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ABSTRACT

SPINTRONICS IN TIME-DEPENDENT SYSTEMS: MANIPULATION AND
DETECTION OF SPIN CURRENTS BY RASHBA SPIN-ORBIT INTERACTION

Fahriye Nur Gürsoy

Ph.D. Thesis, December 2022

Thesis Supervisor: Prof. Dr. İnanç Adagideli

Keywords: Mesoscopic and nanoscale systems, spintronics, spin-orbitronics, Rashba
spin-orbit interaction, quantum transport, charge and spin pumping, time-dependent

transport, Floquet scattering theory

In this thesis, we focus on manipulating spin-orbit interaction to generate spin-dependent
transport in two-dimensional electron gases (2DEG). Rashba spin-orbit interaction (SOI)
can be modulated both spatially and temporally. Here, we explore how we can create
spin currents in nano- or mesoscale conductors via periodically time-dependent Rashba
SOI. We base our calculations on the Floquet scattering theory, which is the standard
tool to study time dependent transport properties in these systems. In particular, we an-
alyze AC and DC charge and spin currents generated by dynamical Rashba SOI in the
absence of bias voltage, checking our analytical expressions and approximations with
full numerical spin-dependent transport simulations and studying our numerical results in
both low and high-frequency regimes. We also investigate high harmonic generation in
a time-dependent Rashba coupling and study the pumping charge and spin current when
the system involves one or two adjustable parameters in and beyond the adiabatic ap-
proximation. Spin-orbit coupling in 2DEGs can also be formulated using SU(2) gauge
fields. Through an SU(2) gauge transformation, one can show that the time-dependent
Rashba SOI induces spin-dependent voltages. Furthermore, this gauge transformation
enables one to identify relevant Onsager symmetries. The latter can then be exploited
for the realization of spin transistor devices, particularly when the spin-orbit interaction
is inhomogeneous throughout the sample. Combining these two concepts, we propose a
spin transistor that generates spin current by employing the dynamical SOI. Finally, we
exploit spatially inhomogeneous Rashba SOI to convert spin currents into charge currents,
providing an experimentally feasible detection mechanism.
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ÖZET

ZAMANA BAĞLI SİSTEMLERDE SPİNTRONİK : RASHBA SPİN-YÖRÜNGE
ETKİLEŞİMİ ILE SPİN AKIMLARININ MANİPÜLASYONU VE ÖLÇÜMÜ

Spintronics in time-dependent systems: Manipulation and detection of spin currents by
Rashba spin-orbit interaction

FAHRİYE NUR GÜRSOY

FİZİK DOKTORA TEZİ, ARALIK 2022

Tez Danışmanı: Prof. Dr. İnanç Adagideli

Anahtar kelimeler: Meso ve nano ölçekli sistemler, spintronik, spinorbitronik, Rashba
spin-yörünge etkileşimi, kuantum taşınım, yük ve spin pompalama, zamana bağlı

taşınım, Floquet saçılma kuramı

Bu tezde iki boyutlu elektron gazlarında spine bağlı taşınım oluşturma amacıyla spin-
yörünge etkileşiminin manipülasyonunu ele aldık. Rashba spin-yörünge etkileşimi hem
uzamda hem de zamanda modüle olabilir. Burada biz nano ve mezo ölçekli iletken-
lerde zamanda periyodik Rashba spin-yörünge etkileşimi yoluyla nasıl spin akımı oluş-
turulabileceği sorusuna odaklanıyoruz. Hesaplarımızı, bu sistemlerdeki zamanda periy-
odik taşınım özelliklerinin incelenmesinde standart bir yöntem olan Floquet saçınım ku-
ramı ile yaptık. Analitik ve yaklaşıklık içeren hesaplarımızı nümerik spine bağlı taşınım
simülasyonlarıyla kontrol ederek, bias gerilimi olmadığı durumda dinamik Rashba SOI
ile oluşmuş AC ve DC yük ve spin akımlarını analiz ettik. Ayrıca, zamana bağlı Rashba
etkileşimi halinde yüksek harmonik oluşumunu irdeleyip, sistem bir veya iki parametre
içerdiği durumda adyabatik yaklaşıklıkta ve bunun ötesinde pompalanmış yük ve spin
akımını inceledik. Öte yandan, 2 boyutta elektron gazlarında spin-yörünge etkileşimi
SU(2) ayar alanları kullanılarak da formüle edilebilir. Bir ayar dönüşümü ile Rashba spin-
yörünge etkileşiminin spine bağlı gerilimler oluşturduğu gösterilebilir. Bu ayar dönüşümü
ayrıca ilgili Onsager simetrilerinin belirlenmesini sağlar. Bu da, özellikle spin-yörünge
etkileşiminin materyal boyunca homojen olmadığı durumda, spin transistör gereçlerinin
gerçekleştirilmesi yolunda kullanılabilir. Bu iki olguyu birleştirerek dinamik Rashba
spin-yörünge etkileşimi kullanarak spin akımı oluşturan bir spin transistörü ileri sürüy-
oruz. Son olarak, spin akımlarını yük akımlarına çevirmek için uzamda homojen olmayan
Rashba spin-yörünge etkileşiminden yararlandık ki bu da deneysel olarak spin akımlarını
saptamayı mümkün kılan bir mekanizma sağlıyor.
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Chapter 1

INTRODUCTION

The enormous progress in electronics technology in the last decades brings its limitations
along with it: according to Moore’s law [1], the number of transistors inside a computer
chip doubles every year, then the transistor size should be made smaller with an exponen-
tial rate. Quantum mechanical effects need to be taken into account when this size reaches
the nanoscale. Spintronics proposes a revolutionary solution to this problem. Spintronic
devices are electronic devices that use both charge and spin properties of electrons to save
and transport information. The main advantages of using the spin degree of freedom as
a dynamical variable are that these devices are expected to be smaller, faster, and more
energy-effective. Hence they would be able to keep up with the rapidly increasing need
for more storage in information technology. They will require less power consumption
and exhibit more memory, processing capabilities, and new functionalities because of the
additional spin degree of freedom. As a result, spintronics has emerged as a promising
new discipline over the last decades. However, realizing such spin-based devices requires
solving various substantial problems, such as generation, manipulation, and detection of
spin current [2]. Specifically, an approach to these issues based on electrical methods
turns out to be promising. Such electrical methods, for example, side-steps major prob-
lems such as the conductivity mismatch [3, 4], a problem commonly arise when ferro-
magnetic materials are employed. Via these electrical methods, applying a gate voltage
can adjust the spin-orbit coupling strength and provides the tunability of the system. This
alternative means of manipulating spin-based systems through the spin-orbit interaction,
sometimes called spinorbitronics, has become a rapidly emerging discipline. Of partic-
ular importance is a tunable Rashba type spin-orbit coupling [5] for realizing spintronic
devices through only electric means.

In this thesis, we specifically concentrate on non-stationary aspects of the Rashba spin-
orbit coupling. Through time-dependent effects, we study generation of phase-coherent
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spin and charge transport in 2-dimensional noninteracting mesoscopic systems. Indeed,
time-dependent potentials provide additional transport phenomena, such as the generation
of a spin-dependent voltage and/or a spin and a charge current without a bias voltage,
in addition to those in stationary systems. In particular, we develop Floquet scattering
theory [6–8] for spin and charge transport in ballistic systems with periodically driven
parameters. We then compute spin and charge currents using numerical simulations.

Chapter 2 presents an overview of quantum transport in stationary mesoscopic systems.
We introduce basic features of our system, which is a reduced dimension semiconductor
heterostructure, such as the Rashba spin-orbit interaction, essential length scales, together
with the tools we will use to study these systems, namely the Landauer-Büttiker formal-
ism.

Chapter 3 introduces quantum transport for systems periodically driven in time. Floquet
scattering formalism which describes the dynamic quantum transport properties. The
Floquet Hamiltonian allows expressing periodic time dependency as a multi-channel sta-
tionary matrix with Floquet channels. Apart from the Floquet scattering matrix, computed
by the Floquet Hamiltonian, we also use the adiabatic approximation at low frequencies.
Then, we show how to obtain time-dependent spin and charge current using Landauer-
Büttiker formalism in the presence of a periodic in-time potential or applied voltage. We
also derive formulas for AC and DC spin and charge currents without a bias voltage.

In Chapter 4, we investigate the AC spin current induced by a time-dependent Rashba
SOI and vanishing bias voltage. We obtain time of flight using the Wigner-Smith time-
delay matrix [9, 10], which helps us specify the low and high-frequency regimes. We
then compare the Floquet scattering matrix and its adiabatic approximation in different
frequencies. We also study high harmonic generation (HHG) in the presence of the time-
dependent Rashba coupling. In the second part, we consider an appropriate SU(2) gauge
transformation to express the time-dependent Rashba field in terms of two opposite spin-
dependent electric fields. Moreover, we examine these fields as spin-dependent voltage
applied to the system, which helps us to obtain spin current via this voltage and charge
conductance. We also theoretically and numerically show this equivalence in adiabatic
and high-frequency regimes.

In Chapter 5, we focus on a two-dimensional electron gas — which we abbreviate as
2DEG — with position and time-dependent Rashba SOI, rewriting it in terms of non-
Abelian gauge fields. We devise a unitary transformation that approximates the desired
spin-dependent quantities (such as AC spin currents and spin conductances) in terms of
conventional charge transport quantities (such as AC charge currents and impedances).
While the time-dependent Rashba coupling generates AC spin current, position-dependent
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Rashba coupling converts it to an AC charge current, which vanishes in two terminal sys-
tems with time-reversal symmetry, Using Onsager relations, we show that opening a third
terminal or breaking time-reversal symmetry gives a non-zero AC charge current. Then
we propose a spin transistor in which on/off states are controlled by connecting a lead
using a gate. Finally, we present our results both in low and high-frequency regimes.

Chapter 6 studies time averaged charge and spin currents when the system involves one
or two adjustable parameters without a bias voltage. The latter case occurs with two time-
dependent potentials out of phase. We show our result using the Floquet scattering matrix
and its adiabatic approximation. While the adiabatic approximation yields non-vanishing
currents only in the two-parameter case, we obtain, using the Floquet scattering matrix,
a non-vanishing current even in a single-parameter case beyond the adiabatic approxima-
tion.

In Chapter 7, we discuss our conclusions.
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Chapter 2

OVERVIEW

In this chapter, we provide overview of stationary mesoscopic transport. The next chapter
investigates time-dependent effects on spin and charge transport. Mesoscopic systems,
which are systems of intermediate scale between macroscopic and microscopic, may con-
tain a large number of atoms as classical objects while still exhibiting quantum interfer-
ence effects inherent to atomic scales. Below, we define some significant length scales in
the mesoscopic regime and then introduce the mesoscopic systems studied in this thesis.
These semiconductor heterostructures in reduced dimensions realize what is called two-
dimensional electron gases (2DEG). We then introduce the Rashba spin-orbit interaction
(SOI), which has a significant impact on these materials. Next, we show the computation
of charge and spin currents using Landauer-Büttiker formalism.

2.1 Length Scales in Mesoscopic Regime

We will first introduce the relevant length scales in mesoscopic transport [11]. The limits
of the mesoscopic scale depend on the material type and are strongly affected by temper-
ature. Quantum interference effects are relevant until inelastic scattering events (electron-
electron or electron-phonon) destroy the initial phase of an electron. At low temperatures,
these inelastic scattering processes are suppressed, and, as a result, an electron can travel
longer, keeping its initial phase. The length scale by which the electron phase coherence
is conserved defines the phase coherence length Lφ

Lφ =
√
Dτφ (2.1)

4



where τφ and D are, respectively, the phase breaking time and the diffusion constant. The
system is considered in the mesoscopic regime when its length is smaller than Lφ. A
second relevant length is the Fermi wavelength λF , which is determined by the electron’s
kinetic energy.

λF =
2π

kF
, EF =

~2kF
2

2m
(2.2)

where kF is the Fermi wave vector and EF is the Fermi energy. At low temperatures,
kBT � EF , only the electrons nearby EF can participate in the current; thus, the Fermi
wavelength becomes the only relevant scale. Electrons obey quantum mechanics if the
sample size is comparable to the Fermi wavelength. An elastic scattering process due to
impurities of the system does not destroy the initial phase of the electron but changes its
initial momentum. An electron travels a certain distance before its momentum changes
by an elastic scattering event. That is called the mean free path Lm.

Lm = vF τm . (2.3)

where τm is the momentum relaxation time and vF is the Fermi velocity. For an electron
in a semiconductor, Lm is about 100 nm and could reach up to 10 µm [12]. Quantum
transport in distances shorter than Lm is called ballistic transport.

Besides charge transport, we will consider transport properties of spin degrees of free-
dom in mesoscopic systems. The appropriate length scale for spin transport is the spin-
diffusion length λs. It is defined as the average distance the electron’s spin relaxes from
its initial state. It is given as

λs =
√
Dsτs (2.4)

where τs and Ds are, respectively the spin relaxation time and the spin diffusion constant.
Semiconductor materials have longer phase coherence lengths compared to metals. At
low temperatures, an electron in a semiconductor sample can travel with phase coherence
up to micrometers [12]. Because of this large phase coherence length, semiconductor
materials enable us to explore mesoscopic quantum transport in a wide range of length
scales from a few nanometers to micrometers. Reduced dimensional systems, whereby
electron motion is restricted to one or two dimensions, such as the 2D electron gases, are
particularly suitable for this purpose due to large λF and large Lm .
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2.2 Two-Dimensional Electron Gas (2DEG)

In this thesis, we will consider two-dimensional mesoscopic systems. Semiconductor
heterostructures are commonly used to produce an effectively two-dimensional electron
gas by confining the motion in one direction (usually taken to be z) [12]. For example,
a layered system made by placing doped AlGaAs and GaAs semiconductors on top of
each other produce a confining well perpendicular to their interface. Starting from the
Hamiltonian,

H =
p2

2m
+ U(z) , (2.5)

where m is the effective mass of the electron, the confining potential U(z) can be made
sufficiently deep such that electron dynamics are effectively described by a 2D Hamilto-
nian

H =
p2
x + p2

y

2m
+ Ek (2.6)

where we used the lowest energy solution in the z-direction and replaced the z-dependent
part of the Hamiltonian with its corresponding energy eigenvalue Ek with k = 1. Two-
dimensional electron gases have long phase coherence lengths and allow for easy control
of their electronic properties, which makes them attractive for technological applications.
In particular, the spin dynamics can be tuned in these systems by electric means, which
is an essential property for spintronic applications. In this thesis, we will consider a
setting with a particular spin-orbit interaction called the Rashba coupling. An applied
gate voltage can tune this coupling.

2.3 Spin Orbit Interaction (SOI)

Coupling of electrons’ intrinsic spin with their orbital motion causes an interaction in
these electronic systems. This spin-orbit interaction is understood as follows. Consider
an electron moving in an electric field. The electron’s rest frame transforms this field into
a magnetic field ~B. This magnetic field couples to the electron’s spin due to the Zeeman
coupling of the form ~S · ~B. The general form of the Hamiltonian with SOI is [13]

HSO =
~

4m2
0c

2
p · (σ ×∇V ) , (2.7)

where m0 is free electron mass, c is the velocity of light, V is the electric potential, ~ is
Planck’s constant, σ = (σx, σy, σz) is a vector of Pauli spin matrices. In the semiconductor
quantum wells, SOI typically has two separate sources, which depend on the origin of the
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electric field: absence of crystal inversion symmetry, which results in the Dresselhaus SOI
[14], and asymmetry of electron confinement potential in heterostructures, which results
in the Rashba SOI [15]. We focus on the latter type of interaction in this thesis.

2.3.1 Rashba SOI

Rashba SOI, first introduced by E. Rashba [15], originates from the structural inversion
asymmetry of electrons’ confinement potential in the heterostructure. In these quantum
wells with no structural inversion symmetry, an energy split exists in the spin subbands.
This band splitting was understood [16–18] to be originated from the Rashba SOI:

HR = α (σ × p) · ẑ , (2.8)

where p = −i~∇ is the momentum operator, ẑ is the growth direction of the heterostruc-
ture, σ = (σx, σy, σz) is a vector of the Pauli spin matrices and α gives the spin-orbit
interaction strength. The effective Hamiltonian of an electron in 2DEG with Rashba SOI
in the single electron approximation is given by

H =
p2
x + p2

y

2m∗
+
α

~
(σxpy − σypx) , (2.9)

where m∗ is an effective mass. Corresponding energy dispersion relation reduces to

E =
~2k2

2m∗
± α|k| . (2.10)

As shown in Fig.2.1, it follows from this dispersion relation that Rashba SOI lifts the
spin-degeneracy in the conduction band, even in the absence of an external magnetic
field. In particular, the Rashba SOI splits the energy of up and down spin states by a
factor of 2α. Rashba SOI can be tuned during the growth process of the heterostructure
[19] or controlled by an applied gate voltage [5, 19–21]. In narrow gap semiconductors,
experimentally found the highest value of the Rashba SOI strength is α = 10−11eVm
[13]. The feature that an applied gate voltage can control the Rashba SOI makes it very
attractive for applications in spintronics. It allows for manipulating the spin direction
without an applied magnetic field or using a ferromagnetic material. That also motivates
the calculations presented in this thesis.
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Figure 2.1: Splitting of spin energy eigenstates due to the Rashba SOI.

2.3.2 Tight-binding Hamiltonian for 2DEG with Rashba SOI

We use the discretized version of the Hamiltonian in our numerical simulations, given in
[22, 23]. In a 2DEG with spatially inhomogeneous Rashba coupling on the x-y-plane, the
continuum Hamiltonian we use for our analytical calculations is

H =
~2

2m∗
(k2
x + k2

y) +
1

2
{αR(x), (σxpy − σypx)} (2.11)

where αR(x) is the Rashba SOI strength and σ denotes Pauli matrices. The corresponding
discretized version of this Hamiltonian on a 2D square lattice with a lattice constant a is

Htb =
∑

k,l,σ,σ′

4t (c†k,l,σck,l,σ′) +
∑

k,l,σ

t (c†k+1,l,σck,l,σ + c†k,l+1,σck,l,σ) +

∑

k,l,σ,σ′

1

2a

1

2
(αR,k,l + αR,k+1,l) c

†
k+1,l,σ(iσy)

σσ′
ck,l,σ′ +

∑

k,l,σ,σ′

− 1

2a

1

2
(αR,k,l + αR,k,l+1) c†k,l+1,σ(iσx)

σσ′
ck,l,σ′ (2.12)

where c†k,l,σ is the creation operator, which creates an electron with spin σ at the lattice
point (k,l). In this Hamiltonian, the hopping amplitude is t = −~2/(2m∗a2).

