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ABSTRACT

EQUIDISTRIBUTION OF ZEROS OF RANDOM BERNOULLI POLYNOMIAL
SYSTEMS

CIGDEM CELIK
MATHEMATICS Ph.D. DISSERTATION, JANUARY 2023

Dissertation Supervisor: Assoc. Prof. Dr. Turgay Bayraktar

Keywords: random polynomials, angle discrepancy, radius discrepancy, directional

resultant, Bernoulli distribution, equidistribution of zeros

In this thesis, we consider the full systems of random polynomials with independent
+1-valued Bernoulli distributed coefficients.

In the first part of study, we examine the distribution of common solutions of
random Bernoulli systems. In order to determine that whether the common
solutions are discrete or not, we focus on the directional resultants of these
systems.  Using the results obtained from the computations of directional
resultants, we prove that common solutions of Bernoulli polynomial systems are
discrete outside of an exceptional set &, 4 which has small probability. Randomizing
the deterministic results of D’Andrea, Galligo and Sombra, we prove that outside
of &, 4, the zeros of Bernoulli polynomial systems are equidistributed towards the
Haar measure on the unit torus.

In the second part, we focus on the expected zero measures of random Bernoulli
systems. We study the angular discrepancies and radius discrepancies of sets of
common solutions of random Bernoulli polynomial systems. We prove that the
expected angular discrepancy and radius discrepancy approach to zero as the degree
of polynomials approaches to infinity. Using these results and appyling the classical
method in analysis, we prove that the expected zero measure of Bernoulli polynomial
systems converges to Haar measure on the unit disc (S!)” in C™.

Lastly, we generalize these results for the random Bernoulli systems on C? for more
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general supports.



OZET

BERNOULLI KATSAYILI RASSAL POLINOM SISTEMLERININ
SIFIRLARININ ESIT DAGILIMI

CIGDEM CELIK
MATEMATIK DOKTORA TEZI, OCAK 2023

Tez Danigmani: Dog¢. Dr. Turgay Bayraktar

Anahtar Kelimeler: rassal polinomlar, agi uyugmazligi, yaricap uyusmazhgi,

yonlendirilmis resiiltant, Bernoulli dagilimi, sifirlarin egit dagilimi

Bu tez caligmasinda bagimsiz ve eg-dagilimli +1 degerli Bernoulli katsayilara sahip
rassal polinom sistemleri ele alinmigtir.

Calismanin  ilk  kisminda rassal Bernoulli sistemlerinin  ortak sifirlariin
dagilhimlar1 incelenmigtir.  Ortak c¢oziim kiimesinin ayrik noktalardan olusup-
olugmadigini belirleyebilmek amaciyla bu sistemlerin yonlendirilmis resiiltantlarina
dikkat verilmistir. Elde edilen yonlendirilmis resiiltant hesaplar1 kullanilarak,
yeterince kii¢iik olasiliga sahip istisnai bir £ kiimesi diginda bagimsiz Bernoulli
katsayili sistemlerin ortak ¢oziimlerinin ayrik oldugu ispatlanmigtir. D’Andrea,
Galligo ve Sombra tarafindan deterministik (rastgele olmayan) katsayilara sahip
polinom sistemler i¢in verilen sonucu, rassal Bernoulli katsayili polinom sistemleri
icin uygun olacak gekilde dontistiirerek, Bernoulli dagilhimli sistemlerin sifirlarinin
esit dagilhmh olduklar ispatlanmigtir.

Caligmanin ikinci kisminda, Bernoulli katsayili sistemlerinin ortak sifirlarinin
beklenen o6lclisii  tizerinde durulmustur. Bu sistemlerin ortak ¢oztimlerin
olugturdugu kiimelerin a¢i uyusmazligl ve yaricap uyusmazligi tizerine calisilmigtir.
Beklenen agi uyusmazlhigi olclisii ve beklenen yaricap uyusmazhigr o6l¢iisiiniin
sistemi olugturan polinomlarin derecesi biiyiidiikge sifira yaklastigi gosterilmistir.
Elde edilen sonuglar, klasik analiz metotlariyla birlegtirilerek, Bernoulli polinom
sistemlerinin ortak sifirlarinin beklenen 6lgiistintintin de Haar 6l¢iisiine yakinsadigi
ispatlanmigtir.
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Son olarak, bu sonuclar C? iizerinde tanimli daha genel dayanaklara sahip polinom
sistemleri i¢in genellenmistir.
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1. INTRODUCTION

1.1 Motivation

Random polynomials arise in many disciplines and their behaviour is of the interest
to mathematicians, physicist and probabilist, as well as, statisticians engineers and
economists. Although some of their suprising and intriguing behaviour has been
known for as long as a century, they still preserve many mysteries. One of the main
interests on random polynomials is the asymptotic behaviour of their zeros and it
has been studied by many authors [(Bloch & Pdlya, 1932),(Littlewood & Offord,
1939),(Erdos & Turdn, 1950),(Kac, 1943), (Rice, 1945),(Hammersley, 1956), etc.].

A classical result of Kac (Kac, 1943) and Hammersley (Hammersley, 1956) asserts
that if the coefficients are independent standard Gaussian random variables, the
normalized empirical measure d; () associated with the zeros of f(z) = Z?:o a;d,
almost surely converges to Haar measure vy, of the unit circle S! := {|z| = 1}
as the degree d — oo. In other words, the zeros of f(z) accumulate around the
unit circle S' almost surely when the degree d — co. After a few years, in 1950,
Erdos - Turan (Erdos & Turan, 1950) states that for a univariate polynomial over C,
the argument of its roots are approximately equidistributed, if the middle coefficients
do not grow too faster than the constant term and the leading term. Also, again
for the location of the zeros, in 2008, result of Hughes and Nikeghbali (Hughes &
Nikeghbali, 2008) shows that for the polynomials having not necessarily independent

coefficients the roots concentrate on the unit circumference.

The universality for univariate Kac ensemble is proven in (Ibragimov & Zeitouni,
1997) and it asserts that for the random polynomials f(z) with nondegenerate
independent and identically distributed coefficients a;, the normalized empirical

measure 0z(p) converges almost surely to Haar measure vpa,, if and only if the
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random coefficients satisfy the condition E[log(1+ |ag|)] < oc.

The asymptotic zero distribution of multivariate polynomial systems is another
interest and has been studied by many authors. Recently, Bloom and Shiffman
(Bloom & Shiffman, 2006) improved Hammersley’s result to multivariable case, i.e.,

the common zeros of n complex polynomials in C" for k=1,...,n,

|J|<d

tends to concentrate on the product of the unit circles |z;| =1 as d = 0o, when
the coefficients are independent and identically distributed complex Gaussian
variables. Besides that, Zelditch, Shiffman, Bloom, Levenberg and Bayraktar have
many results on complex random polynomials on (C*)™ with Gaussian coefficients
by using pluripotential theoretical techniques (see (Bayraktar, 2017),(Bloom &
Levenberg, 2015),(Shiffman & Zelditch, 2003), (Bloom, 2005), (Bloom, 2007),
(Bayraktar, 2019), etc.).

The universality of systems of multivariate Kac ensembles is given by Bayraktar
in (Bayraktar, 2016) for the independent and identically distributed continuous
coefficients satisfying the tail decay condition. On the other hand, the
distribution of zeros of random polynomial mappings with discrete coefficients
is still quite a mystery. In this thesis, we achieved to give an equidistribution
result for the systems of random polynomials with independent +1-valued Bernoulli

coefficients.

1.2 Statement of the Results

Let A=dX,,NZ" for some positive integer d where
n
En:{tERgO:Ztigl}
=1

is the unit simplex in R™. Assume that {ay} be a family of independent and
identically distributed +1-valued Bernoulli random variables for J = (j1,...,jn) € A.

Following (Kozma & Zeitouni, 2011), a random Bernoulli polynomial with support



A is of the form

Jai(x)= > Oéi7JiUJ € Clxy,...,xy)
|J|<d

where 7 = 2! ... zjr.

Throughout this thesis, we concentrate on systems (fg1,...,fq,) of random

Bernoulli polynomials. We write f,; = ( fdi,---, fd,n) for short.

We denote the collection of systems consisting random Bernoulli polynomials in n

variables and of degree d whose support is A by

Polyna(A) = {fa=(fa1,- - fan) - supp(fai) = A},

and endow with the product probability measure Prob,.

If the simultaneous solutions of a system f, are isolated, we denote the empricial
measure corresponding the Z(f) by dz(z,). Also, we let Vigaar denote the Haar

measure of (S!)" of total mass 1. The main theorem of study is the following.

Theorem 1.2.1. Let f;= (fa1,.--,fan) be a system of random polynomials with
independent +1-valued Bernoulli coefficients. Then there exists a dimensional
constant K = K(n) > 0 and an exceptional set &,q4 C Poly,q with
Probg{&.q} < K/d such that for all f, € Polyy q(A)\ &nd

dli{go 5Z(fd) = VHaar-

In particular, 5Z(fd) — VHaar 0 probability as d — oo.

We define the expected zero measure by

(1.1) (BIZ(f2le) = | > (&) dProba(f.)

Poluna\end ¢, 2(1,)

where ¢ is a continuous function with compact support in C*. We consider the

measure valued random variables

Yeez(fy)0(&i) for fq € Poly,a\&nd

otherwise.

Z(fq) =

Theorem 1.2.2. Let f;= (fa1,..-,fan) be a system of random polynomials with



independent £1-valued Bernoulli coefficients. Then

lim d_nE[Z(fd)] = VHaar

d—o0

in weak topology.

Theorem 1.2.1 and Theorem 1.2.2 are proven for special kind of supports because
of some techniquel restrictions on higher dimensions caused by the tools we use in

this study. However, we achieve to generalize the type of supports on C2,

A convex body P in (R4)" is called a lower set if for each (z1,...,2,) € P, the
vectors (y1,...,yn) € P for 0 <y; <z; fori=1,... n.

Theorem  1.2.3. Let fq1,fq2 be two bivariate  Bernoulli — random
polynomials of degree d as in (6.1) with support A = Q N Z> where
Q is a lower set in (Ry)2 Then for all mnonzero wector v € 72,
their  directional — resultant — Resgo( fgl’,p fc"l”z) # 0  with  overwhelming
probability. Morever, outside of a set that has probability at most K/d for a

positive constant K, we have

(1.2) 6Z(fd,1afd,2) — VHaar

weakly in probability as d — oo. Moreover, we have

(1'3) lim dizE[Z(fd)] = VHaar

d—o0
weakly.

The content of this study as follows: Chapter 2 introduces the required background
on elimination theory and the geometry of convex polytopes. Chapter 3 is dedicated
to equidistribution results on the zeros of univariate random polynomials and the
simultaneous zeros of systems of multivariate random polynomials with continuous
distributed coefficients. Chapter 4 includes the proof of Theorem 1.2.1 and Chapter
5 contains the proof of Theorem 1.2.2. Lastly, Chapter 6 includes further results on

bivariate random Bernoulli polynomial systems and the proof of Theorem 1.2.3.



2. The Resultant of Polynomial Systems

In this chapter, we will give the preliminary definitions and some important results

that we will use throughout this thesis.

2.1 Preliminaries

Let S be a subset of R"™. The smallest convex set containing S is called convex hull
of S and denoted by conv(S). A polytope is a convex hull of a finite subset of R".
Throughout this thesis, we concentrate on polytopes which are convex hulls of sets
of points with integer coordinates. Such polytopes are called integral polytopes or
lattice polytopes or Newton polytopes. Thus, a lattice polytope is a set of the form
Q = conv(A) CR", where A C Z" is finite.

