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ABSTRACT

DISCRETE LOGARITHM PROBLEM ON ELLIPTIC CURVES OVER FINITE
FIELDS

SALIHA TOKAT

MATHEMATICS M.S. THESIS, JULY 2022

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: elliptic curves, discrete logarithm problem, elliptic curve discrete
logarithm problem, elliptic curves over rings

The main focus of this thesis is the so-called elliptic curve discrete logarithm prob-
lem. The statement of the problem is that given a point P and a k-multiple of P
on an elliptic curve defined over a finite field, can we recover k? There has been no
general algorithm that solves this problem in subexponential time. For this reason,
the problem has been conjectured to be hard, and it is used to provide the security
of many cryptosystems for classical computers. In this thesis, we study several algo-
rithms, and the theory behind them, that are used to solve the problem under certain
conditions. We also provide a relatively new algorithm that can be implemented to
solve the discrete logarithm problem for specific elliptic curves. Additionally, we
discuss the fundamental theory of elliptic curves defined over a commutative ring
with unity, as they provide a useful tool for the solution of the discrete logarithm
problem for a certain family of elliptic curves over finite fields.
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ÖZET

SONLU CİSİMLER ÜZERİNDE TANIMLANAN ELİPTİK EĞRİLERDE AYRIK
LOGARİTMA PROBLEMİ

SALİHA TOKAT

MATEMATİK YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Doç. Dr. Mohammad Sadek

Anahtar Kelimeler: eliptik eğriler, ayrık logaritma problemi, eliptik eğri ayrık
logaritma problemi, halkalar üzerinde tanımlı eliptik eğriler

Bu tezin ana konusu eliptik eğri ayrık logaritma problemidir. Problemin ifadesi
şöyledir: Sonlu cisim üzerinde tanımlı bir eliptik eğrinin bir P noktası ve P nok-
tasının k-katı olan nokta verildiğinde, k değerini bulabilir miyiz? Bu problemi alt
üstel zamanda çözen genel bir algoritma bulunamamıştır. Bu sebepten dolayı prob-
lemin zor olduğu sanısı yapılmıştır ve klasik bilgisayarlarda kullanılan birçok krip-
tografi sisteminin güvenliğini sağlamak için kullanılmıştır. Bu tezde, belirli koşullar
altında bu problemi çözen bazı algoritmalar ve onların arkasındaki teoriyi çalıştık.
Ayrıca, ayrık logaritma problemini belirli eliptik eğrilerde çözmek için uygulanabile-
cek nispeten yeni bir algoritma sunduk. Bunlara ek olarak, ayrık logaritma problem-
inin bazı eliptik eğrilerdeki çözümü için faydalı bir araç sağladığından dolayı birimli
ve değişmeli halkalar üzerinde tanımlı eliptik eğrilerin temel teorisini işledik.
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1. INTRODUCTION

In this thesis, we are mainly concerned with the fundamental theory of elliptic
curves and the theory behind some of the attacks on the discrete logarithm problem
defined on elliptic curves over finite fields, as well as, the description of the attacks
themselves.

Many arithmetic questions on elliptic curves are subject to the research of number
theorists, geometers and cryptographers. Finding rational points on elliptic curves is
equivalent to finding nontrivial integer solutions to homogeneous cubic Diophantine
equations in three variables. In fact, the arithmetic of curves defined by polynomials
of degree less than 3 is completely understood. For example, if one considers the
integer solutions to the equation

X2 +Y 2 = Z2,

then it is clear that these solutions correspond to rational points on the unit circle.
Moreover, by finding one rational point P on the unit circle, one can give an explicit
description of all other points on this circle. This can be achieved by finding the
intersection points of a line with rational slope through P with the circle. In fact,
the latter method provides a birational map from the unit circle to the rational line.
This approach is useful in general; in order to find integer or rational solutions of
given equations, we study the arithmetic of the algebraic variety defined by these
equations. In particular, one may answer algebraic questions using geometric tools
and ideas.

An elliptic curve is an abelian variety of dimension 1. Namely, an elliptic curve is a
smooth projective curve of genus 1 with a specified rational point. Such a curve can
be embedded in the projective plane, hence can be described by a planar equation
of the form

(1.1) E : Y 2Z+a1XY Z+a3Y Z
2 =X3 +a2X

2Z+a4XZ
2 +a6Z

3

where a1,a2,a3,a4,a6 ∈K. The equation (1.1) is called a Weierstrass equation.
1



One of the main reasons why mathematicians have been fascinated by elliptic curves
is that its points form an abelian group under a group law defined by a tangent-
chord method. Therefore, by finding one solution of the equation, we can get some
other solutions. Moreover, due to the celebrated Mordell-Weil Theorem, the rational
points of an elliptic curve defined over a number field can be generated using a finite
set of such points. In fact, Mordell-Weil Theorem states that the group of rational
points of an elliptic curve defined over a number field K is a finitely generated
abelian group, in particular,

E(K) ∼= Zr ⊕Etors(K).

Also, due to Mazur, if the underlying field is Q, we know all the possible arising
torsion subgroups

Etors(Q) ∼=

Z/nZ with 1 ≤ n≤ 10 or n= 12,
Z/2Z⊕Z/2nZ with 1 ≤ n≤ 4.

When elliptic curves are defined over a finite field Fq, the number of points with
coordinates in Fq are necessarily finite. Due to Hasse, we have a bound on the
number of these points that depends on the size of the field, namely,

|#E(Fq)− (q+1)| ≤ 2√
q.

Moreover, the group structure of an elliptic curve over a finite field is of the form

E(Fq) ∼= Z/nZ, or Z/n1Z×Z/n2Z with n1 | n2.

Besides their theoretic richness, elliptic curves have many applications in cryptog-
raphy. The security of most cryptosystems relies on computationally hard mathe-
matics problems, meaning that there is no general algorithm solving the problem
in subexponential time using the classical computers. One of the most commonly
used such problem is called the discrete logarithm problem (DLP) and it is stated
as below.

Given b∈ ⟨g⟩ where g is an element of the group (G,∗), find x such that b= gx ∈G.

In general, the group G is taken to be a finite field. When G is taken to be the
group of rational points of an elliptic curve over a finite field, the problem is called
the elliptic curve discrete logarithm problem (ECDLP), and there is still no general
subexponential algorithm that solves the problem. In fact, the elliptic curve version
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of the problem is more commonly used since it is believed to be much harder as it
provides higher security level by requiring smaller key, consequently becomes more
efficient. The statement of the ECDLP is as follows.

Given Q ∈ ⟨P ⟩ and a point P in (E(Fq),+), find x such that Q= xP ∈ E(Fq).

Although the discrete logarithm problem on elliptic curves over finite fields is con-
jectured to be hard, for particular curves with a certain number of rational points
the problem can be solved or reduced to an easier problem by utilizing the theory of
elliptic curves. The method of solving a problem or reducing to an easier problem is
called an attack. In this thesis, we are mainly concerned with surveying some of the
important attacks on the ECDLP. The attacks are primarily classified according to
the trace t of the given elliptic curve over Fq, that is an integer determined solely
by the number of points on the elliptic curve. To be more specific,

t= q+1−#E(Fq).

1.1 Thesis Outline

In Chapter 2, we both cover the fundamental theory of elliptic curves and the
necessary material to understand the surveyed attacks that will be presented in
Chapter 3. More precisely, Section 2.5 is intended to explain the theory behind
the attack presented in Section 3.1 which is for elliptic curves whose trace t is
congruent to 0 modulo the characteristic of the field, i.e., supersingular elliptic
curves. Similarly, Section 2.6 is meant for the attack given in Section 3.2 which is
for elliptic curves with trace 1, and Sections 2.8 and 2.9.3 are meant for the attack
given in Section 3.4 which is for elliptic curves with trace 2.

The attack that is covered in Section 3.5 is relatively new. We use our observation
about why the attack due to (Shipsey & Swart, 2008) works which is given in Section
3.4. Then, we apply the idea for elliptic curves with trace values that have not been
considered in literature. We find that if the elliptic curve E/Fq has a trace 1±√

q,
which implicitly requires q to be an even power of a prime, then the attack that
we suggest would be successful with a conjectural probability similar to the one in
Section 3.4.

3



Finally, in Chapter 4, we study the elliptic curves defined over a commutative ring
R with unity satisfying a certain condition. The group of points E(R) forms an
abelian group, as well, with a slightly different defined addition law. Moreover, if R
is set to be the ring Z/peZ, then there exist a new attack on the discrete logarithm
problem on elliptic curves E/Fp with trace 1. This attack makes use of E(Z/peZ)
as an intermediate object between E(Fp) and Fp when e≥ 2 and E(Z/peZ) is cyclic.

4



2. ELLIPTIC CURVES

In this chapter, we study the fundamental theory of elliptic curves and the theory
behind some of the attacks on the discrete logarithm problem defined over elliptic
curves over finite fields, which will be described in the next chapter.

An elliptic curve can be introduced in many ways. It is essentially a projective
variety, also, one can consider it as an affine variety with a distinguished point
denoted as O. I will define it in this order.

Note that throughout this thesis K denotes a perfect field, i.e., every algebraic
extension of K is separable.

2.1 Projective Plane Curves

The projective plane over K, denoted as P2(K), is the set of all triples (X,Y,Z) in
K×K×K, excluding (0,0,0), under the equivalence relation

(X1,Y1,Z1) ∼ (X2,Y2,Z2) ⇐⇒ ∃λ ∈K∗ such that (X1,Y1,Z1) = λ(X2,Y2,Z2).

A projective point P = (X : Y :Z) is the equivalence class of the triple (X,Y,Z) under
the aforementioned equivalence relation. Note that for a homogeneous polynomial
F (X,Y,Z), if (X,Y,Z) is a zero of the polynomial then so is (λX,λY,λZ).

An projective set V ⊆ P2(K) is the zero-locus of homogeneous polynomials in three
variables. It is called irreducible if V cannot be written as the union V = V1 ∪V2

where V1 and V2 are projective sets which are proper subsets of V .

A projective plane curve CF defined over K is an irreducible projective set defined

5



by an homogeneous polynomial F ∈K[X,Y,Z], i.e.,

CF = {(X : Y : Z) ∈ P(K̄2) : F (X,Y,Z) = 0}.

It is called smooth, or nonsingular, if there is no point P = (X : Y : Z) ∈ CF such
that

(2.1) ∂F

∂X
(P ) = ∂F

∂Y
(P ) = ∂F

∂Z
(P ) = 0.

A point P satisfying (2.1) is called a singular point for CF .

Definition 2.1.1. An elliptic curve E defined over K is a smooth projective plane
curve defined by a homogeneous Weierstrass polynomial

(2.2) F (X,Y,Z) : Y 2Z+a1XY Z+a3Y Z
2 − (X3 +a2X

2Z+a4XZ
2 +a6Z

3),

with a1,a2,a3,a4,a6 ∈K.

The equation F (X,Y,Z) = 0 is called a homogeneous Weierstrass equation.

Remark. Elliptic curve is an irreducible projective set: Reducible cubic curves either
consists of three lines or a conic and a line; every point of intersection of components
is singuar, hence reducible cubics have at least two singular points.

In the first remark of Section 2.2, it is explained that irreducibility property turns
an elliptic curve into a projective variety.

Whether an elliptic curve satisfies the smoothness criteria can be determined by the
fact that a homogeneous Weierstrass polynomial, or equation, defines a smooth curve
if and only if its discriminant ∆ given in (2.11) is nonzero (Enge, 1999, Proposition
2.25).

The point P = (0 : 1 : 0) is on any elliptic curve E. Moreover, due to the following
sequence of implications

P = (X : Y : Z) ∈ E and Z = 0 ⇒X3 = 0 ⇒X = 0 ⇒ Y ̸= 0 since (0,0,0) /∈ P2(K),

we conclude that the only point P with Z = 0 of an elliptic curve is P = (0 : 1 : 0).

Let’s dehomogenize the Weierstrass polynomial by setting x = X
Z , y = Y

Z given in
Definition 2.1.1, the polynomial becomes

(2.3) f(x,y) : y2 +a1xy+a3y− (x3 +a2x
2 +a4x+a6).

6



This is called the nonhomogeneous Weierstrass polynomial or simply Weierstrass
polynomial. Let’s look at what happens to the points on the curve E during that
process. They became of the form (XZ : YZ : ZZ ). There are two distinct cases depend-
ing on the Z-coordinate of the point. If Z ̸= 0, then the point becomes (XZ : YZ : 1)
and this can be realized as (x,y) on the curve defined by f(x,y). If Z = 0, then
the point is (0 : 1 : 0). For this point, dehomogenizing by the Z-coordinate requires
division by 0, so we are missing this point during this process. Let’s denote this
point by O, and call it the base point or point at infinity of the elliptic curve.

So, an elliptic curve can also be defined on the affine plane as the following.

Definition 2.1.2. An elliptic curve E defined over K is the set of points satisfying
the Weierstrass equation

(2.4) E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6,

with nonzero discriminant ∆, which is defined in (2.11), together with the base point
O. Moreover, the set of K-rational points of E is

(2.5) E(K) = {(x,y) ∈K2 : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6}∪{O}.

Remark. We write E/K, and we say that E is an elliptic curve defined over K when
the coefficients of the defining Weierstrass equation are from K. Also, it is worth to
note that E = E(K̄).

By linear transformations, we can simplify the equation of E as described below.

If char(K) ̸= 2, then the substitution y 7→ 1
2(y−a1x−a3) gives

(2.6) E : y2 = 4x3 + b2x
2 +2b4x+ b6,

where

b2 = a2
1 +4a2(2.7)

b4 = 2a4 +a1a3(2.8)

b6 = a2
3 +4a6(2.9)

b8 = a2
1a6 +4a2a6 −a1a3a4 +a2a

2
3 −a2

4, and(2.10)

∆ = −b22b8 −8b34 −27b26 +9b2b4b6.(2.11)

7



If char(K) ̸= 2,3, then the substitution (x,y) 7→ (x−3b2
36 , y

108) gives

E : y2 = x3 −27c4x−54c6,

where

c4 = b22 −24b4,(2.12)

c6 = −b23 +36b2b4 −216b6,(2.13)

j = c34
∆ .(2.14)

The simplified versions of the Weierstrass equations and other results for elliptic
curves defined over K when char(K) = 2 and 3 can be found in (Silverman, 2009,
Appendix A).

Definition 2.1.3. The quantity ∆ given in (2.11) is called the discriminant of the
Weierstrass equation (2.4) and Weierstrass polynomial (2.2). The quantity j given
in (2.14) is the j-invariant of the elliptic curve.

Remark. The value of the discriminant ∆ is not unique for the curve; it changes as
one applies linear transformation on the initial defining equation of E. However,
the value of the j-invariant is independent of the linear transformations applied on
the defining equation of E.

Definition 2.1.4. If char(K) ̸= 2,3, every elliptic curve E defined over K can be
expressed by an equation of the form

(2.15) EA,B : y2 = x3 +Ax+B where A,B ∈K.

The equation (2.15) is called short Weierstrass equation and its associated discrim-
inant is ∆ = −16(4A3 +27B2).

A group law can be defined on elliptic curves with the point O being the identity
element. In what follows, we describe this group operation denoted as "+" and
named as addition so that (E,+) becomes a group.

The next theorem is a special case of the Bezout’s Theorem and it is essential to
mention before introducing the group law for an elliptic curve E/K.

Theorem 2.1.1. Suppose that X and Y are two plane projective curves defined
over a field K with no common component, i.e., greatest common divisor of defining
polynomials of X, Y is a constant. Then the number of intersection points of X
and Y with coordinates in the algebraic closure of K, counted with multiplicity, is

8



equal to the product of the degrees of X and Y .

According to this theorem, if we take X to be an elliptic curve E/K as a projective
plane curve and Y to be any projective line, then they don’t have a common com-
ponent since elliptic curve is irreducible and does not contain any line. Therefore,
their number of intersection points counted with multiplicity is equal to 3 · 1 = 3.
As it will become clear after description of the group law, in essence, it says that
three points on a line sum to zero, which is the identity element of the group. We
will see that if the points P,Q,R are on E and there is a line passing through all of
them, then there is no other intersection of E and the line, and addition of any two
is equal to the inverse of the other.