2.4 Landauer-Büttiker Formalism

This thesis is concerned with mesoscopic quantum systems, which are created on a 2DEG
by confinement potentials with arbitrary shape, as shown in Fig 2.2. Macroscopic contacts
are connected to the system via leads, as shown in the figure. We are mainly interested in
calculating conductance in such systems. In the ballistic regime where the system’s size
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L is smaller than Lm, the conductance is quantized in units of 2e2

h
. The Landauer formula

[24] gives the conductance as

G =
2e2

h
T , (2.13)

which is expressed in quantum transmission probabilities over all channels T .

Figure 2.2: Example of a scattering region connected to the reservoirs via leads (red), i refers
to the lead number where the total number of leads is Nr.

Landauer-Büttiker formalism [25] generalizes the Landauer formula above to an arbi-
trary scattering region with multiple contacts.We assume the electron can travel within
the leads as plane waves along the longitudinal direction without backscattering. Macro-
scopic contacts serve as electron reservoirs. These reservoirs are in thermal equilibrium
and are characterized by their chemical potential and temperature. Chemical potential
differences between those contacts produce flowing electrons which are scattered by the
mesoscopic system. Electron scattering from one lead to another gives the transmission
amplitude, which describes the quantum properties of the system and is strongly affected
by the system’s geometry. Below we give a brief description of the scattering matrix in
quantum mechanics.

2.4.1 Scattering Matrix Formalism

The scattering matrix relates incoming amplitudes to outgoing amplitudes in a matrix
form. We neglect the electron-electron interaction, and treat the scattering problem in the
single-electron approximation. The quantum state of a scattered electron is related to the
state of the incident one by the scattering matrix as

|ψout〉 = S|ψin〉 , (2.14)
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we denote the wave functions of the incident (scattered) electrons by ψin (ψout). Consider
the system in Fig. 2.2, which shows the scattering region connected to the leads labeled by
i = 1, 2, ...Nr. At given energy E, each lead has a certain number of transverse channels
labeled by m. Spin states of electrons are denoted by s. The size of the scattering matrix
is 2MT × 2MT where MT is the total number of transverse channels summed over all of
the leads, and the factor 2 comes from the up/down spin states. The element Ss,s

′

im,jm′(E)

gives the transmission amplitude for an electron at energy E where the incident electron
coming from lead j in the transverse channelm′ and with spin s′, is scattered into the lead
i in channel m and spin s. The absolute square of the amplitude |Ss,s

′

im,jm′(E)|2 gives the
probability of transmission. To avoid cluttering of indices, first, we present the scattering
matrix showing the lead indices only as

S =




r1,1(E) t1,2(E) . . . t1,Nr(E)

t2,1(E) r2,2(E) . . . t2,Nr(E)
...

... . . . ...
tNr,1(E) tNr,2(E) . . . rNr,Nr(E)




(2.15)

where each element is a matrix labeled by the transverse channel and the spin indices.
The submatrices r and t denote the reflection and transmission amplitudes as

ti,j(E) =




tm1,m1(E) tm1,m2(E) . . . tm1,mj(E)

tm2,m1(E) tm2,m2(E) . . . tm2,mj(E)
...

... . . . ...
tmi,1(E) tm2,2(E) . . . tmi,mj(E)




(2.16)

where mi and mj are the maximum number of the transverse channel in lead i and j,
respectively. Furthermore, each element of the submatrices ti,j(E) are 2 × 2 with spin
indices s =↑, ↓.

tm1,m2(E) =

[
t↑↑(E) t↑↓(E)

t↓↑(E) t↓↓(E)

]
(2.17)

Since the particle number is conserved during the process, the scattering matrix must obey
the unitarity condition [26].

∑

i,m

∑

s′′

(Ss
′,s′′

im,jm′)
†Ss

′′,s
im,km′′ = δj,kδm′,m′′δs,s′ (2.18)

Another essential property of the scattering matrix is micro reversibility [26]. That means
if the scattering processes are invariant under time reversal t→ −t, as both the Hamilto-
nian and the basis functions are left invariant under this operation. This condition imposes
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ST = S in the presence of spin rotation invariance,

Ss,s
′

im,jm′ = Ss
′,s
jm′,im . (2.19)

One can modify micro reversibility when there is a magnetic field as

S(H) = ST (−H) , (2.20)

taking into account the sign flip of the magnetic fieldH under time reversal, provided that
spin rotation invariance is not broken.

2.4.2 Electron Wave Function in the Leads

We do not need to follow what individual electrons do inside the scattering region to
calculate a current. We need only the incident and the scattered wave functions in the
leads. We represent the incident and the scattered wave functions ψin and ψout in the basis
given by the product of longitudinal and transverse parts and the spin eigenfunctions:

ψinm,s(E, r) =
1√
kx(E)

e+ikx(E)xχm(y)Σ(s) , (2.21)

ψoutm,s(E, r) =
1√
kx(E)

e−ikx(E)xχm(y)Σ(s) , (2.22)

for the incoming and outgoing electrons inside a lead, each with mode m with spin s.
Here, we consider a plane waveform for the longitudinal part, properly normalized, and
χm(y) denotes the transverse wave function, which we take as

χm(y) =

√
2

W
sin

(
mπy

W

)
(2.23)

where W is the width of the lead. It satisfies the orthogonality condition

∫
dy χm(y) · χm′(y)† = δmm′ . (2.24)

Finally, Σ(s) denotes spin eigenfunctions. We will use second quantized formalism for
the total wave function in the lead i and write

Ψ̂i(t, r) =

∫ ∞

0

dE e−i
E
~ t
(
âsi,m(E)ψinm,s(E, r) + b̂si,m(E)ψoutm,s(E, r)

)
, (2.25)

where âs,†i,m(E), âsi,m(E) are creation and annihilation operators for the incident electrons
in the lead iwith the channelm and spin s. Similarly b̂s,†i,m(E), b̂si,m(E) are creation and an-
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nihilation operators for scattered electrons. These operators satisfy the anticommutation
relations:

âs,†i,m(E)âs
′

j,m′(E ′) + âs
′

j,m′(E ′)â
s,†
i,m(E) = δijδmm′δss′δ(E − E ′) (2.26)

b̂s,†i,m(E)b̂s
′

j,m′(E ′) + b̂s
′

j,m′(E ′)b̂
s,†
i,m(E) = δijδmm′δss′δ(E − E ′). (2.27)

2.4.3 Spin and charge current calculation

The section above explains how to derive the total wave function in the lead i. We use the
current operator expressed as the wave function (2.25) to obtain the current, and we then
integrate the spin/charge current operator over energy as follows:

Îsi (t, x) =

∫
dy Ψ̂†i (t, r) Ĵ

s
x Ψ̂i(t, r) , (2.28)

Îi(t, x) =e

∫
dy Ψ̂†i (t, r) Ĵx Ψ̂i(t, r) , (2.29)

where Ĵsx denotes the spin current operator [27], in the absence of SOI:

Ĵsx =
~
2

~
2mi

(~σ · û)

(−→
∂

∂x
−
←−
∂

∂x

)
(2.30)

with û denoting the spin direction and Ĵx denotes the particle current operator,

Ĵx =
~

2mi

(−→
∂

∂x
−
←−
∂

∂x

)
. (2.31)

From now on, we will combine the definition of the spin and charge currents and denote
them in a unified manner by Îa where a = 0 corresponds to the charge current, and
a = x, y, z corresponds to the spin current where a indicates the spin direction. For
simplicity, we will show the derivation of only the spin current. The same derivation
applies to the charge current with the replacement of the σ matrix with σ0, which is the
unit matrix. Note that spin and charge currents have different units. To account for this
difference in the combined formula, we define an overall constant Ca with Cx,y,z = 1

h
~
2

for the spin, and C0 = e
h

for the charge current.

We substitute (2.25) in this equation for the spin current, and we use the small bias ap-
proximation [6]. Only the electrons nearby the Fermi energy E ∼ E ′ ∼ EF participate in
the current. This approximation will allow us to simplify the y integral in Eq.(2.29) using
Eq.(2.24) and also keep the longitudinal momenta k(E ′) ∼ k(E). Spin current in the a
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direction is then,

Îai (t) =Ca

∫
dEdE ′ei(E−E

′)/~× (2.32)
∑

m∈i

∑

s,s′=±1

b̂†,sim(E)σss
′

a b̂s
′

im(E ′)− â†,sim(E)σss
′

a âs
′

im(E ′)] ,

where m denotes sum over the channels in lead i.

The quantum mechanical average of the product of creation/annihilation operators gives
the number operator, which is characterized by the Fermi function fi(E) in the lead i.

〈â†,si,m(E)σss
′

a âs
′

j,m′(E ′)〉 = δijδmm′σss
′

a δ(E − E ′)fi(E) (2.33)

〈âsi,m(E)σss
′

a â†,s
′

j,m′(E
′)〉 = δijδmm′σss

′

a δ(E − E ′)(1− fi(E))

where the Fermi distribution function is

fi(E) =
1

1 + e[(E−µi)/kBT ]
(2.34)

where kB is the Boltzmann constant, T is temperature and µi is the chemical potential in
lead i. The creation/annihilation operators for scattering electrons b̂†(E), b̂(E) are written
in terms of the creation/annihilation operators for incident electrons â†(E), â(E). This
relation is given by the scattering matrix shown as

b̂sim(E) =
Nr∑

j=1

∑

m′εj

∑

s′=±1

Sss
′

im,jm′(E) âs
′

jm′(E) , (2.35)

b̂†,sim(E) =
Nr∑

j=1

∑

m′εj

∑

s′=±1

S∗,ss
′

im,jm′(E) â†,s
′

jm′(E). (2.36)

The current can be obtained after quantum statistical averaging over states of the electron,
Iai = 〈Îai 〉. Using the relation Eqs. (2.33) and (2.36), in terms of the Fermi functions and
scattering matrix, we obtain:

Iai = Ca

∫
dE

Nr∑

j

∑

m,m′

Tr[S†im,jm′(E)σaSim,jm′(E)](fi(E)− fj(E)) . (2.37)

2.4.4 Linear response

The current for a system with an applied bias voltage can be calculated in linear response
if the bias voltage is small. We consider reservoirs with different electrochemical poten-
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tials but kept at the same temperature T0

µi = µ0 + eVi, eVi � µ0 (2.38)

In the linear response approximation, one can replace the difference of the Fermi functions
as

fi(E)− fj(E)→ (eVi − eVj)
∂f(E)

∂E
(2.39)

Furthermore, the Fermi distribution can be approximated by a step function at low tem-
peratures,

f(E) ≈ θ(E − EF ) , (2.40)

which implies that only the electrons aroundEF induce the current. Then the spin currents
in the Landauer-Büttiker formalism [25] is

Iai = − e
h

∑

j

T aij(EF )(µi − µj) . (2.41)

Here a = x, y, z indicates the spin direction and T aij are spin-dependent transmission
probabilities [28].

T aij =
∑

m∈i,m′∈j

Tr[t†mm′σ
atmm′ ] (2.42)

where tmm′ is a 2× 2 matrix which gives the spin-dependent transmission amplitude (see
2.17) from channel m in the lead i to channel m′ in lead j. The charge current becomes

Ii =
∑

j

Gij(EF )(Vi − Vj) . (2.43)

where the voltage is Vi = µi/e and the conductance is Gij = − e2

h

∑
j T

0
ij(EF ) with σ0

defined as a unit matrix.
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Chapter 3

SPIN TRANSPORT IN TIME
DEPENDENT SYSTEMS

This chapter considers periodic time dependency and generalizes time-dependent formu-
las for spin and charge current calculations. We explain how to compute these currents in
a time-dependent system using the scattering matrix formalism.

Time dependence can generically arise from two separate sources, which we will focus
on in this section: (i) application of an external time-dependent voltage to generate an
AC current [29]. (ii) a time-dependent potential inside the scattering region created by an
applied AC gate voltage. These two settings are demonstrated in Fig. 3.1. In the latter
case, charge and spin currents can be generated with or without an applied bias voltage.
In order to examine the dynamics of a system with a time-dependent potential or voltage,

Figure 3.1: Demonstration of two cases of time-dependent response. (i) Response generated
by a time-dependent voltage applied externally. (ii) Response created by a dynamical potential
inside the cavity.
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we need to solve the time-dependent Schrödinger equation,

i~
∂Ψ(~r, t)

∂t
= H(~r, t)Ψ(~r, t) . (3.1)

The current computation using scattering matrix formalism that we outlined in the pre-
vious section should be adjusted to this time-dependent setting. If time dependency is
periodic in time, the Floquet formalism [30] provides the right set of tools to obtain the
wavefunctions numerically. Below, we first explain the Floquet scattering matrix formal-
ism [6–8, 31, 32] in detail and review the formulas for charge and spin currents resulting
from this formalism. Low-frequency limit of time-dependent response gives adiabatic
transport. Adiabatic approximation applies when the frequency of the time-dependent
potential is much smaller than the inverse time of flight of an electron in the scatter-
ing region. This approximation provides an alternative method to calculate the Floquet
scattering matrix. To determine the adiabatic regime, we calculate the dwell time of an
electron, which refers to the traveling time of an electron inside the scattering region, us-
ing the Wigner-Smith time-delay matrix [9, 10]. We end with a short explanation of how
we numerically compute spin/charge currents.

3.1 Floquet Theory

The Floquet theory, based on the work of mathematician G. Floquet, introduced a so-
lution for a linear differential equation with time-periodic coefficients [33]. Since the
Schrödinger equation is linear, Floquet theory is instrumental to understanding the behav-
ior of quantum mechanical systems with a Hamiltonian that is periodic in time:

H(~r, t+ T ) = H(~r, t) (3.2)

where the oscillation period is T = 2π/Ω and Ω is typically the frequency of the pe-
riodically driven potential. Floquet wave functions are solutions to the time-dependent
Schrödinger equation.

We now consider a 2D quantum mechanical system with a time-periodic Hamiltonian.
The Hamiltonian can be separated into static and time-dependent parts as

H(~r, t) = H0(~r) +H1(~r, t) , (3.3)

where the kinetic term is H0(~r) = − ~2
2m

(∂2
x + ∂2

y). It is easy to see that this Schrödinger

16



equation can be rewritten as:

HF (~r, t)|Ψ(~r, t)〉 = 0 , (3.4)

the Hermitian operatorHF (~r, t), which is called the Floquet Hamiltonian, is related to the
original Hamiltonian by including a time derivative term

HF (~r, t) = H(~r, t)− i~ ∂
∂t
. (3.5)

The solution to (3.4) is formally given by the following Floquet states

|Ψα(~r, t)〉 = e−iEαt/~|φα(~r, t)〉 , (3.6)

where |φα(~r, t)〉 is called a Floquet mode. Floquet modes are eigenfunctions of the Flo-
quet Hamiltonian HF (~r, t) with the eigenvalues Eα called quasienergies.

(
H(t)− i~ ∂

∂t

)
|φα(~r, t)〉 = HF (~r, t)|φα(~r, t)〉 = Eα|φα(~r, t)〉 . (3.7)

Let us now discuss the basic properties of these eigenfunctions. First, just as the Hamilto-
nian in Eq. (3.3) is symmetric under a discrete-time translation, t → t + T , its solutions
exhibit the same property

|φα(~r, t+ T )〉 = |φα(~r, t)〉 . (3.8)

Time periodicity allows expanding Floquet modes in a Fourier series

|φα(~r, t)〉 =
∑

n

e−inΩt|n〉, (3.9)

Here |n〉 are basis vectors of the eigenfunctions of the Floquet Hamiltonian and refer to
the Floquet states. Substituting this in Eq. (3.6), one obtains

|Ψα(~r, t)〉 = e−iEαt/~
∑

n

e−inΩt|n〉 . (3.10)

We can, then, rewrite the same wavefunction |Ψα(~r, t)〉 in an alternative way in terms of
a shifted energy eigenvalue:

|Ψα(~r, t)〉 = e−iEαt/~einΩte−inΩt|φα(~r, t)〉 (3.11)

|Ψα(~r, t)〉 = e−iEα,nt/~|φα,n(~r, t)〉

where the shifted Floquet modes are |φα,n(~r, t)〉 = einΩt|φα(~r, t)〉 and Eα,n denotes the
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Floquet energy
Eα,n = Eα + n~Ω, n = 0,±1,±2, . . .

These Floquet energies will be central to the spin and electric current calculation in time-
dependent quantum systems, which we detail below. As a second fundamental property,
the Floquet modes satisfy the following orthonormality and completeness conditions [6]:

〈〈φα,n(~r, t)|φβ,m(~r, t)〉〉 ≡ 1

T

∫ T

0

dt

∫ ∞

−∞
d2r φα,n(~r, t)φβ,m(~r, t) = δαβδnm

∑

α

∑

n

|φα,n(~r, t)〉〈φα,n(~r ′, t′)| = δ(~r − ~r ′)δ(t− t′) .

3.1.1 Floquet Hamiltonian

In Fourier space, the time-dependent Hamiltonian in Eq. (3.7) becomes a static matrix
Hamiltonian

HF =
∞∑

n=−∞

(
(H0 − n~Ω)|n〉〈n|+ iH1

2
(|n〉〈n+ 1| − |n〉〈n− 1|)

)
. (3.12)

Here, we consider a general periodic-in-time Hamiltonian with a sinusoidal potential with
frequency Ω and phases θ. With no loss of generality the Hamiltonian H(~r, t) is chosen
as

H(~r, t) = H0 +H1 sin(Ωt+ θ1) +H2 cos(Ωt+ θ2) . (3.13)

We can obtain the quantum expectation values of the separate contributions to the Floquet
Hamiltonian. First, the time-independent component H0 has the expectation value

〈φα(~r, t)|H0|φα(~r, t)〉 =
∑

n

∑

m

einΩt〈n|(H0)e−imΩt|m〉 = H0δn,m .

