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ABSTRACT

BERGMAN SPACES ON FINITELY CONNECTED DOMAINS

SINEM YELDA SÖNMEZ

MATHEMATICS Ph.D DISSERTATION, DEC 2022

Dissertation Supervisor: Assoc. Prof. Nihat Gökhan Göğüş

Keywords: Bergman spaces, Carleson measures, kernel estimate, Toeplitz operator,
composition operator

In this thesis study, the weighted Bergman spaces on finitely connected planar domains
are investigated. They are isomorphic to the product of weighted Bergman spaces on the
unit disk. Using this argument, the Carleson embeddings are characterized and kernel
estimates are proved. Bounded, compact and Schatten class composition and Toeplitz
operators on these spaces are characterized. Main results generalize several recent ones
in the unit disk or simply connected case.
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ÖZET

SONLU BAĞLANTILI BÖLGELERDE AĞIRLIKLI BERGMAN UZAYLARI

SINEM YELDA SÖNMEZ

MATEMATİK DOKTORA TEZİ, ARALIK 2022

Tez Danışmanı: Doç. Dr. Nihat Gökhan Göğüş

Anahtar Kelimeler: Bergman uzayları, Carleson ölçüleri, çekirdek tahminleri, Toeplit
operatör, bileşke operatör

Bu tez çalışmasında sonlu bağlantılı bölgeler üzerinde tanımlı ağırlıklı Bergman uzayları
ele alınmıştır. Bu uzaylar birim diskte tanımlı ağırlıklı Bergman uzaylarının çarpımına
izomorfiktir. Bu argümanı kullanarak Carleson gömmeleri ve çekirdek tahminleri karak-
terize edilmiştir. Bu uzaylar üzerinde tanımlı sınırlı ve Schatten snıfında olan bileşke ve
Toeplitz operatörleri karakterize edilmiştir. Bu tezdeki ana sonuçlar, birim disk üzerinde
verilen önceki sonuçları sınırlı, Dini-düzgün ve Jordan bölgeler üzerinde genelleştirmiştir.
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1. Introduction

Denote the Lebesgue measure on C by dA. Let � be a domain of the complex plane
and let Ê be a continuous, strictly positive function on � so that

s
� ÊdA < Œ. Such a

function will be called a weight function on �. We extend Ê to the complex plane by
setting Ê(z) = 0 if z is not in �.

Definition 1.0.1 (Weighted Bergman Space). For 0 < p < Œ, the weighted Bergman
space A

p
Ê(�) consists of all holomorphic functions on � such that

ÎfÎ
p

A
p
Ê(�) :=

⁄

�
|f(z)|pÊ(z)dA(z) < Œ.

In particular, if the weight function Ê © 1, then the space is called the classical Bergman
space A

p(�) on �. Moreover, for the case when p = 2 the weighted Bergman space
becomes a Hilbert space with the inner product defined by

Èf,gÍ
A

2
Ê(�) =

⁄

�
f(z)g(z)Ê(z)dA(z),

for any f,g œ A
2
Ê(�).

Each point evaluation map is bounded on A
2
Ê, which follows from Proposition 2.1.1.

Hence, the Riesz representation theorem implies that there exists a unique function Kz œ

A
2
Ê so that

f(z) =
⁄

�
f(’)Kz(’)Ê(’)dA(z),

for every f œ A
2
Ê. The function K(z,’) defined on � ◊ � by K(z,’) = Kz(’) is called

the Bergman kernel or the reproducing kernel of A
2
Ê.

It follows from a well-known fact that A
p
Ê is a closed subspace of L

p
Ê. Therefore, there

exists an orthogonal projection P defined from L
2
Ê onto A

2
Ê, which is called the Bergman

projection. As a result of the reproducing property of the Bergman kernel function and
the point evaluation map we obtain that

Pf(z) =
⁄

�
f(’)K(z,’)Ê(’)dA(’),

1



for any f œ L
2
Ê and z œ �.

As an initial result, a decomposition theorem is provided. The notations will be explained
in the next sections. Our decomposition result below will be important throughout the
thesis. Similar decompositions will be obtained for the weighted Dirichlet spaces and the
multipliers of the weighted Bergman space.

Theorem 1.0.2. Let 1 Æ p < Œ, Ê be a positive continuous, integrable weight function
on �. Then

A
p

Ê(�) = A
p

Ê(�0)+A
p

Ê,0(�1)+A
p

Ê,0(�2)+ · · ·+A
p

Ê,0(�N ),

where A
p

Ê,0(�j) = H0(�j) fl A
p
Ê(�j). Moreover, every function f œ A

p
Ê(�) has a unique

decomposition f = F0 + F1 + · · · + FN and there exists a positive constant C such that
the following inequalities hold:

ÎFjÎA
p
Ê(�j) Æ CÎfÎ

A
p
Ê(�), j = 0, . . . ,N.

Such a decomposition result is well-known, for instance, on the space H
Œ of bounded

holomorphic functions (Chevreau & Shields, 1981) on finitely connected domains. How-
ever, the last estimates in Theorem 1.0.2 are new. Using these estimates, we establish an
isomorphism between the Bergman space A

p
Ê(�) of � and a product space of weighted

Bergman spaces on the unit disk (Corollary 2.2.2). This allows a characterization of
Carleson embeddings for A

p
Ê(�) as in Theorem 3.0.8. Carleson embeddings is a vast sub-

ject; a recent work of Gonzales (Gonzales, 2020) studies the Carleson embeddings of the
weighted Bergman spaces on simply connected domains, where the weight is a power of
the distance function to the boundary of the domain.

We then focus on a specific weight function, which is described next. The distance from
z to the boundary of � is denoted by fl(z) = fl�(z). Let µ be any positive Borel measure
on � (not necessarily finite) and let s > 0 so that

⁄

�
fl

s(z)dµ(z) < Œ.(1.1)

Define
Uµ,s(z) =

⁄

�
G

s

�(z,w)dµ(w).

For the case when s = 1, the function Uµ,1 is called the potential of the measure µ on
�. In 90’s the Dirichlet space with harmonic weights was introduced in (Richter, 1991)
and the Dirichlet space with superharmonic weights was introduced in (Two-Isometries,
Ale). Göğüş, Bao and Pouliasis considered the properties of composition operators on the

2



Dirichlet space with superharmonic weights Uµ,1, (Bao, Göğüş & Pouliasis, 2017).

Let ‹ be a finite measure on the unit circle ˆ�. The Poisson integral P‹ of ‹ is the
harmonic function defined on � via

P‹(z) =
⁄

ˆ�
P�(z,’)d‹(’),

where P�(z,’) denotes the Poisson kernel on �, (Ransford, 1995). It is easy to show
(Armitage & Gardiner, 2001, p. 98) that Uµ,s(z) ”© Œ if and only if (1.1) holds. Let
p > 0, s Ø 0, q + s > ≠1, q > ≠2, and set

Êµ,q,s,‹(z) = fl
q(z)Uµ,s(z)+P‹(z)(1.2)

for z œ �. We will consider the space A
p
Êµ,q,s,‹

(�).

Norm and pointwise estimates for the kernel function of the weighted Bergman space
defined on the unit disk, where the weight function is harmonic, have been proved in
(El-Fallah, Mahzouli, Marrhich & Naqos, 2018). In this thesis, norm and pointwise esti-
mates for the case when the domain is a bounded, Dini-smooth, Jordan domain have been
proved. The novelty of our approach is defining an equivalent norm on A

p
Ê to obtain an

isometry from A
p
Ê to the product space of weighted Bergman spaces defined on the unit

disk.

Afterwards, the methods in (El-Fallah, Mahzouli, Marrhich & Naqos, 2016) are used, in
order to characterize the Schatten class Toeplitz (Theorem 4.4.5) and composition oper-
ators (Corollary 4.4.9). The authors in (El-Fallah et al., 2018) provide a characteriza-
tion of the membership in the Schatten class of Toeplitz operator acting on harmonically
weighted Bergman space defined on the unit disk. We extend their result to the case when
the weight is as in (1.2) and to the case when the domain is bounded, Dini-smooth and
Jordan in the complex plane.

Furthermore, it is proved in the last section that the composition operator between distinct
weighted Bergman spaces over finitely connected domains is bounded, for general p,
while (Li & Huang, 2020) proved that the composition operator from A

2(�) to A
2(�̃), is

bounded.
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2. Weighted Functional Spaces on Finitely Connected Domains

2.1 Preliminaries

We will denote an open disk in the complex plane centered at z with radius r by D(z,r).
The unit disk is denoted by D. We denote the class of all holomorphic functions on a
domain � by H(�). If Ï is a holomorphic map from a domain �̃ into a domain �,
then the composition operator induced by Ï is the linear operator which takes a function
f œ H(�) to the function f ¶ Ï œ H(�̃). We will write a . b if there exists an absolute
constant C such that a Æ Cb. Also, the symbol a t b means that a . b and b . a.

Let � be a bounded domain in the complex plane of C
Œ boundary. Then either � is sim-

ply connected or it is a finitely connected domain, (Berenstein & Gay, 1991, Proposition
1.4.7). If � µ C is a finitely connected domain bounded by N + 1 disjoint closed curves
of C

2 boundary, then it is biholomorphic to a domain of the form

U = D\fi
N

j=1D(zj , rj),(2.1)

where zj œ D and 0 < rj < 1 for all j œ {1, . . . ,N}. Moreover, if Ï is such a biholomor-
phism from � onto U , then Ï extends continuously to the closure � of � and there exist
positive constants m, M so that 0 < m Æ |Ï

Õ(z)| Æ M on �.

Let Ê be a weight function on � and set u(z) = Ê¶Ï
≠1(z)

|ÏÕ(z)|2 . A calculation shows that

⁄

�
|f(z)|pÊ(z)dA(z) =

⁄

U

|f ¶Ï
≠1(z)|pu(z)dA(z)

for any f œ A
p
Ê(�). Hence, CÏ≠1 is an isometric isomorphism from A

p
Ê(�) onto A

p
u(U).

Let � be a domain as in (2.1). We set �0 = D and �j = C\D(zj , rj) for j = 1, . . . ,N . If
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f œ H(�), it is well-known that f has a unique decomposition

f = F0 +F1 + . . .+FN(2.2)

such that F0 œ H(D) and Fj œ H0(�j), where H0(�j) is the space of holomorphic func-
tions on �j that vanish at infinity (Chevreau & Shields, 1981). In fact, the functions Fj

are the Cauchy transforms of f and we have

C0f(z) := F0(z) := lim
ræ1≠

1
2fii

⁄

|w|=r

f(w)
w ≠ z

dw(2.3)

for z œ D,

Cjf(z) := Fj(z) := ≠ lim
rær

+
j

1
2fii

⁄

|w|=r

f(zj +w)
w ≠ z

dw(2.4)

for z œ �j , j = 1, . . . ,N .

Proposition 2.1.1. Let � be a domain in the complex plane and A
p
Ê(�) be the weighted

Bergman space, where the weight function Ê is strictly positive and Ê © 0 on C\ �. For
each compact subset K of �, suppose that mK > 0, where mK = infK Ê. Then for every
compact subset K of � there exists a positive constant c depending on K such that for
every point z œ K,

|f(z)|p Æ c(K)ÎfÎ
p

A
p
Ê(�)

for every f œ A
p
Ê(�).

Proof. For any z0 œ �, let 0 < r < 1 so that D(z0, r) is contained in �. Let S := D(z0, r).
Hence,

⁄

�
|f(z)|pÊ(z)dA(z) Ø

⁄

S

|f(z)|pÊ(z)dA(z)

Ø mS

⁄

S

|f(z)|pdA(z)

= mS

1
2fi

⁄
r

0

⁄ 2fi

0
s|f(z0 + se

i◊)|pd◊ds

Ø
1
2r

2
mS |f(z0)|p,

where the last inequality follows from the subharmonicity of |f |
p. Therefore, by taking

r Æ fl(z0), we obtain the following

1
2fl

2(z0)mS |f(z0)|p Æ ÎfÎ
p

A
p
Ê(�).

Let K be a compact subset of �. For each z œ K, let Sz := D(z,rz) be a neighborhood of
5



z for some 0 < rz < 1 such that Sz µ �. According to the above inequality, we have that

1
3fl

2(z)mSz |f(z)|p Æ ÎfÎ
p

A
p
Ê(�).

Moreover, L := fizœKD(z,rz) is an open cover of K. Since K is compact, it has a finite
subcover so that L

Õ = fi
N
n=1D(zn, rn) ∏ K. Hence,

1
3fl�(K)mK |f(z)|p Æ ÎfÎ

p

A
p
Ê(�).

Consequently,
|f(z)|p Æ c(K)ÎfÎ

p

A
p
Ê(�),

where c(K) = 3(mKfl�(K))≠1.

Proposition 2.1.2. Let � be a bounded, Dini-smooth and Jordan domain in the complex
plane. Let fk œ H(�), k = 1,2, . . . and suppose that fk converges uniformly to a function
f on compact subsets of �. Then Cjfk converges to Cjf uniformly on compact subsets
of �, for j = 0,1, . . . ,N where Cj’s are the Cauchy transforms as described in (2.3) and
(2.4).

Proof. Without loss of generality we may assume that � is of the form (2.1). Let {fk}kœN

be any sequence in H(�) so that fk converges uniformly to a function f on compact
subsets of �. Hence, f œ H(�). Besides, the functions f and fk’s can be written as
fk = Fk,0 +Fk,1 + . . .+Fk,N and f = F0 +F1 + . . .+FN uniquely, where F0,Fk,0 œ H(D)
and Fj ,Fk,j œ H(�j) for j = 1, . . . ,N . Notice that, Fj = Cjf and Fk,j = Cjfk for every
k œ N and j œ {0,1, . . . ,N}.

For the case when j = 0, our aim is to show that Fk,0 converges to F0 uniformly on
compact subsets of D. Recall that

Fk,0(z)≠Fk(z) = lim
ræ1≠

1
2fi

⁄

|Á|=r

fk(’)≠f(’)
’ ≠ z

d’.

Notice that,
1

2fi

⁄

|’|=r

fk(’)≠f(’)
’ ≠ z

d’ =
Œÿ

n=0
anz

n
,

where an = 1
2fi

s
|’|=r(fk ≠ f)(’)’≠n≠1

d’ . Let 0 < r1 < r2 < 1 be any positive numbers
such that A := {z œ C : r1 Æ |z| Æ r2} µ �. Then, we claim that

⁄

|’|=r1

fk(’)≠f(’)
’ ≠ z

d’ =
⁄

|’|=r2

fk(’)≠f(’)
’ ≠ z

d’,

6



for any 0 < r1 < r2 < 1. Equivalently, the claim states that
⁄

|’|=r1
(fk ≠f)(’)’≠n≠1

d’ =
⁄

|’|=r2
(fk ≠f)(’)’≠n≠1

d’.

