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ABSTRACT
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Named Entity Recognition (NER) is a core component in extraction information
that aims to detect and classify named entities, such as person and location names.
Applications of this task include the detection of named entities in raw texts from
various domains. Categorizing news articles, anonymizing texts to ensure privacy,
and identifying diseases and drugs from electronic health records in the medical
field are some of the usage areas of this task. However, each domain has its own
challenges and knowledge requirements. One of the challenging domains in NER is
social media because of its noisy nature and context deficiency. In addition, newly
named entity classes are included in this domain, covering ambiguous and complex
entities such as book or movie titles. Because of these issues, models perform poorly
in this domain compared to well-written texts such as news articles.

In this work, we aim to improve the performance of models, particularly in complex
entities and lack of context, by integrating external information from a knowledge
base, like Wikipedia, into a transformer-based model in an unsupervised manner. To
select the external context and add it to the BERT model, we proposed two different
methods. In the first approach, the two pipelines called ELBERT and ELMultiBERT

attempted to find possible named entities on Wikipedia and utilized the pages they
found as external information. Our second method, ELSemantic, improved the pre-
vious approach by emphasizing the contextually closer pages since detecting every
named entity in Wikipedia is not always possible. With ELBERT and ELMultiBERT ,
we achieved significant improvement on the MultiCoNER dataset, which contains
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many short samples and complex entities, compared to vanilla transformer-based
models. Moreover, by incorporating semantically similar content in the ELSemantic,
we outperformed the BERTurk model on all datasets with noisy text.

Since the social media datasets in Turkish NER are either old or insufficient, we
first constructed a new Twitter dataset. Moreover, since the existing social me-
dia datasets have not been evaluated with transformer-based models, we trained
variations of these models and compared them with BiLSTM-CRF architecture
on social media datasets. We also implemented CRF and BiLSTM layers on
top of transformer-based models to improve their performances by capturing re-
lations among labels. The BERT-CRF model outperformed our pipelines with ex-
ternal knowledge, however, it performed poorly compared to our pipelines for the
dataset full of short samples and complex entities, namely MultiCoNER. The BERT-
BiLSTM-CRF model, on the other hand, performed poorly and lagged behind other
transformer-based approaches.
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ÖZET

ADLANDIRILMIŞ VARLIK TANIMASINI TÜRKÇE’DE DÖNÜŞTÜRÜCÜ
TABANLI MODELLERE HARICI BILGI VE EKSTRA KATMANLARI

ENTEGRE EDEREK GELIŞTIRME

BUSE ÇARIK

BİLGİSAYAR MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK 2022

Tez Danışmanı: Asst. Prof. Reyyan Yeniterzi

Anahtar Kelimeler: Bilgi Çıkarma, Bilgi Bankası, Vikipedi, Twitter

Adlandırılmış Varlık Tanıma (AVT), kişi ve konum adları gibi adlandırılmış varlık-
ları algılamayı ve sınıflandırmayı amaçlayan, bilgi çıkarımının temel görevlerinden
birisidir. Bu görevin kullanım alanlarından bazılarına haberlerin kategorize edilmesi,
metinlerin gizliliğin sağlanması için anonimleştirilmesi, tıp alanında elektronik sağlık
kayıtlarından hastalık ve ilaçların tespit edilmesi örnek olarak verilebilir. Bununla
birlikte, her alanın kendine ait zorlukları ve bilgi gereksinimleri vardır. AVT’deki
zorlu alanlardan birisi, gürültülü doğası ve bağlam eksikliği nedeniyle sosyal medya
verileridir. Ayrıca, kitap veya film başlıkları gibi belirsiz ve karmaşık varlıkları kap-
sayan yeni adlandırılmış varlık sınıflarının da bu alana dahil edilmesi görevi daha da
zorlaştırmıştır. Bu sorunlar nedeniyle modeller, haber makaleleri gibi iyi yazılmış
metinlere kıyasla sosyal medya verilerinde daha düşük performans göstermektedirler.

Bu çalışmada, Vikipedi gibi bir bilgi tabanından gelen harici bilgileri denetimsiz bir
şekilde dönüştürücü tabanlı bir modele entegre ederek modellerin özellikle karmaşık
varlıklarda ve bağlam eksikliğinde performanslarını iyileştirmeyi amaçladık. Dış
bağlamı seçmek ve BERT modeline eklemek için iki ayrı yöntem önerdik. İlk yak-
laşımımızda, ELBERT ve ELMultiBERT adlı iki yöntemimiz ile Vikipedi’den olası
adlandırılmış varlıkları bulmaya çalıştık ve tespit edebildiğimiz sayfalardan harici
bilgi olarak yararlandık. Ancak Vikipedi’de adlandırılmış her varlığı tespit etmek
her zaman mümkün olmadığı için ikinci yaklaşımımız olan ELSemantic’te bağlamsal
olarak daha yakın sayfaları vurgulayarak önceki yaklaşımımızı geliştirdik. ELBERT

ve ELMultiBERT modellerimiz ile çok sayıda kısa örnek ve karmaşık varlıklar içeren
vi



MultiCoNER veri setinde dönüştürücü tabanlı modellere kıyasla önemli bir gelişme
sağladık. Ayrıca, ELSemantic yöntemimizde anlamsal olarak yakın içerikleri ekle-
meyerek, gürültülü metinlerden oluşan veri setlerinde BERTurk modelinden daha
iyi performans elde etmeyi başardık.

Öncelikle Türkçe AVT’deki sosyal medya veri setleri eski ve yetersiz olduğu için yeni
bir Twitter veri seti oluşturduk. Dahası, mevcut sosyal medya veri kümeleri daha
önce dönüştürücü tabanlı modellerle değerlendirilmediği için bu modellerin varyasy-
onlarını eğittik ve BiLSTM-CRF mimarisi ile bu veri setleri üzerinde karşılaştırdık.
Daha sonra dönüştürücü tabanlı modellerin üzerlerine etiketler arasındaki ilişkileri
yakalayarak performanslarını iyileştirmek için CRF ve BiLSTM katmanları uygu-
ladık. BERT-CRF modeli, harici bilgi eklemeyi önerdiğimiz metodlardan daha iyi
performans göstermiştir, ancak kısa örnekler ve karmaşık adlandırılmış varlıklarla
dolu olan MultiCoNER veri setinde, yöntemimizle karşılaştırıldığında oldukça kötü
bir sonuç elde etmiştir. BiLSTM katmanı eklemek ise hiçbir gelişme göstermemiş
ve diğer dönüştürücü tabanlı yaklaşımların gerisinde kalmıştır.
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1. INTRODUCTION

Named Entity Recognition (NER), one of the steps in extracting information, aims
to detect and classify named entities from unstructured texts. Although there is no
precise definition of named entities, they can be defined as phrases that refer to a
real-world entity, such as proper nouns or numerical expressions (Chinchor, 1998).
NER is one of the core tasks that play a crucial role in several challenging natural
language processing and information retrieval problems, such as anonymization, en-
tity linking, summarization, and question answering. Therefore, it is a problem that
has been studied in Turkish and other languages for a long time, and outstanding
results have been achieved with advanced language models in well-written texts such
as news articles.

In addition, as online data has increased exponentially in recent years, the demand
to extract information from this data has also raised. However, the advanced models
cannot achieve exceptional scores on this type of data as in the well-written texts
because this domain has different challenges. The first reason that may lead to this
performance degradation is the noisy structures of these texts, which can be caused
by fast typing and character restrictions. Furthermore, online data frequently lack
sufficient context, especially since tweets and search queries are significantly shorter
than sentences in news articles. The transformer-based models rely on contextual
information, hence, their performance is significantly impacted by the absence of
context.

Another difference that causes lower scores in online data is that it expands the
label set, consisting of only person, location, and organization names, with new
classes that contain ambiguous and fast-growing entities. For instance, newly re-
leased movies, TV shows, and songs, which are among the most discussed subjects
on online data, are gathered under Product or Creative-Work classes (Malmasi,
Fang, Fetahu, Kar & Rokhlenko, 2022a). However, their names can be complicated
for models to understand, such as in Call me by your name, (i.e., a movie) or Under
the Bridge, (i.e., a song). In addition to their complexity, they have a rapid growth
rate as a new movie or song is released every day. Hence, the majority of these
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entities cannot be captured in the annotated datasets. As a result, our models have
to encounter a large number of examples of these classes that they have never seen
before in a real-world setting.

In order to address the lack of context and complex entities, especially in online
data, we explored the impact of integrating external knowledge into transformer-
based models. Because, in the annotation process, even human annotators leverage
online or printed resources when they encounter an unknown phrase. Moreover, sev-
eral studies utilizing external information with various strategies have improved the
performance of transformer-based models significantly in different languages (Wang,
Jiang, Bach, Wang, Huang, Huang & Tu, 2021; Yamada, Asai, Shindo, Takeda
& Matsumoto, 2020). Hence, to extract relevant information, we suggested new
pipelines that find related content from knowledge bases by searching syntactically
and semantically similar documents.

Although well-written texts like news articles and Wikipedia pages in Turkish have
been extensively researched, studies on noisy texts, such as social media data, are
limited. One of the reasons for this is the insufficiency of available datasets in
this domain. The existing Twitter datasets in Turkish are either remarkably small
(Küçük & Can, 2019) or created a long time ago (Çelikkaya et al., 2013). Due to
Twitter’s restrictions on data sharing, tweets are shared with their unique ID rather
than their text. As a result, if users delete tweets that are part of the annotated
data, it is not possible to access those tweets again. As the deletion rate of tweets
and users increases over time, a significant amount of data is lost in old datasets.
Therefore, as a part of this study, we built a new Twitter dataset consisting of recent
tweets. Furthermore, to prevent the dataset from being discarded in the future, we
shared the models trained with these tweets publicly.

Moreover, transformer-based models have not been explored for social media
datasets in detail, as well-written texts. Hence, we experimented with several
transformer-based models on noisy texts, including our new Twitter dataset, and
compared our results with BiLSTM-CRF architecture. Thus, we could compare the
performances of these models on well-written and noisy texts in the same experimen-
tal setting. Furthermore, to improve the performance of transformer-based models,
we implemented additional layers, like CRF and BiLSTM, to these architectures.

1.1 Research Questions
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In this thesis, in order to improve the current state-of-the-art models for NER in
Turkish, especially in noisy text, we focus on integrating external knowledge from
a knowledge base like Wikipedia and adding extra layers on top of these models.
While studying these approaches, we aimed to give answers to the following research
questions.

RQ1: Would implementing extra layers on top of the transformer-based models
outperform only using the softmax function?

RQ2: Would integrating an external context from a knowledge base into
transformer-based models improve results for NER in Turkish, especially for noisy
texts?

We ask the following follow-up questions to measure the effectiveness of using ex-
ternal knowledge in the NER task.

• RQ2-1: In what conditions would utilizing the Wikipedia pages of detected
possible named entities as external knowledge improve the NER?

• RQ2-2: Would highlighting semantically similar texts to input samples be
more effective than using only pages of detected possible named entities?

Our experiments on six datasets showed that including external knowledge improved
the BERT’s performances, especially in social media and search query domains. We
also compared the effectiveness of our approach with BiLSTM-CRF, BERT-CRF,
and BERT-BiLSTM-CRF models. Our contributions are summarized as follows:

• We introduced a new Turkish NER dataset enriched with new named entity
classes in the social media domain.

• We also shared the models that we trained with this dataset publicly on Hug-
gingFace1.

• Transformer-based models, which hold state-of-the-art results in several
datasets in Turkish, were evaluated, including unattempted social media
datasets. Moreover, the effect of CRF and BiLSTM layers on top of
transformer-based models was compared in the same environmental setting.

• We proposed two new methods to integrate external knowledge into
transformer-based models. First, we introduced two pipelines, called ELBERT

and ELMultiBERT, that provide Wikipedia pages of possible named entities as
external context. Second, we utilized semantically similar content as additional

1https://huggingface.co/
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information in the ELSemantic pipeline.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides background
information about the NER task and describes work done by the previous studies
for NER in Turkish and other languages. In chapter 3, the datasets used in this thesis
are explained in detail. In chapter 4, the neural models that we used in this study
are explained, and their results are reported. Chapter 5 describes our methodologies
that utilize external knowledge and presents the results of these methods. In chapter
6, we discuss and analyze the performances of models described in chapters 4 and
5. Finally, chapter 7 concludes this thesis by summarizing the research findings and
exploring possible future directions.
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2. BACKGROUND AND RELATED WORK

In this chapter, we give an overview of approaches to address that named entity
recognition task throughout the years. Then, we discuss the challenges of social
media data, in general, noisy texts. Furthermore, studies that utilized knowledge
bases and gazetteers have been introduced. Finally, we present studies on Turkish
NER in various domains.

Early approaches in NER were based on handcrafted features, such as case infor-
mation, part-of-speech tags, and rule-based approaches (Humphreys, Gaizauskas,
Azzam, Huyck, Mitchell, Cunningham & Wilks, 1998; Krupka & IsoQuest, 2005).
Rules generated based on patterns, domain information, and linguistic characteris-
tics are combined with gazetteers or lexicons (Li, Sun, Han & Li, 2020). However,
because the rules are domain or language-specific, they are difficult to fit across
different datasets.

To address this problem, statistical and supervised machine learning approaches
turned NER into a sequence labeling task. Rules in these models are created
automatically using features extracted from the large annotated data. The pop-
ular systems used for this task are as follows: Hidden Markov Model (HMM)
(Bikel, Miller, Schwartz & Weischedel, 1997; Eddy, 1996), Support Vector Machines
(SVMs) (McNamee & Mayfield, 2002; Takeuchi & Collier, 2002), Maximum En-
tropy Markov Models (McCallum, Freitag & Pereira, 2000), and Conditional Ran-
dom Fields (CRF) (Finkel & Manning, 2009; Krishnan & Manning, 2006; Lafferty,
McCallum & Pereira, 2001; McCallum & Li, 2003). The CRF model has also been
experimented with in the social media domain (Liu, Zhang, Wei & Zhou, 2011;
Ritter, Clark, Mausam & Etzioni, 2011).

Constructing features manually from raw data is one of the issues with data-driven
techniques. Neural network models have replaced these techniques by eliminating
the feature engineering part. While different architectures like convolution neural
networks (CNN) were employed on NER (Collobert & Weston, 2008), bidirectional
LSTM models on top of the CRF model (BiLSTM-CRF) achieved an outstand-
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ing performance (Collobert, Weston, Bottou, Karlen, Kavukcuoglu & Kuksa, 2011;
Huang, Xu & Yu, 2015). In order to learn the word representations, unsupervised
continuous skip-gram and bag-of-words (CBOW) models trained on large data col-
lections have been used (Mikolov, Chen, Corrado & Dean, 2013; Pennington, Socher
& Manning, 2014). To extract character-level features, CNN architecture has ap-
plied, then constructed character embeddings are fed into the BiLSTM-CRF model
with word embeddings (Chiu & Nichols, 2016). The effectiveness of BiLSTM-CRF
and character embeddings have also been experimented with in different languages
(Lample, Ballesteros, Subramanian, Kawakami & Dyer, 2016; Zhang & Yang, 2018).
The drawback of these architectures is that the same tokens with different meanings
are represented with the same embedding vectors. To include the context infor-
mation, (Akbik, Blythe & Vollgraf, 2018) implemented a character language model
that processes each character forward and backward with two LSTM layers.

