
MULTIMEDIA TRAFFIC CLASSIFICATION BASED ON
DISCRETE TIME MARKOV CHAINS

by
OGUZ KAAN KOKSAL

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Electronics Engineering

Sabancı University
January 2023

MULTIMEDIA TRAFFIC CLASSIFICATION BASED ON
DISCRETE TIME MARKOV CHAINS

Approved by:

Assist. Prof. HÜSEYİN ÖZKAN .
(Thesis Advisor)

Prof. ÖZGÜR GÜRBÜZ .
(Thesis Co-advisor)

Prof. AYŞE BERRİN YANIKOĞLU .

Prof. ÖZGÜR ERÇETİN .

Assist. Prof. H. BİRKAN YILMAZ .

Date of Approval: January 26, 2023

Oguz Kaan Koksal 2023 ©

All Rights Reserved

ABSTRACT

MULTIMEDIA TRAFFIC CLASSIFICATION BASED ON DISCRETE TIME
MARKOV CHAINS

OĞUZ KAAN KÖKSAL

Electronics Engineering M.Sc. THESIS, January 2023

Thesis Supervisor: Assist. Prof. Dr. Hüseyin Özkan
Co-advisor: Prof. Dr. Özgür Gürbüz

Keywords: Wi-fi Networks, Multimedia, Markov Chains, Machine learning, ECOC,
Classification

Traffic prioritization has recently become critical for home Wi-Fi networks due to the
increased number of connected devices and wide variety of applications. While some
of these applications are delay sensitive, some have high throughput requirements.
Therefore, managing different traffic types adaptively with regard to their require-
ments is crucial for a better Quality of Experience (QoE). Traffic type classification
can be used to that end for detecting the specific requirements and enhance the Qual-
ity of Services (QoS). In the scope of the thesis, we propose to model the multimedia
traffic flow as a stochastic discrete-time Markov chain (DTMC) in order to take into
account the strong sequentiality (i.e. the dependencies across the data instances) in
the traffic flow observations. Within that approach four novel data-driven classifica-
tion schemes are presented. The first one is k Nearest Markov Components (kNMC)
which relies on a Markov modeling of bit-rate. kNMC considers a mixture of Markov
components and classifies by using a log-likelihood-based distance between train and
test instances. The second classifier is kNMC-3D which applies the same technique
with kNMC but focuses on the number of packets and inter-arrival times besides
bit-rate. The other two classifiers exploit Error Correcting Output Codes (ECOC)
for solving the multiclass problem with multiple binary kNMC-3D classifiers. The
third classification scheme namely Confusion Based ECOC (CB-ECOC) proposes a
custom-designed ECOC matrix which addresses the errors of kNMC-3D. The fourth
classifier named as 2-Level ECOC, adds another classification level to CB-ECOC

iv

for resolving the Skype identification issue of CB-ECOC. Considering multimedia
data from popular applications such as Youtube, Netflix, Skype, Whatsapp, and
Spotify from our introduced dataset, average traffic type classification accuracies
are obtained up to 96.15% at the application level. Considering the given appli-
cations in different traffic categories, such as, Video on Demand (VOD), Sharing
and Media Screening (S&MS), Video Live Streaming (VLS), and Teleconferencing
(TC), average classification accuracies up to 97.75% are reached at the category
level. The presented classifiers are also evaluated with the benchmark dataset from
the literature and average classification accuracies are observed up to 97.75% at the
application level, and up to 99.59% at the category level. In our extensive experi-
ments, we observed that the introduced classifiers are highly accurate as compared
to prominent competitors such as Support Vector Machines (SVM), Random Forest
(RF), autoencoders and problem-independent ECOC models, e.g, One Versus One
(OVO) and One Versus All (OVA).

v

ÖZET

AYRIK ZAMANLI MARKOV ZINCIRLERINI BAZ ALAN MULTIMEDYA
TRAFIK SINIFLANDIRMASI

OĞUZ KAAN KÖKSAL

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, Ocak 2023

Tez Danışmanı: Assist. Prof. Dr. Hüseyin Özkan
İkinci Danışman: Prof. Dr. Özgür Gürbüz

Anahtar Kelimeler: Wi-fi Ağları, Multimedia, Markov Zincileri, Makina
Öğrenmesi, Hata Düzeltme Çıktı Kodları, Sınıflandırma

Son yıllarda evlerde sayıları artan ağa bağlı cihazların ve kullanılan Skype ,Net-
flix gibi aplikasyonların yaygınlaşması nedeniyle, Wi-fi ağlarında trafiğin öncelik-
lendirilmesi büyük önem kazandı. Bu uygulamaların bazıları gecikmeye duyarlı
iken bazıları ise yüksek veri iletim hızına gerek duymaktadır. Bu yüzden farklı
uygulamalardan gelen trafik tiplerini yönetirken trafiklerin tiplerine özel gereksin-
imleri dikkate almak kullanıcı tecrübesi açısından önemlidir. Dolayısıyla trafik tip-
lerinin sınıflandırılması, bu gereksinimlerin saptanması ve servis kalitesinin (QoS)
artırılması için kullanılabilir. Bu tez kapsamında biz ardı ardına gelen trafik
paketlerinin arasındaki güçlü bağlantıları dikkate almak için multimedya trafik
akışlarının stokastik ayrık zamanlı Markov zincirleri olarak modellenmesini önerdik.
Bu yaklaşımla çalışan dört yeni veri tabanlı sınıflandırma şeması sunduk. Bir-
inci sınıflandırıcı olan ve bit hızının Markov modellemesine dayanan “En Yakın k
Markov Bileşeni Sınıflandırıcısı" (kNMC), Markov bileşenlerinin karışımını dikkate
alır ve sınıflandırmada eğitim ve test verilerinin arasındaki olabilirlik oranının logar-
itmasını baz alan bir uzaklık ölçümü kullanır. İkinci sınıflandırıcı olan “Üç Boyutlu
En Yakın k Markov Bileşeni Sınıflandırıcısı" (kNMC-3D) birinci sınıflandırıcı ile
aynı yöntemleri kullanır ama bit hızının yanında paket sayısı ve peş peşe gelen
paketler arası sürelerin ortalamasını da modeline dahil eder. Diğer iki sınıflandırıcı
tanıtılan çok sınıflı problemi çözmek için Hata Düzeltme Çıktı Kodlarını (ECOC)
çok sayıda ikili kNMC-3D’yle beraber kullanır. Hata Matrisi Odaklı-ECOC (CB-

vi

ECOC) olarak çağrılan üçüncü sınıflandırıcı, kNMC-3D’nin hatalarını düzeltmek
için özel olarak tasarlanmış bir ECOC matrisi sunar. Dördüncü sınıflandırıcı olan
2-Seviye-ECOC, üçüncü sınıflandırıcının Skype paketlerinin belirlenmesi konusun-
daki hatalarını çözmek amacıyla ilave bir sınıflandırma seviyesi ekler. Youtube,
Netflix, Skype, Whatsapp, Spotify gibi uygulamaların verilerini içeren bir veri seti
topladık. Yaptığımız deneylerde %96.15’e kadar doğruluk oranları elde edilmiştir.
Ayrıca bahsedilen aplikasyonların Talep Üzerine Video (VOD), Paylaşım ve Medya
Akışı (S&MS), Canlı Video Akışı (VLS) ve Telekonferans (TC) gibi trafik categorileri
de sınıflandırılmış ve dört sınıflandırıcı ile %97.75 doğruluk değerlerine ulaşılmıştır.
Tanıtılan sınıflandırıcılar ayrıca litaretürden bir kıyaslama veri kümesi ile değer-
lendirilmiş ve aplikasyon seviyesinde %97.75 doğruluk değeri, kategori seviyesinde
%99.59 doğruluk seviyei gözlemlenmiştir. Tanıtılan sınıflandırıcıların; Destek Vek-
tör Makinaları (SVM), Rastgele Orman (RF), Oto Kodlayıcılar (AE) ve problemden
bağımsız ECOC metotları olan Bir vs Bir (OVO), Bir vs Hepsi (OVA) gibi rakip
algoritmalar ile karşılaştırıldığında daha yüksek başarı oranı ile çalıştığı gözlemlen-
miştir.

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

1. INTRODUCTION . 1
1.1. Contributions and Highlights . 3
1.2. Thesis Organization . 5

2. RELATED WORK . 6

3. TRAFFIC CLASSIFICATION BASED ON DISCRETE TIME
MARKOV CHAINS . 11
3.1. Dataset Description . 11
3.2. Problem Description . 15
3.3. Markov Based Traffic Classifiers . 16

3.3.1. k Nearest Markov Components (kNMC) . 16
3.3.2. Three Dimensional k Nearest Markov Components (kNMC-3D) 18

4. ECOC BASED kNMC-3D CLASSIFIERS . 22
4.1. Problem-Independent ECOC Schemes . 24

4.1.1. One Versus All (OVA) . 25
4.1.2. One Versus One (OVO) . 25

4.2. Problem-Dependent Confusion Based ECOC Schemes 26
4.2.1. Confusion Based ECOC Schemes (CB-ECOC) 27
4.2.2. Two-Level ECOC Scheme (2L-ECOC) . 30

5. EXPERIMENTAL RESULTS . 32
5.1. Experimantal Setup and Paramater Optimization . 32
5.2. Performance of DTMC Based Classifiers . 36
5.3. Performance of ECOC Based Classifiers . 46
5.4. Complexity Analysis . 48

viii

6. CONCLUSIONS . 53

7. BIBLIOGRAPHY . 55

ix

LIST OF TABLES

Table 3.1. Feature analysis based on 300 minutes of traffic flow per appli-
cation . 14

Table 4.1. Confusion at the application level (Classifier: kNMC-3D) 27
Table 4.2. Matrix of Generic Sub-Classifiers (Mg) . 28
Table 4.3. Matrix of Specific Sub-Classifiers (Ms). 30

Table 5.1. Overall average multiclass classification accuracy (%) for opti-
mizing k, where fs = 50 Hz for both classifiers, Ns = 8 for kNMC and
Ns = 12 for kNMC-3D . 35

Table 5.2. Overall average multiclass classification accuracy (%) at the
application level in comparison to various state-of-the-art classifiers
with Markov parameters as features . 37

Table 5.3. Overall average multiclass classification accuracy (%) at the ap-
plication level for various state-of-the-art classifiers, using the statis-
tics of packet size, number of packets and inter-arrival time. 38

Table 5.4. Average classification accuracy ± standard deviations (%) per
each application and category for kNMC, SVM, RF and AE+RF
classifiers . 40

Table 5.5. Average classification accuracy per each application for KNMC-
3D, KNMC, SVM, Random Forest and AE+RF classifiers on our
dataset. kNMC-3D is presented with Ns = 12, fs = 50 Hz, k = 3.
kNMC is presented with Ns = 8, fs = 50 Hz, k = 5. 40

Table 5.6. Average classification accuracy per each category for KNMC-
3D, KNMC, SVM, Random Forest and AE+RF classifiers on our
dataset. kNMC-3D is presented with Ns = 12, fs = 50 Hz, k = 3.
kNMC is presented with Ns = 8, fs = 50 Hz, k = 5. 41

Table 5.7. Average classification accuracy ± standard deviations (%) per
each application and category for kNMC, SVM, RF and AE+RF
classifiers on the ISCXVPN2016 dataset. 42

x

Table 5.8. Confusion at the application level on the ISCXVPN2016
dataset (Classifier: kNMC) . 43

Table 5.9. Confusion at the category level on the ISCXVPN2016 dataset
(Classifier: kNMC) . 43

Table 5.10. Confusion at the application level on the ISCXVPN dataset
(Classifier: kNMC-3D) . 45

Table 5.11. Average classification accuracy ± standard deviations (%) per
each application for all proposed classifiers on our dataset 46

Table 5.12. Average classification accuracy ± standard deviations (%) per
each category for all proposed classifiers on our dataset 47

Table 5.13. Confusion at the application level on the ISCXVPN2016
dataset (Classifier: CB-ECOC-HD). 49

Table 5.14. Confusion at the application level on the ISCXVPN2016
dataset (Classifier: CB-ECOC-SD) . 49

Table 5.15. Confusion at the application level on the ISCXVPN2016
dataset (Classifier: 2L-ECOC) . 50

Table 5.16. Complexity analysis for the proposed classifiers in test time 50

xi

LIST OF FIGURES

Figure 1.1. Envisioned home networking scenario with the proposed traffic
classification to identify applications both category-wise and individ-
ually . 2

Figure 3.1. Data collection setup, multimedia categories and applications . 12
Figure 3.2. Instantaneous traffic rate examples for various applications . . . 13
Figure 3.3. Min-max quantization . 16
Figure 3.4. Feature Importances in kNMC-3D Model . 19
Figure 3.5. 3D clustering via k-means . 20

Figure 4.1. Two-level ECOC block diagram . 30

Figure 5.1. Average test accuracies for different sampling frequencies
where Ns = 8 and k = 3, Ns = 12 and k = 5 in kNMC and kNMC-3D,
respectively . 34

Figure 5.2. Average test accuracies for different number of states where
fs = 50 and k = 3, fs = 50 and k = 5 in kNMC and kNMC-3D, re-
spectively . 35

Figure 5.3. Overall average multiclass classification accuracy of the
kNMC-3D classifier together with the benchmark methods is pre-
sented both application and category-wise on ISCXVPN and our
dataset. kNMC-3D is presented with Ns = 14, fs = 50 Hz, k = 7. 44

Figure 5.4. Overall average multiclass classification accuracies of the pro-
posed classifiers for both application and category wise on the IS-
CXVPN2016 dataset . 48

xii

1. INTRODUCTION

Internet is composed of different types of multimedia traffic and a significant por-
tion belongs to video applications, such as video-on-demand and streaming video,
each having its own characteristics and Quality of Service (QoS) requirements [1].
In order to provide the best end-to-end (ETE) user experience, network protocols
and components should act according to the type of traffic while also considering
the characteristics and QoS requirements. Although the traffic sources are well-
aware of the type of traffic they generate, this information is often lost afterwards
in the network due to the lack of support from the applications and policies of
the autonomous systems forming Internet [2, 3]. Consequently, severe performance
degradation occurs for especially traffic with stringent QoS requirements. There-
fore, it is of paramount importance to be aware of the traffic type for any network
component and at any time.

One such critical component is the wireless last-hop, for which one of the most
widespread access technology is WiFi. Despite being the final step of a possibly
long network path, if mishandled, the wireless last-hop can become a major bottle-
neck and introduce huge packet delays and jitter (i.e., delay variations) on the overall
traffic [4]. The QoS amendment of WiFi (2005), namely IEEE 802.11e, offers four
access categories (AC) for WiFi transmissions: video (AC_VI), voice (AC_VO),
best effort (AC_BE), and background (AC_BK). [5]. By assigning appropriate
ACs to the traffic flows, a prioritization mechanism can be realized in the wireless
last-hop by changing the random access parameters (i.e., deference and backoff pe-
riods) for the CSMA/CA-based standard medium access control (MAC) layer, as
in [6]. Alternatively, the newest generation of WiFi standard family, namely IEEE
802.11ax, offers Orthogonal Frequency Division Multiple Access (OFDMA)-based
scheduled access, where an access point (AP) is capable of scheduling transmissions
of individual stations (STAs) while considering their traffic characteristics and QoS
requirements [7]. In both access schemes, the wireless channel is allocated with re-
gards to the traffic types in order to achieve the desired quality of experience (QoE)
and best user experience [8]. However, and importantly, both require the MAC layer

1

Figure 1.1 Envisioned home networking scenario with the proposed traffic classifi-
cation to identify applications both category-wise and individually

of the WiFi interface to be aware of the type of the traffic that passes through, which
requires reliable and accurate traffic classification schemes motivating the presented
work.

In terms of traffic categorization, features that are obtained from the flow and rate
signal—represented as a time series of instantaneous traffic rates. However, the con-
siderable sequentiality (statistical dependency across data instances) in the traffic
observations is a significant characteristic of the multimedia traffic categorization
problem. Due to significant correlations, for example, a relatively high instanta-
neous rate is commonly followed by another high rate in the following time step,
but one does not frequently notice abrupt changes between high and low rates in an
uncorrelated fashion. On the other hand, the current methods often extract features
from a specified window of traffic flow observations as a whole, such as the aver-
age inter-arrival periods of the packets. they disregard sequentiality. The biggest
negative effect of that situation is information loss coming from consecutive packet
relations.