Geometrically, the group law "+" is defined by the tangent and chord method.
Let’s suppose, we want to add two distinct points P +Q ∈ E. We first take the
chord passing through P and Q. This chord intersects the curve at a third point R
counting with multiplicities due to Theorem 2.1.1. Then P +Q corresponds to the
point which is the reflection of R across the x-axis when the curve is defined by a
short Weierstrass equation in which case curve is symmetric with respect to x-axis
as picture in Figure 2.1. In general, P +Q corresponds to the intersection point of
the vertical line through R and the curve, that is different than the point R. If we
want to add a point to itself, then we take the tangent at the point and continue
similarly. An instance of the group law is illustrated in Figure 2.1.

Figure 2.1 An elliptic curve defined over R, and the geometric representation of its
group law (Feo, 2017)

Remark. The addition of two points that is geometrically defined above, namely
P +Q or 2P , is called the inverse of R and denoted as −R. Algebraically, the
inverse of any point R = (x,y) ∈ E where E is given by (2.4) corresponds to

(2.16) −R = (x,−y−a1x−a3).
9



Note that in terms of projective coordinates, the last coordinate is kept fixed just
like the first one.

By applying this geometric method on the equation of the curve, we can derive
explicit formulas for the group law "+". Let P and Q be points on the elliptic
curve E given by the equation (2.4). We will separate the addition formula into the
following distinct cases.

Case 1: If both of P and Q are O, then

P +Q=O+O =O

and the explanation goes as follows: Both P and Q don’t appear on the affine plane.
Hence, we consider E as a projective plane curve as given in Definition 2.1.1. Since
P = Q, we look at the tangent at P . We find that its equation is Z = 0. We know
that the only point on E whose Z-coordinate is 0 is the point O, so O has multiplicity
3 and it is the only intersection point of the tangent and the curve. Next, we have
to find the inverse of O. This is again the point itself, namely O.

Case 2: If exactly one of P or Q is the point O, then

P +Q is the point that is different than O

and the explanation goes as follows: Assume P ̸= O, so it is of the form P =
(xP : yP : 1). The line passing through P and Q has the equation X − xPZ = 0.
The intersection points are (0 : 1 : 0),(xP : yP : 1),(xP : −yP −a1xP −a3 : 1), namely
O,P,−P . Therefore, the third intersection point is −P , and the inverse of −P is P
itself.

For the the rest of the cases, assume that neither P nor Q is the point O, i.e., both
P and Q are affine points of E. So, we can write P = (xP ,yP ) and Q= (xQ,yQ).

Case 3: Assume that xP ̸= xQ. Then, the line passing through P and Q has slope
λ= yQ−yP

xQ−xP
and its equation is y= λx+ν where ν = yP xQ−yQxP

xQ−xP
, found by plugging P

to the line equation. The coordinates of the point P+Q is determined by intersecting
the curve with the line which is achieved by plugging this y into the curve equation.
This results in a degree 3 polynomial in variable x. The roots are the x-coordinates
of the intersection points, and we already know that two of the roots are xP and
xQ, so the other root is the x-coordinate of the third intersection point which can
be easily found by the fact that sum of the roots of a monic polynomial is equal to
minus the coefficient of the second-to-highest power term. Also, its y-coordinate can
be simply find by plugging this value into the line equation. Then, we take inverse
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of this point to find P +Q, hence

P +Q= (λ2 −a1λ−a2 −xP −xQ,−(λ+a1)(λ2 −a1λ−a2 −xP −xQ)−ν−a3).

Case 4: Assume that xP = xQ and yP = yQ. This means Q = P . So, we need
to determine the equation of the tangent line at P . The tangent has slope λ =
3x2

P +2a2xP +a4−a1yP
2yP +a3+a1xP

, which is found by implicit differentiation of equation (2.4), and

its equation is y = λx+ν where ν = −x3
P +a4xP +2a6−a3yP

2yP +a1xP +a3
, found by plugging P to the

tangent equation. The coordinates of the point P +Q= 2P is found with the same
technique described in Case 3 but notice that in this case xP is a repeated root with
multiplicity 2. Then, the equation given for P +Q in Case 3 is reduced to

P+Q= 2P =
(
x4
P − b4x2

P −2b6xP − b8
4x3

P + b2x2
P +2b4xP + b6

,−(λ+a1) x
4
P − b4x2

P −2b6xP − b8
4x3

P + b2x2
P +2b4xP + b6

−ν−a3

)

where bi’s are as in (2.6).

Case 5: Assume that xP = xQ and yP ̸= yQ. This means Q= −P . The line passing
through P and Q has infinite slope, i.e., it is vertical to the x-axis. Therefore, we
cannot intersect it with the curve at a third point on the affine plane. However,
if we examine it in the projective plane by using the equation (2.2) and setting
P = (xP : yP : 1), we see that the line passing through P and Q has the equation
X −xPZ = 0. As in Case 2, the intersection points are P,−P,O. Therefore, the
third intersection point is O, and its inverse is itself. Hence,

P +Q= P −P =O.

Theorem 2.1.2. (Silverman, 2009, III, Proposition 2.2) Let E be an elliptic curve
defined over K. Then, (E,+) is an abelian group under addition as defined earlier.
Furthermore, E(K) becomes its subgroup.

Note that the closedness of the group follows from Theorem 2.1.1. The commutativ-
ity of the group follows from the geometric description of the group law as the line
passing through the points P and Q is the same with the line passing through Q and
P . The identity being O follows from the results of Case 1 and Case 2 describing
the group law above. The existence of inverse element basically follows from Case
5. The proof of associativity is lengthy, it can be verified by both geometric and
algebraic methods.
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2.2 Maps Between Elliptic Curves

As we have learnt that elliptic curves are defined as projective sets with extra prop-
erties. In the next remark, we explain that they are projective varieties, hence we
can talk about maps between them such as morphisms. Moreover, since they form
a group, we can define a special type of a morphism between them which is called
an isogeny.

For projective varieties, polynomials cannot define a function on it since they will
violate homogeneity. For this reason, we have to adjust the notion of a function
for curves defined as projective varieties. In what follows, we consider projective
varieties in P2 but it can be generalized to Pn in the obvious way.

Let V ⊆ P2 be any projective variety defined over K, i.e., the zero-locus of some
finite family of homogeneous polynomials in 3 variables with coefficients in K whose
homogeneous ideal I(V ) defined as

I(V ) = {f ∈K[X,Y,Z] : f is homogeneous and f(P ) = 0 for any P ∈ V }

is a prime ideal in K̄[X,Y,Z].

Remark. We mentioned that an elliptic curve is a projective variety, we will explain
the reason behind it. It is known that a homogeneous ideal is a prime ideal if and
only if it is irreducible. As explained in the previous chapter, elliptic curves are
irreducible, hence the homogeneous ideal of E is a prime ideal. This makes an
elliptic curve a projective variety.

The homogeneous coordinate ring of V is the ring K[V ] = K[X,Y,Z]/I(V ). Since
it is a quotient of a commutative ring with unity and a prime ideal, in particular, it
is an integral domain. Hence, we can define its field of fractions.

Definition 2.2.1. The function field of V , or the field of rational functions of K[V ],
is

K̄(V ) =
{
g

h
: g,h ∈K[X,Y,Z] are homogeneous of the same degree, h ̸∈ I(V )

}

under the equivalence relation

g1
h1

∼ g2
h2

⇐⇒ g1h2 −g2h1 ∈ I(V ).
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A rational function on V is an element of K̄(V ).

By definition of a rational function g
h ∈ K̄(V ), we know that h is not identically zero

on V , therefore there are only finitely many points P ∈ V such that the function
g
h is not defined for. We say P is a regular point of a rational function or rational
function is regular at P , if P is not one of these points.

Using the notion of rational functions on projective varieties, we can construct maps
between varieties.

Definition 2.2.2. Let V1,V2 ⊆ P2 be projective varieties. A rational map from V1

to V2 is a map of the form

ϕ : V1 → V2, ϕ= (f0,f1,f2)

where the functions f0,f1,f2 ∈ K̄(V1) have the property that if P ∈ V1 at which
f0,f1,f2 are regular at P , then ϕ(P ) = (f0(P ),f1(P ),f2(P )) ∈ V2.

A rational map ϕ is defined through rational functions fi’s. As we observed, there
are finitely many points of V1 such that the rational function fi is not defined, namely
fi is not regular at these points. However, it might be still possible to evaluate the
map ϕ at these points if we can find an appropriate g ∈ K̄(V1) so that gfi becomes
regular at P .

Definition 2.2.3. A rational map ϕ as given in Definition 2.2.2 is said to be regular
at P ∈ V1 if there is g ∈ K̄(V1) satisfying

(i) each gfi is regular at P ,

(ii) there is some i for which gfi(P ) ̸= 0.

If such g exists, then ϕ(P ) = ((gf0)(P ),(gf1)(P ),(gf2)(P )).

Note that g is specific to the point P ∈ V1.

Definition 2.2.4. If a rational map is regular at every point of the domain, then
it is called a morphism, or a regular map.

Theorem 2.2.1. (Silverman, 2009, III.2.1) Let ϕ be a rational map ϕ : C →V where
C is a curve, namely a projective variety of dimension one, and V is a projective
variety. If P ∈ C is a smooth point, then ϕ is regular at P .

As an immediate consequence, since an elliptic curve is a smooth curve, a rational
map defined on it is regular at every point. Hence, it is, in fact, a morphism.
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Example. The group law of elliptic curves

+: E×E → E

(P1,P2) 7→ P1 +P2

is a morphism. (Silverman, 2009, III.Theorem 3.6)

Theorem 2.2.2. (Silverman, 2009, III.Theorem 2.3) Let ϕ : C1 →C2 be a morphism
of curves. Then ϕ is either constant or surjective.

Elliptic curve has a more sophisticated structure than a projective variety since it
forms a group with identity element O as stated in Theorem 2.1.2. We examine the
morphisms between elliptic curves respecting this point.

Definition 2.2.5. Let ϕ : E1 →E2 be a morphism of elliptic curves. It is called an
isogeny if ϕ(O) =O.

The set of isogenies from E1 to E2 form a group, since E1 and E2 are abelian
varieties, and it is denoted by Hom(E1,E2) whose group operation is defined as
(ϕ+ψ)(P ) = ϕ(P )+ψ(P ) for ϕ,ψ ∈ Hom(E1,E2).

Moreover, if E1 = E2, then Hom(E1,E2) becomes the group of endomorphisms of
E and denoted by End(E). In fact, End(E) forms a ring (Silverman, 2009, III.4.8)
where multiplication is defined as composition (ϕψ)(P ) =ϕ(ψ(P )) for ϕ,ψ ∈ End(E).

Example. Let E/K be an elliptic curve. For each n ∈ Z, an obvious example of an
endomorphism of E is multiplication-by-n map which is defined as

[n] : E → E

P 7→ nP = P +P + · · ·+P︸ ︷︷ ︸
n terms

if n > 0,

P 7→O if n= 0,

P 7→ nP = −P −P −·· ·−P︸ ︷︷ ︸
n terms

if n < 0.

By this example, we can say that Z is contained in the ring End(E).

Furthermore, we can deduce that if n is not the order of the group, then image of P
is not O for some P ∈ E. Moreover, we know that O is sent to O. Hence, the map
[n] is not constant in that case. By Theorem 2.2.2, it means [n] is surjective when
n is not the order of the group E. It is constant, otherwise. In fact, the map that
sends everything to O is the only constant isogeny.
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We will end this section by stating another important result about the
multiplication-by-n map.

Theorem 2.2.3. (Silverman, 2009, III.6.2(d)) For all n ∈ Z, deg[n] = n2.

This result can also be observed with a different approach than the one presented in
the referred book. Recall that when describing the algebraic description of the addi-
tion law, the coordinates of P +Q are given by rational functions of the coordinates
of points P and Q on the curve (since the rational functions for affine varieties are
just quotients of polynomials without any assumption on their degrees). Repeating
the addition formula yields rational functions (considering it for affine varieties) for
each coordinate of the image of P under the multiplication-by-n map which are given
in the Theorem 2.8.5. As a corollary of this theorem, (Washington, 2008, Corollary
3.7) proves that the map [n] has degree n2 by showing that the numerator and the
denominator of the rational function defining the x-coordinate is relatively prime
and has degree n2.

2.3 Torsion Points

Now, let’s investigate the structure of the group (E,+). The elements, whose order
is finite, of a group are called torsion elements. Torsion elements form a subgroup
when the group is abelian.

Definition 2.3.1. Let E/K be an elliptic curve and n∈Z with n≥ 1. The n-torsion
subgroup of E, denoted as E[n], is the set of points of E of order n, i.e.,

E[n] = {P ∈ E : [n]P =O}.

The torsion subgroup of E, denoted by Etors, is the set of all points of E of finite
order, i.e.,

Etors =
∞⋃
n=1

E[n].

The subgroup Etors(K) denotes the points with finite order in the group E(K).

Remark. Notice that by definition E[n] corresponds to Ker[n] where [n] is the
multiplication-by-n map. By (Washington, 2008, Proposition 2.28), the map [n]
is separable if and only if gcd(n,char(K)) = 1 and n is nonzero. Hence, for values
of n satisfying these conditions, we have #Ker[n] = deg[n] by Proposition 2.9.2.
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Moreover, we can say that deg[n] = n2 by Theorem 2.2.3. Therefore,

#E[n] = #Ker[n] = deg[n] = n2.

Further, for every integer d dividing n, we similarly have #E[d] = d2. Using the
Structure Theorem for Finite Abelian Groups, we see that there is only one possible
way of writing it, namely the product of two cyclic groups of size n. This explains
the first case of the following theorem.

Theorem 2.3.1. (Silverman, 2009, Corollary 6.4) Let E/K be an elliptic curve,
and n ∈ Z with n ̸= 0.
If either char(K) = 0 or char(K) = p > 0 and p ∤ n, then

E[n] ∼= Z/nZ×Z/nZ.

If char(K) = p > 0, then either

E[pe] ∼= {O} for all e= 1,2,3, . . . or E[pe] ∼= {Z/peZ} for all e= 1,2,3, . . . .

Consequently, if char(K) = p > 0 and n= pen′ where gcd(p,n′) = 1, then either

E[n] ∼= Z/n′Z×Z/n′Z or E[n] ∼= Z/n′Z×Z/nZ.

Suppose E/K is an elliptic curve with char(K) = p > 0. If E[pe] ∼= {O}, then E is
called supersingular elliptic curve. Otherwise, E is called ordinary elliptic curve.

Obviously, if the underlying field K is a finite field, then all points on E lies in its
torsion subgroup Etors. Moreover, if order of E(K) is n, then it is a subgroup of
E[n] which immediately implies that it is isomorphic to a direct product of at most
two cyclic groups. This argument will be used to prove the structure of E(K) in
Section 2.9.

2.4 The Group E(Q)

Let E/K be an elliptic curve. If the underlying field K is Q, then we have the fol-
lowing celebrated theorems giving the group structure of E(Q). Moreover, possible
torsion subgroups of E(Q) are completely classified.
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Theorem 2.4.1 (Mordell, 1922). Let E be defined over Q. E(Q) is a finitely
generated abelian group.

By the Fundamental Theorem of Finitely Generated Abelian Groups, the following
corollary is immediate.

Corollary 2.4.1.1.
E(Q) ∼= Zr ⊕Etors(Q)

where r is the rank of E(Q).

In fact, the above result of Mordell is true for any abelian variety defined over a
number field. This is known as Mordell-Weil Theorem (1929). It was conjectured
by Poincaré(1901).

Due to Mazur, we know all possible groups that can occur as Etors(Q).

Theorem 2.4.2 (Mazur, 1977). Let E be defined over Q. Then Etors(Q) is one of
the following:

Zn with 1 ≤ n≤ 10 or n= 12,

Z2 ⊕Z2n with 1 ≤ n≤ 4.

2.5 Weil Pairing

The Weil pairing defined on the n-torsion points of the elliptic curve is a useful tool
in the study of elliptic curves. As an example, it is used to attack the elliptic curve
discrete logarithm problem for supersingular curves.

For the rest of the section, let E/K be an elliptic curve and n be an integer that is
relatively prime to char(K) if char(K)> 0. Consequently, E[n] ∼= Z/nZ×Z/nZ by
Theorem 2.3.1. Also, let µn to denote the nth roots of unity, i.e.,

µn = {x ∈ K̄ : xn = 1}.