Now, let Q1,...,Q be lattice polytopes in Z". Their Minkowski sum is defined as

and for a nonzero real number A, the scaled polytope AQ is of the form

AQ ={ \g:qeQ}.

Let 3 denote the standart unit simplex in R", that is, ¥ = conv(0,eq,...,ey,)
where e; represents the standart basis elements in R™. We let Vol,, denote the
normalized volume of a subset of R™ with respect to the Lebesgue measure such that
Vol, (%) = % One can see that a polytope ) in R” has a positive n dimensional
volume if and only if the dimension of ) is n. Minkowski and Steiner stated that
Vol,(diQ1+ -+ diQp) is a homogeneous polynomial in variables dy,...,d; € Z4

of degree n. In particular, if £ =n, then the coefficient of the monomial d; ...d, in

bt



the homogeneous polynomial Vol (d1Q1+ -+ d,Qy) is called the mized volume of
Q1,-..,Q, and it is denoted by MVgn(Q1,...,Qy). Using polarization formula, the

mixed volume of the polytopes Q1,...,Q, can be computed as follows

MVen(Q1,...,Qn) = S ()" Vol (Q + .. +Qj).

E=11<j1<...<jp<n

In particular, if Q = Q1 =... =@, then

MVRn(Q) = MVn(Q, ceey Q) = TL'VOln(Q)
Let Q C R"™ be a convex set. Its support function sg : R" — R is defined by

(2.1) sq(v) = inf (q.v)

where (.,.) represents the Euclidean inner product in R™. Then the equation

(q,v) = 5q(v)

is called a supporting hyperplane of @ and v is called an inward pointing normal of
. The intersection of ) with the supporting hyperplane in the direction v € R™ is
denoted by

(2.2) Q" ={geQ:(q,v) =s9(v)}.

Q" is called the face of ) determined by v. If Q% has codimension 1, it is called a
facet of Q).

2.2 Elimination Theory

In this section we give a brief about elimination theory which is used to solve systems
of the polynomial equations. Using the methods of this theory, one can determine
if a given polynomial system has a solution or convert it to one with less variables
and/or less equations. There are various versions of the resultants, such as Sylvester
resultant, Macaulay resultant, Dixon resultant, etc. The choice of the method

basically depends on the number of the polynomials in the system, the number
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of the variable and also support of the polynomials. In order to understand how to
choose the convenient resultant, one can check the table in (Stiller, 1996) (pg. 3). In
this thesis, we mostly follow (Gelfand, Kapranov & Zelevensky, 1995), (Cox, Little
& O’shea, 2006), (Busé, 2021) and we concentrate on the systems containing n+ 1
polynomials in n variables or n+ 1 homogeneous polynomials in n+ 1 variables. For
more general versions and applications one can check (Cox, 2020), (Gelfand et al.,
1995), etc.

2.2.1 Resultant of Two Polynomials in One Variable

In this section, we consider two univariate polynomials f and ¢ in C[z] with
Gy, b # 0 defined as

(2.3) fx)=ap+arx+...+apz™ and g(x)=by+bix+...+bypz™,

of degree n and m.

Definition 2.2.1. The resultant of f and g is an irreducible polynomial in the
coefficients of f and g, that is a polynomial in the ring Zlao,...,an,bo,...,by),
denoted by Res(f,g), which vanishes if and only if f and g has a common root
in C.

The resultant of two polynomials can be denoted by Resy, »(f,g) if one needs to
emphasize the degrees of polynomials, where f and g are defined as in (2.3). Now, if
we consider the homogenization of f and g, which we denote by F' and G respectively,

and which are defined as
F(z,y) = aoy™ +arzy™ 4+ .. +apnz”, Glz,y) =boy™ +biay™ + .. +bpa™,

the resultant Res(F,G) which equals to Res(f,g), vanishes if and only if F' and G
have a common solution other than (0,0), i.e., a common solution in the projective
space P! = P1(C).

There are various methods to compute the resultant of two univariate polynomials
f and g (or resultant of their homogenizations F' and G). Here, we mention two

very well known formulas: The Sylvester formula and the method of Bézout-Cayley.



2.2.1.1 The Sylvester Resultant

Let f and g be two polynomials of degree n and m, respectively, as in the equation
(2.3). Then their Sylvester matriz is defined as

-ao ai ay ... Qp-1 Gn 0 ]
0 a a1 ... ap—a QAp_1 Gapn
0 0 O aop ap a2 as a
(2.4) Syl(f,g) = ’
bo b1 b2 ... bp1 by O
0 by b bm—2 bm—1 by
0 0 0 ... b b1 bo b3 ... by

which is a square matrix of size (n+m) x (n+m).

Theorem 2.2.1 (Cox et al. (2006)). The resultant of f and g is defined as the
determinant of the Sylvester matriz Syl(f,qg).

Example 2.2.1. Let f(x) = agz® +a1x+ag and g(x) = box® +byx + by, then their

resultant, Res(f,g) can be computed as

apg a1 ag 0
0 apg a1 a9
bp b1 by O
0 by b1 b

Res(f,g) =

= a%b% + aoagb% —agaibibs + a%bobg —ajasbpby + a%b% — 2apasbgbs.

Example 2.2.2. Let f = ar?®+bx+c and g(v) = f/(x) =2ax+0b, then

a b c
(2.5) Resz1(f,9)=|2a b 0 =a(b* —4ac).
0 2a b

Remark 2.2.1 (Gelfand et al. (1995)). The discriminant A(f) of a polynomial
flz)=apx"+...+a1x+ag, an # 0, is the resultant of f and its derivative fl. The

exact relation is

(2.6 A(f) =~ Resnna(f,f)
8



which is a homogeneous polynomial of degree 2n— 2 in the n+1 variables ag,...,ay.

Also, if an,by # 0, the resultant can be defined in terms of the discriminant as

follows

(Res(f.9)* = (=1)"" < Fmars

where f and g are as in described in (2.5).

2.2.1.2 The Method of Bézout-Cayley

Suppose f(z) =apz"+...4+a1x+ag and g(x) =bpa™ +...+b1x+bo and that ag = 1.
Writing
x
—g( ) :co+clx+02m2+--- ,

()

we write the Bézout’s method as in (Stiller, 1996)

Cm .o Cm+n_1
Cm—1 coo Cm4n-—2
Res(f,9) =
Cm—m+1 --- Cm

which is an n x n determinant. One can see that the condition ag =1 can be relaxed

as ag # 0 since we always can scale f such that ag = 1.

Example 2.2.3 (Stiller (1996)). Let f(z) = 22> -3z +1 and g(x) = 52% +x — 6.

Then we compute

?Eg = (=64 2+52°)(1+3x+ 722+ 152 + ) = —6 — 172 — 342> — 682° + - -
Using Bezout formula, we have
Res(f g)z C2 C3 _ —34 —68 _
’ 1 C2 —-17 —-34

which is expected since x =1 is a common root.



2.2.2 The Multipolynomial Resultant

In this part, we introduce the resultant of multivariate homogeneous polynomials
which is a direct generalization of the resultant of two homogeneous polynomials on

P! to the resultant of n+ 1 homogeneous polynomials on P™.

Following (Cox et al., 2006), we consider the ‘universal’ homogeneous polynomials

of degree d; as

Fi= > wial"
lor|=d;

for i = 0,...,n where a is a multi-index (ag,...,a,) and t¢ indicates the
monomial ¢*!...¢t* which is of degree |a| = > ;a;. One can see that the
homogeneous polynomials of degree d; form an affine space by identifying
>|a|=d; Wi,at™ with point (Ui7a)|a\:di e CN (@) where N(d;) = (n+di*1).

n—1

Define the incidence variety W C [[o CN) x P,

n
W= {(Ci,a,to,...,tn) € HCN(di) xP": Fi(cia,to,...,tn) =0 for each i = O,...,n}.
=0

W is an irreducible variety of dimension (3> (N(d;)) —1.  Consider the
canonical projection onto first factor  : [[Iy CN(@) x P* — [T, CN(4) defined as
7(¢ia,to,---,tn) = (Cio). The image of the incidence variety under this projection
7 (W) has the same dimension as W (Busé (2021)). Hence (W) forms an irreducible
hypersurface in [[i,CN (@),

Theorem 2.2.2 (Cox et al. (2006)). The set w(W) is defined by a single
irreducible  equation Resgq . g4, = 0 which is called the multipolynomial
resultant. The expression Resq, . q4,(Fo,...,F,) s evaluation of this

polynomial at the coefficients of the polynomials Fy, ..., F,.

In 1902, Macaulay proposed an efficient formula for computing the multipolynomial
resultant in the article (Macaulay (1902)). The multipolynomial resultant is also

known as Macaulay resultant and classical resultant.

Theorem 2.2.3 (Cox et al. (2006)). Given dy,...,d, € N, there exists a unique
polynomial Resq, ... 4, € L) which satisfies

o If Fy,...,F, €Clto,...,t,] are homogenous polynomials then the system

10



has a nontrivial solution in P" if and only if Resq, .. 4,(Fo,...,Fn)=0.
o Resdo,...,dn (tgo, ... ,tg”) =1.

In a more general point of view, each homogeneous polynomial F; can be considered
as a section of the hyperplane bundle O(d;) on P". Hence Resg,, 4, vanishes means

these sections have a common root in P".

Proposition 2.2.4 (Busé (2021)). The multipolynomial resultant has the following

properties:

o Multi-degree of resultant. Let Fy,...,F, are generic homogeneous
polynomials of degree dy, ...,d,. Then Resq,. . 4,(Fo,...,Fy) is a homogeneous
polynomial in the coefficients of F; of degree dody ...dy/d; for eachi=0,... ,n.

o Additive property. Let Fo,...,Fi,FZ./,...,Fn be n + 2 homogeneous
polynomials in Clty,... t,] of positive degrees. Then

RBS(F(), N 7Fi71;FiFi;Fz’+1; e ,Fn) =

RGS(FQ, N 7Fi—17Fi,E+1, ce ,Fn)RBS(Fo, ce 7Fi—17Fi7Fi+17 .. ,Fn).

o Invariance under elementary transformation. Let
Fo,...,F, € Clto,...,ty] be homogeneous polynomials of positive degree.
Then

RGS(FQ, .. .,anl,Fi—I—Z hi’ij,FiJrl, .. .,Fn) :R€S<FO,...,anl,Fi’Frrki,l’...,Fn)
J#i

for any i=0,...,n and for any homogeneous polynomials h; ; such that the

polynomial Fy+3 ;4 hi jFj is homogeneous of the same degree as F;.

o The base change formula. Let Fy,..., F, € Clty,...,t,] be homogeneous
polynomials of positive degrees dy,...,d,, respectively. Also, consider n+ 1
homogeneous polynomials G = (Go,...,G,) where each G; is of degree d > 1
for 7=0,...,n. Then

Res(FyoG, ..., F0G) = Res(Gy,...,Gp) b Res(Fy, ... F,)" |

e Reduction by one variable. Let  Fo,...,Fph_1 be homogeneous

polynomials of positive degree in Cltg, ..., t,] for n>2. Set

11



Fi(to,...,tn_l) = Fi(tO,---,tn—l,O) € C[to,...,tn_ﬂ. Then,

RBS(F(), . ,Fn_l,tn) = Res(ﬁb, .. .,Fn_l) eC.

o Permutation of variables. Let Fy,...,F, € Clty,...,t,] be homogeneous
polynomials of positive degree and let o represent a permutation of the group
of n+1 elements. Then

ReS(Fo(O)aFa(1)7 ceey Fa(n)) = 8(0’)d0d1"'d”R68<F0, e ,Fn),

where (o) denotes the signature of the permutation o.