Observe that fk ≠ f œ H(A) and g œ H(A), where g(z) := z
≠n≠1. Thus, (fk ≠ f)g œ

H(A). The Cauchy’s theorem yields that
⁄

ˆA

((fk ≠f)g)(’)d’ = 0.

Hence, ⁄

|’|=r2
((fk ≠f)g)(’)d’ ≠

⁄

|’|=r1
((fk ≠f)g)(’)d’ = 0,

which proves the claim.

The assumption in the statement provides that for any Á > 0 there exists an M > 0 so that

1
2fi

⁄

|’|=r

|fk(’)≠f(’)|
|’ ≠ z|

d’ Æ
1

2fi

Á

1≠ |z|
Æ ÁCK

for every k Ø M . By taking limit as r goes to 1, we obtain that

max
zœK

|Fk,0(z)≠Fk(z)| Æ ÁCK .

Then it follows that Fk,0 converges to F0 uniformly on K.

For the case when j œ {1, . . . ,N}, it follows from the same method that {Fk,j ≠ Fj}

converges to zero uniformly on compact subsets of �j .

2.2 Weighted Bergman Spaces

The decomposition result given in the next theorem is also based on well-known argu-
ments, but it will be important for the next sections.

Theorem 2.2.1. Let 1 Æ p < Œ, Ê be a positive continuous, integrable weight function
on � and let Ê © 0 on C\�. Then

A
p

Ê(�) = A
p

Ê(�0)+A
p

Ê,0(�1)+A
p

Ê,0(�2)+ · · ·+A
p

Ê,0(�N ),

where A
p

Ê,0(�j) = H
p

0 (�j) fl A
p
Ê(�j). Moreover, every function f œ A

p
Ê(�) has a unique

7



decomposition f = F0 + F1 + · · · + FN and there exists a positive constant C such that
the following inequalities hold:

ÎFjÎA
p
Ê(�j) Æ CÎfÎ

A
p
Ê(�), j = 0, . . . ,N.

Proof. Firstly, for any f œ A
p
Ê(�) we want to show that f œ A

p
Ê(D) + A

p

Ê,0(�1) +
A

p

Ê,0(�2) + · · · + A
p

Ê,0(�N ). Let f œ A
p
Ê(�) and f = F0 + F1 + · · · + FN be the unique

decomposition as in (2.2). We need to show that f0 œ A
p
Ê(D) and fj œ A

p

Ê,0(�j). Since
F0 = f ≠

q
N

j=1 Fj , we have that

⁄

D
|F0|

p
ÊdA =

⁄

�
|F0|

p
ÊdA

Æ 2(p≠1)(N≠1)
Q

a
⁄

�
|f(z)|pÊ(z)dA(z)+

Nÿ

k=1

⁄

�
|Fk(z)|pÊ(z)dA(z)

R

b .

The first integral on the right is finite, since f œ A
p
Ê(�). Now let 0 < r0 < 1 be close

to 1, and let A0 := {z œ C : |z| > r0}. Let rj < r
Õ
j

< 1 for each j œ {1, ...,N}, and let
Aj = {z œ C : |z ≠ zj | Æ r

Õ
j
}. Let Kj = �j\Aj , j = 0, . . . ,N . Since F0 œ H(D), F0 is

bounded on K0 and since Fj œ H0(�j), for each j œ {1, . . . ,N}, there exists Mj > 0 such
that |Fj(z)| Æ Mj for all z œ Kj . Hence,

⁄

�0
|F0|

p
ÊdA =

⁄

K0
|F0|

p
ÊdA+

⁄

�flA0
|F0|

p
ÊdA . ÎfÎ

p

A
p
Ê(�) +

Nÿ

j=0

⁄

�flA0
|Fj |

p
ÊdA

Æ ÎfÎ
p

A
p
Ê(�) +

Nÿ

j=0
M

p

j

⁄

�
ÊdA < Œ.

Hence, F0 œ A
p
Ê(D).

Fix j œ {1, . . . ,N}. A similar estimate shows that

⁄

�j

|Fj |
p
ÊdA =

⁄

Kj

|Fj |
p
ÊdA+

⁄

Ajfl�j

|Fj |
p
ÊdA

. ÎfÎ
p

A
p
Ê(�) +

ÿ

1Æk ”=jÆN

⁄

Akfl�k

|Fk|
p
ÊdA

Æ ÎfÎ
p

A
p
Ê(�) +

ÿ

1Æk ”=jÆN

M
p

k

⁄

�
ÊdA < Œ.

Thus, Fj œ A
p

Ê,0(�j). We have shown that

A
p

Ê(�) µ A
p

Ê(D)+A
p

Ê,0(�1)+A
p

Ê,0(�2)+ . . .+A
p

Ê,0(�N ).

For the converse inclusion, let F0 œ A
p
Ê(D) and Fj œ A

p

Ê,0(�j) be given for each j œ

8



{1, . . . ,N}. Then from the inequality

|F0 +F1 + . . .+FN |
p

Æ 2(p≠1)(N≠1) (|F0|
p + |F1|

p + . . .+ |FN |
p) ,

it can be easily seen that the function f = F0 +F1 + . . .+FN belongs to A
p
Ê(�).

Let Y be the product space A
p
Ê(�0) ◊ . . . ◊ A

p

Ê,0(�N ). Let T be the linear mapping
defined by Tf = (C0f, . . . ,CNf) for f œ H(�). Clearly, T is linear and injective. From
Proposition 2.1.1, Proposition 2.1.2 and the closed graph theorem, it follows that T :
A

p
Ê(�) æ Y is bounded. Hence,

ÎFjÎA
p
Ê(�j) Æ CÎfÎ

A
p
Ê(�)

for j = 0, . . . ,N .

Let Ïj be the biholomorphic mapping defined from �j to D\{0} given by

Ïj(z) = rj

z ≠ zj

(2.5)

for every z œ �j , for j = 1, . . . ,N . Using a change of variables formula we obtain that

⁄

�j

|F |
p
ÊdA =

⁄

D
|F ¶Ï

≠1
j

|
p
Ê ¶Ï

≠1
j

|Ï
Õ
j
|2

dA(2.6)

=
⁄

D
|g|

p
÷jdA,

where F œ H0(�j), ÷j(z) = |z≠zj |
4

r
2
j

Ê(rj+zjz

z
), g(z) = F (rj+zjz

z
), z œ D, j = 1, . . . ,N .

Additionally, we observe that

÷j(z) ¥ (Ê ¶Ï
≠1
j

)(z)

for z œ D, j = 1, . . . ,N . Let Ap(Ê,�) := A
p
Ê(D) ◊ A

p

Ê,0(�1) ◊ · · · ◊ A
p

Ê,0(�N ) and C :
A

p
Ê(�) æ Ap(Ê,�) be the mapping given by Cf = (C0f,C1f, . . . ,CNf). The Ap(Ê,�)

norm has the property that

ÎF ÎAp(Ê,�) =
Q

a
Nÿ

j=0
ÎFjÎ

p

A
p
Ê,0(�j)

R

b
1/p

t max
0ÆjÆN

ÎFjÎA
p
Ê,0(�j)

for every F œ Ap(Ê,�), where we set �0 = D. Also let Ap(H,D) := A
p
Ê(D) ◊

A
p

÷1,0(D) ◊ · · · ◊ A
p

÷N ,0(D) and C� : Ap(Ê,�) æ Ap(H,D) be the mapping given by
C�f = (CÏ0f,C

Ï
≠1
1

f, . . . ,C
Ï

≠1
N

f), where we set Ï0(z) = z, and every member of the

9



spaces A
p

÷j ,0(D) vanishes at zero, for each j = 1, . . . ,N . All these observations up to here
lead to the following corollary, here, the symbol ≥= stands for the isomorphism of spaces
with equivalent norms.

Corollary 2.2.2. We have

A
p

Ê(�) ≥= Ap(Ê,�) ≥= Ap(H,D),

where the linear maps C and C� give the first and second isomorphisms, respectively.

2.3 Multiplier of Weighted Bergman Spaces

Definition 2.3.1 (Multiplication Operator). Let � œ C be any domain. An analytic
function Ï œ H(�) is called a multiplier for A

p
Ê(�), if Ïf œ A

p
Ê(�) for all f œ A

p
Ê(�). The

multiplication operator denoted by MÏ defined from A
p
Ê(�) to A

p
Ê(�) such that MÏf =

Ïf for all f œ A
p
Ê(�). The space of all multipliers for A

p
Ê(�) denoted by M(Ap

Ê(�)).

Proposition 2.3.2. Assume that � is a finitely connected domain in the complex plane
and Ê is strictly positive such that Ê © 0 on C \ �. Moreover, suppose that mK > 0 for
each compact subset K µ �. If Ï œ M(Ap

Ê(�)), then MÏ is a bounded linear operator
on A

p
Ê(�).

Proof. Clearly, MÏ is linear. We will show that MÏ is continuous, using the closed graph
theorem. The graph of MÏ is

G(MÏ) = {(f,Ïf) : f œ A
p

Ê(�)}.

Let {(fn,Ïfn)}nØ1 be a convergent sequence in G(MÏ) and assume that the sequence
converges to some (f0,g0) in A

p
Ê(�) ◊ A

p
Ê(�). Since limnæŒ Îfn ≠ f0Î

A
p
Ê(�) = 0,

limnæŒ fn(z) = f0(z) for z œ � by Proposition 2.1.1.

Similarly, since limnæŒ ÎÏfn ≠ g0Î = 0, we have limnæŒ Ï(z)fn(z) = g0(z) =
Ï(z)f0(z) for z œ �. Therefore, (f0,g0) = (f0,Ïf0) œ G(MÏ). Consequently, the graph
of MÏ is closed.

10



Proposition 2.3.3. Suppose that Ï œ H(�). Then M(Ap
Ê(�)) = H

Œ(�).

Proof. Let Tzf = f(z) be the point evaluation map on A
p
Ê(�). For any f œ AÊ(�) and

any z œ �, we have the following estimate

|Ï(z)f(z)| = |TzMÏf | Æ ÎTzÎÎMÏÎÎfÎAÊ(�).

By taking supremum over f œ A
p
Ê(�) such that ÎfÎ

A
p
Ê(�) Æ 1, we obtain that

|Ï(z)|ÎTzÎ Æ ÎTzÎÎMÏÎ,

that is, ÎÏÎŒ Æ ÎMÏÎ. Besides, for any f œ A
p
Ê(�)

ÎMÏfÎ
A

p
Ê(�) = ÎÏfÎ

A
p
Ê(�) Æ ÎÏÎŒÎfÎ

A
p
Ê(�),

which implies that ÎMÏÎ Æ ÎÏÎŒ.

Theorem 2.3.4. Let � be a domain as in (2.1) and Ê œ L
1(�) be a positive function.

Assume that Ê © 0 on C\ � and �i = C\D(zj , rj) for all 1 Æ i Æ N . Then we have the
following decomposition

M(Ap

Ê(�)) = M(Ap

Ê(D))+M0(Ap

Ê(�1))+M0(Ap

Ê(�2))+ . . .+M0(Ap

Ê(�N )),

where M0(Ap
Ê(�j)) = H0(�j)flM(Ap

Ê(�j)). Moreover, if Ï = Ï0 +Ï1 + · · ·+ÏN is the
unique decomposition, then for 0 Æ j Æ N ,

(2.7) ÎÏjÎM0(Ap
Ê(�j)) . ÎÏÎ

M(Ap
Ê(�)).

Proof. For simplicity, we consider the case N = 2, that is, the domain � =D\(D(z1, r1)fi

D(z2, r2)). For any Ï œ M(Ap
Ê(�)) we know that Ï œ H

Œ(�) fl A
p
Ê(�). According to

Theorem 2.2.1, Ï has a decomposition such that Ï = Ï0 +Ï1 +Ï2 where Ï0 œ H
Œ(D)fl

A
p
Ê(D), and Ïj œ H

Œ
0 (�j) fl A

p
Ê(�j), for each j. Proposition 2.3.3 implies that Ïj’s

are also bounded for each j. Hence, it follows from the H
Œ decomposition that Ïj œ

H
Œ(�j).

In order to prove the second statement, consider the following operator,

T : M(Ap

Ê(�)) æ M(Ap

Ê(D))◊M0(Ap

Ê(�1))◊ . . .M0(Ap

Ê(�N ))
Ï ‘≠æ (Ï0, . . . ,ÏN ) ,

11



Recall that T is bounded as it is explained in Theorem 2.2.1. We set Y := M(Ap
Ê(D)) ◊

M0(Ap
Ê(�1))◊ . . .◊M0(Ap

Ê(�N )). Thus,

ÎÏjÎŒ Æ max
0ÆjÆN

ÎÏjÎŒ ¥ ÎTÏÎY . ÎÏÎ
M(Ap

Ê(�)) = ÎÏÎŒ,

which is derived from Proposition 2.3.3.

Theorem 2.3.5. Assume that f = f0f1 . . .fN œ A
p
Ê(�) is the product function where f0 œ

A
p
Ê(D) and fj œ A

p
Ê(�j). Then there exists a constant C > 0 such that

ÎfÎ
A

p
Ê(�) Æ CÎf0Î

A
p
Ê(D)Îf1Î

A
p
Ê(�1) . . .ÎfNÎ

A
p
Ê(�N ).

Proof. For any j, we fix a point z œ �j . The point evaluation map is defined by

Tz : A
p

Ê(�j) æ, Tzfj = fj(z).

Hence, there exists a positive integer cj(z) such that ÎTzfjÎ = |fj(z)| Æ Cj(z)Îfj ||A
p
Ê(�j).

Furthermore, taking C
Õ := max1ÆiÆN Cj implies that

|f(z)|p =
-----

Ÿ

0ÆjÆN

fj(z)
-----

p

=
Q

a
Ÿ

0ÆjÆN

|fj(z)|
R

b
p

Æ

Q

a
Ÿ

0ÆjÆN

C
Õ
ÎfjÎA

p
Ê(�j)

R

b
p

= (C Õ)p
Ÿ

1ÆjÆN

ÎfjÎ
p

A
p
Ê(�j).

By Theorem 2.2.1, we obtain

⁄

�
|f(z)|pÊ(z)dA(z) Æ

Nÿ

j=0

⁄

�j

|f(z)|pÊ(z)dA(z)

Æ (C Õ)p
Ÿ

0ÆiÆN

ÎfjÎ
p

A
p
Ê(�i)

Nÿ

j=0

⁄

�j

Ê(z)dA(z)

Æ (C Õ)p
Ÿ

0ÆjÆN

ÎfjÎ
p

A
p
Ê(�j)(N +1)ÎÊÎL1 .