To this end, in this thesis, DTMC-based four classification schemes are proposed
for identifying various popular video and social media applications such as Youtube,
Youtube-live, Whatsapp, Spotify, Netflix, Twitch and Skype in a network scenario,
such as Figure 1.1. Considered applications can be grouped into different traffic

2

categories, namely, Video on Demand (VOD), Video Live Streaming (VLS), Sharing
and Media Streaming (S&MS) and Teleconferencing (TC), which correspond to the
aforementioned access categories of Wi-fi in Figure 1.1,

The first classifier of the thesis which is also the basis for others is k Nearest Markov
Components(kNMC). The main idea behind kNMC is DTMC modeling of the aggre-
gated number of bits in certain periods. After the aggregation process, whole chunk
of number of bits data is quantized into some fixed levels that represent the states
of the first-order DTMC. Within DTMC model, the local approach which considers
the mixture of Markov components define kNMC. The second proposed classifier is
kNMC-3D which is three-dimensional version of kNMC as its name implies. While
kNMC use just number of bits info in the stochastic model, kNMC-3D utilizes,
the number of packets and inter-arrival times besides the number of bits The other
difference of kNMC-3D from kNMC is the usage of k-means as a quantizer. The
other two classifiers are based on Error Correcting Output Codes (ECOC) classi-
fiers which combine multiple binary classifiers to solve the given multiclass problem.
The third classifier is the Confusion-Based ECOC Classifier (CB-ECOC) which uses
multiple binary KNMC-3D’s. CB-ECOC proposed a unique matrix that includes
twelve sub-classifiers that focus on the points where multiclass kNMC-3D fails. The
last classifier is the Two-Level ECOC Classifier (2L-ECOC). The main idea behind
2L-ECOC is that overall predictions are decided at the end of two-level classifica-
tion. In the first level, CB-ECOC is operated and in the second level extra binary
classifier focuses on the Skype identification problem of CB-ECOC. Adding an extra
classification level is preferred rather than extending the ECOC matrix of CB-ECOC
more because the solidity of the ECOC matrix could be affected in a bad way. In
summary, all four proposed classification schemes are based on DTMC models of
traffic flows. While the first classifier, kNMC, is a base for the other three classifiers,
kNMC-3D, CB-ECOC, 2L-ECOC, improve kNMC with different approaches.

1.1 Contributions and Highlights

Main contributions and highlights of the thesis can be listed as follows.

• We propose to model the traffic flow features such as bitrate, number of packets
and average inter-arrival times with a stochastic discrete-time Markov chain
(DTMC) after quantization. This yields an observation/likelihood model as a

3

mixture of Markov components, which is experimentally highly effective.

• Based on the introduced DTMC modeling with only the bitrate feature, a novel
local classifier namely kNMC (k nearest Markov components) is presented.
By using three traffic features, bitrate, number of packets, and average inter-
arrival times in the model, kNMC is extended to kNMC-Three Dimensional
(kNMC-3D)

• Two novel error-correcting output codes (ECOC) based classifiers, which ad-
dress the errors of kNMC-3D classifiers by observing confusion matrix, are
proposed. First one named as Confusion-Based ECOC (CB-ECOC), mainly
uses a special ECOC matrix designed with rule-based inference from the con-
fusion of kNMC3D. The other classifier, namely two-level ECOC (2L-ECOC),
adds another classification level for resolving Skype identification issues of
CB-ECOC.

• In our experiments with the two datasets, the proposed kNMC classifier is
observed to be highly accurate, achieving 85.71% at the application level and
89.11% at the category level with our dataset providing 78.61% accuracy at the
application level and 98.24% accuracy at the category level with the benchmark
dataset.

• Experiments with our dataset show that 84.98% accuracy at the application
level and 91.13% accuracy at the category level are reached with kNMC-3D.
Additionally, 90.73% accuracy at the application level and 99.04% accuracy at
the category level are observed on the benchmark dataset.

• In addition, our results indicate the superiority of the proposed kNMC and
kNMC-3D over the state-of-the-art methods such as SVM, random forest and
autoencoder.

• With the proposed CB-ECOC classifier, on our dataset, 92.39% accuracy is
achieved at the application level and 92.8% accuracy is observed at the cat-
egory level. On the other hand with CB-ECOC on the benchmark dataset,
accuracy values of 91.36% and 99.09% are observed at the application and
category level, respectively.

• With the proposed 2L-ECOC classifier, on our dataset, 96.15% accuracy is
achieved at the application level and 97.75% accuracy is observed at the cat-
egory level. On the other hand with CB-ECOC on the benchmark dataset,
accuracy values of 96.17% and 99.59% are observed at the application and
category level, respectively.

4

• Extended experiments show that proposed ECOC-based classifiers provide bet-
ter performance as compared to problem-independent ECOC schemes namely,
One versus One (OVO) and One versus All (OVA).

• We emphasize that accurate multimedia traffic classification into applications
and their categories is crucial, since then the underlying MAC level mecha-
nisms (e.g., IEEE 802.11e or IEEE 802.11ax for WiFi) can be facilitated to
ensure the required QoS. The presented approach can be used for this pur-
pose successfully (as demonstrated in our performance evaluations) in not only
WiFi but also other wireless last-hop alternatives as well as wired networks.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 a comprehensive sum-
mary of the related work is provided, comparing existing solutions with the proposed
schemes. In Chapter 3, the DTMC modeling of network traffic and proposed clas-
sifiers that focus on DTMC modeling are presented. The details of ECOC-base
classification are introduced in Chapter 4. In Chapter 5, experimental results with
different datasets are provided, comparing proposed classifiers to prominent schemes
from the literature. Chapter 6 presents our conclusions.

5

2. RELATED WORK

Previous work on traffic classification typically employs one of the four approaches:
handling of packet tags, mapping packet address information, deep packet inspec-
tion (DPI), and analyzing packet flows with various machine learning techniques
[9, 10, 11]. The ones of handling packet tags usually focus on the DiffServ Code
Point (DSCP) tags within the IP packet headers. With the recent WebRTC protocol
effort being supported by the IETF recently, the usage of DSCP tags has gained
importance. In this method, the applications are expected to tag the packets at
generation according to respective QoS classes [12, 13]. Then, the network com-
ponents utilize DSCP tags in their traffic prioritization decisions. For the specific
case of the wireless last-hop with WiFi, the DSCP tags are mapped into the 802.11e
ACs [14, 15]. However, DSCP tags are set in only a small portion (2− 8.5%) of
the overall Internet traffic [2, 3]. Studies show that often times, the DSCP tags
are remarked and zeroed via the routers of the intermediate ASs along the path
between the source and destination nodes [16, 17]. Therefore, usage of DSCP tags
for a reliable method of traffic classification becomes very limited.

Classification by mapping packet address information is generally conducted by
using the transport layer port addresses (i.e. the well-known port numbers) and
the network layer IP addresses of the packets. Among the two, port addresses
could be used to differentiate between packets belonging to different internet services
based on the Internet Assigned Numbers Authority (IANA)-registered ports [18].
However, since many modern applications such as Netflix and YouTube use the same
HTTP protocol at the application layer with the NAT and PAT mechanisms, the
applicability of this method is restricted. Recently, services such as Microsoft Skype
and Teams have offered new application protocol interfaces (APIs) for querying the
IP and port address information of their servers [19]. By using these APIs, packet
streams can be checked if they belong to such a service. While being quite useful for
the services offering such APIs, the usefulness of this method is limited, as it does
not apply to general traffic classification and it can only be used in the framework
of certain services.

6

DPI methods analyze the contents of each packet to categorize according to the
application specific payloads. These methods are generally powerful in classifying
traffic at the packet level granularity with the cost of high computational complexity
[20]. However, the utilization and effectiveness of DPI methods are generally deemed
to be low due to i) the widespread usage of payload encryption in internet packets
as well as ii) the privacy regulations limiting Internet Service Providers’ ability to
conduct such detailed level of inspection over packets without customer consent [9].

Machine learning based techniques, on the other hand, analyze traffic flows and gen-
erate various descriptive features like packet size, packet inter-arrival time, packet
transmission, etc. Various classification schemes are then used with such features
to recognize the traffic type [9]. In [21], random trees and C4.5 decision trees are
used to differentiate Skype and non-Skype traffic. Video, audio and control flows
composing a video streaming application are classified in [22] via support vector
machines. Various background and multimedia applications are classified with k-
nearest neighbor (kNN), J48, and random forests in [23]. A more recent work in
[24] considers popular video streaming applications, namely Netflix and Youtube,
employing aforementioned approaches. The traffic flow is chunked into small sub-
flows in [25] and features of these sub-flows are used by the two naive Bayes and
C4.5 decision trees based classifiers over gaming and VoIP traffic. This approach
has been shown to provide decisions that are timely and also it does not impact
the accuracy considerably, as opposed to the alternative of analyzing the entire flow
at once without chunking. Similar to the sub-flow approach, the mobile encrypted
application traffic flow is decomposed into the service bursts (SBs) in [26] and [27]
with a pre-defined burst threshold. In [26], the bitflow features extracted from SBs
are used by classifier fusion techniques which combine different base classifiers. In
[27], various statistical features are generated from bursts and used by six classifica-
tion approaches which are either support vector machines (SVM) or random forest
based. Even though such classification approaches provide timeliness in both [26]
and [27], the decomposition or burstification process requires manual inspection of
the port and IP numbers. [28] combines three different known classifiers to into a
new classifier named as Signature Static Port Classifier (SSPC) to classify online
games. 91% average accuracy is achieved in two-stage classification, (one online and
other one offline). In [29], the problem of port- based classifiers is addressed via a
machine learning-based algorithm which uses inter-arrival time. In the specific case
of a WiFi-based wireless last hop, MAC layer features (e.g., modulation and cod-
ing scheme or short ACK count) can be used for traffic classification [30]. In [31],
a Markov chain of the message types of secure socket layer (SSL) traffic directly
models the underlying stochastic process rather than indirectly extracting hand-

7

crafted features from the traffic. Then, the classification follows in a probabilistic
framework.

A comprehensive analysis of deep learning (DL) approaches for multimedia traffic
classification is provided in [32], where autoencoders, convolutional neural networks
and recurrent neural networks (RNN) are compared. A hybrid DL model in [33] uti-
lizes a stacked autoencoder followed by a softmax regression layer, where the classifi-
cation performance is demonstrated based on the Moore dataset [34] that consists of
248 flow features (extracted from TCP flows of 10 different application categories:
Bulk, Database, Interactive, Mail, Services, WWW, P2P, Attack, Games, Multi-
media). The autoencoder learns from all available features whereas the regression
layer realizes the classification with the learned features, achieving a classification
performance higher than the alternative of support vector machines in their com-
parisons. An improvement over this method of [33] is achieved in [35] by a deep
neural network with additional batch normalization and dropout layers. A different
theme is presented in [36] where the goal is to investigate big data enabled and DL
based classification of encrypted mobile traffic and, correspondingly, to provide an
experimental setup for analysing the trade-offs among completion time, deployment
costs, and classification performance.

Features that are derived from the flow and rate signal (as a time series of instan-
taneous traffic rates, cf. Fig. 3.2 for examples) tend to perform well in traffic clas-
sification. However, an important property of the multimedia traffic classification
problem is the strong sequentiality (statistical dependency across data instances) in
the traffic observations. For instance, a relatively high instantaneous rate is typi-
cally followed in the next time step by another high rate due to strong correlations,
but one certainly does not frequently observe sudden switches between high and low
rates in an uncorrelated fashion. On the other hand, the existing methods typically
extract features, such as the average inter-arrival times of the packets, from a given
window of traffic flow observations as a whole, which disregards the valuable se-
quence information. As another example, a traffic flow that steadily downloads and
another one that sporadically downloads can have the same average, and therefore,
can be mapped to the same feature by the average packet size which would suppress
the discrimination power. In spite of the empirical evidence supporting the rate
signal-derived features, it is mostly unclear how to precisely distill the rate signal
and generate the best features while also considering the sequentiality.

For this reason, in this thesis, we opt to be agnostic and let the data decide what to
look into by directly modelling the traffic flow and rate signal as a Markov model
instead of a reduction through an indirect feature extraction. We emphasize that

8

any covariance-stationary process can be represented without losing information
(Wold decomposition [37]) by a Markov model with infinite state space and a suf-
ficiently large Markov order. Nevertheless, we consider a first order (for simplicity)
discrete-time Markov model and a finite set of states via rate quantization which
readily yields high performance in our experiments; but the generalization of our
approach to any higher order and larger space of states is straightforward. Param-
eter estimations of our resulting Markov classification schemes can be recursively
implemented computationally highly efficiently with negligible space requirements
in real time. If our first order Markov approach was not powerful enough, then
we would be increasing the order and the number of states which in turn would in-
crease the parameter complexity perhaps intractably. In this case, an RNN would be
more reasonable since it can cover high order statistical dependencies with tractable
complexity thanks to its parameter sharing across layers. However, we confidently
observe that a first order Markov is simpler than an RNN complexity-wise, and
effective, for multimedia traffic classification.

There exists numerous examples of Markov models for time series analysis, in par-
ticular classification and anomaly detection. In [38], the mistakes of a first stage
classifier for windows of a time series are corrected by using a hidden Markov model
(HMM). In this example, the first stage does not account for the temporal informa-
tion whereas the second stage trains an HMM where the Viterbi decoding provides
improvements in accuracy as it finds the most likely sequence (but not the sequence
of most likely individual states unlike the first stage). An HMM is proposed in [39]
as a framework for anomaly detection in multi-variate time series data. The multi-
variate data is first transformed to a sequence of scalars for which two unknown
underlying Markov states (normal or abnormal) are assumed. Then, Viterbi decod-
ing after training an HMM recognizes the anomalies based on the sequentiality. For
video identification, the sequence of foreground labels are modeled as Markov in
[32], but not hidden as they can be directly identified by background subtraction,
and then several Markov based features are offered for anomaly detection. Similarly,
a Markov model with observable states is considered in [40] for anomaly detection,
where the Markov states are obtained by a direct discretization of the observed
amplitude values.

Our modeling of a continuous time stochastic process, the traffic flow rate signal in
this thesis, in a first order and finite state Markov manner is inspired by the work
[40], which -however- considers a completely different goal of online Neyman-Pearson
anomaly detection with false positive rate controllability. In this sense, modelling
the traffic flow rate signal enables us to fully exploit the rate information in a unique
fashion, and greatly distinguishes our technique from the existing literature as well

9

as the work [31] which only considers a Markov sequence of message types and dis-
regards the rate. A further uniqueness of our method is that we carefully fine-tune
the Markov model (with extensive and proper cross-validations) to the multimedia
traffic classification problem with the right complexity which is extremely impor-
tant. Namely, the number of Markov states or quantization levels, Markov order,
the frequency of sampling from the traffic flow and finally the boundaries of the
quantization levels are all carefully investigated in our presented work. In addition,
we do not require any tag information or any API lookup, and use only unencrypted
parts of the packets to preserve user privacy. On the other hand, most ML based
studies generate features based on the entire traffic flow and thus largely reduce the
timeliness which is especially critical for delay-sensitive and live applications. In
contrast, our presented technique is specifically designed to provide timeliness with
limited latency.

10

3. TRAFFIC CLASSIFICATION BASED ON DISCRETE TIME

MARKOV CHAINS

In this chapter, the DTMC modeling of the multimedia traffic data is explained
in detail. First, a description and collection of our dataset are provided and our
DTMC approach is presented via the analysis of network data, in particular the
bitrate signal. This is followed by the construction and detailed discussion of the
proposed Markov-based classifiers.

3.1 Dataset Description

On actual End to End connections with a Wi-Fi network as the final hop, we inves-
tigate a variety of multimedia applications. The network is set up as illustrated in
Figure 3.1, with two WiFi STAs acting as clients executing the applications. STAs
connect to the Internet through a home-network-grade WiFi AP, and the monitoring
device captures packets using the Wireshark [41]. STAs replicate the behavior of an
indoor WiFi user by moving around in a simple nomadic motion. In order to re-
duce the effect of specific traffic management, ETE connections are considered over
two different Internet Service Providers (ISPs), i.e., some traffic flows are captured
while the AP is connected through the first ISP, and the rest of the traffic flows are
captured while the AP is connected through the second ISP.

We focus on a total of seven applications corresponding to four categories. Five of
them are video-heavy applications in three categories as shown in Fig 3.1: Netflix
and YouTube representing the VOD category, YouTube Live and Twitch forming the
VLS category, and Skype representing the TC category. To increase the diversity of
traffic flows and traffic data, we also consider two non-video multimedia applications
Spotify and WhatsApp, and a fourth category S&MS. During the process of data
collection, two user devices (clients), which are connected to the Internet via the AP

11

Figure 3.1 Data collection setup, multimedia categories and applications

in a WiFi network, run different applications as the Wireshark packet analyzer tool
[41] on a third device sniffs and captures the downlink internet traffic that passes
through the AP. Note that the Wireshark tool operates at the MAC layer and -
by using the monitoring mode- captures each user’s packets separately. For each of
these seven applications, we capture 30 instances (per application) of downlink (DL)
internet traffic streamed from the server via the AP to user as well as its uplink (UL)
traffic. Each instance as a trace of the corresponding application is ten minutes long,
which yields traffic flows of 300 minutes per application in total. In other words,
only one specific application is run (for ten minutes) each time and the resulting
instance, i.e., trace, is labeled with the name of the corresponding application for
ground truth association. Also, there is a one-minute silent period between two runs
to ensure that there is no residual background traffic in switching from one run to
another. As a final step, we convert the captured packet based traffic data to flow
based rate signals for each instance separately. During this conversion, a rate sample
at time t is obtained as the total number of bits in packets between times t−∆/2
and t + ∆/2 (sec). Here, ∆ is the aggregation time for which the best choice is
observed to be 1/50 sec in our experiments. This constitutes the introduced dataset
which we have made publicly available: {ui,t, l(ui,t)}Nu

i=1, where l(ui,t) represents the
corresponding application label, Nu = 30× 7 = 210 is the number of collected rate
signals and each rate signal ui,t is of T = 600 = 60×10 seconds. Several rate signal
examples for various applications are given in Fig. 3.2. The feature analysis of the
dataset is presented in Table 3.1.