2.2.3 The Sparse Eliminant

In this part, following (Gelfand et al., 1995) and (Cox et al., 2006), we mention the
sparse eliminant as a generalization of the classical resultant. Let Ag,..., A, be a
non-empty finite subsets of Z", and let u; = {u; 4}, A be a group of #.4; variables,
i=0,...,n and set u = {ug,...,u,} . For each i, the general Laurent polynomial f;

with support A; is defined as

fi= Z Ui ox® € Clu] [xlil, . ,xfl}.
aGAZ‘

Such polynomials are called sparse polynomials in the literature.

Put A= (Ay,...,A;) and consider the incidence variety,

n

(2.7) Wa= {(u,a:) € l_IO]P’((CAi) x (C)": folug,®) =+ = folun, ) = O}.

Consider the canonical projection on the first coordinate

e ﬁ P(CA) x (C*)" — f[ P(CH)
1=0 1=0

and let m(W,) denote the Zariski closure of the W, under the projection 7.

Following (Gelfand et al., 1995), we define the sparse eliminant as follows

Definition 2.2.2 (Gelfand et al. (1995)).  The sparse

eliminant, denoted by FElimy, is defined as follows: if the variety m(W4) has
12



codimension 1, then the sparse eliminant is the unique (up to sign) irreducible

polynomial in Z[u] which is the defining equation of w(W4) , i.e., it vanishes

on m(Wy) . If codim(m(W4)) > 2, then Elimy is defined to be constant 1. The

exTPTession
Elima(fo,---, fn)

is the evaluation of Elimy at the coefficients of fo,..., fn-

The projective variety m(Wy) is irreducible and its codimension in [, P(C*¢) is
the maximum of #(I) —rank(I) where I runs over all subsets of {0,1,...,n}. The

variety m(W ) has codimension 1 if and only if there exists an essential family
{A;}ier where I C {0,1,...,n}, see (Gelfand et al., 1995) and (Sturmfels, 1994).
For example, if each Q; = conv(A;) is of dimension n, then the family {A;};cs is

essential for I ={0,1,...,n} and hence 7(W4) defines a hypersurface in the product
projective space [[%qP(CA4%).

In general, the sparse eliminant is called sparse resultant by many authors, as
in (Gelfand et al., 1995),(Cox et al., 2006), etc. However, we prefer to use the
name sparse eliminant, since in the next subsection, following (D’Andrea, Galligo
& Sombra, 2014) and (D’Andrea & Sombra, 2015), we introduce another type
of resultant which will be called sparse resultant. The first efficient method was
introduced by Sturmfels in (Sturmfels, 1991) and (Sturmfels, 1994) for computing
sparse eliminants. Also, Canny and Emiris introduced algorithm for the same
purpose in (elimination theory, CEl) and (Canny & Emiris, 2000). In 2002,
D’Andrea succeed to propose Macaulay type formula for computing sparse
eliminant in (D’Andrea, 2002).

The classical resultant Resg, 4, is the special case of the sparse eliminant. Here,

n

let A; be the set of all integer points in the d;-simplex, i.e., A; = d;3, NZ"™ and X,

is the standard unit simplex:

d;i¥y = {(ag,...,a,) € R+ ca; >0, Zaj <d;}.
J

Following (Cox et al., 2006) and (Gelfand et al., 1995), for simplicity let all the sparse
polynomials fo,..., f, have the same support Az = dX,, NZ" for some positive integer

d and consider the system

fo=uorx* +... Fuggx® =0
(2.8)

fn =t + ...+ upgxe*” =0

13



Also consider the homogeneous coordinates t,...,t, which are related to z1,...,x,
via the change of variable x; =t;/tg for i = 1,...,n. Then we homogenize the sparse

system (2.8) by defining

(2.9) Fi(to, ... tn) = tdfi(ty/to, ... tn/to) = tdfi(x1, ... x),

for 0 <i <n. This method gives n+1 homogeneous polynomials of total degree
d in the variables tg,...,t, and this definition is independent of the choice of

homogeneous coordinates.

The following proposition gives the relation between the multipolynomial resultant

and the sparse eliminant.

Proposition 2.2.5 (Cox et al. (2006)). Let Aj=d>, NZ" and consider the systems
of polynomials F and f as above. Then

ElimA(f(), ceey fn) = j:Resd““’d(Fo, A ,Fn),
where A= (Ag,...,Aq).

Corollary 2.2.6. Let f = (f1,...,fn) be a system of polynomials with
supp(fi) = Aq for i = 1,....n.  Assume that the system F = (Fy,...,F,)
consists the homogenizations of f; according to process in (2.9) and denote the set
of simultaneous solutions of F by Z(F'). Suppose that Z(F)NH>®(tg) =0 where
H>(ty) is the hyperplane at infinity for to =0. Then the system of polynomials f
has no common solution if and only if Elima,(fo,...,fn) # 0.

Proof. If Elim 4,(fo, ..., fn) # 0, then by definition the system

has no solution. On the other hand, let ¢ Z(f), then there exists an i € {0,...,n}
such that f;(x) # 0. Suppose that Fj; is the homogenization of f; as described
above process and assume that for corresponding variable t = (to,...,t,), i.e.,
Fi(t) = t3fi(x). In this case F; = 0 if only tp = 0 and this cause that
Z(F)N H*®(ty) # () which contradicts to our assumption. Hence F;(t) # 0 which
means ResgF' = Elim 4, f # 0. O

14



2.2.4 The Sparse Resultant

Beside being a generalization of the multipolynomial resultant and involving
considerable large amount of the system of polynomials, the sparse eliminant
does not satisfy some essential properties which is necessary in many applications,
such as additivity property and Poisson formula. In 2015, D’Andrea and Sombra
introduced the following definition for the sparse resultant in (D’Andrea & Sombra,

2015) which satisfies many of the desired features.

Consider the nonempty finite subsets Ay, ..., A, of Z" and the incidence variety
n
(2.10) Wy = {(u,w) € HP(CAZ') x (C": folus, @) = - = fn(uy, ) = 0}.
1=0

The direct image of W4 under the canonical projection
n n
m: []B(CA) x (C*)" — ] P(CA)
i=0 i=0

is the Weil divisor of [T?_oP(C*4) given by

deg(m|w ) T(W4)  if codim(m(W4))
0 if codim(m(Wy4))

Y

(2.11) T«(Wa) =

1
2

v

where deg(m|yy,) represents the degree of the restriction of the canonical map 7 to

the incidence variety Wy4.

Definition 2.2.3 (D’Andrea & Sombra (2015),D’Andrea et al. (2014)). The sparse
resultant, denoted by Resy, is defined as any primitive polynomial in Z[u] of this
Weil divisor m.(W.). The expression

ResA(fo,--s fn)

is the evaluation of Resq at the coefficients of fo,..., fn.

In the next proposition, we see the relation between the sparse eliminant and the

sparse resultant.

Proposition 2.2.7 (D’Andrea & Sombra (2015)). The sparse resultant Resq # 1

if and only if the sparse eliminant Elim g # 1 and, in this case

d
Resq = iElim;g(ﬂWA).

15



Example 2.2.4. Let Ag=A; = A2 ={(0,0),(2,0),(0,2)}. Then Elim4 = det(u; ;)
and Res 4 = %[det(u; j)]*.

2.2.4.1 The Directional Resultant

For a subset B C Z" and a polynomial f =3 pcp5 Bpz? with support B, we write

(2.12) BY = {b € B: (b,v) = Sconu(B) (v)}
and
(2.13) =Y Gt

beBv

where v € R" and s.4,,,(5)(v) is defined as equation (2.1).

Definition 2.2.4. Let Ay,..., A, CZ" be a family of n non-empty finite subsets,
v € Z"\ {0}, and v+ CR" be the orthogonal subspace. Then, fori=1,...,n, there
exists some b;, € Z" such that AY —b; ., C Z" Nvl. The resultant of A,..., A,
in the direction of v, denoted Resay . av is defined as the sparse resultant of the
family of the finite subsets AY — b .

Let f; € Clazt!,...,xF'] be Laurent polynomials with support supp(fi) C A,
i=1,...,n. For eachi=1,...,n, we write f = mbivvgw for a Laurent polynomial

giw € CIZ"Nvt] ~ (C[ylﬂ, . ,yf}l] with supp(giw) C A} —biv. The expression

Resav, . az(f1,-- f7)

is defined as the evaluation of this resultant at the coefficients of the g; v.

One can check that for every nonzero vector v € Z", it is always possible to find a
vector b;, € Z" such that A} —b;, C Z" Mot because of the fact that the finite
integer valued set AY —b; ,, is a subset of a supporting hyperplane of the convex hull
of the Minkowski sum which is obtained by the family A1,..., A, C Z™. Further,
this procedure is independent of the choice of the vector b;, since the resultant is

invariant under translations (D’Andrea & Sombra, 2015, Proposition 3.3).

If the direction vector v is an inward point normal to a facet of the Minkowski sum

o conv(A;), then the directional resultant Res AV LAY # 1 and it is the only case
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when we have a nontrivial directional resultant by Definition 2.2.2.

2.2.4.2 Comparison of Sparse Eliminant and Sparse Resultant

As a generalization of the classical resultant, the sparse eliminant preserves some
properties such as irreducibility, homogenenities and determinantial formulas.
However, it does not satisfy some crucial properties such as as Poisson or
additivity formulas. The reason of the emerge of the sparse resultant is the lack
of such important features. Despite of the fact that the sparse resultant is not
irreducible anymore, we acquire the following properties by virtue of the new

definition.

Proposition 2.2.8 (D’Andrea & Sombra (2015),D’Andrea et al. (2014)).

o Additivity formula. Suppose that AO,...,An,A; are nmonempty finite
subsets of Z" for i =0,...,n. Assume that f; are Laurent polynomials with

supp(fj) C Aj and let f; be a further Laurent polynomials with supp(fi/) =A,.
Then,

/

ReS-AOv 7A1+Al, ,An(f()’ "’ffm 7fn):

/
iReSAQ,...,AZ‘7...,An<an ceey fi> sy f”>R€SAo,...,A;,...,An (f07 RN PR fn)

o Poisson formula Suppose that A = (Ay,...,Ay) is a family of nonempty
finite subsets of Z" and consider the Laurent polynomials f; with supp(f;) C A;
fori=0,....n. Let Resav, . a3(f1,---, f3) #0 for all nonzero vector v € Z".
Then

Resa(fos f1s---5fn) <HR65A1H v(f . fY) 8A0<v>> 11 f ymutt(€l5)

Eev(f

where V (f) denote the set of isolated solution for the system fi=...= f, =0
and s4,(.) is the support function of Ay as described in (2.1).
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2.2.5 The Bernstein Theorem

In this part, as a generalization of the Bézout’s theorem, we mention some versions
of Bernstein-Kushnirenko theorem (or Bernstein-Kushnirenko-Khovanskii theorem
(BKK)) which gives the upper bound for the number of the solution of Laurent
polynomial systems. We first recall the classical Bézout’s bound for a system of n

polynomials in n variables.

Theorem 2.2.9. (Coxr et al, 2006, The Bézout’s Theorem) Let
G1s---sgn € Clz1,...,25] be polynomial equations of positive degrees di,...,dy,

respectively. Then the system of equations

(2.14) gi(x1,...,xn) = =gp(x1,...,20) =0

has either an infinite number of solutions (including the solutions at infinity) or the
number of the complex solutions cannot exceed the number d=dy ...d,. Furthermore,
if the solutions at infinity are counted and with appropriate multiplicity, the exact

number of solutions is d=dj ...d, in the complex projective space P"(C).
First, we introduce the Kushnirenko’s theorem following (Gelfand et al., 1995).