Thus, the proof is finished, by taking C = (N +1)(C Õ)p
ÎÊÎL1 .
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2.4 Weighted Dirichlet Spaces

Definition 2.4.1 (Weighted Dirichlet Space). Let � be a domain in the complex plane.
For 0 < p < Œ, the weighted Dirichlet space consists of the analytic functions on � such
that ⁄

�
|f

Õ(z)|pÊ(z)dA(z) < Œ.

The norm of the weighted Dirichlet space is defined by fixing a point z0 œ � and for all
f œ D

p
Ê(�),

ÎfÎ
p

DÊ(�) = |f(z0)|p +
⁄

�
|f

Õ(z)|pÊ(z)dA(z).

In particular, if Ê © 1, the space is called the classical Dirichlet space.

Since the Bergman space and the Dirichlet space are isometric, as a consequence of The-
orem 2.2.1 we have the following corollary.

Corollary 2.4.2. Let � be a domain as in (2.1) and Ê œ L
1(�) be a positive function.

Assume that Ê © 0 on C\� and �i = C\D(zj , rj) for all 1 Æ i Æ N .

D
p

Ê(�) = D
p

Ê(D)+D
p

Ê,0(�1)+D
p

Ê,0(�2)+ . . .+D
p

Ê,0(�N ),

Moreover, every function f œ A
p
Ê(�) has a unique decomposition f = F0 +F1 + · · ·+FN

and there exists a positive constant C such that the following inequalities hold:

ÎFjÎD
p
Ê(�j) Æ CÎfÎ

D
p
Ê(�), j = 0, . . . ,N.

The relation between the weighted Hardy space and the weighted Dirichlet space will
be investigated. We will show that the weighted Hardy space is always included by the
weighted Dirichlet space. However, it will be proved that the converse inclusion holds
only for the Carleson measure.

Definition 2.4.3. Let � be a bounded, Dini-smooth and Jordan domain. The weighted
Hardy space defined on � is

H
2
µ := {f œ H

2(�) :
⁄

ˆ�
|f

ú(’)|2Sµ(’)d‡(’) < Œ},

where ‡ is the arc length measure on the boundary of �, f
ú is the almost everywhere

boundary value of f (Duren, 1970) and

Sµ(’) :=
⁄

�
P�(’, z)dµ(z),
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for ’ œ ˆ�.

Definition 2.4.4. The weighted Dirichlet space defined on � is

Dµ := {f œ H
2(�) :

⁄

�
|f

Õ(w)|2Uµ(w)dA(w) < Œ},

where
Uµ(w) :=

⁄

�
G�(w,z)dµ(z),

for w œ �.

Let X be a Banach space of holomorphic functions on a domain �. A positive Borel
measure on � is said to be a q-Carleson measure for X if

3⁄

�
|f |

q
dµ

41/q

. ÎfÎX(2.8)

for every f œ X .

Theorem 2.4.5. Let � be a finitely connected domain whose boundary consists of disjoint
Jordan curves �j , 0 Æ j Æ N , with rectifiable boundary so that �0 surrounds �,and µ be
a positive Borel measure on �. Then

H
2
µ µ Dµ µ H

2
.

Moreover, H
2
µ = Dµ if and only if µ is a Carleson measure for Dµ.

Proof. Let f œ H
2. Then �|f(z)|2 = 4|f

Õ(z)|2 for z œ �. The least harmonic majorant
of the subharmonic function |f |

2 on � is given by

hf (z) = 1
2fi

⁄

ˆ�
P�(z,’)|f(’)|2d‡(’),

for z œ �, from (Duren, 1970). Since |f |
2 is subharmonic and � is a regular domain, the

Poisson Jensen formula implies that

|f(z)|2 = hf (z)≠
1

2fi

⁄

�
g�(z,w)�|f(w)|2dA(w)

= hf (z)≠
2
fi

⁄

�
g�(z,w)|f Õ(w)|2dA(w)
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Therefore, we obtain that
⁄

ˆ�
|f(’)|2Sµ(’)d‡(’) =

⁄

ˆ�
|f(’)|2 1

2fi

⁄

�
P�(z,’)dµ(z)d‡(’)

=
⁄

�
hf (z)dµ(z)

=
⁄

�
|f(z)|2dµ(z)+

⁄

�

2
fi

⁄

�
g�(z,w)|f Õ(w)|2dA(w)dµ(z)

=
⁄

�
|f(z)|2dµ(z)+ 2

fi

⁄

�
|f

Õ(w)|2Uµ(w)dA(w),

which follows from Fubini’s theorem and the above equality. Consequently, we obtain
that,

ÎfÎ
2
H

2
µ

= ÎfÎ
2
L2(µ) + 2

fi
ÎfÎ

2
Dµ

≠
2
fi

|f(z0)|2.

Hence, H
2
µ = D

2
µ flL

2
µ. Then, H

2
µ = Dµ if and only if Dµ µ L

2
µ. It follows from the closed

graph theorem that Dµ µ L
2
µ if and only if µ is a Carleson measure for Dµ.
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3. Carleson Measures

In this chapter, we investigate some Carleson measure characterizations when the domain
is a bounded Dini-smooth Jordan domain. Its description is obtained from (Selmi, 2000)
as follows: A curve “ is called a closed Jordan curve if and only if “(0) = “(2fi) and
“(t1) ”= “(t2) for any t1, t2 œ (0,2fi). A domain is called a closed Jordan domain if and
only if it is bounded and its boundary consists of finitely many disjoint Jordan curves. For
” œ [0,2fi], the modulus of continuity of “ is defined by

u(”) = sup{|“(t1)≠“(t2)| : t1, t2 œ [0,2fi], |t1 ≠ t2| Æ ”}.

The function “ is called Dini continuous provided
⁄

fi

0
u(t)dt < Œ.

If a curve “ has a parametrization “(t), 0 Æ t Æ 2fi so that the derivative “
Õ(t) is Dini-

continuous and nonzero, then “ is called a Dini-smooth curve. A domain � is called
Dini-smooth if and only if � is bounded and ˆ� consists of finitely many disjoint closed
Dini-smooth Jordan curves. In this chapter, � will always denote a bounded, Dini-smooth
Jordan domain. The following proposition states that the distance is preserved under
certain conditions in the domain.

Proposition 3.0.1. (Selmi, 2000)

(i) Let � be a bounded, simply connected, Dini-smooth Jordan domain. Let Ï be a con-
formal map from � onto D. Then there exists a constant c = c(�) > 0 so that for all
z œ �,

1
c
fl�(z) Æ flD(Ï(z)) Æ cfl�(z).

(ii) Let � be a bounded, multiply connected, Dini-smooth Jordan domain. Then there
exist a conformal mapping Ï from � onto a bounded domain U in the complex plane of
C

Œ boundary and a constant c = c(�) > 0 so that for all z œ �,

1
c
fl�(z) Æ flU (Ï(z)) Æ cfl�(z).
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(iii) In both cases, Ï extends continuously to the closure � of � and there exists a constant
c > 0 such that for all z, w œ �,

1
c
|z ≠w| Æ |Ï(z)≠Ï(w)| Æ c|z ≠w|.

We denote the (positive) Green function on � by G�(z,w) (cf. (Ransford, 1995)).

Proposition 3.0.2. (Selmi, 2000) Let � be a bounded, Dini-smooth Jordan domain. There
exists a constant c > 0 such that for all z, w œ �,

1
c

log
A

1+ fl�(z)fl�(w)
|z ≠w|2

B

Æ G�(z,w) Æ c log
A

1+ fl�(z)fl�(w)
|z ≠w|2

B

.

Let µ be a positive Borel measure on � and Ï : � æ U be a one-to-one holomorphic map.
We denote by dµ

ú the push-forward measure under Ï, that is, µ
ú(E) = µ(Ï≠1(E flÏ(�)))

for any measurable set E µ U . Define

vµ,q,s(z) = fl
q

�(z)
⁄

�

A
fl�(z)fl�(w)

|z ≠w|2 +fl�(z)fl�(w)

Bs

dµ(w).

If � = D, then vµ,q,s(z) = (1≠ |z|)q
s
D(1≠ |‡z(w)|2)s

dµ(w), where ‡z(w) = z≠w

1≠wz
for z,

w œ D.

Proposition 3.0.3. Let � be a bounded, Dini-smooth Jordan domain. Let µ be a positive
Borel measure on �, p > 0, s Ø 0, q + s > ≠1, q > ≠2. Then

⁄

�
|f(z)|pÊµ,q,s,0(z)dA(z) t

⁄

�
|f(z)|pvµ,q,s(z)dA(z)

for f œ A
p
Êµ,q,s,0(�).

Proof. If � is the unit disk, it follows from a well-known argument, (Xiao, 2001). We
outline the proof for completeness. Firstly, notice that

Êµ,q,s,0(z) = fl
q

D(z)Uµ,s(z)

= (1≠ |z|)q

⁄

D
G

s

D(z,’)dµ(’)

= (1≠ |z|)q

⁄

D
logs 1

|‡z(’)|dµ(’),

and

vµ,q,s(z) = (1≠ |z|)q

⁄

D
(1≠ |‡z(’)|2)s

dµ(’).
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We have the following inequalities; for the case when t œ (0,1]

≠2log t = log 1
t2 Ø 1≠ t

2
,

and for the case when t œ (1
4 ,1]

≠ log t = log 1
t

Æ 4(1≠ t
2).

Therefore, we obtain the following estimates;

log 1
|‡z(’)| Ø

1
2(1≠ |‡z(’)|2),

for z,’ œ D and

log 1
|‡z(’)| Æ 4(1≠ |‡z(’)|2),

for |‡z(’)| œ (1
4 ,1). It remains to consider the case when |‡z(’)| œ (0,

1
4 ].

Using polar coordinates and the fact that
s
|’|=r |f(r’)|pd‡(’) is an increasing function of

r, we obtain the following result,

⁄

D(0,
1
4 )

|f(z)|p logs 1
|z|

dA(z) =
⁄ 1

4

0

⁄

|’|=1
r|f(r’)|p logs 1

r
d‡(’)dr

Æ

⁄ 1
4

0
log4

⁄

|’|=1
|f(’/4)|pd‡(’)dr

.
⁄

|’|=1
|f(’/4)|pd‡(’)dr

.
⁄

D\D(0,
1
4 )

|f(z)|p(1≠ |z|
2)s

dA(z)

Æ

⁄

D
|f(z)|p(1≠ |z|

2)s
dA(z).

Hence,
⁄

D(0,
1
4 )

|f(z)|p logs 1
|z|

dA(z) .
⁄

D
|f(z)|p(1≠ |z|

2)s
dA(z).

Replace f by f¶‡w

(‡Õ
w)2/p , and use a change of variable formula to obtain the following result,

⁄

{|‡w(z)|Æ1/4}

|f |
p logs 1

|‡w|
dA .

⁄

D
|f |

p(1≠ |‡w|
2)s

dA.
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Therefore, we conclude that
⁄

D
|f(z)|pÊµ,q,s,0(z)dA(z) t

⁄

D
|f(z)|pvµ,q,s(z)dA(z)

for f œ A
p
Êµ,q,s,0(D).

If � is simply connected, the result follows by Proposition 3.0.1 and Proposition 3.0.2.

Thanks to Proposition 3.0.1, we can assume without loss of generality that � is a domain
of the form (2.1). In view of Theorem 2.2.1, it is enough to estimate the A

p
Êµ,q,s,0(�j)

norm of each Fj = Cjf for j = 0, . . . ,N . For j = 0, �0 = D. Let h0 = F0. For other
j, let hj = Fj ¶ Ï

≠1
j

and ÷j = Êµ,q,s,0 ¶ Ï
≠1
j

, where Ïj are defined as in (2.5). Then
flD(a) t fl�j (Ï≠1

j
(a)) for a œ D\{0}. If dµ

ú
j

denotes the push-forward of dµ under Ïj ,
we have

ÎFjÎ
p

A
p
Êµ,q,s,0(�j) t ÎhjÎ

p

A
p
÷j

(D)

t
⁄

D
|hj(a)|pfl

q

D(a)
⁄

�j

logs

Q

a1+
fl�j (Ï≠1

j
(a))fl�j (w)

|Ï
≠1
j

(a)≠w|2

R

bdµ(w)dA(a)

t
⁄

D
|hj(a)|pfl

q

D(a)
⁄

D
G

s

D(a,b)dµ
ú

j(b)dA(a)

t
⁄

D
|hj(a)|pfl

q

D(a)
⁄

D

C
flD(a)flD(b)

|a≠ b|2 +flD(a)flD(b)

Ds

dµ
ú

j(b)dA(a)

t
⁄

�j

|Fj(z)|pvµ,q,s(z)dA(z).

The proof is finished.

Let us restate all that have been observed so far as a corollary.

Corollary 3.0.4. Let � be a bounded, Dini-smooth Jordan domain. Let µ and ‹ be pos-
itive Borel measures on � and ˆ�, respectively. Let p > 0, s Ø 0, q + s > ≠1, q > ≠2.
Then

ÎfÎ
A

p
Êµ,q,s,‹ (�) t max

0ÆjÆN

ÎhjÎA
p
Êµú

j
,q,s,‹ú

j
(D)

for f œ A
p
Êµ,q,s,0(�), where dµ

ú
j

and d‹
ú
j

denote the push-forward of dµ and d‹ under
Ïj ¶Ï, respectively.

We will make use of the following integral estimates frequently throughout the thesis
(Zhang, Li, Shang & Guo, 2018, Theorem 3.1).
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Lemma 3.0.5. For r Ø 0, t Ø 0, ” > ≠1, let

J(w,a) =
⁄

D

(1≠ |z|
2)”

|1≠wz|t|1≠az|r
dA(z),

w œ D, a œ D.

Then the following estimate holds

J(w,a) t 1
(1≠ |w|2)t≠”≠2|1≠aw|r

,

if t > ” +2 > r.

We now choose suitable test functions for A
p
Êµ,q,s,‹

.

Lemma 3.0.6. Let µ be a positive Borel measure on D, p > 0, s > 0, q +s > ≠1, q > ≠2
and s < q +2. For z œ D, w œ D, pr > max{2+ q + s,3} and t > max{q + s,1}, define

fw,t(z) =
A

(1≠ |w|
2)t

Êµ,q,s,‹(w)

B1/p 1
(1≠wz)(2+t)/p

.(3.1)

Then supwœD Îfw,tÎA
p
Êµ,q,s,‹

< Œ.