Various packet-level and flow-level features are investigated for the introduced mul-
timedia traffic dataset. These are three flow-level features, i) total traffic size, ii)
mean traffic rate and iii) DL/UL ratio, as well as three packet-level features, i) the
standard deviation of packet length, ii) mean inter-arrival time, and iii) standard

12

Figure 3.2 Instantaneous traffic rate examples for various applications

deviation of inter-arrival time, which are summarized in Table 3.1. Among these
features, total size greatly depends on the size of the video content and it cannot be
reliably used to distinguish between different traffic categories, let alone individual
applications. The DL/UL ratio is perhaps the only useful feature to distinguish TC
traffic from others. However, this ratio requires monitoring and handling of flows
in two directions and creates a dependency on these bi-directional flows, conse-
quently, increasing the implementation complexity of a classifier using this feature.
Packet-level features also have limited usefulness, since they also depend on the
transport layer mechanisms such as flow control and congestion control along the
ETE path. The mean traffic rate could be a promising feature which addresses the
overall behaviour of the traffic source while considering all parts of the ETE path
and including the effect of different video and audio codecs; however, according to
our traffic data, usefulness of mean rate also seems marginal.

Based on the above observations, we next study the instantaneous traffic rates of the
applications as a function of time. For this purpose, we consider only the DL traffic
rates, since all multimedia traffic has a DL component whereas only some of them
(e.g., TC category) have a considerable UL traffic. As seen in Fig. 3.2, different
applications exhibit different DL traffic rate patterns: The two VOD applications
have periodic burst-silence cycles with different frequencies and amplitudes. Skype
and Twitch share a pattern of oscillation over a baseline with different amplitudes.
YouTube Live traffic, albeit being a VLS application akin to Twitch, shows more
of a VOD-like behavior with a much higher frequency of bursts. As for the non-
video traffic: Spotify exhibits occasional instantaneous peaks when the music player

13

Table 3.1 Feature analysis based on 300 minutes of traffic flow per application

Application Flow Level Features Packet Level Features
Direction Total Size (Mbit) Rate µ (Mbps) RTZ DL/UL Length σ (kb) Interarrival µ (s) Interarrival σ (s)

Netflix DL 647 0.822 406 20.67 1.903 0.0144 0.395
UL 31.3 0.0388 387 0.084 0.0416 0.551

YouTube DL 635 0.880 193 41.50 4 0.0132 0.337
UL 15.3 0.0212 351 0.093 0.0761 0.772

YouTube Live DL 1450 1.86 193 36.80 4.037 0.0061 0.241
UL 39.4 0.0486 203 0.1 0.0356 0.558

Twitch DL 1080 1.56 0 14.08 1,054 0.0068 0.059
UL 76.7 0.107 0 0.077 0.0151 0.709

Spotify DL 144 0.205 469 16.60 1.749 0.514 0.788
UL 8.67 0.0123 347 0.081 0.1193 0.911

WhatsApp DL 84.23 0.1404 300 N/A 4.421 0.1974 1.357

Skype DL 1580 2.19 0 1.59 0.996 0.0037 0.251
UL 993 1.38 0 0.618 0.0049 0.091

is about to switch to the next song and therefore downloads it in a single burst;
whereas WhatsApp has a similar pattern representing the occasional download of
data and messages.

We also consider the applications’ instantaneous traffic rate curves as time-domain
signals and check various representative time-domain features over these signals
such as burst size, inter-burst arrival and return to zero (RTZ). Note that we omit
frequency-domain features of these signals on purpose, since any such feature would
require signals of longer time periods which would seriously reduce the timeliness of
any traffic classifier built on top of them. In this context, we define the burst size
by integrating instantaneous traffic rate signals over short time intervals, i.e., over
burst durations such as 0.02 or 1 second. Inter-burst time is defined as the period
between two consecutive bursts. Although the burst size-based analysis is fruitful to
differentiate VOD and S&MS traffic, the base component of the VLS and TC traffic
flows limits its use for these categories of traffic. Regarding the inter-burst time,
selection of burst size in calculating this metric appears to be quite challenging.
To remedy the shortcomings of the burst size-based analysis, we consider the RTZ
pattern of each signal that is defined as the number of times the signal returns to
zero traffic rate. As shown in Table 3.1, this feature clearly differentiates between
Twitch and Skype traffic. However, RTZ does not seem to be sufficient on its
own in differentiating all these different multimedia application categories, let alone
identifying applications.

In summary, patterns of instantaneous traffic rates as signals in time domain visually
demonstrate significant discrimination power in terms of traffic classification among
the considered applications, cf. Fig. 3.2. However, it is still not possible to identify
a set of features which classify all of the applications well. Although several features
(cf. Table 3.1) are intuitive and discriminative regarding certain applications, they
do not fully exploit the information present in the rate, because they are essentially
hand-crafted and means of dimensionality reduction to provide computational and
storage efficiency. For this reason, instead of feature extraction, we treat the rate

14

signal as a stochastic process and model it as a first order Markov with quantized
amplitudes in discrete-time. The generalization to higher order and finer quanti-
zation is straightforward. To this end, we provide the problem description in the
following and then explain our Markov modeling of traffic rates.

3.2 Problem Description

In the scope of this thesis; with the proposed dataset, seven class classification
problem is handled via supervised learning algorithms based on DTMC models of
traffic flows. To detect classes Netflix=1, YouTube=2, YouTube Live=3, Twitch=4,
Spotify=5, WhatsApp=6, Skype=7, the signal an, that includes one or more traffic
flow features is observed during period of L seconds. By looking at the traffic
patterns in training set, general behaviours of applications are caught. Then the
traffic flows with length of L that is kept in the test set, is predicted by the proposed
algorithms after training process.

We point out that the streaming application might well be non-stationary and switch
from one type, i.e., class, to another during the time course of observations. For
this reason, we opt to process the data an by a sliding window (with the length L/2
in time) and keep only L× fs samples per window for simplicity. Here, fs is the
sampling frequency in Hz, and the sampling should be understood together with
integration: the sampled value at a time is the result of the aggregation of the sizes
of all of the packets received after the last sample. We gain two benefits as the
window length L gets smaller: i) the windowed stream can be better assumed to be
from (or dominated by) a single application and ii) the timeliness of our classification
scheme improves -however- at the cost of perhaps degrading classification accuracy
(since the amount of observations also decreases) especially beyond a certain point.
In this study, although we allow switching among applications, we assume that the
user does not stream from two or more applications at the same time; or if she/he
does, then we assume that one of the streaming applications dominates the traffic.
We regard the generalization to the simultaneous streaming case as future work.

15

Figure 3.3 Min-max quantization

3.3 Markov Based Traffic Classifiers

In this section, we present two novel markov classifiers, where packet-based features
are converted to Markov chains to utilize sequentiality. Applying the same approach,
the two classifiers use different number of traffic features as their input.

3.3.1 k Nearest Markov Components (kNMC)

Multimedia traffic datasets considered in this thesis are collected from WiFi networks
via packet sniffing/capturing tools, such as Wireshark, resulting in packet-based
traffic data. The preprocessing approach described here can be applied to any
packet-based dataset.

In DTMC model, first the packet-based traffic is converted to flow-based traffic by
aggregating the total number of bits of downlink packets per a fixed flow interval, T ,
which is equal to 1/fs, fs being the sampling frequency. At the end of the conversion,
an L seconds-long packet-based downlink data becomes a flow-based data. This is
a one-dimensional (1-D) discrete signal of rates, an, whose length is equal to L×fs.
For example, if the duration, L, of the packet-based traffic is 600 seconds and the
applied sampling frequency, fs, is 10 Hz; then, the corresponding flow interval, T ,
is equal to 0.1 seconds and the length of an is 600×10 = 6000.

After these two stages, the final dataset is obtained as follows : {xn,k,yk}Nsum
k=1 ,

where xn,k is the kth window/instance of the dataset with lw × fs samples, yk is
the corresponding application label for the kth instance, and Nsum = ∑Na

i=1 Nw(i).
Here, xn is a list of Nsum elements and each element of the list is a 1−D list (list of
scalars) of length lw×fs. In addition, xn,k(a) refers to ath sample of the kth instance
of xn and xn,k(a) ∈ {1,2, · · · ,BT}, where BT is the upper bound for the number of

16

bits that can be downloaded in T seconds.

Once the preprocessed version of the dataset is obtained, each instance of xn is
modeled as a first-order DTMC, whose main parameter is the number of states, Ns.
Each sample of an instance is mapped to one of Ns state groups. When the inputs
of the mapping are one dimensional signals (e.g. rate signals), partitioning the input
space turns into creating amplitude intervals for each state group. The partitioning
method applied in [42] is k-means clustering algorithm.

Once the intervals are set, the instances of xn can be quantized into digital signals
(i.e. state sequences) and this quantized version of xn is called qn. {xn,k,yk}Nsum

k=1
becomes {qn,k,yk}Nsum

k=1 where qn,k is the kth instance of the dataset. In addition,
qn,k(a) refers to ath sample of the kth instance of qn where qn,k(a) ∈ {1,2, · · · ,Ns}.

As the final stage of DTMC modelling, an Ns×Ns state transition matrix, M is
formed for the each instance of qn. The entries of the matrix, Mk for the kth instance
can be obtained as:

Mk[i, j] = Pqn,k(a+1)|qn,k(a)(j|i),

∀(i, j) : ((i, j) ∈ {1,2, · · · ,Ns}×{1,2, · · · ,Ns}),
(3.1)

where Pqn,k(a+1)|qn,k(a)(j|i)) is the probability of observing state-j at qn,k(a + 1),
given that qn,k(a) = i. Therefore, the dataset at the end of DTMC modeling is
obtained as, {Mk,yk}Nsum

k=1 .

Based on DTMC model, in [42] three classifiers are proposed, out of which, kNMC
is the best-performing one. Since kNMC exploits the idea of nearest neighbors, first
a distance definition is required between a train instance xn,k, and a test instance
xn,i. kNMC uses a likelihood-based distance as defined below:

(3.2) d(xn,i,xn,k) ≜− log(PXn(qn,i,Mk)),

where PXn(qn,i,Mk) refers to the likelihood of Mk being generated from qn,i. Since
Mk is the state transition matrix of xn,k and qn,i is the state sequence generated
from xn,i, likelihood can be computed as:

(3.3) PXn(qn,i,Mk) ≜
lwfs−1∏

a=1
Mk[qn,i(a), qn,i(a+1)].

As stated in (3.2), the distance is defined as the negative log of the likelihood in
(3.3). The log operation prevents computational underflows and the negative sign

17

helps to keep the notion of the distance. For example, as the likelihood between two
instances increases, the distance between them should decrease.

Having defined distance, building a classifier based on this distance is straightfor-
ward: For each test instance, k-nearest train instances form a neighborhood set
based on (3.2). The decision is made by the equally-weighted votes of those k train
instances, since in [42] it is assumed that difference in distance within a neighbor-
hood is not significant enough to affect the final output of the classifier.

3.3.2 Three Dimensional k Nearest Markov Components (kNMC-3D)

As described in the previous section, kNMC uses only one feature of the downlink
traffic, which is the number of bits in a fixed interval, i.e. the bit rate. Since
the dimensionality of the feature space is one, it can also be called as kNMC-1D.
By including more features, one may increase the dimensionality to n to obtain
kNMC-nD. In this section, we introduce kNMC-3D by including two more features,
inter-arrival time and packet rate, in addition to the bit rate feature.

In this work, we propose to increase dimensionality, as more features might provide
more sensible information to identify the traffic pattern. However, this increase
should be done carefully without facing the curse of dimensionality. Therefore,
before explaining the reasoning behind the selection, we list and define the possible
candidates for flow-based features as follows:

• Bit rate (bps): Total number of bits of downlink packets per T seconds-long
flow interval.

• Inter-arrival time (s): Average inter-arrival time between the downlink
packets in the flow interval.

• Packet rate (pps): Total number of downlink packets in the flow interval.

• Downlink/uplink ratio: Ratio of the lengths of downlink and uplink packets
in the flow interval.

• Average packet length (bits): Average length of the packets in the flow
interval.

• Variance in packet length (bits): Variance in the length of the packets in
the flow interval.

18

Figure 3.4 Feature Importances in kNMC-3D Model

Since it would not be desirable to design our method as sensitive to the uplink traffic
and the individual packets of the flow, we eliminate the features of downlink/uplink
ratio and variance in packet length. On the other hand, the first three features
already cover the information from the remaining ones. For example, the average
packet rate can be calculated as the bit rate divided by the packet rate. Therefore,
in our method design, we choose to use the bit rate, inter-arrival time and packet
rate features. Although we use only these features in the presented study, one can
straightforwardly incorporate any other features into our method kNMC-3D that we
next explain below. After we decide on the feature set, importance of three selected
traffic features are calculated to find out each traffic feature’s contributions. The
term "feature importance" refers measuring the contribution of each input feature to
the final performance for a given model. A higher score indicates that the particular
characteristic will have more of an impact on the model being used to predict a
particular variable. In kNMC-3D model, calculating feature importances for target
classes are not straightforward since kNMC-3D is not an ordinary learning model.
For simplicity, all combinations of the feature set are tried rather than applying well-
known feature importance calculation techniques such as linear regression feature
importance [43] [44] [45], random forest feature importance [46]. By looking at the
average test accuracies of all scenarios the final feature’s importances are obtained.
The main methodology relies on changing values of features one by one randomly and
investigating the changes. The applied methods are similar to permutation feature
importance calculation[47]. The importance of the selected features in kNMC-3D
model can be observed in Figure 3.4. According to the results, number of bits and
number of packets traffic features have nearly 40% importance in kNMC-3D model.
Average inter-arrival time does not have contributions as much as the other two
features but it is not negligible. Therefore we decided to continue with all of three

19

Figure 3.5 3D clustering via k-means

features.

Modeling the rate signals as a DTMC has been introduced in Section 3.3 for the
case of using one feature (kNMC-1D). In this section, we explain the details of
generalization to the case of multiple features, leading to our method kNMC-3D.

Since the multidimensional approach expands the dataset, we re-define it as:
{xn,k,yk}Nsum

k=1 , where xn is a list of length Nsum, and each instance of the list
consists of 3D vectors of length lw× fs. In order to model each instance of xn as
a DTMC, xn should be mapped to one of Ns state groups. Hence, for the case of
multiple features here, inputs of the mapping are 3D signals (e.g. {bit rate, inter-
arrival time, packet rate}) and the outputs shall be a partitioning of the input space,
i.e., a vector quantization, for which the k-means clustering can be used. Before the
clustering operation, and unlike kNMC-1D, min-max normalization is used for the
chosen features to bring them to the common scale of [0,1].

there should be multidimensional clustering and each representative value of three
features(3D) of the same time instance should be common scale. Our features (i.e.
number of bits , number of packets and inter-arrival times) are numeric features and
their ranges are different from each other. Therefore, normalization is needed to
obtain more reliable clusters and to prevent distortions. In the scope of this paper,
min-max normalization and mean normalization are tried and min-max normaliza-
tion that scales the all values between 0 and 1 is decided to be used. Each feature
set is normalized with min-max normalization in themselves.

Normalization is followed by the k-means clustering and quantization steps to ob-
tain a DTMC based on multiple features. We have two main steps in the k-mean
clustering. First, each vector instance is assigned to the closest cluster center (which
are randomly initialized). Second, the cluster centers are re-calculated based on the
assigned instances. This process of two steps is repeated in an iterative manner at
the convergence of which clusters in the data are found. The output is a sequence
of cluster indices (which provides the state sequence in our DTMC) corresponding

20

to the sequence xn of the 3D networks features. The rest of the kNMC-3D steps are
same as kNMC since the multidimensional sequence xn is reduced to 1D qn. In the
next step, the state transition probabilities and likelihood distances are calculated
as described in Section 3.3.1. Then, the final classification follows with the k-nearest
neighbours approach as in kNMC.

21

4. ECOC BASED kNMC-3D CLASSIFIERS

Error-correcting output codes (ECOC) is a technique that solves multiclass problems
with multiple binary classifiers. By this way, the errors of the classifiers can be
fixed with other binary classifiers. The usage of binary classifiers also prevents
the negative effects of class variances in multiclass problems. There are two main
motivations for using ECOC. The first one is increasing multiclass classification
accuracy. The second one is utilizing classifiers such as SVM and logistic regressions.

In this chapter, the ECOC framework is applied to a given problem by using pre-
viously defined classifiers. Since ECOC-based solutions are able to increase the
performance of multiclass classifiers, they are popular in different areas. [48] which
introduces ECOC first time, applies ECOC on both neural networks, decision trees
and show that ECOC has a positive effect on accuracies in multiclass problems.
The authors also explain the main design rules for specific ECOC matrices and
three code-constructing strategies are introduced: BCH, Exhaustive Codes, and
Randomized Hill Climbing. [49] presents a novel ECOC strategy that segments the
base subproblem (SECOC) using subclass partitioning.