The group µn lies in K̄. Any generator of the group µn is called a primitive nth root
of unity.
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Theorem 2.5.1. (Washington, 2008, Theorem 3.9) There is a pairing

en : E[n]×E[n] → µn,

called the Weil pairing, that satisfies the following properties:

Bilinearity:

en(P1 +P2,Q) = en(P1,Q)en(P2,Q),

en(P,Q1 +Q2) = en(P,Q1)en(P,Q2) for all P1,P2,Q1,Q2 ∈ E[n].

Nondegeneracy:

en(P,Q) = 1 for all Q ∈ E[n] =⇒ P =O,

en(P,Q) = 1 for all P ∈ E[n] =⇒ Q=O.

Identity:
en(P,P ) = 1 for all P ∈ E[n].

Alternation:
en(P,Q) = en(Q,P )−1 for all P,Q ∈ E[n].

Corollary 2.5.1.1 (Theorem 3.10 (Washington, 2008)). Let {P,Q} be a basis of
E[n]. Then en(P,Q) is a primitive nth root of unity, i.e., generator for the group
µn.

Proof. Assume that the order of en(P,Q) is d. Then en(P,dQ) = en(P,Q)d =
1 by the bilinearity property and the assumption, respectively. Also,
en(Q,dQ) = en(Q,Q)d = 1 by the bilinearity and identity properties. For any
R ∈ E[n], R = k1P +k2Q for some integers k1,k2. Therefore,

en(R,dQ) = en(P,dQ)k1en(Q,dQ)k2 = 1

by the bilinearity property and the assumption, respectively. Since this is true for
any R, the nondegeneracy property implies that dQ must be O. Since Q is a basis
its order is n, hence dQ = O implies that n must be a divisor of d. So, it follows
that d= n and consequently en(P,Q) is a primitive nth root of unity.

So, we can say that if P ∈ E(K) is a point of order n where n satisfies
gcd(n,char(K)) = 1 if char(K)> 0, then there exists a point Q∈K so that en(P,Q)
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is a primitive nth root of unity. Moreover, if we denote a primitive nth root of unity
by ζn, then by the bilinearity of the Weil pairing

en(kP,Q) = en(P,Q)k = ζkn

for all k ∈ Z. Hence, we conclude that µn = Im(en) .

Corollary 2.5.1.2. (Washington, 2008, Theorem 3.11) If E[n] ⊆ E(K), then
µn ⊂K.

Theorem 2.5.2. Let E/Fq be an elliptic curve such that E[n] ⊆ E(Fq), and
gcd(n,q) = 1. Let P ∈ E[n] be a point of order n. Then for all Q1,Q2 ∈ E[n], the
points Q1, Q2 are in the same coset of ⟨P ⟩ within E[n] if and only if en(P,Q1) =
en(P,Q2).

Proof. Assume that Q1 and Q2 are in the same coset, then Q1 =Q2 +kP for some
integer k. So, we get

en(P,Q1) = en(P,Q2 +kP ) as Q1 =Q2 +kP

= en(P,Q2)en(P,P )k by bilinearity

= en(P,Q2) by identity.

Conversely, assume that en(P,Q1) = en(P,Q2). Also, assume for a contradiction
that Q1 and Q2 are not in the same coset. Then Q1 −Q2 = k1P + k2Q for some
integers k1,k2 with k2Q ̸= O, where P,Q is a basis for E[n]. If s1P + s2Q is any
point for some integers s1, s2, then

en(k2Q,s1P + s2Q) = en(k2Q,P )s1en(Q,Q)k2s2 by bilinearity

= en(P,k2Q)−s1 by identity.

Since s1P +s2Q is any point and k2Q ̸=O, the quantity en(P,k2Q) cannot be 1 due
to (2.5.1,2). Therefore,

en(P,Q1) = en(P,Q2 +k1P +k2Q) as Q1 =Q2 +k1P +k2Q

= en(P,Q2)en(P,P )k1en(P,k2Q) by bilinearity

= en(P,Q2) by identity and en(P,k2Q) ̸= 1.

We end this section by the following theorem which is essentially important for the
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attack presented in Section 3.1 to be understood. Its proof clearly follows from
bilinearity of the Weil pairing and the assumptions of the theorem.

Theorem 2.5.3. (Menezes, Okamoto & Vanstone, 1993, Theorem 10) Suppose that
Q ∈ E[n] and en(P,Q) is a primitive nth root of unity. Then

f : ⟨P ⟩ → µn

R 7→ en(R,Q)

is a group isomorphism.

2.6 The Group E(Qp)

Let p be a prime, then

Qp =
{ ∞∑
i=m

aip
i :m ∈ Z,ai ∈ Z,0 ≤ ai < p

}

is a local field, i.e., it is a complete field with respect to a norm induced by a discrete
valuation and its residue field is finite. The respective discrete valuation and the
norm it induces is defined as follows.

Definition 2.6.1. For a fixed prime number p, we define the p-adic valuation

vp : Q → Z∪{∞}

pr
a

b
7→ r

0 7→ ∞

where a,b ∈ Z such that gcd(a,p) = gcd(b,p) = 1.

Also, we define the p-adic norm

||.||p : Q → R≥0

q 7→ pvp(q)

0 7→ 0.

Remark. Properties of vp implies that ||.||p is a norm on Qp.
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Its ring of integers is the p-adic integers Zp = {x ∈ Qp : ||x||p ≤ 1}, and its maximal
ideal is pZp = {x ∈ Zp : ||x||p < 1}, and its residue field is Zp/pZp ∼= Fp. Moreover, p
is a uniformizer for the ring Zp since vp(p) = 1.

For the theory of elliptic curves over a general local field K and the corresponding
generalizations of the results presented in this section, see (Silverman, 2009, Chapter
VII). Here, I set the local field K = Qp and provide the necessary preliminaries that
will be useful in describing the attack presented in Section 3.2. Also, for a detailed
explanation of these results when K = Qp see (Leprévost, Monnerat, Varrette &
Vaudenay, 2005) and (Kosters & Pannekoek, 2017).

Now, we will define the reduction modulo p map, p can be replaced by a uniformizer
in general. Let’s denote the map by r, then

r : Zp → Fp = Zp/pZp
x 7→ x̃

where x̃ is given by x (mod p).

Let E/Qp be an elliptic curve defined by the homogenous Weierstrass equation

E : Y 2Z+a1XY Z+a3Y Z
2 =X3 +a2X

2Z+a4XZ
2 +a6Z

3,

because when we apply the reduction map the points with nonzero Z-coordinate may
have zero Z-coordinate. The curve Ẽ/Fp, possibly singular, is called the reduction
of E modulo p and defined as

Ẽ : Y 2Z+ ã1XY Z+ ã3Y Z
2 =X3 + ã2X

2Z+ ã4XZ
2 + ã6Z

3.

The reduction of coefficients and points of the curve can be calculated by the map
r since elliptic curve defined over Qp can be written with coefficients in Zp by
transformations. Therefore, in a similar fashion, we can consider the map r between
the curves E/Qp and Ẽ/Fp:

r : E(Qp) → Ẽ(Fp)

P = (X : Y : Z) 7→ P̃ = (X̃ : Ỹ : Z̃)

Denote the set of nonsingular points of Ẽ(Fp) by Ẽns(Fp). Let’s define

E0(Qp) = {P ∈ E(Qp) : P̃ ∈ Ẽns(Fp)}.
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This is the points of E(Qp) that reduce to a nonsingular point of the reduction curve
Ẽ/Fp, in fact E0(Qp) is a subgroup of E(Qp) under addition.

Next, define the set of points of E(Qp) that is reduced to the base point (identity),

E1(Qp) = {P ∈ E(Qp) : P̃ =O}, more precisely

E1(Qp) = {P ∈ E(Qp) : vp(x(P )) ≤ −2,vp(y(P )) ≤ −3}∪{O}.

The following sequence becomes an exact sequence

0 → E1(Qp)
ι
↪−→ E0(Qp) r−→ Ẽns(Fp) → 0.

since E1(Qp) = Im(ι) = Ker(r) = E(Qp), hence we get

(2.17) E0(Qp)/E1(Qp) ∼= Ẽns(Fp).

If we suppose that the reduced curve Ẽ(Fp) has no singular points, i.e.,
Ẽns(Fp) = Ẽ(Fp) and also E0(Qp) = E(Qp). Then,

(2.18) E0(Qp)/E1(Qp) ∼= Ẽ(Fp).

Similarly, for n≥ 1 we can define En(Qp) as

En(Qp) = {P ∈ E(Qp) : vp(x(P )) ≤ −2n,vp(y(P )) ≤ −3n}∪{O}.

Due to (Silverman, 2009), we have the following "filtration" admitted by E0(Qp),

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ . . . ,

where for each n ≥ 1, En(Qp) is isomorphic to pnZp. Hence, the quotient
En(Qp)/En+1(Qp) is isomorphic to pnZp/pn+1Zp which is the residue field of Zp,
namely Fp. So, we get

(2.19) En(Qp)/En+1(Qp) ∼= Fp.

In fact, we have a chain of isomorphisms

En(Qp) ∼= Ê(pnZp) ∼= pnZp

for n ≥ 1 where the middle object is the group of pZp-valued points of the one-
parameter formal group associated to E. (For the theory of formal groups, see
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(Silverman, 2009, Chapter IV)). The isomorphism map from En(Qp) to pnZp is
explicitly given in (Leprévost et al., 2005) and (Blake, Seroussi & Smart, 1999) as

logF ◦ϑ−1
p : En(Qp) → pnZp

where

ϑp : Ê(pnZp) → En(Qp)

z 7→

O if z = 0(
z

w(z) ,
−1
w(z)

)
otherwise, i.e., z = −x/y

with w(z) is the power series in z, and

logF : Ê(pnZp) → pnZp

with logF is an isomorphism satisfying logF F (z1, z2) = logF F (z1)+ logF F (z2).

2.7 Elliptic Divisibility Sequences

Elliptic divisibility sequences are special class of divisibility sequences. They are
the first example of divisibility sequences that are defined by a nonlinear recurrence
relation. Moreover, they are closely related to elliptic curves.

Let R be an integral domain.

Definition 2.7.1. A divisibility sequence (DS) is a recurrence sequence a : Z → R

satisfying the property that an divides am whenever n | m for all n,m ∈ Z where
an = a(n).

A full characterisation of divisibility sequences can be found in (Bézivin, Pethö &
van der Poorten, 1990).

Example. The Fibonacci sequence f : Z → Z is defined by the recurrence relation
fn+2 = fn+1 +fn and the initial conditions f0 = 0, f1 = 1 is a DS.

Recall from linear algebra that the closed form for the nth term of the Fibonacci
sequence is that

fn = 1√
5

((
1+

√
5

2

)n
−
(

1−
√

5
2

)n)
.
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Assume that n |m such that nk =m, and let a= 1+
√

5
2 and b= 1−

√
5

2 . Then

fm = am− bm√
5

= an− bn√
5

(
an(k−1) +an(k−2)bn · · ·+anbn(k−2) + bn(k−1)

)
fm = fn

(
an(k−1) +an(k−2)bn · · ·+anbn(k−2) + bn(k−1)

)
.

The quantity fm/fn = an(k−1) +an(k−2)bn · · ·+anbn(k−2) +bn(k−1) is an integer since
a and b are conjugates of each other, therefore fn | fm.

Definition 2.7.2. An elliptic divisibility sequence (EDS) is a DS satisfying the
recurrence relation

Wm+nWm−n =Wm+1Wm−1Wn2 −Wn+1Wn−1Wm2 for all m,n ∈ Z.

The study of EDS was introduced by (Ward, 1948). In his context, R is taken to be
Z, namely he studied integer elliptic divisibility sequences.

Remark. All integer EDSs have the property that W0 = 0,W1 = ±1,W−n = −Wn for
all n ∈ Z.

Example. The sequence A : Z → Z defined by An = n is an EDS, since

Am+nAm−n = (m+n)(m−n) =m2 −n2

and

Am+1Am−1An2 −An+1An−1Am2 = (m+1)(m−1)n2 − (n+1)(n−1)m2

=m2n2 −n2 −n2m2 +m2

=m2 −n2

are equal, and it is clear that n |m implies An | Am.

Example. The Fibonacci sequence (fn) is an EDS as well.

Another example of an EDS is that division polynomials of elliptic curves evaluated
at a point P on the curve. In fact, almost all EDSs are of this form. An EDS is
called proper if it satisfies W0 = 0, W1 = 1 and W2W3 ̸= 0. Ward proves that a
proper EDS is associated to a pair of elliptic curve, possibly singular, and a point on
the curve. Additionally, (Shipsey, 2000, Theorem 4.3.1) fromalize the relationship
between the elliptic curves and EDSs. More information on division polynomials
will be given after stating some important results regarding the integer EDSs.

In an integer EDS, multiples of most primes are regularly spaced; the length of this
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space is denoted by N and it is called the gap of p. More precisely, gap of p is the
integer satisfying the assumptions of the following theorem.

Theorem 2.7.1. (Ward, 1948, Theorem 5.2) Let (Wn) be an integer EDS, and let
p be a prime dividing a term of the sequence with positive index and not dividing W2

or W3. Let N be the smallest positive integer among the indices of the terms that
are divisible by p. If WN+1 ̸≡ 0 (mod p), then

Wn = 0 (mod p) ⇐⇒ n≡ 0 (mod N).

The below result is called a symmetry formula; it expresses the term of an EDS
modulo a prime p in terms of some constants and a term whose index is the index
of the original term reduced modulo the gap of p.

Theorem 2.7.2. (Shipsey & Swart, 2008, Theorem 2) Let (Wn) be an integer EDS,
and let p be a prime not dividing W2 or W3, and let p have gap N in (Wn). Then
there exist two integers c and d such that d2 ≡ cN (mod p), and for all s,t ∈ Z,

Wt+sN ≡ cstds
2
Wt (mod p).

Moreover, the integers c,d are given as c ≡ W−2WN−1
W−1WN−2

(mod p) and

d≡ W2(WN−1)2

(W−1)2WN−2
(mod p).

Considering Theorem 2.7.1 and 2.7.2, it is natural to expect that an EDS is a periodic
sequence. So, we define a condition to determine the period of (Wn) in the next
theorem for completeness of the subject.

Corollary 2.7.2.1. (Ward, 1948, Theorem 10.1) Let (Wn),p,N,c,d be as in Theo-
rem 2.7.2. Let τ be the smallest positive integer such that

dτ
2

≡ cτ ≡ 1 (mod p).

Then (Wn) is purely periodic with period τN .

2.8 Division Polynomials

Now, we will introduce an important family of elliptic divisibility sequences, namely
the sequence of division polynomials (ψn) that is defined through an elliptic curve
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E/K. As explained in the previous section, almost all EDSs (Wn) can be associated
to a pair of an elliptic curve E/K and a point P on the curve so that Wn = ψn(P )
for all n.

Definition 2.8.1. Let E/K be an elliptic curve described by

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

where ai ∈ K. For a positive integer n ̸= 0, the nth division polynomial
ψn ∈ Z[x,y,a1,a2,a3,a4,a6] is given by initial conditions and recurrence relations
as follows

ψ1 = 1,

ψ2 = 2y+a1x+a3,

ψ3 = 3x4 + b2x
3 +3b4x2 +3b6x+ b8,

ψ4 = ψ2 · (2x6 + b2x
5 +5b4x4 +10b6x3 +10b8x2 +(b2b8 − b4b6)x+(b4b8 − b26)),

where bi’s are defined as in Section 2.1, and

ψ2n+1 = ψ3
nψn+2 −ψn−1ψ

3
n+1 for n≥ 2,(2.20)

ψ2ψ2n = ψ2
n−1ψnψn+2 −ψn−2ψnψ

2
n+1 for n≥ 3.(2.21)

For convention ψ0 is taken to be 0.

The sequence of division polynomials (ψn) arises from the multiplication-by-n map
for elliptic curves. The following theorem summarizes the fundamental results about
division polynomials.