Proof. We estimate using Lemma 3.0.5 and Fubini’s theorem

Îfw,tÎ
p

A
p
Êµ,q,s,‹

= (1≠ |w|
2)t

Êµ,q,s,‹(w)

⁄

D

(1≠ |z|
2)q

Uµ,s(z)+P‹(z)
|1≠wz|2+t

dA(z)

Æ
(1≠ |w|

2)t

(1≠ |w|2)qUµ,s(w)

⁄

D
(1≠ |b|

2)s
◊

◊

A⁄

D

(1≠ |z|
2)s+q

|1≠wz|2+t|1≠ bz|2s
dA(z)

B

dµ(b)

+ (1≠ |w|
2)t

P‹(w)

⁄

ˆD

A⁄

D

1≠ |z|
2

|1≠wz|2+t|1≠ ’z|2
dA(z)

B

d‹(’)

. 1
Uµ,s(w)

⁄

D

(1≠ |w|
2)s(1≠ |b|

2)s

|1≠ bw|2s
dµ(b)

+ 1
P‹(w)

⁄

ˆD

1≠ |w|
2

|’ ≠w|2
d‹(’) = 2.

Let’s consider the case when � is the unit disk D. Let Ew(r) denote the pseudo-hyperbolic
disk

Ew(r) =
;

z œ D :
----

z ≠w

1≠wz

---- < r

<
.
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Since |1≠wz| t 1≠ |w|
2 t

Ò
A(Ew(r)) t r, P‹(z) t P‹(w) and Uµ,s(z) t Uµ,s(w) for

every z œ Ew(r), we have for every w œ D the estimate

ÎfÎ
p

A
p
Êµ,q,s,‹

Ø

⁄

Ew

|f(z)|pÊµ,q,s,‹(z)dA(z)(3.2)

& |f(w)|p(1≠ |w|
2)2

Êµ,q,s,‹(w).

We denote the class of nonnegative subharmonic functions on the unit disk by sh+. We
will need a beautiful method in (Luecking, 1983)).

Theorem 3.0.7. (Luecking, 1983) Let u be a nonnegative function and ‹ be a positive
measure on D so that there exist constants c1 > 0, c2 > 0 with u(z) < c1u(w) whenever z

belongs to the set Ew, and

‹(Ew) Æ c2
⁄

Ew

udA

for all w œ D. Then there exists a constant C > 0 such that
⁄

D
gd‹ Æ C

⁄

D
gudA

for all g œ sh+.

A recent work of Gonzales (Gonzales, 2020) studies the Carleson embeddings of the
weighted Bergman spaces on simply connected domains, where the weight is a power of
the distance function to the boundary of the domain. Our result generalizes the character-
ization of Gonzales in two ways: the domain is finitely connected and the weight is more
general. We use Luecking’s method to describe Carleson measures for A

p
Êµ,q,s,‹

(�).

Theorem 3.0.8. Let � be a bounded, Dini-smooth Jordan domain. Let “ be a positive
measure on D. Then the following are equivalent.

(i) “ is a p̃-Carleson measure for A
p
Ê(�).

(ii) “ is a p̃-Carleson measure for A
p
Ê(�ú

j
) for j = 0,1, . . . ,N , where �ú

j
= Ï

≠1(�j).

(iii) “
ú
j

is a p̃-Carleson measure for A
p
÷j

(D) for j = 0,1, . . . ,N , where ÷j = Ê ¶ (Ïj ¶Ï)≠1

and “
ú
j

denotes the push-forward measure of “ under Ïj ¶Ï on D.

Let p̃ Ø p > 0, s > 0, q +s > ≠1, q > ≠2 and s < q +2. Let ‹ be a finite positive measure
on ˆ� and µ be a positive measure on �. If Ê = Êµ,q,s,‹ , then any of the statements above
is equivalent to the following.

(iv) Let dµ
ú
j

and d‹
ú
j

denote the push-forward of dµ and d‹ under Ïj ¶Ï, respectively. Let
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D
j
a = (Ïj ¶Ï)≠1(Ea) for a œ D. We have

sup
aœD

“(Dj
a)

[Êµ
ú

j ,q,s,‹
ú

j
(a)]p̃/p(1≠ |a|2)2p̃/p

< Œ(3.3)

for j = 0,1, . . . ,N .

Proof. “ is a p̃-Carleson measure for A
p
Ê(�) if and only if

⁄

�
|f |

p̃
d“ . ÎfÎ

p̃

A
p
Ê(�)

for all f œ A
p
Ê(�). In particular, this inequality holds for restrictions to � of functions F

in A
p
Ê(�ú

j
). Hence, (i) implies (ii). Suppose (ii) holds. Any function f œ A

p
Ê(�) is of

the form f = F0 + F1 + . . . + FN . Since � µ �ú
j
, “ can be regarded as a measure on �ú

j

supported in �. By Theorem 2.2.1,

⁄

�
|f |

p̃
d“ .

Nÿ

j=0

⁄

�ú

j

|Fj |
p̃
d“ .

Nÿ

j=0
ÎFjÎ

p̃

A
p
Ê(�ú

j ) t ÎfÎ
q

A
p
Ê(�).

This means that “ is a p̃-Carleson measure for A
p
Ê(�). Hence, (ii) implies (i).

Notice that (ii) is equivalent to the fact that “ is a p̃-Carleson measure for A
p

Ê,0(�ú
j
) for

j = 0,1, . . . ,N . By Corollary 2.2.2, A
p

Ê,0(�ú
j
) ≥= A

p

÷j ,0(D). Thus, (ii) is equivalent to the
fact that “

ú
j

is a p̃-Carleson measure for A
p

÷j ,0(D) for j = 0,1, . . . ,N . Since A
p
÷j

(D) norms
of h and h≠h(0) are comparable for h œ A

p
÷j

(D), we get the equivalence of (ii) and (iii).

We will start proving the equivalence of (iii) and (iv). Assume for the moment that
� = D. Let fa,t be the functions defined as in (3.1), where t is chosen as described
in Lemma 3.0.6. If “ is a p̃-Carleson measure for A

p
Êµ,q,s,‹

, then we apply (2.8) to the
functions fa,t to get

“(Ea)
[Êµ,q,s,‹(a)]p̃/p(1≠ |a|2)2p̃/p

. (1≠ |a|
2)tp̃/p

[Êµ,q,s,‹(a)]p̃/p

⁄

Ea

d“(z)
|1≠az|(2+t)p̃/p

Æ

⁄

D
|fa,t(z)|p̃d“(z)

. Îfa,tÎ
p̃

Ap(µ,q,s) . 1.

Hence, we get (3.3).
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Conversely, suppose (3.3) holds. Let f œ A
p
Êµ,q,s,‹

. We have

“(Ea) Æ C[Êµ,q,s,‹(a)]p̃/p(1≠ |a|
2)2p̃/p(3.4)

Æ C0
⁄

Ea

[Êµ,q,s,‹(a)]p̃/p(1≠ |w|
2)2p̃/p≠2

dA(z)

for all a œ D. By Luecking’s result,
⁄

D
|f(z)|p̃d“(z) .

⁄

D
|f(z)|p̃(1≠ |z|

2)2(p̃/p)≠2[Êµ,q,s,‹(z)]p̃/p
dA(z).(3.5)

If p̃ Ø p, from the estimate (3.2), we get that

|f(z)|p̃≠p . (1≠ |z|
2)2 p≠p̃

p [Êµ,q,s,‹(z)]
p≠p̃

p(3.6)

for all z œ D. Combining (3.5) and (3.6) we get
⁄

D
|f(z)|p̃d“(z) .

⁄

D
|f(z)|pÊµ,q,s,‹(z)dA(z) = ÎfÎ

p

A
p
Êµ,q,s,‹

.

Hence, “ is a p̃-Carleson measure for A
p
Êµ,q,s,‹

. Now, for general �, in (iii) and (iv),
“(Dj

a) = “
ú
j
(Ea) for a œ D. Hence, (iii) and (iv) are equivalent.

In the case of simply connected domain, the statement of the above theorem simplifies to
the following corollary.

Corollary 3.0.9. Let � be a simply connected domain and “ be a positive measure on D.
Let p̃ Ø p > 0, s > 0, q +s > ≠1, q > ≠2 and s < q +2. Let ‹ be a finite positive measure
on ˆ� and µ be a positive measure on �. If Ê = Êµ,q,s,‹ , then the following statements
are equivalent.

(i) “ is a p̃-Carleson measure for A
p
Ê(�).

(ii) Let dµ
ú and d‹

ú denote the push-forward of dµ and d‹ under Ï. Let Da = (Ï)≠1(Ea)
for a œ D. We have

sup
aœD

“(Da)
[Êµú,q,s,‹ú(a)]p̃/p(1≠ |a|2)2p̃/p

< Œ.(3.7)
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4. Kernel Estimates

A pointwise estimate for the kernel function of the weighted Bergman space defined on
the unit disk, where the weight function is harmonic, has been proved in (El-Fallah et al.,
2018). In this chapter, our aim is to adapt the results in (El-Fallah et al., 2018) to our case.
Let Ê = Êµ,q,s,‹ . We denote the reproducing kernel for A

2
Ê by K

Ê
z or simply by Kz for

z œ �.

4.1 Norm Estimate for Kernel Function

Theorem 4.1.1. Let � be a bounded, Dini-smooth Jordan domain. Let 1 < p Æ 2 and
q = p

p≠1 be the conjugate of p. Then

ÎKzÎ
q

A
p
Ê
& 1

(fl�(z))2Ê(z) , and ÎKzÎ
p

A
p
Ê
. 1

(fl�(z))2Ê(z) z œ �.

In particular, we have

ÎKzÎ
2
A

2
Ê

¥
1

(fl�(z))2Ê(z) , z œ �.

Proof. Without loss of any generality, we may assume that � is a domain of the form
(2.1). We use the same notation in the paragraph before Corollary 2.2.2. For each j œ

{0, . . . ,N} and z œ �, let K
÷j

Ïj(z) denote the reproducing kernel for A
2
÷j

(D). Then K�(z) =
1
K

÷0
Ï0(z), . . . ,K

÷N
ÏN (z)

2
is the reproducing kernel for A2(H,D). We define an equivalent

norm Î · Î2 on the space A
2
Ê(�) so that C� ¶C gives an isometry. Let K

2,Ê
z or simply K

2
z

denote the reproducing kernel of the Hilbert space (A2
Ê(�),Î · Î2). It is easy to see that
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K
÷j

Ïj(z) = C
Ï

≠1
j

CjK
2,Ê
z and

ÎK
Ê

z Î
A

2
Ê(�) ¥ ÎK

2,Ê

z Î(A2
Ê(�),Î·Î2) =

Q

a
Nÿ

j=0
ÎK

÷j

Ïj(z)Î
2
A

2
÷j

(D)

R

b
1/2

t max
0ÆjÆN

ÎK
÷j

Ïj(z)ÎA
2
÷j

(D).

Hence, it is enough to prove the statement when � = D. We assume that � is the unit
disk.

By the usual pairing, the dual (Ap
Ê)ú of A

p
Ê is isomorphic to A

q
Ê. Therefore, we have

ÎKzÎ
A

p
Ê

= sup
;----

⁄

D
KzgÊdA

---- : ÎgÎ
A

q
Ê

= 1
<

.

Thus, by using the test functions as in Lemma 3.0.6,

ÎKzÎ
q

A
p
Ê
& |Èf

p/q

t,z ,KzÍ|
q = |f

p/q

t,z (z)|q = 1
(1≠ |z|2)2Ê(z) .

By using the subharmonicity of |Kz|
p, we have that

Ê(a)|Kz(a)|p . (1≠ |a|
2)≠2

⁄

Ea

|Kz(b)|pÊ(b)dA(b),

which implies that

|Kz(a)|p
ÎKzÎ

p

A
p
Ê

. 1
Ê(a)(1≠ |a|2)2 .

By taking a = z, we obtain that

(Kz(z))p

ÎKzÎ
p

A
p
Ê

. 1
Ê(z)(1≠ |z|2)2 .

Since (Kz(z))p = ÎKzÎ
2p

A
2
Ê

Ø ÎKzÎ
2p

A
p
Ê

, we get

ÎKzÎ
p

A
p
Ê
. 1

Ê(z)(1≠ |z|2)2 .

The proof is finished.
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We produce an example of a case where the norm equivalence does not provide the inner
product equivalence, but the kernel equivalence.

Example 1. Let Ê1(z) = 1, Ê2(z) = |z|, for z œ D. Let H1 := A
2(D) = A

p
Ê1(D), and

H2 := A
2
Ê(D). Observe that as a set H1 is H2. The norms and inner products are described

as follows:
ÎfÎ1 =

⁄

D
|f(z)|2dA(z), Èf,gÍ1 =

⁄

D
f(z)g(z)dA(z)

for f,g œ H1 and

ÎfÎ2 =
⁄

D
|f(z)|2|z|dA(z), Èf,gÍ2 =

⁄

D
f(z)g(z)|z|dA(z)

for f,g œ H2. Then by (Luecking, 1981)

⁄

D
|f(z)|2dA(z) ¥

⁄

D
|f(z)|2|z|dA(z)

for every f œ H2. Hence, Î.Î1 and Î.Î2 are equivalent.

Let f(z) = z + 2
3 and g(z) = z ≠1 for z œ D. Then, it is concluded that

Èf,gÍ1 =
⁄

D
f(z)g(z)dA(z)

=
⁄ 1

0

A⁄ 2fi

0
(re

i◊ + 2
3)(re

≠i◊
≠1)d◊

B

rdr

= 2fi

⁄ 1

0

A

r
4

≠
2r

2

3

B

dr

= ≠
2fi

45 ,

and

Èf,gÍ2 =
⁄

D
f(z)g(z)|z|dA(z)

=
⁄ 1

0

A⁄ 2fi

0
(re

i◊ + 2
3)(re

≠i◊
≠1)d◊

B

r
2
dr

= 2fi

⁄ 1

0

A

r
5

≠
2r

3

3

B

dr = 0,

which means that these two inner products can not be equivalent.

Recall that, a reproducing kernel can be obtained by using an orthonormal basis. Consider
two orthonormal basis {en(z)}nœN and {En}nœN for H1 and H2, respectively, where
en(z) =

Ô
2n+2
Ô

2fi
z

n, and En(z) =
Ô

2n+3
Ô

2fi
z

n. Then the kernels can be found as following
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K
1(z,w) =

Œÿ

n=0
en(z)en(w),

and
K

2(z,w) =
Œÿ

n=0
En(z)En(w).

A computation yields that,

K
1(z,w) = 1

2fi(1≠ zw)2 , and K
2(z,w) = 3≠ zw

2fi(1≠ zw)2 ,

for z,w œ D. Hence, the following connection is obtained,

2|K
1(z,w)| Æ |K

2(z,w)| Æ 4|K
1(z,w)|,

for z,w œ D.

4.2 Pointwise Estimate for Kernel Function

In this section, we proved pointwise estimates by Berndtsson’s method.

Lemma 4.2.1. There exists a positive constant C so that for f œ A
2
Ê(�)

|f(z)≠f(w)| Æ C
|z ≠w|

fl�(z) ÎKzÎ
A

2
Ê
ÎfÎ

A
2
Ê

for z,w œ � such that |z ≠w|Æ
fl�(z)

4 .