The following computation shows the quantum expectation value of the time derivative

〈φα(~r, t)|i~ ∂
∂t
|φα(~r, t)〉 =

∑

n

∑

m

einΩt〈n|
(
− i~ ∂

∂t

)
e−imΩt|m〉 (3.14)

=
∑

n

∑

m

(−i~)(−imΩ)ei(n−m)Ωt〈n|m〉 = −m~Ωδn,m .

Finally, the expectation values of the time-dependent sinusoidal terms can be computed
by expanding the cosine and sin functions in terms of exponentials and shifting the sum-
mation index as follows

〈φα(~r, t)|H1sin(Ωt+θ1)|φα(~r, t)〉

18



=
∑

n

∑

m

einΩt〈n|
(
H1

i

2

(
e−iΩt−iθ1 − eiΩt+iθ1

))
e−imΩt|m〉

=H1
i

2

∑

n

∑

m

(
ei(n−(m+1))Ωte−iθ1 − ei(n−(m−1))Ωteiθ1

)
〈n|m〉

=H1
i

2
(δn,m+1e

−iθ1 − δn,m−1e
iθ1) (3.15)

〈φα(~r, t)|H2cos(Ωt+θ2)|φα(~r, t)〉

=
∑

n

∑

m

einΩt〈n|
(
H1

2

(
e−iΩt−iθ2 + eiΩt+iθ2

))
e−imΩt|m〉

=
H2

2

∑

n

∑

m

(
ei(n−(m+1))Ωte−iθ2 + ei(n−(m−1))Ωteiθ2

)
〈n|m〉

=
H2

2
(δn,m+1e

−iθ2 + δn,m−1e
iθ2) . (3.16)

Using the expressions above, one can convert the time-dependent Floquet Hamiltonian
into a static matrix as [30]

HF ≈
N∑

n=−N

(
(H0 − n~Ω)|n〉〈n|+ iH1

2
(e−iθ1|n〉〈n− 1| − eiθ1|n〉〈n+ 1|) (3.17)

+
H2

2
(e−iθ2|n〉〈n− 1|+ eiθ2|n〉〈n+ 1|)

)
,

We truncated the infinite sums above level N for computational efficiency. This approx-
imation becomes better as N is taken large. We should determine the optimal value of
N for each particular system by analyzing the dependence of the amplitude and the fre-
quency of the driving potential and balancing the error that results from keeping N finite
with computation efficiency. As a result of this analysis, we convert the original peri-
odically time-dependent system into a multi-channel stationary system expanded in the
Floquet states.

3.1.2 Floquet scattering matrix

The Floquet scattering theory [6–8, 31, 32] describes how to calculate the current in a
system with periodically driven parameters. While in the stationary case, components
of the scattering matrix give quantum transmission amplitudes. These amplitudes de-
pend on a single energy E in the stationary case. On the other hand, in the periodically
driven case, with frequency Ω, an electron with initial energy E can interact with an
oscillating scatterer. As a result, it can absorb/emit energy quanta n~Ω. Then the scat-
tered electron leaves the system generally with a different energy En = E + n~Ω where
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n = 0,±1,±2, . . . . Therefore, the scattering matrix is a function of initial and final en-
ergies. This matrix is called the Floquet scattering matrix and is denoted by SF (En, E),
where index F represents the Floquet scattering matrix, and n denotes the Floquet chan-
nel. A generic transmission amplitude in the Floquet scattering matrix for a spin 1

2
particle

system is given by Sss′F,ij(En, E), which describes the transmission amplitude of an elec-
tron scattered from lead j with spin polarization s′ and energy E, and transmitted to lead i
with spin polarization s and the final energy En (for simplicity, consider a single-channel
scattering matrix). As a result of the conservation of the particle current during the scat-
tering process, Floquet scattering matrix obeys the unitary condition [34]

Nr∑

i=1

∑

s,s′=↑,↓

∞∑

n=−∞

Sss
′,∗

F,ij (En, E)Sss
′

F,ik(En, Em) = δm0δjk (3.18)

Nr∑

j=1

∑

s,s′=↑,↓

∞∑

n=−∞

Sss
′,∗

F,ij (E,En)Sss
′

F,kj(Em, En) = δm0δik.

The states with energies En = E + n~Ω < 0 do not contribute to the current and are
called localized states. Thus, only values of n for En > 0 are kept while taking the sum
over n. In a dynamical system, the microreversibility condition of the scattering matrix
differs from the stationary systems. Generally, consider a time-dependent Hamiltonian
with parameters pα changing periodically in time with angular frequency Ω and phase
shifts θa

pα(t) = pα,0 + pα(cos(Ωt+ θα)). (3.19)

The Hamiltonian is then invariant under the time reversal, t→ −t, together with changing
the sign of the phase shifts −θ where θ is set of all θα. Then, if there is a magnetic field,
the Floquet scattering matrix obeys the following symmetry [35]:

Sss
′

F,ij(E,En;H, θ) = Ss
′s
F,ji(En, E;−H,−θ) . (3.20)

In addition to incoming/outgoing channels in the leads, their corresponding energies E
and En interchange as well.

To calculate elements of the Floquet scattering matrix, one can substitute the Floquet
Hamiltonian in the time-dependent Schrödinger equation and obtain the Floquet wave-
function for each Floquet channel. The linear relation between the creation/annihilation
operators â†(E)/â(E) for incidents electrons and b̂†(E)/b̂(E) for scattered electrons gives
the Floquet scattering matrix elements as

b̂si (E) =
∞∑

n=−∞

∑

s′=↑,↓

Nr∑

j=1

Sss
′

F,ij(E,En) âs
′

j (En) , (3.21)

20



b̂s,†i (E) =
∞∑

n=−∞

∑

s′=↑,↓

Nr∑

j=1

Sss
′,∗

F,ij (E,En) âs
′,†
j (En). (3.22)

3.1.3 Adiabatic approximation to Floquet scattering matrix

Components of the Floquet scattering matrix increase proportional to the number of total
Floquet states 2N + 1 where N gives the maximum amount of energy N~ω an electron
loses or gains during the scattering process. The value of N , which depends on both
the frequency and the amplitude and of the time-dependent potential, is restricted by nu-
merical efficiency, hence determined by optimizing the calculation time vs. numerical
accuracy. The larger the Floquet scattering matrix is, the heavier the numerical calcula-
tions will be.

In the adiabatic limit, there is a practical way to obtain the Floquet scattering matrix
[6, 32, 34]. The condition of the adiabatic limit Ωτ � 1 where Ω/2π is the driving
frequency, and τ is the typical dwell time that an electron spends on the scattering region
during scattering. We will explain the calculation of the dwell time in a ballistic system
in Section 3.2.3. Considering a set of time-dependent parameters pα(t), one calculates a
stationary scattering matrix with these parameters at a given time t. This scattering matrix
is called the frozen scattering matrix:

S(E, t) = S(E, {pα(t)}) . (3.23)

In case these time-dependent parameters pα(t) are periodic in time with period T = 2π/Ω

the full Floquet scattering matrix in the adiabatic limit approximates as

SF (En, E) ' 1

T

∫ T

0

S(E, t)einΩtdt. (3.24)

That is named the frozen scattering matrix approximation.

3.2 Spin and Charge Current Calculation

We outline how to derive the current formula in time-dependent systems [6] using Landauer-
Büttiker formalism, including spin degrees of freedom [36]. We start with the charge/spin
current operator in Chapter 2.4.3, Eq. (3.25). Recall that a = x, y, z denotes components
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of the spin current with the a direction and a = 0 term denotes the charge current.

Îai (t) = Ca

∫
dEdE ′ei(E−E

′)t/~[b̂†,sim(E)σss
′

a b̂s
′

im(E ′)− â†,sim(E)σss
′

a âs
′

im(E ′)] , (3.25)

where the overall constantCa defines the unit of charge and spin,Cx,y,z = 1
h
~
2

andC0 = e
h

.
b̂

(†) s
im / â(†) s

im are the creation/annihilation operators for scattered and incident electrons
respectively in channel m in the lead i with spin s. Note that this equation is derived from
the assumption E − E ′ � EF . In a periodically driven system, one can express the spin
current operator on the frequency basis

Îai (ω) =

∫ ∞

−∞
dt eiωtÎai (t).

Using Eq. (3.25), the spin current operator becomes [6, 37]

Îai (ω) = Ca2π~
∫
dE {b̂†,sim(E)σss

′

a b̂†,s
′

im (E + ~ω)− â†,sim(E)σss
′

a â†,s
′

im (E + ~ω)} . (3.26)

As a result, the electron can acquire or lose energy quanta after the scattering in the
periodically driven case. The Floquet scattering matrix gives the relation between the
operators â and b̂ for scattered and incident electrons are given by :

b̂sim(E) =
∞∑

n=−∞

Nr∑

j=1

∑

mεj

∑

s=±1

Sss
′

F,im,jm′(E,En) âs
′

jm′(En) , (3.27)

b̂†,sim(E) =
∞∑

n=−∞

Nr∑

j=1

∑

mεj

∑

s=±1

S∗,ss
′

F,im,jm′(E,En) â†,s
′

jm′(En) . (3.28)

The product of âs′jm′ and â†,s
′

jm′ gives the number operator, and after taking the quantum
statistical average one obtains the Fermi function fi(E) where i denotes the lead index

〈â†ims(E)âjm′s′(E
′)〉 = δijδmm′δss′δ(E − E ′)fi(E) (3.29)

〈âims(E)â†jm′s′(E
′)〉 = δijδmm′δss′δ(E − E ′)(1− fi(E)) .

Substituting Eq. (3.27) and (3.28) into Eq. (3.26), and taking the quantum statistical
average using the Eq. (3.29), one can find the current spectrum [38] Iai (ω) = 〈Îai (ω)〉 as
follows.

Iai (ω) =
∞∑

l=−∞

2πδ(ω − lΩ)Iai,l (3.30)
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with Iai,l = 〈Îai (lΩ)〉 given by

Iai,l =Ca

∫ ∞

0

dE

∞∑

n=−∞

Nr∑

j=1

∑

mεj

Tr[S†F,im,jm′(En, E)σaSF,im,jm′(El+n, E)]×

{fj(E)− fi(En)} . (3.31)

The expectation value of the current in the time domain can then be written as the inverse
Fourier series,

Iai (t) ≡ 〈Îai (t)〉 =
∞∑

l=−∞

e−ilΩtIai,l, (3.32)

Using Eqs. (3.31) and (3.32), we can then calculate the time-dependent current in the
presence of the periodic in-time potential.

3.2.1 AC and DC current generated by a dynamic scatterer

A dynamical scatterer, which changes periodically, always generates an AC current even
without a bias voltage. On the other hand, a dynamical scatterer generates a DC current
only under certain conditions; see Chapter 6. The previous section showed how to calcu-
late the time-dependent spin current for the general case. Here, we concentrate on the AC
and DC with no applied bias voltage. In general, the spin current formula is

Iai (t) =
∞∑

l=−∞

e−ilΩtIai,l , (3.33)

together with

Iai,l =Ca

∫ ∞

0

dE

∞∑

n=−∞

Nr∑

j=1

∑

mεj

Tr[S†F,im,jm′(En, E)σaSF,im,jm′(El+n, E)]×

{fj(E)− fi(En)}, . (3.34)

If the leads have the same chemical potential, the Fermi functions become equal, fi(E) =

fj(E) = f0(E). Furthermore, when ~Ω is small compared to the Fermi energy, En =

E + n~Ω, the difference between the Fermi functions becomes

∂f0

∂E
≈ f0(E + n~Ω)− f0(E)

n~Ω
. (3.35)
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Substituting this in Eq. (3.34), we obtain

Iai,l =Ca

∫ ∞

0

dE

(
− ∂f0

∂E

) ∞∑

n=−∞

Nr∑

j=1

∑

mεj

× (n~Ω)Tr[S†F,im,jm′(En, E)σaSF,im,jm′(El+n, E)]. (3.36)

Since in the zero temperature limit, only electrons at EF participate to the current, one
has ∂f0

∂E
= δ(E − EF )). We can then evaluate the integral above,

Iai,l = Ca~Ω
∞∑

n=−∞

Nr∑

j=1

∑

m′εj,mεi

nTr[S†F,im,jm′(EF,n, EF )σaSF,im,jm′(EF,l+n, EF )].

(3.37)
Eqs. (3.33) and (3.34) when l = 0 gives the DC component. Then the DC charge/spin
currents due to the dynamical scatterer become

Iai,DC = Iai,0. (3.38)

Non-vanishing l contributions give the AC current. In practice, we use only l = ±1 terms,
and the AC charge/spin current in the linear order frequency becomes

Iai,AC(t) = e−iΩtIai,1 + eiΩtIai,−1.

3.2.2 External AC voltage

In this part, we study a system with an AC bias voltage [6, 34, 39, 40] without any time-
dependent potential inside the scattering region. We will consider the response only for
non-interacting electrons. Then the internal potential due to the Coulomb interaction is
neglected at low temperatures.

We assume a periodic in-time voltage on the reservoirs but none in the leads. In the tran-
sition region between the reservoir and the leads, the effect of the AC voltage is assumed
to slow compared with the Fermi energy, in such a way that electrons are regarded as
fixed energy eigenstates. Therefore the chemical potential in the leads is not dependent
on time-dependent voltage. Let us assume that potentials in the reservoirs are in phase
with the same frequency,

Vi(t) = Vi cos(Ωt), i = 1, ...., Nr (3.39)
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Schrödinger equation with a spatially uniform potential is

i~
∂Ψi

∂t
= (H0,i + eVi(t))Ψi (3.40)

which leads to an electron wave function in the lead i

Ψi(x, t;E) = φi(x;E)e−iEt/~
∞∑

l=−∞

Jl

(
eVi
~Ω

)
e−ilΩt (3.41)

where φi(x;E) is the solution of the Eq. (3.40) when eVi(t) = 0 and Jl is the lth order
Bessel function. Here l denotes the Floquet eigenstate.

We begin with the spin/charge current operator in the lead in Eq. (3.25)

Îai (t) = Ca

∫
dEdE ′ei(E−E

′)/~[â†,sim(E)σss
′

a âs
′

im(E ′)− b̂†,sim(E)σss
′

a b̂s
′

im(E ′)] (3.42)

where creation and annihilation operators for an electron in the leads are given by these
operators â′ for an electron in the reservoir up to order ~ω/EF

âims(E) =
∞∑

l=−∞

Jl

(
eVi
~Ω

)
â′ims(E − l~ω). (3.43)

They satisfy
{âi(E), â†j(E

′)} = δijδ(E − E ′) . (3.44)

Substituting the creation/ annihilation operators above in Eq. (3.25) and taking its average,
we obtain,

Iai (t) =Ca

∫
dE

∑

j,mm′

∑

kl

Tr{δij1i − S†im′,jm(E)σaSim′,jm(E + (k − l)~Ω)}× (3.45)

Jl

(
eVj
~Ω

)
Jk

(
eVj
~Ω

)
e−i(k−l)Ωtfj(E − l~Ω).

For k = l this gives the DC component of the current

Iai =Ca

∫
dE

∑

j,mm′

∑

l

Tr{δij1i − S†im′,jm(E)σaSim′,jm(E)}× (3.46)

J2
l

(
eVj
~Ω

)
fj(E − l~Ω).

Moreover, Eq. (3.45) with k − l = ±1 gives the AC current in the linear order frequency.
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One can write this current in frequency as

Iai (ω) =Ca

∫
dE

∑

j,mm′

∑

l

Tr{δij1i − S†im′,jm(E)σaSim′,jm(E + ~ω)}× (3.47)

Jl

(
eVj
~ω

)
Jl+1

(
eVj
~ω

)
fj(E − l~ω).

Using the linear response expression Ga
ij(ω) ≡ 〈δIai (ω)〉/δVj(ω), the AC conductance

can be obtained as [29, 40, 41]

Ga
ij(ω) =Cae

∫
dE Tr{δij1i − S†ij(E)σaSij(E + ~ω)}× (3.48)

fj(E)− fj(E + ~ω)

~ω
.

In the time domain, the current is obtained by Fourier transforming as

Ia(t) =

∫
dω

2π
eiωtIa(ω) . (3.49)

3.2.3 Calculation of the dwell time

We investigate the dwell time of electrons with a time-dependent potential. We will take
the Wigner-Smith time delay, presented below in (3.52), as the time of flight of an electron
during the scattering process.

Eisenbud and Wigner [9] introduced the time delay concept and formulated it in terms of
derivatives of the scattering phase shifts with respect to energy in quantum-mechanical
scattering processes. Smith [10] generalized the time delay formulation and defined the
dwell time for an N × N scattering matrix S(E) in a given spatial region. Because the
scattering matrix is unitary, it is diagonalized as

S(E) = U(E)eiΘ(E)U †(E) (3.50)

where U is a unitary matrix and Θ is a diagonal matrix consisting of scattering phase
shifts, Θ(E) = diag(θ1, ..., θN). The lifetime matrix, also called the Wigner-Smith time-
delay matrix, Q(E) is obtained as

Q(E) = −i~S†(E)
∂S(E)

∂E
. (3.51)

Diagonal elements of the Wigner-Smith time-delay matrix Q(E) are real and yield the
proper time delays τ1, ..., τN in each transport channel. Taking the average over all chan-
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nels, one obtains the Wigner-Smith time delay as

τW (E) =
1

N
Tr{Q} (3.52)

= − i~
N

∂

∂E
detS(E) =

~
N

∂

∂E
TrΘ(E)

where N is the total number of transverse channels over all leads.

One can also obtain partial time delays using the energy derivatives of the phase shifts for
each transverse channel, spin polarization, etc.

τa,σ = ~
∂θa,σ
∂E

(3.53)

where θa,σ = arg|ta,σ| and ta,σ is the transmission amplitude with spin polarization σ =↑↓
and the transverse channel a = 1, ..., N .