Theorem 2.8.1. (Enge, 1999, Proposition 3.51) The following identities are valid
for m,n > 0

ψ−n = −ψn,(2.22)

ψ2
n = n2 ∑

P∈E[n]\{O}
x−x(P ),(2.23)

ψn ∈

K[x] if n is odd

(2y+a1x+a3)K[x] if n is even
(2.24)

ψmψn ∈ K[x] if m and n has the same parity.(2.25)

The result (2.22) enables us to extend the index of ψn to all integers. The result
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(2.23) means that P ̸=O is an n-torsion point if and only if ψn vanishes at P , i.e.,

(2.26) nP =O ⇐⇒ ψn(P ) = 0.

Theorem 2.8.2. (Enge, 1999, Proposition 3.53) Division polynomials satisfy the
following recurrence relation

ψm+nψm−n = ψm+1ψm−1ψn2 −ψn+1ψn−1ψm2 for all m,n ∈ Z.

Notice that by definition of torsion points, if n | m then E[n] ⊆ E[m]. The result
(2.23) implies that if n | m then ψn | ψm, therefore (ψn) is a divisibility sequence.
Furthermore, Theorem 2.8.2 means that it is in fact an elliptic divisibility sequence.

Consider that the sequence of division polynomials arising from an elliptic curve
E/K is evaluated at a point P ∈ E so that ψn(P ) ∈ K for all n. This sequence
(ψn(P )) does not necessarily form an integer EDS since R in Definition 2.7.2 can
be replaced by a finite field of size q, namely Fq. The analogous versions of the
theorems given for integer EDSs in Section 2.7 will be given for EDSs obtained by
the division polynomials of elliptic curves defined over a finite field and evaluated
at a point in Section 2.9.3.

Let n ∈ Z, and define

ϕn = xψ2
n−ψn+1ψn−1,

4yωn = ψ2
n−1ψn+2 −ψ2

n+1ψn−2.

Lemma 2.8.3. (Washington, 2008, Lemma 3.5) The leading term of ϕn and ψn are
xn

2 and n2xn
2−1, respectively.

Lemma 2.8.4. ϕn and ψn have no common root, i.e., they are relatively prime.

This result is shown in the proof of (Washington, 2008, Corollary 3.6)

Recall that for any point P = (xP ,yP ) on any elliptic curve, the x-coordinate of 2P
is given by x4

P −b4x
2
P −2b6xP −b8

4x3
P +b2x2

P +2b4xP +b6
= x4

P −b4x
2
P −2b6xP −b8

(2y+a1xP +a3)2 . Observe that P is a 2-torsion
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point if and only P +P =O, i.e.,

P ∈ E[2] ⇐⇒ 2P = (0 : 1 : 0)

⇐⇒ x(2P ) is undefined in affine coordinates

⇐⇒ P is a root of the denominator of x(2P )

⇐⇒ P is a root of (2y+a1xP +a3)2 = ψ2
2.

The following theorem is derived by generalizing this idea and is useful in calculating
nP for n ∈ Z.

Theorem 2.8.5. (Washington, 2008, Theorem 3.6) Let E/K be an elliptic curve,
and P = (x,y) ∈ E. For positive integer n≥ 2,

nP =
(
ϕn(P )
ψn(P )2 ,

ωn(P )
ψn(P )3

)

where ϕn = xψ2
n−ψn+1ψn−1, and 4yωn = ψ2

n−1ψn+2 −ψ2
n+1ψn−2, in particular,

x(nP ) = x− ψn+1(P )ψn−1(P )
ψn(P )2 .

An immediate corollary of this theorem is that multiplication-by-n map has degree
n2 since the polynomials defining the numerator and the denominator of the x-
coordinate of nP has no common roots and maximum of their degree is n2. This is
one way to see Theorem 2.2.3.

The property of division polynomials given in the next theorem is called chain rule.
Similar results are valid for ϕn and ωn since they are defined in terms of ψn’s.

Theorem 2.8.6. (Ayad, 1992, (2.3)) Let E/K be an elliptic curve. If P ∈E, then
the division polynomials satisfy

ψnk(P ) = ψk(P )n
2
ψn(kP ) for all n,k ∈ Z,

as long as kP ̸=O.
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2.9 Elliptic Curves over Finite Fields

Let p be a prime and q = pr for some positive integer r, then Fq is a finite field of
size q with characteristic p. The Fq-rational points of an elliptic curve defined over
E/Fq is

E(Fq) = {(x,y) ∈ F2
q : y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6}∪{O}.

Obviously, the number of points of E(Fq), denoted as #E(Fq), is bounded from
above by 2q+ 1 since there are q many x candidates, and for each x there are two
many y candidates, also there is the base point O. However, due to Hasse there is
a better bound for #E(Fq).

Theorem 2.9.1 (Hasse Bound). Let E/Fq be an elliptic curve. Then

|#E(Fq)− q−1| ≤ 2√
q.

Generalization of the above result for any absolutely irreducible smooth pro-
jective curve C defined over Fq with genus g is called Hasse-Weil bound;
|#C(Fq)− q−1| ≤ 2g√q. Note that genus g of the elliptic curve is 1.

2.9.1 Trace of the Frobenius Endomorphism

We will introduce an important endomorphism between elliptic curves defined over a
finite field, namely the Frobenius endomorphism ϕq. Then we will derive an equality
to express the size of E(Fq) depending on the trace of this map when considered as
a linear transformation of n-torsion points.

Definition 2.9.1. Let K be a finite field of characteristic p, and q be a power of p.
The qth-power Frobenius map, or qth-power map, is

ϕq : K →K

x 7→ xq.

It is an endomorphism of K, it is also called the Frobenius endomorphism. Moreover,
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if K has size q then ϕq is the identity.

Let E/K be an elliptic curve, then ϕq acts on the coordinates of points on E as

ϕq : E → E(q)

(x,y) 7→ (xq,yq)

O 7→O

where E(q) is defined by the Weierstrass equation of E whose coefficients are raised
to the power q, clearly the coefficients are still in K, therefore E(q) is defined over
K as well. Moreover, the discriminant of E(q), namely ∆(E(q)), is equal to (∆(E))q

since discriminant is a formula depending on the coefficients of the Weierstrass
equation of the curve which are in K and ϕq is a homomorphism of K. Therefore,
the discriminant of E(q) is not zero, and E(q)/K is an elliptic curve as well.

Now, if we suppose that K = Fq, then E(q) = E (because ϕq is the identity on K)
and ϕq becomes an endomorphism of E, in particular it is called the Frobenius
endomorphism of E.

Observe that the set of elements in K that is fixed by ϕq must satisfy the equation
xq = x, i.e., x(xq−1 − 1) = 0 . Also, there are q− 1 many nonzero elements of Fq,
consequently their order is divisible by q−1, i.e., they satisfy xq−1 −1. The number
of possible roots of xq−1 − 1 is q− 1 as well. Therefore, elements of K fixed by ϕq

are exactly the elements of Fq. Similarly, points of E fixed by ϕq is exactly E(Fq).
Therefore, we deduce the following results

ϕq(x) = x ⇐⇒ x ∈ Fq,(2.27)

ϕq(P ) = P ⇐⇒ P ∈ E(Fq).(2.28)

Remark. The statement given in (2.28) implies that ϕq(P ) −P = O if and only if
P ∈ E(Fq). In other words,

(2.29) Ker(ϕq −1) = E(Fq).

By the above results, if E/Fq is an elliptic curve, then E(q) =E and ϕq ∈ Gal(F̄q/Fq).
Furthermore, any element σ in Gal(F̄q/Fq) acts on E[l] because

P ∈ E[l] ⇒ lP =O ⇒ l(P σ) = (lP )σ =Oσ =O.

Therefore, considering that E[l] ∼= Z/lZ×Z/lZ for l such that gcd(l,p) = 1, we can
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write the following representation

Gal(F̄q/Fq) → Aut(E[l]) ∼= Aut(Z/lZ×Z/lZ) ∼= GL2(Z/lZ).

This implies that the image of σ ∈ Gal(F̄q/Fq) can be represented by a 2×2 matrix
with entries from Z/lZ where the matrix depends on the basis chosen for the E[l].
Let’s denote the matrix representative of the image of ϕq ∈ Gal(F̄q/Fq) by (ϕq)l,
then we can associate a determinant and trace to (ϕq)l.

The general idea is that for an elliptic curve defined over Fq and for l such that
gcd(l,p) = 1 if α :E(K̄) →E(K̄) is an endomorphism, then α necessarily maps E[l]
to E[l]. Hence, due to Theorem 2.3.1, it can be represented by a 2 × 2 matrix, call
it αl with entries a,b,c,d ∈ Z/lZ as

(2.30) αl =
a b

c d

 .
This matrix describes the action of α on a basis {B1,B2} of E[l].

Now, several propositions will be given in order to define the relation between the
trace t of ϕq and size of E(Fq).

Proposition 2.9.1. (Washington, 2008, Lemma 2.20) Let E/Fq be an elliptic curve.
Then ϕq is an endomorphism of E of degree q, and ϕq is not separable.

Proposition 2.9.2. (Washington, 2008, Proposition 2.21) Let α ̸= 0 be a separable
endomorphism of an elliptic curve E. Then

deg(α) = #Ker(α),

where Ker(α) is the kernel of the homomorphism α : E(K̄) → E(K̄).

By Proposition 2.9.2, we can conclude that since degree of an endomorphism by
definition is a finite number, then so does the kernel of the nonzero separable endo-
morphism.

Proposition 2.9.3 (Proposition 2.29, (Washington, 2008)). Let E/Fq be an elliptic
curve. Let r and s be integers, not both 0. The endomorphism rϕq + s separable if
and only if p ∤ s.

Proposition 2.9.4 (Proposition 3.15, (Washington, 2008)). Let α be an endomor-
phism of an elliptic curve E/K. Let n be a positive integer not divisible by the
char(K). Then det(αl) ≡ deg(α) (mod l) where αl is given by (2.30).
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Theorem 2.9.2. Let E/Fq be an elliptic curve. Let t= q+1−#E(Fq). Then

(2.31) ϕ2
q − tϕq + q = 0

as endomorphisms of E, and t is the unique integer k such that

ϕ2
q −kϕq + q = 0.

In other words, if (x,y) ∈ E(F̄q),then

(xq
2
,yq

2
)− t(xq,yq)+ q(x,y) =O,

and t is the unique integer such that this relation holds for all (x,y) ∈ E(F̄q).
Moreover, t is the unique integer satisfying

t≡ Trace((ϕq)l) (mod l)

for all l with gcd(l,q)=1.

Proof. Proposition 2.9.2 implies that if the kernel of a separable homorphism is not
finite then it is the zero endomorphism. Therefore, to prove (2.31), it is enough to
show that kernel of ϕ2

q − tϕq + q is infinite.

Let l be an integer such that gcd(l, q) = 1. Recalling (2.30), we can represent the
action of ϕq on E[l] by a matrix (ϕq)l given as

(ϕq)l =
a b

c d

 .
By the following sequence of equailities and congruences

q+1− t= #E(Fq) (by the hypothesis)

= #Ker(ϕq −1) (by the equality 2.29)

= deg(ϕq −1) (by the Propositions 2.9.3 and 2.9.2)

≡ det((ϕq)l− I2) (mod l) (by the Proposition 2.9.4)

≡ ad− bc− (a+d)+1 (mod l)

≡ det((ϕq)l)− (a+ b)+1 (mod l)

≡ q− (a+ b)+1 (mod l) (by the Proposition 2.9.4)

≡ q−Trace((ϕq)l)+1 (mod l),
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we single out that
t≡ Trace((ϕq)l) (mod l)

which proves the moreover part of the theorem. By the Cayley-Hamilton Theorem,
a square matrix A over a commutative ring satisfies its own characteristic equation
which for a 2×2 matrix is that x2 −Trace(A)x−det(A) = 0, we have

(ϕq)2
l − t(ϕq)l+ qI2 (mod l).

This means that ϕ2
q−tϕq+q is identically zero on E[l]. Obviously, there are infinitely

many choice for l, therefore kernel of ϕ2
q − tϕq + q is infinite. Hence, it is the zero

endomorphism.

To prove uniqueness of t over the integers, assume for a contradiction that there
exists another integer t′ satisfying ϕ2

q − t′ϕq + q = 0. Then

(t− t′)ϕq = (ϕ2
q − t′ϕq + q)− (ϕ2

q − tϕq + q) = 0.

Since ϕq is a nonconstant endomorphism, it is surjective on the elliptic curve by
Theorem 2.2.2. Hence, ϕq is an automorphism of E(F̄q), so (t− t′) annihilates
E(F̄q), in particular, it annihilates E[l] for for every l ≥ 1. If gcd(l, q)=1, then E[l]
contains points of order l. So (t− t′) ≡ 0 (mod l). Therefore by Chinese Remainder
Theorem, t− t′ = 0 which proves the uniqueness of t.

Definition 2.9.2. The quantity t where t = q+ 1 − #E(Fq) is called the trace of
the Frobenius endomorphism.

The quantity t depends on q which is the size of the field that the elliptic curve E
is defined over. Therefore, sometimes this quantity is denoted as tq. It provides a
tool to calculate the number of Fq-rational points on an elliptic curve defined over
Fq. Furthermore, trace t enables us to calculate the size of an elliptic curve in the
extension field of Fq.

Theorem 2.9.3. (Washington, 2008, Theorem 4.12) Let t= q+1−#E(Fq), then

#E(Fqk) = qk +1− (αk +βk),

where α,β are complex numbers determined from the factorization of X2 − tX+q =
(1−αX)(1−βX), for all k ≥ 1.

Remark. (Schoof, 1985) Schoof’s algorithm uses Theorem 2.9.2 to calculate #E(Fq);
it is a deterministic polynomial time algorithm. He computes the value of the trace
modulo distinct primes li (i.e. the value τ satisfying ϕl

2
i − τϕli + q = 0 where τ ∈
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Z/lZ) whose product (∏
i
li) is greater than the length of the interval for the value

of the trace (4√
q) that is attained by the Hasse’s Theorem, hence finds the correct

value of the trace over integers using the Chinese Remainder Theorem which im-
mediately gives #E(Fq). As a side note, Elkies and Atkin made Schoof’s algorithm
more efficient but probabilistic; so it is now called the SEA Algorithm.

2.9.2 Classification of the Group Structure

The aim of this section is to present the theorems that will enable us to determine
whether an elliptic curve over a finite field with certain order exist or not. Moreover,
if it exists, we can find its corresponding group structure.

We start by stating the group structure of E(Fq) in general.

Theorem 2.9.4. Let E/Fq be an elliptic curve. Then

E(Fq) ∼= Z/nZ, or

E(Fq) ∼= Z/n1Z×Z/n2Z with n1 | n2.

Proof. Since E(Fq) is a finite abelian group, by the Structure Theorem for Finite
Abelian Groups, we can write

E(Fq) ∼= Z/n1Z×Z/n2Z×·· ·×Z/nrZ with ni | ni+1 for i≥ 1.

This implies that E(Fq) contains nr1 points of order dividing n1. Due to Theorem
2.3.1 we know that #E[n1] ≤n2

1, so we conclude that r≤ 2. Hence, the result follows:
If n1 = 1, then we write E(Fq) ∼=Z/n2Z. If n1 ̸= 1, we write E(Fq) ∼= Z/n1Z×Z/n2Z.

Now, we will state a theorem to determine whether a group E(Fq) of certain order
exists.

Theorem 2.9.5 (Waterhouse (1969)). Let p be a prime and q = pr. There is an
elliptic curve E/Fq such that #E(Fq) = q+ 1 − t if and only if |t| ≤ 2√

q and t

satisfies one of the followings

(1) gcd(t,p) = 1

(2) t2 = 4q and r is even
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(3) t2 = q, p ̸≡ 1 (mod 3) and r is even

(4) t2 = pq, p ∈ {2,3} and r is odd

(5) t= 0 and either r is odd or p ̸≡ 1 (mod 4).

The next theorem defines the group structure of each case in the above theorem.

Note that by the notion of trace t associated to an elliptic curve E defined over a
finite field Fq, we can give an alternative condition to determine whether an elliptic
curve is supersingular or ordinary.

Elliptic curves corresponding to the case (1) in the above theorem are called ordinary,
and the result about their group structure is proved by both (Voloch, 1988) and
(Rück, 1987), separately. Elliptic curves corresponding to the other cases, simply the
ones with p | t, are called supersingular, and the results about their group structure
is proved by (Schoof, 1987).