Theorem 2.2.10 (Gelfand et al. (1995)). Consider f1,..., fn Laurent polynomials
and let supp(fi;) = A be a nonempty finite subset of Z" with Q = conv(A). Then
the number of common zeros of the f; in the algebraic torus (C*)™ is at most the
volume n!Vol,(Q). Furthermore, for generic polynomials (for generic choice of the

coefficients in the f;), the number of common zeros is exactly n!'Vol,(Q).

Example 2.2.5. Consider a univariate Laurent polynomial f(z) = a;rt 4. Fapz”.
Assuming that a;,a, # 0, the number of nonzero roots of f is n—i. Observe that the

Newton polytope of f is the line segment [i,n] and the length of the segment is n—i.

The Bernstein theorem generalizes the Kouchnirenko’s theorem to the case of the
systems of equations where each equation might have different supports. We give

the following version of Bernstein’s theorem which is given in (Gelfand et al., 1995).

Theorem 2.2.11 (Gelfand et al. (1995)). Let Ai,..., A, be nonempty finite
subsets of Z™ and Q; be the convex hull of A;. Assume that C* be space of Laurent

polynomials in x1,...,x, with monomials from A;. Then there is a dense Zariski
open subset Q C [TCAi satisfying the property that for any choice of (fi,.--sfn), the
number of the common zeros in (C*)" equals the mized volume MVgn(Q1,...,Qp).

We also introduce the most common version of Bernstein-Kushnirenko-Khovanskii
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theorem that can be found in many books. Here, we follow (Cox et al., 2006).

Theorem 2.2.12. (Coz et al., 2006, BKK theorem) Suppose that given
Laurent polynomials fi,..., fn over C have finitely many common zeros in (C*)™. Let
Qi = conv(A;) be the Newton polytope of fi in R™. Then the number of common
zeros of fi in (C*)" is at most the mized volume MVgn(Q1,...,Qn). Moreover, for

the generic choices of f;, the number of common zeroes is exactly MVgn(Q1,...,Qn).

In this thesis, we use the original version of Bernstein’s theorem as mentioned in
(Bernshtein, 1975) which is stated as follows:

Theorem 2.2.13 (Bernshtein (1975)). Let f = (f1,...,fn) be a system of Laurent
polynomials with supports Ay, ..., Ay, respectively. Then if for any nonzero vector v,
the directed system f¥ = (f{,...,f¥) has no common zero in (C*)"™ then all common

zeros of the system f are isolated. Further, the exact number of the solutions is

MVgn(Q1,...,Qn) where Q; = conv(A;) fori=1,... n.

The sparse resultant techniques performance a new bound which bounds the
number of solutions of a system like (2.14) in (C*)". One can see that the torus
(C*)™ can be obtained by substractiong all coordinate hyperplanes x; = 0 from the
complex projective space P"(C) for all i =0,...,n. Since x; =0 is the hyperplane at
infinity, the BKK bound counts solutions to the sytem (2.14) in C™ which have no
zero coordinate and it is computed from the mixed volumes of a sum of polytopes
obtained by the sytem (2.14).

For a given Laurent polynomial system f, Huber and Sturmfels introduced the

following result which determines the number of solutions using the sparse eliminant.

Theorem  2.2.14. (Huber &  Sturmfels, 1995,  Theorem  6.1) Let
f = (f1,---,fn) be a Laurent polynomial system with supp(fi) = A; for
i=1,....,n and @Q; = conv(A;). The number simultaneous solutions in
(CH™ of the system f is MV(Q1,...,Qn), counting multiplicities, if and
only if for all facet inner mnormal wvectors v of Q1+ -+ Qn, the sparse

v

eliminant Elim g» f° is a nonzero complex number.

Using the relation in between sparse eliminant and the sparse resultant as in

Proposition 2.2.7, we have the following corollary.

Corollary 2.2.15. The system f has MV (Q1,...,Qn) simultaneous zeros in (C*)",
counting multiplicities, if and only if for all facet inner normal vectors v of

Q1+ +Qp, the sparse resultant Res go f¥ is a nonzero complex number.
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3. Equidistributions of Zeros of Random Polynomial Systems

In this chapter, we introduce some of the very well known results on the
equidistribution of zeros of random polynomials and of simultaneous zeros of random

multivariate polynomial systems.

3.1 Distribution of Zeros of Random Univariate Polynomials

We mention the univariate random polynomials and introduce the related results in

the literature. Following Tao & Vu (2015) we define univariate random polynomials

as follows:
Definition 3.1.1. Let d be a positive integer and co,...,cq be deterministic
complex numbers and ag,...,aq be nondegenerate independent and identically

distributed (i.i.d.) random variables of mean zero and finite nonzero variance. A

random polynomial fi: C — C associated to ¢; and a; is defined as
d .
(3.1) fa(z) =" cia;x’.
1=0

Here, a random variable is called nondegenerate if the supports of its probability

law contains at least two points.

Example 3.1.1.

o Kac polynomials are polynomials associated to the coefficients c; = 1.

o Weyl polynomials are polynomials associated to the coefficients c; = \/I,

2!

o FElliptic polynomials are polynomials associated to the coefficients ¢; = (n)

(3
20



o Hyperbolic polynomials are polynomials associated to the coefficients
o= \/M(M-l—l).:.(M-i-i—l)
1.

for some parameter M > 0.

One can see that the Kac polynomial is a special case of hyperbolic polynomials for

M=1.

Let Poly, denote the space of polynomials of degree at most d. Identifying a
polynomial f; € Polyg with (ag,...,aq) € C*1, we endow the complex vector
space C! with a (d+ 1)-fold product probability measure P4 which is obtained
from the individual probability laws of the random coefficients. Pulling back this
operation, we define the d-th stage product probability space as (Polyg,Pg). Since
we can operate this for each d € N, we define the product probability space
[1520(Polyy,Py) which contains the sequence of random polynomials {f;}q with

increasing degree.

Also, if we let Z(fq) :={& : fa(&) = 0} be the set of zeros of f; in C, then a
polynomial f; € Poly, can be expressed as

d d
fa=> aiz' =aq[[(z—&).
1=0 i=1
We define a random valued measure 07,y associated to the zeros of f; as

(3.2) Polyq — M(C)

(3.3) far 0750 Z O,

where d¢, is the Dirac mass function with support Z(fz). We define the expected

zero measure of fg as

(3.4) < [02(£,)] /P ZSD §)dPy

olyg : i—1

for a compactly supported continuous function ¢ € C.(C).

Our interest is the asymptotic behaviour of the zeros of f; as d — co. First, we state
a very well known equidistribution result for Kac ensembles that has been studied

extensively for many authors.

Theorem 3.1.1 (Kac (1943),Hammersley (1956),Shepp & Vanderbei (1995)). Let

falz) = Zfzofzixi be a Kac polynomial. Assume that a; are independent and
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identically distributed real or complex valued Gaussian random variables of mean

zero and variance one. Then almost surely

1
weakly as d — 0.
Also,
L8150 1] = —do
q - "4(fa) o
as d — 00.
complex plane complex plane
2 T T 2z T T
E 0 E o0
= o o 1 2 23 S 0 ) 2
Re Re
(a) Zeros of fi0 (b) Zeros of fx500
complex plane complex plane
2 T T 2z T T
:;.:i :' i :.- J“ ¢
E o 3 Y 2 0 - .
= o o 1 2 23 S 0 ) 2
Re Re
(d) Zeros of fanoo

(C) Zeros of f1000
Figure 3.1 Distributions of Zeros of Standard Gaussian Random Polynomials
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In other words, the zeros of a random polynomial tend towards the unit circle
St = {|z| = 1} mostly as degree d — oo if the coefficients are i.i.d. complex Gaussian
random variables of mean zero and variance one. The variance condition in the
statement is not strict. In fact, one can replace it as nonzero finite variance as in
the definition of random polynomials. On the other hand, the normalization of the

random variables to have unit variance does not affect the zeros of f.

Shiffman and Zelditch generalized this result in (Shiffman & Zelditch (2003)) for any
simply connected bounded domain €2 in C with analytic boundary. They considered

the monomials {z°}; as an orthonormal basis with respect to the inner product on
St e,

(3.6 (F.0) =5 [, F()C=de

for the polynomials f,g € L? (%d&).

In general, any inner product on Poly, of the form

(£.9), = [ F)gCdn

induces a Gaussian measure Py as follows: Let {4;(z)}{, denote an orthonormal
basis of Polyy with respect to the inner product (.,.), and express a polynomial

fa € Polyg as

I

d
fa(z) = ;)‘%’Ai(z)'

If the coefficients are independent and identically distributed Gaussian random
variables with mean zero and variance one, then the Gaussian measure is

2 . .
7~41elal” 4q in terms of the coefficients.

Let € be a bounded simply connected C* domain in C and p is a positive C* density
on the boundary 9. Suppose that the inner product (3.6) on S! is replaced by an

inner product on 0f) of the form

(37) (- Dono = [, faed

for p € C¥(092). The Gaussian measure induced by this inner product on Polyy will
be denoted by P;pn. Hence, the d-th stage probability space is (Polyq, Py oq)-

Following (Ransford, 1995), we introduce some terminology from potential theory in

order to complete the approach of Shiffman and Zelditch. Let K C C be a compact
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set and let M(K') denote the the set of all positive unit Borel measures supported
on K. For a measure p € M(K), the energy of u is defined as

I(p) == //log |Z_1w|du(2)du(w),

and the equilibrium measure of K is the unique probability measure px which

minimizes the energy, that is,

(3.8) Hpre) = inf T(4).

A set K C C is called polar if its energy I(u) = —oo for all p € M(K).

Theorem 3.1.2 (Shiffman & Zelditch (2003)). Suppose that 2 is a bounded simply
connected C* domain. Let Pypq be the Gaussian measure on Polyg induced by
the inner product in (3.7) and let T3y Py aq be the product probability measure on
Poly = TI32o(Polyq, Pasa). Then for almost all sequences of random polynomials
with i.i.d. Gaussian coefficients { fq}q,

im0z (f0) = He:
Using the approach of Shiffman and Zelditch, Bloom generalized Theorem 3.1.2
for the compact subsets K of C with some mild conditions in (Bloom (2007)).
Again, following Ransford (1995), for a compact set K C C we define the logarithmic

capacity of K as
cap(K) = e 7K,

where

K):= inf I(u).
v(K) ot (1)

The number v(K) is called the Robin’s constant of K. Hence, for a compact set
K C C, its logarithmic capacity cap(K) is positive whenever the Robin’s constant
~(K) is finite.

In general, the capacity of an arbitrary set £ C C is defined as

cap(E) :=sup{cap(K): K C E, K is compact}.

Assume that cap(K) > 0. Then, by definition, the Robin’s constant (k') attains

its infimum at the equilibrium measure of K, i.e.,
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I(px) =v(K).

Let Vi denote the Green’s function of the unbounded component of C\ K with pole
at infinity and assume that Vi is defined on C by setting Vx =0 on K and on the
bounded components of K. Suppose that K is a regular set in the potential theory
sense such that the function Vi is continuous and the equilibrium measure of K can

be expressed as

1
dpg := —ddVi.
2w

For a compact set K and a measure p € M(K), we say that the pair (K, p)
satisfies the Bernstein-Markov property, if for an € > 0 there exists a positive constant
C' = C(e) such that

I fallx < CL+e)| fall L2y

for all f; € Polyy.