The ECOC design can be done by two different ways: problem-dependent design
and problem-independent design. The problem-independent designed ECOCs are
general solutions that work with fixed code matrices. Commonly used problem-
independent ECOC methods are: One versus One (OVO), One versus All (OVA),
Dense Random and Sparse Random introduced respectively by [50], [51], [52], [53].
These models can be applied to any problem with the arrangement of the code
matrix regarding the number of classes. In [54], ECOC is applied to document
categorization. Face identification work based on ECOC can be seen in [55]. [56]
offers various ECOC-SVMs designs that have different code lengths for solving re-
mote sensing image recognition problems. Recommended classifiers that work on
different datasets are compared in terms of prediction accuracy versus code length.
[57] tries to solves traffic classification problems with neural network ensemble and
error-correcting output codes. It works on five classes: BT, HTTP, SMTP, HTTPS,
and others. The performance of their ECOC-NNE is 92% and it outperforms three

22

different benchmark methods. Confusion matrix-based ECOC design for pattern
recognition is presented in [58]. The authors consider class similarities in the matrix
design process. In the beginning, easily separated classes are selected and ECOC
matrix is updated adaptively by following Fisher principal.

In the ECOC approach, the design of the ECOC code matrix is the most important
point. Each class has a codeword which is the row of the ECOC matrix. The
columns of the ECOC matrix correspond to sub-classifiers that are also called as
dichotomizers. For each sub-classifier, relabelling operation is done and the base
classifier is converted into binary sub-classifiers. The construction of ECOC matrix
and codewords is called coding operation. After the learning process is completed,
a bit vector that has a length of codewords is predicted. After predicted bits are
compared with representative codewords of classes, the closest class is selected in
the test phase. This part is called the decoding stage of ECOC-based learning. In
this thesis, the various applications of ECOC on the kNMC-3D classifier which was
introduced in Chapter 3 are considered for further improvement.

Error-correcting output codes is a framework that gives the opportunity to fix the
classifier’s errors with other classifiers. While dealing with multiclass problems,
ECOC offers to use multiple binary classifiers. As explained previously, the main
learner of our ECOC designs will be kNMC-3D. In the encoding process of ECOC,
the labels of kNMC-3D are changed to turn to binary. Since kNMC exploits k
nearest neighbors, relabelling operation has a great impact on the results. The
most important point for kNMC-3D-based ECOC design is changing of clusters.
Although kNMC-3D uses unsupervised k-means which is independent of labels, the
construction of clusters becomes completely different where data of some classes are
annotated with label 0. It means that the data of 0 classes is out of the training
process.

kNMC-3D with Soft Decision (kNMC-3D-SD)

The standard kNMC-3D directly predicts the class label in the multiclass case as
defined. In binary case, kNMC-3D makes a prediction as a negative or positive class.
For simplicity, we call this standard binary kNMC-3D as kNMC-3D with hard deci-
sion (kNMC-3D-HD) since it gives direct results. Sometimes the prediction sequence
of sub-classifiers Yn can have the same distance to codewords of two different classes
although their codewords are well separated. To not face that type of problems,
kNMC-3D with soft decision (kNMC-3D-SD) binary classifier is also introduced.
This classifier is a slightly different version of kNMC-3D-HD. In the decision stage
of kNMC-3D, the one that works with soft decision saves the distances of k closest
train instances of positive and negative classes rather than saving classes of the k

23

closest train entries. As described in Chapter 3, kNMC-3D makes a prediction by
looking at dominating class in the k closest classes. However, kNMC-3D-SD cal-
culates the average closest distances of positive and negative classes. If we assume
that m1 is the average distance of a given test entry for the positive class and m2 is
the average distance for the negative class, the prediction p for kNMC-3D-SD will
be

(4.1) p = 2m2/(m1 +m2)−1

By this way we end up with a score between 1 and -1 with kNMC-3D-SD. Despite
the change in the decision state of kNMC-3D, the main approach will be the same
because the clustering and DTMC modeling is not affected. With kNMC-3D-SD,
more sensible results could be produced thanks to numerical results. Even though
kNMC-3D-Soft solves complex cases such as the one defined before, it could be
misleading in some other cases. In multiclass case, it is observed that using kNMC-
3D with hard decision mechanism performs better. Since kNMC and kNMC-3D
use a local approach (looking at the classes of k training instances); that situation
could be considered as expected. However, using kNMC-3D-SD with ECOC schemes
may perform better due to the nature of the ECOC framework. Therefore trying
both kNMC-3D-SD/HD as base learners and comparing the results might be a more
sound approach.

4.1 Problem-Independent ECOC Schemes

There are problem-independent ECOC schemes such as OVO, OVA, Sparse Ran-
dom, and Dense Random. These approaches present fixed ECOC designs for every
problem. Because OVO and OVA are most popular, in the application phase for a
given problem, the two of them are preferred. Their coding strategies and the num-
ber of sub-classifiers of the two methods are different. In the scope of the thesis, two
different applications for OVO and one for OVA schemes are used in the solution of
the given traffic identification problems.

24

4.1.1 One Versus All (OVA)

OVA classification approach combines the information of n = 7 (number of classes)
sub-classifiers. Each sub-classifier separates a class from the other six classes. As-
sume that sub-classifier ci is a separator for the ith class, then in the corresponding
ECOC matrix, ith class is labeled as 1 and other rows labelled as -1. Because the
ECOC matrix includes 1’s and -1’s only, that type of encoding is called as binary
encoding. The sub-classifiers of OVA have nearly the same training section as the
base multiclass kNMC-3D classifier. Since state quantization levels of kNMC-3D
are decided with unsupervised k-means and all the data are included in this proce-
dure, the states will be the same in all sub-classifiers training. The main difference
between sub-classifiers and base multiclass learner will happen in the last decision
stage of the algorithm due to relabelling. The OVA application provides the final
prediction in the test phase with the following equation.

(4.2) Yend = argmax
i∈I

ci(x)

where I = 1,2,3....n, Yend is final prediction and x is the input test instance.

4.1.2 One Versus One (OVO)

OVO approach uses nx(n−1)/2 sub-classifiers. The duty of each sub-classifier is to
provide a separation between two classes. In the OVO approach unlike OVA, ternary
coding method is applied. Ternary coding uses 1,0,-1 in the encoding process. Each
sub-classifier considers just two classes and ignores the data of other classes that
are encoded with 0 in the binary classification. In the designing of the OVO-ECOC
matrix for each column ci positive and negative classes are labeled as 1 and -1,
all of the other classes are labeled as 0. Labeling with zero means that the sub-
classifiers have no info about 0 classes and do not process the data of that classes.
In our application of OVO within Nc = 21 sub-classifiers, OVO covers all the pairs.
In OVO case despite we have a single ECOC matrix, the two different versions of
kNMC-3D are employed as a base learner. Therefore two different OVO version
is introduced: One Versus One with Hard Decision (OVO-HD) and One Versus
One with Soft Decision (OVO-SD). OVO-HD work with kNMC-3D-HD in its sub-
classifiers. If we assume that Yn ∈ {1,−1} is a predicted bit sequence that has a
length of Nc, for a single instance and Cwi is the ith class codeword which refers to

25

ith row of the ECOC matrix, the distances between prediction and each class are
calculated as follows:

(4.3) d =
Nc∑

k=1
−Yn[k]Cwi[k]

For i = 1, ,̇n distances are calculated and ith class with the minimum distance be-
comes the final prediction. The distance calculator is based on Loss Based Decoding.
The second version of OVO which is OVO-SD; uses the same ECOC matrix with
OVO-HD. As expected, the biggest difference of the OVO-SD is the usage of kNMC-
3D-SD as a base learner. Therefore the Yn now includes values between 1 and -1,
it is not a bit sequence anymore. In the decoding process of OVO-SD, Attenuated
Euclidean decoding (AED) [59] is preferred. The distance between codewords and
Yn is calculated with.

(4.4) d =
Nc∑

k=1
Yn[k]−Cwi[k](Yn[k]−Cwi[k])2

where Cwi is ith codeword and k is bit position. After distances are calculated, the
class of the codeword that has the smallest distance is predicted.

4.2 Problem-Dependent Confusion Based ECOC Schemes

OVO and OVA classification schemes use fixed ECOC matrix designs and decoding
rules. In this section, the special ECOC matrix designs that are custom constructed
for the proposed problem will be given. Two different approaches will be presented
in the scope of problem-specific ECOC schemes. These are Confusion-Based ECOC
Schemes and Two-Level ECOC Schemes.

26

Table 4.1 Confusion at the application level (Classifier: kNMC-3D)

Act
Pred

N
et

fli
x

Yo
ut

ub
e

Y
T

Li
ve

Tw
itc

h

Sp
ot

ify

W
ha

ts
A

pp

Sk
yp

e

Netflix 95.17 2.76 0.69 1.03 0.34 0.00 0.00
Youtube 0.34 90.69 6.90 0.00 2.07 0.00 0.00
YT Live 1.38 0.00 96.55 0.34 0.00 0.00 1.72
Twitch 3.45 0.00 0.00 94.48 0.00 0.00 2.07
Spotify 1.03 18.62 3.45 0.00 67.24 9.66 0.00

WhatsApp 3.10 10.34 4.83 0.00 12.76 68.97 0.00
Skype 2.41 0.00 10.34 0.34 0.00 0.00 86.90

YT Live: Youtube Live Act: Actual, Pred: Prediction

4.2.1 Confusion Based ECOC Schemes (CB-ECOC)

OVO and OVA are well-performed methods for simple multiclass classification prob-
lems. However; for complicated problems, custom-designed ECOCs according to the
problem requirements could end up with more successful results. Or custom design
ECOC could be more efficient due to the usage of the low number of classifiers. Also
custom designed ECOC matrix is flexible, unlike OVO and OVR cases. Sometimes
the problem does not require all pairwise sub-classifiers because the complexity gets
higher. Hereby custom design ECOCs are preferable solutions. While designing an
ECOC matrix, there are three important rules to be considered. i) The rows of the
matrix should be well separated. ii) The columns of the code matrix will be well
separated and uncorrelated. iii) The error of the binary classifiers should be low.
To satisfy the third rule we used our own classifier that provide very successful re-
sults in terms of application and category accuracies. Therefore this rule is already
fulfilled. The first rule is the most critical point for an ECOC matrix. If the two
rows of the matrix which are codewords of classes are so close to each other; the
prediction probabilities of referred classes could not be high. The ECOC frameworks
are able to fix d/2 errors where d is equal to Hamming distance between the two
closest codewords. Sometimes to ensure row separation, unnecessary classifiers can
be added to the model. The second rule is almost as important as the first rule for
ECOC design patterns. Adding same columns or correlated columns to the matrix
seems as unimportant situation since they carry the same information, it can lead to
devastating performance effects on results. As the columns that are sub-classifiers
could fix errors, they might cause errors too. Therefore adding the same column
to the matrix can strengthen errors. As a result column separation is also very
important for matrix design.

27

Table 4.2 Matrix of Generic Sub-Classifiers (Mg)

Class c1 c2 c3 c4 c5 c6 c7
Netflix 1 -1 -1 0 -1 -1 -1

Youtube 0 1 −1 −1 0 −1 −1
Youtube Live −1 0 1 −1 −1 −1 0

Twitch −1 −1 −1 1 −1 −1 −1
Spotify −1 −1 −1 −1 1 0 −1

Whatsapp −1 −1 −1 −1 −1 1 −1
Skype −1 −1 0 −1 −1 −1 1

A confusion matrix is a useful success indicator for classification schemes. It shows
classification errors in detail. For a confusion matrix F , Fi,j show the prediction
ratio of jth class where the real class is ith class. The elements of the confusion
matrix also represent the correlation (here the word correlation is used as similarity,
where high correlation/similarity between two classes leads to high confusion in the
classification) between classes. There are similarities between classes where classi-
fication errors occur mostly. Therefore the construction of ECOC by considering
the confusion matrix could be a smart solution to fix errors. Our ECOC approach
mainly focuses on this idea. Confusion-based ECOC design is done in two stages. In
the first stage of design methodology, n sub-classifiers called as generic sub-classifiers
are constructed. The duty of generic sub-classifiers is to separate each class from
other classes except the class that has the highest correlation. For each class, there
is only one generic sub-classifier. If we assume that ci is a generic sub-classifier for
ith class and jth class is the class that has the highest cross-correlation with ith

class; the ith row of ci is labeled with 1, the jth row is labeled with 0 and other rows
are labeled with -1. By this way; the generic sub-classifier of each class ignores the
data of the class that cause trouble at discrimination of the targeted class. The Mg

matrix which is the end product of the first stage, includes all generic sub-classifiers.
The construction rule of Mg matrix can be seen in Algorithm 1.

The first phase of the ECOC matrix construction is done for reaching a general
distinction between classes that share a low correlation with each other. However,
in the specific cases where cross-class similarities are too high, the generic sub-
classifiers have a high possibility of error. For example, when we proceed with the
c1 of the Mg matrix; if the test entry is from the Youtube class, its predicted bit for
c1 would be one due to its high correlation with Netflix. Even the corresponding bit
is not important because this position of the Netflix codeword is 0. The mentioned
prediction of bit causes the prediction sequence Yn to become closer to the Netflix
codeword. Therefore to fix these types of mistakes the groups of sub-classifiers
called specific sub-classifiers are prepared. Again in the preparation operation, the
cross-class correlation information that can be obtained from confusion matrix F

28

Algorithm 1 Construction of generic sub-classifier matrix (Mg)
for i ∈ {1, . . . ,n} do

for k ∈ {1, . . . ,n} do
if F[k][i] is highest in column then

Mg[k][i]← 0
else

if i = k then
Mg[k][i]← 1

else
Mg[k][i]←−1

end if
end if

end for
end for

4.1 is used. In the case of specific sub-classifiers, the encoding approach that is
exactly opposite of the design way of Mg is considered. Dichotomizers which are
pairwise (1vs1) sub-classifiers for highly correlated classes are added to the specific
sub-classifiers group. If Fi,j is bigger than 5% where i is not equal to j, the pairwise
sub-classifiers of ith and jth classes for i, j ∈ 1,2....n are included in the specific sub-
classifier groups. While we handle the easier classification cases with the generic
sub-classifier group which considers the data of almost all classes except one, for
the complex cases pairwise classifiers seem to be better option. This is because
the pairwise classifiers have a chance to create clusters that are more sensitive to
considered pair classes. Hence the desired distinction can occur between classes with
higher expectations. The specific sub-classifiers are included in matrix Ms and are
listed in Table 4.3. For the final ECOC matrix, the combination of Mg and Ms is
preferred.

Like OVO case, two different CB-ECOC classifiers are presented: CB-ECOC-HD
and CB-ECOC-SD. The CB-ECOC-HD classifier employs kNMC-3D-HD as the
base learner. As the ECOC matrix, it uses CB-ECOC. Like OVO-Hard, loss based
decoding strategy with a linear loss function is used in the decoding process. The
distance calculation formula can be seen in Equation 4.3. Unlike CB-ECOC-HD, the
CB-ECOC-SD classifier employs kNMC-3D-SD as the base learner. As the ECOC
matrix, it uses the same matrix with CB-ECOC-HD. Like OVO-SD, Attenuated
Euclidean decoding strategy is used with a distance formula which is represented by
Equation 4.4.

29

Table 4.3 Matrix of Specific Sub-Classifiers (Ms)

Class c1 c2 c3 c4 c5 c6
Netflix 0 0 0 0 0 1

Youtube 1 −1 0 1 0 0
Youtube Live −1 0 0 0 −1 0

Twitch 0 0 0 0 0 −1
Spotify 0 1 1 0 0 0

Whatsapp 0 0 −1 1 0 0
Skype 0 0 0 0 1 0

Figure 4.1 Two-level ECOC block diagram

4.2.2 Two-Level ECOC Scheme (2L-ECOC)

This classifier scheme is created by considering the classification results of the CB-
ECOC-SD classifier. Again the confusion matrix of CB-ECOC-SD is deeply investi-
gated to reach further solutions. When the results are observed, an interesting sit-
uation is seen. While CB-ECOC-SD fails for the identification of Skype, it achieves
extremely high classification accuracies in other classes. More than half of the Skype
test entries are predicted as Youtube-Live. However, we have a pairwise Skype vs
Youtube-Live sub-classifier in our CB-ECOC matrix. The error could have been
fixed within that sub-classifier. In the results of the CB-ECOC-HD classifier, the
same situation did not happen. Since our distances are not integer in soft decision
classifiers, other sub-classifiers might lead to a bigger numerical error. Despite the
mentioned issue, in the identification of other classes performance of CB-ECOC-SD
is excellent. The results can be seen in Table 5.11. For solving the Skype identifi-
cation problem a few operations can be done. A sub-classifier that ensures Skype,
Youtube-live distinction can be added to the CB-ECOC matrix but it could harm
the identification of other classes and have bad effects on the solidity of the CB-
ECOC matrix. Therefore an additional error-correcting classification level is utilized

30

in the classification process rather than changing the CB-ECOC matrix. By this
way, two-level classification scheme is formed. The block diagram of the two-level
ECOC classification scheme is represented in Figure 4.1. In the first level of classifi-
cation, CB-ECOC-SD is directly applied. In the second level, a pairwise KNMC-3D
classifier of Skype vs Youtube-live is applied on test entries that are predicted as
Skype or Youtube-live in the first level with CB-ECOC-SD. Hereby most of the
mispredictions are corrected.