Theorem 2.9.6. Let p,q,r, t be as in Theorem 2.9.5, and let n = #E(Fq). The
corresponding group structure of each case is as follows:

(1) Let n = ∏
l|n

l prime

lvl(n) be the prime factorization of n. There are integers 0 ≤ al ≤

min{vl(q−1),⌊vl(n)
2 ⌋} such that the group is

Z/pvp(n)Z⊕
⊕
l ̸=p

(Z/lalZ⊕Z/lvl(n)−alZ)

(2) Either Z/(√q+1)Z⊕Z/(√q+1)Z or Z/(√q−1)Z⊕Z/(√q−1)Z, depending on
whether t= 2√

q or t= −2√
q

(3) Cyclic

(4) Cyclic

(5) If q ≡ 3 (mod 4), either Z/2Z⊕Z/q+1
2 Z or cyclic, otherwise cyclic.

As a final result, for future reference, we state a necessary and sufficient condition
for E(Fq) to contain E[n].

Theorem 2.9.7. (Schoof, 1987, 3.7) Let E/Fq be an elliptic curve. If gcd(n,q) = 1,
then E[n] ⊂ E(Fq) if and only if the followings are satisfied:

(i) n2 | #E(Fq)

(ii) n | q−1
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(iii) Either ϕ ∈ Z or O
(
t2−4q
n2

)
⊂EndFq(E), where ϕ is the Frobenius endomorphism

and t is its trace.

2.9.3 Elliptic Divisibility Sequences and Division Polynomials

As we mentioned in Section 2.8, the sequence of division polynomials of elliptic
curves when evaluated at a point, namely (ψn(P )), form an elliptic divisibility se-
quence. If E is defined over a finite field Fq, the aforementioned EDS is not neces-
sarily an integer EDS. However, they satisfy the analogous results of theorems that
are satisfied by integer EDSs as given in Section 2.7.

Recall the result (2.26). This implies that the order of a point P ∈E for the sequence
(ψn(P )) acts as the gap of a prime p for an integer EDS (Wn).

The following theorem is analogous for Theorem 2.7.2

Theorem 2.9.8. (Silverman, 2005, Theorem 8) Let E/Fq be an elliptic curve, and
let P ∈ E be a point of order N ≥ 3. Then there exists constants c,d ∈ Fq such that
d2 = cN and for all s, t ∈ Z,

ψt+sN (P ) = cstds
2
ψt(P ) in Fq.

Similarly, the following is analogous for Corollary 2.7.2.1.

Corollary 2.9.8.1. (Silverman, 2005, Corollary 9) Let E,P,(ψn(P ),N,c,d be as in
Theorem 2.7.2. Let τ be the smallest positive integer such that

dτ
2

= cτ = 1 in Fq.

Then (ψn(P )) is purely periodic with period τN .

36



3. DISCRETE LOGARITHM PROBLEM ON ELLIPTIC CURVES

OVER FINITE FIELDS

Elliptic curves have been introduced to cryptography by (Miller, 1985) and (Koblitz,
1987) independently, and they have many applications in cryptography. The secu-
rity of most cryptosystems relies on computationally hard mathematics problems,
meaning that there is no general algorithm solving the problem in subexponential
time using the classical computers. One of the most commonly used such problem
is called the discrete logarithm problem (DLP) and it is stated as below.

Given b∈ ⟨g⟩ where g is an element of the group (G,∗), find x such that b= gx ∈G.

In general, the group G is taken to be a finite field. So, when we say DLP, unless
otherwise mentioned, it must be understood that G = Fq. When G is taken to
be the group of rational points of an elliptic curve over a finite field, the problem
is called the elliptic curve discrete logarithm problem (ECDLP), and there is still
no general subexponential algorithm that solves the problem. In fact, the elliptic
curve version of the problem is more commonly used since it is believed to be much
harder as it provides higher security level by requiring smaller key that is used in the
encryption or decryption. Consequently, using the ECDLP becomes more efficient.
The statement of the ECDLP is as follows.

Given Q ∈ ⟨P ⟩ and a point P in (E(Fq),+), find x such that Q= xP ∈ E(Fq).

The smallest positive x which is a solution of the DLP and ECDLP is called the
logarithm of b and Q, respectively.

Although the discrete logarithm problem on elliptic curves over finite fields is con-
jectured to be hard, for particular curves with a certain number of rational points
the problem can be solved or reduced to an easier problem by utilizing the theory of
elliptic curves. The method of solving a problem or reducing to an easier problem is
called an attack. In this chapter, we describe some of the important attacks for the
ECDLP. The attacks are primarily classified according to the trace t of the given
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elliptic curve over Fq, that is an integer determined solely by the number of points
on the elliptic curve. To be more specific,

t= q+1−#E(Fq).

In general, the order of the point P that is used in the ECDLP is assumed to be
a large prime number. If the order of P is a product of distinct primes, namely
pk1

1 p
k2
2 . . .pks

s , the logarithm of Q can be solved modulo each pki
i and then result can

be calculated modulo pk1
1 p

k2
2 . . .pks

s by Chinese Remainder Theorem. This method is
known as Pohlig Hellman algorithm. In fact, bare minimum condition for an elliptic
curve to be used in cryptography is that the order of E(Fq) to have a large prime
divisor.

Each attack to be described in this chapter and in Section 4.3.1 solves the ECDLP
or reduces to a DLP in a finite field, for which there exists a subexponential time
attack called as index calculus method.

3.1 Attack For Supersingular Curves

This section is based on (Menezes et al., 1993).

The algorithm to be explained uses a bilinear mapping, namely Weil pairing, to
reduce the ECDLP, the problem of finding k when given P and kP on E/Fq, to
the DLP in an extension Fqs . The importance of the algorithm is that if we assume
that the curve is supersingular, then this reduction takes probabilistic polynomial
time. Moreover, if q is a prime or q = pr where p is small, then the algorithm to be
proposed can solve for k in probabilistic subexponential time as proven in (Theorem
11 and Corollary 12,(Menezes et al., 1993)).

The key idea of the algorithm is establishing an isomorphism between the subgroup
of E generated by P , with order N , and the subgroup of N th roots of unity in Fqs

where s is the smallest integer such that Fqs contains the N th roots of unity. This
isomorphism is given by Theorem 2.5.3.

Let E/Fq be an elliptic curve, with group structure Z/n1Z×Z/n2Z with n1 | n2,
and let N to denote the order of P . Assume that gcd(#E(Fq), q) = 1 which implies
that for any point P ∈ E(Fq) with order N , we can conclude that P ∈ E[n] ∼=
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Z/nZ×Z/nZ. Moreover, we will assume that the curve is supersingular for the
reason that is explained in the next remark.

The reduction process is described as follows. First, one needs to determine
the smallest integer s such that E[N ] is contained in E(Fqs) which implies that
Im(eN ) ⊆ Fqs by the property of the Weil pairing (Theorem 2.5.1). The necessary
and sufficient condition for E(Fq) to contain all N -torsion points in E(Fq) is given
by Theorem 2.9.7. The integer s when E is supersingular can be found in the Table
3.1 which classifies the supersingular curves according to their trace t and gives the
corresponding value of such s for each possible case. Moreover, if the curve is super-
singular, then the group E(Fqs) has a certain structure given as Z/cn2Z×Z/cn2Z.
The corresponding value of s is calculated by applying the Weil conjecture and using
Theorem 2.9.6. One can find the values of s and c from Table 3.1.

Remark. In the case that E is not assumed to be supersingular, there is still an
algorithm in (Menezes et al., 1993, Algorithm 2) to reduce the ECDLP to DLP but
it takes exponential time in general as s can be exponentially large in general. The
calculation of s in the general case can be achieved by (Van Tuyl, Van Tuyl).

t Structure of E(Fq) n2 c s

I 0 cyclic q+1 1 2
II 0 Z/(q+1)/2Z×Z/2Z (q+1)/2 2 2
III ±√

q cyclic q+1∓√
q

√
q±1 3

IV ±
√

2q cyclic q+1∓
√

2q q±
√

2q+1 4
V ±

√
3q cyclic q+1∓

√
3q (q+1)(q±

√
3q+1) 6

VI ±2√
q Z/√q∓1Z×Z/√q∓1Z √

q∓1 1 1

Table 3.1 Some information about supersingular curves

Next, one needs to find R ∈ E[N ] such that α = eN (P,R) has order N . The
existence of a point R satisfying this condition is provided by Corollary 2.5.1.1.
The selection of such a point can be done as first picking a random point
R′ ∈ E(Fqs) ∼= Z/cn2Z×Z/cn2Z and setting R = (cn2/N)R′ which guarantees the
order of R to be a divisor of N . So, R ∈ E[N ] is achieved, hence α = eN (P,R) is
defined. Later on, we will check whether α is of order N , if not we should come back
to this step and take another random point R. The necessity of the condition on
the order of α will become clear in the next step. (Note that α ∈ µN by definition,
so its order is necessarily a divisor of N .) Let m denote the order of α.

Afterwards, one can compute α = eN (P,R) and β = eN (Q,R). By the fact that
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Q= kP and the bilinearity of the Weil pairing, we have

β = eN (Q,R) = eN (P + · · ·+P︸ ︷︷ ︸
k-many

,R) = eN (P,R) . . . eN (P,R)︸ ︷︷ ︸
k-many

= eN (P,R)k = αk.

This implies that
k′ = logαβ ≡ k (mod m),

Because of the isomorphism given in Theorem 2.5.3, if R satisfies the desired condi-
tion on it, then α has the same order with P , namely m=N , and β has same order
with Q. Hence, k′ is equal to k modulo N which is what we are looking for. One
method to check whether k′ = k is computing k′P . If k′P =Q, then the ECDLP is
reduced to a DLP, hence we are done. Otherwise, m<N , and we should repeat the
process by selecting another random point R.

Last but not least, we will comment on the probability of randomly selected R to
satisfy that α= eN (P,R) to have order N , i.e., α to be a primitive N th root of unity.
It will be concluded that this probability is ϕ(N)/N where ϕ is the Euler’s totient
function.

My first claim is that R is a random point in E[N ]. We choose R′ uniformly
and randomly from E(Fqs) by first selecting an element x ∈ Fqs , plugging to the
equation of the curve E and then solving for y. If there is a solution, then x is the
x-coordinate of some point P , which is the case with probability 1/2 − 1/√q due
to Hasse’s Theorem (2.9.1), and we can select P or −P ., which are easily derived
from one another. Recall that E(Fqs) ∼= Z/cn2Z×Z/cn2Z. Then by (Menezes et al.,
1993, Lemma 7) , we conclude that R = (cn2/N)R′ is uniformly distributed about
the elements of the subgroup E[N ] ∼= Z/NZ×Z/NZ.

My second claim is that for a random R ∈E[N ] the probability of eN (P,R) ∈ µN to
have order N is equal to the probability of a random element in µN to be a primitive
N th root of unity which is ϕ(N)/N . by Theorem 2.5.2, for all P1,P2 ∈ E[N ]

P1,P2 are in the same coset of E[N ]/⟨P ⟩ ⇐⇒ eN (P,P1) = eN (P,P2).

There are N distinct cosets in E[N ]/⟨P ⟩. Let Ri + ⟨P ⟩ denote the distinct cosets
for i = 1,2, . . . ,N , and by abusing the notation let eN = (P,Ri + ⟨P ⟩) denote the
eN = (P,Ri). Observe that each eN = (P,Ri + ⟨P ⟩) has a distinct value for each
distinct i, and they are all in µN . So, there is a bijection between E[N ]/⟨P ⟩ and µN .
The argument above justifies the following isomorphism

E[N ]/⟨P ⟩ ∼= Z/NZ×Z/NZ/Z/NZ
∼= Z/NZ ∼= µN .
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Since R is uniformly distributed in E[N ], it is uniformly distributed in the quotient
group E[N ]/⟨P ⟩. Due to the relation between E[N ]/⟨P ⟩ and µN , our claim follows.

3.2 Attack For Anomalous Curves

This section is based on (Smart, 1999).

The algorithm to be explained uses the theory of elliptic curves defined over Qp, in
particular it lifts the points of the elliptic curve defined over a finite field to E(Qp)
in order to solve the ECDLP under the assumption that #E(Fp) = p, such curves
are called anomalous.

The key idea of the algorithm is that #E(Fp) and #Fp are same and it is a prime
number, so they are isomorphic.

We shall assume that our elliptic curve E is defined over Fp, and let P and Q= kP

be points on E(Fq) where k is a positive integer.

First compute an arbitrary lift of P and Q to points P ↑ and Q↑, respectively, on the
same elliptic curve considered over Qp. Write P = (x,y), then P ↑ = (x,y↑) where y↑

is computed via Hensel’s Lemma since it is not a point of order 2, its y-coordinate
is not 0. Same argument applies for Q, since neither P nor Q are points of order 2.

Lemma 3.2.1 (Hensel’ Lemma). Let p be a prime number. Also, let f(x) be a
polynomial with integer coefficients, k ∈ Z+ and r ∈ Z such that f(r) ≡ (mod pk).
Suppose k ∈ Z+ with m ≤ k. Then if f ′(r) ̸≡ (mod p), there is an integer s such
that f(s) ≡ 0 (mod pk+m) and s ≡ r (mod pk). So, s is a "lifting" of r to a root
modulo pk+m. Moreover, s is unique modulo pk+m.

Recall the definition of En(Qp) and the results about the quotients
En(Qp)/En+1(Qp) from Section 2.6.

Notice that Q−kP =O ∈ Fq. Therefore,

Q↑ −kP ↑ =R↑ ∈ E1(Qp).

Also,
E0(Qp)/E1(Qp) ∼= Ẽns(Fp) = E(Fp)
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where the first isomorphism follows from (2.17) and the latter equality follows from
the following reasoning. We have started with an elliptic curve E/Fp, then consid-
ered the curve E over Qp. So, we can say that E has a good reduction at p and
consequently Ẽns(Fp) =E(Fp) where Ẽns(Fp) is as defined in Section 2.6. Moreover,

E1(Qp)/E2(Qp) ∼= Fq

as given in (2.19).

The key point is that E(Fp) and Fp have the same order, namely p, because of the
assumption on the size of E(Fp). So,

pQ↑ −k(pP ↑) = pR↑ ∈ E2(Qp).

Apply p-adic logarithm ψp which is given as ψp(x,y) ≡ −x
y (mod p2) when

(x,y) ∈ E1(Qp), since it is a homomorphism we can apply it termwise and obtain

ψ(pQ↑)−kψ(pP ↑) = ψ(pR↑) ≡ 0 (mod p2).

The p-adic logarithm ψ is defined for these points since for any point P ↑ ∈ Qp, we
have pP ↑ =O ∈ E1(Qp) due to the assumption. Then the value k is calucalted as

k ≡ ψ(pQ↑)
ψ(pP ↑) (mod p).

3.3 Xedni Attack

In this section, a brief description of the xedni attack based on (Silverman, 2000)
will be given. The importance of this attack is that it adapts the idea of the index
calculus attack which is the most efficient method known for solving the DLP; it
has subexponential time complexity. However, the xedni attack, although it is a
subexponential algorithm, fails to solve ECDLP in general.

Let us first summarize the index calculus method. The DLP is to recover k when
given b ≡ ak (mod p). The aim of the method is to find a "rank" r which is an
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upper bound for the prime divisors of numbers of the form aj , namely "liftings" of
a, i.e., aj =

r∏
i=1

pei
i (mod p). This equality can also be expressed by j =

r∑
i=1

ei loga pi
(mod p− 1). If such a selection of "rank" r is achieved, then by taking r-many
linearly independent equations of the latter form, we can solve for the unknowns
loga pi, hence consequently for k. (If we take 4r-many equations, r-many of them
will be linearly independent with high probability.)

One way to express the ECDLP is as finding a linear dependence relation between
points P,Q ∈ E(Fq), i.e., finding the coefficients a,b ∈ Fq such that

aP + bQ=O.

This is the key idea of the xedni attack.

The ECDLP is to recover k when given Q = kP on E/Fp. In the xedni attack, we
aim to find a small rank r which is the rank of the elliptic curve Ẽ/Q, a lifting of
E/Fp. If r is small enough, then we can find a linear dependence relation between
the lifted points and since they are selected to be the liftings of the points formed
as the linear combinations of P,Q, by reducing them modulo p we can solve for k.