For our simulations, we calculate the Wigner-Smith time delay for the time-dependent
case. We can convert the time-dependent transmission amplitudes to stationary trans-
mission amplitude in Floquet channels. Using Eqs. (3.51) and (3.52) with the Floquet
scattering matrix, we obtain the dwell time for the sum of all Floquet channels

τW (E) = − i~
N ′
Tr

{ n′∑

n=−n′

S†F (E,En)
∂SF (E,En)

∂E

}
, (3.54)

where the Floquet energy En = E + n~Ω and N ′ = 2N(2n′ + 1) is the total number
of the scattering channels that results from the total number of Floquet bands n′ and spin
polarizations. Eq. (3.54) gives the average time of flight overall channel for a given
energy E. We also obtain energy average time of flight and denote it as τ . We first choose
the energy values where the number of the open transverse channel is held constant, then
taking the average over these energy values gives the averaged time of flight for a chosen
open transverse channel. Finally, we use this parameter τ to determine the low-frequency
and high-frequency regime where Ω < 1/τ and Ω > 1/τ respectively.

3.3 Numerical Methods for Simulations

We perform our numerical simulations in Python with the quantum transport library
Kwant [42]. We start by placing our Hamiltonian on a square lattice using the finite dif-
ference method, which is called the tight-binding approach [22]. In the time-dependent
case, we consider the Floquet Hamiltonian for a 2DEG with Rashba SOI as the input in
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Kwant. After defining the geometry of the 2-dimensional material and connecting the
leads to the scattering region, we input in Kwant the tight-binding Floquet Hamiltonian
for the scattering region and the leads separately. Using Kwant, we then compute all
scattering matrix elements for a chosen Fermi energy and the other parameters of the sys-
tem. We extract the transmission amplitudes from the n = 0 to all Floquet channels from
these matrix elements. Using these amplitudes, we calculate spin/charge conductances
and currents.

3.4 Conclusion

In this chapter, we explained how to obtain the spin/charge current for two cases: a system
with periodic in-time potential and a periodic in-time bias voltage applied to the system.
Floquet theory allows us to convert a time-dependent Hamiltonian into a static Hamilto-
nian with Floquet channels. From this, we can obtain the Floquet scattering matrix that
depends on an electron’s initial and final energy. Moreover, we can compute the adiabatic
approximation of the Floquet scattering matrix obtained in the adiabatic limit by using
the frozen scattering matrix. Using the Floquet scattering matrix, we then generalized
the Landauer-Büttiker formalism to calculate the time-dependent currents. Moreover, we
showed how to compute the AC and DC currents in the presence of a time-dependent
potential and the absence of a bias voltage. Finally, we explained how to determine the
frequency range for the adiabatic and the high-frequency regimes using the Wigner-Smith
time-delay matrix.
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Chapter 4

AC SPIN CURRENT GENERATION

Spin current manipulated by tuning the Rashba spin-orbit interaction can be essential
for spin-based devices, eventually, for the future of information technology. This chap-
ter demonstrates how to create spin currents in mesoscale conductors by time-dependent
Rashba SOI. We focus on a 2DEG with time-dependent Rashba SOI, which can be engi-
neered via an AC top gate and follow a mixed analytical-numerical approach to compute
the AC spin and charge currents in a periodically driven system in both low and high-
frequency regimes.

First, we study both linear in-frequency response and high harmonic generation of spin
and charge currents generated by the Rashba coupling. We compare the Floquet formal-
ism and its adiabatic approximation after defining the range of low and high frequencies.
Second, we show that one can write the spin-orbit coupling in 2DEGs in terms of appro-
priate SU(2) gauge fields. After an SU(2) gauge transformation, the current generated
by the time-dependent Rashba SOI in the absence of the bias voltage can be expressed
approximately via charge conductance and spin-dependent voltage V ↑ − V ↓. As a result,
the dynamical Rashba SOI generates spin electric force. We show that the spin currents
after this gauge transformation and in the original system with Rashba coupling agree to
good accuracy. Last, we apply the net spin-dependent voltage as a bias in the spinless
system. We implement the frequency dependence of the conductance and verify that this
becomes significant in the high-frequency regime.

4.1 AC Spin Current Generation via Time Dependent
Rashba SOI

We investigate the charge and spin currents in response to time-dependent Rashba cou-
pling on a 2DEG cavity shown in Fig. 4.1. We use the Floquet scattering formalism, re-
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viewed in the previous chapter, to calculate the currents in the periodically time-dependent
system. We first determine the cut-off value for number of Floquet channels, which de-
pends on the Rashba SOI strength and the driving frequency. We also calculate the dwell
time to specify the low-frequency range where the adiabatic limit holds. We then compare
the AC currents calculated with the Floquet scattering matrix and its adiabatic approxima-
tion. The main outcome of this calculation of the spin current generated by a dynamical
scatterer with the time-dependent Rashba coupling.

Figure 4.1: (Left) Sketch of the spin current source. An AC top gate voltage is applied in a
chaotic ballistic cavity connected to two leads, which controls the Rashba coupling and thus
creates a spin electric force. (Right) The shape of the scattering region.

4.1.1 Numerics: Spin current calculation

To obtain the time-dependent currents arising from time-periodic Rashba SOI, we use the
Floquet scattering matrix. We follow two approaches as reviewed in Chapter 3. First, we
numerically solve the Schrödinger equation using the Floquet Hamiltonian. The Floquet
Hamiltonian with the Rashba coupling with α(t) = kso sin (Ωt) is

HF =
∞∑

n=−∞

(
(H0 − n~Ω)|n〉〈n|+ iH1

2
(|n〉〈n+ 1| − |n〉〈n− 1|)

)
, (4.1)

where H0 = − ~2
2m

(∂2
x + ∂2

y) and H1 = ikso(σy∂x − σx∂y) are the kinetic and the
Rashba contributions. Floquet states |n〉 form basis vectors of time-periodic eigenfunc-
tions |φα(~r, t)〉 of the Floquet Hamiltonian (see Eq. (3.9)). After obtaining elements of
the Floquet scattering matrix, we calculate the AC spin currents induced by the Rashba
SOI without a bias voltage. As stated before, the current is

Iai (t) =
∞∑

l=−∞

e−ilΩtIai,l = Iai,+ cos(Ωt) + Iai,− sin(Ωt) + · · · (4.2)

where a = 0 corresponds to the electric current, a = x, y, z corresponds to the spin
current with spin direction a. This section considers only the leading term l = ±1 to
obtain the linear frequency response. We will examine high harmonic generation l > 1

in Section 4.4. The Fourier components are determined in terms of the Floquet scattering
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matrices SF (En, E) as

Iai,l = Ca

∫
dE

∞∑

n=−∞

Nr∑

j=1

∑

m∈i,m′∈j

Tr[S†F,im,jm′(En, E)σaSF,im,jm′(El+n, E)] , (4.3)

where Nr denotes the number of leads, σa is the Pauli matrix with the spin direction a
and σ0 defined as a unit matrix. Ca specifies the unit of spin and charge current with
Cx,y,z = 1

h
~
2

and C0 = e
h

. We consider the system shown in Fig. 4.1 for numerical
calculations. We set the Rashba SOI as α(t) = kso sin(Ωt), and it is non-vanishing only in
the scattering region and vanishes in the leads. The precise shape of the system is depicted
on the right of Fig. 4.1. L is the system size, which we take as L = 50a where a is the
lattice constant and the width of the leads for this system is 10a. We choose parameters
appropriate for an InAs 2DEG material, where the effective mass m = 0.023m0 and
lattice spacing is fixed at a = 2 nm. Then the magnitude of the Rashba coupling is
0.8 · 10−11 eV m in InAs systems, which is experimentally achievable [5]. We perform
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Figure 4.2: Charge and spin currents in x, y, z direction with the time-dependent Rashba SOI
where Ia(t) = Ia+ cos(Ωt)+Ia− sin(Ωt). The currents are calculated by the Floquet scattering
matrix where ksoL = 1 and EF = 0.2 eV.

our numerical calculations in Python using the quantum transport library Kwant [42].
To obtain time-dependent scattering amplitudes from which we determine spin and the
charge currents, we implement the Floquet Hamiltonian Eq. (4.1) in tight-binding form
(see Chapter 2.3.2). In practice, we use only l = ±1 in Eq. (4.2), and we must also limit
the sum over the Floquet bands n in Eq. (4.3). We show that, for our purposes, including
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up to 21 bands (|n| ≤ 10) will be sufficiently good depending on the Rashba coupling
constant. Also, we calculate the adiabatic approximation of the Floquet scattering matrix
for the system with the time-dependent Hamiltonian, using Kwant to check its validity.

A typical energy scale associated with the problem specifies the energy dependence of
the scattering matrix and determines the borderline between adiabatic and high-frequency
regimes. For a few open ballistic channel transport, this energy scale is related to the
inverse time of flight (~/τ ) of an electron between two leads which is calculated using the
Wigner-Smith time-delay matrix [9, 10]. If the frequency is much smaller than the inverse
of the time of flight and the Fermi energy, Ωτ � 1 and ~Ω� EF , the scattering process
is in the adiabatic regime. We use frequencies Ω/2π of the time-dependent potential
between approximately 100 GHz and 330 GHz for calculations in this low-frequency
limit. We choose frequencies up to 1 THz for calculations in the high-frequency limit.

First, to see whether a dynamical Rashba SOI induces any current without applied bias
voltage, we compute the charge current and the x, y, z component of the spin current
where the AC current is approximated as in Eq. (4.2). We plot the spin and charge current
versus Ωτ in Fig. 4.2, where the Fermi energy EF = 0.2 eV and ksoL = 1. We find
that the periodic Rashba SOI generates a spin current, with a magnitude of a few hundred
nanoamperes in spin direction y, and a few nano amperes in x, while we do not find a
charge current and spin current in z.

4.1.2 Role of the number of Floquet bands for the numerical results

Here we present our procedure to determine the number of Floquet channels for numerical
convergence. In the calculation of the spin current using Eq.(4.1) we need to choose a
cut-off value nmax in the sum over the Floquet channels n. This cut-off value nmax will
depend on the ratio between the amplitude of the oscillating potential and the driving
frequency. As discussed in Ref.[6] (see chapter 3), if the amplitude of the oscillating
potential is much smaller than ~Ω, then nmax = 1 turns out to be sufficient for numerical
calculations. On the other hand, if the amplitude of the oscillating potential is comparable
to the driving frequency, then one typically needs nmax > 1 for numerical calculations. It
is crucial to know the number of channels prior to numerical calculations as the time cost
of a calculation heavily depends on this number. To determine this number, we compute
the spin current for a selected number of Floquet states 2n + 1 and change n to calculate
the precision defined by ∆In = (In − In−1)/In. We plot this quantity, shown in Fig. 4.3,
for the system in Fig. 4.1 where ksoL = 0.2 and 2 and Ωτ ≈ 0.1 and 1.

Generally, we observe that smaller cut-off values nmax suffice for smaller choices of kso,
independent of frequency, as expected. At moderate values of kso, while smaller nmax
suffice for smaller frequencies, higher nmax is needed at higher frequencies. We find that

32



Figure 4.3: Convergence in n of AC spin currents generated by time-dependent Rashba SOI,
where ∆In = (In − In−1)/In and In is the current calculated with maximum Floquet states
nmax = n. Parameters correspond to Ωτ ≈ 0.1 and 1, and ksoL = 0.2 and 2.

our chosen cut-off value nmax = 10 provides a sufficiently good approximation to the
time-dependent currents for the range of parameters considered in this thesis.

4.1.3 Comparison of the Floquet scattering matrix with
its adiabatic approximation

As a second approach, we determine elements of the Floquet scattering matrix using the
frozen scattering matrix S(t, E) in the adiabatic limit (see Section 3.1.3),

SF (En, E) ' 1

T

∫ T

0

S(E, t)einΩtdt. (4.4)

Here we compare our results for the spin currents following the Floquet scattering matrix
and its adiabatic approximation for low and high frequencies. Our purpose is to determine
the maximum frequency value up to which the adiabatic approximation is valid in our
system. In Fig. 4.4, we compare the adiabatic and full Floquet spin currents for the chaotic
ballistic system of Fig. 4.1 for frequency ranges between Ωτ ≈ 0.1 and Ωτ ≈ 3 where
ksoL = 1. We plot our results as a function of the Fermi energy. The results agree with
the adiabatic regime Ωτ ≈ 0.1 as expected and show semi-quantitative agreement up to
the frequency of Ωτ ≈ 1.
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Figure 4.4: Spin currents for the chaotic ballistic system in Fig. 4.1, calculated by using the
full Floquet scattering matrix (orange) and by the adiabatic approximation (blue) for ksoL = 1
and Ωτ ≈ 0.1 (a), 1 (b), 1.5 (c) and 3 (d).

4.1.4 Calculation of the dwell time

The energy derivative of the phase shift, written in terms of the scattering matrix (see
Chapter 3.2.3), gives the average time that an electron spends in a scattering region. The
Wigner-Smith time-delay matrix is real and give the proper time delays for each transport
channel. We calculate the average time of flight τ for an electron by taking the average
over all energies while keeping the number of open channels. To obtain the time delay
matrix of an electron for the chaotic cavity in Fig. 4.1 with the time-dependent Rashba
SOI, we calculate the time delay with the Floquet scattering matrix using Eq. (3.54),

τW (EF ) = − i~
N ′
Tr

{∑

n

S†F (EF , EF,n)
∂SF (EF , EF,n)

∂E

}
,

where N ′ = 2N(2n + 1) is the total number of the scattering channels with the Floquet
bands n, the transverse channels N including spin polarization. We then check the time
delay using the frozen scattering matrix

τW (EF ) = − i~
N
Tr

{
1

T

∫ T

0

dt S†(EF , t)
∂S(EF , t)

∂E

}

where T is the period. Fig. 4.5 shows that both scattering matrices give the same time
of flight as expected in the adiabatic limit. This agreement breaks down around Ωτ ≈ 1.
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Fermi energy are chosen when only 2 transport channels are open. We also examined

Figure 4.5: Average time of flight calculations using Wigner-Smith time delay matrix
obtained by Floquet scattering matrix (orange) and frozen scattering matrix (blue) where
Ωτ ≈ 0.1 (above) and Ωτ ≈ 1 (below).

how the driving frequency and the Rashba SOI strength kso affect the energy average of
the time of flight. In the range of driving frequencies and the Rashba SOI strength we
consider, the energy average of the time of flight stays approximately the same.

4.2 AC Spin Current Generated by Spin Electric Fields
In this section, we employ a different method to carry out the same computation. We
first perform a gauge transformation to rewrite the time-dependent Rashba SOI as a spin-
dependent potential. We then verify this method by numerically calculating the spin cur-
rent and comparing it with the previous result.

4.2.1 Model and its non-Abelian gauge structure

4.2.1.1 General case

Our starting point is the standard low-energy model for a spin-orbit coupled electron or
hole gas in 2D [43]. The Hamiltonian reads

H =
p2

2m
+ b(p) · σ + W(x). (4.5)

Here W (x) is the electrostatic potential specifying the static environment, which might
originate from gates, applied bias, impurities, etc., m is the effective electron mass, and
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b(p) is a spin-orbit field that couples spin to momentum. We assume that the strength
of this SOI can be controlled externally and more generally, both in a position- and time-
dependent way: b(p)→ b(p;x, t). For the rest of this section, we specialize to electrons
and light holes for which this field is linear in momentum. Then the Hamiltonian can be
rewritten introducing non-Abelian gauge fields. Following the Ref.[44], the Hamiltonian
reads

H = −DµDµ

2m
+ V (x). (4.6)

Here Dµ = ∂µ − (ikso/2)σaAaµ is the SU(2) covariant derivative along µ = x, y, with
σa the Pauli matrices (a = x, y, z), Aaµ(x, t) a dimensionless SU(2) vector potential and
V = W − k2

so(A
a
µA

a
µ)/(8m). Unless specified otherwise, in this section, we assume that

the repeated indices are summed over. The SOI strength is controlled by the parameter
kso, typically much smaller than the Fermi momentum kF . In terms of this spin-orbit
parameter, the accuracy of Eq. (4.6) isO(kso/kF )2. We now make our central assumption
that L� lso, where lso = π/|kso| is the spin-orbit length and L is the system size. That is
usually fulfilled for experimental realizations using systems at nano- to mesoscales. We
also assume that time-dependence of Aaµ(t) is slow, then xµkso∂tAaµ � EF , where EF is
the Fermi energy. SU(2) gauge transformations are unitary transformations of the form

U = exp(iΛa(x, t)σa/2) . (4.7)

It is then straightforward to show that this transformation maps Aaµ(x, t) → (A′)aµ(x, t)

and V (x, t)→ V ′(x, t), where

(A′)aµ = Aaµ − εabcΛbAcµ +
1

kso
∂µΛa , (4.8)

V ′ = V − σa1

2

∂Λa

∂t
. (4.9)

These transformations allow us, among other advantages, to gauge away the homoge-
neous and time-independent components of the spin-orbit field up to quadratic order in
the coupling constant [45, 46]. For a concrete example, we now specialize to a 2D electron
gas with a Rashba spin-orbit interaction

H =
p2

2m
+

1

2
{αR, (σxpy − σypx)}+ V (x) , (4.10)

where the Rashba coupling constant αR can be a function of both position and time.
However, for simplicity, we concentrate on regions of either time- or position dependent
Rashba coupling, i.e. αR(t), αR(x), and combine them later using rules for the combina-
tion of the respective scattering matrices. In this chapter, we identify and study the effects
of time-dependent Rashba coupling and the generation of spin electric fields. We will

36



discuss the generation of spin magnetic fields via position dependent Rashba coupling in
Chapter 5.

4.2.1.2 Spin electric field from time-dependent SOI

A time-dependent Rashba SOI constant α(t) = kso sin(Ωt) with T = 2π/Ω, the AC
modulation period from a top gate [5], will generate the spin electric forces, see Fig. 4.1.
In this case Aaµ(t) = εaµ sin(Ωt), and the SU(2) gauge transformation (4.7) becomes

U = exp
(
−ixµksoAaµσa/2

)
. (4.11)

To order (ksoL)2 one obtains a vanishing vector potential, while ∂tAaµ(t) generates a non-
zero SU(2) scalar potential

(A′)aµ = 0 , (4.12)

(V ′)a =xµkso∂tA
a
µσ

a/2 , (4.13)

yielding the transformed Hamiltonian

H ′ = − 1

2m
∂µ∂µ + (xµkso∂tA

a
µ)
σa

2
+ V (x). (4.14)

A further global spin rotation [47] σa → σz then leads to the diagonal Hamiltonian

Hd =
p2

2m
+ V (x) +

V s(t)

2
σz, (4.15)

V s ≡εsµxµkso∂t sin(Ωt) , (4.16)

i.e. opposite-spin electrons feel a different electric field

E↑↓µ = −∂µ [V (x)± V s(t)/2] ≡ Eµ ± Esµ. (4.17)

The component Esµ is a spin-electric field accelerating opposite spin species in opposite
directions.