Transformer-based models have become the new standard of NLP due to their out-
standing performance on various problems. There are several advantages of these
models. The famous one, BERT, learns contextual representation by predicting
the randomly masked tokens on an immense corpus. It can also be applied to dif-
ferent tasks by only changing the last layers. Weights of the models trained with
multilingual corpus, namely mBERT, and modified versions of BERT with a larger
multilingual data collection, namely XLM-R (Alexis, Kartikay, Naman, Vishrav,
Guillaume, Francisco, Edouard, Myle, Luke & Veselin, 2019), are publicly avail-
able. Furthermore, using the CRF model on top of BERT to predict label sequence
improved results in different languages (Arkhipov, Trofimova, Kuratov & Sorokin,
2019; Souza, Nogueira & Lotufo, 2019).

2.1 Named Entity Recognition for Noisy and Short Texts

The recent advanced neural models achieved outstanding results on well-written
texts, especially in the news articles domain; however, their performance degrades
drastically when applied to short, noisy texts such as social media texts and search
queries (Meng, Fang, Rokhlenko & Malmasi, 2021). One of the reasons for this de-
crease in the social media domain is using special symbols, such as mentions, emojis,
and hashtags. Moreover, there are a lot of misspellings, grammar mistakes, and ar-
bitrary abbreviations due to length limit or typing fast. The capitalization rule,
which is an important indicator for the NER task, is mostly ignored in these kinds
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of texts. For instance, a study (Mayhew, Tsygankova & Roth, 2019) demonstrated
that hiding capitalization information in training caused the F1 score to drop from
92.54% to 34.46% in the CoNLL test set containing case information.

In addition to the writing style, there are other factors explaining the performance
gap between these two domains. First, state-of-the-art transformer-based models
like BERT heavily depend on contextual information; on the other hand, the con-
text in social media texts can be missing due to their short nature (Meng et al.,
2021). Furthermore, while the named entity types in well-written texts like news
articles are well-known and frequently encountered entities, namely person, location,
and organization, in the social media domain, complex and ambiguous entities, such
as movie and song names, are included (Fetahu, Fang, Rokhlenko & Malmasi, 2022;
Meng et al., 2021). Moreover, although the number of named entities in the training
set of news articles is high, they are often repetitions of the same entity, and the
number of unseen entities in their test set is low, which led to outstanding per-
formances in the news domain, as stated in Augenstein, Derczynski & Bontcheva
(2017). However, while the total number of named entities in noisy texts is low,
their test set has a large number of unseen named entities.

2.2 Named Entity Recognition with External Knowledge

[Washington | PER] was the first president of the United States. It was decided
that the last meeting would be held in [Washington | LOC].

[Fenerbahçe | ORG] played well in the soccer game with [Beşiktaş | ORG].

As stated in Ratinov & Roth (2009), NER is a task that requires knowledge as
well as context. For example, we need context to understand whether Washington
is referred to as a person or a place in the first sentence above. However, in the
second sentence, although there is a context, we cannot decide whether Fenerbahçe
is a soccer team or a player without external knowledge. It is particularly difficult
to identify named entities from other languages, such as foreign organizations or
locations, as in this example. Furthermore, even annotators might be unsure about
a phrase in the annotation process. To learn the meaning of unknown words, they
utilize additional resources like Google (Wang et al., 2021). Therefore, studies have
attempted to integrate external knowledge like gazetteers and lexicons into their
methodologies. Including such knowledge has improved both statistical and neural
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approaches for this task (Yamada et al., 2020).

Early approaches utilized external knowledge by giving it as a separate feature or
encoding it in embedding vectors. Ratinov & Roth (2009) improved the scores on the
CoNLL-2003 news dataset by adding a discrete feature based on tokens’ presence in
gazetteers that were constructed from Wikipedia pages. Passos, Kumar & McCallum
(2014) utilized lexicon information at the word embedding level by extending the
skip-gram model. Their updated word embedding model not only predicts the next
token but also determines if a phrase is in the lexicon. Another study encoded the
information of whether a token is a named entity or part of the named entity into the
feature vectors alongside character features learned from CNN architecture (Chiu
& Nichols, 2016). Their stack BiLSTM network trained with character and word
embeddings enhanced with lexicon information achieved new state-of-the-art results
in the CoNLL-2003 and OntoNotes 5.0 news article datasets.

Liu, Yao & Lin (2019) also utilized external knowledge in neural architectures, but
instead of including it directly at the embedding level, they created a separate
module. A hybrid semi-Markov Conditional Random Fields model was enhanced by
a sub-tagger module that trained as a span classifier. This new module was used as
a soft dictionary lookup that returned a score for each token according to whether
they matched with an item in the gazetteer.

Ding, Xie, Zhang, Lu, Li & Si (2019) introduced a multi-digraph structure that
captures the relation between characters and gazetteers to improve the matching
accuracy between entities and gazetteers in Chinese. The constructed digraph is
given to a Gated Graph Neural Sequence to solve the ambiguities in the matches
and LSTM-CRF structure for final predictions.

Lin, Lu, Han, Sun, Dong & Jiang (2019) created an auxiliary task called gazetteer
network that aims to detect named entities from given phrases. The representation
of a phrase learned by a gazetteer network was then included in an attentive neural
network (ANN) that utilized the attention mechanism. ANN model enhanced by
the gazetteer network outperformed the single ANN in a news-related dataset.

Recent studies have applied external knowledge to transformer-based models to
improve their performances. (Song, Lawrie, Finin & Mayfield, 2020) created one-
hot vectors for each word in their training set that matched with items in their
gazetteer produced from Wikidata. The one-hot vectors generated for each named
entity type are concatenated with the last hidden layers of frozen BERT and fed into
the BiLSTM-CRF structure. BERT-BiLSTM-CRF achieved better results when
gazetteer features were added for English and Chinese news articles. However, the
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system is constrained by the fact that one-hot vectors cannot hold information about
context and spans.

Besides integrating external knowledge in downstream tasks, other recent studies
utilized knowledge bases directly in the pretraining process of transformers. Know-
BERT (Peters, Neumann, Logan, Schwartz, Joshi, Singh & Smith, 2019) is an en-
hanced version of the BERT model that inserts entity representations between the
BERT’s layers. LUKE (Yamada et al., 2020) is an adaptation of the RoBERTa
model that aims to learn contextualized entity representations. In this study, a new
pretraining task was introduced in which it predicts the masked entities of given
sentences along with masked tokens on a large corpus generated from Wikipedia.
Although these modified transformer-based models outperformed in various informa-
tion extraction tasks, including NER, they require retraining, which costs enormous
computational resources, with each update to the knowledge bases.

Previous studies have also leveraged gazetteers and knowledge bases as external in-
formation to address the challenges of social media, such as complex entities and
lack of context. An early study (Yamada, Takeda & Takefuji, 2015), adapted the
entity linking task to solve NER in a Twitter dataset. The system aims to identify
possible entities by searching Wikipedia entries with inputs in the form of n-grams
to provide external knowledge. To cope with the noisy structure of tweets, several
string-matching algorithms like a fuzzy match were implemented. It utilized a ran-
dom forest algorithm both for matching the candidate mention with entries in the
knowledge base and assigning named entity labels to the possible entities.

Manchanda, Fersini & Palmonari (2015) also improved NER performance in social
media with an end-to-end named entity linking pipeline. Their NER system was
boosted by the information acquired from knowledge bases. The predictions of the
NER model were re-classified with the information obtained after the relevant texts
were retrieved by searching the knowledge bases.

A recent study (Wang et al., 2021) also approached this task as an entity linking
problem for various domains, including news, social media, and biomedical. The rel-
evant texts retrieved from a knowledge base using input sentences were sorted based
on their contextual similarity to use as external knowledge. The most contextually
similar pages are concatenated with the input sentence and fed into a transformer-
based model. The output representation obtained from a transformer-based model
is given to a CRF layer to predict the output sequence.

Another research on noisy text (Fetahu, Fang, Rokhlenko & Malmasi, 2021) pro-
posed a system that aims to add context to information from gazetteers, which was
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missing in previous studies. While their architecture learns the word representation
from BERT, a gazetteer module consists of BiLSTM layers that acquire context
from the matched entities. They presented a gated architecture that decides which
one to trust more to combine information from these two modules. Furthermore,
Meng et al. (2021) adapted the system proposed by Fetahu et al. (2021) for web
queries that are contextually short and contain entities from other languages. To
address these code-mixed terms, multilingual gazetteers were given to the gated
architecture, and the word representation model was replaced with XLM-R, which
can compete with monolingual models. Later, Fetahu et al. (2022) also adopted and
evaluated the architecture of (Fetahu et al., 2021) for cross-lingual and cross-domain
scenarios.

2.2.1 SemEval Shared Task on Multilingual and Complex NER

A shared task in 2022 was undertaken to evaluate recent architectures on detecting
named entities, particularly complex and ambiguous ones, such as movie or product
names in a low-context and multilingual environment (Malmasi, Fang, Fetahu, Kar
& Rokhlenko, 2022b). The data used in this task include sentences from Wikipedia,
search queries, and questions in eleven languages. The main challenge in this task
was identifying the complex entities which were included in the datasets with Cre-
ative Work, Group, and Product entity types. Since these types can be semantically
ambiguous and their new instances increase rapidly, it is hard to identify with clas-
sical approaches. Therefore, the test set was constructed to be significantly larger
than the training set in order to demonstrate the generalizability of NER models on
unobserved and complicated entities. Another challenge with the test set was that
the majority of the extremely short samples caused participants to encounter a lack
of context.

The task, in which 55 teams participated, achieved the top performance when trans-
former models were enhanced with external knowledge. Creative Work and Group
entity types benefited the most from external knowledge. In addition to the external
context, the models were improved by using the ensemble technique.

Winner in multilingual track and almost all languages (Wang, Shen, Cai, Wang,
Wang, Xie, Huang, Lu, Zhuang, Tu, Lu & Jiang, 2022) retrieved relevant pages
from Wikipedia by giving an input sentence as a query. The content of these pages
was used as additional context by concatenating with input sentences. The concate-
nated inputs were fed into the XLM-R model, followed by a CRF layer to produce
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named entity classes. The final predictions were decided with majority voting among
multiple XLM-R - CRF models with different seeds.

Chen, Ma, Qi, Guo, Ling & Liu (2022), which ranked second in most of the tracks, in-
tegrated a gazetteer network into a pre-trained model. Unlike previous studies, they
aimed that the gazetteer network learns the semantic representation of the entities
rather than simply using it as a presence indicator. The architecture was trained in
two stages. In the first stage, the gazetteer network consists of a dense and BiLSTM
layer fed with one-hot vectors constructed for each token based on their presence in
the gazetteer. Meanwhile, the frozen XLM-R produced word embeddings for each
token in the input sentence. The first stage aims to teach the gazetteer network
from the embeddings of the pre-trained model by reducing the KL divergence loss
between the outputs of these two networks. In the second stage, these two networks
were trained together to obtain the final predictions with a classifier head fed by the
combination of outputs of these two networks.

Ma, Jian & Li (2022), which ranked third on the English track, concatenate entities
matched from LUKE’s entity dictionary and their corresponding types with the
input sentence to learn a contextual representation of entities by a BERT model.
They also introduced an auxiliary task that decides whether a token is a named
entity. Moreover, to improve the performance in named entity classes that is hard to
distinguish, like Creative Work and Product, KL divergence loss among the examples
of these types over logit matrix was included in the loss function.

Our approach to addressing this task for the Turkish track is utilizing Wikipedia
as an external context to enhance the BERT’s performance pre-trained on Turkish
corpora (Çarık, Beyhan & Yeniterzi, 2022). We achieved third place in this track
with our ELMultiBERT approach.

2.3 Named Entity Recognition in Turkish

The agglutinative structure of Turkish poses its challenges as in the other mor-
phologically rich languages such as Finnish or Czech. First, a countless number
of different words can be derived from a root by adding morphemes and suffixes.
Due to the derivational nature of Turkish, the vocabulary size increases remarkably,
which may cause the models to encounter many unknown words. For example, the
number of unique words in a large Turkish dataset (Tür et al., 2003) with more
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than 10 million tokens is 474,957; however, this number drops to 97,734 unique
words after stemming from each token (Aras, Makaroğlu, Demir & Cakir, 2021).
The fact that derivative words might have multiple meanings is another issue. The
problem of the data sparsity and ambiguity of meaning led researchers to utilize
morphological analysis to NER in Turkish (Oflazer, Göçmen & Bozşahin, 1994).

While earlier studies on NER in Turkish focused on rule-based and statistical ap-
proaches, with the rise of the deep learning era, it shifted to neural and large
transformer-based models. We can examine the previous works in three categories
as traditional, deep learning, and transformer-based approaches.

2.3.1 Traditional Approaches

Early studies in Turkish NER employed rule-based approaches and statistical mod-
els like HMM (Rabiner & Juang, 1986) and CRF (Lafferty et al., 2001). Tür et al.
(2003) is the first study that both experiment with HMM model and create the first
dataset on Turkish NER using news articles. This study was followed by several
rule-based methods. Küçük & others (2009) and Küçük & Yazici (2009) gener-
ated pattern-based rules and lexical resources from news articles and applied their
method in other domains, such as children’s books, historical texts, and financial
texts. Another developed a system that automates rule generation with a supervised
learning technique (Tatar & Cicekli, 2011). Later, Küçük & Yazıcı (2012) improved
its rule-based system with a hybrid approach combining rule-based and rote learning
that remembers the named entities encountered in the training data. Meanwhile,
other studies explored the CRF model utilizing the agglutinative structure of Turk-
ish. Yeniterzi (2011) experimented with the CRF model by tokenizing words at
the morpheme level and feeding morphological features as separate tokens. Another
study (Şeker & Eryiğit, 2012; Seker & Eryigit, 2017) boosted the CRF model with
a considerable amount of lexical and hand-crafted morphological features besides
large gazetteers.

Furthermore, the CRF model enriched with morphological features and gazetteers
proposed in (Şeker & Eryiğit, 2012) applied to informal texts adding a text normal-
ization step (Çelikkaya et al., 2013; Seker & Eryigit, 2017). Şeker & Eryiğit (2012) is
also the first study that introduced new datasets on noisy texts. Also, the rule-based
approaches (Küçük, Jacquet & Steinberger, 2014; Küçük & Steinberger, 2014) were
implemented for tweets by modifying capitalization and diacritic constraints. Eken
& Tantuğ (2015) introduced a larger Twitter dataset and employed a CRF method
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similar to the (Şeker & Eryiğit, 2012). However, instead of morphological features,
they gave suffixes to the model as separate tokens, and features from gazetteers were
extracted with a distance-based matching algorithm.