The result of Bloom is deduced from the following deterministic result of Blatt, Saff

and Simkani for regular compact sets.

Theorem 3.1.3 (Blatt, Saff & Simkani (1988)). Suppose K is a nonpolar and
regular compact set in the complex plane C and pp € M(K) such that (K, u) satisfies
the Bernstein-Markov inequality. Let fq(x) = Z?:o ald:ci be a sequence of polynomials
satisfying

— 1/d
o Timg oo || fall <1,
e limg ,ood tlog |ag| = —log(cap(K)),

o for each bounded connected component in C\ K there ezists a point xo such
that limg o0 | fa(wo) M4 = 1.

Then,
Jim 075, = dir,
weakly on CU{oc0}.

Theorem 3.1.4 (Bloom (2007)). Let K be a compact set in the complex plane and
{A;i(2)}i be an orthonormal basis with respect to a reqular measure pu supported on

K and suppose that (K, p) satisfies the Bernstein-Markov property. Consider the
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polynomials of the form

d
(3.9) fa(z) = ;)%’Ai(z)

where the coefficients a; are i.i.d. compler Gaussian random variables. Then

6Z(fd) — MK

almost surely as d — oo, and
(3.10) dilE[(SZ(fd)] — UK

weakly, where pg is the equilibrium measure of the compact set K.

Another interest is examining the zeros of random polynomials with more general
coefficients. The universality result on the coefficients for Kac ensembles is given by
Ibragimov and Zaporozhets which generalizes Theorem 3.1.1 for a quite large family

of random variables.

Theorem 3.1.5 (Ibragimov & Zaporozhets (2013)). Let fi(x) = X% g a2’ be a Kac
polynomial. If the coefficients a; are nondegenerate i.i.d. random wvariables, then

E[log(1+|ag|)] < oo is the necessary and sufficient condition for
o — ! do
Z(fa) 7" or

almost sure weakly as d — 0.

Generalization of Theorem 3.1.5 for more general type of random polynomials
is studied in (Kabluchko & Zaporozhets, 2014), (Bloom & Dauvergne, 2019),
(Pritsker, 2018) and (Pritsker & Ramachandran, 2017), etc. But recently, the most

comprehensive version is given by Dauvergne.

Definition 3.1.2. Let K be a compact set on the complex plane. A sequence of
degree d polynomials {pd = Z?:o cd,izi neN } s called asymptotically minimal on
K if there exists a reqular measure p of support K and a p € (0,00] satisfying

1

li !
dglolo d

log|cg,aq|l = —logeap(K) and 108 [pall 1oy = 0-

lim
d—oo

Theorem 3.1.6 (Dauvergne (2019)). Let p be a regular measure with nonpolar
compact support K C C. Let {pi} be a sequence of asymptotically minimal

polynomials on K and {a;} be a sequence of i.i.d. non-degenerate complex random
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variables. Consider the random polynomials of the form

d
fa(z) = ;)aipi(z)'

Then the measure 07y, converges to the equilibrium measure prc almost surely if

and only if

(3.11) E[log(1+ |ag|)] < oo.

Furthermore, the measure d 7y, converges weakly to pg in probability if and only if
(3.12) P(]a0| > ed) —=o(d™1).

In particular, if the condition (3.11) and (3.12) does not occur, then the sequence
5Z(fd) does not have almost sure limit, and limit in probability in the space of

probability measures on C, respectively.

Another approach for the distribution of zeros of random or deterministic
polynomials is given by Erdos-Turan and Hughes-Nikeghbali in terms of the

angle discrepancy and radius discrepancy of the roots of f;, respectively.

Let fq(z) = agz®+ ... +ap be a deterministic or random complex polynomial of
degree d and let Z(f;) denote the set of zeros of f; in C. For each —7 <a < f <,

consider the set

Zap(fa) ={§ € Z(fa) : v <arg(§) < B}

where arg(£) denotes the argument of £. Then the angle discrepancy of Z(fy) is

defined as
Zap(fa)] B—«
d 2

Aang<Z<fd)) = sup

—m<a<f<2m

Also consider

Z:(fa) ={€€ Z(fa) 11— <[¢| < (1—)7"}

for 0 < e < 1. The radius discrepancy of Z(fy) is

’Z€(fd>|

Arad(Z(fd>75):1_ d

For example, if fy(z) = 2% —1 then Aguy(Z(f4)) = 1/d and Ag(Z(fq),e) =0 for

each e.
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Theorem 3.1.7 (Erdos & Turan (1950), Hughes & Nikeghbali (2008)). Let
fa=aqx®+...4+ag be a complex polynomial with d > 1 and aga, #0. Then

1 su 2 su
BanglZfa)) < 16J 4108 (”frl'wj), BuudZ(f).2) < 2o (”f—laj) ,

for 0 <e <1, where the supremum norm is defined as || f|sup = Supjy|=1 [ f(w)]-

The constant 16 in the theorem above is replaced by Ganelius. He showed that the
constant ¢ has to be at most \/27” where K =32 é:{;g is the Catalan’s constant
in (Ganelius (1954)). On the other hand, Amoroso and Mignotte improved that the

constant ¢ cannot be less than v/2 in (Amoroso & Mignotte (1996)).

As a consequence of the Theorem 3.1.5., roughly speaking, it can be seen that for a
univariate random polynomial fg, if the distributions of middle coefficients do not
grow too faster than the extreme ones, the leading term and the constant term, then

the set of zeros Z(fy) tends to unit circle {|z| = 1}. More precisely:

Corollary 3.1.8. Let {fi}a>1 be a sequence of polynomials of degree d with

log (!ﬂ'%g) =o(d). Then

sl a2

=1.
d—o0 d 2w d—oo d

A further result related to the discrepancy estimates is given by Pritsker and Sola.
They give a quantitative estimate for the expected discrepancy of the random
polynomials for annular sectors. More precisely, let 0 < a < <27 and 0 <e < 1.

Define the annular sectors as

Ac(a,B):={6cC:e<|f|<e !, a<arg(f) < B}.
Theorem 3.1.9 (Pritsker & Sola (2014)). Let fy(z) = Y% qaz’ be random

polynomial such that the coefficients a; are i.i.d. complex random wvariables with

absolutely continuous distribution. If El|ag|!] < oo, for some t >0, then
B—a

e |- 22
< \/§_ 2 \/t;t?log(d+ 1)+ 1 logE[|ao|t] + 5= — E[log|ao|]
“\WK 1-¢ d ’

where K denotes the Catalan’s constant.
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The generalization of the discrepancies of the zero sets of polynomials on Jordan
domains can be found in (Andrievskii & Blatt, 1999, 2001, 1997; Erdélyi, 2008).

3.2 Distribution of Zeros of Random Polynomial Systems

In this part, as a generalization of the univariate case, we mention the distribution of
simultaneous zeros of random polynomial systems and introduce the related results

in the literature.

In order to state the next result as an analogue of Theorem 3.1.4, we list some result

of pluripotential theory following (Klimek, 1991).

Let D C C" be an open set. A function u: D — [—00,00) is called plurisubharmonic
on D if

e 1 is uppersemicontinuous,

o for each a € D and b € C", the function A — u(a+ A\b) is subharmonic on the
set {AeC:a+Abe D}.

We denote the collection of plurisubharmonic functions on D by PSH(D). A set
E C C" is pluripolar if there exists a nonconstant plurisubharmonic function u
satisfying £ C {u = —oo}. Pluripolar sets are Lebesgue measure zero since
plurisubharmonic functions are locally integrable. Let L£(C™) denote the Lelong
class which is the set of plurisubharmonic functions of logarithmic growth on C",

ie.,

L(C™) = {u € PSH(C™) : u(z) < log™ [|z]| + O(1)},

where ||z|| = (X7 |zi|>)"/? and log™ ||z|| = max(0,log||z||). Let P; denotes the
collection of the polynomials on C™ and of degree at most d. Note that if p € Py,
then mlog Ip| € L(C™).

For a compact subset K of C", its pluricompler Green function or the extremal

function Vi (x) is defined as

(3.14) Vi (z) =sup{u(z) :ue L(C"), u<0 on K}
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or thank to results of Siciak and Zaharyuta (see Klimek (1991) and references

therein)

(3.15)
1
Vi (x) :=sup {log Ip(x)] : p is a nonconstant polynomial, and ||p||x < 1}.

deg(p)
Example 3.2.1. If K = (SY)" = {(21,...,2,) : |xi| =1 for i=1...=n}, then
Vi (z1,...,2,) = max{0,log|z1|,...,log|z,|}.
If K is non-pluripolar, then the uppersemicontinuous regularization of its Green
function V3 € £(C™). We suppose that K is regular that is its Green function Vi

is continuous on C", i.e., Vi = V. The function Vi is a locally bounded function

on C"™ and it satisfies

(3.16) Vi =log™t||z||+O(1).

It is very well-known that the complex Monge-Ampere operator (dd®)" = (2i90)" is
defined for locally bounded plurisubharmonic functions on C" (Bedford & Taylor,
1982), in particular for V. Also, by (Klimek, 1991, Cor. 5.5.3), the equilibirium

measure of a regular compact set K is defined by
7: _ n

(3.17) MK ‘= (88VK> .
T

Let p be a unit Borel measure on a nonpluripolar compact set K C C". We say
that the measure u satisfies the Bernstein-Markov inequality, if for each € > 0 there

exists a positive constant C' = C(¢) satisfying

(3.18) Ipllx < Ce*9P|Ip]| 2,

for each polynomial p € Py, where ||.||x denotes the supnorm on K.

Suppose that for a polynomial f € P;, we write f = Z?Ql a;pi, where {p;}; forms an

orthonormal basis for P4 with respect to the inner product

(3.19) (f.9) = [ fadu

where d,, = dimPg = (")
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Let a = (a1,...,ay) be a vector in N™ and let |a| = Yi | a; represents the lenght of

the vector a. We define a random polynomial of degree d on C" as

fai(x) =Y a;P(x)

|J|<d

where {a;, J}| J|<d 1s a sequence of independent and identically distributed random

variables and J = (j1,...,jn) EN" fori=1,... n.

Similar to the univariate case, if we identify a random polynomial f; € P; with
its random coefficients {a; s }| <4, then Pg is identified with C% . Assume that the
coefficients {a;, J}‘ J|<d are independent and identically distributed Gaussian random
variables with mean zero and variance 1. The Guassian measure P, induced by the

inner product (3.19) is

2
o lal

1
7r n
where d\g, represents the 2d,-dimensional Lebesgue measure on C% and

la|? = Y|<dla 712. We define the product probabiliy space

P = H Pa,
d=1

where |J| = d and it contains the sequence of random polynomials of increasing
degree. Hence, the product measure P :=[[32, P defines a probability measure on

P.

Let f]fl = (f41,---»fax) be a polynomial system containing A many random
polynomials on C" for 1 <k <mn. If ffl contains less than n polynomials, it is
called k-system and when k =n, fj := f, is called a full system. Our main focus
is to state the results on asymptotic behaviors of the simultaneous zeros of such

systems. Consider the zero locus of a system f]j, that is,

(3.20) Z(fs) = {Z eCm: fd,l =... = fd,k = 0},

and define the normalized zero currents

(3.21) Z !

.fd = %[Z

f’é]

where [Z f§] represents the current of integration along the variety Z( f’j) Then the
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expected zero current is defined by

(3.22) <E[Zf§],g0> = /Z(f’j) <Zf§,go> dPy,

where ¢ is a bidegree (n —k,n —k) test form on C". By Bertini’s theorem,
whenever the coefficients {a; j}| <4 have continuous probability law, the complex
hypersurfaces Z(f¥) are smooth and intersect transversely. Therefore Z(f%) is a
codimension k subvariety of C". In particular, if kK = n, the set of simultaneous
solutions of the full system Z(f}):= Z(f;) is of codimension n, i.e., a set of

isolated points.

