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Abstract

Linear codes with small hull dimension have been of interest due to their applica-

tions to various problems in coding theory and cryptography. Linear complementary

dual codes, which are codes with zero hull dimension, and their generalization called

linear complementary pair of codes have also been studied widely in the literature. We

study these notions for quasi-cyclic codes. We show that all admissible hull dimensions

for quasi-cyclic codes, according to their CRT decomposition, are attained. We pay

particular attention to double and four circulant codes, which are one and two gen-

erator quasi-cyclic codes of special form. We formulate the hull dimension for these

families in terms of the polynomials involved in their generating elements. We obtain

results on possible hull dimensions, such as the hull of a four circulant code being even

and the nonexistence of hull dimension one double circulant codes over Fq if q ≡ 3

(mod 4). We present numerical results on the parameters of double and four circulant

codes with extra conditions, such as having fixed small hull dimension or being com-

plementary dual. We also enumerate double and four circulant codes with zero or the

smallest possible positive hull dimension and prove that double circulant codes with

zero or one hull dimension are asymptotically good.



BAZI SANKİ-DEVİRSEL KODLARIN KABUKLARI VE BÜTÜNLEYİCİ

ÖZELLİKLERİ

Zohreh Aliabadi

Matematik, Doktora Tezi, Temmuz 2022

Tez Danışmanı: Prof. Dr. Cem Güneri

Anahtar Kelimeler: Kod kabuğu, doğrusal bütünleyici dual kod, doğrusal bütünleyici

kod çifti, sanki-devirsel kod, çift devirli kod, dört devirli kod.

Özet

Küçük kabuk boyutuna sahip doğrusal kodlar, kodlama teorisinde çeşitli problem-

lere ve kriptografiye uygulamaları sebebiyle ilgi çekmektedirler. Sıfır kabuk boyu-

tuna sahip doğrusal bütünleyeci dual kodlar ve genellemeleri olan doğrusal bütünleyici

kod çiftleri de literatürde çokça çalışılmaktadırlar. Bu tezde bahsi geçen kavramlar

sanki-devirsel kodlar için çalışılmıştır. Sanki-devirsel kodların CRT parçalanışlarına

göre mümkün olan tüm kabuk boyutlarının realize edildikleri gösterilmiştir. Bu kod

ailelerinin kabuk boyutları, üreteçlerinde yer alan polinomlar cinsinden ifade edilmiştir.

Dört devirli kodların çift boyutlu kabukları olması, Fq üzerinde tanımlı çift devirli

kodlar için q ≡ 3 (mod 4) durumunda 1 boyutlu kabuğun mümkün olmaması gibi

kabuk boyutlarına dair sonuçlar elde edilmiştir. Küçük kabuk boyutlu olmak, doğrusal

bütünleyici dual gibi ek şartlar sağlayan çift ve dört devirli kodların sayıları verilmiş,

ayrıca 0 ve 1 kabuk boyutlu çift kodların asimptotik olarak iyi oldukları gösterilmiştir.
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�Introduction

The hull of a linear code C is defined as C ∩ C⊥, where C⊥ is the Euclidean dual

code. The hull can also be defined with respect to other inner products, such as the

Hermitian inner product, if C is defined over a finite field Fq with square cardinality.

This concept was introduced by Assmus and Key in ([?]) in order to classify finite

projective planes. The hull of a linear code has found applications such as determin-

ing permutation equivalence between codes, determining the automorphism group of a

code and construction of quantum error-correcting codes ([?], [?], [?], [?]).

Sendrier determined the number of linear codes with given hull dimension in [?], where

he also showed that the hull dimension is usually small. He also proved that linear

codes with fixed hull dimension meet the Gilbert-Varshamov Bound ([?]). We also refer

to [?], where the hull of algebraic code families, namely cyclic and negacyclic codes,

are investigated.

For applications, codes with small hull dimension are desired. The smallest positive

hull dimension is 0, and codes having trivial hull are called linear complementary dual

(LCD) codes. LCD codes were introduced by Massey in [?], where he also showed that

this class of codes is asymptotically good. Of course, Sendrier’s stronger asymptotic

observation mentioned above also implies this. Note that the name LCD is justified,

since C ⊕ C⊥ = Fn
q for an LCD code C ⊆ Fn

q . Let us note that LCD codes have been

generalized to linear complementary pair (LCP) of codes, where a pair (C,D) of linear

codes in Fn
q is called LCP if C ⊕D = Fn

q . Note that an LCD code amounts to (C,C⊥)

being LCP.