2.3.2 Deep Learning Approaches

The requirement of the manual feature engineering and language-dependent strate-
gies of traditional approaches led researchers to the deep learning methods. Unsu-
pervised neural networks like Word2Vec (Mikolov et al., 2013) and FastText (Bo-
janowski, Grave, Joulin & Mikolov, 2017) were used to learn the representation of
words and their relations between neighbors. While Demir & Özgür (2014) devel-
oped a regularized averaged perceptron (Ratinov & Roth, 2009) that utilizes word
embeddings and language-independent features like capitalization, Okur, Demir &
Özgür (2016) applied a similar approach to the informal text. Another study (Onal
& Karagoz, 2015) generated word embeddings from scratch with a mixed corpus to
feed into a neural network. In later studies, different levels of word embeddings, such
as words, characters, or morphological features, were investigated with CRF on top
of BiLSTM architecture to capture the long-term dependencies (Güneş & Tantuğ,
2018; Güngör, Üsküdarlı & Güngör, 2018; Kuru, Can & Yuret, 2016). To increase
performance on noisy text, Akkaya & Can (2021) applied transfer learning through
a CRF layer trained on a larger formal text. A recent study (Çetindağ, Yazıcıoğlu &
Koç, 2022) introduced the first dataset on legal documents and experimented with
different embedding vectors, including Morph2Vec, GloVe, and character embed-
dings using BiLSTM-CRF.

2.3.3 Transformer-based Approaches

Recently the Turkish NER community has become interested in transformer-based
models like BERT because of their outstanding performance across a range of tasks
and languages. Recent studies have experimented with the multilingual and Turkish
BERT models and a CRF layer on top (Aras et al., 2021; Ozcelik & Toraman, 2022;
Safaya, Kurtuluş, Goktogan & Yuret, 2022). As Aras et al. (2021) and Safaya
et al. (2022) applied these architectures to well-written text like news articles and
Wikipedia pages, Ozcelik & Toraman (2022) investigated variations of these models
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on both well-written and noisy text with detailed error analysis.
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3. DATASET

In this chapter, we describe the data collection and annotation process of our new
Twitter dataset, namely TW-SUNLP. We also provide a detailed explanation of the
datasets from various domains and writing styles in the Turkish NER literature
utilized in this study. To use in our experiments, we acquired five datasets from the
following studies: Milliyet (Tür et al., 2003), WikiANN (Pan et al., 2017), TW-2013
(Çelikkaya et al., 2013), IWT (Seker & Eryigit, 2017), and MultiCoNER (Malmasi
et al., 2022a). The remaining datasets were not included in this study as we cannot
access them (Eken & Tantuğ, 2015; Küçük et al., 2014; Tatar & Cicekli, 2011).

3.1 TW-SUNLP

The publicly available Twitter datasets in Turkish NER are limited. The available
ones are either too small or old (Küçük & Can, 2019; Küçük, Küçük & Arıcı, 2016).
Besides the fact that old datasets contain outdated topics, there is another problem
that hinders their use. Since Twitter does not allow sharing tweets, researchers can
only release the IDs of the tweets. Hence, deleting tweets or accounts causes most of
the annotated data to be lost over time. In recent datasets, however, the number of
instances is significantly small (e.g., around 1,8K in Küçük & Can (2019)) to train
a model. Furthermore, the named entity types in the current studies are limited
to PLO, TIMEX (i.e., Date and Time), and NUMEX (i.e., Money and Percentage)
classes. However, there are various complex named entities such as movies, song
titles, or products on social media. Another problem with the present datasets is
that most of them were gathered in a short period of time. Therefore, the diversity
of named entities in these datasets is limited, as the number of entities in tweets is
also generally low. On the other hand, the demand for detecting named entities in
tweets has increased as a result of the growth of social media content.
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To address these problems, we created a new Twitter dataset called TW-SUNLP.
In order to build a diverse dataset in terms of both topics and named entities, we
applied the following steps in the data collection and filtering processes:

• Collected 65 million tweets by filtering the popular topics discussed on Turkey’s
Twitter between June 2020 and June 2021.

• Removed the duplicate tweets without taking into consideration of mentions,
hashtags, and URLs.

• Selected tweets with more than 50 characters long to improve the possibility
of a named entity.

• Fine-tuned the pre-trained BERTurk model with the largest NER dataset in
Turkish, namely Milliyet. Named entity class predictions were acquired from
this model for each tweet in our collection and selected tweets that have at
least one unseen named entity among the collection based on these predictions.

• Set a limit that any hashtag can be in a maximum of 3 tweets to ensure that
we have a dataset with diverse topics.

• Selected 5,000 tweets randomly for annotation from the remaining tweets after
the above steps.

As a result of these methods, TW-SUNLP became the largest Twitter dataset in
terms of word and named entity counts. Moreover, due to the minimum character
restriction, the average sample length of this dataset is 25.2, which is significantly
higher than the other Twitter dataset. In addition, thanks to these steps, the number
of unique entities in our dataset is 10 times higher than in the other Twitter dataset.

In the annotation process, we included new named entity types, namely Product
and TV-Show, in addition to Person, Organization, Location, Money, and Time
classes. Items created by individuals or businesses are included in the Product
class. Examples of this category are movies, novels, and Facebook. Soap operas,
reality shows, and other TV series that were shown on TV are categorized under
the TV-Show class since they are discussed often on Twitter. The examples of these
entity classes from our dataset are shown below.

• Aklıma Kurtlar VadisindekiTV-SHOW Laz ZiyaPERSON geldi #OyAsiyemOy

• Yıkılsın TweeterPRODUCT bu gece Enis TalhaPERSON yoğun bakımda #Kulü-
plereDegilEniseNefesOl

We have an annotation team of four undergraduate students. Each tweet was an-
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notated by two students. At the end of the annotation process, we achieved a high
agreement score with a 0.87 Cohen Kappa score. Additionally, we published data
collection and annotation process and baseline scores of this dataset at the Language
Resources and Evaluation Conference1 (Çarık & Yeniterzi, 2022). Also, we shared
the weights of transformer-based models trained with this dataset publicly in the
HuggingFace library2, as tweets can be lost over time.

3.2 Available Datasets

The available datasets we experimented with in this study can be separated into two
categories as formal and informal. Formal texts adhere to grammar and syntactic
rules, such as capitalization. Examples in this category include Wikipedia pages
and news articles. Noisy texts like social media posts (e.g., tweets) filled with
misspellings and code-mixed phrases are classified as informal.

Dataset statistics are reported in Table 3.1 and Table 3.2, which are divided as formal
and informal. Data distributions, including validation sets, are reported in Appendix
7.1. All formal datasets were annotated with Person, Location, and Organization
(PLO) named entity types, gathered under the name of ENAMEX format by the
Message Understanding Conference (MUC) series (Grishman & Sundheim, 1996).
Named entities in informal datasets have been extended to include more complex
and ambiguous entities, such as Product and TV-Show, as well as numerical and
temporal expressions like Time and Money. Details about each dataset are explained
in the following sections.

3.2.1 Formal Datasets

Milliyet (Tür et al., 2003) is the oldest but the largest manually annotated dataset
in Turkish NER. The dataset consists of news articles collected between 1997 and
1998, with more than 27 thousand sentences. It is the largest dataset in terms of

1https://lrec2022.lrec-conf.org/en/

2https://huggingface.co/busecarik/berturk-sunlp-ner-turkish and https://huggingface.co/busecarik/bert-
loodos-sunlp-ner-turkish
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token size, with more than 500 thousand words. It was labeled manually with PLO
classes as one of the formal datasets. Since Safaya et al. (2022) provided their splits
for this dataset publicly in their repository3, we used the same split in this study to
make our results comparable.

WikiANN (Pan et al., 2017), also known as PAN-X, is a cross-lingual dataset
that contains 282 languages. It consists of Wikipedia pages that are labeled semi-
automatically. Again for comparability, we retrieved the WikiANN from the same
repository as Milliyet. The dataset labeled in ENAMEX format consists of 20,000
sentences for training and 10,000 for both validation and testing. Although the Mil-
liyet is the largest dataset in terms of token count, the semi-automatically annotated
WikiANN contains substantially more named entities.

Table 3.1 Statistics on the formal datasets used in this study.

Milliyet WikiANN
Train Test Train Test

Person 14,690 1,603 13,207 4,519
Location 9,763 1,126 14,693 4,914
Organization 9,158 873 12,099 4,154
Sentences 24,820 2,751 30,000 10,000
Tokens 465,528 49,600 225,716 75,731
NE 33,611 3,602 39,999 13,587
Unique NE 9,148 1,466 24,998 9,045

3.2.2 Informal Datasets

We have four informal datasets, including ours, from different domains such as social
media, online blogs, and search queries. The named entity classes vary between these
datasets.

TW-2013 (Çelikkaya et al., 2013) has 5039 tweets that were annotated with TIMEX,
and NUMEX, in addition to ENAMEX. The dataset was re-annotated by Seker &
Eryigit (2017) to enhance its quality, and we used the updated version of this dataset
in our study. There are two modifications that we applied to this dataset. First,
we did not consider mentions (i.e., @...) labeled as Person because it is ambiguous

3https://data.tdd.ai/#
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Table 3.2 Statistics on the informal datasets, including our Twitter dataset, in this
study.

TW-2013 IWT TW-SUNLP MultiCoNER
Train Test Train Test Train Test Train Test

Person 622 75 357 23 4,752 830 4,645 26,876
Location 165 19 236 24 1,031 194 6,155 34,609
Organization 390 34 369 32 2,520 457 - -
Money 8 4 43 2 153 17 - -
Date 49 7 52 7 - - - -
Time 18 2 7 2 528 105 - -
Percent 2 1 7 1 - - - -
TV-Show - - - - 256 48 - -
Product - - - - 335 45 3,342 21,388
Group - - - - - - 3,735 21,951
Corporation - - - - - - 2,909 21,137
Creative Work - - - - - - 3,764 23,408
Sentences 4,535 504 4,509 502 4,250 750 16,100 136,935
Tokens 42,026 4,722 42,692 4,667 106,440 18,702 229,816 723,226
NE 1,254 142 1,071 91 9,575 1,696 24,550 149,369
Unique NE 905 120 646 72 6,252 1,278 12,654 87,701

whether a person or an organization and their use violate the protection of personal
information. Secondly, we consider only the named entities that have the highest
span if there are nested named entities. We randomly divided 10% for testing, as
there was no version previously split the data as training and test. When we compare
this Twitter dataset with ours in Table 3.2, we observe that their differences are
not limited to the average sentence length. Due to the steps followed in the data
collection process, the number of total and unique named entities in our Twitter
dataset is significantly higher than the TW-2013.

IWT (Seker & Eryigit, 2017) consists of user-generated content from several do-
mains, including customer reviews, social media posts, blogs, and forums collected
from ITU Web Treebank. The label set of this dataset is the same as TW-2013,
that is, it consists of ENAMEX, TIMEX, and NUMEX. Also, we again randomly
selected %10 of the data for testing. Although this dataset is classified under the
informal datasets since it was collected from online data, it has fewer writing errors
than Twitter datasets.

MultiCoNER (Malmasi et al., 2022a) is an automatically annotated multilingual
dataset containing Wikipedia pages, search queries, and questions, constructed to
emphasize the following challenges of NER: i) lack of context in short texts, ii)
linguistically complex entities like movie and song names, iii) training datasets do
not reflect the real-world diversity of named entities classes, iv) texts contain terms
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or phrases from other languages. In order to address these problems, they built a
very large test set filled with significantly short samples. For instance, the average
sentence length in both training and validation is 14.27, but this number drops to
5.28 in the test set. Comparing the number of sentences and tokens in different sets
also illustrates this issue. While the test set has more than 130,000 samples, the
training set only contains 15,300. However, while there are more than 218K tokens
in the training set, the test set has only 723,226 words despite a large number of
instances. In addition, to emphasize problems with foreign words, several code-
mixed terms were included in both training and test sets. Besides, its label set is
enhanced to capture the complex and ambiguous named entities such as movies or
songs named with Creative Work and Product types. Since this dataset has the
characteristics of an informal dataset, even though it contains Wikipedia pages, we
categorized it as informal.

One of the important differences between formal and informal datasets that we
can observe in Tables 3.1 and 3.2 is the difference between the total number of
named entities and the number of unique entities. Although the total number of
named entities in the formal datasets is substantially higher than the informal ones,
when comparing the ratio between the total and unique named entities, the entities
in informal ones are more diverse. The highest gap between these two is in the
news articles domain, which obtains the highest score with more than 95%. This
observation shows the effect of memorization on performance increase in this domain
(Augenstein et al., 2017).

3.3 Data Preparation

Since the named entities consist of one or more words, we adopted IOB2, also
known as BIO, annotation scheme built for the NER task to demonstrate the span
of the named entities (Sang & Veenstra, 1999). The label of the first token of the
named entity starts with B-, represents the entity’s beginning, and is followed by
its named entity class. If the entity contains more than one word, the subsequent
tokens start with I- instead of B-. And it is also followed by the type of its entity
class. An example of this annotation scheme is shown in Table 3.3.
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Table 3.3 Example of the IOB2 format.

Tokens IOB2 tags
Ali B-PERSON
Koç I-PERSON
başvuruda O
bulunduğu O
Türkiye B-ORGANIZATION
Futbol I-ORGANIZATION
Federasyon I-ORGANIZATION
’ O
undan O
haber O
bekliyor O

3.4 Evaluation

As evaluation metrics, precision, recall, and averaged F1 scores according to stan-
dard CoNLL4 were implemented with seqeval (Nakayama, 2018) library. The eval-
uation metrics were calculated at the entity level, which means that the model has
to correctly identify all tokens within the span of an entity. For example, for the
sentence ’Dolmabahçe Palace is located in Istanbul’, Dolmabahçe Palace is one of
the named entities in this sample. In order to produce a correct prediction for this
named entity, the model must label Dolmabahçe as B-LOCATION and Palace as
I-LOCATION. If one of the tokens of the entity is labeled wrong, there is no partial
point, even if the other tokens are predicted correctly.

3.4.1 Results from the Previous Literature

We illustrated the results of previous studies on datasets that we used in this study
in Tables 3.4 and 3.5, separated as formal and informal. The results for Milliyet-
NER are not fully comparable, as the train and test separations were different in
previous studies.

4The Conference on Natural Language Learning that is organized by SIGNLL (ACL’s Special Interest Group
on Natural Language Learning)
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Table 3.4 F1 scores of previous studies on datasets of news articles and Wikipedia
pages, named Milliyet-NER (Tür et al., 2003) and WikiANN (Pan et al., 2017),
respectively.