4.2.2 Numerical calculations

In this subsection, we perform numerical simulations to confirm that one obtains the same
spin current before and after the gauge transformation in subsection 4.2.1. The gauge
transformation results in a spin potential in the spin z direction that enables to write po-
tentials for up and down separately. The spin potential is linear both in x and y inside
the scattering region and stays constant in the x-direction in the leads because the Rashba
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SOI is absent there. We consider a system in Fig 4.1, where we position lead 1 at x = 0
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Figure 4.6: Spin current in y direction generated by the Rashba SOI (blue), spin current in
z direction generated by the spin electric field, which is obtained after the gauge transforma-
tion, calculated by Floquet scattering matrix (green) and its adiabatic approximation (orange)
where ksoL = 0.2 (a) and 2 (b) with Ωτ ≈ 0.3..

and lead 2 at x = L and choose the system size and width as L = 50a and W = 10a. The
spin potentials for this configuration are

V ↑(↓)s = ±x kso cos (Ωt)∓ y kso cos (Ωt) (4.18)

V
↑(↓)

1 = ∓y kso cos (Ωt) (4.19)

V
↑(↓)

2 = ±Lkso cos (Ωt)∓ y kso cos (Ωt) (4.20)

where we used Eq. (4.14). Vs and V1(2) denote spin potentials for up and down spins inside
the scattering region and on the lead 1(2), respectively. It is important to note that the wave
functions also transform under the gauge transformations as ψ(x) → ei

∫
dxα(t) σ

z

2 ψ(x)

[48]. In the full Floquet scattering matrix calculation, this is already implemented in the
Floquet Hamiltonian. On the other hand, we have to explicitly include this effect in the
scattering matrix when we use the adiabatic approximation. That is because the effect
that would normally arrive from the time derivative in the Schrödinger equation is absent
in this approximation. That yields a phase in the frozen scattering matrix [48]. Then the
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Figure 4.7: Comparison of the spin current in y direction generated by the Rashba SOI
(triangle) and the spin current in z direction generated by the spin electric field, obtained after
the gauge transformation (star). We choose Ωτ ≈ 0.3 (green), 1.5 (magenta) and EF = 0.2
eV. The inset shows the percentage error between two currents.

Fourier transform is calculated including the phase factor as

Sn(E) =
1

2π

∫ 2π

0

e−inΩtei
∫
dxα(t) σ

z

2 S(E, t).

We first calculate the spin current in the z direction for the system in Fig. 4.1 with spin
electric fields in Eq. (4.18) using the Hamiltonian in Eq. (4.6). We then compare this
current with the spin current generated by the time-dependent Rashba SOI where α(t) =

kso sin(Ωt). The parameters are chosen as L = 50a, ksoL = 0.2 with Ωτ ≈ 0.1 and 1 for
the adiabatic and the full Floquet calculations respectively. These are shown in the top and
bottom Figs. 4.6, respectively. We observe very good numerical agreement between the
two methods. Furthermore, as shown in Fig. 4.7, our approximation, which is expected
to work theoretically when ksoL� π, in practice, works even for ksoL ≈ 1. This choice
corresponds to a good optimal value for a sufficiently large current and relatively small
errors.

4.3 AC Spin Current in the Presence of Spin Voltage
In this section, we will represent the spin-dependent potentials obtained after the gauge
transformation in terms of an applied bias on the leads. This bias is given by the difference
between spin voltages generated by up and down spins, V ↑ − V ↓. We first provide the
formulas for the current in the presence of the spin voltage both in the adiabatic and
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the high-frequency regimes. We consider the same 2D chaotic cavity with only time-
dependent Rashba coupling, which is applied via AC gate voltage on the top of the system
as shown in Fig. 4.1. It generates a spin voltage on both leads in the opposite direction.
Then, the voltage difference between the two leads results in a spin current in the y-
direction. We compare our prediction of the spin current induced by the spin voltage with
the spin currents generated by the time-periodic Rashba SOI.

4.3.1 Linear response currents :
Basic expressions for charge and spin conductance

We consider a mesoscopic sample attached to leads labeled by i, j. The leads are in
contact with different metallic reservoirs used to apply spin voltages. The linear response
Landauer-Büttiker formula for the a-polarized spin current flowing into/out of contact i is
generalized as follows [28, 49]

Iαi =
∑

β

(2
e2

h
Niδαβ −Gαβ

ii )V β
i −

∑

β

∑

j 6=i

Gαβ
ij V

β
j , (4.21)

whereNi is the number of channels in lead i. In this section, we use Latin letters (a=x,y,z)
to denote spin components of the current while Greek letters commonly describe electric
(0) and spin components (a). Note that this is different from the previous sections, where
we used a for both charge and spin, and makes our presentation clear. We also take charge
and spin current to have the same units, which is achieved by multiplying the spin current
in the previous sections by the factor 2e

~ , which is called charge per unit time (The other
method is the angular momentum per unit time, obtained without the factor 2e

~ ).

The spin voltage V b
j = µbj/e physically represents an imbalance of spins polarized along

a b-axis in reservoir j, with spin accumulation µbj = µ
(↑)
j − µ

(↓)
j . The conductance is a

(4× 4)-matrix in the combined spin-charge space:

Gij =

(
G00
ij G0b

ij

Ga0
ij Gab

ij

)
, (4.22)

where the superscript “0” indicates the charge component. Here G ≡ G00, G0b, Gb0 and
Gab are, respectively, the charge, charge-spin, spin-charge, and spin-spin conductances.

G00
ij =

e2

h

∑

m,n

Tr[t†mntmn] , (4.23)

G0b
ij =

e2

h

∑

m,n

Tr[t†mntmnσ
b] , (4.24)
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Gb0
ij =

e2

h

∑

m,n

Tr[t†mnσ
btmn] , (4.25)

Gab
ij =

e2

h

∑

m,n

Tr[t†mnσ
atmnσ

b] . (4.26)

Here, tmn is the (2 × 2)-matrix of spin-dependent transmission amplitudes connecting
channel n in lead j to channel m in lead i, and σa are the Pauli spin matrices. Even in the
absence of any charge bias, the system can feature a charge response given by

I0
i = −

∑

b

G0b
ii V

b
i −

∑

b

∑

j 6=i

G0b
ij V

b
j , (4.27)

in addition to the spin response

Iai =
∑

b

(2
e2

h
Niδab −Gab

ii )V b
i −

∑

b

∑

j 6=i

Gab
ij V

b
j . (4.28)

Under the assumption L � lso, i.e. a moderate Rashba constant kso, the spin precession
conductance Gab is equivalent to the charge conductance, Gab ∝ δabG00. Hence all spin
conductances in Eqs. (4.27) and (4.28) are expressed in terms of the charge conductance
to linear order in kso. Besides, after the gauge transformation, the time-dependent Rashba
SOI is converted to spin-dependent fields, then we can consider these fields as a spin-
dependent voltage V a = V ↑ − V ↓.

4.3.2 Spin current generation

We first calculate spin current generation by a spin-dependent voltage using Eq. (4.28) in
both the adiabatic and high-frequency regimes. We consider a 2D chaotic cavity with only
time-dependent Rashba coupling, induced by an AC top gate voltage, see Fig. 4.1. The
Rashba SOI strength has a time dependence given by αR(t) = kso sin(Ωt), with Ω/2π

the driving frequency. As discussed above, this time-dependent coupling induces a spin
voltage on the leads, and the spin voltage difference between two leads results in a spin
current polarized in the y-direction. Throughout this section, we will work in the linear
response regime and ignore effects nonlinear in the spin-orbit coupling. We derive our
general spin current formulae in low and high-frequency regimes. Next, we present our
numerical results in Sec. 4.3.3, also including a comparison with our analytical results in
Sec. 4.3.4.
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4.3.2.1 AC spin current in the low-frequency regime

In the low-frequency regime, one can neglect the frequency dependence of the charge
conductance. The spin current in Eq. (4.28) can thus be computed using the DC con-
ductance. To leading order in the spin-orbit coupling, all spin effects are included in the
spin voltage. Hence Gab = δabG. We note that the case of a large Rashba coupling with
a small time-dependent part can also be treated with our gauge transformation method.
Then the results of this section need to be modified to account for spin precession. In the
absence of a bias voltage (V 0 = 0), the spin current at lead 1 is the current generated by
the spin voltage

Ia1 =
∑

j

(2
e2

h
N1δ1j −G1j)V

a
j . (4.29)

The spin voltage from the time-dependent Rashba SOI reads

V a,↑(↓) = ±∂tαR(t)εaµlµ. (4.30)

Here lµ is the system size in the direction µ = x, y. For the system shown in Fig. 4.1,
Rashba SOI generates a spin voltage with spin direction y along the x axis. Up and down
spins feel opposite voltage biases, hence the total spin voltage bias is

V y
1(2) = V ↑1(2) − V

↓
1(2) = ±∂tαR(t)L12 (4.31)

with Lij the distance between lead i and lead j According to Eq. (4.29), this spin voltage
then drives a spin current

Iy1 (t) =
(
2
e2

h
N1 −G11 +G12

)
∂tαR(t)L12 . (4.32)

To summarize, we expressed the spin current in terms of the DC charge conductance and
time-dependent αR in the small-Ω limit. This is our first prediction for the spin current in
the low-frequency regime.

4.3.2.2 AC spin current in the general frequency regime

In a system driven by a time-dependent voltage, both particle and displacement currents
will appear. In order to take these into account, we no longer neglect the frequency-
dependence of the AC conductance, which in Fourier space is given by the admittance
Gij(ω). In linear response, we have

Gij(ω) = 〈δIi(ω)/δVj(ω)〉. (4.33)
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In the presence of a bias voltage V (t) = V (ω)eiωt, the current Ii(ω) is calculated via the
Floquet formalism. Using linear response theory, one can obtain the AC conductance as
[29, 40, 50]

Gij(ω) =
e2

h

∫
dE Tr{δij1i − S†ij(E)Sij(E + ~ω)}fj(E)− fj(E + ~ω)

~ω
. (4.34)

The AC charge current driven by V (ω) is then given by

Ii(ω) =
∑

j

Gij(ω)Vj(ω). (4.35)

In our case, a time-dependent SOI αR(t) = αR(ω)eiωt leads to a (spin) voltage in the
frequency domain:

V y(ω) = ± iωαR(ω)L, (4.36)

which in turn drives a spin current

Iy1 (ω) = (2
e2

h
N1 −G(ω)11 +G(ω)12)iωαR(ω)L12 . (4.37)

Equation (4.37) is our main result for the spin (generation) conductance. It generalizes
Eq. (4.32) to high frequencies and applies beyond the range of validity of the adiabatic
approximation. For general time-dependent αR, we can obtain the time-dependent spin
current via the inverse Fourier transform of I(ω):

Iy1 (t) =

∫
dω

2π
eiωtIy1 (ω) . (4.38)

4.3.3 AC spin current generation: Comparison with numerics

We now perform numerical simulations to check our predictions summarized in Eqs. (4.32)
and (4.37) for spin current. The Rashba SOI has an AC-form αR(t) = kso sin(Ωt), with
kso ∼ 1/L. The system size is L = 50a, with a being the lattice constant of our dis-
cretized model. The width of the leads is 10a. We choose parameters appropriate for
an InAs 2DEG material with effective mass m = 0.023m0, lattice spacing a = 2 nm.
The magnitude of the Rashba coupling is 0.8 · 10−11 eVm, which is in the experimental
range of InAs systems [5]. We calculate the AC spin current polarized in the y direction,
Iy(t) = Iy cos(Ωt), induced by the time-dependent Rashba SOI αR(t) = kso sin(Ωt). The
spin current given in Eq. (4.2) is computed using the Floquet scattering matrix and then
compared with our analytical results in Eqs. (4.32) and (4.37). We first check the validity
of our approximation (4.32) in the low-frequency regime. We choose Ω/2π ≈ 100 GHz,
corresponding to Ωτ ≈ 0.3. In Fig. 4.8, we perform the comparison for varying values of
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Figure 4.8: Comparison of the AC spin currents generated by the spin-dependent voltage,
Eq. (4.32), (solid line) and numerically (dashed) directly for the time-dependent Rashba SOI
αR(t) = kso sin(Ωt) with Ωτ ≈ 0.3 for varying values of ksoL = 0.3 (blue), 1 (red), 2
(orange), 3 (green).

kso: ksoL = 0.3, 1, 2 and 3. We deliberately show a small energy value range to clarify
the differences. Even though our approximation, in principle, requires ksoL� π, we see
that up to ksoL = 1, our theory still gives quantitative agreement with the full numerical
results, as can be seen in Fig. 4.8 (red curve). Secondly, we calculate the AC spin current
by incorporating the effect of the AC bias voltage in the system in Eq. (4.28). First, we
check the admittance for particular frequencies to see when the dynamic properties of the
conductance become nonnegligible. We choose the same cavity in Fig. 4.1 for a spinless
system (only kinetic term) and calculate the DC conductance (Ω = 0) and AC conduc-
tance using Eq. (4.34) where Ωτ ≈ 0.1, 0.3, 0.6 and 1. As shown in Fig. 4.9, our adiabatic
assumption for calculating the time-dependent current with DC conductance holds where
Ωτ � 1. However, as Ωτ approaches 1, the frequency dependency of the conductance
becomes significant. Therefore we should obtain the current from Eqs. (4.37) and (4.34).
We compare our analytical prediction with the numerical Floquet results (4.2) and (4.3)
for a range of frequencies. We can neglect the frequency dependence of the conductance
in Eq. (4.34) in the low-frequency regime where Ωτ < 1. We then use Eq. (4.32) to ob-
tain our prediction and show that the result agrees well with the Floquet result as shown
in Fig. 4.10 in panels a) and b). We note that the spin current is in the nano-Ampere range
where the corresponding frequencies Ω/2π are approximately between 10 and 100 GHz.
In the high-frequency regime where Ωτ > 1, AC spin current is calculated by incorpo-
rating the effect of the AC bias voltage and the admittance in Eq. (4.34). That is, we use
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Figure 4.9: AC conductance for frequencies Ωτ ≈ 0.1(a), 0.3(b), 0.6(c) and 1(d). We con-
sider a small range of energies to make the differences visible.

Eqs. (4.37) and (4.38). We find reasonable agreement for the higher frequencies up to
Ωτ ≈ 3; see Fig. 4.10. The frequencies Ω/2π corresponding to those in panels c),d) and
e) of Fig. 4.10 are 330, 700 GHz and 1 THz, respectively. These numbers are within ex-
perimental reach. Notably, in this high-frequency regime, we can generate spin currents
up to 250 nano-Amperes using geometry with a length scale of about 100 nm.
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Figure 4.10: AC spin currents induced by the time-dependent Rashba SOI without a bias
voltage. The numerical Floquet results (green) are compared to the spin current in the y
direction with the time-dependent spin voltage (orange), which are calculated using Eq. (4.32)
in the low-frequency regime in panels a) and b) and by Eq. (4.38) in the high-frequency regime
in panels c), d) and e). The system size isL = 50a and the Rashba SOI is αR(t) = kso sin(Ωt)
with ksoL = 1. The frequency values are indicated at the top left corner of each panel,
Ωτ ≈ 0.03, 0.3, 1, 2.1 and 3 in panels a) and b), etc., respectively. The system geometry is
shown in the top right inset.
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4.3.4 Adiabatic approximation versus analytical results

This section compares our analytical results with the adiabatic approximation of the Flo-
quet scattering matrix. We use the frozen scattering matrix in Eq. (4.4) to obtain the adi-
abatic approximation. In Fig. 4.11, we choose the Rashba coupling constant ksoL = 0.01

to obtain better agreement for our analytical result, and the driving frequency in the high-
frequency regime, i.e., Ωτ ≈ 1.5 corresponding to a driving frequency Ω/2π of approx-
imately 500 GHz. The adiabatic approximation is expected to fail beyond frequencies

Figure 4.11: AC spin currents induced by the time-dependent Rashba SOI without a bias
voltage. In the high-frequency regime, the numerical Floquet results (green) are compared
to the adiabatic approximation (blue), and the spin current in the y-direction calculated from
the time-dependent spin voltage, Eq. (4.38) (orange). The system size is L = 50a, and the
Rashba SOI is αR(t) = kso sin(Ωt) with ksoL = 0.01 and Ωτ ≈ 1.5.

around Ωτ ≈ 1. Indeed, Fig. 4.11 shows that the adiabatic approximation breaks down at
high frequencies while our prediction (4.38) still shows good agreement with the numer-
ical Floquet result. We note that in addition to having a much wider range of validity, the
computation of our analytical result is much easier and takes much less computing time
compared to the frozen scattering matrix approximation.

4.4 High Harmonic Generation via Time Dependent
Rashba SOI

This section investigates the high harmonic generation (HHG) of spin and charge current
generated by the time-dependent Rashba SOI. First, we analyze how the symmetry prop-
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erties of the system affect the generation of high harmonics spin and charge currents. Then
we show that our numerical results conform with the theory based on these symmetries.