31

5. EXPERIMENTAL RESULTS

In this chapter, the performance of the classifiers proposed in Chapter 3 and Chapter
4 are presented via detailed experiments. The accuracy of the classifiers is observed
and evaluated by considering two different datasets. The first dataset is the main
dataset of the thesis which is gathered by our team as introduced in Chapter 3. The
second dataset is a dataset ISCXVPN [60] from the literature, which we use as a
benchmark for further verification.

ISCXVPN dataset mainly includes packet captures of two types of Wi-Fi traffic, with
VPN and without VPN. We focus on traffic without VPN since VPN encryption can
affect the traffic patterns, which is out of the scope of our work. Therefore, with-
out VPN eleven different applications are selected including Netflix, Spotify, Skype
Video as in our dataset, plus new applications, Skype File, Facebook Chat, Hang-
outs Chat, Facebook Video, Hangouts Video, Facebook Audio, Hangouts Audio and
Skype Audio. Since the ISCXVPN dataset has different types of applications that
do not match the ones in our dataset, re-categorization had to be done. While VOD,
S&MS and TC categories are also found in the ISCXVPN dataset. However, there
is no sample for the VLS category in the ISCXVPN dataset; instead, Voice(VO)
category which contains the interactive voice traffic is added.

5.1 Experimantal Setup and Paramater Optimization

The experimental setup for kNMC includes a preprocessing step applied to the raw
dataset {ui,t, l(ui,t)}Nu

i=1 (where ui,t is a rate signal, l(ui,t) represents the correspond-
ing application label, Nu = 30×7 = 210 and each ui,t is of T = 600 = 60×10 seconds).
The details of the raw dataset are explained in Chapter 3 and several examples are
illustrated in Figure 3.2. As a result of the preprocessing consisting of sampling and
window sliding as explained in Chapter 3 and partly illustrated in Figure 3.5, we ob-

32

tain the preprocessed dataset {(xi,n,yi)}Nx
i=1 which is subject to classification (where

xi,n is a windowed and sampled rate signal and yi is the corresponding application
label). For window sliding: the window length Wl = 2×60 = 120 seconds and stride
(amount of sliding) Ws = 1×60 = 60 seconds, yielding Nx =

⌊
T

Ws
×Nu

⌋
≃ 2100 (2093

to be more precise due to borders of sliding) instances in total with ∼ 300 (299 to
be more precise due to borders of sliding) instances per each application. Recall
that such a windowing step with a sufficiently small window length is necessary
to extract statistically stationary parts of the rate signal (such that the type, i.e.,
class, of the streaming application and also the corresponding subclass pattern do
not change during the window, although an application can have various patterns),
which is later followed by Lloyd-Max quantization for Markov modeling to yield
si,n, as explained in Chapter 3 as well as Fig. 3.2. Note that an instance xi,n is of
length Wlfs = 120× fs, where fs is the sampling frequency in Hz. For kMMC-3D,
the same preprocessing operations are done. The biggest difference is that the {ui,t

is a 3D vector that includes bitrate, number of packets and inter-arrival times. In
that case, sampling and windowing are applied to three different signals.

In order to assess the multiclass classification performance in our experiments statis-
tically robustly, 10 random training (90%) and test (10%) splits of the preprocessed
classification dataset {(xi,n,yi)}Nx

i=1 are generated. To prevent information leak be-
tween the training and test sets, first the sessions (30 ten-minute long runs per each
application) are split and only then the windows are extracted. This guarantees
that windows of a session can be included in either the training or test, but not
both. When there is a clear observation regarding the value of a parameter by
manual inspection, the average (over 10 splits) accuracy in the test set is reported
without cross validation; otherwise, a detailed 5-fold cross validation is conducted
for assurance and then the average (over 10 splits) accuracy in the test set is re-
ported. The results are provided both in terms of the overall average multiclass
classification accuracy and the class specific average classification accuracy. The
range of the reported accuracy is also provided with the min/max statistics in our
validation/parameter optimization experiments or with standard deviation in our
performance experiments. For parameter optimization, we report the overall av-
erage multiclass classification accuracy (out of 7 application classes and 10 splits);
and for performance results later, we also report the confusion matrices as well as
the class specific average classification accuracy in addition to the overall average
multiclass classification accuracy.

We start with analyzing and optimizing the three important parameters in our
experimental setup: the number Ns of the states in our discrete-time Markov chain
(DTMC), the sampling frequency fs and the number k of neighbors around a test

33

Figure 5.1 Average test accuracies for different sampling frequencies where Ns = 8
and k = 3, Ns = 12 and k = 5 in kNMC and kNMC-3D, respectively

instance xn in the cases of the proposed classifiers kNMC and kNMC-3D. The effect
of these parameters are quantified for optimization in terms of directly the end
classification performance.

Figure 5.1 reports classification accuracies with kNMC, kNMC-3D for different sam-
pling frequencies(fs) where Ns = 8andk = 3, Ns = 12andk = 5 respectively. For both
classifiers, increasing in sampling frequency provides an possitive effect on accura-
cies. This can be considered as an expected results because bigger sampling fre-
quency refer to bigger resolution which give more info. On the other hand if the
frequency become bigger, the complexity increase a lot. The increasing rate of the
accuracy seem high until fs = 50. Beyond that point there is a little improvement
while fs are moving to 100 from 50. In the results of both kNMC and kNMC-3D,
same observation existed. Therefore choosing fs = 50 is an efficient way to consider
both performance and complexity. In the frequency optimization, the other two
parameters Ns and k fixed.

The average test accuracies for different values of number of states(Ns) are shown
in figure 5.2. For better state optimization fixed k and fs are preferred. In both
classifiers to the some number of states level, accuracies increase. For kNMC to the
Ns = 8 accuracy increase. Adding more states do not improve the performance even

34

Figure 5.2 Average test accuracies for different number of states where fs = 50 and
k = 3, fs = 50 and k = 5 in kNMC and kNMC-3D, respectively

Table 5.1 Overall average multiclass classification accuracy (%) for optimizing k,
where fs = 50 Hz for both classifiers, Ns = 8 for kNMC and Ns = 12 for kNMC-3D

k
Application Category

kNMC kNMC-3D kNMC kNMC-3D
1 84.74 84.67 88.58 90.56
3 84.99 84.93 89.1 91.13
5 85.71 84.64 89.11 90.67
7 83.45 82.80 86.90 89.24
9 81.87 81.75 87.03 87.15

it cause small decreasing effect. For kNMC-3D the same behavior are observed but
max accuracy is achieved where Ns = 12. The kNMC-3D require more states for
better performance because it works with information that combines three different
features. To represent the effects of all features usage of more states in kNMC-3D
could be considered as normal situation. Both classifiers provide bad performance
near 50−60% with low number of states. Therefore the optimization of the number
of states is an important point for getting higher performances.

Another important parameter of the proposed DTMC based classifiers is k. It repre-
sent the number of neighbourhoods train instances in terms of markov components

35

that play a role in the prediction. Dominating class label in the between k neigbours
train instances become the end prediction. Application and category accuracies of
kNMC and kNMC-3D are reported in Table 5.1 for different odd k values, fixed fs,
Ns. kNMC perform bests where k is equal to 5 at the application level and where
k is equal to 3 at the category level. Bigger k values than 5 provide 3− 4% worse
performance. For k = 1, performances are also not bad but using k = 1 would not
be good strategy due to decision based on only one train instances. For kNMC-3D,
k = 3 provide the most successful results at both category and application levels.
Like seen in kNMC, bigger k values has an negative effects on accuracies. Eventually
k = 5 and k = 3 are selected for kNMC and kNMC-3D. In the next results the results
are presented with that k values.

5.2 Performance of DTMC Based Classifiers

In this section, we evaluate the performance of the proposed classification schemes
in comparison to certain state-of-the-art classifiers: k-nearest neighbor classifier
(kNN), support vector machines (SVM), multilayer perceptron (MLP), naive Bayes
(NB), random forest (RF) and a decision tree (DT), cf. [24] for their uses for
multimedia traffic classification on our dataset. These compared algorithms are all
feature extraction-based classifiers, in which a feature vector is first computed from
a window of traffic flow and then classified. The features that we use with these
algorithms are described below in detail. As an alternative to traditional feature
extraction, an autoencoder (AE) is also considered in the comparisons for learning
the features in a data driven manner based on deep learning. Afterward, we present
further experiments on the benchmark dataset from the literature, (ISCXVPN [60]).

We follow the same experimental procedure (regarding the performance evaluations
as well as the parameter optimizations via cross validation) as the one that we
describe at the beginning of the experiments section. All of our performance evalu-
ations in this part are also presented in terms of the average multiclass classification
accuracy along with its standard deviation (over 10 different training/test splits).
For the new benchmark dataset, we increase the number of Markov states to Ns = 10
(which is Ns = 8 for our own dataset) and increase the neighborhood parameter k

of kNMC and kNMP to k = 7 (which is k = 5 for our own dataset) as they are em-
pirically observed to perform better. The parameters of the compared algorithms
are all extensively 5-fold cross-validated for optimization. For example, in the case

36

Table 5.2 Overall average multiclass classification accuracy (%) at the application
level in comparison to various state-of-the-art classifiers with Markov parameters as
features

Classifier Ns = 4, fs = 1 Hz Ns = 8, fs = 1 Hz Ns = 4, fs = 50 Hz Ns = 8, fs = 50 Hz
kNMC 71.72±4.01 75.17±6.17 81.87±3.93 85.71±4.08
SVM 72.19±2.48 74.33±2.89 77.42±5.87 79.50±3.25
MLP 74.40±4.12 76.34±3.47 76.54±5.36 78.91±4.11
NB 61.12±5.89 58.37±7.44 63.55±6.75 62.3±3.45
RF 76.20±5.52 78.55±3.44 81.35±3.37 84.50±4.32
DT 73.45±5.60 78.31±3.57 77.9±3.97 79.61±6.67

of the introduced dataset, the cross validation typically returns: k = 3 for the num-
ber of the nearest neighbors that are checked in kNN, radial basis function kernel
with the bandwidth γ = 0.01 and error cost C = 200 for SVM after normalization, 8
layers with ReLu activation and adam optimizer (adaptive step size η = 0.005 and
epoch-by-epoch minibatch training with batch size 100) for MLP, a depth-10 deci-
sion tree with the gini index for splitting and 200 depth-6 trees for random forest
with the gini index for splitting. As for the naive Bayes, we use Gaussian class
densities with no priors. We find a similar setting for the new benchmark dataset as
well, with the exceptions that γ = 20 and C = 100 for SVM with rbf kernel (without
data normalization) and 100 depth-4 trees for random forest. These parameters are
cross-validated again when the Markov parameters are used as features.

Table 5.2 compares our classification schemes with those state-of-the-art classifiers
when the Markov parameters are used as features. For instance, for each window of
a traffic flow, a Markov model is fit as described previously, the matrix of state tran-
sition probabilities is obtained and vectorized, and then used as a feature vector with
SVM. We observe that, at the level of applications, the proposed kNMC outperforms
not only kNMP (which is equivalent to kNN with the features of Markov param-
eters) but also others uniformly in all of the settings of (Ns,fs) ∈ {4,8}×{1,50}.
This demonstrates the necessity (and the superiority) of the negative log-likelihood
as the distance in the context of our Markov model (kNMC) since the typical use
of the Markov parameters as features is uniformly outperformed.

We next investigate certain other features that are commonly used in the litera-
ture. For instance, the authors of [24] study the social media application traffic
and recommend the mean and standard deviation of the observations related to the
rate signal (or equivalently the packet size), number of packets, inter-arrival time,
port number and IP address as features to be used in the aforementioned compared
algorithm (SVM, MLP, etc). We do not use the port number and IP address in our
analyses, as they are not included in our introduced dataset; instead, we consider
the rate signal, number of packets and inter-arrival time. On the other hand, the

37

Table 5.3 Overall average multiclass classification accuracy (%) at the application
level for various state-of-the-art classifiers, using the statistics of packet size, number
of packets and inter-arrival time

Classifier kNN SVM MLP NB RF DT

Accuracy 61.37±6.50 61.13±6.87 59.82±5.43 39.31±2.92 64.97±5.98 60.04±4.04
(76.48±3.45) (81.92±6.16) (77.10±8.20) (56.50±5.92) (78.66±5.19) (73.54±5.10)

The accuracy result at the top in each cell is for the two-feature case, and the other below in
parentheses is for the six-feature.

proposed DTMC modeling is, by design, applied to the rate signal (the aggregated
packet size per unit time) in the presented work; hence, using features such as the
number of packets and inter-arrival time that are not derivable from the rate signal
is essentially using extra information that our classifiers do not exploit. For this rea-
son, to ensure fairness, we focus on two sets of features: 1) the two features, i.e., the
mean and standard deviation of the rate observations (packet sizes) within a window
of traffic flow, and 2) all six features, i.e., the mean and standard deviation of the
rate (packet sizes), number of packet and inter-arrival time observations. Here, only
the case of two features provides a fair comparison between our algorithms and the
state-of-the-art.

Table 5.3 compares the state-of-the-art classifiers, at the level of applications, among
themselves when used with the above feature sets of size two and six. Accuracy fig-
ures of two features are written in this table explicitly and that of six features are
written (below the one with two features in each cell) in parentheses. SVM and ran-
dom forest outperform the others (kNN, MLP, naive Bayes, decision tree), whereas
our kNMC with 85.71% accuracy in Table 5.2 (with Ns = 8 and fs = 50) strongly
outperforms SVM and random forest with two features, and still outperforms the
both with six features even when they exploit the extra information of the number
of packets and inter-arrival time which is not available to our classifiers. Hence, the
results in Table 5.2 and Table 5.3 demonstrate the efficacy of the proposed Markov
model in conjunction with the negative log-likelihood as the distance. In the rest of
our experiments, we continue the comparisons with only kNMC, SVM and random
forest (RF) as these three are observed to be the best performing.

Recall that our proposed kNMC is based on a Markov modeling of the quantized
rate signal of the network traffic data, whereas the competing algorithms such as
SVM and random forest (RF) are based on hand-crafted features such as the mean
and standard deviation of the rate signal. Another powerful approach is to learn the
features directly in a data driven manner rather than manually designing them or
extracting from a model. A prominent technique of this feature learning approach
is the autoencoder from the deep learning literature [61]. For this reason, we also
include an autoencoder (AE) in the set of the methods that we compare with.

38

In our AE design, we use the raw traffic rate signal as a direct input to AE, after
normalizing the rate to the interval [0,1] and extracting the windows. This leads
to an input data matrix of size (NwcNc)× (Wlfs). We train AE based on the
complete available data (without using the training and testing splits) since it does
not use the label information (i.e. since it is unsupervised). Here, Nwc ≃ 300,Nc = 7
and Wl = 120 are all parameters of our training strategy and therefore they are all
fixed across all of the compared algorithms. On the other hand, fs = 10 Hz has
been observed to perform better than fs = 50 in this case (autoencoder) because
increasing the sampling frequency directly increases the parameter complexity of
the network. The compression rate from one layer to the next is 1/2 in our AE
design with a bottleneck size 40 (note the dimensionality reduction from 1200 to
40), which leads to the use of 6 layers (we do not use compression only for the first
layer) for the encoder. The decoder part is symmetrically defined from the bottleneck
to the output (of the size of the input). We have also incorporated dropout (with
probability 0.3) layers after each encoder layer, and used ReLu activation. This
AE has been trained based on the reconstruction loss by using the Adam optimizer
(learning rate: 0.001, batch size: 32, and 30 epochs without early stopping). After
training, we detach the decoder and use the encoder as a feature extractor. In
the last stage, based on the features provided by the encoder, we use random forest
(RF) as the classifier because it generally performs better than the SVM. In this last
stage, as the training is now certainly supervised, we repeat the same experimental
procedure (such as training and testing splits) that we have previously explained for
RF above.