There is yet another motivation to study LCD and LCP of codes, which stem from

cryptography. It has been observed that certain cryptosystems, which are defined via

linear codes, are more secure against attacks if one uses LCD or LCP of codes in their

construction ([?], [?], [?]). The security parameter of an LCP (C,D) of codes is defined
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as min{d(C), d(D⊥)}, which is simply d(C) in the case of LCD codes. LCD and LCP

of codes have been very actively studied in the recent literature ([?], [?], [?], [?], [?],

[?], [?], [?]).

The next smallest possible hull dimension is 1 and due to above-mentioned motivations,

construction of codes with 1 dimensional hull also found interest in recent literature

([?], [?], [?]).

This thesis studies concepts described above for general and also some special classes of

quasi-cyclic (QC) codes. QC codes are natural generalization of the well-known family

of cyclic codes. A linear code C is called QC of index l if it is closed under l-shift of

codewords, and l is the smallest such number. The case l = 1 clearly amounts to cyclic

codes. Like cyclic codes, QC codes also come with nice algebraic structure ([?], [?]).

Finally, double and four circulant codes are special types of QC codes. We prove results

on hulls and LCD/LCP classes for aforementioned code families. We also present some

numerical results on the parameters of codes studied.

Chapter 1 introduces the required background on the hull of linear codes and LCD/LCP

codes. Chapter 2 starts by introducing QC codes and their CRT decomposition. De-

composition of the code and its dual yield a natural formula for the hull dimension

of a QC code. The rest of this chapter is devoted to showing that all admissible hull

dimensions for a QC code are attained. Chapter 3 studies special classes of QC codes,

namely double-circulant (DC) and four-circulant (FC) codes. For general 1-generator

QC codes, results on their hull dimension and LCD/LCP features are proved. Results

on these concepts are also obtained for DC and FC codes, as well as the enumeration

of DC code, with small hull dimension and the asymptotic consequences. Chapter 3

also provides numerical result on the code families studied.
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CHAPTER 1

�Background

We give basic definitions and facts on linear codes, which will be used in the thesis.

Throughout the thesis Fq denotes a finite field with q elements.

1.1 Linear Codes and Their Duals

For x ∈ (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
q , the Hamming distance is defined as

d(x, y) := #{1 ≤ i ≤ n ; xi ̸= yi}.

The Hamming weight of an element is defined as

wt(x) := d(x, 0) = #{1 ≤ i ≤ n ; xi ̸= 0}.

An [n, k, d] linear code over Fq is a k-dimensional linear subspace of Fn
q with minimum

distance d. The minimum distance is defined by

d = d(C) := min{d(x, y) ; x, y ∈ C , x ̸= y}.

For a linear code it is easy to see that the minimum distance is the same as the minimum

weight among nonzero elements of the code.

The dual C⊥ of a linear code can be defined with respect to various inner products
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on Fn
q . C⊥ is another linear code, whose dimension is n− k. We will be interested in

Euclidean and Hermitian duals in this thesis, which are defined as follows:

C⊥ := {x ∈ Fq ; < c, x >=
n∑

i=1

cixi = 0 ∀c ∈ C}

C⊥h := {x ∈ Fn
q2 ; < c, x >h=

n∑
i=1

cix̄i = 0 ∀c ∈ C}

We note that Hermitian dual is only defined over a square field Fq2 . We also note that

ā denotes the Fq-conjugate aq for an element a ∈ Fq2 .

A k × n matrix G, whose rows consist of basis elements of an [n, k] linear code C, is

called a generator matrix of C. A (n − k) × n generator matrix H for the dual code

C⊥ is called a parity check matrix of C. It is clear that we have

GHT = 0.

If G = [Idk : A] is a generator matrix in systematic form, then we have H =

[−AT : Idn−k]. Note that the parity check matrix for the Hermitian inner product is

H̄ = [−ĀT : Idn−k], where Ā denotes the matrix obtained from A by Fq-conjugate in

each entry.