Theorem 3.2.1 (Shiffman (2008)). Suppose that K C C" is a reqular compact set
and p be a unit Borel measure on K such that the pair (K, ) satisfies the Bernstein-
Markov inequality. Let (Pg,PS) denote the ensemble of k—sytems of independent
and identically distributed Gaussian random polynomials of degree at most d with
the Gaussian measure dPg induced by L*(it), for 1 <k <n. Then for the sequences
of the systems {fh} € [13,P5,

_ . B k . B . B
3.23 Zow— (L00Vi) = (L00Vie ) A A [ L00V
f
d e s s

weak™ almost surely, where Vi is the pluricomplex Green function of K with pole at

infinity. Moreover, if k =n, then
_ i n
(3.24) Zfd — UK = (GGVK) R
s

weak™ almost surely as the degree d — oo.

The following example generalizes the Theorem 3.1.1 for the multivariate Kac

polynomials.

Example 3.2.2. Let K ={(x1,...,x,) € C":|z;| <1} be the unit polydisc in C™. The
pair (K, pg) satisfies the Bernstein-Markov inequality, and the monomials {x‘]}mgd
form an orthonormal basis for Py with respect to L*(ux) and hence a random

polynomial fg € Py can be written as

(3.25) falz)= > ayzlt- . xin,
| J|<d

Its Green function Vi = maxlog™ |z;|, and the equilibrium measure

1 1
(ddVi)" = 5 —dby - 5 —db,

21
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where df represents the arc length measure on the unit circle S'. Then for almost

all sequences of full system polynomials f, € P, we have

(3.26)

weakly as d — o0o.

~ 1 1
Z —df---—db
f§—>27r L o "
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Figure 3.2 Distributions of Zeros of Standard Gaussian Random Polynomials

Zeros of (f(20’1) ; f(zo,z))
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Theorem 3.2.2 (Bloom & Shiffman (2006)). Let u be a Borel probability measure
on a reqular compact set K C C", and assume that (K,u) satisfies the Bernstein-
Markov inequality. Let (Pg,Plj) denote the ensemble of k—sytems of independent
and identically distributed Gaussian random polynomials of degree at most d with
the Gaussian measure dP g induced by L?(), for 1 <k <n. Then for the sequences
of the systems { fh} € [13, P5,

. k
_ 5 L A5
(3.27) dMEZp] - (WaavK)

weak* as d — oo. In particular, when k =n,

(3.28) dinE[Zfs] — UK

weakly as d — oo.

In the next theorem, we introduce another result on the asymptotics of Z £, for full
systems, but before we need some concepts from weighted pluripotential theory. We
refer the reader to (Saff & Totik, 2013, Appendix B) for background and details.

A set K C C" is called locally regular in the sense of pluripotential theory if for all
r >0 and for all z € K the intersection K N B(x,r) is regular where B(z,r) denotes

the ball with radius r and centered at z.

Let K be a locally regular compact set and w > 0 be continuous function on K
satisfying {z € K : w > 0} is nonpluripolar. For a nonpluripolar regular compact set
K C C" define () := —logw. Then the weighted pluricomplex Green function Vi g
of K is defined as

(3.29) Vikg:=sup{u:uel, u<Qon K}.

Since K is locally regular and w is continuous, it is known that the weighted Green
function Vi ¢ is a continuous, locally bounded plurisubharmonic function . Hence,
by (Bedford & Taylor, 1982), the operator (dd“V q) is well defined and is a Borel

measure with support in K.

Suppose that p be a Borel probability measure supported on K. We say that
(K,w,u) satisfies the weighted Bernstein-Markov inequality if for all £ > 0 there
exists a constant C'= C(e) > 0 such that

(3.30) [l fallx < C(L+e)|[w fal L2

for all f; € Py.
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Theorem 3.2.3 (Bloom (2007)). Let K be a locally reqular compact set, w >0
be a continuous function on K and p be a Borel probability measure on K such
that (K,w, ) satisfies the weighted Bernstein-Markov inequality. Then for the full
systems f4 of n random polynomials with independent and identically distributed
Gaussian coefficients, we have

(3.31) tim EZU ] (;ddCVK,QY

d—00 dr

weakly.

Next, we mention a result on asymptotic distributions of the zeros of random
polynomial such that the distributions of the coefficients might be chosen from
a wide class of distributions including complex Gaussians. Let f; € C[xy,...,xy] be
random polynomials for i =1,...,n. Suppose that the array of the coeflicients {a; 4}
are real or complex independent and identically distributed random variables with
distribution law P := p(z)dA(z) satisfying 0 < p(z) < C' for some C' > 0 and

(3.32) P{z eC:log|z| > R} = O(R")

where A is the Lebesgue measure on C and the constant p > n—+ 1.

Theorem 3.2.4 (Bayraktar (2016)). Let K be a regular compact set in C" and
Q: K — R be a continuous weight function. Suppose that fq1,...,far are random

polynomials with coeffients as described as above for 1 < k <n Then,

. k
_ = PN
(3.33) d kE[Zfs] — (WaavK,Q>
in the sense of currents as d — oo. Furhermore, almost surely,
- i k
(3.34) Zp — (WaavK,Q)

as d — oo in the sense of currents.

Note that when & = n, the limiting distribution pg ,:= (%85\/;(7(])“ is a probability
measure and when ¢ = 0, it is the equilibrium measure ux of K.

So far we mention the results on classical random polynomials. In what follows, we
mention asymptotic distributions of zeros of random polynomials with prediscribed
Newton polytopes. Recall that a Laurent polynomials f € C[xfl, ...,z is of the

form

(3.35) flz)= Zaﬂc‘]
J
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where ay € C. The set of integer vectors supp(f):={J € Z" : aj # 0} is called the
support of f, and the convex hull of supp(f) is called the Newton polytope of f. Let
P be an integral polytope which is defined as convex hull of a finite subset of Z"

and denote the set of polynomials whose supports lie in P as
Poly(P) = {f e Clzi!,...,aF) : supp(f) c P}.

In literature, such polynomials are called sparse polynomials. The following result is
on the asymptotic behavior of the distribution of zeros of random sparse polynomial
systems (fM,..., fM) such that supp(fM)C MP;, as M — oo for i =1,...,k and
1 <k <n and where M P denotes to M-dilate of P.

Let K be a regular nonpluripolar compact set in C" and @ : (C*)" — R be a weight
function for K. The weighted Green function of K is defined as

Ve i.g =sup{p e PSH((C*)"): p(x) < I}lg}g{log 27| 4+Cypon (C*)" and ¢ <Q on K }.

A Laurent polynomial can be written as fM = Z?Z‘:ﬂ aijM , where dj; is the
dimension of the polynomial space Poly(MP) and where the orthonormal basis

{P; };l]‘:/[l is fixed with respect to the inner product
(3.36) (f.9) = [ F@)g@)e MO du(a)

for a unit Borel measure p supported on K.

Similar to the previous cases, let us identify the polynomial space Poly(M P) with
C% and endow it with a probability measure P such that P does not put any mass
on pluripolar sets. Consider a random sparse polynomial system fk =( flM e, f,é\/[ )
for 1 <k <n. By Bertini’s theorem, it is known that in general position their zero

locuses are smooth and intersect transversaly. Hence,

Z(f") ={e e (C)": fi(2) = = i (x) =0}
is a smooth and of codimension k variety in (C*)".

In the next theorem, Bayraktar introduce a result on the distribution of zeros of
random sparse systems whose distributions of coefficients might be chosen from a

wide class of continuous distributions, including complex Gaussian.

Theorem 3.2.5 (Bayraktar (2017)). Let P; C RY, be an integral polytope with

nonempty interior for each i =1,....n and (K,Q) be a reqular weighted compact

36



set. If, for every e >0
o
(3.37) 3" P{a€C™ :log|la|| > Me} < oo
M=1
and, for every u € S =1 gnd t >0
oo
(3.38) > Pfac C :log|(a,u)| < —Mt} < oo,
M=1
then, almost surely

(3.39) Z(flM,-.-, M) —dd(Vp, k,0) N---Ndd(Vp, k.Q)

weakly on (C*)" as M — oo.

Lastly we introduce a result for the distribution of zeros of random polynomials on
C? including discrete coefficients. Let {a; ; : (i,j) € N*} be an array of independent
and identically distributed random variables and let bivariable Kac polynomial of

degree d be of the form

(3.40) fa(zr,z2) = ) az',szix%-
0<i+j<d

Theorem 3.2.6 (Bloom & Dauvergne (2019)). Let fg be a bivariate Kac polynomial

and suppose that the random variables satisfies the property

(3.41) E[log(1 + |ag])]? < oo.
Then

42 lim Z;, = dd°
(3 ) dglc}o fa dd VK

almost surely, where Vi (x1,22) = max{0,log|z1],log|xa|}.
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4. An Equidistribution Result for Random Bernoulli Polynomials

Recall that a random Bernoulli polynomial of degree d is defined as

fai(x)= > CY@J:IJJ € Clxy,...,xy)
|J]<d

where «; ;j are £1-valued Bernoulli random variables. We consider full systems
(fa1,---, fan) of random Bernoulli polynomials on C™ with independent coefficients
and we write f; = ( fdat1,---, fd,n) for short. We denote the collection of all systems
of polynomials in n variables and of degree d by Poly, 4 that is

Polyn a(A) = {fa=(fa1,- - fan) - supp(fa) = A},

which is endowed with the product probability measure Prob; and A = dY, NZ".
For a system f; € Poly,, 4, if the simultaneous zeros Z(f ;) are isolated we denote
the corresponding normalized empirical measure by & Z(fq) We also let vpa4r denote

the Haar measure of (S1)" of total mass 1.

4.1 Proof of Theorem 1.2.1

Our proof is based on randomization of the following theorem which states
an equidistribution result for the deterministic systems with integer coefficient

polynomials.

Theorem 4.1.1 (D’Andrea et al. (2014)). Let Ag1,...,Aqn be nonempty finite
subsets of Z" and where @Q; = conv(A;) and Agq; = dQ; NZ" for i =1,...,n.
Suppose that fq = (fa1,---,fan) is system of polynomials in Z[:vfl,...,xffl] of
degree d > 1. Assume that supp(fq;) C dQ; and Resofy # 0 for all v e Z"\ {0}
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and log ||fd,i||sup = O(d) Then

(4.1) lim 5Z(fd) = VHaar-

d—oo

Proof of Theorem 1.2.1. Let fy = (fa1,...,fdan) be a system of random Bernoulli

polynomial system. Since all the coefficients are either 1 or —1, for i =1,...,n we
have
n+d
40 Mad= s st < (") <o)
|wy|="=|wn|=1

by triangle inequality. Hence,
(4.3) log || fa,ill <logd" = nlogd

and this leads log|| f4,i|| = o(d), which is desired.

The next step is to determine that for a system of Bernoulli polynomials f; whether

its directional resultant Res Av f¥ #0 for each nonzero vector v € Z".