Method Milliyet-NER WikiANN
Tür et al. (2003) HMM 91.56 -
Yeniterzi (2011) CRF 88.94 -
Şeker & Eryiğit (2012) CRF 91.94 -
Demir & Özgür (2014) Reg. Avg. Perc. 91.85 -
Kuru et al. (2016) BiLSTM-CRF 91.30 -
Güngör et al. (2018) BiLSTM-CRF 93.37 -
Güneş & Tantuğ (2018) BiLSTM-CRF 93.69 -
Aras et al. (2021) BERTurk-CRF 95.95 -
Safaya et al. (2022) BERTurk-CRF 96.48 93.07
Ozcelik & Toraman (2022) ELECTRA-tr 96.10 91.91
Ozcelik & Toraman (2022) ConvBERTurk 95.88 92.26

Table 3.5 F1 scores of previous studies on informal text, named TW-2013 (Çelikkaya
et al., 2013) and IWT (Seker & Eryigit, 2017). *TW-2013 was re-annotated by Seker
& Eryigit (2017). In (Seker & Eryigit, 2017) and (Alecakir et al., 2022), results were
reported on the re-annotated version.

Method TW-2013 IWT TW-SUNLP
Çelikkaya et al. (2013) CRF 19.28 - -
Küçük & Steinberger (2014) Rule-based 38.01 - -
Eken & Tantuğ (2015) CRF 28.53 - -
Okur et al. (2016) Reg. Avg. Perc. 48.96 - -
Seker & Eryigit (2017)* CRF 67.96 64.96 -
Alecakir et al. (2022)* BiLSTM-CRF 67.39 - -
Çarık & Yeniterzi (2022) BERT - - 82.18

Although results in well-written texts are significantly high, when the same methods
were applied to noisy text, scores dropped drastically. The CRF system, which was
proposed in Şeker & Eryiğit (2012) and achieved over 90% on news articles, obtained
only 19.28% on the Twitter dataset with text normalization.

In Seker & Eryigit (2017), the Twitter dataset introduced in (Çelikkaya et al., 2013)
was re-annotated to improve the quality of the annotations. With adding new
features to CRF to capture the numerical and temporal expressions such as date or
money, the score was considerably improved in the re-annotated dataset.
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4. NEURAL APPROACHES

In this chapter, we introduce several neural models experimented on all six datasets
to address the NER task. We also present our word embeddings and compare them
with popular ones. Moreover, we explore several transformer-based models that
differ in pre-training corpus and architectural design. Finally, we experimented
with CRF and BiLSTM layers on top of transformer-based models to boost their
performance.

Neural models, especially transformer-based models, achieved state-of-the-art scores
for the NER task on various Turkish datasets (Ozcelik & Toraman, 2022; Safaya
et al., 2022). Although transformer architectures outperformed the BiLSTM-CRF
model in every dataset (Güneş & Tantuğ, 2018; Güngör et al., 2018), it is still
a strong baseline to observe the effectiveness of both transformers-based models
and our new approaches. In addition, TW-2013 and IWT datasets have never
been evaluated with transformer-based models. Moreover, to compare the effect of
including a knowledge base in the same experimental setting, we devoted a separate
section to these models.

The architectures used in this part can be divided into three groups; BiLSTM net-
work, transformers-based models, and combining these architectures with a CRF
structure. These architectures address this task as a sequence-to-sequence (seq2seq)
problem, which generates an output for every token in a given input sentence. The
CRF layer was implemented on top of both models to boost their performances. Fur-
thermore, LSTM layers were included in the transformer-based models to explore
whether the models can better capture the relations in a sequence.

4.1 BiLSTM Model
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Recurrent Neural Networks (RNN) are a special kind of neural network that creates
a memory by taking the next token and outputs from the previous timestamp as
input to address sequential problems. Long-short term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) is a variation of RNN introduced to address the vanishing and
exploding gradient problem of RNN, as well as capturing relations between words
with a longer range. In order to have a wider range of dependencies, different gates
determine which information is stored and which is forgotten. Implementation of
an LSTM cell is as follows:

(4.1)

it = σ(Wi · [ht−1,xt]+ bi)

ft = σ(Wf · [ht−1,xt]+ bf )

ot = σ(Wo · [ht−1,xt]+ bo)

gt = tanh(Wc · [ht−1,xt + bc)

ct = ft ∗ ct−1 + it ∗gt

ht = ot ∗ tanh(ct)

where σ is the sigmoid function, xt is the input at time t, ht is the hidden, and ct

is the cell state. The input gate is it, the forget gate is ft, the cell is gt, and the
output gate is ot. W and b’s are the weights and biases of the respective gates.

Bidirectional LSTM (BiLSTM) consists of two LSTM layers that process the input
sequence in different directions. In the first layer, the flow occurs from the start
of a sequence to the end, while in the second layer it is in the opposite direction.
The BiLSTM architecture and processing of input with this model are illustrated
in Figure 4.1. Each token is initially encoded using a pretrained word embedding.
Then, the embedding vectors are fed into the LSTM layers. The output of the
layers is concatenated and passed into a fully connected layer. To predict the most
probable named entity tags, the output of the fully connected passed into a softmax
or CRF layer.

4.1.1 Word Embeddings
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Figure 4.1 An illustration of BiLSTM-CRF architecture.

In order to represent the tokens, we experimented with several Turkish word embed-
dings. The available embedding vectors are trained with mostly Common Crawl1

data collected from web pages, books, or Wikipedia pages. The BiLSTM-CRF archi-
tecture utilized these embedding vectors can compete with transformer-based models
in news articles and Wikipedia datasets. However, the performance of transformer-
based models on social media datasets is unknown. In order to compare transformer-
based models and BiLSTM-CRF architecture in the same experimental setting for
social media datasets, we trained Word2Vec and fastText embedding vectors with a
large tweet dump.

In this study, we used three different available pretrained word embedding models,
namely fastText (Bojanowski et al., 2017), GloVe (Pennington et al., 2014), and
Word2Vec (Mikolov et al., 2013), and trained our fastText and Word2Vec embedding
models. Details on the word embeddings are reported in Table 4.1.

1https://commoncrawl.org/
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Table 4.1 Details of word embeddings.

Training Vocab Dimension Window Negative
Data Size Size Sampling

fastText(Grave et al., 2018) Formal 2M 300 10 5
Wod2Vec(Güngör & Yıldız, 2017) Formal 2M 300 5 10
GloVe2 Formal 570K 300 - -
Our fastText Informal 1.6M 100 10 5
Our Word2Vec Informal 1.6M 300 10 5

Available Word Embeddings:

• fastText (Grave et al., 2018): It was trained with Common Crawl data and
Wikipedia pages. fastText is an effective embedding model since it performs
better in morphologically rich languages due to the use of n-gram characters.

• Word2Vec (Güngör & Yıldız, 2017): It was trained with news articles, web
pages, and books using the skip-gram model.

• GloVe2: It was also trained with Common Crawl data. However, the vocab size
of its corpus is relatively small compared to other pretrained word embeddings.

We trained new Word2Vec and fastText models with a large tweet dump collected
between June 2020 to June 2021. More than 65 million tweets were selected based
on the top 10 trend topics in Turkey. Tweets were fed into the models without any
preprocessing step. The skip-gram algorithm was used to train the models with the
gensim3 library. For both models, the window size was chosen as 10, and words
encountered less than five times were eliminated. The vector size for the Word2Vec
and fastText models was set as 300 and 100, respectively.

4.2 Transformer-based Models

Transformer-based models are deep neural architectures that replaced RNN or CNN
layers with feed-forward layers and self-attention. With the attention mechanism
(Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin, 2017),
the models can capture the contextual information of each token. Also, these large

2 https://github.com/inzva/Turkish-GloVe

3https://radimrehurek.com/gensim/
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language models learn the contextual representation of words on an immense cor-
pus with unsupervised tasks such as next-sentence prediction and masked language
modeling. These language models can be utilized in different tasks, such as NER,
by continuing the training with smaller task-specific datasets on the weights learned
on large corpora.

In this study, we fine-tuned the BERT (Devlin, Chang, Lee & Toutanova, 2018)
model and its variations, which only contain a stack of encoders that learn text’s
semantic and syntactic features. Models pre-trained on both multilingual and Turk-
ish corpus from different domains were experimented with our datasets. The details
of the BERT models and the variations that were used are listed below.

Turkish Models:

• BERTurk (Stefan, 2020): It was pre-trained on formal texts, i.e., Turkish
Wikipedia articles, OSCAR, and OPUS corpus. It is a base model with 12
encoder layers and 768 hidden units on each feed-forward layer.

• BERTloodos (Oluk & Özgur, 2020): Its pre-training data includes informal texts
like online blogs and tweets. It is the base model with the same dimensions as
BERTurk.

• ConvBERTurk (Stefan, 2020): It is a variation of the BERT model based
on ConvBERT (Jiang, Yu, Zhou, Chen, Feng & Yan, 2020) with a different
training method. It introduced a span-based dynamic convolution layer into
the self-attention of BERT to capture local dependencies. The pre-training
corpus is the same as BERTurk.

Multilingual Models:

• mBERT (Devlin et al., 2018): The model was pre-trained on Wikipedia pages
for 104 languages, including Turkish. The base model was used in this study
with 12 encoder layers and 768 hidden units on each feed-forward layer.

• XLM-RoBERTa (XLM-R) (Alexis et al., 2019): The pre-training data of this
model collected for 100 languages, including Turkish from the CommonCrawl
data. Its difference from the BERT model is excluding the Next Sentence
Prediction task in the training process and trained on only masked language
modeling objectives.

4.3 CRF Layer
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Figure 4.2 An illustration of BERT-BiLSTM-CRF architecture.

The CRF classifier computes the joint probability of all the labels in a sequence
to identify the relations at the label level (Lafferty et al., 2001). It also showed
competitive performance with neural approaches in Turkish (Şeker & Eryiğit, 2012;
Seker & Eryigit, 2017). Hence, instead of using softmax to predict label sequence, we
implemented a CRF layer on top of both architectures (i.e., BiLSTM and BERT).
The CRF layer calculates the conditional probability P (y|S) as follows:

(4.2) P (y|S) =
∏n

i=1 exp(W T
yi

xi + byi−1,yi)∑
y′∈Ω(x)

∏n
i=1 exp(W T

y′
i
xi + by′

i−1,y′
i
)

where W T
yi

xi represents the emission and byi−1,yi represents the transmission scores.
Ω(x) stands for all possible label sequences. Negative log-likelihood loss NLL(θ) =
− logp(y|S) was used as the loss function in training. To detect the most likely
named entity tag sequence, we used the first-order Viterbi algorithm.

The output of the final hidden states of both architectures is passed to the CRF
layer after being concatenated. The difference between the BERT model from the
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BiLSTM is that BERT splits words that are not in its vocabulary into subwords
with its tokenizer. Hence, the model generates output embeddings for each subtoken
rather than each token. To implement the CRF layer, we considered only the first
sub-token as an input to the next layer and ignored the rest.

Furthermore, to benefit from both transformer-based models and the BiLSTM net-
work, we implemented a BiLSTM layer above the BERT models. As illustrated in
Figure 4.2, the output of the BERT model is fed into the BiLSTM layer. As BERT
produces an output embedding for each subtoken, again we only fed the first subto-
ken to the BiLSTM layer. Finally, a CRF layer is applied on top of the BiLSTM
layer as in the previous architectures.

4.3.1 Experimental Setup

All neural models were trained with a fixed learning rate of 3x105 using the AdamW
(Loshchilov & Hutter, 2018) optimizer. In all experiments, for the BiLSTM-CRF
model, the number of epochs was set to 20, and the batch size was 16. For all
transformer-based models, the epoch and batch size was set as 10 and 8, respec-
tively. The maximum sequence length size was determined based on the length of
input samples in the datasets. Because of the randomization factor in the models’
initialization, we trained each model with five different seed values and reported our
averaged results.

4.4 Results

In this section, the experiment results of the neural architectures introduced above
are presented in Table 4.2 and 4.3. First, we experimented with five different word
embeddings on BiLSTM-CRF. Next, the variations of transformer-based models that
are trained with multilingual and Turkish corpora were tested on our datasets. Af-
terward, we evaluated Turkish BERT models by replacing their classification layers
with CRF and BiLSTM-CRF layers.

The results of all these architectures are reported in two tables separated as formal
and informal. While the average F1 scores in the test sets are provided in the
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following tables, the precision, recall, and F1 scores in both the test and validation
sets are listed in Appendix 7.1.

Table 4.2 The performance of BiLSTM-CRF and transformer-based models on for-
mal datasets (i.e., Milliyet and WikiANN). While the BiLSTM-CRF architecture is
separated based on the five different word embeddings, BERT models are divided
based on the final layers on top. The average of weighted F1 Scores from 5 runs
with different seeds is reported.

Model Milliyet WikiANN

BiLSTM-CRF

fastText-FB 90.89±.01 86.57±.00
GloVe-Inzva 89.89±.00 82.89±.01
W2V-Gungor 93.63±.00 88.83±.00
Our fastText 84.69±.01 80.13±.00
Our W2V 82.10±.01 71.34±.00

BERT

mBERT 87.93±.01 91.52±.00
XLM-R 89.96±.01 90.12±.00
BERTurk 95.35±.01 91.34±.01
BERTloodos 94.17±.01 91.45±.00
ConvBERTurk 95.49±.00 92.06±.00

BERT-CRF
BERTurk 95.72±.00 93.70±.00
BERTloodos 95.82±.00 92.77±.01
ConvBERTurk 95.94±.00 93.40±.00

BERT-BiLSTM-CRF
BERTurk 95.87±.00 93.54±.00
BERTloodos 95.46±.00 92.90±.00
ConvBERTurk 95.76±.00 93.16±.00

In Table 4.2, the evaluation results of BiLSTM-CRF and different transformer-based
models on the Milliyet news dataset and WikiANN are reported. The performance
of BiLSTM-CRF using various word embeddings is shown in the first five rows. As
expected, the W2V-Gungor word embedding model (Güngör & Yıldız, 2017) per-
formed by far the best in Milliyet since its training data includes news articles as
an advantage to the fastText-FB (Grave et al., 2018). fastText-FB and GloVe-Inzva
achieved significantly higher scores compared to our embedding vectors as the do-
main of their training data matched with evaluation datasets. The gap between the
W2V-Gungor and fastText-FB is decreased in the WikiANN dataset since there are
Wikipedia pages in the corpus of fastText-FB. On the other hand, all transformer-
based models outperformed BiLSTM-CRF in both datasets, as previously demon-
strated in the literature on Turkish NER. Noticeably, the BiLSTM-CRF model with
W2V-Gungor embedding vectors outperformed multilingual transformer models and
demonstrated comparable performance to the BERT models in Turkish.

The transformer-based models are subdivided according to their variants and pre-
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training corpora in the table. Although multilingual models obtained poor outcomes
in the Milliyet dataset, mBERT performed similarly or even better than some of the
Turkish models in the WikiANN. The presence of foreign words in this dataset
might increase the effectiveness of multilingual models. Among the three BERT
variants, ConvBERTurk achieved the best results in the NER task, demonstrating
its superiority over the BERT model as shown in Ozcelik & Toraman (2022).