Proof. Let z,w œ � with the property that |z ≠ w| Æ
fl�(z)

4 . We set r = fl�(z)
4 and Dr =

D(z,r). From the fundamental theorem of calculus we have that

|f(z)≠f(w)| =
----
⁄

z

w

f
Õ(’)d’

---- Æ

⁄
z

w

|f
Õ(’)|d’ Æ |z ≠w| sup

’œDr

|f
Õ(’)|.

Moreover, the Cauchy’s estimate implies that

|f
Õ(’)| . 1

fl�(z) sup
ˆDr

|f(’)|.
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Therefore, we conclude that

|f(z)≠f(w)| . |z ≠w|

fl�(z) sup
’œD2r

|f(’)| Æ
|z ≠w|

fl�(z) sup
’œD2r

ÎK’Î
A

2
Ê
ÎfÎ

A
2
Ê

Æ C
|z ≠w|

fl�(z) ÎKzÎ
A

2
Ê
ÎfÎ

A
2
Ê
.

The proof is finished.

Corollary 4.2.2. There exists a constant 0 < – < 1 such that

|Kz(w)| t ÎKzÎ
A

2
Ê
ÎKwÎ

A
2
Ê
,

if |z ≠w| Æ –fl�(z).

Proof. Let – = min{
1
4 ,

1
2C

}. By taking f = Kz in Lemma 4.2.1 we obtain that

|K(z,z)≠K(z,w)| Æ
C

fl�(z) |z ≠w|ÎKzÎ
2
A

2
Ê

= C
|z ≠w|

fl�(z) K(z,z)

Æ
1
2K(z,z)

if |z ≠ w| Æ –fl�(z). Hence, 1
2K(z,z) Æ |K(z,w)|. Besides, it follows from the Cauchy

Schwarz inequality that

|K(z,w)| = |ÈKz,KwÍ| Æ ÎKzÎ
A

2
Ê
ÎKwÎ

A
2
Ê

¥ ÎKzÎ
A

2
Ê

= |K(z,z)|.

Therefore, we obtain that

|K(z,w)| t |K(z,z)| t ÎKzÎ
A

2
Ê
ÎKwÎ

A
2
Ê
.

Theorem 4.2.3. Let µ be a positive Borel measure on the unit disk, ‹ be a positive finite
measure on ˆD, and let Ê = Êµ,q,s,‹ on the unit disk. Then there exists a constant – > 0
such that

|Kz(w)|2 ¥
1

(1≠ |z|2)2(1≠ |w|2)2Ê(z)Ê(w) ,

where |z ≠ w| Æ –(1 ≠ |z|
2). Moreover, for all t œ (0,1), there exists a positive constant

Ct so that

|Kz(w)|2 Æ CtÎKzÎ
2
A

2
Ê
ÎKwÎ

2
A

2
Ê

A
(1≠ |z|

2)(1≠ |w|
2)

|w ≠ z|2

Bt

, z,w œ D.
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Proof. The first statement of the theorem follows from Corollary 4.2.2 and Theorem
4.1.1, that is,

|Kz(w)|2 ¥ ÎKzÎ
A

2
Ê
ÎKwÎ

A
2
Ê

¥
1

(1≠ |z|2)2(1≠ |w|2)2Ê(z)Ê(w) , z,w œ D,

if |z ≠w| Æ –(1≠ |z|).

We define the distance function fl on the unit disk as fl(z) = 1 ≠ |z|
2 for z œ D. Let Dz

be the Euclidean disk centered at z with radius fl(z)
2 . Assume that t œ (0,1) and z,w œ D.

We will examine this part by dividing into two cases.

Case 1: If Dz fl Dw ”= ÿ, where Dz = D(z,
fl(z)

2 ) and Dw = D(w,
fl(w)

2 ), then there is at
least an element x œ Dz fl Dw such that |z ≠ x| Æ

fl(z)
2 and |w ≠ x| Æ

fl(w)
2 , which implies

the following result

|z ≠w| Æ |z ≠x|+ |w ≠x| Æ
(1≠ |z|

2)
2 + (1≠ |w|

2)
2 ¥ 1≠ |z|

2
,

similarly, we have that
|z ≠w| . 1≠ |w|

2
.

After the combination of the above results we obtain that there is some positive constant
ct so that

(|z ≠w|
2)t

Æ ct[(1≠ |z|
2)(1≠ |w|

2)]t.

From the Cauchy-Schwarz inequality, we conclude that

|K(z,w)|2 Æ ÎKzÎ
2
A

2
Ê
ÎKwÎ

2
A

2
Ê

Æ ÎKzÎ
2
A

2
Ê
ÎKwÎ

2
A

2
Ê
ct

A
(1≠ |z|

2)(1≠ |w|
2)

|z ≠w|2

Bt

.

Case 2: If Dz fl Dw = ÿ. Let ‰ be a smooth real function such that 0 Æ ‰ Æ 1 and ‰ = 1
on D(w,

fl(w)
4 ), supp(‰) µ Dw and |ˆ‰|

2 . ‰

fl2 . Since |Kz|
2 is subharmonic we have that

|Kz(w)|2Ê(w) . 1
fl2(w)

⁄

D(w,
fl(w)

2 )
|Kz(’)|2Ê(’)dA(’)

Æ
1

fl2(w)

⁄

D
|Kz(’)|2‰(’)Ê(’)dA(’)

. 1
fl2(w)ÎKzÎ

2
L2(D,‰ÊdA) = 1

fl2(w) sup
fœB

|Èf,KzÍL2(D,‰ÊdA)|
2
,

where B = {f œ H(D) : ÎfÎL2(D,‰ÊdA) = 1}. Note that f‰ œ L
2(D,ÊdA). Then

Èf,KzÍL2(D,‰ÊdA) = P (f‰)(z), where P is the orthogonal projection from L
2(D,ÊdA)

to A
2
Ê. Hence, uf = f‰≠P (f‰) is the solution of the equation ˆuf = ˆ(f‰) = fˆ‰, with
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minimal norm in L
2(D,ÊdA). We have that

|Èf,KzÍL2(D,‰ÊdA)| = |P (f‰)(z)| = |uf (z)|,

for all z /œ D(w,
fl(w)

2 ). Thanks to the combination of above results we achieve that

|Kz(w)|2Ê(w) . 1
fl2(w) sup

fœB

|Èf,KzÍL2(D,‰ÊdA)|
2 = 1

fl2(w) sup
fœB

|uf (z)|2,

for all z /œ D(w,
fl(w)

2 ). Moreover, because of the fact that supp(‰) µ Dw, we have uf œ

H(D(z,
fl(z)

2 )). Hence, |uf |
2 is subharmonic. Then we obtain that

|uf (w)|2Ê(w) . 1
fl2(w)

⁄

D(w,
fl(w)

4 )
|uf (’)|2Ê(’)dA(’).

Let t œ (0,1). We define the following functions

„(’) := t log |1≠w’|
2

1≠ |’|2
and Â(’) = ≠ logÊ(’).

Then we have that

e
„(’) =

A
|1≠w’|

2

1≠ |’|2

Bt

and e
Â(’) = 1

Ê(’) .

Then we also obtain the following

|uf (z)|2e
≠Â(z)+„(z) . 1

fl2(z)

⁄

D(z,
fl(z)

4 )
|uf (’)|2e

≠Â(’)+„(’)
dA(’)

Æ
1

fl2(z)

⁄

D
|uf (’)|2e

≠Â(’)+„(’)
dA(’),

since |1≠w’| ¥ |1≠wz| and 1≠ |’
2
| ¥ 1≠ |z|

2 for ’ œ D(z,
fl(z)

4 ). Furthermore,

ˆ

ˆ’
„(’) = t

A
w

1≠w’
≠

’

1≠ |’|2

B

,

and

�„(’) = ˆ
2

ˆ’ˆ’
„(’) = t

(1≠ |’|2)2 .

Recall that ˆuf = fˆ‰, and |ˆ‰|
2 . ‰

fl2 where supp(‰) µ Dw. Besides, by a direct calcu-
lation we conclude that ---ˆ„(’)

ˆ’

---
2

�„(’) = t

-----
w ≠ ’

1≠w’

-----

2
Æ t.

Therefore, the condition (2.3) in (Berndtsson, 2017) is satisfied. Then, by Berndtsson’s
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theorem (Berndtsson, 2017, page 46), we have

⁄

D
|uf (’)|2e

≠Â(’)+„(’)
dA(’) . 1

(1≠ t)2

⁄

D

|ˆuf (’)|2
�„(’) e

≠Â(’)+„(’)
dA(’)

. 1
(1≠ t)2

⁄

D
|f(’)|2|ˆ‰(’)|2(1≠ |’|

2)2 |1≠w’|
2t

(1≠ |’|2)t
Ê(’)dA(’)

. 1
(1≠ t)2

⁄

Dw

|f(’)|2 ‰(’)
fl2(’)(1≠ |’|

2)2 |1≠w’|
2t

(1≠ |’|2)t
Ê(’)dA(’)

. 1
(1≠ t)2 (1≠ |w|

2)t

⁄

Dw

|f(’)|2Ê(’)dA(’)

. 1
(1≠ t)2 (1≠ |w|

2)t
.

Hence, we achieve that

|uf (z)|2e
≠Â(’)+„(z) . 1

fl2(z)

⁄

D
|uf (’)|2e

≠Â(’)+„(’)
dA(’)

. 1
fl2(z)

(1≠ |w|
2)t

(1≠ t)2 ,

that is,

|uf (z)|2 . 1
fl2(z)

(1≠ |w|
2)t

(1≠ t)2
1

Ê(z)

A
|1≠w’|

2

1≠ |’|2

B≠t

.

As a consequence, we have

|Kz(w)|2 . 1
(1≠ t)2

1
fl2(w)Ê(w)fl2(z)Ê(z)

(1≠ |z|
2)t(1≠ |w|

2)t

|1≠wz|2t
.

Then from Theorem 4.1.1 and the results obtained above, there exists a positive constant
C so that

|Kz(w)|2 Æ
C

(1≠ t)2

A
fl(z)fl(w)
|z ≠w|2

Bt

ÎKzÎ
2
A

2
Ê
ÎKwÎ

2
A

2
Ê
,

where |1≠wz| ¥ |z ≠w| for the case that Dz flDw = ÿ.
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4.3 Some Weight Classes

Definition 4.3.1 (W0 Class). (El-Fallah et al., 2016) Let � be a bounded domain in the
complex plane and Ê be a weight function defined on �. Let Kz be the reproducing kernel
of the space A

2
Ê(�) (with possibly an equivalent norm). We say that the couple (Ê,Kz) is

a member of W0 if the following satements are satisfied:

(4.1) lim
zæˆ�

ÎKzÎ = Œ.

There exists – œ (0,1) and a positive constant C so that if z,’ œ � with |z ≠ ’| Æ –fl(z),
then we have

(4.2) ÎKzÎ
A

2
Ê(�)ÎK’Î

A
2
Ê(�) Æ C|K(’, z)|,

and

(4.3)
1
C

K(’,’)Ê(’) Æ K(z,z)Ê(z) Æ CK(’,’)Ê(’).

Furthermore, we say that (Ê,Kz) is a member of W if the couple (Ê,Kz) also satisfies
the following property:

(4.4) |K(’, z)| = o(ÎKzÎ)

as z goes to the boundary, for every ’ œ �.

Note that, Lemma 4.2.1 and Corollary 4.2.2 are also valid for the function K
2
z defined in

the proof of Theorem 4.1.1. Let H := A
2
Ê(�) and H2 := (A2

Ê(�),Î.Î2).

Proposition 4.3.2. Let Êµ,q,s,‹ be a weight as in (1.2). Then the couple (Ê,Kz) is in the
class W0 and the couple (Ê,K

2
z ) is in the class W , where K

2
z is the reproducing kernel

for H2.

Proof. Briefly, we set Ê = Êµ,q,s,‹ . Recall the equivalence ÎK
Ê
z ÎH ¥ ÎK

2,Ê
z ÎH2 . The

statement (4.1) for the case when K
2
z is considered as the kernel function is satisfied if and

only if Ê(z)fl2(z) goes to zero as z goes to the boundary, thanks to Theorem 4.1.1. Since
Uµ,s is bounded and q + 2 > 0, fl

q+2(z)Uµ,s(z) goes to zero as z goes to the boundary.
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Hence, we obtain that

lim
zæˆ�

Ê(z)fl2(z) = lim
zæˆ�

1
fl

q+2(z)Uµ,s(z)+fl
2(z)P‹(z)

2

= lim
zæˆ�

fl
2(z)P‹(z)

= lim
zæˆ�

⁄

ˆ�
P�(z,’)fl2(z)d‹(’).

We refer to the following well-known estimate (Krantz, 2005),

P�(z,’) ¥
fl(z)

|z ≠ ’|2
.

Let z œ � and ’ œ ˆ� with |z ≠ ’| Ø fl(z). Then we have

fl
2(z)P�(z,’) ¥ fl

2(z) fl(z)
|z ≠ ’|2

Æ fl(z).

Therefore, we conclude that

lim
zæˆ�

Ê(z)fl2(z) = lim
zæˆ�

⁄

ˆ�
P�(z,’)fl2(z)d‹(’)

. lim
zæˆ�

fl(z)‹(ˆ�) = 0,

since ‹ is a finite measure. This proves (4.1) for K
2
z .

We desire to demonstrate that there exists – œ (0,1) and C > 0 such that

ÎK
2
z Î2ÎK

2
’ Î2 Æ C|K

2(’, z)|,

for z,’ œ � with |z ≠ ’| Æ –fl(z). The above inequality arises from the adaptation of
Corollary 4.2.2 for the case when K

2
z is considered as the kernel function. Hence, (4.2)

holds for K
2
z .

Recall the fact that K
2(’,’) = ÈK

2
’
,K

2
’
Í2 = ÎK

2
’
Î

2
2. By Theorem 4.1.1, (4.3) for the

case when K
2
z is considered as the kernel function is satisfied if and only if there exists a

positive constant C so that
1
C

fl(’) Æ fl(z) Æ Cfl(’).

Let �–(z) = D(z,–fl(z)) for some – œ (0,1). Thus, ’ œ �–(z) if and only if |z ≠ ’| <

–fl(z). For some z0,’0 œ ˆ� we have that fl(z) = |z ≠ z0| and fl(’) = |’ ≠ ’0|. Thus,

fl(z) = |z ≠ z0| Æ |z ≠ ’0| Æ |z ≠ ’|+ |’ ≠ ’0| = |z ≠ ’|+fl(’),
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which implies that
|z ≠ ’| . –fl(z) Æ –|z ≠ ’|+–fl(’),

hence,
|z ≠ ’| Æ

–

(1≠–)fl(’).