Accordingly, Table 5.4 expands our results into the category as well as the application
levels for these algorithms. We start with comparisons to SVM and random forest.
The proposed kNMC is observed to outperform SVM and random forest at the
category level with the overall multiclass classification accuracy 89.11% (against
the best observed 87.41% with random forest of all six features and 79.91% with
random forest of two features), in addition to its previously observed superiority
at the application level with the classification accuracy 85.71% (against the best
observed 81.92% with SVM of all six features and 64.92% with random forest of
two features). In particular, the proposed kNMC is significantly more accurate
for each individual category with an exception for S&MS, and this is also true
for each individual application as well with an exception for “Whatsapp" which
seems to be confused with “Spotify" (in the same category with “Whatsapp") more
often compared to the other algorithms. It is also worth noting that our proposed
kNMC achieves this superior performance when compared to the results of SVM
and random forest for the two-feature case (only using the information of the rate

39

Table 5.4 Average classification accuracy ± standard deviations (%) per each appli-
cation and category for kNMC, SVM, RF and AE+RF classifiers

Category Classifiers Application Classifiers
kNMC SVM RF AE+RF kNMC SVM RF AE+RF

VOD
Netflix 95.17±8.48 58.96±11.27 58.27±11.16 74.00±12.53

93.45±10.47 82.24±9.28 77.75±7.25 75.90±12.19 (77.93±9.40) (62.06±14.30)
(82.24±8.16) (84.48±6.26) Youtube 90.69±14.36 57.58±19.38 54.13±9.38 47.79±10.46(77.93±15.66) (73.10±10.20)

VLS

Youtube 96.55±7.45 67.24±21.27 65.17±18.40 71.93±15.03
95.69±4.47 75.68±11.13 76.89±9.12 86.44±11.65 Live (81.03±17.05) (73.44±16.46)

(86.20±10.37) (81.72±10.57) Twitch 94.48±8.63 70.34±16.11 72.75±17.68 71.59±29.35(82.75±13.44) (74.08±22.09)

S&MS
Spotify 67.24±13.83 4.82±5.16 55.51±11.27 26.07±26.45

79.31±7.54 74.65±10.48 81.89±7.72 87.79±7.36 (72.06±15.30) (78.62±7.83)
(86.03±7.65) (90.34±4.76) Whatsapp 68.97±10.53 82.06±13.51 65.51±16.89 71.59±29.35(88.96±12.12) (95.86±9.22)

TC 86.90±23.38 85.51±16.55 83.10±16.85 95.72±12.64 Skype 86.90±23.38 85.51±16.55 83.10±16.85 95.72±12.64(92.75±9.18) (93.10±9.87) (92.75±9.18) (93.10±9.87)

Overall 89.11±4.01 79.52±7.05 79.91±6.00 86.46±5.12 Overall 85.71±4.08 60.93±6.80 64.92±5.37 65.53±4.72(86.81±4.77) (87.41±5.17) (81.92±6.16) (78.66±5.19)

The accuracy result at the top in each corresponding cell is for the two-feature case, and the
other below in parentheses is for the six-feature. The kNMC is presented with Ns = 8, fs = 50
Hz, k = 5.

Table 5.5 Average classification accuracy per each application for KNMC-3D,
KNMC, SVM, Random Forest and AE+RF classifiers on our dataset. kNMC-3D is
presented with Ns = 12, fs = 50 Hz, k = 3. kNMC is presented with Ns = 8, fs = 50
Hz, k = 5.

Classifiers
App kNMC-3D kNMC SVM RF AE+RF

Netflix 92.07 95.17 77.93 62.06 74.00
Youtube 88.28 90.69 77.93 73.10 47.79
YT Live 92.41 96.55 81.03 73.44 71.93
Twitch 93.79 94.48 82.75 74.08 71.59
Spotify 65.52 67.24 72.06 78.62 26.07

Whatsapp 72.41 68.97 82.75 82.75 82.75
Skype 90.00 86.90 92.75 93.10 95.72
Overall 84.93 85.71 81.92 78.66 65.53

signal). However, kNMC is still superior in 4 out of 7 applications when compared
to the results of other classifiers for the six-feature case where the other classifiers
exploit additional information of the number of packets and inter-arrival time. As for
the comparisons to AE+RF (autoencoder followed by random forest), our proposed
algorithm kNMC is significantly superior both at the category (kNMC: 89.11 vs
AE+RF: 86.46) and application (kNMC: 85.71 vs AE+RF: 65.53) levels in terms
of the average classification accuracy. Although AE+RF performs reasonably well
at the category level, it suffers from within category confusions that largely degrade
its application level performance.

Until this point, the performance analysis of kNMC is made in detail. Next findings
mostly focus on kNMC-3D results. kNMC-3D is compared with kNMC and afore-
mentioned benchmark methods that work with six features. The ones that employ

40

Table 5.6 Average classification accuracy per each category for KNMC-3D, KNMC,
SVM, Random Forest and AE+RF classifiers on our dataset. kNMC-3D is presented
with Ns = 12, fs = 50 Hz, k = 3. kNMC is presented with Ns = 8, fs = 50 Hz, k = 5.

Classifiers
Category kNMC-3D kNMC SVM RF AE+RF

VOD 92.59 93.45 82.24 84.48 75.90
VLS 94.14 95.69 86.20 81.72 86.44

S&MS 87.24 79.31 86.03 90.34 87.79
TC 90.00 86.90 92.75 93.19 95.72

Overall 91.13 89.11 86.81 87.41 86.46

with two features are not included anymore because kNMC-3D also uses the infor-
mation which is equal to six features. Table 5.5 reports the average classification
accuracies per application on our dataset. According to the results in Table 5.5,
While kNMC-3D performs almost as good as kNMC(0.8% worse), it is superior
to other benchmark methods based on feature extraction. Although it is observed
to have issues for classifying Whatsapp and Spotify, 84.93% overall average multi-
class application accuracy is achieved, which is impressive. SVM, which is the best
among the feature based state-of-the-art methods and the third best-performing
method (after our methods), provides better precision on Whatsapp, Spotify and
Skype against kNMC-3D. However, when we look into the accuracies of applications
with video content, kNMC-3D achieves at least 10% higher accuracy than SVM per
each application.

Accuracy results of the five classifiers on our dataset in terms of the categories are
presented in Table 5.6. VOD category includes Netflix and Youtube; VLS category
includes Twitch and Youtube Live; S&MS category includes Spotify and What-
sapp and lastly, TC category includes Skype. In general, category-based accuracies
are higher than application-based accuracies as expected since applications of the
same category could not be separated easily due to the similarities in traffic pat-
terns. Our method kNMC-3D is the best-performing method among all five classi-
fiers. Notably, almost all categories achieve classification accuracies over 90% with
kNMC-3D. Other methods reach reasonable accuracies as well, but their perfor-
mances are below that of kNMC. Especially in the recognition of VOD and VLS
categories, kNMC-3D provides 8% higher performance against feature extraction
methods. kNMC-3D gets ahead of kNMC in overall accuracy, thanks to its preci-
sion in S&MS category.

We start with comparisons to SVM and random forest. At the category level, our
proposed algorithm kNMC outperforms SVM and random forest with the overall
multiclass classification accuracy 98.24% (against the best observed 96.78% with

41

Table 5.7 Average classification accuracy± standard deviations (%) per each applica-
tion and category for kNMC, SVM, RF and AE+RF classifiers on the ISCXVPN2016
dataset

Category Classifiers Application Classifiers
kNMC SVM RF AE+RF kNMC SVM RF AE+RF

VOD 100±0 80.00±40.00 80.40±80.40 40.00±48.99 Netflix 100±0.00 80.00±40.00 80.00±40.00 40.00±48.99(100±0) (100±0) (100±0) (100±0)

S&MS

Spotify 70.00±31.62 38.00±32.80 56.00±30.72 43.33±23.80(88.00±29.93) (84.00±21.54)
Skype 78.33±21.59 20.00±21.05 75.45±19.94 69.17±21.10

98.95±2.22 34.44±22.74 93.33±7.37 95.54±7.28 File (82.73±27.10) (75.45±25.08)
(100±0) (97.78±3.68) Facebook 60.00±51.64 NA 50.00±50.00 55.00±41.53Chat (70.00±45.82) (60.00±48.99)

Hangouts 70.00±48.30 NA 40.00±48.99 50.00±31.62Chat (100±0.00) (70.00±45.82)

TC

Facebook 90.00±31.62 70.00±45.82 80.00±40.00 80.00±33.17Video (80.00±40.00) (60.00±48.99)

94.00±12.65 84.44±13.33 86.67±13.88 87.50±11.93 Hangouts 94.00±9.66 50.00±46.10 80.00±26.92 80.00±32.25(87.78±17.53) (84.44±18.72) Video (92.50±16.01) (82.50±31.72)
Skype 82.50±31.29 52.50±34.37 67.50±29.68 80.00±17.89Video (70.00±38.40) (77.50±23.58)

VO

Facebook 67.50±32.97 NA 81.67±28.58 92.50±15.12Audio (75.00±39.44) (94.17±14.93)

100.00±0 99.33±2.00 97.55±5.48 100.00±0 Hangouts 77.27±19.76 99.09±2.72 93.18±9.15 96.82±5.77(99.33±1.42) (99.78±0.67) Audio (80.45±23.53) (98.18±3.01)
Skype 72.73±28.75 NA 76.36±19.58 90.83±15.11Audio (86.36±14.22) (94.54±11.64)

Overall 98.24±3.19 74.55±11.30 89.39±10.79 80.51±12.12 Overall 78.39±8.60 37.23±5.74 70.92±10.65 70.69±10.27(96.78±4.46) (95.5±4.85) (84.09±8.33) (81.49±8.41)

The accuracy result at the top in each corresponding cell is for the two-feature case, and the
other below in parentheses is for the six-feature. The kNMC is presented with Ns = 10, fs = 50
Hz, k = 7.

SVM with all six features and 89.39% with random forest with two features). Out
of 11 eleven cases at the application level, and when two features are used, our
proposed algorithm kNMC outperforms the better one of SVM and random forest
in 8 cases, performs comparably with the better one of them in 1 cases and un-
derperforms in 2 cases (“Facebook Audio" and “Hangouts Audio"). On the other
hand, when all six features are used, kNMC takes either the first or second place
in 7 out of 11 cases. Here, we ignore small differences of a couple percents since
the standard deviations for this ISCXVPN dataset are relatively large due to it
(ISCXVPN) being ten times smaller than our introduced dataset. The overall av-
erage multiclass classification accuracy of kNMC at the application level is 78.39%
which is approximately 7.5% higher than the better one of SVM and random for-
est with 2 features and approximately 5.5% lower than the better one of SVM and
random forest with 6 features. Note also that four cases for SVM are labeled as
not applicable (NA) as they define failures for SVM where the accuracy is around
0 due to the severe class imbalance in this dataset in terms of the sizes. As for
the comparisons to AE+RF (autoencoder followed by random forest), our proposed
algorithm kNMC is significantly superior both at the category (kNMC: 98.24 vs
AE+RF: 80.51) and application (kNMC: 78.39 vs AE+RF: 70.69) levels in terms of
the average classification accuracy.

42

Table 5.8 Confusion at the application level on the ISCXVPN2016 dataset (Classi-
fier: kNMC)

Act
Pred

N
et

fli
x

Sp
ot

ify

Sk
yp

e
Fi

le

Fa
ce

bo
ok

C
ha

t

H
an

go
ut

s
C

ha
t

Fa
ce

bo
ok

V
id

eo

H
an

go
ut

s
V

id
eo

Sk
yp

e
V

id
eo

Fa
ce

bo
ok

A
ud

io

H
an

go
ut

s
A

ud
io

Sk
yp

e
A

ud
io

Netflix 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spotify 4.00 70.00 26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Skype File 0.00 17.50 78.33 2.50 1.67 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Chat 0.00 0.00 20.00 60.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00
Hangouts Chat 0.00 0.00 0.00 30.00 70.00 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Video 0.00 0.00 0.00 0.00 0.00 90.00 10.00 0.00 0.00 0.00 0.00
Hangouts Video 0.00 0.00 0.00 0.00 2.00 0.00 94.00 4.00 0.00 0.00 0.00

Skype Video 0.00 0.00 0.00 0.00 0.00 0.00 5.00 82.50 10.00 0.00 2.50
Facebook Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.50 22.50 10.00
Hangouts Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.91 77.27 6.82

Skype Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.18 19.09 72.73

Act: Actual, Pred: Prediction

Table 5.9 Confusion at the category level on the ISCXVPN2016 dataset (Classifier:
kNMC)

Prediction
VOD S&MS TC VO

VOD 100 0.00 0.00 0.00
S&MS 1.05 98.95 0.00 0.00

A
ct

ua
l

TC 0.00 1.00 94.00 5.00
VO 0.00 0.00 0.00 100

Therefore, on the benchmark dataset ISCXVPN [60], the proposed algorithm kNMC
outperforms the state-of-the-art (SVM and RF) both at the category and application
level for the two-feature case, but achieves a lower performance at the application
level for the six-feature case only. The reason for this lower performance at the
application level is the three applications (“Facebok Audio", “Hangouts Audio" and
“Skype Audio") in which kNMC seems to fail. Since these three applications are
confused only with the applications of the same category VO (the corresponding
confusion matrices for the application and category levels are given in Table 5.8
and Table 5.9, respectively), the lower application level performance can easily be
corrected at the VO category level reaching up to 100% accuracy as demonstrated
in the leftmost column of Table 5.7. On the other hand, we attribute the confusion
within the VO category to the Lloyd-Max quantization of the rate signal in the
phase of determining the Markov states which is typically sensitive to outliers and
class imbalance. We consider that a clustering algorithm (such as the expectation-
maximization clustering) that takes into account the class priors and covariance
structure can be helpful to remove that confusion. We also stress that the only fair
comparison here is between kNMC and the two-feature classifiers (the mean and

43

Figure 5.3 Overall average multiclass classification accuracy of the kNMC-3D clas-
sifier together with the benchmark methods is presented both application and
category-wise on ISCXVPN and our dataset. kNMC-3D is presented with Ns = 14,
fs = 50 Hz, k = 7.

the standard deviation of the rate signal or packet size observations), where kNMC
already outperforms SVM and random forest. We note that using features such as
the number of packets and inter-arrival times that are not derivable from the rate
signal provides an extra unfair advantage to SVM and random forest. This can be
straightforwardly met with our Markov approach by a multi dimensional clustering
of all the available observations (including packet numbers and inter-arrival times)
while determining the Markov clusters (in other words, by using a voronoi cell vector
quantization approach instead of a single dimensional Lloyd-Max quantization).

Overall, the proposed Markov modeling of the sequentiality (the statistical depen-
dency across data instances) in multimedia traffic observations along with the corre-
sponding classifier kNMC experimentally prove to be superior over the state-of-the-
art feature extraction based approaches (SVM and RF) as well as the deep learning
based alternative AE+RF at both the category and application levels in the case of
the introduced dataset. This superiority is also observed at both the category and
application levels in the case of the benchmark dataset ISCXVPN [60]. Note that
the presented study mainly aims to demonstrate the efficiacy of using sequentiality
with the proposed Markov modeling and hence we consider these extensions as fu-
ture improvements. We also consider that the results with the introduced dataset
are probably more reliable than that of the benchmark dataset as the former is a
significantly larger (about 10×) dataset compared to the latter.

Considering all classifiers, the average multiclass classification accuracy values and
their standard deviations, at application and category levels obtained on our dataset
and the benchmark dataset ISXVPN are shown in Figure 5.3. In the ISXVPN

44

Table 5.10 Confusion at the application level on the ISCXVPN dataset (Classifier:
kNMC-3D)

Act
Pred

N
et

fli
x

Sp
ot

ify

Sk
yp

e
Fi

le

Fa
ce

bo
ok

C
ha

t

H
an

go
ut

s
C

ha
t

Fa
ce

bo
ok

V
id

eo

H
an

go
ut

s
V

id
eo

Sk
yp

e
V

id
eo

Fa
ce

bo
ok

A
ud

io

H
an

go
ut

s
A

ud
io

Sk
yp

e
A

ud
io

Netflix 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spotify 4.00 84.00 9.38 2.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Skype File 1.58 7.42 84.55 6.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Chat 0.00 0.00 5.25 90.00 3.52 0.00 0.00 0.00 1.23 0.00 0.00
Hangouts Chat 0.00 0.00 5.69 2.45 90.00 1.86 0.00 0.00 0.00 0.00 0.00
Facebook Video 0.00 0.00 0.00 0.00 0.00 100.00 10.00 0.00 0.00 0.00 0.00
Hangouts Video 0.00 0.00 0.00 0.00 1.14 4.86 90.00 4.00 0.00 0.00 0.00

Skype Video 0.00 0.00 0.00 0.41 0.00 1.13 3.46 95.00 0.00 0.00 0.00
Facebook Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.83 20.12 4.05
Hangouts Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.24 98.18 0.58

Skype Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 13.60 85.45

Act: Actual, Pred: Prediction kNMC-3D is presented with Ns = 14, fs = 50 Hz, k = 7.

dataset, our Markovian based kNMC-3D outperforms its competitors by achieving
90.73% overall application accuracy, which is at least 5% higher than its closest op-
ponent, SVM. At the category level, kNMC-3D performs over 99%. In other words,
almost all traffic categories could be separated perfectly with our method kNMC-3D.
While kNMC falls behind other methods at the application level, kNMC-3D seems
to eliminate the deficiencies of kNMC with multidimensional feature set. These re-
sults indicate that our method kNMC-3D has the potential to greatly improve QoS
as classification is done almost perfectly at the category level.

More detailed results of the proposed method kNMC-3D on the ISCXVPN dataset
can be seen in Table 5.10 which is a confusion matrix. We observe that our method
has relatively high confusion in the audio cases. It predicts some of Facebook audio
and Skype audio traffic as Hangouts audio. Therefore, per application accuracies
of the two audio services are slightly low. Also, some of the applications in S&MS
and TC categories are predicted falsely. However, these mistakes are mostly limited
to in-category errors. For example, 9% of the Spotify traffic is predicted as Skype
file. Although it affects the overall application accuracy undesirably, category based
accuracies are not affected by these mistakes since Spotify and Skype file are from
the same category.