The performances of the Turkish BERT models were improved by adding a CRF
layer, indicating that considering adjacent tokens is effective in deciding the class
of the current token. However, an extra layer of BiLSTM did not improve the
BERT-CRF model for both datasets.

Table 4.3 The performance of BiLSTM-CRF and transformer-based models on in-
formal datasets (i.e., TW-2013, TW-SUNLP, IWT, and MultiCoNER). While the
BiLSTM-CRF architecture is separated based on the five different word embed-
dings, the BERT model is divided based on the different layers on top. The average
of weighted F1 Scores from 5 runs with different seeds is reported.

Model TW-2013 TW-SUNLP IWT MultiCoNER

BiLSTM-CRF

fastText-FB 62.22±.02 68.60±.01 74.47±.03 49.84±.01
GloVe-Inzva 59.99±.03 69.51±.01 74.17±.02 45.97±.01
W2V-Gungor 60.83±.01 69.27±.00 74.04±.02 39.33±.01
Our fastText 48.85±.02 57.19±.01 51.02±.04 43.19±.01
Our W2V 61.70±.02 65.72±.01 69.47±.01 34.11±.01

BERT

mBERT 59.89±.04 75.40±.00 72.00±.04 44.87±.01
XLM-R 64.58±.03 77.81±.00 69.65±.07 48.85±.01
BERTurk 68.38±.04 84.01±.00 85.58±.02 49.95±.01
BERTloodos 66.75±.01 84.59±.01 83.20±.03 48.83±.01
ConvBERTurk 69.41±.03 85.04±.01 83.26±.04 54.21±.01

BERT-CRF
BERTurk 73.52±.02 85.68±.00 87.49±.02 52.31±.01
BERTloodos 69.38±.02 85.24±.01 85.27±.03 51.98±.00
ConvBERTurk 70.96±.01 86.36±.00 82.86±.01 56.64±.01

BERT-BiLSTM-CRF
BERTurk 63.95±.06 84.29±.01 77.63±.08 51.33±.01
BERTloodos 63.67±.03 83.99±.01 77.26±.05 50.55±.00
ConvBERTurk 63.19±.03 85.74±.00 76.94±.03 57.03±.00

The F1 scores on informal datasets are presented in Table 4.3. We expected a better
performance of the BiLSTM-CRF architecture trained by our word embeddings, as
our embedding vectors were trained with tweets. However, both embedding vec-
tors, especially our fastText model, performed poorly compared to other embedding
vectors. The reason for the poor results with fastText models may be due to the
inadequacy of the smaller size to represent tokens. Also, the smaller size of the train-
ing data in our embedding vectors than existing fastText and Word2Vec models may
have weakened their performance.

The transformer-based models outperformed BiLSTM-CRF architecture on the in-
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formal datasets as well, especially in the Twitter domain. Surprisingly, ConvBER-
Turk outperformed BERTloodos, scoring the highest among other BERT base mod-
els. Our expectation was that BERTloodos would perform better on datasets in this
domain as its pre-training corpora include informal data. However, the larger vo-
cabulary size of the training corpus of the BERTurk and ConvBERTurk played an
important role in the performance of these models. Implementing the CRF layer
also improves the transformer-based models on informal datasets. However, the BiL-
STM layer could not enhance the BERT-CRF model, or even worsen it, especially
for TW-2013 and IWT datasets.

One noticeable point is that the standard deviation between the models with differ-
ent seeds is remarkably high for the IWT and TW-2013 datasets. The Percent and
Time classes in their test sets contain one and two examples, respectively. When
different seeds of models miss these samples, their performances are harmed severely,
and their standard deviations also increase. These high deviations are observed in
the results of the multilingual models and BERTs with the BiLSTM-CRF layer,
which may cause a decrease in their performances.

Compared to other informal datasets, results in MultiCoNER are significantly worse.
However, as shown in Table A.11, the validation set’s results are 30% higher than
the test set’s scores. The reason for the difference between the results of these two
sets is that the samples in the test set are extremely short, with an average of 5
words. Such short sentences hinder the performance of transformer-based models,
which are hungry for context.
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5. KNOWLEDGE-BASED APPROACHES

In this chapter, we present our methodologies for the NER task, which enriched
existing models with external knowledge. We explain our methods to construct
external knowledge by utilizing both entity linking approach and contextual infor-
mation.

The neural models described in the previous section achieve remarkable results.
However, in instances where context is absent, such as in tweets and search queries,
the performance of these architectures degrades as they are heavily dependent on
context. Furthermore, the number of unseen entities encountered in the informal
dataset is significantly higher compared to formal ones. Besides many unseen enti-
ties, the named entity classes in the informal datasets enlarged to include complex
and emerging entities like book or movie titles.

In order to address these challenges, integrating information from gazetteers and
knowledge bases has shown improvement in the NER task over the years (Fetahu
et al., 2021; Lin et al., 2019). Besides, models might leverage external information
to learn about rare and unknown entities (Wang, Qu, Chen, Shen, Zhang, Zhang,
Gao, Gu, Chen & Yu, 2018). Hence, we proposed a new pipeline that extracts
additional knowledge from a knowledge base to integrate transformer-based models
in an unsupervised way. We also adopted a recent approach (Wang et al., 2021)
that utilized semantically similar contents as external knowledge in our pipeline.

5.1 ELBERT & ELMultiBERT

In the first approach, we aimed to provide additional information to the BERT
model from Wikipedia pages by detecting the pages of possible named entities. The
proposed pipeline is illustrated in Figure 5.1. The overall system can be examined
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Figure 5.1 An illustration of both ELBERT and ELMultiBERT pipelines.

in three components. The first section is Candidate Generation, where an input
example x with n tokens, x = {x1, ...,xn}, is searched in Wikipedia articles to obtain
a list of relevant documents. In the Mention Detection part, possible named entities
are identified by searching for the input sample in the retrieved documents and de-
tected possible entities are matched with the corresponding Wikipedia page. In the
final step, the input sample and relevant Wikipedia page are fed into the BERTurk
model to generate named entity predictions for each possible entity detected in the
second section.

5.1.1 Candidate Generation

Wikipedia is an open-source and constantly evolving knowledge base. It also con-
tains mention hyperlinks, namely wiki anchors, in the page contents that linked
to the entities’ own Wikipedia pages. To efficiently search for inputs in large vol-
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umes of documents, we indexed the Wikipedia pages using the ElasticSearch (ES)1

search engine with default settings. ES is a fast and open-source search engine that
performs searching at a document level. We represent each document Di with the
following fields:

• title: Title of a Wikipedia page.

• content: Page content of a Wikipedia page.

• referred_by: List of text spans, including title, showing how other pages refer
to this document. They are collected from other pages using wiki anchors. For
example, the United States is referred to as U.S., USA, or The United States
of America on other Wikipedia pages.

• interwikies: List of wiki anchors that are mentioned on the Wikipedia page.
For instance, there are hyperlinks on the United States’ page to the New York
City and Washington D.C.’s Wikipedia pages.

• all_content: Concatenated version of all fields shown above.

Input samples were used as queries to obtain relevant Wikipedia pages. We retrieved
the most relevant 200 pages for title, referred_by, interwikies, and all_content fields
by calculating the similarity score for each document using the BM25 algorithm. The
reason for retrieving a large number of documents is to not miss a relevant Wikipedia
page. The collected search results were pooled to find possible entities mentioned
differently from their Wikipedia title.

5.1.2 Mention Detection

In this section, the pooled documents for each input sample were searched over the
text spans of the input samples to find possible entity mentions. Identifying the
boundaries of a complex entity can be difficult by considering only its contextual
representation. For example, Star Wars: Episode II - Attack of the Clones, a sequel
to the Star Wars series, is a named entity found in the WikiANN dataset. Although
there are numerous documents related to Star Wars, it might be hard to detect
all the tokens of this movie’s title by only giving Star Wars-related content. On
the other hand, this sequel has its own Wikipedia page2, therefore, it might be

1https://www.elastic.co/

2https://en.wikipedia.org/wiki/Star_Wars:_Episode_II_%E2%80%93_Attack_of_the_Clones
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Figure 5.2 An illustration of the two-headed classifier of the ELMultiBERT pipeline.

helpful to first identify possible entities by searching Wikipedia for phrases in inputs.
Moreover, using both title and referred_by fields when searching documents allows
us to detect synonyms or abbreviations for entities. For instance, since the United
States of America is referred to as USA or U.S. on other pages, by collecting this
information, we can also detect this entity under different names. Thus, we provide
external information to the transformer-based models by mapping possible mentions
to relevant Wikipedia content. In order to match the candidate documents to the
possible named entities, we applied a straightforward algorithm.

The algorithm looks for an exact match between input sentences and pooled doc-
uments by comparing each document’s referred_by field with the input. The re-
ferred_by and title fields of each document are compared with the input to deter-
mine whether there is an exact match. By iterating the pooled documents for each
input sample, we generated a list of possible named entities that mapped to specific
Wikipedia pages. If there was an overlap between the matched entities, we selected
the longer one. For matches of the same length, the document with the highest
relevance score was taken into account. The relevance score from different field
retrievals was added together after pooling to determine the final relevance score.

5.1.3 Named Entity Type Detection
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To detect the type of the named entity with external context, we implemented two
different methods separated based on the classifier layer. The first approach, called
ELBERT , is a vanilla BERTurk model with a single classification layer that was
trained with the input and corresponding Wikipedia page to predict the named
entity class of a mention. The other method, called ELMultiBERT , has two classifier
heads. The two-headed architecture has shown in Figure 5.2. While one head
is responsible for detecting the named entity type of the mention, the other head
resolves an auxiliary task that determines if the mention is an entity. The prediction
of the head that detects the classes was ignored if the binary head was predicted
as non-entity. The final loss function is calculated by adding the losses of the two
heads. Instead of just giving the input sentence and generating the named entity
classes for each token, each possible entity that matched with a Wikipedia entry
in each input sentence was fed into both architectures to predict the class of the
possible entity. The input sentence and mapped article content were represented as
follows:

[CLS]ctxl[SEP]M[SEP]ctxr[SEP]WP[SEP]

where the input sentence and Wikipedia content were separated with a special
[SEP] token. In order to emphasize the possible named entity, we add [SEP]

tokens before and after the mention. Mention is represented with M, mapped
Wikipedia page is represented with WP, and the tokens before and after the mention
are represented with ctxl and ctxr, respectively.

5.1.4 Experimental Setup

We used the latest Turkish Wikipedia dump, which was released on October 1, 2022.
The dump contains 1,322,956 entities in total, but after eliminating the redirect
pages, we have 818,115 pages left. Of the remaining pages, there are 3311 pages
with no content.

Since BERT has a 512 token limit, long input samples, especially from the news
domain, have no room for external context. Hence, we divided the long samples,
specifically those longer than 60 tokens, into sub-samples. If they are still not short
enough, commas are used to separate them into smaller units. Then, these sub-
samples were fed into the BERT model after concatenating with related content.

As in the neural models, we trained the BERTurk models with a fixed learning
rate of 3x105 using the AdamW (Loshchilov & Hutter, 2018) optimizer. In all
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experiments, the number of epochs was set to 8, and the batch size was 4. The
maximum sequence length was expanded to 512, which is the maximum value for
BERT and its variations since we added external information. Again, we trained
each model with five different seed values and reported our averaged results because
of the randomization.

5.1.5 Results

In this section, we present the search results of ES in the Candidate Generation
section. We also evaluate how many named entities we were able to detect in the
Mention Detection section. Furthermore, we report the results of the ELBERT and
ELMultiBERT pipelines. Moreover, we compare the performance of these pipelines
with the BERTurk and BERTurk-CRF models.

5.1.5.1 Search Results in ElasticSearch

In Table 5.1, we demonstrate the search results in ES for each dataset by averaging
the title, referred_by, interwikies, and all_content fields. The first column shows,
on average, how many of the queried input samples returned empty. The average
number of documents retrieved for a sample from each field is displayed in the second
column. The third column gives the average number of documents for each sample
after combining all documents uniquely from each field.

A substantial amount of queries in Milliyet, TW-2013, and MultiCoNER datasets
returned empty. Although the average sample length in the Milliyet dataset is high,
there are extremely short examples, such as part of dialogues, especially in the
training set. Tweets in the TW-2013 and samples in the test set of MultiCoNER
are also significantly short. Furthermore, the noisy nature of the tweets and a high
number of phrases from other languages in the MultiCoNER dataset increase the
amount of empty returning queries. Since the number of named entities and average
sample length in the TW-SUNLP is high for a social media dataset, its search results
were not affected as others. Moreover, the number of named entities in the IWT
dataset is relatively low compared to others, resulting in fewer documents being
retrieved for each field.
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Table 5.1 Statistics of search results. The first column displays the average of the
query results returning empty for each field. The average number of documents re-
ceived in each field, namely title, referred_by, interwikies, and all_content, is shown
in the second column. The last column shows the average number of documents af-
ter pooling for each dataset.

Dataset Empty Queries Retrieved Docs Pool Size
Milliyet 46.17 190.42 564.68
WikiANN 9.5 185.88 492.86
TW-2013 57.75 179.86 511.88
TW-SUNLP 1.67 198.27 563.65
IWT 1.92 97.08 284.14
MultiCoNER 113.67 192.66 541.20

5.1.5.2 Effectiveness of Mention Detection

To evaluate the named entity detection performance of searching over Wikipedia
pages, we calculated recall scores by checking how many of the possible entities we
matched in this part are actually named entities. The scores are shown in Table 5.2
for each dataset.

Table 5.2 Recall scores that are calculated according to detected entity mentions by
the proposed algorithm for each dataset.

Dataset Train Validation Test
Milliyet 66.15 67.24 65.86
WikiANN 80.22 80.02 80.07
TW-2013 57.53 63.33 53.01
TW-SUNLP 62.64 62.67 62.19
IWT 76.71 78.90 80.34
MultiCoNER 98.89 98.85 89.84

The system can detect the majority of named entities in the MultiCoNER and
WikiANN datasets since they were mostly derived from Wikipedia articles. Finding
named entities by searching only exact matches in Twitter datasets is limited due
to the irregularities in tweets. Although texts in the news dataset are well-written,
most of the named entities belong to the Person class. Since not all people in the
news are public figures, not every example in this class has a Wikipedia article.
Therefore, the number of named entities that were captured remained modest for
the Milliyet dataset. Recall scores for the IWT dataset are surprisingly high. This
may be due to the fact that fewer spelling errors and shorter queries help ES performs
better.
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5.1.5.3 Results of ELBERT and ELMultiBERT

The F1 Scores of ELBERT and ELMultiBERT architectures are reported in Tables
5.3 and 5.4, separated as formal and informal datasets. ELBERT and ELMultiBERT

performed poorly in all datasets except MultiCoNER. Since these approaches were
trained to detect the type of possible entities that matched in the Mention Detection
part, the maximum detection possibility of these models is bounded by the num-
ber of matched entities demonstrated in Table 5.2. The unknown named entities,
unfortunately, were ignored.