We can elaborate the xedni attack more. We are given P,Q ∈ E(Fp). First step
is choosing points of the form Pi = aiP + biQ ∈ E(Fp) where ai, bi ∈ Fp. (At most
9 points should be chosen because 9 points determine a unique cubic curve, and
if we choose more points we may not force them to be on the same cubic curve.)
Then choose a lifting P̃i with integer coefficients for each point. Next, find a cubic
curve Ẽ over Q containing these liftings as follows: Since points lie on the curve, for
each point P̃i = (x,y), replacing the variables of a general cubic equation with the
coordinates of the points gives a linear equation where coefficients are the unknowns.
Then solve for the coefficients. Afterwards, convert the general cubic equation to
a Weierstrass form. Last but not least step is finding a linear dependence relation
between the points on Ẽ(Q), i.e., find the coefficients si’s in

∑
siP̃i =O.

This is the crucial step in this algorithm and it is the reason of why we are considering
the liftings of the points P ′

is. There is no method to find a linear dependence in Fq.
If solution for si’s can be found, then the value of k can be computed by reducing
the relation modulo p, hence solving the ECDLP. However, even though most curves
over Q tend to have at most rank 2, the curves obtained by this algorithm tend to
have a larger rank, hence it is hard or impossible to find a linear dependence relation
among the chosen points. Therefore, the algorithm is concluded to be practically
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unsuccessful for the ECDLP.

3.4 Attack For Trace 2 Curves

This section is based on (Shipsey & Swart, 2008).

The algorithm to be explained reduces the ECDLP, finding k when given P and
kP = Q on E/Fq, to a DLP. In order to do this, it uses properties of division
polynomials and elliptic divisibility sequences, as the former is an EDS in particular.
The reduction is achieved under the assumptions that #E(Fq) = q−1 and the order
of P is a large prime factor of #E(Fq). Let N denote the order of P , then write
#E(Fq) = q−1 = ℓN with ℓ being small. The assumption on the size of ℓ is required
to form Conjecture 1 which explains the the success probability of the algorithm.
In addition to these, ℓ is assumed to be even which only requires q to be a power of
an odd prime, i.e., q to be not a power of 2. This is also assumed for the sake of the
argument about success probability of the algorithm.

The key idea of the algorithm relies on that the order of the group E(Fq) is q− 1.
Therefore, we have P = qP in E(Fq) which allows us to use P and qP interchange-
ably. So, we can write ψn(P ) in place of ψn(qP ) for all n. However, 1 and q cannot
be used interchangeably in the indices of ψ(P ) terms in general.

Due to this observation, the algorithm provided by (Shipsey & Swart, 2008) will
be simplified in the following representation. To be more specific, Theorem 2.8.6
will be enough to construct the algorithm and Theorem 2.9.8 will only be used to
explain the aforementioned Conjecture 1 that is about the success probability of the
algorithm in reducing ECDLP to DLP.

Now, consider the sequence of division polynomials evaluated at P , i.e., (ψn(P )).
By Theorem 2.8.6, since ψkq(P ) = ψqk(P ), we can write

(3.1) ψq(P )k
2
ψk(qP ) = ψk(P )q

2
ψq(kP ).

Similarly, since ψ(k+1)q(P ) = ψq(k+1)(P ), we write

(3.2) ψq(P )(k+1)2
ψ(k+1)(qP ) = ψ(k+1)(P )q

2
ψq((k+1)P ).

Due to the assumption #E(Fq) = q−1, we can replace qP with P . Also, obviously
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kP can be replaced with Q. Hence, the equations (3.1) and (3.2) become

ψq(P )k
2
ψk(P ) = ψk(P )q

2
ψq(Q),(3.3)

ψq(P )(k+1)2
ψ(k+1)(P ) = ψ(k+1)(P )q

2
ψq(Q+P ).(3.4)

Dividing the equations (3.3) and (3.4) side by side, we get

(3.5) ψq(P )2k+1 =
(
ψk+1(P )
ψk(P )

)q2−1
· ψq(Q+P )

ψq(Q) .

Note that the quantity ψk+1(P )
ψk(P ) is both defined and nonzero. It is defined because

ψk(P ) = 0 if and only if kP =O as explained in (2.26), and kP being O means N | k
which contradicts with the nature of the ECDLP. It is also not zero since this would
imply (k+ 1)P = O, and then k can be easily solved. Similarly, ψq(P ) and ψq(Q)
are nonzero elements of Fq.

Furthermore,
(
ψk+1(P )
ψk(P )

)q2−1
is equal to 1 because it is an element of F∗

q and the
power q2 −1 is divisible by the order of F∗

q , namely q−1. Hence, the equality (3.5)
becomes

(3.6)
(
ψq(P )2)k = ψq(Q+P )

ψq(P )ψq(Q) .

Therefore, if ψq(P )2 is not equal to 1 in Fq, then the problem is reduced to a DLP
which can be solved for k modulo the order of ψq(P )2 in Fq. In particular, if the
order of ψq(P )2 is N , which is the order of the point P , then k can be solved
modulo N as desired and hence the reduction becomes successful. In what follows,
we explain why this algorithm is successful in reducing the ECDLP to a DLP with
high probability.

First, we will deduce that the order of ψk(P ) and ψk(P )2 are same in Fq and it
is either 1 or N . After explaining that algorithm fails only in the former case, we
will conclude that the probability of failure is equivalent to the probability of ψk(P )
being 1. Next, we will conjecture that their order is N with high probability. So, if
the conjecture is assumed, then k can be solved correctly.

Recall that q− 1 = ℓN and ℓ is even when q is assumed to be not a power of 2.
Then by using assumptions and Theorem 2.9.8, we deduce the following sequence
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of equalities.

ψq(P ) = ψ1+ℓN (P ) (q−1 = ℓN)

= dℓ
2
cℓ (Theorem 2.9.8)

= c(ℓN) ℓ
2 cℓ (d2 = cN and ℓ is even)

= (cq−1)
ℓ
2 cℓ (q−1 = ℓN)

= cℓ (c ∈ F∗
q and |F∗

q| = q−1).

Observe that since cℓN = cq−1 = 1 in Fq, the order of cℓ = ψq(P ) is a divisor of
N . Considering that N is a large prime, order of ψq(P ) is either 1 or N . In both
cases, the order of ψk(P ) and ψk(P )2 are same since 2 ∤ 1 and 2 ∤N . In the former
case, the order of ψk(P ) and ψk(P )2 being 1 means that ψk(P ) = ψk(P )2 = 1 in Fq,
therefore the algorithm fails. However, in the latter case, the order of ψk(P )2 being
N means that algorithm succeeds. So, for the probability of failure, it is enough to
investigate the probability of cℓ = ψq(P ) being 1. Also, keep in mind that ψq(P ) ̸= 0
as explained before, hence c ∈ F∗

q .

Elements of F∗
q whose lth power is 1 are exactly the roots of xℓ − 1, whereas, all

elements of F∗
q are exactly the roots of xq−1 − 1. So, for a random element c of F∗

q

the probability of this element to satisfy cℓ = 1 is ℓ
q−1 = 1

N . Therefore, we form the
following conjecture as stated in (Shipsey & Swart, 2008, Conjecture 1).

Conjecture 1. If P is a point of order N on an elliptic curve E/Fq and
#E(Fq) = q−1 = ℓN where ℓ is even, then

ψq(P ) = 1 in Fq

with probability 1
N .

Remark. To have ψq(P ) = ψ1+ℓN (P ) = ψ1(P ) = 1, the period of the sequence ψn(P )
must divide ℓN , which is not the case in general.

If this conjecture is assumed to be true, then ψq(P )2 has order N with high proba-
bility. Hence, using the equation (3.6) we can solve for k modulo N in Fq with the
index calculus method.

3.5 Attack For Trace 1+√
q Curves
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We will develop a similar attack to the one presented in the previous section in
order to reduce the ECDLP to a DLP by using division polynomials which form
an elliptic divisibility sequences in particular. Let E/Fq be an elliptic curve where
char(Fq) = p, and we are given the points P,Q = kP on E(Fq) with k ∈ Z+ and
asked to recover k. Assume that the order of P is a large prime, denoted as N , so
that E(Fq) = ℓN with ℓ being small. The assumption on the size of ℓ is required for
the Conjecture 2 which explains the success probability of the algorithm. We will
set #E(Fq) = q−r and find out for which values of r the attack might be successful.
Additionally, we assume p ̸= 2 to make ℓ even. This is also assumed for the sake of
the argument about success probability of the algorithm.

The key idea of the algorithm to be presented relies on the following

#E(Fq) = q− r =⇒ qP = rP =⇒ ψn(qP ) = ψn(rP ) for all n ∈ Z.

So, q and r can be used interchangeably in the coefficients of elements of the group
E(Fq), however, they cannot be used interchangeably in the indices of ψ(P ) terms
in general.

Consider the sequence of division polynomials evaluated at P , i.e., ψn(P ). As in the
previous section by Theorem 2.8.6, since ψkq = ψqk, we can write

(3.7) ψq(P )k
2
ψk(qP ) = ψk(P )q

2
ψq(kP ).

Similarly, since ψ(k+1)q(P ) = ψq(k+1)(P ), we write

(3.8) ψq(P )(k+1)2
ψ(k+1)(qP ) = ψ(k+1)(P )q

2
ψq((k+1)P ).

Here comes the trick, apply the same idea for ψkr = ψrk which is given in the first
line below and compare it with the equation (3.7) which is repeated in the second
line below. Then, arrange both as given on the right hand sides of the implication
symbols.

ψr(P )k
2
ψk(rP ) = ψk(P )r

2
ψr(kP ) =⇒ ψk(rP ) = ψk(P )r2

ψr(kP )
ψr(P )k2 ,

ψq(P )k
2
ψk(qP ) = ψk(P )q

2
ψq(kP ) =⇒ ψk(qP ) = ψk(P )q2

ψq(kP )
ψq(P )k2 .

Note 1. While choosing the value of r for our purposes, we should keep in mind that
ψr(P ) and ψq(P ) should not be zero for above fractional terms to be defined. By
the result (2.26), this condition reduces to N ∤ r and N ∤ q. In fact, satisfying one
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of these will be enough since q− r = ℓN . Moreover, N ∤ q is equivalent to saying
N ̸= char(Fq). Therefore, from now on we are assuming that N ̸= char(Fq) for the
algorithm to work.

As observed previously, we know qP = rP and consequently ψk(rP ) = ψk(qP ), i.e.,

(3.9) ψk(P )r2
ψr(kP )

ψr(P )k2 = ψk(P )q2
ψq(kP )

ψq(P )k2 .

Remark. Notice that even though ψk(rP ) = ψk(qP ), this does not necessarily imply
that ψkr = ψkq. Since satisfying ψkr = ψkq would require ψq = ψr+ℓN = ψr, i.e.,
period of ψn(P ) to divide ℓN , which is not the case in general.

Next, replace ψk(qP ) in the equation (3.7) with the left hand side of the equation
(3.9). (If, instead, we were to do this with the right hand side, we would get a
tautology 1=1). Do the same trick for the quantity ψk+1(qP ) in the equation (3.8).
Hence, after substituting kP with Q, write (3.7) and (3.8) as

ψq(P )k
2ψk(P )r2

ψr(Q)
ψr(P )k2 = ψk(P )q

2
ψq(Q)(3.10)

ψq(P )(k+1)2ψ(k+1)(P )r2
ψr(Q+P )

ψr(P )(k+1)2 = ψ(k+1)(P )q
2
ψq(Q+P ).(3.11)

Dividing the equations (3.10) and (3.11) side by side, we get

(3.12)
(
ψq(P )
ψr(P )

)2k+1
=
(
ψk+1(P )
ψk(P )

)q2−r2

· ψq(Q+P )ψr(Q)
ψq(Q)ψr(Q+P ) .

Recall that in Note 1 by assuming N ̸= char(K), we ensured that ψr(P ) and, con-
sequently, ψr(Q+P ) are nonzero. Now, there are four requirements to be satisfied
by r for the algorithm to be successful in reducing the ECDLP to a DLP, namely,

Requirement 1. r must satisfy the Hasse Bound (Theorem 2.9.1).

Requirement 2. q−1 | q2 − r2 so that
(
ψk+1(P )
ψk(P )

)q2−r2

= 1.

Requirement 3. Elliptic curves of order q− r must exist (Theorem 2.9.5).

Requirement 4. Order of
(
ψq(P )
ψr(P )

)2
must be N with high probability.

Requirement 1. Note that trace of an elliptic curve with #E(Fq) = q− r is r+ 1.
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Hence, due to Theorem 2.9.5, it must satisfy

(3.13) −2√
q−1 ≤ r ≤ 2√

q−1.

Requirement 2. In the following discussion, we investigate the possible values for r so
that q−1 | q2 −r2. Also, we assume that q2 −r2 > 0 because q2 −r2 = 0 means r= q

and ψq(P )
ψr(P ) = 1, which immediately results in failure of the algorithm. Obviously, the

remainders must be 0 in all cases below since we aim q−1 | q2 − r2. This is how we
decide the possible values for r in each case. All possible cases are given in Table 3.2
where n is a positive integer such that the quotient and remainder will be positive,
quotient is greater than the remainder, and corresponding r should satisfy (3.13).
(So, in Case 3 the value of r = ±

√
(n+1)q−n is not valid for all n as it needs to

satisfy further conditions.)

q2 − r2 = divisor · quotient + remainder r

Case 1 q2 − r2 = (q−1) · (q+1) + (1− r2) ±1
Case 2 q2 − r2 = (q−1) · q + (q− r2) ±√

q

Case 3 q2 − r2 = (q−1) · (q−n) + (n+1)q− r2 −n ±
√

(n+1)q−n

Table 3.2 Possible values for r such that q−1 | q2 − r2

In Case 1, the possible values for r satisfy the bounds given in (3.13). When r = 1,
the equation (3.12) becomes same with (3.5) since ψ1 = 1. Hence, this subcase
corresponds to the attack presented in the previous section. When r= −1, the term
ψq(P )2 becomes 1. Hence, the algorithm fails.

In Case 3, the possible values for r are of the form ±
√

(n+1)q−n. We know that
r must be an integer, so this condition becomes very restrictive. Additionally, as
n grows the bounds (3.13) are not satisfied, more precisely, when n = 1,2,3 it is
satisfied but when n= 4 they are not satisfied for the positive value of r. For these
reasons, we will not investigate this case in more detail. We continue by elaborating
the Case 2.

In Case 2, the values for r are ±√
q. Both √

q and −√
q satisfy the bounds (3.13).

From now on, we will investigate whether the algorithm can be successful for r= √
q.

Note 2. As r must be an integer, in the rest we are assuming that q is an even power
of a prime.
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By setting r = √
q, we rewrite the equation (3.12) as follows

(3.14)
(
ψq(P )
ψ√

q(P )

)2k+1
=
ψq(Q+P )ψ√

q(Q)
ψq(Q)ψ√

q(Q+P ) .

Notice that by Theorem 2.8.6, we can write

ψq(P )
ψ√

q(P ) =
ψ√

q
√
q(P )

ψ√
q(P ) =

ψ√
q(P )q ·ψ√

q(
√
qP )

ψ√
q(P ) =ψ√

q(P )q−1 ·ψ√
q(

√
qP ) =ψ√

q(
√
qP ).

Therefore, the equation (3.14) becomes

(3.15)
(
ψ√

q(
√
qP )2

)k
=

ψ√
q

(√
q(Q+P )

)
ψ√

q(
√
qP ) ·ψ√

q(
√
qQ) .

The quantities on the right hand side can be calculated in O(logq) operations in Fq.
So, we have a discrete logarithm problem αk = β in Fq, which can be solved for k
modulo the order of ψ√

q(
√
qP )2 in Fq.

Requirement 3. When r is set to be √
q, there exist an elliptic curve of size q−r= q−

√
q by Theorem 2.9.5 since trace t of the curve becomes √

q+1 and gcd(t,char(Fq)) =
1.

Requirement 4. We will investigate the probability of order of
(
ψq(P )
ψr(P )

)2
being N ,

i.e., the success probability of the algorithm. As we set r = √
q, it is equivalent to

investigating the probability of order of ψ√
q(

√
qP )2 being N . We will do this by first

observing that the order of ψ√
q(

√
qP )2 is a divisor of N , and then we will conclude

by Conjecture 2 that it is not 1, which means it is N , with high probability.