Then we conclude the following inequalities;

fl(z) Æ |z ≠ ’|+fl(’) Æ

3
–

1≠–
+1

4
fl(’) = 1

1≠–
fl(’),

and
fl(’) Æ |z ≠ ’|+fl(z)–fl(z)+fl(z) = (1+–)fl(z),

which imply that fl(’) and fl(z) are comparable. Hence, (4.3) is satisfied, for the function
K

2
z .

For any ’ œ �, the statement (4.4) indicates that

lim
zæˆ�

|K
2(’, z)|

ÎK2
z Î2

= 0.

In order to prove the statement we need to explain some properties which will be utilized.
Since ÎK

2
z Î2 t max0ÆjÆN ÎK

÷j

Ïj(z)ÎA
2
÷j

(D), we have

1
ÎK2

z Î
. 1

ÎK
÷j0
Ïj0(z)ÎA

2
÷j0

(D)
¥ fl

2
D(Ïj0(z))÷j0(Ïj0(z)) ¥ fl

2
D(Ïj0(z))Ê(z),

for any j0 œ {0, · · · ,N}, which follows from Theorem 4.1.1 and the fact that ÷j ¶ Ïj ¥ Ê

for each j.

Notice that, because of the equality fl� = min0ÆjÆN fl�j , we obtain that 1
fl�j

(z) Æ
1

fl�(z)

for each j and any z œ �. Moreover, we will use the fact K
2
z = q

N

j=0 CjK
2
z . We set

K
2
j,z

:= CjK
2
z for each j. Now we obtain the following
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|K
2(’, z)|2

ÎK2
z Î

2
2

. |K
2(’, z)|2

ÎK
÷j0
Ïj0(z)Î

2
A

2
÷j0

(D)
¥ |K

2(’, z)|2fl
2
D(Ïj0(z))÷j0(Ïj0(z))

¥ |K
2(’, z)|2Ê(z)fl2

D(Ïj0(z)) Æ Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
|K

2
j (’, z)|2

= Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
|ÈK

2
j,’ ,K

2
j,zÍ

A
2
Ê(�j)|

2

¥ Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
|ÈC

Ï
≠1
j

K
2
j,’ ,C

Ï
≠1
j

K
2
j,zÍ

A
2
÷j

(D)|
2

= Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
|ÈK

÷j

Ïj(’),K
÷j

Ïj(z)ÍA
2
÷j

(D)|
2

= Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
|K

÷j (Ïj(’),Ïj(z))|2.

It follows from Theorem 4.2.3 that for any t œ (0,1), there exists a positive constant Ct so
that

|K
÷j (Ïj(’),Ïj(z))|2 Æ CtÎK

÷j

Ïj(’)Î
2
A

2
÷j

(D)ÎK
÷j

Ïj(z)Î
2
A

2
÷j

(D)

◊

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(z)|2)

|Ïj(’)≠Ïj(z)|2

Bt

.

Thus, we obtain the following

|K
2(’, z)|2

ÎK2
z Î

2
2

. Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
CtÎK

÷j

Ïj(’)Î
2
A

2
÷j

(D)ÎK
÷j

Ïj(z)Î
2
A

2
÷j

(D)

◊

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(z)|2)

|Ïj(’)≠Ïj(z)|2

Bt

. Ê(z)fl2
D(Ïj0(z))

Nÿ

j=0
CtÎK

÷j

Ïj(’)Î
2
A

2
÷j

(D)
1

fl
2
D(Ïj(z))÷j(Ïj(z))

◊

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(z)|2)

|Ïj(’)≠Ïj(z)|2

Bt

. fl
2
D(Ïj0(z))
fl

2
�(z) CtÎK

2
’ Î2

Nÿ

j=0

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(z)|2)

|Ïj(’)≠Ïj(z)|2

Bt

,

by using Theorem 4.1.1 and the fact that ÎK
÷j

Ïj(’)ÎA
2
÷j

(D) Æ ÎK
2
’
Î2, for each j.

Furthermore, note that the equivalence relation flD(Ïj(z)) ¥ fl�j (z) is valid for every
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z œ �. Now let zk œ � such that zk æ ˆ� as k æ Œ. Hence,

|K
2(’, zk)|2
ÎK2

zk
Î

2
2

.
fl

2
�j0

(zk)
fl

2
�(zk) CtÎK

2
’ Î2

Nÿ

j=0

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(zk)|2)

|Ïj(’)≠Ïj(zk)|2

Bt

.

Now for every k, choose jk = j0 so that fl�jk
(zk) = minj fl�j (zk) = fl�(zk), which implies

that
fl

2
�j0

(zk)
fl

2
�(zk) = 1.

Consequently, we obtain the following

|K
2(’, zk)|2
ÎK2

zk
Î

2
2

. CtÎK
2
’ Î2

Nÿ

j=0

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(zk)|2)

|Ïj(’)≠Ïj(zk)|2

Bt

.

Thus, limkæŒ |Ïj(zk)| = 1, since zk æ ˆ�. Hence, the above finite sum goes to zero.
We conclude that the statement (4.4) is satisfied, for the case when K

2
z is considered as

the kernel function.

As a consequence of the proof of the previous proposition, we obtain following corollary.

Corollary 4.3.3. For any t œ (0,1) there exists a positive constant Ct such that

|K
2(’, z)|2 . CtÎK

2
’ Î2ÎK

2
z Î

2
2

Nÿ

j=0

A
(1≠ |Ïj(’)|2)(1≠ |Ïj(z)|2)

|Ïj(’)≠Ïj(z)|2

Bt

,

for any ’, z œ �. Furthermore, there exists – > 0 so that

|Kz(w)|2 ¥
1

fl
2
�(z)fl2

�(w)Ê(z)Ê(w) , z,w œ �.

where |z ≠w| Æ –fl�(z).

Proof. The first statement follows from the proof of Proposition 4.3.2 and the second
statement follows from Theorem 4.1.1 and Corollary 4.2.2.
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4.4 Toeplitz Operators and Berezin Transforms

Definition 4.4.1 (Toeplitz Operator). Let P be a Bergman projection defined from L
2

to A
2. For any Ï œ L

Œ, define an operator TÏ by TÏf = P (Ïf) for any f œ L
2. The

operator TÏ is said to be the Toeplitz operator with symbol Ï.

Definition 4.4.2 (Berezin Transform). Let T be a linear operator on A
2. We define a

transform B of T by

(4.5) B(T )(z) = ÈTkz,kzÍ
A

2
Ê
,

where kz is the normalized reproducing kernel of A
2
Ê.

If T is a compact operator on a separable Hilbert space H, then there exist orthonormal
sets {an} and {bn} in H such that

Tx =
ÿ

n

⁄nÈx,anÍbn, x œ H,

where ⁄n is the nth singular value of T , (Zhu, 1990). The sequence {⁄n}nœN is called
the singular value sequence of T .

Definition 4.4.3 (Schatten Class). Let H be a separable Hilbert space. For 0 < p < Œ,
the space of all compact operators on H, whose singular value sequence belong to l

p, is
called the Schatten p-class of H .

Definition 4.4.4 (Generalized Schatten Class). [(El-Fallah et al., 2018)] Let h : R+
æ

R+ be a continuous increasing function such that h(0) = 0. Let T be a compact operator
on a complex Hilbert space H. The operator T is an element of Sh(X ) if there exists a
positive constant c such that

Œÿ

n=1
h(c(sn(T ))) < Œ,

where sn(T ) denotes the sequence of singular values of T .

In order to comprehend the notion which is resulted from defining a norm to obtain an
isometry as we did in Theorem 4.1.1, we consider the following facts. Firstly, recall that
H2 is a Hilbert space with the norm Î.Î2, which can be expressed as follows

ÎfÎ2 =
Q

a
Nÿ

j=0
ÎC

Ï
≠1
j

(Cjf)Î2
A

2
÷j

(D)

R

b

1
2

,
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for any f œ H2. Let T := C� ¶C : H2 æ A2(H,D). Then for z œ �

TK
2
z = (K÷0

Ï
≠1
0 (z), · · · ,K

÷N

Ï
≠1
N (z)).

Hence, the reproducing kernel for the product space A2(H,D) is K�(z) = TK
2
z . Let

A := T
ú
T . Then for any z œ �, we obtain that K

2
z = A

≠1
Kz. Then

Èf,gÍ2 = Èf,AgÍH,

for any f,g œ H2.

Let ÷ be a positive finite Borel measure on a domain � which is as in (2.1). The Toeplitz
operator with the symbol ÷ is given by

T÷(f(z)) =
⁄

�
f(’)K(z,’)Ê(’)d÷(’),

for f œ A
2
Ê. We define the Topelitz operator with the symbol ÷ associated with K

2 by

T
2
÷ (f(z)) =

⁄

�
f(’)K2(z,’)Ê(’)d÷(’),

for f œ (A2
Ê,Î.Î2).

The Berezin transform of the Toeplitz operator T÷ is defined by

B(T÷)(z) = ÈT÷kz,kzÍH,

where kz = K(z,.)
ÎKz(z)ÎH

is the normalized reproducing kernel of H, for z œ �. Moreover, we
define the Berezin transform of the Toeplitz operator T

2
÷ by

B2(T 2
÷ )(z) = ÈT

2
÷ k

2
z ,k

2
zÍ2,

where k
2
z is the normalized reproducing kernel of H2, for z œ �. As a result of Theorem

4.1.1, it can be obtained that

K
2(z,z) = ÈK

2
z ,K

2
z Í2 = ÎK

2
z Î

2
2 ¥

1
(fl�(z))2Ê(z)

¥ ÎKzÎ
2
H = ÈKz,KzÍH = K(z,z),

for any z œ �. Hence,
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B2T
2
÷ (z) = ÈT

2
÷ k

2
z ,k

2
zÍ2 = 1

K2(z,z)ÈT
2
÷ K

2
z ,K

2
z Í2

= 1
K2(z,z)ÈT

2
÷ A

≠1
Kz,A

≠1
KzÍ2

= 1
K2(z,z)ÈT

2
÷ A

≠1
Kz,KzÍH

¥
1

K(z,z)ÈT
2
÷ A

≠1
Kz,KzÍH

= ÈT
2
÷ A

≠1
kz,kzÍH

= BT
2
÷ A

≠1(z),

for z œ �. Therefore, we obtain a relation between the following Berezin transforms

(4.6) B2T
2
÷ (z) ¥ BT

2
÷ A

≠1(z), z œ �.

Moreover, Fubini’s theorem yields that

ÈT÷f,fÍ
A

2
Ê(�) =

⁄

�
T÷f(’)f(’)Ê(’)dA(’)

=
⁄

�

3⁄

�
f(z)K’(z)Ê(z)d÷(z)

4
f(’)Ê(’)dA(’)

=
⁄

�
f(z)Ê(z)

3⁄

�
f(’)Kz(’)Ê(’)dA(’)

4
d÷(z)

=
⁄

�
f(z)f(z)Ê(z)d÷(z)

=
⁄

�
|f(z)|2Ê(z)d÷(z),

for any f œ A
2
Ê(�). Therefore, we obtain that

ÈT÷f,fÍ
A

2
Ê(�) =

⁄

�
|f(z)|2Ê(z)d÷(z),(4.7)

for any f œ A
2
Ê(�).

39



In the light of the previous information, for f œ H,

ÈT
2
÷ f,fÍ2 = ÈT

2
÷ f,AfÍH

=
⁄

�
Af(b)

3⁄

�
f(a)K2

b
(a)Ê(a)d÷(a)

4
Ê(b)dA(b)

=
⁄

�
f(a)Ê(a)

3⁄

�
Af(b)K2

a(b)Ê(b)dA(b)
4

d÷(a)

=
⁄

�
f(a)Ê(a)Èk2

a,AfÍHd÷(a)

=
⁄

�
f(a)f(a)Ê(a)d÷(a)

=
⁄

�
|f(a)|2Ê(a)d÷(a)

= ÈT÷f,fÍH.

Furthermore, it follows from Theorem 4.1.1 and Corollary 4.2.2 that if Ê œ W0, then there
exists an – œ (0,1) such that Ê(z) ¥ Ê(’) where ’ œ �–(z). Explicitly, there exists such
an – so that

Ê(’) ¥
1

fl2(’)ÎK’Î2 ¥
1

fl2(z)ÎK’Î2

¥
ÎKzÎ

2

fl2(z)|K’(z)|2 ¥
1

fl2(z)ÎKzÎ2

¥ Ê(z),

for ’ œ �–(z).

In the proof of Theorem 4.4.5, the equivalence of (i) and (iii) is due to (El-Fallah et al.,
2016), we include the proof here for completeness.

Theorem 4.4.5 (Theorem 6.2,(El-Fallah et al., 2016)). Let Ê œ W . Let ÷ be a positive
Borel measure on � and h be an increasing convex function from R+ to itself. Then the
following statements are equivalent:

(i) T÷ œ Sh(H).

(ii) T
2
÷ œ Sh(H2).

(iii)
s
� h(cBT÷(z)))fl≠2

� (z)dA(z) < Œ.

Proof. Assume that {en}nØ1 is an orthonormal basis for H := A
2
Ê(�) and {en,2}nØ1 is

an orthonormal basis H2 = (A2
Ê(�),Î.Î2). Then,

T÷ =
ÿ

nØ1
⁄nÈ., enÍen and T

2
÷ =

ÿ

nØ1
⁄n,2È., en,2Í2en,2,
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where ⁄n and ⁄n,2 are the singular values of the Toeplitz operators T÷ and T
2
÷ , respectively.

Hence,
⁄n(T÷) = ÈT÷en, enÍ and ⁄n,2(T 2

÷ ) = ÈT
2
÷ en,2, en,2Í2.

By (4.7) we have that

⁄n,2(T 2
÷ ) = ÈT

2
÷ en,2, en,2Í2 = ÈT÷en,2, en,2ÍH = ÈT÷A

≠
1
2 en,A

≠
1
2 enÍH

= ÈA
≠

1
2 T÷A

≠
1
2 en, enÍH = ⁄n(A≠

1
2 T÷A

≠
1
2 ).

Hence, T
2
÷ œ Sh(H2) if and only if A

≠
1
2 T÷A

≠
1
2 œ Sh(H). Furthermore, notice that

A
≠

1
2 T÷A

≠
1
2 œ Sh(H) if and only if T÷ œ Sh(H), which is obtained by the fact that Sh(H)

is a both sided ideal. Thus, T
2
÷ œ Sh(H2) if and only if T÷ œ Sh(H). Therefore, (i) is

satisfied if and only if (ii) is satisfied.