Table 5.3 The performance of ELBERT and ELMultiBERT on formal datasets (i.e.,
Milliyet and WikiANN). For comparison, the BERTurk and BERTurk-CRF models
are also included. The average of weighted F1 Scores from 5 runs with different
seeds is reported.

Milliyet WikiANN
BERTurk 95.35±.01 91.34±.01
BERTurk-CRF 95.72±.00 93.70±.00
ELBERT 54.95±.00 62.33±.00
ELMultiBERT 54.72±.00 62.09±.00

Table 5.4 The performance of ELBERT and ELMultiBERT on all informal datasets.
For comparison, the BERTurk and BERTurk-CRF models are also included. The
average of weighted F1 Scores from 5 runs with different seeds is reported.

TW-2013 TW-SUNLP IWT MultiCoNER
BERTurk 68.38±.04 84.01±.00 85.58±.02 49.95±.01
BERTurk-CRF 73.52±.02 85.68±.00 87.49±.02 52.31±.01
ELBERT 35.67±.08 53.42±.00 67.86±.02 68.07±.03
ELMultiBERT 35.78±.06 53.32±.00 68.42±.03 69.32±.01

Due to the noisy nature of tweets and many unknown person names in the news,
the number of matches was moderate in these datasets. Moreover, the Wikipedia
content of some of the matched entities might return empty. Table A.13 in the
Appendix lists the number of empty pages for each dataset. These factors led to
the failure of these models in almost all datasets. On the other hand, ELMultiBERT

improved the transformer-based models significantly on the MultiCoNER dataset
since its test set has a large number of unique and complex named entities and
almost no context.
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5.2 ELSemantic

Since it is not always possible to find the exact matches in Wikipedia, their perfor-
mances are limited to the number of possible entities that the matching algorithm
can capture. Moreover, we cannot leverage the BERT’s skills for the remaining input
as it is only forced to predict possible entities. Another limitation of ELBERT and
ELMultiBERT is that Wikipedia contains articles about common objects like book
or house. The noises added because of these pages might degrade the model’s per-
formance (Chiu & Nichols, 2016). Furthermore, the BM25 algorithm is designed to
rapidly find structurally close documents fast, ignoring contextual similarity. Hence,
using articles returned from ES directly may expose the model to irrelevant pages.

Figure 5.3 An illustration of the ELSemantic pipeline.

To alleviate the limitations of ELBERT and ELMultiBERT , we introduced a new
pipeline that utilizes semantically closer content as an external knowledge to pro-
vide the model with information about entities that cannot be found in the Mention
Detection and eliminate the irrelevant pages. The new approach, called ELSemantic,
is illustrated in Figure 5.3. The Candidate Generation and Mention Detection parts
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remained the same as in the previous methods. In this pipeline, we included the
Re-ranking section to emphasize semantically closer pages so that even if the ex-
act matches cannot be found in Wikipedia, we can provide sentences that discuss
similar topics as additional information. In the Re-ranking, the search results were
re-ordered by comparing the contextual representation of the input and retrieved
pages. To measure the semantic similarity of the input sentences and documents,
we calculated BERTScore (Zhang, Kishore, Wu, Weinberger & Artzi, 2019) as pro-
posed in (Wang et al., 2021). Furthermore, Wikipedia pages that mapped to a
possible named entity in the Mention Detection were given additional weight in the
re-ranking process to prevent missing a possible entity. The classification of named
entity classes with the BERTurk model was also changed. Now, instead of just pre-
dicting possible entities, BERT generates a prediction for each token in the input
sample.

5.2.1 Re-ranking

To find contextually similar pages, we followed the method proposed by Wang et al.
(2021). They suggested adding semantically relevant context to the transformer-
based model by concatenating it with the input sentence. Since the objective of
search engines retrieving documents at high speed, some of the search results with
high relevance scores might be irrelevant to the query. Hence, in order to find
semantically similar contents, they re-ranked the retrieved documents from a search
engine based on their contextual closeness. To measure the similarity of the input
sentence and document, BERTScore (Zhang et al., 2019) was employed since it is
used as an evaluation metric for text generation tasks to evaluate how semantically
similar are the two sentences. Hence, a document has a higher BERTScore when it
is semantically more similar to the input sentence.

Since not all named entities have an entry on Wikipedia, we might increase the
effectiveness of adding external knowledge to transformer-based models by focusing
on pages that are semantically similar to the input sample among the retrieved
documents. As a contribution to the Wang et al. (2021)’s work, we emphasize the
pages that were mapped to potential entities in the Mention Detection part so that
the synonyms and abbreviations of the entities were also taken into account. While
measuring the semantic similarity, we calculated BERTScore between each input and
documents in its pool. First, each token from input sentences and the first paragraph
of documents are represented with contextual embedding vectors generated from
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the BERT model. We preferred to use the BERTurk model to create embeddings
as it was pre-trained with Turkish texts. BERTScore first calculates the cosine
similarity score between each token of the two sentences to be compared. After
each token in the document is matched with the token that has the highest cosine
similarity score in the input sentence, the recall score is computed by summing
the cosine scores between the matched tokens. Similarly, the precision score is
calculated by summing the cosine similarity scores of each token in the input sentence
that matches the tokens in the document. For input sentence x = {x1, ...,xn} and
retrieved document x̂ = {x̂1, ..., x̂m}, BERTScore’s precision, recall and f1 metrics
are calculated as follows:

(5.1)
Recall = 1

|x|
∑

xi∈x

max
x̂j∈x̂

xT
i x̂j Precision = 1

|x̂|
∑

x̂j∈x̂

max
xi∈x

xT
i x̂j F1 = 2 P ·R

P +R

Since pages that matched with phrases in the input sentences are likely to be named
entities, more weight has been assigned to the matched pages while re-ranking. For
each input sentence, the pooled documents in the Candidate Generation subsec-
tion were re-ranked according to calculated f1 scores as in Formula 5.1 and added
additional scores based on whether the page matched a part of the input sample.
The first 5 or 6 pages in the pool, which were re-ranked according to the semantic
relevance with the input samples, were selected as external content.

5.2.2 NER Classifier

In order to take advantage of BERT’s capabilities on named entities that cannot be
captured in the Mention Detection part, we changed the input representation for
the BERT model. First, we concatenated the top six Wikipedia pages that were
selected as external knowledge after the re-ranking process. The external contexts
were separated from each other by the special [SEP] token. Again, the input
sentence and the external knowledge were merged with the [SEP] token. The final
representation of the input before it is fed into the model is given below.

[CLS]x[SEP]WP1[SEP]...[SEP]WP6[SEP]

where x is the input sample, WP 1-6 are the first paragraph of the six most rele-
vant Wikipedia pages after re-ranking the search results. The BERTurk model was
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trained with these new inputs to predict the named entity classes of each token in
input sentences.

5.2.3 Results

In this section, we present the results of the ELSemantic and compared them with
our previous pipelines and BERTurk and BERTurk-CRF models.

The F1 Scores of ELSemantic and previous architectures are reported in Tables 5.5
and 5.6, separated as formal and informal datasets. Our ELSemantic pipeline outper-
formed the BERTurk model on almost all datasets. Adding semantically relevant
information resulted in further improvement, especially in context-deprived datasets.
However, none of the methods exploiting external context contributed to the BERT
model as much as the CRF layer, not surprisingly, except for the MultiCoNER
dataset.

Table 5.5 The performance of ELSemantic on formal datasets (i.e., Milliyet and
WikiANN). For comparison, the ELBERT, ELMultiBERT, BERTurk, and BERTurk-
CRF models are also included. The average of weighted F1 Scores from 5 runs with
different seeds is reported.

Milliyet WikiANN
BERTurk 95.35±.01 91.34±.01
BERTurk-CRF 95.72±.00 93.70±.00
ELBERT 54.95±.00 62.33±.00
ELMultiBERT 54.72±.00 62.09±.00
ELSemantic 94.04±.01 92.82±.00

Table 5.6 The performance of ELSemantic on all informal datasets. For comparison,
the ELBERT, ELMultiBERT, BERTurk, and BERTurk-CRF models are also included.
The average of weighted F1 Scores from 5 runs with different seeds is reported.

TW-2013 TW-SUNLP IWT MultiCoNER
BERTurk 68.38±.04 84.01±.00 85.58±.02 49.95±.01
BERTurk-CRF 73.52±.02 85.68±.00 87.49±.02 52.31±.01
ELBERT 35.67±.08 53.42±.00 67.86±.02 68.07±.03
ELMultiBERT 35.78±.06 53.32±.00 68.42±.03 69.32±.01
ELSemantic 73.49±.01 84.77±.01 86.83±.01 69.67±.01
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The ELSemantic lagged behind the BERTurk model only in the news articles dataset.
Since external context is appended to the end of the input, long samples in the
Milliyet dataset had to be split to fit the BERT model. Dividing the sentences hurt
the models’ performances since it caused a loss in the context. This finding indicates
that the model benefits more from its own context than from external knowledge of
news articles.

The performance of external context in the TW-SUNLP is different than the other
Twitter dataset since the average sample length in the TW-SUNLP dataset is sig-
nificantly longer compared to other social media datasets. For example, while the
average number of words is 9 for TW-2013, this number increased to 25 for TW-
SUNLP. The longer samples also increased the amount of context, thus reducing
the need for additional information. Hence, improvement by including external
information is limited in the TW-SUNLP dataset with external knowledge.
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6. DISCUSSION

In this chapter, we compare the performances of the neural and knowledge-based
approaches to measure the effectiveness of adding external knowledge to the transfer-
based models. We also revealed the strengths and weaknesses of our proposed models
by examining them from different aspects. Besides comparing the effectiveness of
the models, we also discuss their efficiency in terms of training and testing time.

Adding external knowledge achieved outstanding results over the vanilla BERT
model, especially on noisy and short datasets, namely TW-2013 and MultiCoNER.
The scarcity of matching entities due to the many irregularities led to poor perfor-
mance of the ELBERT and ELMultiBERT architectures on the TW-2013 dataset. In
general, the small number of entities that matched a Wikipedia entry in Mention
Detection, except for the MultiCoNER dataset, caused these two architectures to
fail in all datasets. The improvement with ELSemantic on formal datasets was limited
including IWT and TW-SUNLP because the structures of these two datasets are
similar in terms of writing style and sample length, respectively. Hence, the gain
from external knowledge is higher when texts are shorter and noisy.

First, we compared the performance of the ELSemantic to BERTurk in each named
entity class to analyze whether adding external information to BERTurk improves
its effectiveness, especially for complex named entities. In Table 6.1, we reported the
results of BERTurk, BERT-CRF, and ELSemantic on each entity class. In Milliyet,
WikiANN, IWT, and TW-SUNLP, the improvement in the PLO classes is limited,
indicating that additional context is not helpful in the examples BERTurk missed.
In fact, a CRF layer is more effective for these datasets, especially in PLO classes.
On the other hand, including external information improved BERTurk’s scores in
all classes for noisy and short texts, particularly Creative-Work, Groups, and TV-
Show. The improvement in these complex entities is even higher compared to the
PLO classes. Considering that the average sentence length in the test set of the
MultiCoNER dataset is five, our approach outperformed since the BERTurk and
BERTurk-CRF have no information to predict the entities. Therefore, for examples
containing complex entities and a lack of context, leveraging external information is
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significantly effective.

Table 6.1 The performances of BERTurk, BERTurk-CRF, and ELSemantic’s on each
entity class in six Turkish datasets. The average of weighted F1 Scores from 5 runs
with different seeds is reported.

Dataset Entity Class ELSemantic BERTurk BERTurk-CRF

Milliyet
Person 0.96 0.97 0.97
Location 0.94 0.95 0.96
Organization 0.91 0.93 0.93

WikiANN
Person 0.95 0.94 0.96
Location 0.93 0.92 0.94
Organization 0.90 0.88 0.91

IWT

Person 0.90 0.91 0.93
Location 0.88 0.89 0.86
Organization 0.83 0.82 0.83
Money 0.68 0.63 0.68
Date 1.00 0.92 1.00
Time 0.70 0.41 0.93
Percent 1.00 1.00 1.00

TW-2013

Person 0.76 0.69 0.74
Location 0.76 0.70 0.77
Organization 0.73 0.69 0.72
Money 0.54 0.56 0.25
Date 0.61 0.65 0.70
Time 0.61 0.61 0.45
Percent 0.60 0.20 0.40

TW-SUNLP

Person 0.91 0.90 0.92
Location 0.77 0.76 0.76
Organization 0.83 0.82 0.83
Money 0.85 0.88 0.87
Time 0.89 0.89 0.89
Product 0.50 0.50 0.51
TV-Show 0.49 0.43 0.53

MultiCoNER

Person 0.75 0.61 0.63
Location 0.65 0.51 0.55
Group 0.65 0.40 0.42
Corporation 0.70 0.50 0.52
Product 0.77 0.57 0.57
Creative Work 0.65 0.39 0.42

Furthermore, to investigate whether adding external information can be more ef-
fective than the BERTurk model in the scenario where we can find related content
about all named entities, we evaluated the ELBERT and BERTurk models only on
named entities detected in the Mention Detection part. The results are shown in
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Table 6.2. The right side of the table demonstrates the performance of the models
across all instances of the datasets. On the left, we only considered samples that
have a detected named entity. If a selected sample contains an undetected named
entity, the undetected entity is considered as an Other class.

Table 6.2 The performances of BERTurk and ELBERT models only on named entities
detected in the Mention Detection part. The results of these models on entire
datasets are also depicted on the left side of the table for comparison.

Full Datasets Only Detected Entities
Dataset BERTurk ELBERT BERTurk ELBERT
Milliyet 95.35 54.95 97.48 80.17
WikiANN 91.34 62.33 91.98 93.35
TW-2013 68.38 35.67 90.08 73.87
TW-SUNLP 84.01 53.42 90.03 83.30
IWT 85.58 67.86 91.14 86.67
MultiCoNER 49.95 68.07 59.45 78.10

In MultiCoNER and WikiANN datasets, ELBERT outperformed the BERTurk
model, however, the score on MultiCoNER for ELBERT is lower than the other
datasets. The foreign phrases and errors due to the automatic annotation might
have limited its performance. Although ELBERT achieved significantly higher scores
compared to all datasets by focusing on detected entities, it still lagged behind
the BERTurk model. For the news dataset, the context of the original sentence
is more beneficial than external knowledge. The mapped Wikipedia pages may
even add some noise to the input. In the Twitter datasets, BERTurk unexpectedly
showed better performance than ELBERT. However, using a different meaning from
the Wikipedia page in the original sentence may have caused some entities to be
misclassified. Even though ELBERT could not improve the BERTurk on Twitter
datasets, including additional context is still more effective in short examples with
complex entities and insufficient context.