Lemma 4.1.2. Let f;=(fa1,---,fan) be a polynomial system of random Bernoulli
polynomials for d > 1. Then there exist a constant Cy which is independent of d
such that

i}

Prob{f, € Poly, 4(A): Resav fg =0 for some nonzero veZ"} < 7

Proof. Recall that for a polynomial system f, its directional resultant is other than
one only for the inward pointing normal of the facets of the convex hull of Minkowski
sum which is obtained by supports. Therefore, in our case we have to check merely
the vectors v, = e, for m=1,...,n and vy,+1 = =X _; €, where {e;} is the
standard basis of Z", since the convex set ndX, has n+1 facets. We start with the
vectors v, = ey, for m=1,....n. Then the intersection of the support A with the

supporting hyperplane in the direction e, is of the form

n

i=1
m =1,...,n. Hence polynomials with support AY™ are represented as
(4.4) = Y agga’
JeAvm
fori=1,...,n.
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Following the Definition 2.2.4, if we choose the vector b;,, = 0 such that
AV — by, C L™ Nwlk, we see that the functions 7™ = giv, satisfy the
equation f™ = xlivm Giw,y, for each i=1,...,n.

For two univariate polynomials hy, he € C[z], their resultant Res(hq,h2) is nonzero
if and only if h; and hy have no common solution in C. Therefore, if n =2 the
necessary and sufficient condition for gi4,, and g2, have zero resultant is that
they have a common solution. In order to determine the occuring probability of it,

we use the following theorem which is stated by Kozma and Zeutoni.

Theorem 4.1.3 (Kozma & Zeitouni (2011)). Let f1,..., fot1 € Zlx1,...,2p] be n+1

independent random Bernoulli polynomials of degree d. Let
P(d,n) = Prob{3x € C": fi(x) =0, i=1....,n+1}

denote the probability that the system f1 =...= fp4+1 =0 has a common solution.
Then there ezists a constant K = K(n) < oo satisfying that

P(d,n) < K/d
forallde Z;.

Hence we can say that if n = 2, there exists a constant ¢, so that the directional
resultant of the system (f1, f2) in the direction of v,, is nonzero with probability at
least 1 — ¢y, /d for m=1,...,n.

On the other hand, if n > 3, we need to use homogenization process as described in
(2.9).

We obtain the homogeneous polynomials Gj ,, of the form

(4.5) Gmm(t,m) = Z ai,Jtﬂa:J
JeAvm

such that |J|+ 8 =d. In order to compare the sparse resultant of the
polynomials g¢;.,, and the multipolynomial resultant of the homogeneous
polynomials Gj,,, we check the conditions of Corollary 2.2.6. Let Z(G) be
the set of nontrivial solutions of the system G = (G1,4,,,...,Gnw,) and suppose
that G has a solution & = (¢,&2,...,&,) at hyperplane at infinity. If we evaluate
these homogeneous polynomials at ¢ = 0, we obtain the homogeneous part of the
polynomials ¢;,, for i =1,...,n. Since £ € H*(t), it has a nonzero coordinate

& for some k € {2,...,n}. For simplicity, let us assume k = 2 and define the new
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variables z; := &j19/& for i =1,...,n—2. Applying the change of variables, we

obtain

(4.6) Gm,m (21, sy Zn_Q) = Z O%JZW(J)
|7|<d

where ¢ : R® — R""2 (j1,...,50) + (j3,...,Jn). In this setting, there are n
random Bernoulli polynomials of degree d in n — 2 variables. In order to
determine of the existence of solutions we again use Theorem 4.1.3. Hence
by the above theorem, there exists a positive constant C;, depending only the
dimension such that the probability that the overdetermined system of these
Bernoulli polynomials have a common solution is less than C;/d. In
the light of this observation, we see that the system of homogenized
polynomials Gjy,, has no common zero at hyperlane at infinity except a
set that has probability at most C;/d. Then by Corollary 2.2.6, outside
of that small set, whenever the system of polynomials consisting ¢;,, has
a common solution, their resultant is zero. Since the system of Bernoulli
polynomials g;,,, contains n polynomials in n —1 variables, by Theorem 4.1.3,
there is a dimensional constant C; so that the probability that this system
has common solution is at most C;/d. Hence outside of a set that has
probability K;/d :=¢;/d+C;/d , the directional resultant Res gom fym #0 for all

inward normals of facets v,,, m=1,...,n.

Next, for the inward normal vector v, 11 = —> 1" ; €;, we find the minimal weight in
this direction as AVt ={J € A: |J| = d}. Hence the polynomials in this directions

are of the form

(4.7) Fr =Y e
|J|=d

In this case AYn+! is not a subspace of Z"Nw;-, 1, hence we need to translate it by

substracting a suitable vector b For Laurent polynomial systems, the sparse

ia”n-‘,—l °
resultant is invariant under translations of supports (see D’Andrea & Sombra (2015),
Proposition 3.3). Since the polynomials f;; are not Laurent, we need to determine

the effect of this translation.

Lemma 4.1.4. Let f ;= (fa1,---, fan) be a system of random Bernoulli polynomials
of degree d and let Z(f ;) denote the set of their common solutions in C". Then

there exists a positive constant Cy = C1(n) depending only the dimension n with the
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property that

Q

(4.8) Prob{f, € Poly, (A):3xcZ(f;) > ﬁ z;=0} < 7
i=1

Proof. Consider the system of Bernoulli polynomials f; and set of its simultaneous
zeros Z(f,). For a solution ® = (z1,...,2,) € Z(f,) assume that 1 =0. In order to
examine the incidence of this case, we evaluate the the system f,; at x1 =0 and we
obtain a new system of n Bernoulli polynomials with n — 1 variables. By Theorem
4.1.3, there exists constant C7 which is independent of d so that this system has a
common solution with probability at most Cj/d. Therefore the probability of the
event that z1 = 0 is less than C /d. Hence there is no harm of translation of supports

outside of a set that has probability at most C'/d, where C' := Y7 C;/d. O

= (d,0,...,0) so that AY*+! —b;, , C Z”ﬂvﬁﬂ, we

obtain the polynomials of the form

Choosing the vector b

ivv’n+l

(49) Jivpyr = Z O‘iywa(J)

JeAUn+1 _bi,vn+1

with w: R" — R" satisfying (j1,72,..-,Jn) = (—=d+j1,72,...,jn). We substitute the

new variables y; := ;41/21 into g; v, ., 1 =1,...,n—1, and obtain

(4.10) Giwnr @) = > gy
|J|<d

fory € C"'and o : R” = R™, (j1,72,...,7n) = (0,j2,...,jn). The system containing
the polynomials g; 4, ,(y), contains n random Bernoulli polynomials with n —1
random variable as in the cases v; = e;. By applying the same steps, it can be
shown that Res goni1(f;""") # 0 outside of a set that has probability K;11/d. O

Now, define the exceptional set &, 4 as a subset of Poly,, 4 which contains the systems
f4 that has a zero directional resultant for some nonzero primitive vector v or the
systems f; have a common solution & € C" with z; =0 for some i =1,...,n. More

precisely,

End ={fq € Polyna:Resgo fq=0, veZ"\{0}}

(4.11)
U{fd € Polypq:dx € Z(fq) > Hl’z =0}.

By computations above, we can say that for a Bernoulli polynomial system f; there
exists a positive constant K which is independent of d so that Prob{&, 4} < d 'K
where K = Z?;Lll K;+C/d. Therefore outside of the exceptional set &, 4, we can
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guarantee that the directional resultant Res g» f§ # 0 for all nonzero primitive vector
v € Z" and by Theorem 4.1.1, for all sequences {f;}q C Polyy, 4\ & d,

lim 5Z(fd) = VHaar

d—o00

weakly. In particular, since Prob{&, 4} —q 0, 5Z(.fd) —d VHaar in probability as
d— 0. O]
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5. Expected Zero Measure of Random Bernoulli Polynomial Systems

5.1 Proof of Theorem 1.2.2

In this section, first we mention the ingredients related to the subject and introduce
the proof of Theorem 1.2.2.

Let Z be a non-empty finite collection of points § = ({1,...,&,) € C" and mg € N
denote the multiplicity of £ in Z. The degree of Z is defined by deg(Z) = >¢me

which is a positive number.

Definition 5.1.1. Let Z be a non-empty finite collection of points in C". For each
a=(a1,...,0p) and B = (P1,...,0n) with —m <o < fj <7, j=1,...,n consider
the subset of Z

(5.1) Zag = {€eZ: a; < arg(gj) < ﬁj}
The angle discrepancy of Z is defined as

deg(Zap) 11 Bi— oy
(2) jl;ll 2r |

5.2 Agng(Z) =sup
(5.2 o(2) = smp|

Let 0 < e <1 and consider the subset
(5.3) Zo={6cZ:1-c<|g|<(1—e) '}

The radius discrepancy of Z with respect to € is defined as

deg(Z2)

(5.4) AilZ,2)i= 1= G5
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Note that 0 < Aang(Z)a,g <1 and 0 < Apq(Z,e) < 1. One can see that the angle
discrepancy and the radial discrepancy are defined as direct generalization of their

one dimensional versions.

Let Aj,..., A, CZ" be a collection of nonempty finite sets and let Q; = conv(A;)
for each i =1,...,n. For a vector w € S*! in the unit sphere in R”, let w"
be its orthogonal subspace and m,. : R" — w™ be the corresponding orthogonal
projection. The mixed volume of the convex bodies of w induced by the Euclidean

measure on w= is denoted by MV, .. Set

(5.5) Dayi = MVt (1w (Q1), -, Tw(Qi-1), T (Qit1); - -+, Tw (Qn)) -
The the Erdos-Turdn size of f = (f1,...,fn) is defined as

D .
1 i |1 |sup”
(5.6) n(f)=— sup log (vw)] |°

DweS"—1 H’U |R€$A¥7,Ag(ff77f1?{)|T

where (-,-) is the standard inner product in R" and the product in the
denumerator is over all primitive vectors v € Z™. It can be seen that the Erdos-Turdn
size of a polynomial system f corresponds exacly to the bound in the Erdoés-Turdn
theorem for univariate polynomials [see Erdos & Turdn (1950),Hughes & Nikeghbali
(2008),D’Andrea et al. (2014)]. In the next proposition, an upper bound is given
for the Erdos-Turan size of polynomial systems f with integer coefficients. For the
general case and for more properties of n(f), see (D’Andrea et al., 2014, Proposition
3.15).

Proposition 5.1.1 (D’Andrea et al. (2014)). Let Ay,..., A, be a non-empty finite
subsets of Z™ and set Q; = conv(A;) with MVgn(Q1,...,Qpn) > 1. Let d; € Z>1 and
b, € Z" so that d;>, +b;, 1 =1,...,n. Suppose that f1,...,fn € Z[a:lil,...,xfl] with
supp(fi) € Ai and such that Resav, . a3 (f7,..., f7) #0 for all v € Z"\{0}. Then

R (TR ((nwz) @1 di> zlg“g”) |

= i=1

The following theorem gives bounds for angle discrepancy and radius discrepancy
of Z(f) in terms of the Erdés-Turén size of f. For one dimensional version see for
instance (Erdos & Turan, 1950),(Hughes & Nikeghbali, 2008).

Theorem 5.1.2 (D’Andrea et al. (2014)). Let Ay,...,A, be a nonempty

finite subsets of Z"™ such that MVgn(Q1,...,Qn) > 1 with Q; = conv(A;) for

n>2  Let fi,....fn € Clatl,...,xt] with supp(f;) € A; and such that
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Resqv, . az(fUs.-, f7) #0 for all v € Z"\{0}. Then

(5.8) Aung(Z(f)) < 66n2" (18 +log* (n(£) )3 Vip(f)3

and, for 0 <e <1,

(59) Al Z(£).6) < Z0(f).