Suppose that T÷ œ Sh(H). So, for some positive constant c we have
q

nØ1 h(c⁄n) < Œ,
where ⁄n is the singular value sequence of T÷. Since T÷ is a positive compact operator, it
has a decomposition T÷ = q

nØ1 ⁄nÈ.,EnÍHEn, where {En}nØ1 is an orthonormal basis
of H. Then

⁄

�
h(cBT÷(z)))fl≠2

� (z)dA(z) t
⁄

�
h(cBT÷(z))Ê(z)ÎKzÎ

2
HdA(z)

=
⁄

�
h(cÈT÷kz,kzÍH)Ê(z)ÎKzÎ

2
HdA(z)

=
⁄

�
h

A
ÿ

nØ1
c⁄n|Èkz,EnÍH|

2
B

Ê(z)ÎKzÎ
2
HdA(z).

Note that

ÿ

nØ1
|Èkz,EnÍH|

2 = 1
K(z,z)

ÿ

nØ1
|ÈKz,EnÍH|

2

= 1
K(z,z)

ÿ

nØ1
|En(z)|2 = 1.
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Therefore, it follows from Jensen’s inequality that

⁄

�
h

A
ÿ

nØ1
c⁄n|Èkz,EnÍH|

2
B

Ê(z)ÎKzÎ
2
HdA(z)

Æ

⁄

�

A
ÿ

nØ1
h(c⁄n)|Èkz,EnÍH|

2
B

Ê(z)ÎKzÎ
2
HdA(z)

=
⁄

�

ÿ

nØ1
h(c⁄n) |En(z)|2

ÎKzÎ
2
H

Ê(z)ÎKzÎ
2
HdA(z)

=
ÿ

nØ1
h(c⁄n)

⁄

�
|En(z)|2Ê(z)dA(z)

=
ÿ

nØ1
h(c⁄n).

Since T÷ œ Sh(H), ⁄

�
h(cBT÷(z))Ê(z)ÎKzÎ

2
HdA(z) < Œ.

Hence, (i) implies (iii).

We assume that ⁄

�
h(cBT÷(z))Ê(z)ÎKzÎ

2
HdA(z) < Œ.

It follows from (4.7), the sub-mean property, and Theorem 4.1.1 that for some ” œ (0,1)

ÈT÷En,EnÍH =
⁄

�
|En(z)|2Ê(z)d÷(z)

Æ

⁄

�

A
1

|�”(z)|

⁄

�”(z)
|En(’)|2Ê(’)dA(’)

B

dA(z)

=
⁄

�

A
1

”2fl
2
�(z)

⁄

�”(z)
|En(’)|2Ê(’)dA(’)

B

dA(z)

¥

⁄

�

A⁄

�”(z)

1
fl

2
�(’) |En(’)|2Ê(’)dA(’)

B

dA(z)

¥

⁄

�

A⁄

�”(z)
|En(’)|2ÎK’Î

2
HÊ(z)Ê(’)dA(’)

B

dA(z)

Æ

⁄

�

A⁄

�”(z)

|Kz(’)|2
ÎKzÎ

2
H

|En(’)|2Ê(’)dA(’)
B

Ê(z)d÷(z)

Æ

⁄

�

A⁄

�
|k’(z)|2Ê(z)d÷(z)

B

|En(’)|2Ê(’)dA(’)

=
⁄

�
BT÷(’)|En(’)|2Ê(’)dA(’).

Set ‹(’) := |En(’)|2Ê(’)dA(’). By applying Jensen’s inequality to the function
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cÎ‹ÎBT÷ with the probability measure ‹

Î‹Î
, we obtain that

h(CÈT÷En,EnÍH) .
⁄

�
h(cBT÷(’))|En(’)|2Ê(’)dA(’).

Since c > 0 and h is increasing, we have

ÿ

nØ1
h(CÈT÷En,EnÍH) Æ

⁄

�
h(cBT÷(’))

ÿ

nØ1
|En(’)|2Ê(’)dA(’)

=
⁄

�
h(cBT÷(’)ÎK’Î

2
HÊ(’)dA(’)

where the last quantity is finite because of the assumption. Therefore, T÷ œ Sh(H). Hence,
(iii) implies (i).

For any z œ � and – œ (0,1), let �–(z) := D(z,–fl�(z)). Notice that fl�(w) and fl�(z)
are comparable for any w œ �–(z), as it has been shown in the proof of Proposition 4.3.2.
Which means that there is a positive constant C so that

fl�(z)
C

Æ fl�(w) Æ Cfl�(z).

Let C
Õ = C + 1 and ” Æ

–,

CÕ . Then it follows from Proposition 3.1 in (El-Fallah et al.,
2016) that there exists a sequence {zn}nœN which satisfies the following properties

� µ finØ1�”(zn), � ”
2C

(zn)fl� ”
2C

(zm) = ÿ,

for n ”= m and �”(z) µ �CÕ”(zn) for z œ �”(zn). Moreover, (�CÕ”(zn))n is a covering
of � of finite multiplicity.

Such a sequence is called a (fl,”)-lattices of �. Let L”(�,fl�) be the set of (fl,”)-lattices
of �.

The average function ÷̂” is defined by

÷̂”(z) = ÷(�”(z))
|�”(z)|

for some ” œ (0,1) and z œ �.

The proof of Theorem 4.4.6 is due to (El-Fallah et al., 2016), we include the proof here
for completeness.
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Theorem 4.4.6. (El-Fallah et al., 2016) Let Ê œ W and {zn}nœN œ L”(�,fl�) with ” Æ

–

C+1 . Let ÷ be a positive Borel measure on � and h be an increasing convex function from
R+ to itself. Then the following statements are equivalent:

(1) There exists C1 so that
⁄

�
h(C1BT÷(z))dA(z)

fl
2
�(z) < Œ,

(2) There exists C2 so that
ÿ

nØ1
h(C2÷̂”(zn)) < Œ.

Proof. Assume that (1) is satisfied. Let ” œ (0,1) and z œ �. By (4.2) we obtain the
following inequality

|kz(’)|2 = |K(z,’)|2
ÎKzÎ2 & ÎK’Î

2
,

for any ’ œ �”(z). Hence, for any w œ �”(z) we have that

BT÷(w) = ÈT÷kw,kwÍH =
⁄

�
|kw(’)|2Ê(’)d÷(÷)

Ø

⁄

�”(z)
|kw(’)|2Ê(’)d÷(’)

&
⁄

�”(z)
ÎK’Î

2
HÊ(’)d÷(’)

¥

⁄

�”(z)

1
|�”(z)|d÷(’) = ÷̂”(z),

where Theorem 4.1.1 is used in the last approximation. Thus, for any z œ �”(zn) we
obtain that ÷̂”(zn) . BT÷(z). Consequently,

⁄

�
h(C1BT÷(z))dA(z)

fl
2
�(z) ¥

ÿ

n

⁄

�”(zn)
h(C1BT÷(z))dA(z)

fl
2
�(z)

Ø
ÿ

n

⁄

�”(zn)
h(C1c÷̂”(zn))dA(z)

fl
2
�(z)

Ø
ÿ

n

h(C1c÷̂”(zn)),

since fl�(z) ¥ fl�(zn) for which z œ �”(zn). Therefore, (2) is satisfied.

Assume that (2) is satisfied. The sub-mean value property and Fubini’s theorem provide
that
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BT÷(z) = ÈT÷kz,kzÍ2 =
⁄

�
|kz(’)|2Ê(’)d÷(’)

¥
ÿ

n

⁄

�”(zn)
|kz(’)|2Ê(’)d÷(’)

.
ÿ

n

⁄

�”(zn)

A
1

fl
2
�(’)

⁄

�”(’)
|kz(w)|2Ê(w)dA(w)

B

d÷(’)

.
ÿ

n

⁄

�”(zn)

A
1

fl
2
�(zn)

⁄

�B”(zn)
|kz(w)|2Ê(w)dA(w)

B

d÷(’)

=
ÿ

n

⁄

�B”(zn)

A
1

fl
2
�(zn)

⁄

�”(zn)
d÷(’)

B

|kz(w)|2Ê(w)dA(w)

.
ÿ

n

A⁄

�B”(zn)
|kz(w)|2Ê(w)dA(w)

B

÷̂”(zn).

where the constant B is obtained in [Proposition 3.1, (El-Fallah et al., 2016)]. Since

ÿ

n

A⁄

�B”(zn)
|kz(w)|2Ê(w)dA(w)

B

¥

⁄

�
|kz(w)|2Ê(w)dA(w)

= ÎkzÎH = 1,

it follows from Jensen’s inequality that for some positive constants C1 and C2

h(C1BT÷(z)) .
ÿ

n

A⁄

�B”(zn)
|kz(w)|2Ê(w)dA(w)

B

h(C2÷̂”(zn)).

Furthermore, Theorem 4.1.1 implies the following result

⁄

�
|kz(w)|2 dA(z)

fl
2
�(z) =

⁄

�

|K(z,w)|2
ÎKzÎ

2
H

dA(z)
fl

2
�(z)

¥

⁄

�
|K(z,w)|2Ê(z)dA(z) = ÎKwÎ

2
H.

Hence, by integrating both sides and using Fubini’s theorem we obtain that

⁄

�
h(C1BT÷(z))dA(z)

fl
2
�(z) .

⁄

�

ÿ

n

A⁄

�B”(zn)
|k

2
z(w)|2Ê(w)dA(w)

B

◊h(C2÷̂”(zn))dA(z)
fl

2
�(z)

¥
ÿ

n

A⁄

�B”(zn)
ÎKwÎ

2
HÊ(w)dA(w)

B

h(C2÷̂”(zn))

¥
ÿ

n

A⁄

�B”(zn)

1
Ê(w)fl2

�(w)Ê(w)dA(w)
B

h(C2÷̂”(zn))

=
ÿ

n

h(C2÷̂”(zn).

Consequently, (2) implies (1).
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Corollary 4.4.7 ((El-Fallah et al., 2016)). Let Ê œ W and {zn}nœN œ L”(�,fl�). Let ÷ be
a positive Borel measure on � and h be an increasing convex function from R+ to itself.
Then T÷ œ Sh(A2

Ê) if and only if there exists a positive constant c such that

ÿ

n

h(c÷̂”(zn)) < Œ,

where ÷̂”(z) = ÷(�”(zn))
|�”(zn)| is the average function with �”(zn) := D(zn,”fl�(zn)) for some

” > 0.

Let Ï be an analytic self map of �. The Nevanlinna counting function of Ï corresponding
to Ê is given by

NÏ,Ê(’) =

Y
_]

_[

q
Ï(z)=’ Ê(z) if ’ œ Ï(�),

0 if ’ /œ Ï(�).

Let dÊÏ denote the following measure

ÊÏ(E) =
⁄

E

NÏ,Ê(z)
Ê(z) dA(z),

for every Borel set E µ �. Therefore, the Toeplitz operator with symbol ÊÏ is given by

TÊÏ(f(z)) =
⁄

�
f(’)K(z,’)Ê(’)dÊÏ(’),

for f œ A
2
Ê(�)

We denote the weighted Dirichlet space by D
2
Ê(�), which is the space of all analytic

functions defined on � whose derivatives are square integrable with the weight function
Ê.

Lemma 4.4.8. Let µ and ÷ be positive Borel measures on � and ‹ be a positive finite Borel
measure on ˆ�. Let Ê = Êµ,q,s‹ . Assume that Ï is a self map of � and h : R

+
æ R

+ is
an increasing function so that h(0) = 0. Then

CÏ œ Sh(D2
Ê(�)) ≈∆ TÊÏ œ Sh¶

Ô
.(A2

Ê(�)).

Proof. Let L be a differential operator from D
2
Ê(�) to A

2
Ê(�) so that L(f) = f

Õ for every
f œ D

2
Ê(�). It suffice to prove that CÏ œ Sh(D2

Ê(�)) if and only if DÏ = LCÏL
ú

œ

Sh(A2
Ê(�)). Moreover, the change of variable formula yields that

D
ú

ÏDÏ(f(z)) = ÈDÏ(f),DÏ(Kz)Í
A

2
Ê(�) =

⁄

�
f(Ï(a))Kz(Ï(a))|ÏÕ(a)|2Ê(a)dA(a)

=
⁄

�
f(a)Kz(a)Ê(a)NÏ,Ê(a)

Ê(a) dA(a) = TÊÏ(f(z)),
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which completes the proof.

Corollary 4.4.9. Let µ and ÷ be positive Borel measures on � and ‹ be a positive finite
Borel measure on ˆ�. Assume that Ï is a self map of �. Then CÏ œ Sp(D2

Ê(�)) if and
only if the Berezin transfrom of TNÊ,Ï is in L

p/2(�,fl
≠2
� dA).

Proof. It follows from Lemma 4.4.8 and Theorem 4.4.5 that CÏ œ Sp(D2
Ê(�)) if and only

if TÊÏ œ Sp/2(A2
Ê(�)) if and only if

⁄

�
(cBTÊÏ(z))p/2

fl
≠2
� (z)dA(z) < Œ.

Moreover, by setting c1 = c
p/2 we have

⁄

�
c1[BTÊÏ(z)]p/2

fl
≠2
� (z)dA(z) = c1

⁄

�

5⁄

�
|kz(’)|2Ê(’)dÊÏ(’)

6p/2
fl

≠2
� (z)dA(z)

= c1
⁄

�

5⁄

�
|kz(’)|2NÊ,Ï(’)dA(’)

6p/2
fl

≠2
� (z)dA(z)

= c1
⁄

�
(B(TNÊ,Ï)(z))p/2

fl
≠2
� (z)dA(z),

which completes the proof.

Proposition 4.4.10. CÏ œ S2(D2
Ê(�)) if and only if

⁄

�

Ê(’)
fl�(Ï(’))2Ê(Ï(’)) |Ï

Õ(’)|2dA(’) < Œ.

Proof. Let {en}nœN be an orthonormal basis of A
2
Ê(�). Due to Lemma 4.4.8 we have

that CÏ œ S2(D2
Ê(�)) if and only if TÊÏ œ S1(A2

Ê(�)) if and only if

ÎTÊÏÎ
S1(A2

Ê(�)) =
ÿ

n

ÈTÊÏen, enÍ
A

2
Ê(�) < Œ.
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Furthermore,

ÿ

n

ÈTÊÏen, enÍ
A

2
Ê(�) =

ÿ

n

⁄

�
|en(z)|2Ê(z)dÊÏ(z)

=
⁄

�

1ÿ

n

|en(z)|2
2
Ê(z)dÊÏ(z)

=
⁄

�
ÎKzÎ

2
A

2
Ê(�)Ê(z)dÊÏ(z)

¥

⁄

�

1
fl�(z)2Ê(z)Ê(z)dÊÏ(z)

=
⁄

�

1
fl�(z)2 dÊÏ(z)

=
⁄

�

1
fl�(z)2

NÏ,Ê(z)
Ê(z) dA(z)

=
⁄

�

1
fl�(Ï(’))2Ê(Ï(’))Ê(’)|ÏÕ(’)|2dA(’),

which completes the proof.
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5. Weighted Composition Operators

In this section, as an application of the second inequality in Theorem 2.2.1, bounded-
ness and compactness of (weighted) composition on weighted Bergman spaces defined
on finitely connected domains are investigated.

