … , qp−1 . Then, for all � = j,… , p − 1 , we 
have i

�+1 − i
�
= t

�
 , because if i

�+1 − (i
�
+ s − 1) > t

�
− 1 for some � , then q

�
 and q�

�+1
 do 

not satisfy the condition (6). This gives that ip = ij +
∑p−1

i=j
ti . Using (8), we obtain

and the proof is done.

Remark 4.10 Let V = {V1,V2,V3,V4} with V1 = [2, 4] , V2 = [6, 8] , V3 = [9, 11] , 
V4 = [13, 15] , and t = (2, 3, 4) . By virtue of Theorem  4.9, the edge ideal I = I(Kt

V
) is 

unmixed. In fact, by using Theorem 4.1, the minimal primes of I are as follows:

However, one can verify with Macaulay2  [9] that S/I is not Cohen-Macaulay.

degw = (ip + np − 1) − ij + 1 −

p−1∑
i=j

ti = ip − ij + np −

p−1∑
i=j

ti.

(8)deg u = ip − ij + np −

p−1∑
i=j

ti.

deg u = ip − ij + s −

p−1∑
i=j

ti = ij +

p−1∑
i=j

ti − ij + s −

p−1∑
i=j

ti = s,

Ass(I) = {(x2, x3, x4), (x6, x7, x8), (x9, x10, x11), (x13, x14, x15), (x6, x7, x11),

(x6, x7, x15), (x6, x10, x11), (x6, x10, x15), (x6, x14, x15), (x9, x10, x15),

(x9, x14, x15)}.
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The above remark states that unmixedness is not a sufficient for the edge ideal of t
-spread d-partite hypergraphs being Cohen-Macaulay. In what follows, we give a charac-
terization of Kt

V
 with Cohen-Macaulay edge ideals. To do this, we introduce the following 

notations, that is, q(uk) ∶= |set(uk)| and q(I) ∶= max{q(u1),… , q(ur)}.
We are in a position to state the last result of this section in the subsequent theorem.

Theorem 4.11 Let Kt

V
 be a complete t-spread d-partite hypergraph with V(Kt

V
) ⊆ [n] and 

V = {V1,… ,Vd} . Furthermore, let |Vj| = nj with Vj = [ij, ij + nj − 1] for all j = 1,… , d . 
Then S∕I(Kt

V
) is Cohen-Macaulay if and only if either I(Kt

V
) is a principal ideal, or 

n1 = ⋯ = nd = s and ij+1 − ij = tj for each j = 1,… , d − 1.

Proof Let I = I(Kt

V
) and S be the ambient ring of I. Since I has linear quotients, thanks to 

Theorem 2.4, it follows from [14, Corollary 1.6] that the length of the minimal free resolu-
tion of S/I over S is equal to q(I) + 1 . This implies that depth(S∕I) = |V(Kt

V
)| − q(I) − 1 . 

Moreover, dim(S∕I) = |V(Kt

V
)| − ht(I) , where ht(I) denotes the height of I. This summa-

rizes to S/I is Cohen-Macaulay if and only if ht(I) = q(I) + 1 . Therefore, it is enough to 
show that ht(I) = q(I) + 1 if and only if n1 = n2 = ⋯ = nd = s and ij+1 − ij = tj for each 
j = 1,… , d − 1.

If I is a principal ideal then S/I is Cohen Macaulay. Now, assume n1 = n2 = ⋯ = nd = s 
and ij+1 − ij = tj for each j = 1,… , d − 1 . Let u = xk1 ⋯ xkd ∈ G(I) , where ki ∈ Vi for all 
i = 1,… , d . Since [i1, k1 − 1] ⊆ V1 and [kj−1 + tj−1, kj − 1] ⊆ Vj for all j = 2,… , d , by 
Proposition 2.5, we obtain q(u) = kd − i1 −

∑d−1

j=1
tj . This shows that the maximum value of 

q(u) is obtained when kd takes the maximum possible value which is maxVd = id + s − 1 . 
Furthermore, using ij+1 − ij = tj for all j = 1,… , d − 1 , this gives that id = i1 +

∑d−1

j=1
tj . 

Hence, we have q(I) = s − 1 , as required.
Conversely, suppose S/I is Cohen-Macaulay, that is, ht(I) = q(I) + 1 . It follows from 

ht(I) = q(I) + 1 that I is unmixed and by using Proposition  4.9, this yields that, for all 
j = 1,… , d , we have nj = s , and for each j = 1,… , d − 1 either ij+1 − (ij + s − 1) > tj − 1 
or ij+1 − ij = tj . Then ht(I) = s thanks to Proposition  4.8. If s = 1 , then I is a princi-
pal ideal. Now, let s > 1 . We only need to show that, for each j = 1,… , d − 1 , we 
have ij+1 − ij = tj . Suppose that for some j we have ij+1 − (ij + s − 1) > tj − 1 . Let 
v = xi1+s−1xi2+s−1 ⋯ xid+s−1 . Then v ∈ G(I) because Kt

V
 do not contain isolated vertices and 

{i1 + s − 1, i2 + s − 1,… , id + s − 1} is a t-spread edge in Kt

V
 . Now, Proposition 2.5 gives 

that set(v) ∩ V1 = [i1, i1 + s − 2] and set(v) ∩ Vj+1 = {ij+1,… , ij+1 + s − 2} . This shows that 
q(v) > 2(s − 1) and q(I) + 1 > ht(I) = s , a contradiction.   ◻
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