In general, recall that q− r = ℓN and ℓ is even when q is assumed to be not a
power of 2. Then by using assumptions and Theorem 2.9.8, we deduce the following
sequence of equalities.

ψq(P )
ψr(P ) = ψr+ℓN (P )

ψr(P ) (q− r = ℓN)

= crℓdℓ
2

(Theorem 2.9.8)

= crℓc
Nℓ2

2 (d2 = cN and ℓ is even)

= cℓ(r+
Nℓ
2 )

= c
ℓ
2 (q+r) (q− r = ℓN).
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Therefore, we get
(
ψq(P )
ψr(P )

)2
= cℓ(q+r). When this quantity is raised to the power N ,

cℓN(q+r) = c(q−r)(q+r) = cq
2−r2

.

Moreover, if Requirement 2 is satisfied, then cq2−r2 = 1 which implies that the order
of
(
ψq(P )
ψr(P )

)2
is a divisor of N . If it is not 1, then it must be N since N is a prime.

Let g denote the gcd(ℓ(q+ r), q− 1). The elements of F∗
q which becomes 1 when

raised to the power ℓ(q+ r) are the ones whose order is a divisor of g. These are
exactly the roots of xg − 1, whereas, all elements of F∗

q are exactly the roots of
xq−1 − 1. So, for a random element c of F∗

q , the probability of cℓ(q+r) = 1 is g
q−1 . If

r is set to be √
q, then ℓ(q+ r) = q(q−1)

N and the respective probability is

g

q−1 where g =


q−1
N if N ̸= char(Fq)

q−1 otherwise.

Hence, we form the following conjecture by including the assumptions given by Note
1 and Note 2 to satisfy all the requirements for the case that r = √

q.

Conjecture 2. Let E/Fq be an elliptic curve of size q− √
q where char(Fq) ̸= 2.

Also, let P ∈ E be a point of order N where N is a large prime. If we suppose that
q is an even power of a prime and N ̸= char(Fq), then

ψ√
q(

√
qP )2 = 1 ∈ Fq

with probability 1
N .

If this conjecture is assumed to be true, then ψ√
q(

√
qP )2 has order N with high

probability. Hence, using the equation (3.15) we can solve for k modulo N in Fq by
using the index calculus method. Therefore, the algorithm would be successful with
high probability for elliptic curves satisfying the assumptions of Conjecture 2.

Example. Let E be an elliptic curve

y2 = x3 +x+w125

defined over the field F23(w) where w2 −2w+5 = 0, and P be the point (w41,w486).
Then #E(F23(w)) = 232 −23 and P has order 11, which is different than char(F23)
and is a divisor of #E(F23(w)). Let Q= kP = (w435,w215) ∈E(F23(w)). We want to
find k. Since the setup satisfies all the assumptions of the algorithm when

(
ψq(P )
ψr(P )

)2
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is not 1, the value of k is equivalent to the smallest value of k satisfying

(3.16)
(
ψq(P )
ψr(P )

)2k+1
=
(
ψk+1(P )
ψk(P )

)q2−r2

· ψq(Q+P )ψr(Q)
ψq(Q)ψr(Q+P )

where r = 23 and q = 232.

By calculating Q+P = (w418,w231) and replacing values of P,Q,r,q, the equation
(3.16) is becomes

(
ψ232(w41,w486)
ψ23(w41,w486)

)2k+1
= ψ232(w418,w231)ψ23(w435,w215)
ψ232(w435,w215)ψ23(w418,w231)

which reduces to

42k+1 = 3 in F23(w), i.e.,(3.17)

16k = 18 in F23(w).(3.18)

When the DLP in (3.18) is solved, the smallest value of k is found to be 7 as expected.
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4. ELLIPTIC CURVES OVER Z/NZ

Elliptic curves modulo large integers have also been proposed for cryptography with
the motivation that the security of the cryptosystems might be improved by adding
another hard problem, namely the integer factorization problem. Therefore, it is
natural to develop the theory of elliptic curves over Z/NZ for N ∈ Z.

Throughout this chapter, R denotes a commutative ring with unity. We will intro-
duce some preliminaries to define an elliptic curve E over the ring R. Under certain
conditions, the group E(R) where E is an elliptic curve defined over R forms an
abelian group with a slightly different addition operation because of the existence
of the points whose Z-coordinate is a nonunit element in R. Later, we will fix the
ring R to be Z/NZ and study E(Z/NZ), in particular E(Z/peZ) where p is a prime
and e is a positive integer.

This chapter is based on (Sala & Taufer, 2020).

4.1 Preliminaries

Definition 4.1.1. A finite collection (ai)i∈I of elements of R is called primitive if
it generates R as an R-ideal, i.e.,

if there exists ri ∈R such that
∑
i∈I

riai = 1.

Remark. In the case that R = Z/NZ, the condition for primitivity boils down to
gcd(N,a1,a2, . . . ,a|I|) = 1.

We will introduce the definitions of minor ideal and strong rank of a matrix in order
to give an equivalence of statements in Theorem 4.1.1 that will be used in creating
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a condition on R to define an elliptic curve over R. In particular, we need to make
sure that the points of the elliptic curve are unique under the projective equivalence
relation, and moreover P1 +P2 defines a unique point under the projective equiva-
lence relation. For a nonnegative integer n, a projective n-space over R, denoted as
Pn(R), is the set of all primitive tuples in Rn+1. We say any two tuples P1,P2 is
projectively equivalent if there exist r ∈R∗ such that P1 = rP2.

Definition 4.1.2. Let n,m ∈ Z≥1 and A ∈ Mn,m(R). For every integer 1 ≤ t ≤
min{n,m}, we define the t-minor ideal It(A) as the ideal generated by the t× t

minors of A. We also define by convention I0(A) = R and for every t > min{n,m}
we set It(A) = (0).

Definition 4.1.3. Let n,m ∈ Z≥1 and A ∈Mn,m(R). We define the strong rank of
A as

rk(A) = max{t ∈ Z≥0 : It(A) ̸= (0)}.

Remark. The strong rank of a matrix is never lower than the usual notion of a rank
of a matrix over a ring.

Theorem 4.1.1. (Sala & Taufer, 2020, Lemma 6) Let n,m∈Z≥1 and A∈Mn,m(R)
be a matrix whose entries are primitive, then the followings are equivalent:

(i) rk(A)=1.

(ii) The 2×2 minors of A vanish.

(iii) All the primitive vectors of Rn that may be obtained from an R-linear combina-
tion among the rows of A are equal up to R∗-multiples.

Condition 4.1.1. For every pair n,m ∈ Z≥1 and every matrix

A= (ai,j) 1≤i≤n
1≤j≤m

∈Mn,m(R)

with strong rank rk(A)=1 and primitive entries, there exists an R-linear combination
of the rows of A whose entries are primitive.

Note that the condition of strong rank can be replaced by any other equivalent
statement in Theorem 4.1.1.

Remark. As it can be found in (Lenstra, 1986, p.2), this condition can be expressed
in terms of R-module or Picard group of R, as well.

Now we are ready to introduce the definition of an elliptic curve over R.
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Definition 4.1.4. Let R be a commutative ring with unity satisfying the Condition
4.1.1, and let E be given by the homogeneous Weierstrass equation

E : Y 2Z+a1XY Z+a3Y Z
2 =X3 +a2X

2Z+a4XZ
2 +a6Z

3

with ai ∈R and ∆(E) ∈R∗. Then the elliptic curve E(R) is the set

{(X : Y : Z) ∈ P2(R) : Y 2Z+a1XY Z+a3Y Z
2 =X3 +a2X

2Z+a4XZ
2 +a6Z

3}.

The point (0 : 1 : 0) ∈E(R) is called the base point and acts as the identity element
of E(R) which is going to be a group under the addition law that is to be define in
the next section. The points in the intersection E(R)∩P2

aff (R), i.e., the ones whose
Z-coordinate is in R∗, are called the affine points of E(R) and denoted by Ea. The
rest of the points in E(R) are called points at the infinity of E(R) and denoted by
E∞.

Remark. For the rest of the chapter, we will assume that 6 ∈ R∗, then equation of
E can be transformed into homogeneous short Weierstrass equation, i.e.,

E : Y 2Z =X3 +AXZ2 +BZ3.

This is assumed only to simplify the exposition; results are valid when 6 ̸∈R∗.

4.2 Addition Laws On E(R)

Let E be an elliptic curve defined over R, in this section we will introduce a group
law, namely addition, on E(R) so that it becomes an abelian group.

In (Lange & Ruppert, 1987), they explicitly exhibited a complete system of addition
laws on elliptic curves defined over a field. By an addition law on elliptic curve E,
we roughly mean a formula that calculates P1 +P2 for some points P1,P2 ∈ E. It
is called a complete system if for any P1 and P2 on the curve, there is at least
one addition law among a collection of addition laws that calculates P1 +P2. Each
addition law that they described consists of polynomials of bidegree (2,2).

Definition 4.2.1. Let u,v ∈ Z+. An addition law of bidegree (u,v) on elliptic curve
E/K means a triple of polynomials X3,Y3,Z3 ∈K[X1,Y1,Z1,X2,Y2,Z2] satisfying
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(i) Each polynomial is bihomogeneous of bidegree (u,v), that is, homogeneous of
degree u in variables X1,Y1,Z1 and homogeneous of degree v in variables X2,Y2,Z2,

(ii) Whenever K ′ is an extension field of K and P1 = (x1 : y1 : z1),
P2 = (x2 : y2 : z2) are in E(K ′), then the elements x3 =X3(x1,y1, z1,x2,y2, z2),
y3 = Y3(x1,y1, z1,x2,y2, z2), and z3 = Z3(x1,y1, z1,x2,y2, z2) of K ′ either satisfy
(x3 : y3 : z3) ̸∈ P2(K ′), or the point P3 = (x3 : y3 : z3) ∈ E(K ′) with P3 = P1 +P2.

More explicitly, the aforementioned complete system of addition laws, consisting
of polynomials of bidegree (2,2), for E/K that is exhibited by (Lange & Ruppert,
1987) are the followings.

Addition Law I.

X ′
3 =(X1Y2 −X2Y1)(Y1Z2 +Y2Z1)+(X1Z2 −X2Z1)Y1Y2

−A(X1Z2 +X2Z1)(X1Z2 −X2Z1)−3B(X1Z2 −X2Z1)Z1Z2

Y ′
3 =−3X1X2(X1Y2 −X2Y1)−Y1Y2(Y1Z2 −Y2Z1)−A(X1Y2 −X2Y1)Z1Z2

+A(X1Z2 +X2Z1)(Y1Z2 −Y2Z1)+3B(Y1Z2 −Y2Z1)Z1Z2

Z ′
3 =3X1X2(X1Z2 −X2Z1)− (Y1Z2 +Y2Z1)(Y1Z2 −Y2Z1)

+A(X1Z2 −X2Z1)Z1Z2

Addition Law II.

X ′′
3 =Y1Y2(X1Y2 +X2Y1)−AX1X2(Y1Z2 +Y2Z1)

−A(X1Y2 +X2Y1)(X1Z2 +X2Z1)−3B(X1Y2 +X2Y1)Z1Z2

−3B(X1Z2 +X2Z1)(Y1Z2 +Y2Z1)+A2(Y1Z2 +Y2Z1)Z1Z2

Y ′′
3 =Y 2

1 Y
2

2 +3AX2
1X

2
2 +9BX1X2(X1Z2 +X2Z1)−A2X1Z2(X1Z2 +2X2Z1)

−A2X2Z1(2X1Z2 +X2Z1)−3ABZ1Z2(X1Z2 +X2Z1)− (A3 +9B2)Z2
1Z

2
2

Z ′′
3 =3X1X2(X1Y2 +X2Y1)+Y1Y2(Y1Z2 +Y2Z1)+A(X1Y2 +X2Y1)Z1Z2

+A(X1Z2 +X2Z1)(Y1Z2 +Y2Z1)+3B(Y1Z2 +Y2Z1)Z1Z2
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Addition Law III.

X ′′′
3 =(X1Y2 +X2Y1)(X1Y2 −X2Y1)+AX1X2(X1Z2 −X2Z1)

+3B(X1Z2 +X2Z1)(X1Z2 −X2Z1)−A2(X1Z2 −X2Z1)Z1Z2

Y ′′′
3 =(X1Y2 −X2Y1)Y1Y2 −3AX1X2(Y1Z2 −Y2Z1)

+A(X1Y2 +X2Y1)(X1Z2 −X2Z1)+3B(X1Y2 −X2Y1)Z1Z2

−3B(X1Z2 +X2Z1)(Y1Z2 −Y2Z1)+A2(Y1Z2 −Y2Z1)Z1Z2

Z ′′′
3 =− (X1Y2 +X2Y1)(Y1Z2 −Y2Z1)− (X1Z2 −X2Z1)Y1Y2

−A(X1Z2 +X2Z1)(X1Z2 −X2Z1)−3B(X1Z2 −X2Z1)Z1Z2

Addition Law I is derived from the algebraic formula for addition corresponding to
Case 3 in Section 2.1. It is done as follows: Replace x-coordinate and y-coordinate
with x/z and y/z, respectively. Then, clear the denominators, and replace x3 with
y2z−axz2 − bz3 whenever necessary. Other addition laws are formed similarly for
other cases.

Remark. When E is defined by long Weierstrass equation, the corresponding poly-
nomials can be found in (Bosma & Lenstra, 1995, Section 5). Also, they explicitly
describe which addition laws are valid for which type of point pairs P1,P2. They
conclude that if B ̸= 0 then Addition Laws II, III are enough to form a complete
system for E/K.

In (Bosma & Lenstra, 1995), they pointed out that coefficients of Weierstrass equa-
tion, namely A and B, enter polynomially into addition laws, hence the same laws
can be used to perform the addition on elliptic curves defined over commutative
rings, namely E(R). In particular, (Lenstra, 1986) showed that how a complete
system of addition laws leads to an efficient algorithm for adding two points on an
elliptic curves defined over a finite ring.

Therefore, for points P1 = (x1 : y1 : z1) and P2 = (x2 : y2 : z2) on E(R) at least one
of these three addition laws will give the point P1 +P2 ∈ E(R). Hence, E(R) will
become an abelian group. In fact, since R is assumed to satisfy Condition 4.1.1 (to
define an elliptic curve) and the matrix (4.1) has the property that all 2×2 minors
vanishes (which is equivalent to saying its strong rank is 1 by Theorem 4.1.1), the
assumptions of the Condition 4.1.1 is satisfied. Consequently, there exists a primitive
R-linear combination of the rows of the matrix (4.1) giving P1 +P2 .

(4.1)


X ′

3 Y ′
3 Z ′

3
X ′′

3 Y ′′
3 Z ′′

3
X ′′′

3 Y ′′′
3 Z ′′′

3
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Example. Let N = 13 ·17 = 221 and set R = Z/NZ, also let

E : Y 2Z =X3 +XZ2 +4Z3.

Then E(R) forms an elliptic curve since its corresponding discriminant is 6 ∈R∗.

Take P1 = (21 : 15 : 1),P2 = (31 : 80 : 1) ∈ E(R). Applying Addition Law I for P1

and P2 results in P3 = (X ′
3 : Y ′

3 : Z ′
3) = (195 : 119 : 116) which is a point in P2(R),

hence consequently in E(R) by the property of the addition law employed. So, we
conclude that P3 = P1 +P2.

Moreover, applying Addition Law II for P1 and P2 results in (X ′′
3 : Y ′′

3 : Z ′′
3 ) =

(52 : 119 : 142) = 66(195 : 119 : 116), so the point (52 : 119 : 142) corresponds to
P3 in P2(R). However, applying Addition Law III for P1 and P2 results in
(X ′′′

3 : Y ′′′
3 : Z ′′′

3 ) = (0 : 187 : 17) which is not in P2(R). So, Addition Law III is
not valid for P1 and P2.

4.3 Elliptic Curves Over Z/NZ

From now on, we set R = Z/NZ.

Theorem 4.3.1. Let N ∈ Z≥2 be an integer and A be a matrix over Z/NZ whose
entries are primitive, then there exists a linear combination of the rows of A that is
primitive. In particular, Z/NZ satisfies Condition 4.1.1.