Furthermore, the famous Littlewood’s Subordination Principle states that the composition
operator CÏ defined from A

p(D) to itself is bounded, for general p, (Littlewood, 1925).
Li and Huang extended Littlewood’s result to the case when domain is bounded and of C

2

boundary, for p = 2, (Li & Huang, 2020). We have extended their result to general p Ø 1.

Let �, �̃ µ C be bounded domains. Assume that Ï is a holomorphic function from �̃ to
�, and Â is an holomorphic function from �̃ to C. The weighted composition operator
CÏ,Â is defined from H(�) to H(�̃) by CÏ,Â(f) = (f ¶ Ï)Â for all f œ H(�). Note that
if Â © 1, then we have that CÏ,Â = CÏ, which is the classical composition operator.

Let Ễ œ L
1(�̃) be a continuous, strictly positive function on �̃ and let 0 < p̃ < Œ. Recall

that for any f œ A
p
Ê(�) there is a unique decomposition of the form f = F0 + F1 + . . . +

FN , by Theorem 2.2.1. Therefore, we have

CÏ,Â(f) =
Nÿ

j=0
CÏ,Â,jFj ,(5.1)

where CÏ,Â,j is defined from A
p
Ê(�j) to A

p̃

Ễ
(�̃).

Assume that Pk is a projection map from X̃ := A
p̃

Ễ
(D) ◊ A

p̃

Ễ
(�̃1) ◊ . . . ◊ A

p̃

Ễ
(�̃N )

to A
p̃

Ễ
(�̃k), and T̃ is an isomorphism defined from A

p̃

Ễ
(�̃) to X̃ such that T̃ (f) =

(f0,f1, . . . ,fn) for each f œ A
p̃

Ễ
(�̃), where f = f0 +f1 + . . .+fn is the unique decompo-

sition of f .
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5.1 Boundedness of Composition Operator

Proposition 5.1.1. Let � = D \ fi
N
j=1D(zj , rj) be as in (2.1) and �̃ µ C be a bounded

domain with smooth boundary. Let Ï be a holomorphic function from �̃ to �, and Â be a
holomorphic function on �̃. Then the following statements are equivalent:

(i) The weighted composition operator CÏ,Â is bounded from A
p
Ê(�) to A

p̃

Ễ
(�̃).

(ii) CÏ,Â,j is bounded from A
p
Ê(�j) to A

p̃

Ễ
(�̃) for each j œ {0, . . . ,N}, where �j = C \

D(zj , rj).

(iii) The operator C
Ï̃

≠1
k

PkT̃CÏ,Â,jCÏj from A
p
÷j

(D) to A
p̃

÷̃k
(D) is bounded.

Proof. First suppose that CÏ,Â : A
p
Ê(�) æ A

p̃

Ễ
(�̃) is bounded. Let Rj be the restriction

map from H(�j) onto H(�). Then for any g œ A
p
Ê(�j), we have

CÏ,Â,j(g) = (g ¶Ï)Â = ((Rj(g))¶Ï)Â = CÏ,ÂRj(g),

and also ÎRj(g)Î
A

p
Ê(�) = ÎgÎ

A
p
Ê(�j). The latter equation implies that the restriction map

Rj is bounded, and ÎRjÎ = 1. Hence,

ÎCÏ,Â,jÎ = ÎCÏ,ÂRjÎ Æ ÎCÏ,ÂÎ,

that is CÏ,Â,j is bounded for each j. For the converse, suppose that CÏ,Â,j is bounded for
each j. For any f œ A

p
Ê(�),

ÎCÏ,Â(f)Î
A

p̃
Ễ(�̃) Æ C

Q

a
Nÿ

j=0
ÎCÏ,Â,jÎ

R

bÎfÎ
A

p
Ê(�),

which follows from Theorem 2.2.1. Hence, ÎCÏ,Â(f)Î
A

p̃
Ễ(�̃) Æ C

Õ
ÎfÎ

A
p
Ê(�), which im-

plies that CÏ,Â is bounded.

It is obtained from the definition that (i) implies (iii). In order to prove that (iii) implies
(i), we suppose that C

Ï̃
≠1
k

PkT̃CÏ,Â,jCÏj is bounded for each 0 Æ j Æ N and 0 Æ k Æ Ñ .

Recall that Ïj is defined from �j to D so that Ïj(z) = rj
z≠zj

and Ï̃k is defined from �̃k to

D so that Ï̃k(z) = r̃k
z≠z̃ k

. Hence, for every g œ A
p
Ê(�j) we have that

ÎgÎ
p

A
p
Ê(�j) =

⁄

�j

|g(z)|pÊ(z)dA(z) ¥

⁄

D
|(g ¶Ï

≠1
j

)(z)|p(Ê ¶Ï
≠1
j

)(z)dA(z) = ÎhÎ
A

p
÷j

(D),
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where h = g ¶ Ï
≠1
j

and ÷j = Ê ¶ Ï
≠1
j

. Hence, PkT̃CÏ,Â,j is also bounded. Then for any
f œ A

p
Ê(�),

ÎPk(T̃ [(f ¶Ï)Â])Î
A

p̃
Ễ(�̃k) Æ ckÎfÎ

A
p
Ê(�j),

which implies that

max
0ÆkÆÑ

ÎPk(T̃ [(f ¶Ï)Â])Î
A

p̃
Ễ(�̃k) Æ cÎfÎ

A
p
Ê(�j),

where c = max0ÆkÆÑ
ck. Furthermore,

max
0ÆkÆÑ

ÎPk(T̃ [(f ¶Ï)Â])Î
A

p̃
Ễ(�̃k) ¥ ÎT̃ [(f ¶Ï)Â]Î

X̃
¥ ÎCÏ,Â(f)Î

A
p̃
Ễ(�̃),

Consequently, CÏ,Â is bounded.

Li and Huang proved that the composition operator CÏ from A
2(�) to A

2(�̃) is bounded
(Li & Huang, 2020). In the next theorem, we extend their result to the A

p(�) case for
p Ø 1.

Theorem 5.1.2. Let � and �̃ be any finitely connected domains. Assume that Ï is a
holomorphic map from �̃ to �, and 1 Æ p̃ Æ p Æ Œ. Then the composition operator CÏ,
which is defined from A

p(�) to A
p̃(�̃), is bounded.

Proof. Let Ïj and ÷j be the functions defined in (2.5) and (2.6), respectively. Since in this
case Ê © 1, ÷j is bounded on D and it is away from zero on the boundary ˆD of the unit
disk. Hence, A

p
÷j

(D) = A
p(D) and C

Ï
≠1
j

: A
p(�j) æ A

p(D) is an isometric isomorphism.
Note that for any f œ A

p(�j),

CÏ(f) = CÏj¶ÏC
Ï

≠1
j

(f).

Hence, in order to investigate the composition operator between A
p(�j) and A

p̃(�̃), it
suffices to consider the composition operator between A

p(D) and A
p̃(�̃). Let Â be a

holomorphic map from �̃ to D. Then �̃ is contained in a union of finitely many simply
connected subdomains {S̃j}1ÆjÆK of �̃ with C

Œ boundary, and a compact subset L. So
for any f œ A

p(D) we have the following

ÎCÂ(f)Îp̃

Ap̃(�̃) =
⁄

�̃
|f(Â(z))|p̃dA(z)

Æ

⁄

L

|f(Â(z))|p̃dA(z)+
Kÿ

j=1

⁄

S̃j

|f ¶Â(z)|pdA(z)

=
⁄

L

|f(„(z))|p̃dA(z)+
Kÿ

j=1

⁄

D
|f ¶Â ¶Â

≠1
j

(z)|p/|Â
Õ

j(z)|2dA(z),
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where Âj is a biholomorphism from S̃j to D. Since |f(Â(z))|p̃ is bounded on the compact
set L, the first integral is finite. We use the fact that both |Â

Õ
j
(z)| and 1/|Â

Õ
j
(z)| are

bounded on D. Littlewood’s subordination principle implies that
⁄

S̃j

|f ¶Â(z)|pdA(z) < Œ

for each j. Therefore, CÂ(f) œ A
p̃(�̃) for f œ A

p(�). By the closed graph theorem, we
obtain that CÂ : A

p(D) æ A
p̃(�̃) is bounded. Then by Proposition 5.1.1, CÏ : A

p(�) æ

A
p̃(�̃) is bounded and the proof is finished.

5.2 Compactness of Composition Operators

Proposition 5.2.1. Let �, �̃ µ C be bounded and finitely connected domains with smooth
boundaries. Assume that Ï is an analytic function from �̃ to �, and Â be an analytic
function on �̃. Then we have the following statements;

(i) The weighted composition operator CÏ,Â, which is defined from A
p
Ê(�) to A

p̃

Ễ
(�̃), is

compact if and only if CÏ,Â,j , which is defined from A
p
Ê(�j) to A

p̃

Ễ
(�̃), is compact for

each j œ {0, . . . ,N}.

(ii) The weighted composition operator CÏ,Â, which is defined from A
p
Ê(�) to A

p̃

Ễ
(�̃),

is compact if and only if the operator C
Ï̃k

≠1PkT̃CÏ,Â,jCÏj from A
p
÷j

(D) to A
p̃

÷̃k
(D) is

compact.

Proof. Proof of (i): Firstly, we assume that CÏ,Â is compact. For any bounded sequence
{gn}nœN œ A

p
Ê(�j), consider the sequence {CÏ,Â,j(gn)}nœN. Note that CÏ,Â,j(gn) =

CÏ,ÂRj(gn), where Rj is a restriction map from A
p
Ê(�j) to A

p
Ê(�). Moreover, the se-

quence {Rj(gn)}nœN is also bounded in A
p
Ê(�), since the restriction map is bounded.

Hence, by using the compactness of CÏ,Â we conclude that {CÏ,Â(Rj(gn))}nœN has a
convergent subsequence in A

p̃

Ễ
(�̃), say {CÏ,Â(Rj(gn,k))}kœN. Which implies that CÏ,Â,j

is compact, because of the fact that {CÏ,Â(Rj(gn,k))}kœN = {CÏ,Â,j(gn,k)}kœN.

Suppose that CÏ,Â,j is compact for each j. For any bounded sequence {fn}nœN, consider
the sequence {CÏ,Â(fn)}nœN. Recall that fn has a unique decomposition such that fn =
fn,0 + . . .+fn,N , for each n. Moreover, for some positive constant C we know that

Îfn,jÎA
p
Ê(�) Æ CÎfnÎ

A
p
Ê(�),
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by Theorem 2.2.1, which implies the sequences {fn,j}nœN are bounded. Because of the
assumption that CÏ,Â,0 is compact and {fn,0}nœN is bounded, there exists an infinite sub-
set S0 µ N such that fn ¶ Ï converges to some f0 in A

p̃

Ễ
(�̃) as n goes to infinity, for

n œ S0. In addition, since {fn,1}nœN is bounded and CÏ,Â,1 is compact, there exists an in-
finite subset S1 µ S0 such that fn,1 ¶Ï converges to some f1 in A

p̃

Ễ
(�̃) as n goes to infinity,

for n œ S1. By an induction argument, we construct subsets SN µ SN≠1 µ . . . µ S0 µ N
so that fn,j ¶ Ï converges fj as n goes to infinity, for n œ Sj . Therefore, we have the
following

lim
næŒ

fn ¶Ï = lim
næŒ

1 Nÿ

j=0
fn,j

2
¶Ï =

1 Nÿ

j=0
fj

2
¶Ï,

in A
p̃

Ễ
(�̃) for n œ SN . Furthermore, we conclude that

lim
næŒ

CÏ,Â(fn) = lim
næŒ

(fn ¶Ï)Â =
Ë1 Nÿ

j=0
fj

2
¶Ï

È
Â,

in A
p̃

Ễ
(�̃), for n œ SN . Hence, CÏ,Â is compact.

Proof of (ii): Suppose that C
Ï̃k

≠1PkT̃CÏ,Â,jCÏj is compact for each 0 Æ j Æ N and 0 Æ

k Æ Ñ . Since CÏj and C
Ï̃k

≠1 are isomorphsims, PkT̃CÏ,Â,j is also compact. Moreover,
the compactness of PkT̃CÏ,Â,j implies the compactness of CÏ,Â,j , because Pk and T̃ are
isomorphisms. Hence, from (i) we conclude the desired statement.

We assume that CÏ,Â is compact. As a notation, say Kk,j := C
Ï̃k

≠1PkT̃CÏ,Â,jCÏj For
any bounded sequence {fn}nœN µ A

p
÷i

(D), we want to show that {Kk,j(fn)}nœN has
a convergent subsequence. Firstly, note that {CÏj (fn)}nœN is a bounded sequence in
A

p
Ê(�i). Because of the assumption and the part (i), we conclude that CÏ,Â,j : A

p
Ê(�j) æ

A
p̃

Ễ
(�̃) is compact. Therefore, {CÏ,Â,j(CÏj (fn))}nœN has a convergent subsequence in

A
Ễ
Ễ(�̃), say {CÏ,Â,j(CÏj (fn,l))}lœN. Hence, we obtain the following

{C
Ï̃k

≠1PkT̃CÏ,Â,jCÏj (fn,l)}lœN µ {C
Ï̃k

≠1PkT̃CÏ,Â,jCÏj (fn)}nœN,

which implies that Kk,j is compact.
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Bao, G., Göğüş, N. G., & Pouliasis, S. (2017). On dirichlet spaces with a class of super-

harmonic weights. Canadian Journal of Mathematics, 70(4), 1–23.
Berenstein, C. A. & Gay, R. (1991). Complex Analysis An Introduction. New York:

Springer New York, NY.
Berndtsson, B. (2017). Weighted estimates for the -equation, (pp. 43–58). Berlin, Boston:

De Gruyter.
Chevreau, B., P. C. C. & Shields, A. (1981). Finitely connected domains g, representations

of h
Œ(g), and invariant subspaces. Journal of Operator Theory, 6(2), 375–405.

Duren, P. L. (1970). Theory of H
p Spaces. New York: Academic Press.

El-Fallah, O., Mahzouli, H., Marrhich, I., & Naqos, H. (2016). Asymptotic behavior
of eigenvalues of toeplitz operators on the weighted analytic spaces. Journal of
Functional Analysis, 270(12), 4614–4630.

El-Fallah, O., Mahzouli, H., Marrhich, I., & Naqos, H. (2018). Toeplitz operators on
harmonically weighted bergman spaces and applications to composition operators
on dirichlet spaces. Journal of Mathematical Analysis and Applications, 466(1),
471–489.

Gonzales, M. J. (2020). Carleson measures on sİmply connected domains. Journal of
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