45

Table 5.11 Average classification accuracy ± standard deviations (%) per each ap-
plication for all proposed classifiers on our dataset

Applications Classifiers
kNMC-3D OVA OVO-SD OVO-HD CB-ECOC-SD CB-ECOC-HD 2L-ECOC

Netflix 92.07±2.21 92.41±10.99 92.41±4.54 96.90±7.14 100±0 98.96±1.58 100±0
Youtube 88.28±3.35 94.82±10.25 94.83±4.89 96.21±6.44 100±0 99.31±2.07 100±0

Youtube Live 92.41±1.92 61.37±12.02 80.18±7.66 84.83±13.19 100±0 90.34±7.03 100±0
Twitch 93.79±2.09 93.44±10.28 90.16±5.00 93.45±8.65 84.14±19.88 93.10±15.11 84.14±19.88
Spotify 65.52±5.46 71.37±14.79 79.19±12.11 84.83±15.51 100±0 86.62±18.75 100±0

WhatsApp 72.41±6.75 90.34±18.87 87.27±9.10 89.65±13.17 100±0 90.13±21.54 100±0
Skype 90.00±3.01 88.62±13.88 88.63±8.07 88.96±12.32 43.79±18.89 88.27±13.01 89.67±4.33

Overall 84.93±2.32 84.63±5.19 87.60±3.21 90.69±4.04 89.70±3.65 92.39±4.10 96.26±3.25
fs = 50 Hz, {Ns,k}: kNMC-3D={12,3}, OVR={12,1}, OVO-Soft={12,3}, OVO-Hard={10,3}, ECOC-Soft={12,3},
ECOC-Hard={12,5}, Multi-level={12,3}

5.3 Performance of ECOC Based Classifiers

In this section, the accuracy performance of the problem-dependent unique ECOC
classifiers are compared with base kNMC-3D and fixed problem-independent ECOC
classifiers (explained in Chapter 4) by considering again, our dataset and ISCXVPN,
employing the same train-test setups explained in previous section.

Table 5.11 reports per class average classification accuracies at the application level
in our dataset. In terms of overall accuracies, ECOC-based classifiers generally out-
perform multiclass kNMC-3D. While CB-ECOC and OVO classifiers provide pre-
dictions with nearly 90% test accuracies, 2L-ECOC classifier is the best-performing
one with 96% accuracy. Only OVA could not improve kNMC-3D. As explained
in Chapter 4, sub-classifiers of OVA are trained like multiclass kNMC-3D because
ECOC matrix is coded with 1 and -1’s only and all data of the classes are included
in training process. Therefore, improvement with the OVA is not expected. The
kNMC-3D has low per-application accuracies in Whatsapp and Spotify. Although all
ECOC-based classifiers can partially solve the differentiation problem of Whatsapp
and Spotify; CB-ECOC-SD and 2L-ECOC classifiers resolve this issue completely.
2L-ECOC classifier predicts five classes without any mistake and reaches over 85%
accuracy in the other two classes. Similar to the 2L-ECOC classifier, CB-ECOC-SD
works without error in five applications; its overall application accuracy is slightly
below the other ECOC-based classifiers due to the high error rate on Skype identi-
fication. As it can be seen in Table 4.1, it predicts a big proportion of Skype data
as Youtube-live. OVO classifiers also have great performance when they are com-
pared with multiclass kNMC-3D. OVO-HD has better performance than OVO-SD.
Normally it is expected that classifiers with the soft decision logic are able to work
better. However, in our case kNMC-3D-HD, also performs better than kNMC-3D-

46

Table 5.12 Average classification accuracy ± standard deviations (%) per each cat-
egory for all proposed classifiers on our dataset

Applications Classifiers
kNMC-3D OVR OVO-SD OVO-HD CB-ECOC-SD CB-ECOC-HD 2L-ECOC

VOD 92.59±1.39 94.14±11.95 94.14±3.22 98.45±3.57 100±0 96.55±8.69 100±0
VLS 94.14±1.71 95.34±6.41 94.84±2.44 95.17±5.39 100±0 96.55±6.54 100±0

S&MS 87.24±2.16 86.03±7.08 88.97±2.93 85.00±9.25 100±0 90.00±5.04 100±0
TC 90.00±2.74 88.62±13.88 88.62±13.88 88.96±12.32 43.79±18.89 88.27±13.01 89.67±4.33

Overall 91.13±1.12 91.03±4.60 91.64±1.60 91.90±2.49 85.95±4.72 92.84±4.36 97.42±1.92
fs = 50 Hz, {Ns,k}: kNMC-3D={12,3}, OVR={12,1}, OVO-SD={12,3}, OVO-HD={10,3}, ECOC-SD={12,3},
ECOC-HD={12,5}, Multi-level={12,3}

Soft. Therefore, the classifiers with hard decisions have superiority in general. The
performance of OVO-HD is very close to CB-ECOC-HD, only 1−2% worse. How-
ever CB-ECOC reaches that performance with only 12 sub-classifiers, while OVO
classifiers make use of 21 sub-classifiers. It means that the OVO classifiers are nearly
two times more complex than CB-ECOC classifiers. CB-ECOC-HD can classify five
classes over 90% accuracy. while it has lower performance in Skype and Spotify
identification.

Table 5.12 presents the per-category test accuracies of the ECOC-based classifiers.
Similar the application case results, ECOC-based classifiers perform better than
kNMC-3D. Especially 2L-ECOC reaches over 97% accuracy and becomes the best-
performing classifier with at least 4− 5% higher performance. 2L-ECOC only fails
at Skype identification and works on other categories without mistakes. The per-
formance of the other classifiers are so close to each other. Problem-independent
ECOC schemes and CB-ECOC-HD could not provide significant improvement to
kNMC-3D. This is because if there is misprediction between categories, the similar-
ity ratios are low and prediction becomes hard. Therefore, fixing out-category errors
is challenging. The overall accuracy of the CB-ECOC-SD is again low compared to
others. However, the problem is again Skype because TC category only includes
Skype, and identification of Skype with CB-ECOC-SD fails at the application case.
On the other hand, 2L-ECOC fixes CB-ECOC-SD errors. The main success of the
CB-ECOC-SD is predicting categories with 100% success.(except for TC)

Average prediction accuracies of five classifiers at category and application levels on
ISCXVPN dataset are represented in Figure 5.4. The results of OVO-SD and OVA
are not reported for this dataset because their performances are lower than other
classifiers. For better and clearer comparison, only five classifiers’ results are shown.
Surprisingly the performance of OVO-HD falls behind the performance of kNMC-
3D. However other ECOC-based classifiers have better performances than kNMC-
3D. In the benchmark dataset, 2L-ECOC classifier is again the best-performing
classifier. At the application level, 2L-ECOC classifier provides over 95% accuracy.

47

Figure 5.4 Overall average multiclass classification accuracies of the proposed clas-
sifiers for both application and category wise on the ISCXVPN2016 dataset

CB-ECOC-SD and CB-ECOC-HD classifiers perform nearly 3% below 2L-ECOC
classifier at the application level. Their performances are very close to kNMC-3D
but slightly better. In general, application accuracies in this dataset, are higher
than the accuracies that are achieved in our dataset. CB-ECOC-SD fails to identify
Facebook video application. As it can be seen in Table 5.15, Facebook video class is
predicted with 10% accuracy and it is predicted as Hangouts video with 90% rate.
The misprediction happens in the same category, therefore category accuracy is not
affected by that failure. 2L-ECOC classifier solves the Facebook video, Hangouts
video confusion in the second level. Therefore, the average application accuracy is
higher.

5.4 Complexity Analysis

In this section, we present the computational and space complexities of the proposed
classifiers, kNMC, kNMC-3D, CB-ECOC, 2L-ECOC, and also provide comparisons
with the benchmark methods.

We start with the proposed classifiers kNMC, kNMC-3D, CB-ECOC and 2L-ECOC.
First, sequential reading (i.e. not as a batch at once) of instances (for both train-
ing and test instances xn and xi,n) from an outer memory source is assumed; since

48

Table 5.13 Confusion at the application level on the ISCXVPN2016 dataset (Clas-
sifier: CB-ECOC-HD)

Act
Pred

N
et

fli
x

Sp
ot

ify

Sk
yp

e
Fi

le

Fa
ce

bo
ok

C
ha

t

H
an

go
ut

s
C

ha
t

Fa
ce

bo
ok

V
id

eo

H
an

go
ut

s
V

id
eo

Sk
yp

e
V

id
eo

Fa
ce

bo
ok

A
ud

io

H
an

go
ut

s
A

ud
io

Sk
yp

e
A

ud
io

Netflix 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spotify 4.00 70.00 26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Skype File 00.00 17.50 78.33 2.50 1.67 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Chat 0.00 0.00 20.00 60.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00
Hangouts Chat 0.00 0.00 0.00 30.00 70.00 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Video 0.00 0.00 0.00 0.00 0.00 90.00 10.00 0.00 0.00 0.00 0.00
Hangouts Video 0.00 0.00 0.00 0.00 2.00 0.00 94.00 4.00 0.00 0.00 0.00

Skype Video 0.00 0.00 0.00 0.00 0.00 0.00 5.00 82.50 10.00 0.00 2.50
Facebook Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.50 22.50 10.00
Hangouts Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.91 77.27 6.82

Skype Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.18 19.09 72.73

Act: Actual, Pred: Prediction

Table 5.14 Confusion at the application level on the ISCXVPN2016 dataset (Clas-
sifier: CB-ECOC-SD)

Act
Pred

N
et

fli
x

Sp
ot

ify

Sk
yp

e
Fi

le

Fa
ce

bo
ok

C
ha

t

H
an

go
ut

s
C

ha
t

Fa
ce

bo
ok

V
id

eo

H
an

go
ut

s
V

id
eo

Sk
yp

e
V

id
eo

Fa
ce

bo
ok

A
ud

io

H
an

go
ut

s
A

ud
io

Sk
yp

e
A

ud
io

Netflix 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spotify 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Skype File 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Chat 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hangouts Chat 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Video 10.0 0.00 0.00 0.00 0.00 10.0 80.0 0.00 0.00 0.00 0.00
Hangouts Video 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00

Skype Video 0.00 0.00 5.00 0.00 0.00 0.00 0.00 95.00 0.00 0.00 0.00
Facebook Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00
Hangouts Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00

Skype Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Act: Actual, Pred: Prediction

related computations can be performed in the online manner. The training phase
for all these classifiers is common involving i) the parameter estimation for the
DTMCs per each training instance xi,n of length Wlfs, as well as ii) storing of the
estimated parameters. However in the ECOC-based classifiers the parameters are
estimated and are stored for each sub-classifier Note that the DTMC parameter
estimations can be completed computationally highly efficiently and sequentially in
a recursive online manner with O(Wlfs + N2

s) complexity for a single training se-
quence at O(N2

s) space complexity due to storing the parameter matrix (Ns is the
number of states in our DTMCs), cf. [40] for the details of recursive parameter
estimations. Also, estimated parameters necessarily continue to be stored in the

49

Table 5.15 Confusion at the application level on the ISCXVPN2016 dataset (Clas-
sifier: 2L-ECOC)

Act
Pred

N
et

fli
x

Sp
ot

ify

Sk
yp

e
Fi

le

Fa
ce

bo
ok

C
ha

t

H
an

go
ut

s
C

ha
t

Fa
ce

bo
ok

V
id

eo

H
an

go
ut

s
V

id
eo

Sk
yp

e
V

id
eo

Fa
ce

bo
ok

A
ud

io

H
an

go
ut

s
A

ud
io

Sk
yp

e
A

ud
io

Netflix 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spotify 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Skype File 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Chat 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hangouts Chat 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00
Facebook Video 10.0 0.00 0.00 0.00 0.00 66.5 23.5 0.00 0.00 0.00 0.00
Hangouts Video 0.00 0.00 0.00 0.00 0.00 0.00 96.40 3.6 0.00 0.00 0.00

Skype Video 0.00 0.00 5.00 0.00 0.00 0.00 0.00 95.00 0.00 0.00 0.00
Facebook Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00
Hangouts Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00

Skype Audio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Act: Actual, Pred: Prediction

Table 5.16 Complexity analysis for the proposed classifiers in test time

Classifier Computational Complexity Space Complexity

kNMC O(Ntr(Wlfs +N2
s +k +Nα)) O(NtrN2

s +k +Nα)

kNMC-3D O(Ntr(3Wlfs +N2
s +k +Nα)) O(NtrN2

s +k +Nα)

CB-ECOC O((∑Nc
i=1 Ntr,i(Wlfs +k +Nα))+D) O(∑Nc

i=1 N2
s +k +Nα)

2L-ECOC O((∑Nc+1
i=1 Ntr,i(Wlfs +k +Nα))+D) O(∑Nc+1

i=1 N2
s +k +Nα)

test phase. Hence, overall, in the training phase, we have O(Ntr(Wlfs + N2
s)) com-

putational complexity and O(NtrN2
s) space complexity for kNMC and kNMC-3D,

where Ntr is the number of training instances. For the ECOC classifiers, the train-
ing complexities of all sub-classifiers should be added up. Therefore for CB-ECOC,
we have O(∑Nc

i=1 Ntr,i(Wlfs + N2
s)) training complexity and O(∑Nc

i=1 Ntr,iN2
s) space

complexity where Nc = 13 is number of sub-classifiers. Since there is an additional
sub-classifier in 2L-ECOC, the upper limit of the summation will be Nc + 1 = 14.
There are different training sets for different sub-classifiers; so training for all the
sub-classifiers are processed independently.

As for the test time, we analyze the computational and space complexity for each
classifier separately for testing a single test instance xn of length Wlfs. Note that
processing the test instance xn for quantization and obtaining sn are required for
all the classifiers. This operation is done with different approaches in kNMC and
kNMC-3D. We can say that the complexities of that conversion are nearly the same
and negligible beside the classification part. For the classifier kNMC: there are

50

k-comparison/counting step (without a need for complete sorting for ease of exposi-
tion) and one additional majority step yielding O(Ntr(Wlfs +k+Nα)) (k is the num-
ber of neighbors as a parameter) computational complexity at O(NtrN2

s + k + Nα)
space complexity. For the classifier kNMC-3D: we can say that the complexity for
single test entry is same as kNMC with the difference in the quantization part but
it can be considered as negligible. Also, space complexity could be expressed sim-
ilarly but the Ns will be bigger in kNMC-3D. For this reason, we can conclude
that the overall complexity of kNMC-3D is slightly higher than the complexity
of kNMC. Since the overall performance of kNMC is similar to kNMC-3D in our
dataset, using kNMC seems more reasonable. However, the performance results in
the benchmark dataset show that the performance of kNMC-3D is more solid with
10% higher accuracy. Hence, overall, kNMC-3D is preferable despite its relatively
high complexity. The complexity of ECOC-based classifiers is calculated differently.
The ECOC classifiers include Nc independent sub-classifiers thus the computational
complexity will be a summation of all sub-classifiers’ complexities. Also, ECOC-
based classifiers have another additional complexity for decoding which is denoted
by D but it is operated once, not for each sub-classifier. The complexity of ECOC
classifiers is higher compared to kNMC-3D. But it should be noted that each classi-
fier is independent and can be processed in parallel. Within parallel programming,
the negative effect of high complexity can be removed. When the improvement in
accuracy with ECOC classifiers is considered, the usage of ECOC-based classifiers
could be a better strategy achieving better performance. However, those who need
low complexity; can use kNMC with a small Wlfs parameter. Since 2L-ECOC has
an additional classification level, its computational complexity will be higher than
CB-ECOC. Also, the second level needs the predictions of the first level therefore
they could not be run in parallel. We summarize these complexity findings in Table
5.16. As can be observed, the space complexities of ECOC classifiers are also higher
because the state matrix for each sub-classifiers could be stored.

For the next phase, we compare the proposed methods with benchmark classi-
fiers. One typically has computational complexity at least O(N2

trptr) in training
and O(Nsvptr) in test for kernel SVM, and O(Ntr log(Ntr)ptrNtree) in training and
O(ptrpdepthNtree) in test for random forest. Here, ptr is the feature dimensionality,
Nsv is the number of support vectors (Nsv = Ntr in the worst case) and Ntree is the
number of trees in random forest with pdepth being the maximum depth. Therefore,
kNMC is computationally significantly more efficient than both SVM and random
forest in training, since the complexity of kNMC scales linearly with respect to the
training data size (Ntr) whereas the others scale with at least O(Ntr log(Ntr)). In
the test phase, we consider that kNMC and SVM are comparable complexity-wise,

51

since it would be not unreasonable to assume that the number of support vectors
is not a negligible fraction of the number of training instances (Nsv = Ntr in the
worst case). Hence, the computational complexities of kNMC and SVM in test are
both linear in the training data size (Ntr). On the other hand, random forest ap-
pears to be the computationally most efficient since its complexity does not depend
on the training data size. However, there is one additional advantage for kNMC.
We ignore here the complexity of the feature extraction phase that is necessary for
SVM and random forest, whereas kNMC does not have such additional complexity
as it directly sequentially operates on the traffic flow. This sequential operation is
for Markov parameter estimation and can be performed fast (nevertheless, mani-
festing itself as the multiplication with Wlfs in our complexity figures). Finally,
note that RF (with hand-crafted features) generally performs better than AE+RF
whereas the computational complexity of extracting the hand-crafted features (such
as mean and standard deviation of the rate signal) is essentially negligible compared
to the training or running (one forward pass) an AE. Since kNMC and kNMC-3D
are nearly the same in terms of complexity, all of the comparisons is also valid for
kNMC-3D.