For a random Bernoulli polynomial mapping f; we let Z(f;) be the set of
simultaneous zeros of f;. We define the angle discrepancy Aang(Z(f)) and the
radius discrepancy Apq(Z(f),€) as above whenever Z( f ;) is a discrete set of points.
Otherwise, we set Awa(Z(f),€) = Aang(Z(f)) = 1. Note that as our probability
space (Polyy q, Prob) is discrete, measurability of these random variables is not an

issue in this setting. Next, we estimate the asymptotic expected discrepancies:

Proposition 5.1.3. For d > 1, let f; = (fa1,--.,fan) be a random Bernoulli
system. Then

(5'10) dh_g)loE[Aang(Z<fd))] =0 and dh_{goE[Amd(ZQfd))] = 0.

Proof. The proof is analogous to that [D’Andrea et al. (2014), Theorem 4.9].

Consider the expected value of the angular discrepancy which is

(5.11) Eldans(Z(F ) = [, DanslZ(f))AProb(F).

Let &, ¢ be the exceptional set which contains all the systems in Poly,, 4 with zero
directional resultants for some nonzero primitive vector v € Z" as described in

equation 4.11. Then, there exist a constant K which is independent of d so that

(5.12) 0< /5 Aang(Z(£2))dProb(f4) < K1 Prob{&,.q} < Kd "

since 0 < Aang(Z(fg)) < 1. Hence [o  Aang(Z(f4))dProb(f;) — 0 as d— oo,

Let f4 € Polyy, 4\ &y 4, then Proposition 5.1.1 implies that

(5.13) 0 g (7 04 VD Y08l b
=1
(5.14) < dln (dn_l(nQ—i—n) ilogd)
=1
(5.15) < Kzlocgld
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for a constant K9 which is independent of d.

Now, by Theorem 5.1.2 for f; € Polyy 4\ & a, for constants K3, Ky, K5 and Kg,

1 Ky 3(n=1)
(5.16) za@mm»smmnﬁm% )
n(fa)
3 3(n-1) 1
logd 3 d \?3 logd™s ~3
. < =t e
(5.17) —K5< d ) 10g<logd> SR

since the function ¢3 log(%)% is increasing for small values of ¢ > 0. Combining
the equations (5.15) and (5.17), we finish the first part of the proof. For the second

part, in a very similar fashion for 0 < e < 1, there exists a constant K7 so that

(5.18) osédmmmmmwmwwsmfl

since 0 < Apg(Z(f4)) < 1. Theorem 5.1.2 implies that for a constant Csg,

logd

(5.19) Arad(Z(fq)) < Ksn(fa) < Ks 7

Combining (5.15) and (5.19) completes the proof. O

Proof of Theorem 1.2.2. We adapt the argument in (D’Andrea et al., 2014, Theorem

1.8) to our setting. Let vy = %, where E[Z(f,)] is the expected zero measure

of f; and Vyaer be the Haar measure on (S1)”. We need to show that for each
continuous function ¢ with compact support in C" we have [@dvg — [ @dviaar as

d — oo. It is enough to prove this for characteristic functions ¢ of the open sets
(6.20)  U:={(z1,...,2n) € C" 1115 < |2j| <o, <arg(zj) < p; forall j},

where 0 <71 j <79 <o0,1;j#1fori=1,2and —7<a; <fB; <.

Consider the first case when U N (S1)" = (). Then there exists 0 < £ < 1 such that U

is disjoint from the set
(5.21) {(é1,...,60) €C": 1—e < || < (1—¢)~! for all j}.

Let f4 € Poly, 4\ &, q where &, 4 as in the proof of Theorem 1.2.1. Then Z(f,) is

discrete and

(5.22) deg(Z(fa)lu) < deg(Z(fq))Araa(fa.6) < d"Araa(fg:€)-

Also, if f; € &, 4, then deg(Z(f)|v) = 0. Hence vg(U) < E[Araa(Z(f4€))]. Then
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by Proposition 5.1.3, limg o q(U) = vigaar (U).

On the other hand, assume U N (S1)™ # (. Set
(5.23) U={z:a; <arg(zj) <f; forallj}.

Then, we obtain

~ B Bi—aj deg(Z(fa)ap) 1x Bj— Kn
— — ) . P _
Vd(U) jl;Il 21 /Polynyd\z‘:n,d dn jl;Il 2w d TOb(fd) + d
Kn
< Aang(Z(f4))dProb(fq) +—.
Polyy, 4 d

Furthermore, since

n n
R .y A R
a0~ 1122 = (@)~ 11 7% ) v \0)

j=1
we need to consider vg(U\ U). But, the set U\ U is a union of a finite number
of subsets U, of the form 5.20 so that Uy, N (SY)" = for all m. By previous
consideration, limg o /4(Up) = 0 and hence limg I/d(ﬁ \U) = 0. Therefore by
Proposition 5.1.3,

n
. 1 B
(5'24) dlinolo Vd(U) - dILH;O(U) - j];[l o VHaar(U)7
which concludes the proof. O
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6. Further results on C2

6.1 Proof of Theorem 1.2.3

Theorem 1.2.1 and Theorem 1.2.2 are proven for the polynomials with special kind of
supports. The restriction for the case n > 3 occurs since Proposition 2.4 is effective
only for the subsets A= {J € Z"} : |J| < d} for some positive integer d. However, for
bivariate polynomials it is valid for the polynomials with more general supports since
the existence of solutions of two polynomials g1, g2 in one variable can be determined
by their resultant Res(gi,g2). Therefore, if fi, fo € C[z1,22], then we can alter the
simplex type support with rectangular and trapezium types etc. Intuitively, we
anticipate that the support condition also can be relaxed for n > 3 by some other

techniques.

Lemma 6.1.1. Let

(6.1) fAlanze) = Y agefal  and  folzr,ae) = Y Byaflad?
|J]<d |J|<d

be two random Bernoulli polynomials in Clxy,xs] with support
A={(j1.J2) € Z29: 0 < j1,j2 < d}.
Then their directional resultants Reso(fT, f3) # 0 with overwhelming probability.

Proof. Recall that the directional resultant of fi and fy is other than 1 only for the

inward pointing normals of conv(A+.A). We can specify these vectors as v1 = eq,

vy = ey, v3 = —e; and vy = —es where eq, e are the standard basis elements in R2.

For the vectors v and s, the analysis works as in the proof of the main theorem.

For the inward normal vz, following the Definition 2.2.4, the minimal weight in this
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direction is the set of integer points on the facet F3. More precisely,

A% ={(d,j2) € A:0<jp <d}.

Choosing b; y, = (d,0), we have A3 —b; 4, C v3 NZ2. Hence, the corresponding

polynomials

(6.2) G105 (72) = Qg0+ ag1v2+ .+ @ty
and

(6.3) 92.05(22) = Bao+ Baixa+ ...+ Baard

are two univariate random Bernoulli polynomials. In consequence of the Theorem
4.1.3, we guarentee that there exists a positive constant K such that the probability
that the polynomials g1 v, and g2 4, have a common zero in C is less than K /d. This
leads that their resultant, hence the resultant of f; and fo in the direction of v3 is

nonzero by Definition 2.2.1.

For the inward normal vy, we machinery works in a very similar fashion. O]

Lemma 6.1.2. Let Q) be the trapezium with corners (0,0),(d,0),(d,d) and (2d,0) and
let A is the set of integer points in Q, i.e., A:=QNZ2. Suppose that f1, fo € Clx1, 2]
be as in the equation (6.1) with supp(fi) =.A for i=1,2. Then Resa(f7,f3) #0

outside of a set with small probability.
Proof. The convex set () has four facets Fi,Fa,F3 and Fy with inward normals
v] =e€1, V2 =e3 , V3= —es and vy = —e| — ey, respectively. For the vectors v, vo

and v3, the result follows from the Lemma 6.1.1. For the vector vy, the directed set

can be found as

(6.4) Av4:{(2d—j2,j2) GAZOSjQSd}.

In order to move A% to be a subset of v NZ2, we choose the vector by, = (d,d).

Then we obtain the polynomials
(6.5) Jlws = Qaq+Qar1d 10105 -+ agg paday
(6.6) 9205 = Baa+ Bas1a120103 + -+ Pagoriay .
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Applying the change of variable y = z1 /2, we attain

(6.7) 910,(Y) = Qga+agr1.d 1y -+ + g oy’
and
(6.8) 92.0,(%) = Baa+ Bar1.d-1y+ -+ Boaoy®

two random univariate Bernoulli polynomials. Again by Theorem 4.1.3, we say
that there exists a dimensional constant K such that they have a common zero
and hence their resultant is zero with probability less than K/d. Therefore the
directional resultant Res gva qva (f1*, f3*) # 0 with probability at least 1 — K/d. O

Definition 6.1.1. Let P € (R4)"™ be a convex body that is a compact, convex set with
nonempty interior. A convez body P is called a lower set if for all (x1,...,2y) € P,

the vectors (y1,...,yn) € P for 0 <y; <x; fori=1,...,n.

Proof of Theorem 1.2.3. Let @ be a lower set, then the inward normals of its facets

satisfy
« ve{ey, ez, —e,—ey}, or
o v =(\1e1,\2e2) for some integers A1, A2 < 0.

If the inward normal v is one of the first kind, then the result follows from Lemma

6.1.1. Otherwise, we apply the method in the proof of Lemma 6.1.2. ]

The condition that the convex hull of supports @ has to be a lower set in (R4 )? is a
necessary condition. However, it is not sufficient since we can find some support A
so that its convex hull () is not a lower set, but still two bivariate random Bernoulli

polynomials with support A has nonzero directional resultant with high probability.

Example 6.1.1. Let Q) be the convex hull of the points (0,0),(d,d) and (2d,0) and
A is the set of integers in Q). Suppose that f1, fo € Clx1,x3] be two random Bernoulli
polynomials with support A. Then for all nonzero vectors v € 72, Resa(fP, f3)#0
with high probability.

Proof. Let Q = conv((0,0),(d,d),(2d,0)) and A= QNZ2. Then the inward normals
of the facets of @) are v] = e, v9 = —e] — ey and v3 = e; — ey where {e},es} are

standart normal basis elements of R2.

For v; and w3, the result follows from the proof of Theorem 1.2.3. For the inward
normal vz, we have Av3 = {(j,7) : 0 < j < d} which is already a subset of v NZ2.
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Then the corresponding polynomials are

(6.9) g = &070+a171x1$2+"'+Oéd,d$(1j$g
and
(6.10) 9205 = oo+ Briz1ze+ - + By ariad

Applying the change of variable y = z1x9, we obtain

(6.11) 91vs(y) = @00 +ar1y+- -+ agqy’.
and
(6.12) 92.05(Y) = Boo+ By + -+ Baay”

which are univariate random Bernoulli polynomials. Using the Theorem 4.1.3,
we have that there exists a constant K such that Resqvs avs(f1°, f3?) # 0 with
probability at least 1-K/d. O
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Figure 6.1 Distributions of Zeros of Random Bernoulli Polynomials
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6.2 Conclusion

Asymptotic zero distribution of random polynomial systems f* = (fi,..., fx) with
discrete random coefficients has many open parts, for k=1,...,n, including Bernoulli

distribution.

On C2, in the light of the result of Bloom and Dauvergne, Theorem 3.2.6, we say
that for a bivariate random Bernoulli polynomial f;, the limit distribution of zeros
converges to dd“Vy, where Vi is the Green function of K with pole at infinity. On
the other hand, our main result Theorem 1.2.1 introduces an equidistibution result
for full systems of bivariate polynomials. Hence for the polynomials with +1-valued
Bernoulli coefficients, we have all results for the zeros of f; for £ =1,2. However,
on C", n >3, Theorem 1.2.1 is effective only for full systems, i.e., kK =n. The cases

k=1,...,n—1 still remain open.
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