4.4.1 Symmetry Properties Of the System For HHG

Symmetry properties of the system determine which higher harmonics yield a non-vanishing
contribution to spin and charge currents. In particular, one can show that if the system
possesses a particular discrete symmetry, that is, if the Hamiltonian is invariant under a
discrete symmetry that involves the translation of time by half-period, then either odd or
even harmonics will yield a non-vanishing contribution to a given current. We follow the
references [51, 52] to investigate the implications of symmetries in our system, which will
be obtained from the selection rules of a higher harmonic contribution [53]. Suppose that
the Hamiltonian is invariant under the transformation,

ĥH(k, t)ĥ−1 ≡ H(k, t)

Then the selection rule for the n-harmonic contribution to an operator O(k, t) is

ĥO(k, t)einΩtĥ−1 ≡ O(k, t)einΩt . (4.39)

This operator can be for instance the velocity operator vj (k , t) = ∂
∂kj

H (k , t) or the spin
current operator [54]

Vij(k, t) =
1

2
[σivj (k, t)− vj (k, t)σi ] . (4.40)

Here i refers to the direction of the electron’s spin which moves along the j direction. The
Hamiltonian of our system in Eq. 6.1 is invariant under the transformation:

(σx, σy)→ (−σx,−σy) , t→ t+ T/2 . (4.41)

On the other hand, using the relations above, components of the spin current operators are

Vxx(k, t) = σx(kx/m+ kso sin(Ωt)σy)− (kx/m+ kso sin(Ωt)σy)σx (4.42)

Vyx(k, t) = σy(kx/m+ kso sin(Ωt)σy)− (kx/m+ kso sin(Ωt)σy)σy (4.43)

Vzx(k, t) = σz(kx/m+ kso sin(Ωt)σy)− (kx/m+ kso sin(Ωt)σy)σz , (4.44)

where we used

vx (k , t) = kx/m + kso sin(Ωt)σy . (4.45)
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Clearly Vxx(k, t) and Vyx(k, t) are odd under the symmetry (4.41) above, whereas vx (k , t)

and Vzx(k, t) is even. Then (4.39) implies that

− Vxx(k, t)einΩ(t+T
2

) = Vxx(k, t)einΩt − Vyx(k, t)einΩ(t+T
2

) = Vyx(k, t)einΩt ,

(4.46)
which can only hold for n odd and

Vzx(k, t)einΩ(t+T
2

) = Vzx(k, t)einΩt , vx (k , t)e inΩ(t+T
2

) = vx (k , t)e inΩt , (4.47)

which can only hold for n even. Therefore we conclude that only odd harmonics con-
tribute to the spin currents in the x and y direction, and only even harmonics contribute to
the spin in the z-direction and charge current.

4.4.2 Numerical results for HHG of spin and charge currents

We also numerically calculate the HHG of the spin and charge current by the time-
dependent Rashba SOI. We consider the chaotic ballistic system connected to the two
leads as in the section 4.1.1 with the parameters Rashba SOI α(t) = kso sin(Ωt), ksoL = 1

and Ωτ ≈ 1. We calculate high harmonic currents up to l = 5 using Eq. 4.3. We find that
spin currents in the x and y directions receive contributions from odd harmonics and spin
current in the z-direction and charge current receive contributions from the even ones, as
expected from theory. We show the spin current in the y and z directions as a function of
the Fermi energy. As shown in Fig.4.12, the first harmonic term is the order of magnitude
higher than higher harmonics contributions.

4.5 Conclusion
In this chapter, we investigated the AC spin current generated by periodically time-dependent
Rashba SOI in the absence of bias voltage. Furthermore, we showed that time-dependent
Rashba coupling could be formulated as spin electric fields with opposite directions for
up and down spins. Then, we obtain the AC spin current directly from the net spin voltage
using charge conductance. This conversion of the spin current into an electric field ren-
ders spin currents experimentally measurable. To check the accuracy of this conversion,
we obtain numerical results in both adiabatic and high-frequency regimes. We show a
good agreement between two currents with the range of the experimentally relevant pa-
rameters. In conclusion, we find that the Rashba coupling can create a spin current and
that the vivid picture of a spin-dependent potential (with the charge conduction G) works
well in the right parameter regime compared to calculating the AC spin current directly.
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Figure 4.12: Higher harmonics of the induced spin currents in y (blue) and z (orange) direc-
tion due to the Rashba SOI (α(t) = kso sin(Ωt)). The currents for kso = 1/L and, where L
is the system size in the x-direction. The frequency is chosen so that Ωτ ≈ 1, where τ is the
time of flight.
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Chapter 5

DYNAMICAL SPIN TRANSISTOR

Following the theoretical proposal for a spin field-effect transistor by Datta and Das in
1990. [55], much research has focused on the realization of spin-based transistors that
might eventually be more efficient and faster compared to the present transistors based on
charge transport. The central issue for spin-based transistors is a realization of efficient
generation, manipulation, and detection schemes for spin currents and spin accumula-
tions. While conventional means of doing this involve ferromagnetic structures [2], these
steps could also be achieved via all-electrical means, hence bypassing the need for mag-
netic components, using the spin-orbit interaction (SOI). The proposals that are based on
exploiting phenomena of current-induced spin accumulation [56] and spin Hall effect –
the generation of spin currents transverse to an applied electric field [57] – have become
the most commonly employed lines of study to achieve this goal.

The SOI can be induced by electric fields of either charge impurities or the crystal lattice.
In the latter case, one speaks of an “intrinsic” SOI. Prominent examples are Rashba-
and Dresselhaus-type SOI in semiconductor quantum wells [43]. While Dresselhaus SOI
arises from a crystal’s lack of inversion center, the Rashba term arises in low-dimensional
systems, and it is induced by inversion symmetry breaking generated by the confining
electric field of a quantum well. Because this electric field can be tuned by top or back
gates, as established in two-dimensional electron gases (2DEGs) over 20 years ago [5],
it is possible to modulate the Rashba SOI both spatially and, in principle, temporally. A
spatial variation can generate a spin-dependent force [58], and a temporally oscillating
SOI may be capable of inducing charge and spin currents in the absence of any bias
voltage [59–61]. Such physics is most conveniently handled by rewriting the SOI in
terms of non-Abelian gauge fields [45, 62, 63].

Among other things, such an approach allows one to directly identify spin-electric and
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spin-magnetic fields [44, 59, 64–66]. These fields accelerate electrons longitudinally or
sideways à la Lorentz, respectively, but their sign depends on the electronic spin – op-
posite spin species are accelerated and bent in opposite directions. While these fields
may exist in the presence of time-independent and homogeneous spin-orbit (and Zeeman)
interaction, additional components appear when the SOI is time- and space-dependent
[44, 64, 65].

In this chapter, we exploit time- and space-tunability of Rashba SOI to explore how the
non-Abelian (spin) gauge fields induce spin transport. We note from the outset that the
effect of driven or position dependent Rashba SOI has been studied in different contexts
ranging from diffusive systems [65, 67] to ballistic quantum rings [68], to 1D electron
gases [69, 70] and graphene [71–73]. However, usual Onsager reciprocal relations valid
for spin transport [66, 74, 75] become more restrictive in the presence of a non-Abelian
gauge structure such as induced by the space- and time-dependent Rashba interaction.
Here we will explore the consequences of these “hidden” Onsager relations recently es-
tablished for spin and charge transport in 2DEGs [44]. As a demonstration, we will de-
vise a multiterminal mesoscopic spin transistor, whose working principle builds upon the
“hidden” Onsager relations [44]. While the transistor operates on pure spin currents, the
output signal is a charge signal which can be detected by simple experimental procedures.
The spin transistor setting, combining time-dependent and spatially-inhomogeneous SOI,
is shown schematically in Fig. 5.1: The AC-modulated Rashba SOI on the right injects a
pure spin current into the left region. The latter is then converted into a charge signal by a
spin magnetic field, induced by a static but non-homogeneous Rashba SOI, and read out
as a voltage Vout between contacts 1 and 3.

Figure 5.1: Sketch of a dynamical spin transistor. The on/off state of the spin transistor can
be controlled by connecting a third terminal (Lead 2). An AC top gate voltage generates
spin current on the right part of the device and injects it through the middle bridge. It is
converted to nonzero charge current on the left part in the multiterminal system via spatially
inhomogeneous Rashba interaction. Owing to the hidden Onsager relations, the spin to charge
conversion vanishes to leading order in the spin-orbit coupling in a two-terminal system.

Our gauge field analytics based on Ref.[44] allows us to approximately express the desired
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spin-dependent quantities (such as time-dependent spin currents, AC spin conductances)
in terms of conventional charge transport quantities (such as time-dependent charge cur-
rents, impedances), and to make general predictions for expected output signals, by mak-
ing use of the Onsager relations.

This chapter is organized as follows. We first rewrite the gauge transformation in the pres-
ence of the spatially inhomogeneous Rashba coupling. We then show how such spin sig-
nals can be non-locally converted into charge by the non-homogeneous but static Rashba
SOI within a second mesoscopic cavity. This combined functionality is integrated and
tested for a dynamical SOI-based spin transistor. Finally, we present our results in both
adiabatic and high-frequency regimes.

5.1 Spin Magnetic Field from Spatially Inhomogeneous
SOI

5.1.1 Gauge transformation for spatially inhomogeneous SOI

A spatially inhomogeneous Rashba SOI constant αR(x) = ksoᾱR(x), with ᾱR being
a dimensionless function, can create or convert spin currents into charge currents; see
Fig. 5.1. This interconversion is achieved by the spin-dependent Lorentz force due to a
"spin" magnetic field [44, 46]

Ba = ∂xA
a
y(x)− ∂yAax(x) (5.1)

where Aaµ(x) = ᾱR(x)εaµ. Below we specialize in the case

Aaµ = ksoα0(x · f)εaµ, (5.2)

where f is a unit vector determining the fixed direction of the gradient of ᾱR. We now use
the following generic decomposition for each spin component

Aaµ = −(∂µχ
a + εµν∂νφ

a) (5.3)

and perform an SU(2) gauge transformation

U = exp (ikso χ
aσa/2) , (5.4)
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taking into account terms up to linear order in kso. The vector potential then becomes

(A′)aµ = εµν ∂ν φ
a, (5.5)

(V ′)a =V. (5.6)

The transformed Hamiltonian becomes, up to linear order in the spin-orbit coupling,

H ′ = − 1

2m
[∂µ + i

kso
2
εµν∂νϕ(x)σ · f ]2 + V (x) (5.7)

where φa = ϕ(x)fa. We now perform a global spin rotation σ · f → σz to obtain

Hd =
1

2m
(p + iksoaσ

z)2 + V (x), (5.8)

where a = α0(ẑ × x)/2. Hence the Hamiltonian structure implies that the two spin
species decouple, where each one subject to a homogeneous magnetic field (as well as
Lorentz force) of opposite sign. The strength of this magnetic field is given by

∑
a Bafa,

in agreement with Eq. (5.2).

5.1.2 Link between spin and charge conductance
via gauge transformation

We now use the gauge transformations discussed in Sec. 5.1 to get the spin conductances
in an alternative way. After the gauge transformation and working up to linear order in kso,
the full Hamiltonian is block-diagonalized into spin blocks. The time-dependent part of
the SOI transforms into spin-dependent electric fields, which we treat as spin-dependent
voltages V a = V ↑ − V ↓ (see Section 4.3.1). The spatially inhomogeneous part of the
SOI enters as a spin-dependent magnetic field, as shown in Eq. (5.8). Owing to the block
diagonal structure, the spin conductance in the transformed basis is simply

Ga
ij = G↑ij −G

↓
ij. (5.9)

We now transform back to the initial gauge to obtain the spin-conductances in the original
spin basis:

Ga
ij ≈ [Gij(Baz )−Gij(−Baz )] fa. (5.10)

Here Gij(Baz ) is the charge conductance of a spinless electron moving in the same scalar
potential V (including confinement and disorder) as the original electron, but in the pres-
ence of an additional induced magnetic field Baz given in Eq. (5.2). Thus the gauge trans-
formation allows us to express the mesoscopic spin conductances in terms of charge con-
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ductances. Recall that under the assumption L � lso where lso = π/|kso|, the spin
precession conductance Gab ∝ δabG00.

Using Onsager relations [76] Gij(Baz ) = Gji(−Baz ) and current conservation, one can
show that Ga

ij in Eq. (5.10) vanishes in a system with two connected leads in the presence
of time-reversal symmetry. On the other hand, breaking the time-reversal symmetry, e.g.,
via an applied magnetic field or connecting the third terminal to the system [44] results in
nonzero conductance.

We compute below the driven charge and spin currents without resorting to the approxi-
mate SU(2) manipulations described here and in Sec. 4.2.1. Using these numerics as ref-
erence calculations, we will be able to show that the description in terms of spin-electric
and spin-magnetic fields acting on effectively decoupled ↑↓-electrons is very accurate up
to L ∼ lso although Eq.(5.10) is valid formally for small kso.

5.2 Charge Signal from a Spin Current

5.2.1 Dynamical SOI-based spin transistor setting

This section discusses detecting the AC spin current generated by the spin potential in-
duced through a time-dependent SOI. Usually, this can be achieved with a device with
nonzero spin (detection) conductance. While the conventional means of detecting spin
currents are based on ferromagnetic leads, here we will exploit the SU(2) gauge structure
of the Rashba SOI to further design a device with a nonzero spin magnetic field. The
latter can then convert spin currents into charge signals.

Spin (detection) conductance in Eq. (4.27) is converted into the difference of two charge
magneto-conductances according to Eq. (5.10). Then an Onsager relation implies that
the total charge conductance vanishes in the presence of time-reversal symmetry. On
the other hand, breaking time-reversal symmetry, e.g. via an applied magnetic field or
connecting the third terminal to the system [44] results in a nonzero charge conductance
and an AC charge current. As a result, we can obtain the on/off states of this dynamical
spin transistor by controlling the symmetry properties of the system. Below we will take
the latter route, connecting to the third terminal..

To explore how this conversion works in detail, we consider a system that consists of
two subsystems containing a spatially inhomogeneous and a time-dependent Rashba SOI,
respectively, as shown in Fig. 5.2. The right subsystem consists of a 2D quantum wire
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Figure 5.2: Setup of the dynamical spin-orbit based spin transistor with the top terminal (Lead
2) controlled electrostatically. The AC gate voltage in the right cavity induces a dynamical
Rashba SOI, which creates an AC spin current that flows into the left cavity. Due to a spatially
inhomogeneous Rashba SOI, the spin current is transformed into a nonzero charge current in
the multiterminal system. The charge current vanishes in the two-terminal system.

(with length L and width W ) with a time-dependent SOI αR(t) = kso sin(Ωt) engineered
by an AC gate voltage. The left subsystem contains a ballistic ring (with diameter L) with
a spatially inhomogeneous SOI αR(x) = kso(L−y)/L. This way, spin currents generated
in the right subsystem via a spin electric field are converted into charge currents via a spin
magnetic field in the left subsystem.

5.2.2 AC charge signal in the low-frequency regime

The charge current without a bias voltage V follows from Eq. (4.27) as

I1 = −
∑

j,b

G0b
1jV

b
j , (5.11)

where 1 indicates the lead number and b = x, y, z is the spin direction. We express
the spin conductance in terms of the charge magneto-conductance (5.10). In the low-
frequency regime, we again neglect the frequency dependence of the conductance. Then
the charge current in the lead i reads

I1 ≈ −
∑

b

∑

j

(G1j(Bb)−G1j(−Bb))f bV b
j . (5.12)

For spatially inhomogeneous SOI αR(x) = kso(L − y)/L we obtain from Eq. (5.2) the
spin magnetic field components Baz in the x- and y-directions as

Bx = −∂xαR(x)fx ,

By = −∂yαR(x)f y . (5.13)
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The spin voltages generated by the time-dependent SOI αR(t) = kso sin(Ωt) are obtained
from Eq. (4.16) as

V y
1(3) = V ↑1(3) − V

↓
1(3) = ±∂tαR(t)L . (5.14)

We now have all the ingredients to calculate the charge current in the lead 1. We obtain

I1(t) = Gs∂tαR(t)L , (5.15)

where
Gs = −G11(By) +G11(−By) +G13(By)−G13(−By) . (5.16)

This equation formulates our further prediction that the spin current can be converted into
a charge current in a spatially inhomogeneous system through a spin magnetic field.

5.2.3 AC charge signal in the high-frequency regime

As explained in Section 4.3.2.2, we should retain the AC conductance’s frequency de-
pendence at high frequency. We follow the same steps as in Section 4.3.2.2 and rewrite
the AC charge current expression (5.12), but retaining the frequency dependence given in
Eq. (4.34), as

I1(ω) ≈ −
∑

b

∑

j

[G1j(ω,Bb)−G1j(ω,−Bb)]f bV (ω)bj , (5.17)

where the spin-dependent magnetic field is By = ksoL
−1f y and the spin voltage is

V ↑(↓)(ω) = ±iωα(ω)L . This equation constitutes our main result for the spin (detec-
tion) conductance, which applies to both high- and low-frequency regimes.

5.2.4 Numerical calculations for conductance and admittance

Before using Eq. (5.10) for the numerical calculations of current in our actual model, we
first show its validity in a chaotic ballistic system, shown on the right part of Fig. 5.3. In
the presence of time-reversal symmetry, the conductance vanishes in a two-lead system,
as shown in the top figure in Fig. 5.3.

Gij(Baz )−Gij(−Baz ) ≈ 0 (5.18)

When we break this symmetry by applying an external magnetic field, the conductance
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Figure 5.3: Numerical check of Eq. (5.10) for the conductance. a) Vanishing conductance in
a two-lead system with time-reversal symmetry, b) two-lead system with an applied magnetic
field, c) three-lead system.

becomes
Gij(B + Baz )−Gij(B − Baz ) 6= 0 . (5.19)

Another way to make the right-hand side of (5.18) is to connect a third terminal to the
system. The current conservation between the first two leads is broken in this case. Hence
one has Gij 6= Gji. That again leads to a non-vanishing result for the conductance. We
showed that Eq. (5.10) is valid in all these cases, for ksoL = 1 with L = 50a. We then
explore the frequency dependence of Eq. (5.10) by checking its validity for ωτ = 0 and
ωτ = 1 on the chaotic system with the third terminal (shown on the right part of Fig. 5.3
c)) where position dependent Rashba coupling is αR(x) = kso(L− y)/L with ksoL = 1,
as seen in Fig. 5.4.