Proof. Let r1, r2, . . . , rn denote the rows of the matrix A with entries in Z/NZ, and
assume that A is primitive. Since A is primitive, for every prime p dividing N there
are scalars α(p)

1 ,α
(p)
2 , . . . ,α

(p)
n ∈ Z/NZ such that

v(p) =
n∑
i=1

α
(p)
i ri

is primitive over Z/pZ. By the Chinese Remainder Theorem we can find integers
β1,β2, . . . ,βn ∈ Z solving, for every prime p dividing N , the congruence system

βi ≡ α
(p)
i for all i= 1,2, . . . ,n.

Hence, ∑n
i=1βiri becomes a primitive linear combination of rows of A.
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Therefore, we can define elliptic curves defined over Z/NZ, and study their prop-
erties. Moreover, due to the Proposition 4.3.1, it is enough to study elliptic curves
over Z/pvp(N)Z where p is a prime divisor of N . We can simply denote this type of
a group by Z/peZ where p is any prime and e is any positive integer.

Proposition 4.3.1. (Washington, 2008, Corollary 2.32) Let N1,N2 be integers such
that gcd(N1,N2) = 1, and let E be an elliptic curve defined over Z/N1N2Z. Then
the canonical projections induce a group isomorphism

E(Z/N1N2Z) ∼= E(Z/N1Z)×E(Z/N2Z)

since

Y 2Z ≡X3 +AXZ2 +BZ3 (mod N1N2)

⇐⇒

Y
2Z ≡X3 +AXZ2 +BZ3 (mod N1)

Y 2Z ≡X3 +AXZ2 +BZ3 (mod N2)

The points of the group E(Z/peZ) has distinct type of representatives for the ones
belonging to Ea and for the others belonging to E∞. Corresponding representatives
for each set is given in the next theorem.

Lemma 4.3.2. Let p be a prime and e ∈ Z+. For P = (X : Y : Z) ∈ E(Z/NZ),
 there are X,Y ∈ Z/peZ such that P = (X : Y : 1) if P ∈ Ea,

there are X,Z ∈ p(Z/peZ) such that P = (X : 1 : Z) if P ∈ E∞.

Proof. Let P = (X ′ : Y ′ : Z ′) ∈ E(Z/peZ). If P ∈ Ea, then by definition of E∞ we
have gcd(Z ′,p) = 1. So, we can normalize the point P by the Z-coordinate as
P =

(
X ′

Z′ : Y
′

Z′ : 1
)

= (X : Y : 1). On the other hand, if P ∈ E∞ then by definition of
E∞ we have gcd(Z ′,p) ̸= 1 which is equivalent to saying p |Z ′. Observe the following
implications

p | Z ′ =⇒ Y ′2Z ′ −AX ′Z ′2 −BZ ′3 ≡ 0 (mod p),

P ∈ E(Z/peZ) =⇒ Y ′2Z ′ −X ′3 −AX ′Z ′2 −BZ ′3 ≡ 0 (mod p).

Combining these two observations yields that X ′3 ≡ 0 (mod p), consequently
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X ′ ≡ 0 (mod p). Hence, we conclude that X ′,Z ′ ∈ p(Z/peZ). Moreover,

P ∈ E(Z/peZ) =⇒ P is primitive =⇒ gcd(p,X ′,Y ′,Z ′) = 1 =⇒ p ∤ Y ′.

Therefore, we can normalize the point P by the Y -coordinate as P =
(
X ′

Y ′ : 1 : Z
′

Y ′

)
=

(X : 1 : Z).

Computing the size of the group E(Z/peZ) reduces to computing the size of E(Fp)
as stated in the next lemma. This reduction happens by means of the canonical
projection map.

Lemma 4.3.3. (Lenstra, 1986, Section 4) Let p be a prime, e be a positive integer
and

(4.2) π : E(Z/peZ) → E(Fp)

be the canonical projection, that reduces the coordinates of points in E(Z/peZ) mod-
ulo p. Then for each point P ∈ E(Z/peZ), we have

|π−1(P )| = pe−1.

In particular,

(i) |E(Z/peZ)| = pe−1|E(Fp)|,

(ii) Kerπ is a subgroup of E(Z/peZ) with size pe−1.

Remark. Observe that by definition E∞ corresponds to the Kerπ. Hence, E∞ forms
a subgroup of E(Z/peZ).

The next result admits a certain form of a point that represents the points at infinity
of E(Z/peZ), namely E∞. The idea of creating this form of a point relies on the
theory of formal groups (Silverman, 2009, Chapter IV) which studies the structure
of an elliptic curve around O.

Proposition 4.3.2. Let p be a prime, e be a positive integer and E/Z/peZ be an
elliptic curve. Then there is a polynomial f ∈ Z[x] of degree at most e−1 such that
for every P ∈ E∞ there is X ∈ p(Z/peZ) satisfying

P = (X : 1 : f(X)).
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Moreover, the polynomial f satisfies

f(X) ≡X3 +AX7 +BX9 (mod p10).

Proof. By Lemma 4.3.2, we know that P ∈E∞ is of the form (X : 1 :Z) with X,Z ∈
p(Z/peZ). Define a sequence (Fi) by the initial condition F0(x,z) = x3 +Axz2 +Bz3

and recurrence relation Fi(x,z) = Fi−1(x,F0(x,z)) for i ≥ 1. By induction, we will
prove that

Z ≡ Fi(X,Z) (mod pe) for all i≥ 0.

For the basis step, set i= 0 and observe that P ∈ E(Z/peZ) implies that

Z ≡X3 +AXZ2 +BZ3 (mod pe) ≡ F0(X,Z) (mod pe).

For the induction step, suppose that Z ≡ Fk(X,Z) (mod pe) for some k ≥ 1, then

Fk+1(X,Z) = Fk(X,F0(X,Z)) ≡ Fk(X,Z) (mod pe) ≡ Z (mod pe).

Now, notice that by the definition of the recurrence relation each Fi is obtained
from Fi−1 by replacing all z’s with F0(x,z) = x3 +Axz2 + bz3, which consists of
terms of degree 3 only. Hence, the total degree of the terms involving z in Fi is
strictly increasing. This means that there exists an integer N ≥ 0 and a polynomial
g ∈ Z[x,z] such that we can write

FN (x,z) = f(x)+g(x,z) with degg ≥ e and degf < e.

Since X,Z ∈ p(Z/peZ), we get g(X,Z) ≡ 0 (mod pe) and consequently

Z ≡ FN (X,Z) (mod pe) ≡ f(X) (mod pe).

Hence, we have shown that P = (X : 1 : f(X)) for some X ∈ p(Z/peZ) and f ∈ Z[x]
of degree at most e−1.
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F2(X,Z) =F1(X,F0(X,Z)) = F0(X,F0(X,F0(X,Z)))

=F0(X,F0(X,X3 +AXZ2 +Z3))

=F0(X,X3 +AX(X3 +AXZ2 +Z3)2 +(X3 +AXZ2 +Z3)3)

=X3 +AX
(
X3 +AX(X3 +AXZ2 +Z3)2 +(X3 +AXZ2 +Z3)3

)2

+
(
X3 +AX(X3 +AXZ2 +Z3)2 +(X3 +AXZ2 +Z3)3

)3

=X3 +AX7 +BX9 + (terms of degree ≥ 11)

and the fact that X,Z ∈ p(Z/peZ).

By using the polynomial f ∈ Z[x] in Proposition 4.3.2, we will derive an approxima-
tion for the sum of two points at infinity.

Proposition 4.3.3. (Sala & Taufer, 2020, Proposition 16) Let p be a prime, e be
a positive integer and E(Z/peZ) be an elliptic curve. Also, let f be the polynomial
in the Proposition 4.3.2 for the respective E(Z/peZ). If

P1 = (X1 : 1 : f(X1)),P2 = (X2 : 1 : f(X2)) ∈ E∞

with e1 = vp(X1) and e2 = vp(X2), then

P1 +P2 = (X3 : 1 : f(X3)) where X3 ≡X1 +X2 (mod p5min{e1,e2}).

The key ingredient of the attack for ECDLP described in Section 4.3.1 is the short
exact sequence defined in the next theorem.

Theorem 4.3.4. Let p be a prime, e be a positive integer and E(Z/peZ) be an elliptic
curve. Also, let f be the polynomial defined in Proposition 4.3.2 corresponding to
E(Z/peZ). Then

0 → ⟨(p : 1 : f(P ))⟩ ι
↪−→ E(Z/peZ) π→ E(Fp) → 0

is a short exact sequence of groups.

Proof. Clearly, ι is an injective group homomorphism. Also, π in (4.2) is the canon-
ical projection, in particular it is a surjective group homomorphism. Therefore, we
only need to show that Im ι = Kerπ, i.e., ⟨(p : 1 : f(P ))⟩ = Kerπ. In fact, we know
that |Kerπ| = pe−1 by Lemma 4.3.3 and P = (p : 1 : f(p)) ∈ Kerπ by Proposition
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4.3.2. Therefore, it is enough to prove that P has order pe−1, i.e., it is the generator
of Kerπ.

We will prove by induction that

pkP = (X : 1 : f(X)) and vp(X) = k+1 for 0 ≤ k−1 ≤ e−1.

For the basis step, set k = 0, then pkP = P = (p : 1 : f(P )) and vp(p) = 1 = k+1.
For the induction step, suppose that pkP = (X : 1 : f(X)) and vp(X) = k+ 1 for
some k ∈ {0,1, . . . , e− 1}. Now, observe that by Proposition 4.3.3 and induction on
α ∈ {1,2, . . . ,p−1}, we get

P = (X : 1 : f(X)) =⇒ αP = (Xα : 1 : f(Xα)) where Xα ≡ αX (mod p5vp(X))

=⇒ vp(Xα) = vp(X).

Then,

pk+1P = p(pkP )

= p(X : 1 : f(X)) and vp(X) = k

= (X : 1 : f(X))+(p−1)(X : 1 : f(X))

= (X : 1 : f(X))+(X ′ : 1 : f(X ′)) where X ′ ≡ (p−1)X (mod p5k)

= (X ′′ : 1 : f(X ′′)) where X ′′ ≡X+X ′ (mod p5k) ≡ pX (mod p5k)

where the second equality follows from the inductive hypothesis, fourth one follows
from the observation, and last one follows from Proposition 4.3.3 and the fact that
k= min{vp(X),vp(X ′)}. By this chain of equalities, we conclude that vp(X ′′) = k+1.
This concludes the induction step. Hence, the result follows.

This result implies that E(Z/peZ) ∼= E(Fp) ⊕Z/peZ when |E(Fp)| ≠ p as shown in
(Sala & Taufer, 2020, Corollary 18). Hence, they classified the group structure of
E(Z/peZ) when E(Fp) is not anomalous, and they also provided the possible group
structures of E(Z/peZ) when E(Fp) is anomalous. Due to the Proposition 4.3.1,
they stated the group structure of E(Z/NZ) as given in the next result.

Theorem 4.3.5. (Sala & Taufer, 2020, Theorem 20) Let N be a positive integer
and E be an elliptic curve defined over Z/NZ. Then

E(Z/NZ) ∼=
⊕
p|N

|E(Fp)|̸=p

E(Fp)⊕Z/pvp(N)−1Z⊕
⊕
p|N

|E(Fp)|=p

Gp.
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In particular,

E(Z/peZ) ∼=

 E(Fp)⊕Z/pe−1Z if |E(Fp)| ̸= p

Fp⊕pe−1Z or Z/peZ if |E(Fp)| = p.

4.3.1 Attack For Anomalous Curves

As we have seen E(Fq) is isomorphic to Z/n1Z×Z/n2Z with n1 | n2 by Theorem
2.9.4. So, one way to solve the ECDLP, computing k when given P,Q= kP ∈E(Fq),
is finding an explicit isomorphism map f between E(Fq) and Z/n1Z×Z/n2Z since
the problem might be solved by computing f(kP )/f(P ) = k.

In Chapter 3, we presented some of the attacks to solve the ECDLP under certain
conditions. In particular, in Section 3.2 we presented an attack for the elliptic curve
E/Fp satisfying #E(Fp) = p. In this section, we will present another attack for
the ECDLP resulted by this type of curves. The attack is due to (Sala & Taufer,
2020). This attack is worth to mention since it provides an explicit isomorphism
map between E(Fp) and Fp by using the group E(Z/peZ) as an intermediate object
in the case that E(Z/peZ) ∼= Z/peZ. So, in order to solve the ECDLP, we assume
that #E(Fp) = p and E(Z/peZ) ∼= Z/peZ.

The key idea of the algorithm is that the cyclic group E(Z/peZ) projects on E(Fp)
by a nontrivial map as given in the next theorem.

Theorem 4.3.6. Let p be a prime and e ≥ 2 be an integer. Also, let E(Z/peZ) be
an elliptic curve such that E(Z/peZ) ∼= Z/peZ. Then the map

Θ: E(Z/peZ) → Fp

P 7→ 1
pe−1

(pe−1P )x
(pe−1P )y

is a well-defined surjective group homomorphism whose kernel is

KerΘ = ⟨(p : 1 : f(P ))⟩

where f ∈ Z[x] is the polynomial defined in Proposition 4.3.2.

Proof. For any P ∈ E(Z/peZ), we have peP =O. This implies pe−1P is a p-torsion
point of E(Z/peZ), in particular it is in E∞ = Kerπ. By the observation done in
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the proof of Proposition 4.3.4, we conclude that

pe−1P = (X : 1 : f(X)) with vp(X) ≥ e−1.

Therefore, for the chosen representative of P , we get pe−1 | (pe−1P )x and
(pe−1P )y = 1. Hence, Θ is well-defined.

E(Z/peZ) is a cyclic group, let G be a generator for the group. Then pe−1G =
(X ′ : 1 : f(X ′)) by the same reasoning as above, in particular pe−1G∈ ⟨(pe−1 : 1 : 0)⟩.
Then by Proposition 4.3.2 and applying induction, we conclude that for any m ∈ Z,
mpe−1G=m(X ′ : 1 : f(X ′)) = (mX ′ : 1 : f(mX ′)). Therefore,

Θ(mG) = 1
pe−1

(mX ′)x
1 =m

1
pe−1

(X ′)x
1 =mΘ(G).

So, Θ is a group homomorphism.

E(Z/peZ) is a cyclic group of size pe, hence it has a unique subgroup of size pe−1,
namely ⟨pG⟩. Observe that

P ∈ KerΘ ⇐⇒ pe−1P =O ⇐⇒ P ∈ ⟨pG⟩.

Therefore, KerΘ has size pe−1 and is cyclic. Since by Proposition 4.3.4 we know that
⟨(p : 1 : f(P ))⟩ generates a subgroup of order pe−1 and is cyclic, these two subgroups
coincide. Hence, KerΘ = ⟨(p : 1 : f(P ))⟩.

By first isomorphism theorem, since Θ is a group homomorphism

E(Z/peZ)/⟨(p:1:f(P ))⟩ ∼=Z/peZ /Z/pe−1Z
∼= Fp ∼= ImΘ.

So, we can say that Θ is surjective.

Theorem 4.3.6 has an important consequence. Let P,Q(= kP ) be points in E(Fp),
lift them to E(Z/peZ). If E(Z/peZ) satisfies the assumptions of Theorem 4.3.6,
then apply the map Θ on these liftings. Dividing image of the latter by the image
of the former will solve for k, consequently the ECDLP will be solved. The process
defined works due to the isomorphism between E(Fp) and Fp, for which the explicit
map is given in the next theorem.

Corollary 4.3.6.1. Let p be a prime and e ≥ 2 be an integer such that the elliptic
curve E/Z/peZ satisfies E(Z/peZ) ∼= Z/peZ. Then the map

Θ◦π−1 : E(Fp) → Fp
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is a well-defined group isomorphism.

Proof. The short exact sequence given in Proposition 4.3.4 induces an isomorphism
E(Z/peZ)/⟨(p:1:f(P ))⟩

π∼= E(Fp). Also, as we observed in the proof of Theorem 4.3.6,

the map Θ induces an isomorphism E(Z/peZ)/⟨(p:1:f(P ))⟩
Θ∼= Fp. By composing Θ and

π−1, the result follows.

The key assumption in constructing this isomorphism, in particular in constructing
the map Θ given in Theorem 4.3.6 was that E(Z/peZ) ∼= Z/peZ. This observation
suggests that for achieving strong ECDLP, one should consider elliptic curves violat-
ing this assumption, i.e., E(Z/peZ) being isomorphic to direct sum of two nontrivial
groups.
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