In addition, we examined the effect of integrating external knowledge into the
BERTurk model on long named entities. To measure the effectiveness of the external
knowledge in these long entities, we analyzed F1 scores of BERTurk, BERTurk-CRF,
and ELSemantic on entities of specific lengths. First, we calculated the number of
entities of each length for all datasets and depicted them in Figure 6.1. The ma-
jority of the named entities are clustered in the 1 to 3 range, as expected. Also,
almost all datasets have several long named entities, especially Milliyet, WikiANN,
and MultiCoNER.

We present the performance of models at different lengths of entities in Figure 6.2.
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Figure 6.1 The number of named entities grouped by their length for each dataset.

In the IWT and formal datasets, our method was able to detect most of the long
entities. Compared to BERTurk-CRF, including external knowledge showed a more
consistent performance in long entities. While our approach achieved outstand-
ing results in short entities where the majority of the samples were gathered, the
medium-length entities are the ones that hurt our pipeline the most in the formal
datasets. For the Twitter datasets, external information improved the transformer-
based models in longer entities compared to BERTurk and BERTurk-CRF. However,
the longest entities of these datasets were not captured by our model. Therefore,
we took a closer look at these missed samples, which we have listed below for both
datasets.

From TW-2013:

• Ali Sami Yen Türk Telekom Arena Stadı / Ali Sami Yen Turk Telekom Arena
Stadium: Location

From TW-SUNLP:

• Paris Saint-Germain Fan Token: Money
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Figure 6.2 Performances of ELSemantic, BERTurk, and BERTurk-CRF in different
entity lengths. The y-axis shows the F1 score of the models, while the x-axis shows
the various entity lengths.

• Karesi Belediyesi Kültür ve Sanat Evi / Karesi Municipality Culture and Art
House: Location

• 17 Aralık 2020 Perşembe Saat 20.30 / Thursday, December 17, 2020 at 20.30 :
Time

In TW-2013, the Ali Sami Yen Turk Telekom Arena Stadium is referred to as "NEF
Stadium", "Ali Sami Yen Stadium", or Ali Sami Yen Sports Complex Nef Stadium in
Wikipedia pages; hence, the extra information our model received was not sufficient
to capture all the words in this entity. On the other hand, the CRF layer was able
to understand the relation of the word stadium and previous tokens.
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In the TW-SUNLP dataset, there is no entry for Paris Saint-Germain Fan Token
in Wikipedia; therefore, our pipeline cannot provide information about this en-
tity. Also, we cannot find a page for the Karesi Belediyesi Kültür ve Sanat Evi in
Wikipedia as well. But, including different knowledge bases other than Wikipedia
will increase the chance of catching these kinds of entities.

Although extending the vanilla BERT model with a CRF layer or including external
knowledge yielded better performances, the time to train and evaluate these models
increased significantly. To investigate how efficient these approaches are, we com-
pared the efficiency of the models by examining their training and testing times in
Table 6.3 for each dataset. The duration is significantly shorter for informal datasets
due to the small number of sentences and the small number of words in each sen-
tence. The training time of the BiLSTM-CRF model is quite short compared to
other complex models since it has a simpler structure. Considering that it performs
close to the BERT model for formal datasets, it falls almost in the middle of the
effectiveness-efficiency threshold.

Implementing a CRF layer significantly increased the required amount of time for
training compared to the BERT with a softmax layer. Despite providing a significant
increase in scores, the computation time has increased approximately four times for
some of the datasets compared to the feed-forward BERT models. The addition of
the BiLSTM layer to the BERT-CRF model did not cause a significant time increase
for the same number of epochs. However, there was no significant improvement in
performance either.

Table 6.3 The training and testing time of neural models and ELSemantic for all
datasets. The upper row in each dataset shows the training time. The lower row in
each dataset shows the testing time.

Dataset BiLSTM-CRF BERTurk +CRF +BiLSTM-CRF ELSemantic

Milliyet 0:49:56 2:55:10 4:26:45 4:34:32 3:09:37
0:00:23 0:01:17 0:00:54 0:00:59 0:02:44

WikiANN 0:15:22 0:26:43 3:49:52 3:50:46 2:14:23
0:00:34 0:01:17 0:01:54 0:02:11 0:06:28

TW-2013 0:03:52 0:05:42 0:20:09 0:22:32 0:20:49
0:00:09 0:00:27 0:00:29 0:00:30 0:00:41

IWT 0:03:40 0:05:49 0:20:13 0:22:20 0:20:27
0:00:09 0:00:29 0:00:29 0:00:30 0:00:57

TW-SUNLP 0:06:21 0:08:34 0:21:32 0:23:21 0:18:20
0:00:13 0:00:31 0:00:34 0:00:36 0:01:12

MultiCoNER 0:16:45 0:25:33 1:52:05 2:18:05 1:44:56
0:04:34 0:11:43 0:20:11 0:22:07 0:48:42
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Naturally, since we raised the input length to its maximum value, the training time
has increased when we compare ELSemantic to the BERTurk model. However, the
amount of increase in required time has approached the same time as adding the
CRF layer for several datasets. One of the factors affecting this is that we have
significantly reduced the batch size due to the small amount of memory in our GPU.
Also, the input size for all samples was remarkably increased. Another drawback of
our approach is that while the time spent on training is low compared to adding a
CRF layer, testing requires more time for ELSemantic. Moreover, the amount of time
spent on our pipeline is not limited to these values.

Table 6.4 The time spends on the Candidate Generation, Mention Detection, and
Re-ranking parts in our pipeline.

Dataset Searching Matching Re-ranking
Milliyet 0:35:06 0:04:43 07:04:48
WikiANN 0:27:39 0:03:46 06:54:12
TW-2013 0:05:19 0:01:29 01:15:23
IWT 0:05:28 0:01:21 01:21:02
TW-SUNLP 0:05:44 0:01:35 01:42:14
MultiCoNER 0:24:53 0:03:30 05:48:10

In Table 6.4, we present the time spent preparing the external context. Indexing
for more than 850,000 Wikipedia pages on ElasticSearch took only about 3 minutes.
Matching the possible entities from the input samples to the Wikipedia pages also
requires a small amount of time. However, searching input samples and especially
re-ranking the documents takes an excessive amount of time. In particular, the
re-ranking of retrieved documents is a bottleneck in our pipeline, which makes this
method inefficient. In this study, however, we have implemented a simple approach
that can be improved in several ways. For instance, indexing documents directly
with contextual representation might increase both efficiency and effectiveness.
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7. CONCLUSION

In this thesis, we address the difficulties of detecting complex entities and the lack
of context in noisy texts for the Named Entity Recognition task. To alleviate
these problems, we introduced two approaches that enhance the state-of-the-art
transformer-based models by integrating external context from a knowledge base.
Besides, as part of this research, we introduced a new Twitter dataset to elim-
inate the inadequacy of the social media datasets in Turkish. Furthermore, we
explored the impact of implementing extra layers, such as CRF and BiLSTM, to
the transformer-based models and compared the effectiveness of external knowledge
with extra layers in MultiCoNER and Twitter datasets full of noisy, short, and con-
tains complex entities. It should be mentioned that most of the research covered
in this study was published at the 16th International Workshop on Semantic Eval-
uation (Çarık et al., 2022) and the Language Resources and Evaluation Conference
(Çarık & Yeniterzi, 2022).

In order to incorporate external knowledge, we proposed two straightforward ap-
proaches that utilized Wikipedia pages as additional context. After retrieving the
related pages with a search engine that used our input samples as a query, first,
we tried to detect and classify the possible named entities by finding exact matches
in the retrieved documents within the input samples. In our second approach, we
improved the previous method by re-ranking the retrieved documents according to
their contextual similarity. Next, we concatenated the five most relevant documents
with input samples and fed them into the BERT model to predict named entity
classes. The second method improved over the vanilla BERT model in almost all
datasets. When we further examine the performance of this method, our findings
showed that external knowledge is beneficial for detecting long entities as well as
entities belonging to the complex named entity classes, even though the current
implementation is not efficient.

In conclusion, we revisit our research questions to answer based on our findings:

RQ1: Would implementing extra layers on top of the transformer-based models
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outperform only using the softmax function?

Adding a CRF layer to the transformer-based models achieved state-of-the-art re-
sults in all datasets, except for the MultiCoNER dataset. The lack of context in
the examples in the MultiCoNER caused the models to fail without additional in-
formation. Also, the BERT-CRF model suffered more in classes with complex and
uncertain entities. On the other hand, the BiLSTM layer has not achieved significant
success above the BERT-CRF model.

RQ2: Would integrating an external context from a knowledge base like Wikipedia
into transformer-based models improve results for NER in Turkish?

Our experiments showed that external context helps transformer-based models to
improve their performance in various domains, especially for the texts that are short
in context and contains complex and ambiguous named entity classes. Highlighting
semantically relevant content has been further enhanced as it provides additional
information even if the system cannot find most of the entities in the Mention
Detection section.

We answer the sub-questions by discussing our results in more detail:

RQ2-1: In what conditions would utilizing the Wikipedia pages of detected possible
named entities as external knowledge improve the NER?

Using pages of possible entities as external knowledge improved the results in the
MultiCoNER dataset that contains many short sentences with insufficient context.
Also, our ELBERT and ELMultiBERT pipelines effectively detect complex and ambigu-
ous entities since they showed the most remarkable improvements in these classes,
like Product and Creative Work in MultiCoNer.

RQ2-2: Would highlighting semantically similar texts to input samples be more
effective than using only pages of detected possible named entities?

Emphasizing semantically closer pages achieved better results than utilizing only
detected named entities and even outperformed the BERTurk model in all noisy
datasets. However, ELSemantic is not an efficient pipeline as re-ranking is a time-
consuming process, and testing time increases significantly.

7.1 Future Work
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As seen from the results, the inclusion of external knowledge is a promising method
for the Named Entity Recognition task. However, the improvements we achieved
were modest due to the simplicity of our approach. For instance, using the exact
match method in the search engine to find relevant documents ignores synonyms
and semantically related phrases. We are constrained by the capacity of the ini-
tially retrieved documents, even if we subsequently re-ranked based on contextual
similarity. Also, the re-ranking process takes a long time; thus, it makes our pipeline
ineffective. In order to alleviate these issues, neural search engines that index and
search documents over contextual representations might be applied.

One of the problems that hinder the performance of models in informal datasets
and degrades the quality of retrieved documents is the noisy nature of social media
data. The quality of the retrieved documents and the re-ranking process for these
data can be improved by applying various approximation methods.

Moreover, the performance of the BERT model was significantly improved by adding
a CRF layer on top of it. Scores of the model that leverages external knowledge
might be boosted even more by implementing a CRF layer.

Finally, to increase the relatedness of the retrieved content and cover more named
entities in the search results, we might expand the utilized knowledge bases and
experiment with alternative search engines, like Google Search. Furthermore, to
detect foreign named entities that are particularly common in informal datasets,
multilingual Wikipedia pages can also be indexed.
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APPENDIX A

Table A.1 Data distributions for Milliyet and WikiANN.

Milliyet WikiANN
Train Validation Test Train Validation Test

Person 13,290 1,400 1,603 8,833 4,374 4,519
Location 8,821 942 1,126 9,679 5,014 4,914
Organization 8,316 842 873 8,833 4,374 4,519
Sentences 22,338 2,482 2,751 20,000 10,000 10,000
Tokens 419,996 45,532 49,600 149,786 75,930 75,731
NE 30,427 3,184 3,602 26,482 13,517 13,587
Unique NE 6,927 1,523 1,408 16,584 9,485 9,551

Table A.2 Data distributions for TW-2013 and IWT.

TW-2013 IWT
Train Validation Test Train Validation Test

Person 558 64 75 327 30 23
Location 145 20 19 212 24 24
Organization 361 29 34 340 29 32
Money 6 2 4 41 2 2
Date 45 4 7 50 2 7
Time 16 2 2 7 0 2
Percent 2 0 1 5 2 1
Sentences 4,081 454 504 4,058 451 502
Tokens 37,708 4,318 4,722 38,406 4,286 4,667
NE 1,136 121 142 982 89 91
Unique NE 755 109 122 567 73 78
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Table A.3 TW-SUNLP and MultiCoNER data distributions in detail

TW-SUNLP MultiCoNER
Train Validation Test Train Validation Test

Person 3,984 768 830 4,414 231 26,876
Location 866 165 194 5,804 351 34,609
Organization 2,056 464 457 - - -
Money 124 29 17 - - -
Time 414 114 105 - - -
TV-Show 204 52 48 - - -
Product 261 74 45 3,184 158 21,388
Group - - - 3,568 167 21,951
Corporation - - - 2,761 148 21,137
Creative Work - - - 3,574 190 23,408
Sentences 3,500 750 750 15,300 800 136,935
Tokens 87,704 18,736 18,702 218,399 11,417 723,226
NE 7,909 1,666 1,696 23,305 1,245 149,369
Unique NE 4,745 1,264 1,307 11,601 1,037 89,333

Table A.4 Example sentences from six datasets used in this study. The second
column presents the original words and corresponding labels based on the IOB2
tagging scheme for each dataset. The third column is the English translation of the
sentence.

Dataset Sentence Translation

Milliyet Sadece
O

Sergen
B-PER

Kartal’ı
B-ORG

ürküten
O

bir
O

oyuncu
O

oldu
O

Only Sergen was a player
that frightened Kartal.

WikiANN Ünlü
O

yönetmen
O

Dupetron
B-PER

Tartas
B-LOC

Landes
B-LOC

Fransa
B-LOC

doğumludur
O

Famous director Dupetron Tartas
was born in Landes, France

TW-2013 Ben
O

ıngıltereye
B-LOC

gıttıgımde
O

harry
B-PER

nın
O

evıne
O

gıdıcem
O

When I go to England, I will
go to Harry’s house.

IWT BBG
B-ORG

evine
O

döndü
O

.
O

BBG returned its
homeland.

TW-SUNLP Herife
O

bak
O

sanki
O

Osm’de
B-ORG

coinsle
O

lig
O

kuruyor
O

Look at the guy, it’s like he’s
building a league with coins in Osm

MultiCoNER dave
B-PER

clark
I-PER

nedir
O What’s dave clark
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Table A.5 The performance of BiLSTM-CRF model with different word embeddings
in validation and test sets of formal and informal datasets.