5.2.5 Simulating the dynamical spin-transistor functionality

We performed numerical transport simulations of the spin transistor in Fig. 5.2 and ex-
plored the range of validity of our analytical result (5.17). We choose time-dependent
Rashba SOI to be αR(t) = kso sin(Ωt) and the spatially inhomogeneous Rashba SOI to
be αR(x) = kso(L−y)/L, where the Rashba SOI constant is selected such that ksoL = 1,
where L is the system size along the x direction for the right subsystem. The shape of
the system is shown in the top right corner of Fig. 5.2. The right part is a 2D wire with
length L = 50a, width W = 30a, and one connected lead of width 10a. The left part is a
ballistic ring with an inner radius of 10a, an outer radius of 25a, and two connected leads
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Figure 5.4: Comparison of the two sides of Eq. (5.10) for two different frequency choices a)
Ωτ = 0 and b) Ωτ ≈ 1

of width 10a. The two parts are connected via a bridge of width 10a made of the same
material.

We consider 3 open channels and choose the Fermi energy between 0.29 and 0.47 eV.
After computing the dwell time to specify the range of the frequency, we calculate the
AC charge currents I(t) = I cos(Ωt) in the absence of the bias voltage on the left using
the Floquet scattering matrix given in Eq. (4.2) and Eq. (4.3). Finally, we compare the
Floquet result for AC charge current with our analytical prediction both in the low and the
high-frequency regimes. Our analytical results are obtained from Eq. (5.16) for Ωτ ≈ 0.1,
0.3 and shown in Fig. 5.5 a) and b). Here, the frequencies Ω/2π are approximately 40 and
120 GHz. We find excellent agreement between our analytical results and the numerically
obtained AC charge current. Moreover, even in the low-frequency regime, we see that the
mechanism produces few-nA charge currents that are experimentally observable.

For higher frequencies where Ω > 1/τ , we compare our prediction based on Eq. (5.17)
with the numerical dynamical conductance using driving frequencies Ωτ ≈ 1, 1.5, and
2.1. These values correspond to Ω/2π being approximately 400, 600, and 840 GHz. In
Fig. 5.5 c), d), e), we also observe on the whole a fairly good match between the two
currents in the high-frequency regime up to Ωτ ≈ 2.1.

In Fig. 5.6, we show the on/off signals of the dynamical spin transistor. We compute the
AC charge currents in these plots using the Floquet scattering matrix. Hidden Onsager
relations for the two terminal devices ensure that the spin/charge conversion is suppressed.
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Figure 5.5: Dynamical spin transistor function: AC charge current in Lead 1, see Fig. 5.2,
generated by the time-dependent and spatially inhomogeneous Rashba SOI. Numerical results
based on the Floquet formalism (green) are compared to the current generated by the spin-
dependent voltage and pseudo-magnetic field (orange) in the low- and high-frequency regime.
The analytical results in a) and b) are calculated based on Eq. (5.16) and in panels c) to e)
using Eq. (5.17). The dynamical Rashba SOI in the right half system is αR(t) = kso sin(Ωt)
with ksoL = 1 and the spatially inhomogeneous Rashba SOI in the left half system (the ring)
is αR(x) = kso(L − y)/L. The size of each system part is L = 50a. The frequencies used
are Ωτ ≈ 0.1, 0.3, 1, 1.5 and 2.1 from top to bottom panel.

This is the off state of the spin transistor. Connecting to a third terminal to the system
results in a non-zero charge current, as seen from Fig. 5.6. It is the on state of the spin
transistor.
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Figure 5.6: Demonstration of the on/off states of a dynamical spin transistor. AC charge cur-
rents in Lead 1 as a function of the Fermi energy, generated by time-dependent and spatially
inhomogeneous Rashba SOI, are plotted. Numerical results based on the Floquet formalism.
The charge current is calculated for both two-lead (inset below) and three-lead (inset above)
systems. The dynamical Rashba SOI in the right half system is αR(t) = kso sin(Ωt) with
ksoL = 1 and the spatially inhomogeneous Rashba SOI in the left half system (the ring) is
αR(x) = kso(L− y)/L. The size of each system part is L = 50a and the driving frequency
is Ωτ ≈ 0.1.

5.3 Conclusion

In this chapter, we investigated 2DEGs consisting of two parts, one with the time-dependent
Rashba SOI and another with the spatially inhomogeneous Rashba SOI. After an appro-
priate gauge transformation, the time-dependent part of Rashba coupling transforms into
a spin-dependent voltage, which generates a spin current without a bias voltage. More-
over, for the spatially inhomogeneous part of Rashba SOI, a similar gauge transformation
converts the spin conductance to charge magnetoconductance that is measurable exper-
imentally. Therefore the time-dependent Rashba SOI generates a spin current, which is
then detected as a charge current in the company of inhomogeneous Rashba SOI. We
also show that this charge current vanishes in the two-terminal system with time-reversal
symmetry while it turns into a non-zero charge current via opening the third terminal or
breaking time-reversal symmetry. Thus, we propose a spin transistor that is controllable
by the Onsager relation for the system and readable purely by electric means. We com-
pare the numerical results with our prediction and show a good agreement for both the
adiabatic and the high-frequency regimes. We also obtain the AC charge current in the
nano-Ampere range with experimentally relevant parameters.
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Chapter 6

DC SPIN AND CHARGE CURRENT
GENERATION

Pumping is a general dynamical quantum transport mechanism for DC current in the ab-
sence of bias voltage, generated when some system parameters change periodically. It
was first theoretically proposed by Thouless [77], who showed that a quantized charge
current could be transported in an adiabatically modulated potential. This mechanism
was later confirmed experimentally by investigating electron pumping in a quantum dot
[78]. Charge pumping has been extensively studied in the literature with various appli-
cations in adiabatic regimes [79–86] and non-adiabatic regimes [87–89]. In its original
formulation, the adiabatic modulation of the system was crucial to generating a current.
In particular, Brouwer [90] formulated pumping current in terms of the scattering matrix
of the system and showed that there is a non-vanishing current when at least two of the
system’s parameters are modulated with the same frequency but with a phase difference.
This way, the quantized pumping charge is expressed as an integral of derivatives of the
scattering matrix with respect to the modulation parameters in an area in the parameter
space. On the other hand, pumping in systems with a single modulation parameter is
realized outside the adiabatic regime [78]. The general formulation of the pumping cur-
rent is theoretically formulated by Moskalets and Buttiker [32]. They provide a formula
for the pumping current using the Floquet scattering matrix, explained in Chapter 3. A
comparison of the two methods is also studied in [91] for adiabatic pumping.

The idea of pumping an electric current can also be used to generate DC spin currents,
which goes under the name of spin pumping. This method is promising in developing spin
transport, especially for spin injection, and it will be the focus of attention in this chap-
ter. Spin-polarized pumping has been realized in experiment [92] following a theoretical
proposal by Mucciolo et al. [93] which suggested generating a spin current by pumping
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electrons through a chaotic dot together with an in-plane magnetic field. Spin pumping
utilizing a magnetic field has also been proposed in [94–96]. Zhang et al. suggested
pumping spin using ferromagnetic leads [70].

We are interested in pumping spin degrees of freedom using electrical methods based on
Rashba SOI. This method has attracted interest over the last decade [60, 61, 97–104].
Below, we focus on the DC spin and charge current in the presence of a time-dependent
potential. First, we investigate the two-parameter charge and spin pumping in the adia-
batic regime. We compare the adiabatic approximation result with the Floquet scattering
matrix result on a 2D quantum wire in the presence of the two separate time-dependent
Rashba couplings with a phase difference. Secondly, we investigate the single parameter
pumping. Adiabatic approximation yields vanishing results in single-parameter systems
for charge and spin currents because these currents go like Ω2 in single-parameter sys-
tems [105, 106]. Therefore we investigate the single-parameter systems using the Floquet
scattering matrix. We numerically compute charge and spin currents in the system with
one-parameter time-dependent Rashba SOI and find non-vanishing results.

6.1 Model And Formulation

For our numerical simulations, we consider a quantum wire consisting of a 2DEG. Apply-
ing two separate AC gate voltages on the right and left part of the wire generates periodic
Rashba SOI inside the scattering region, as shown in Fig. 6.1. The wire is connected
to two leads as electron reservoirs, and the Rashba coupling is absent on the leads. We
choose the geometry of the 2D quantum wire with cavities which breaks the spatial sym-
metry independent of the Hamiltonian as shown at the bottom in Fig 6.1. (We note that
the spatial symmetry in our system would also be broken even in the absence of this cavity
due to the Rashba coupling which breaks the reflection symmetry in the x direction).

The Hamiltonian of our model is

H =
p2

2m
+ α(t)(σxpy − σypx) + V (x), (6.1)

where V (x) is the electrostatic potential. We choose the Rashba SOI as

αi(t) = kso,0 + kso,1 cos(Ωt+ θi) (6.2)

where kso,0 denotes the static part of the Rashba SOI strength and kso,1 gives the amplitude
of the time-dependent part of the Rashba SOI with driving frequency Ω and phase θi. We
denote the Rashba couplings for the left and right part of the system in Fig 6.1 by i = 1 and
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Figure 6.1: Setup for spin pumping connected to two leads. AC gate voltages, which generate
a time-dependent Rashba SOI, are applied on top of the 2DEG with the same frequency but a
different phase as shown in the top panel. The geometry of the 2D quantum wire is shown in
the bottom panel.

i = 2, respectively, with a non-vanishing phase difference θ2 − θ1 = θ where θ1 = 0 and
θ2 = θ. In chapter 3, we outline the DC current calculations with the help of the Floquet
scattering theory when there is a time-dependent potential. Using the unitarity condition
of the Floquet scattering matrix in Eq. 3.18 and making the energy shift E → E − n~Ω,
the DC current which corresponds to the l = 0 term in Eq. 3.34 represents a difference
of the two Floquet scattering matrices in the absence of the bias voltage, where the Fermi
function on both leads are equal f1(E) = f2(E) = f0(E):

Iai,0 =Ca

∫
dEf0(E)

∞∑

n=−∞

Nr∑

j

×

{
SF,ij(En, E, θ)

†σaSF,ij(En, E, θ)− SF,ij(E,En, θ)†σaSF,ij(E,En, θ)
}

(6.3)

This expression helps us understand how the symmetry properties of the system affect the
spin and charge pumping in both adiabatic and high-frequency regimes. We recall that
the Floquet scattering matrix satisfies the following symmetry (see Chapter 3).

Sss
′

F,ij(E,En, θ) = Ss
′s
F,ji(En, E,−θ) . (6.4)

In general, to generate a non-vanishing pumping current in the equation above, one needs
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to break the left-right symmetry, which can be achieved at least in two separate ways,
namely, by breaking the time-reversal symmetry or the spatial symmetry [6]. However, in
the adiabatic regime for n~Ω� E, the adiabatic approximation of the Floquet scattering
matrix in Eq.(4.4) will depend on single energy E, and we will need breaking of both the
time-reversal and the spatial symmetry to generate a non-trivial pumping. In the current
setup, we maintain a phase difference on the system’s left and right parts, hence breaking
the time-reversal symmetry as well. Moreover, cavities in the quantum wire also break
the spatial symmetry in the system.

6.2 Numerical Results: Adiabatic Spin And
Charge Pumping

In this section, we investigate spin and charge pumping due to time-dependent Rashba
SOI generated by the AC gate voltage. We consider the model shown in Fig. 6.1 by
applying two gate voltages with phase difference θ. Rashba SOI on the left part of the
system α(t) = kso,0 + kso,1 cos(Ωt) and on the right part of the system α(t) = kso,0 +

kso,1 cos(Ωt + θ) where kso,0 = kso,1 = 1/L and the length of the system is given by
L = 100a and a the lattice constant is 2 nm. We chose the width of the system as
W = 20a and the leads as 10a.

We first investigate how the phase difference between the two gate voltages (see Fig. 6.1)
affects the pumping currents in the adiabatic approximation. For these calculations, we
use the formula in Eq.(6.3)) with the adiabatic approximation of the Floquet scattering
matrix in Eq.(4.4). The current is calculated with the Fermi energy EF = 0.2 eV , at
which only two transverse channels are open. In this computation, first, we obtain the
time of flight τ using the Wigner-Smith time delay matrix explained in Chapter 3.2.3.
We then choose Ωτ ≈ 0.012, here corresponding frequency Ω/2π is approximately 10

GHz. As expected, we obtain a vanishing current when the phase difference is θ = 0, π,

and 2π and the current attains its maximum value at the phase difference θ = π/2 and
3π/2. These results are shown in Fig. 6.2, where charge and spin pumping currents
with the spin directions x, y, and z are plotted. We note that the direction of the current
changes with θ → −θ. In Fig. 6.3, we concentrate on the spin pumping current and
analyze its dependence on the value of the Rashba coupling. This figure plots the spin
current in the z-spin direction as a function of the Fermi energy. We observe that the
current magnitude increases with the coupling strength. Finally, in Fig. 6.4, we compare
the charge and spin pumping currents obtained by The Floquet scattering matrix and its
adiabatic approximation. We see that, while the two agree remarkably well for small
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Figure 6.2: Spin and charge pumping currents versus the phase difference ∆θ between left
and right Rashba SOI in the system in the adiabatic approximation where the Fermi energy
EF = 0.2 eV, Ωτ ≈ 0.012, Rashba SOI α(t) = kso,0 +kso,1 cos(Ωt+θ), and kso,0 = kso,1 =
1/L. The charge current turns out to be non-vanishing yet much smaller than the spin currents
in the adiabatic approximation.

frequencies, below Ωτ < 0.012, they start to show disagreement in the charge current for
Ωτ ≈ 0.12. This corresponds approximately to Ω/2π ≈ 100 GHz. We remark that the
agreement holds for the spin currents in this frequency range.

6.3 Numerical Results : Spin and Charge Pumping
beyond the Adiabatic Approximation

In this section, we investigate single-parameter pumping beyond the adiabatic approxima-
tion. First, we compare the two methods, the full Floquet formalism and its adiabatic ap-
proximation. We consider the same model as in Fig. 6.1 with the system length L = 100a,
system width W = 20a, and width of the leads 10a where the lattice constant, a = 2 nm.
To obtain one parameter pumping, we consider the vanishing phase difference between
right and left gate voltages and the Rashba SOI inside the scattering region is then uniform
as α(t) = kso,0 + kso,1 cos(Ωt) where we choose kso,0L = kso,1L = 1. Because we pre-
serve the time-reversal symmetry, the adiabatic approximation gives vanishing currents in
this case. On the other hand, Floquet formalism containing the higher order terms in the
driving frequency yields non-vanishing results even in the one-parameter case.
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Figure 6.3: Spin pumping currents in z direction for values of the Rashba coupling kso,1 =
0.1, 0.3, 0.5, 0.7 and 1 where Ωτ ≈ 0.012, Rashba SOI α(t) = kso,0 + kso,1 cos(Ωt + θ)
where kso,0L = kso,1L = 1, and on the right part θ = π/2.

We plot the charge and spin pumping as a function of the Fermi energy, generated by
one parameter driving Rashba SOI where Ωτ ≈ 1 with 2 open transverse channel in
Fig.6.5. This corresponds to Ω/2π ≈ 800 GHz. These results altogether show that we
can acquire experimentally detectable pumping currents in the nA scale using the full
Floquet scattering matrix for one parameter pumping. In Fig. 6.6, we also show how
these currents are affected by the driving frequency up to Ωτ ≈ 1 (left) and by the Rashba
coupling constant up to ksoL = 2 (right). We observe in the left figure that the currents
increase quadratically as a function of the frequency for small values of Ω. Finally, we
observe in the right figure that the currents also increase as a function of kso as expected.

6.4 Conclusion

In this chapter, we investigated pumping current both for charge and spin transport in the
presence of the time-dependent Rashba coupling. In the adiabatic regime, we showed that
DC spin and charge currents are present in the system with two-parameter pumping. We
observed that the resulting pumping currents are directly proportional to the amplitude of
the time-dependent Rashba coupling. We also compared adiabatic approximation with the
full Floquet scattering matrix analysis and confirmed that they agree at low frequencies.
Finally, we investigated one parameter pumping beyond the adiabatic approximation and
demonstrated using the Floquet scattering matrix that non-vanishing pumping currents
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Figure 6.4: Comparing adiabatic approximation result (orange) with Floquet scattering
matrix result (blue) in the adiabatic regime where Ωτ ≈ 0.0012 and 0.12, Rashba SOI
α(t) = kso,0 + kso,1 cos(Ωt + θ) where kso,0 = kso,1 = 1/L and on the right part of the
system θ = π/2.

can be obtained via the driving Rashba SOI while preserving the time-reversal symmetry.
Our results show that we can acquire experimentally detectable pumping currents in the
nA scale using the full Floquet scattering matrix formalism.
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Figure 6.5: Single parameter spin and charge pumping calculated by adiabatic approximation
(orange) and full Floquet scattering matrix (blue) where Ωτ ≈ 1, Rashba SOI α(t) = kso,0 +
kso,1 cos(Ωt), where kso,0 = kso,1 = 1/L.

Figure 6.6: Single parameter spin and charge pumping as a function of Ωτ up to Ωτ ≈ 1
(left) and as a function of ksoL up to 2 (right). The parameters are chosen asEF = 0.2 eV, the
Rashba SOI α(t) = kso,0 + kso,1 cos(Ωt). kso,0 = kso,1 = 1/L (left) and Ωτ ≈ 0.5 (right).
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Chapter 7

CONCLUSION

The aim of this thesis was to study time-dependent charge/spin transport in ballistic
2DEGs. Time dependence of the current results either from a periodic in-time poten-
tial inside the scattering region or from an AC bias voltage. We focused on the effects of
the Rashba SOI, modulated by an AC gate voltage. We used Floquet scattering theory to
calculate time-dependent currents in these systems. We calculated Floquet scattering ma-
trices with numerical tight-binding simulations. Results of Chapters 4 and 5 are published
in Ref. [107].

In chapter 2, we briefly overview spin and charge transport in stationary systems to pro-
vide a background for time-dependent transport. We shortly introduced mesoscopic sys-
tems consisting of the 2DEGs with spin-orbit interaction and the relevant length scales.
We outlined the calculation of spin and charge currents using scattering matrix and apply-
ing the Landauer-Büttiker formula in ballistic systems.