We know that ECOC classifiers are more complex than others, the complexity of CB-
ECOC and 2L-ECOC are compared with the complexity of problem-independent
ECOC schemes (OVO, OVA) that are presented in Chapter 4. The computa-
tional complexity of the problem-independent ECOC schemes can be expressed as
O(∑Nc

i=1 Ntr,i(Wlfs +k +Nα)) where Nc = 21 for OVO case and Nc = 7 for OVA case.
Here, i refers to index of sub-classifiers. The most important factor for that compar-
ison is the number of sub-classifiers, Nc. Since OVO has more sub-classifiers than
CB-ECOC and 2L-ECOC, the computational complexity of the OVO classifiers are
higher. On the other hand, the OVA classifiers include less number of sub-classifiers
and less computational complexity. However, the accuracies of OVA classifiers are
relatively low compared to others. Although OVO classifiers have higher computa-
tional complexities, their performances are worse than CB-ECOC and 2L-ECOC.
In terms of space complexities, the situation is similar. They are also proportional
to the number of sub-classifiers.

52

6. CONCLUSIONS

In this thesis, we have considered multimedia traffic classification into popular appli-
cations (Youtube, Skype, etc.) and categories (video on demand, teleconferencing,
etc.) in order to better serve the QoS requirements and enhance the user experience
in Wi-Fi home networks. We formulate a multiclass classification problem in the
Bayesian multi hypothesis detection framework and propose data-driven solutions
based on a Markov modeling of the traffic source. To this end, four novel traffic
classification schemes are presented.

The main logic of the classifiers relies on the conversion of packet-based traffic data
to flow-based signals, which are processed by a sliding window to capture statisti-
cally stationary parts and classify timely. The windowed rate signal is quantized
and modeled as a first-order discrete-time Markov chain (DTMC), providing an
observation, i.e., instance, to the classification and the corresponding observation
probability. Using the labels of training instances, each of which are also modeled
as DTMC, the posterior class conditional probability is estimated as a mixture of
Markov components. By considering the likelihood-based distance, k nearest neigh-
bors of the test instances are determined for each test instance in kNMC, the main
classifier of the thesis. Then, the kNMC classifier is redesigned with two more packet
features: number of packets, and average inter-arrival times. Since the second clas-
sifier works with three packet features and applies the method of kNMC, it is named
as kNMC-3D. While kNMC-3D performs as good as kNMC at the application level,
it outperforms kNMC 91.78% accuracy at the category level in our dataset. In
the benchmark dataset, kNMC-3D is superior to kNMC at both application and
category levels.

To improve the DTMC-based classifiers, two custom-designed ECOC-based schemes
are constructed with kNMC-3D: CB-ECOC and 2L-ECOC. The general design idea
of the ECOC-based schemes is addressing the errors of kNMC-3D by investigating
the confusion matrix. In overall accuracy, both ECOC classifiers outperform kNMC-
3D at both category and application levels: CB-ECOC enhances kNMC-3D reaching
92.39% and 92.84% accuracy at the application and category levels respectively. 2L-

53

ECOC is the best-performing classifier providing 96.26% accuracy at the application
level and 97.42% at the category level in our dataset. Similar results obtained with
the benchmark dataset confirm the superiority of the proposed classifiers.

54

7. BIBLIOGRAPHY

[1] I. Capuni, N. Zhuri, and R. Dardha, “Timestream: Exploiting video streams
for clock synchronization,” Ad Hoc Networks, vol. 91, p. 101878, 2019.

[2] M. A. Hoque, H. Abbas, T. Li, Y. Li, P. Hui, and S. Tarkoma, “Barriers in
seamless QoS for mobile applications,” arXiv preprint arXiv:1809.00659, 2018.

[3] N. Roddav, K. Streit, G. D. Rodosek, and A. Pras, “On the usage of DSCP
and ECN codepoints in internet backbone traffic traces for IPv4 and IPv6,” in
2019 International Symposium on Networks, Computers and Communications
(ISNCC), pp. 1–6, 2019.

[4] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and D. Pei,
“WiFi can be the weakest link of round trip network latency in the wild,” in
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, pp. 1–9, 2016.

[5] IEEE, “IEEE draft standard for information technology – telecommunications
and information exchange between systems local and metropolitan area net-
works – specific requirements part 11: Wireless LAN medium access control
(MAC) and physical layer (PHY) amendment 8: Medium access control (MAC)
quality of service enhancements,” IEEE 802.11e, September 2005, pp. 1–780,
Dec 2005.

[6] L. Sanabria-Russo and B. Bellalta, “Traffic differentiation in dense collision-free
wlans using csma/eca,” Ad Hoc Networks, vol. 75-76, pp. 33 – 51, 2018.

[7] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on IEEE
802.11ax high efficiency WLANs,” IEEE Communications Surveys Tutorials,
vol. 21, no. 1, pp. 197–216, 2019.

[8] L. D. Cicco, S. Mascolo, and V. Palmisano, “Qoe-driven resource allocation for
massive video distribution,” Ad Hoc Networks, vol. 89, pp. 170 – 176, 2019.

[9] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Communications Surveys Tutori-
als, vol. 10, no. 4, pp. 56–76, 2008.

[10] A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. Fernandes, and
D. Sadok, “A survey on internet traffic identification,” IEEE Communications
Surveys Tutorials, vol. 11, no. 3, pp. 37–52, 2009.

55

[11] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in
traffic classification,” IEEE Network, vol. 26, no. 1, pp. 35–40, 2012.

[12] M. Welzl, S. Islam, R. Barik, S. Gjessing, and A. Elmokashfi, “Investigating
the delay impact of the diffserv code point (DSCP),” in 2019 International
Conference on Computing, Networking and Communications (ICNC), pp. 612–
616, 2019.

[13] S. Daoud and Y. Qu, “A comparison research on DSCP marking’s impact to
the QoS of VoIP-based and SS7-based phone calls,” in 2019 7th International
Conference on Information, Communication and Networks (ICICN), pp. 66–71,
2019.

[14] Y. Liu, G. Lu, W. Zhang, F. Cai, and Q. Kong, “A DSCP-based method of QoS
class mapping between wlan and EPS network,” in Algorithms and Architectures
for Parallel Processing, pp. 204–213, Springer International Publishing, 2014.

[15] A. k. Jabbar, B. Karimi, T. M. Jamel, and A. Abood, “QoS Mapping Method
Based on DSCP/IP in LTE and EDCA AC/MAC in WiFi Network,” in
2019 12th International Conference on Developments in eSystems Engineer-
ing (DeSE), pp. 662–667, 2019.

[16] R. Barik, M. Welzl, A. Elmokashfi, T. Dreibholz, S. Islam, and S. Gjessing, “On
the utility of unregulated IP diffserv code point (DSCP) usage by end systems,”
Performance Evaluation, vol. 135, 2019.

[17] A. Custura, R. Secchi, and G. Fairhurst, “Exploring DSCP modification
pathologies in the internet,” Computer Communications, vol. 127, pp. 86 –
94, 2018.

[18] “Internet Assigned Numbers Authority (IANA).” http://www.iana.org/
assignments/port-numbers. 2020-06-24.

[19] “Office 365 IP Address and URL web service.” https://docs.microsoft.com/
en-us/office365/enterprise/office-365-ip-web-service. Accessed: 2020-06-18.

[20] C. Xu, S. Chen, J. Su, S. M. Yiu, and L. C. K. Hui, “A survey on regular
expression matching for deep packet inspection: Applications, algorithms, and
hardware platforms,” IEEE Communications Surveys Tutorials, vol. 18, no. 4,
pp. 2991–3029, 2016.

[21] A. Azab, R. Layton, M. Alazab, and P. Watters, “Skype traffic classification
using cost sensitive algorithms,” in 2013 Fourth Cybercrime and Trustworthy
Computing Workshop, pp. 14–21, 2013.

[22] S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Nar-
duzzi, and G. Giorgi, “Detection of video/audio streaming packet flows for
non-intrusive qos/qoe monitoring,” in 2017 IEEE International Workshop on
Measurement and Networking (M N), pp. 1–6, 2017.

[23] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, and M. E. Karsligil, “Ap-
plication identification via network traffic classification,” in 2017 International

56

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
https://docs.microsoft.com/en-us/office365/enterprise/office-365-ip-web-service
https://docs.microsoft.com/en-us/office365/enterprise/office-365-ip-web-service

Conference on Computing, Networking and Communications (ICNC), pp. 843–
848, 2017.

[24] F. Al-Obaidy, S. Momtahen, M. F. Hossain, and F. Mohammadi, “Encrypted
traffic classification based ml for identifying different social media applications,”
in 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE), pp. 1–5, 2019.

[25] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and continu-
ous machine-learning-based classification for interactive IP traffic,” IEEE/ACM
Transactions on Networking, vol. 20, no. 6, pp. 1880–1894, 2012.

[26] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-classification ap-
proaches for classifying mobile app traffic,” Journal of Network and Computer
Applications, vol. 103, pp. 131–145, 2018.

[27] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner: Automatic
fingerprinting of smartphone apps from encrypted network traffic,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 439–454,
IEEE, 2016.

[28] H. A. H. Ibrahima, S. M. Nora, and A. Ahmed, “Internet traffic classification
algorithm based on hybrid classifiers to identify online games traffic,” Jurnal
Teknologi (Sciences and Engineering), vol. 64, no. 3, pp. 55–60, 2013.

[29] H. A. H. Ibrahima, M. A. Al-Namari, and G. MohamedAli, “Internet traffic
classification using machine learning approach: Datasets validation issues,” in
Basic Sciences and Engineering Studies (SGCAC), 2016 Conference, 2016.

[30] T. De Schepper, M. Camelo, J. Famaey, and S. Latre, “Traffic classification
at the radio spectrum level using deep learning models trained with syn-
thetic data,” International Journal of Network Management, vol. n/a, no. n/a,
p. e2100, 2020.

[31] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted traffic
with second-order markov chains and application attribute bigrams,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 8, pp. 1830–
1843, 2017.

[32] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted traffic
classification using deep learning: Experimental evaluation, lessons learned, and
challenges,” IEEE Transactions on Network and Service Management, vol. 16,
no. 2, pp. 445–458, 2019.

[33] C. Zhang, X. Wang, F. Li, Q. He, and M. Huang, “Deep learning–based network
application classification for sdn,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 29, no. 5, p. e3302, 2018.

[34] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based clas-
sification,” tech. rep., 2013.

[35] A. Malik, R. de Fréin, M. Al-Zeyadi, and J. Andreu-Perez, “Intelligent sdn
traffic classification using deep learning: Deep-sdn,” in 2020 2nd International

57

Conference on Computer Communication and the Internet (ICCCI), pp. 184–
189, IEEE, 2020.

[36] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé, “Know your big
data trade-offs when classifying encrypted mobile traffic with deep learning,”
in 2019 Network traffic measurement and analysis conference (TMA), pp. 121–
128, IEEE, 2019.

[37] B. E. Hansen, “Time series analysis,” Econometric Theory, vol. 11, no. 3,
pp. 625–630, 1995.

[38] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser, “Improving time
series classification using hidden markov models,” in 2012 12th International
Conference on Hybrid Intelligent Systems (HIS), pp. 502–507, 2012.

[39] J. Li, W. Pedrycz, and I. Jamal, “Multivariate time series anomaly detection: A
framework of hidden markov models,” Applied Soft Computing, vol. 60, pp. 229–
240, 2017.

[40] H. Ozkan, F. Ozkan, and S. S. Kozat, “Online anomaly detection under markov
statistics with controllable type-i error,” IEEE Transactions on Signal Process-
ing, vol. 64, no. 6, pp. 1435–1445, 2016.

[41] “Wireshark Documentation.” https://www.wireshark.org/docs/. Accessed:
2020-06-21.

[42] H.Ozkan, R.Temelli, O.Gurbuz, and O.Koksal, “Multimedia traffic classifica-
tion with mixture of markov components,” Ad Hoc Networks, vol. 121, pp. 170
– 176, 2021.

[43] R. Darlington, “Dominance analysis: A new approach to the problem of rel-
ative importance of predictors in multiple regression,” Psychological Bulletin,
vol. 114, no. 3, pp. 542–551, 1993.

[44] J. Bring, “How to standardize regression coefficients,” The American Statisti-
cian, vol. 48, no. 3, pp. 209–213, 1994.

[45] J. Johnson, “A heuristic method for estimating the relative weight of predic-
tor variables in multiple regression,” Multivariate Behavioral Research, vol. 35,
pp. 1–19, 2000.

[46] A. Palczewska, J. Palczewski, R. Marchese Robinson, and D. Neagu, “Interpret-
ing random forest classification models using a feature contribution method,”
Springer International Publishing, pp. 193–218, 2004.

[47] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation impor-
tance: a corrected feature importance measure,” Bioinformatics, vol. 26, no. 10,
pp. 1340–1347, 2010.

[48] T. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-
correcting output codes.,” Journal of Artificial Intelligence Research, vol. 2,
p. 263–286, 1995.

58

https://www.wireshark.org/docs/

[49] S. Escalera, D. M. Tax, O. Pujol, and P. Radeva, “Subclass problem-
dependent design for error-correcting output codes,” IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 30, no. 6,
p. 1041–1053, 2008.

[50] O. Pujol, P. Radeva, and J. Vitria, “A heuristic method for application depen-
dent design of ecoc,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 28, no. 6,
p. 1007–1012, 2006.

[51] T. Hastie and R. Tibshirani, “Classification by pairwise grouping,” in Proc.
Conf. Neural Information Processing Systems, vol. 26, pp. 451–471, 1998.

[52] E. B. Kong and T. G. Dietterich, “Error correcting output coding corrects bias
and variance,” in Inter-national Conference of MachineLearning, pp. 313–321,
1995.

[53] E. Allwein, R. Schapire, and Y. Singer, “Reducing multiclass to binary: A uni-
fying approach for margin classifiers.,” Journal of Machine Learning Research,
no. 1, pp. 113–141, 2002.

[54] A. Berger, “Internet traffic classification algorithm based on hybrid classifiers
to identify online games traffic,” in IJCAI-99 Workshop on Machine Learning
for Information Filtering, 2006.

[55] T. Windeatt and G. Ardeshir, “Boosted ecoc ensembles for face recognition,” in
2003 International Conference on Visual Information Engineering VIE 2003,
2003.

[56] Z. YAN and Y. YANG, “Application of ecoc svms in remote sensing,” in The
International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, vol. XL-2, 2004.

[57] X. Xiao, Y. Bo, C. Yuehui, W. Lin, and C. Zhenxiang, “Network traffic clas-
sification based on error-correcting output codes and nn ensemble,” in Sixth
International Conference on Fuzzy Systems and Knowledge Discovery, pp. 475–
479, 2009.

[58] J. Zhou, Y. Yang, M. Zhang, and H. Xing, “Constructing ecoc based on con-
fusion matrix for multiclass learning problems.,” Science China Information
Sciences, no. 59, pp. 1–14, 2016.

[59] O. Pujol, S. Escalera, and P. Radeva, “An incremental node embedding tech-
nique for error correcting output codes.,” Pattern Recognition, no. 41, pp. 713–
725, 2008.

[60] A. Lashkari, G. Gil, M. Mamun, A. Ghorbani, and Y. Meng, “Characterization
of encrypted and vpn traffic using time-related features,” in The International
Conference on Information Systems Security and Privacy (ICISSP), 2016.

[61] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, “Deep learning,” vol. 1,
no. 2, 2016.

59

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Contributions and Highlights
	Thesis Organization

	RELATED WORK
	TRAFFIC CLASSIFICATION BASED ON DISCRETE TIME MARKOV CHAINS
	Dataset Description
	Problem Description
	Markov Based Traffic Classifiers
	k Nearest Markov Components (kNMC)
	Three Dimensional k Nearest Markov Components (kNMC-3D)

	ECOC BASED kNMC-3D CLASSIFIERS
	Problem-Independent ECOC Schemes
	One Versus All (OVA)
	One Versus One (OVO)

	Problem-Dependent Confusion Based ECOC Schemes
	Confusion Based ECOC Schemes (CB-ECOC)
	Two-Level ECOC Scheme (2L-ECOC)

	EXPERIMENTAL RESULTS
	Experimantal Setup and Paramater Optimization
	Performance of DTMC Based Classifiers
	Performance of ECOC Based Classifiers
	Complexity Analysis

	CONCLUSIONS
	BIBLIOGRAPHY