Word Validation Test
Embedding Precision Recall F1 Score Precision Recall F1 Score

Milliyet

FT-FB 91.36±.00 91.55±.00 91.44±.00 91.60±.01 90.20±.00 90.89±.01
FT-SUNLP 84.11±.01 85.08±.01 84.52±.01 84.95±.01 84.50±.01 84.69±.01
W2V-Gungor 93.43±.00 94.68±.00 94.05±.00 93.42±.00 93.84±.00 93.63±.00
W2V-SUNLP 85.27±.01 81.73±.01 83.45±.01 84.51±.01 79.90±.01 82.10±.01
GloVe 90.10±.01 90.03±.01 90.06±.01 90.73±.00 89.07±.00 89.89±.00

WikiANN

FT-FB 88.40±.01 86.15±.01 87.23±.01 88.02±.01 85.24±.00 86.57±.00
FT-SUNLP 81.90±.01 80.34±.01 80.79±.01 81.48±.00 79.46±.01 80.13±.00
W2V-Gungor 89.93±.00 88.50±.01 89.19±.00 89.83±.00 87.91±.01 88.83±.00
W2V-SUNLP 75.41±.00 68.39±.00 71.65±.00 75.65±.00 67.67±.00 71.34±.00
GloVe 84.88±.01 82.34±.01 83.54±.01 84.58±.01 81.41±.01 82.89±.01

TW-2013

FT-FB 66.46±.03 56.69±.02 60.15±.02 69.73±.03 56.62±.02 62.22±.02
FT-SUNLP 63.87±.03 32.23±.04 41.77±.03 71.23±.05 39.01±.02 48.85±.02
W2V-Gungor 69.81±.04 45.95±.02 54.99±.02 74.43±.02 52.25±.02 60.83±.01
W2V-SUNLP 65.49±.01 57.36±.01 60.81±.01 66.96±.03 57.75±.01 61.70±.02
GloVe 68.73±.04 57.85±.03 62.11±.02 67.69±.02 55.07±.04 59.99±.03

IWT

FT-FB 76.08±.02 71.69±.04 73.60±.03 80.20±.02 70.55±.03 74.47±.03
FT-SUNLP 73.10±.03 56.63±.01 63.51±.01 68.11±.04 41.54±.03 51.02±.03
W2V-Gungor 81.23±.01 77.30±.05 78.98±.03 77.86±.04 70.99±.02 74.04±.02
W2V-SUNLP 71.95±.02 73.93±.02 72.74±.02 70.66±.02 69.23±.01 69.47±.01
GloVe 72.99±.03 71.69±.03 71.91±.03 74.15±.03 75.16±.01 74.17±.02

TW-SUNLP

FT-FB 76.49±.02 64.32±.01 68.93±.01 76.32±.02 63.55±.01 68.60±.01
FT-SUNLP 65.50±.02 50.78±.01 55.56±.01 66.28±.02 51.98±.01 57.19±.01
W2V-Gungor 76.54±.01 65.04±.01 69.43±.01 75.27±.01 64.79±.00 69.27±.00
W2V-SUNLP 73.78±.00 63.89±.00 67.85±.00 72.46±.00 61.12±.01 65.72±.01
GloVe 76.42±.00 65.63±.00 69.85±.00 76.35±.01 64.91±.01 69.51±.01

MultiCoNER

FT-FB 79.73±.01 78.44±.01 78.95±.00 59.11±.01 44.10±.01 49.84±.01
FT-SUNLP 74.75±.02 69.61±.02 71.71±.01 54.51±.01 38.06±.01 43.19±.01
W2V-Gungor 76.39±.00 72.79±.01 74.44±.01 51.41±.01 33.27±.01 39.33±.01
W2V-SUNLP 69.36±.01 65.78±.01 67.05±.01 48.08±.00 26.88±.01 34.11±.01
GloVe 77.09±.01 76.67±.01 76.72±.00 55.68±.01 39.65±.01 45.97±.01

Table A.6 The performance of transformer-based models in validation and test sets
of Milliyet dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 90.77±.01 92.00±.01 91.36±.01 87.64±.01 88.28±.00 87.93±.01
XLM-R 90.88±.02 93.27±.01 92.04±.01 88.94±.01 91.06±.01 89.96±.01
BERTurk 95.00±.00 96.62±.00 95.80±.00 94.84±.01 95.89±.01 95.35±.01
BERTloodos 94.23±.01 96.04±.00 95.12±.00 93.64±.01 94.74±.01 94.17±.01
ConvBERTurk 94.69±.01 96.39±.00 95.52±.00 95.12±.01 95.88±.01 95.49±.00

+CRF
BERTurk 95.61±.00 96.95±.00 96.27±.00 95.53±.00 95.91±.00 95.72±.00
BERTloodos 95.70±.00 97.12±.00 96.40±.00 95.66±.00 96.00±.00 95.82±.00
ConvBERTurk 95.54±.00 96.93±.00 96.23±.00 96.00±.00 95.87±.00 95.94±.00

+BiLSTM-CRF
BERTurk 95.54±.00 96.70±.00 96.11±.00 95.76±.00 95.97±.00 95.87±.00
BERTloodos 95.36±.00 96.65±.00 96.00±.00 95.26±.00 95.67±.00 95.46±.00
ConvBERTurk 95.42±.00 96.79±.00 96.10±.00 95.50±.00 96.01±.00 95.76±.00
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Table A.7 The performance of transformer-based models in validation and test sets
of WikiANN dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 90.94±.00 92.65±.00 91.78±.00 90.84±.00 92.24±.00 91.52±.00
XLM-R 89.61±.00 91.06±.00 90.32±.00 89.43±.00 90.83±.00 90.12±.00
BERTurk 90.72±.01 92.60±.01 91.62±.01 90.57±.01 92.18±.01 91.34±.01
BERTloodos 90.80±.00 92.37±.00 91.57±.00 90.86±.00 92.08±.01 91.45±.00
ConvBERTurk 91.76±.00 93.18±.00 92.46±.00 91.57±.01 92.57±.00 92.06±.00

+CRF
BERTurk 93.26±.00 94.34±.00 93.80±.00 93.33±.00 94.08±.00 93.70±.00
BERTloodos 92.12±.01 93.61±.00 92.86±.01 92.23±.01 93.32±.00 92.77±.01
ConvBERTurk 93.12±.00 94.34±.00 93.72±.00 93.04±.00 93.76±.00 93.40±.00

+BiLSTM-CRF
BERTurk 93.06±.00 94.16±.00 93.60±.00 93.11±.00 93.97±.00 93.54±.00
BERTloodos 92.42±.00 93.72±.00 93.07±.00 92.47±.00 93.33±.00 92.90±.00
ConvBERTurk 92.71±.00 93.98±.00 93.34±.00 92.75±.00 93.57±.00 93.16±.00

Table A.8 The performance of transformer-based models in validation and test sets
of TW-2013 dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 68.17±.07 57.69±.02 61.02±.03 66.33±.05 55.77±.03 59.89±.04
XLM-R 66.12±.02 66.94±.03 66.16±.02 65.86±.04 64.65±.01 64.58±.03
BERTurk 68.93±.05 71.24±.04 69.55±.04 67.74±.07 70.28±.03 68.38±.04
BERTloodos 68.19±.04 68.26±.03 67.81±.01 67.50±.04 67.32±.04 66.75±.01
ConvBERTurk 67.49±.05 73.55±.02 69.78±.02 68.13±.02 71.55±.06 69.41±.03

+CRF
BERTurk 70.41±.02 71.57±.02 70.82±.02 74.20±.02 74.23±.02 73.52±.02
BERTloodos 64.05±.03 68.10±.02 65.85±.02 69.13±.02 70.28±.01 69.38±.02
ConvBERTurk 66.05±.01 71.90±.02 68.58±.02 71.75±.02 70.70±.02 70.96±.02

+BiLSTM-CRF
BERTurk 58.08±.03 60.99±.05 59.35±.04 61.30±.07 67.75±.06 63.95±.06
BERTloodos 63.71±.04 65.29±.02 64.33±.03 64.12±.02 63.80±.03 63.67±.03
ConvBERTurk 64.11±.03 67.93±.02 65.58±.02 63.10±.03 64.79±.03 63.19±.03

Table A.9 The performance of transformer-based models in validation and test sets
of IWT dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 77.16±.05 81.12±.02 78.73±.02 74.18±.06 71.43±.03 72.00±.04
XLM-R 77.03±.04 79.33±.09 77.82±.06 70.91±.04 70.11±.09 69.65±.07
BERTurk 83.64±.02 93.03±.03 87.75±.02 83.60±.03 88.57±.01 85.58±.02
BERTloodos 83.75±.02 91.69±.02 87.14±.01 81.66±.04 86.15±.03 83.20±.03
ConvBERTurk 84.66±.02 91.91±.04 87.75±.02 82.45±.02 85.49±.06 83.26±.04

+CRF
BERTurk 85.65±.01 93.48±.02 89.11±.01 85.78±.03 90.33±.02 87.49±.02
BERTloodos 86.29±.01 92.36±.01 88.95±.01 85.25±.03 86.15±.04 85.27±.03
ConvBERTurk 83.98±.02 90.11±.02 86.57±.02 83.79±.02 83.08±.02 82.86±.01

+BiLSTM-CRF
BERTurk 72.91±.10 82.92±.07 76.89±.09 74.77±.09 82.20±.06 77.63±.08
BERTloodos 79.80±.03 86.74±.02 82.67±.02 76.49±.04 79.34±.05 77.26±.05
ConvBERTurk 78.02±.02 88.31±.03 82.35±.02 74.59±.03 80.22±.03 76.94±.03
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Table A.10 The performance of transformer-based models in validation and test sets
of TW-SUNLP dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 77.18±.01 76.55±.01 76.78±.00 76.04±.01 75.24±.01 75.40±.00
XLM-R 78.47±.02 81.60±.01 79.80±.01 76.68±.01 79.47±.01 77.81±.01
BERTurk 84.80±.01 86.90±.01 85.74±.00 83.05±.01 85.37±.01 84.01±.00
BERTloodos 84.77±.00 85.97±.01 85.27±.00 84.14±.01 85.27±.01 84.59±.01
ConvBERTurk 84.57±.01 87.31±.00 85.81±.01 83.98±.01 86.49±.00 85.04±.01

+CRF
BERTurk 85.31±.01 88.18±.01 86.68±.01 84.44±.00 87.28±.00 85.68±.00
BERTloodos 84.78±.00 87.07±.01 85.86±.00 84.22±.01 86.66±.01 85.24±.01
ConvBERTurk 85.87±.01 88.93±.01 87.32±.01 85.23±.00 87.89±.00 86.36±.00

+BiLSTM-CRF
BERTurk 84.18±.01 86.33±.01 85.17±.01 83.56±.01 85.41±.01 84.29±.01
BERTloodos 83.84±.01 85.31±.00 84.52±.01 82.93±.01 85.38±.00 83.99±.01
ConvBERTurk 84.23±.01 86.72±.01 85.36±.01 84.85±.00 87.00±.01 85.74±.00

Table A.11 The performance of transformer-based models in validation and test sets
of MultiCoNER dataset

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

BERT

mBERT 78.48±.02 81.24±.02 79.69±.01 44.66±.02 47.02±.01 44.87±.01
XLM-R 78.13±.02 80.50±.02 79.15±.01 48.21±.02 51.29±.01 48.85±.01
BERTurk 80.36±.01 85.33±.00 82.70±.00 48.26±.01 53.07±.01 49.95±.01
BERTloodos 79.87±.01 84.77±.01 82.16±.00 46.60±.01 52.58±.01 48.83±.01
ConvBERTurk 82.78±.01 85.16±.01 83.89±.00 52.71±.01 56.81±.01 54.21±.01

+CRF
BERTurk 81.54±.01 85.85±.00 83.59±.01 50.16±.00 55.71±.01 52.31±.00
BERTloodos 81.64±.01 85.06±.01 83.27±.01 50.12±.01 54.82±.01 51.98±.00
ConvBERTurk 82.34±.01 86.39±.00 84.28±.01 54.29±.01 59.99±.00 56.64±.01

+BiLSTM-CRF
BERTurk 80.66±.00 85.59±.01 83.01±.01 49.22±.01 54.38±.01 51.33±.01
BERTloodos 79.94±.01 84.95±.01 82.30±.01 48.51±.01 53.34±.00 50.55±.00
ConvBERTurk 81.88±.00 86.55±.00 84.12±.00 55.21±.00 59.52±.00 57.03±.00

Table A.12 The performances of knowledge-base approaches in validation and test
sets for six datasets.

Validation Test
Precision Recall F1 Score Precision Recall F1 Score

Milliyet
ELBERT 52.58±.00 69.20±.00 59.71±.00 47.63±.00 65.14±.01 54.95±.00
ELMultiBERT 52.34±.01 69.53±.00 59.69±.00 46.91±.01 65.84±.01 54.72±.00
ELSemantic 94.07±.01 94.82±.01 94.43±.01 94.13±.01 93.98±.01 94.04±.01

WikiANN
ELBERT 56.91±.00 71.72±.00 63.04±.00 56.17±.00 70.90±.00 62.33±.00
ELMultiBERT 56.64±.00 71.74±.00 62.91±.00 55.79±.00 70.82±.00 62.09±.00
ELSemantic 91.97±.00 93.35±.01 92.65±.00 92.13±.01 93.53±.00 92.82±.00

TW-2013
ELBERT 42.31±.09 64.88±.08 50.67±.09 29.86±.09 46.63±.04 35.67±.08
ELMultiBERT 45.79±.02 68.33±.05 54.07±.01 30.28±.06 44.95±.06 35.78±.06
ELSemantic 70.63±.05 73.88±.03 71.72±.02 72.08±.04 76.20±.04 73.49±.01

IWT
ELBERT 60.45±.03 63.16±.02 60.94±.02 68.79±.03 69.28±.02 67.86±.02
ELMultiBERT 61.80±.01 65.46±.04 63.26±.02 69.23±.05 69.88±.03 68.42±.03
ELSemantic 82.01±.03 91.91±.02 86.34±.02 85.19±.02 89.45±.03 86.83±.01

TW-SUNLP
ELBERT 45.83±.00 64.74±.01 53.41±.00 45.40±.00 65.76±.01 53.42±.00
ELMultiBERT 44.93±.01 65.99±.01 53.06±.00 44.85±.00 66.72±.00 53.32±.00
ELSemantic 85.07±.01 87.56±.00 86.22±.01 83.78±.01 86.12±.00 84.77±.01

MultiCoNER
ELBERT 80.06±.02 82.24±.02 81.00±.00 63.80±.04 73.92±.01 68.07±.03
ELMultiBERT 79.84±.02 84.29±.01 81.92±.01 63.36±.01 77.17±.02 69.32±.01
ELSemantic 84.66±.01 86.73±.01 85.64±.00 67.92±.01 71.92±.02 69.67±.01
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Table A.13 Number of matched possible entities with empty pages

Empty Pages
Train Validation Test

Milliyet 3,839 420 371
WikiANN 845 442 456
TW-2013 169 27 24
TW-SUNLP 437 79 98
IWT 379 46 42
MultiCoNER 2,231 125 5,209

Table A.14 Support values for each dataset

Named Entity Milliyet WikiANN TW-2013 IWT TW-SUNLP MultiCoNER
Person 1,603 4,519 75 23 830 26,876
Location 1,126 4,914 19 24 194 34,609
Organization 873 4,154 34 32 457 -
Money - - 4 2 17 -
Time - - 2 2 105 -
Date - - 7 7 - -
Percent - - 1 1 - -
Product - - - - 45 21,388
TV-Show - - - - 48 -
Corporation - - - - - 21,137
Group - - - - - 21,951
Creative Work - - - - - 23,408
Total 3,602 13,587 142 91 1,696 149,369
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