Chapter 3 explains how to formulate the time-dependent currents with a periodic in-time
potential. We use the Floquet scattering theory. First, we showed how to convert the
time-dependent Hamiltonian into a static matrix Hamiltonian with Floquet states which
are eigenfunctions of the Floquet Hamiltonian. We can then obtain each transmission
amplitude from one Floquet channel to another, which forms the elements of the Floquet
scattering matrix. We also defined the adiabatic approximation to the Floquet scatter-
ing matrix in the low-frequency regime. We outlined the Dwell time calculation using the
Wigner-Smith time-delay matrix to characterize the onset of the adiabatic regime. Finally,
we explained how the Landauer-Büttiker formalism is adapted to two time-dependent sit-
uations: a dynamical potential in the scattering region and an AC bias voltage application.

In chapter 4, we investigated the generation of the AC spin current via tuning the Rashba
SOI periodically in time. In particular, we used the Floquet scattering theory to show these
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spin currents in a chaotic ballistic 2DEG without a bias voltage. We first determined the
number of Floquet channels needed depending on our choice of system parameters and
the low and high-frequency regimes. We demonstrated that the adiabatic approximation
agrees with the full Floquet result up to a specific frequency value. We also studied higher
harmonic generation of charge and spin currents and observed that either odd or even har-
monics contribute non-trivially. We explained this finding based on discrete symmetries
in our system. We then showed that formulation of the Rashba coupling in terms of an
SU(2) gauge field allows us to express, by a gauge transformation, the time-dependent
coupling as a spin-dependent electric field and demonstrated this numerically. We then
considered these fields as spin-dependent voltage. We converted the AC spin current
generated by periodic in-time Rashba SOI into an AC spin current obtained by this spin
voltage and charge conductance.

In chapter 5, we explored the conversion of the AC spin current into an AC charge cur-
rent utilizing spatially inhomogeneous Rashba SOI. We considered a two-terminal sys-
tem consisting of two parts, one with dynamical Rashba SOI and another with spatially
inhomogeneous Rashba SOI. In the latter case, a similar gauge transformation results in
two spin magnetic fields in opposite directions. Then, spin conductance is approximated
to the charge magnetoconductance. All in all, the spin current resulting from the time-
dependent Rashba SOI is read out as a charge current using a spin-dependent voltage and
a charge magnetoconductance. Using the Onsager relation, we propose our system as
a spin transistor by opening the third terminal to control the on/off states. We demon-
strate our results by numerical simulations in the low and high-frequency regimes with
experimentally relevant parameters.

In chapter 6, we focused on the generation of DC current. First, we analyzed spin and
charge pumping for a ballistic 2DEG quantum wire with periodically time-dependent
Rashba SOI. In the case of two-parameter pumping, one obtains a non-trivial current in
the adiabatic approximation due to a phase difference between two driving potentials. We
show how this phase difference and the amplitude of the Rashba coupling affect pumping
of the spin and charge currents. We also explore one parameter pumping beyond the adi-
abatic approximation. Using the Floquet scattering matrix, we obtained a non-vanishing
spin and charge current, which are generated by the dynamical Rashba SOI even in this
case.
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[28] İ. Adagideli, J. H. Bardarson, and P. Jacquod, “Electrical probing of the spin con-
ductance of mesoscopic cavities,” Journal of Physics: Condensed Matter, vol. 21,
p. 155503, mar 2009.

[29] M. Büttiker, A. Prêtre, and H. Thomas, “Dynamic conductance and the scattering
matrix of small conductors,” Phys. Rev. Lett., vol. 70, pp. 4114–4117, Jun 1993.

[30] J. H. Shirley, “Solution of the schrödinger equation with a hamiltonian periodic in
time,” Phys. Rev., vol. 138, pp. B979–B987, May 1965.

[31] F. D. Parmentier, E. Bocquillon, J.-M. Berroir, D. C. Glattli, B. Plaçais, G. Fève,
M. Albert, C. Flindt, and M. Büttiker, “Current noise spectrum of a single-particle
emitter: Theory and experiment,” Physical Review B, vol. 85, Apr 2012.

[32] M. Moskalets and M. Büttiker, “Floquet scattering theory of quantum pumps,”
Phys. Rev. B, vol. 66, p. 205320, Nov 2002.

[33] G. Floquet, “Sur les équations différentielles linéaires à coefficients périodiques,”
Annales scientifiques de l’École Normale Supérieure, vol. 2e série, 12, pp. 47–88,
1883.

[34] M. Moskalets and M. Büttiker, “Adiabatic quantum pump in the presence of exter-
nal ac voltages,” Phys. Rev. B, vol. 69, p. 205316, May 2004.

[35] M. Moskalets and M. Büttiker, “Magnetic-field symmetry of pump currents of adi-
abatically driven mesoscopic structures,” Physical Review B, vol. 72, Jul 2005.

[36] D. Bercioux and P. Lucignano, “Quantum transport in rashba spin–orbit materials:
a review,” Reports on Progress in Physics, vol. 78, p. 106001, sep 2015.

[37] M. Büttiker, “Scattering theory of current and intensity noise correlations in con-
ductors and wave guides,” Phys. Rev. B, vol. 46, pp. 12485–12507, Nov 1992.

[38] M. Moskalets and M. Büttiker, “Time-resolved noise of adiabatic quantum pumps,”
Phys. Rev. B, vol. 75, p. 035315, Jan 2007.

[39] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent transport in interacting
and noninteracting resonant-tunneling systems,” Phys. Rev. B, vol. 50, pp. 5528–
5544, Aug 1994.

[40] M. H. Pedersen and M. Büttiker, “Scattering theory of photon-assisted electron
transport,” Phys. Rev. B, vol. 58, pp. 12993–13006, Nov 1998.

[41] A. Prêtre, H. Thomas, and M. Büttiker, “Dynamic admittance of mesoscopic con-
ductors: Discrete-potential model,” Phys. Rev. B, vol. 54, pp. 8130–8143, Sep
1996.

74



[42] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, “Kwant: a software
package for quantum transport,” New Journal of Physics, vol. 16, p. 063065, jun
2014.

[43] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole
Systems. Springer, 2003.

[44] I. Adagideli, V. Lutsker, M. Scheid, P. Jacquod, and K. Richter, “Spin transistor
action from hidden onsager reciprocity,” Phys. Rev. Lett., vol. 108, p. 236601, Jun
2012.

[45] I. L. Aleiner and V. I. Fal’ko, “Spin-orbit coupling effects on quantum transport in
lateral semiconductor dots,” Phys. Rev. Lett., vol. 87, p. 256801, 2001.

[46] P. W. Brouwer, J. N. H. J. Cremers, and B. I. Halperin, “Weak localization and con-
ductance fluctuations of a chaotic quantum dot with tunable spin-orbit coupling,”
Phys. Rev. B, vol. 65, p. 081302(R), 2002.

[47] Y. Tserkovnyak and M. Mecklenburg, “Electron transport driven by nonequilib-
rium magnetic textures,” Phys. Rev. B, vol. 77, p. 134407, Apr 2008.

[48] L. S. Levitov, H. Lee, and G. B. Lesovik, “Electron counting statistics and coher-
ent states of electric current,” Journal of Mathematical Physics, vol. 37, no. 10,
pp. 4845–4866, 1996.

[49] B. K. Nikolić, L. P. Zârbo, and S. Souma, “Mesoscopic spin hall effect in multi-
probe ballistic spin-orbit-coupled semiconductor bridges,” Phys. Rev. B, vol. 72,
p. 075361, Aug 2005.

[50] M. Büttiker, “Dynamic conductance and quantum noise in mesoscopic conduc-
tors,” Journal of Mathematical Physics, vol. 37, no. 10, pp. 4793–4815, 1996.

[51] M. Lysne, Y. Murakami, M. Schüler, and P. Werner, “High-harmonic generation in
spin-orbit coupled systems,” Phys. Rev. B, vol. 102, p. 081121, Aug 2020.

[52] K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto, and N. Nagaosa, “Nonlinear
spin current generation in noncentrosymmetric spin-orbit coupled systems,” Phys.
Rev. B, vol. 95, p. 224430, Jun 2017.

[53] O. E. Alon, V. Averbukh, and N. Moiseyev, “Selection rules for the high harmonic
generation spectra,” Phys. Rev. Lett., vol. 80, pp. 3743–3746, Apr 1998.

[54] E. I. Rashba, “Spin currents in thermodynamic equilibrium: The challenge of dis-
cerning transport currents,” Phys. Rev. B, vol. 68, p. 241315, Dec 2003.

[55] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Applied
Physics Letters, vol. 56, no. 7, pp. 665–667, 1990.

[56] S. D. Ganichev, M. Trushin, and J. Schliemann, “Spin orientation by electric cur-
rent,” in Handbook of Spin Transport and Magnetism (E. Y. Tsymbal and I. Zutic,
eds.), Chapman and Hall, 2 ed., 2016.

[57] M. Dyakonov and V. Perel, “Current-induced spin orientation of electrons in semi-
conductors,” Physics Letters A, vol. 35, no. 6, pp. 459–460, 1971.

75



[58] J. Ohe, M. Yamamoto, T. Ohtsuki, and J. Nitta, “Mesoscopic stern-gerlach spin
filter by nonuniform spin-orbit interaction,” Phys. Rev. B, vol. 72, p. 041308, Jul
2005.

[59] A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, “Spin-current generation
and detection in the presence of an ac gate,” Phys. Rev. B, vol. 68, p. 233307, Dec
2003.

[60] M. Governale, F. Taddei, and R. Fazio, “Pumping spin with electrical fields,” Phys.
Rev. B, vol. 68, p. 155324, Oct 2003.

[61] P. Sharma and P. W. Brouwer, “Mesoscopic effects in adiabatic spin pumping,”
Phys. Rev. Lett., vol. 91, p. 166801, Oct 2003.

[62] H. Mathur and A. D. Stone, “Quantum transport and the electronic aharonov-casher
effect,” Phys. Rev. Lett., vol. 68, p. 2964, 1992.

[63] J. Fröhlich and U. M. Studer, “Gauge invariance and current algebra in nonrela-
tivistic many-body theory,” Rev. Mod. Phys., vol. 65, p. 733, 1993.

[64] I. V. Tokatly, “Equilibrium spin currents: Non-abelian gauge invariance and color
diamagnetism in condensed matter,” Phys. Rev. Lett., vol. 101, p. 106601, 2008.

[65] C. Gorini, P. Schwab, R. Raimondi, and A. L. Shelankov, “Non-abelian gauge
fields in the gradient expansion: Generalized boltzmann and eilenberger equa-
tions,” Phys. Rev. B, vol. 82, p. 195316, Nov 2010.

[66] C. Gorini, R. Raimondi, and P. Schwab, “Onsager relations in a two-dimensional
electron gas with spin-orbit coupling,” Phys. Rev. Lett., vol. 109, p. 246604, Dec
2012.

[67] E. H. Fyhn and J. Linder, “Spin-orbit pumping,” Phys. Rev. B, vol. 105, p. L020409,
Jan 2022.

[68] P. Földi, O. Kálmán, and M. G. Benedict, “Two-dimensional quantum rings with
oscillating spin-orbit interaction strength: A wave function picture,” Phys. Rev. B,
vol. 82, p. 165322, Oct 2010.

[69] R. S. M Jonson and O. Entin-Wohlman, “Dc spin generation by junctions with ac
driven spin-orbit interaction,” arXiv:1903.03321, March 2019.

[70] S.-F. Zhang and W. Zhu, “The limit spin current in a time-dependent rashba spin-
orbit coupling system,” Journal of physics. Condensed matter : an Institute of
Physics journal, vol. 25, p. 075302, 01 2013.

[71] A. López, Z. Z. Sun, and J. Schliemann, “Floquet spin states in graphene under
ac-driven spin-orbit interaction,” Phys. Rev. B, vol. 85, p. 205428, May 2012.

[72] M. Berdakin, E. A. Rodríguez-Mena, and L. E. F. Foa Torres, “Spin-polarized
tunable photocurrents,” Nano Letters, vol. 21, no. 7, pp. 3177–3183, 2021. PMID:
33819037.

76



[73] B. Berche, N. Bolívar, A. López, and E. Medina, “Gauge transformations of
spin-orbit interactions in graphene,” The European Physical Journal B, vol. 88,
p. 025004, Aug 2015.

[74] I. Adagideli, G. E. W. Bauer, and B. I. Halperin, “Detection of current-induced
spins by ferromagnetic contacts,” Phys. Rev. Lett., vol. 97, p. 256601, Dec 2006.

[75] I. Adagideli, M. Scheid, M. Wimmer, G. Bauer, and K. Richter, “Extracting
current-induced spins: Spin boundary conditions at narrow hall contacts,” New
Journal of Physics, vol. 9, 09 2007.

[76] L. Onsager, “Reciprocal relations in irreversible processes. ii.,” Phys. Rev., vol. 38,
pp. 2265–2279, Dec 1931.

[77] D. J. Thouless, “Quantization of particle transport,” Phys. Rev. B, vol. 27, pp. 6083–
6087, May 1983.

[78] M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quan-
tum electron pump,” Science, vol. 283, no. 5409, pp. 1905–1908, 1999.

[79] J. E. Avron, A. Raveh, and B. Zur, “Adiabatic quantum transport in multiply con-
nected systems,” Rev. Mod. Phys., vol. 60, pp. 873–915, Oct 1988.

[80] F. Zhou, B. Spivak, and B. Altshuler, “Mesoscopic mechanism of adiabatic charge
transport,” Phys. Rev. Lett., vol. 82, pp. 608–611, Jan 1999.

[81] S.-L. Zhu and Z. D. Wang, “Charge pumping in a quantum wire driven by a series
of local time-periodic potentials,” Phys. Rev. B, vol. 65, p. 155313, Mar 2002.

[82] I. L. Aleiner and A. V. Andreev, “Adiabatic charge pumping in almost open dots,”
Phys. Rev. Lett., vol. 81, pp. 1286–1289, Aug 1998.

[83] J. E. Avron, A. Elgart, G. M. Graf, and L. Sadun, “Geometry, statistics, and asymp-
totics of quantum pumps,” Phys. Rev. B, vol. 62, pp. R10618–R10621, Oct 2000.

[84] D. Cohen, “Quantum pumping in closed systems, adiabatic transport, and the kubo
formula,” Phys. Rev. B, vol. 68, p. 155303, Oct 2003.

[85] F. Zhou, B. Spivak, and B. Altshuler, “Mesoscopic mechanism of adiabatic charge
transport,” Phys. Rev. Lett., vol. 82, pp. 608–611, Jan 1999.

[86] M. L. Polianski and P. W. Brouwer, “Pumped current and voltage for an adiabatic
quantum pump,” Phys. Rev. B, vol. 64, p. 075304, Jul 2001.

[87] C. Tang and C. Chu, “Nonadiabatic quantum pumping in mesoscopic nanostruc-
tures,” Solid State Communications, vol. 120, no. 9, pp. 353–357, 2001.

[88] B. Wang, J. Wang, and H. Guo, “Parametric pumping at finite frequency,” Phys.
Rev. B, vol. 65, p. 073306, Jan 2002.

[89] A. Soori and D. Sen, “Nonadiabatic charge pumping by oscillating potentials in
one dimension: Results for infinite system and finite ring,” Phys. Rev. B, vol. 82,
p. 115432, Sep 2010.

77



[90] P. W. Brouwer, “Scattering approach to parametric pumping,” Phys. Rev. B, vol. 58,
pp. R10135–R10138, Oct 1998.

[91] S. W. Kim, “Floquet scattering in parametric electron pumps,” Phys. Rev. B, vol. 66,
p. 235304, Dec 2002.

[92] S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental real-
ization of a quantum spin pump,” Phys. Rev. Lett., vol. 91, p. 258301, Dec 2003.

[93] E. R. Mucciolo, C. Chamon, and C. M. Marcus, “Adiabatic quantum pump of spin-
polarized current,” Phys. Rev. Lett., vol. 89, p. 146802, Sep 2002.

[94] C. Bena and L. Balents, “Spin pumping and magnetization dynamics in
ferromagnet–luttinger liquid junctions,” Phys. Rev. B, vol. 70, p. 245318, Dec 2004.

[95] E. Faizabadi, “Charge and spin pumping in quantum wires by a time-dependent
periodic magnetic field,” Phys. Rev. B, vol. 76, p. 075307, Aug 2007.

[96] E. H. Fyhn and J. Linder, “Spin-orbit pumping,” 2021.

[97] A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, “Spin-current generation
and detection in the presence of an ac gate,” Phys. Rev. B, vol. 68, p. 233307, 2003.

[98] Y. Avishai, D. Cohen, and N. Nagaosa, “Purely electric spin pumping in one di-
mension,” Phys. Rev. Lett., vol. 104, p. 196601, May 2010.

[99] C. Li, Y. Yu, Y. Wei, and J. Wang, “Nonadiabatic quantum spin pump: Interplay be-
tween spatial interference and photon-assisted tunneling in two-dimensional rashba
systems,” Phys. Rev. B, vol. 75, p. 035312, Jan 2007.

[100] C.-H. Lin, C.-S. Tang, and Y.-C. Chang, “Nonmagnetic control of spin flow: Gen-
eration of pure spin current in a rashba-dresselhaus quantum channel,” Phys. Rev.
B, vol. 78, p. 245312, Dec 2008.

[101] H. Pan and Y. Zhao, “Spin pumping and spin filtering in double quantum dots
with time-dependent spin-orbit interactions,” Journal of Applied Physics, vol. 111,
no. 8, p. 083703, 2012.

[102] Y.-C. Xiao, W.-Y. Deng, W.-J. Deng, R. Zhu, and R.-Q. Wang, “Quantum pump in
a system with both rashba and dresselhaus spin–orbit couplings,” Physics Letters
A, vol. 377, no. 10, pp. 817–821, 2013.

[103] F. Romeo and R. Citro, “Adiabatic pumping in a double quantum dot structure with
strong spin-orbit interaction,” Phys. Rev. B, vol. 80, p. 165311, Oct 2009.

[104] M. Yama, M. Tatsuno, T. Kato, and M. Matsuo, “Spin pumping of two-dimensional
electron gas with rashba and dresselhaus spin-orbit interactions,” Phys. Rev. B,
vol. 104, p. 054410, Aug 2021.
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