1.2 Hull of a Linear Code

Let C be an [n, k, d]q linear code. Hull of C is defined as

Hull(C) := C ∩ C⊥.

Let h(C) = dim(Hull(C)). If q is square one can define the Hermitian hull of C as

Hullh(C) := C ∩ C⊥h

and denote its dimesion by hh(C) = dim(Hullh(C)).

Proposition 1.2.1. (Proposition 3.1 [?])

i: Let C be an [n, k]q linear code with generator matrix G and parity check matrix

H. Then

h(C) = k − rank(GGT ).
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ii: Let C be an [n, k]q2 linear code with generator matrix G and parity check matrix

H. Then

hh(C) = k − rank(GḠT ).

We will denote the dimension of the intersection of C1∩C⊥
2 for two linear codes C1

and C2 by h(C1, C2). Note that h(C) = h(C,C).

Proposition 1.2.2. (Theorem 2.1 [?]): For i ∈ {1, 2}, let Ci be a linear [n, ki]q code

with parity check matrix Hi and generator matrix Gi. If dim(C1, C2) = ℓ, then

rank(G1H
T
2 ) = k1 − ℓ,

and

rank(G2H
T
1 ) = k2 − ℓ.

As a consequence of Proposition ??, we can write

h(C1, C2) = k1 − rank(G1G
T
2 ) and h(C2, C1) = k2 − rank(G2G

T
1 )

1.3 LCD and LCP of Linear Codes

Definition 1.3.1. i: An [n, k]q linear code is called a linear complementary dual

(LCD) code, if Hull(C) = {0}.

ii: A pair (C,D) of linear codes of length n over Fq is called linear complementary

pair (LCP) of codes if C ⊕D = Fn
q .

Note that LCP of codes can be considered as a generalization of LCD codes. Namely

if C is an LCD code, the pair (C,C⊥) is LCP.

The following is a consequence of Proposition ?? and ??. We note that the character-

ization of LCD codes in (i) was first given by Massey in ([?]).

Proposition 1.3.1. i: A linear code C with a generator matrix G is LCD if and

only if GGT is non-singular.

ii: Let Ci be an [n, ki] linear code, for i = 1, 2, with generator and parity check

matrices Gi, Hi, respectively. Then (C1, C2) is LCP of codes if and only if k1 +

k2 = n and G1H
T
2 is non-singular.

5



LCD and LCP of codes drew attention recently due to their cryptographic appli-

cations ([?], [?]). In this respect, the security parameter of an LCP (C,D) of codes is

defined as

min{d(C), d(D⊥)}.

Note that if C is LCD (i.e. D = C⊥ above), the security parameter is simply d(C). It

has been shown that if (C,D) is LCP of abelian codes (or, group codes more generally),

we also have d(C) as the security parameter. This is established by showing that C

and D⊥ are equivalent codes ([?], [?], [?]).
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CHAPTER 2

Quasi-Cyclic Codes

This chapter presents the algebraic structure of quasi-cyclic (QC) codes. We also

provide a proof for the existence of QC codes of given hull dimension.

2.1 QC Codes

An [n, k]q linear code is called a QC code of index l, if its codewords are invariant under

shift by l units, and l is the smallest positive integer with this property. It is known

that the index of a QC code is a divisor of its length, say n = ml. We refer to the QC

code of index l as l-QC code for simplicity. The well-known cyclic codes correspond to

QC codes of index 1. As in cyclic codes, QC codes can also be viewed algebraically.

Let C be an l-QC code of length ml over Fq, and write its codewords in m × l array

form

−→c =


c0,0 c0,1 . . . c0,l−1

...
...

. . .
...

cm−1,0 cm−1,1 . . . cm−1,l−1

 .

In this representation, note that being invariant under shift by l units amounts to being

invariant under row shift.

Let Rm := Fq [x]

<xm−1>
and consider the map

ϕ : Fml
q → Rl

m

−→c 7→ (c0(x), . . . , cl−1(x)), (2.1)

7



where cj(x) =
∑m−1

i=0 ci,jx
i ∈ Rm for 0 ≤ j ≤ l − 1. In other words each column in −→c

produces an entry for ϕ(−→c ) ∈ Rl
m.

Proposition 2.1.1. i: ([?] Lemma 3.1) The map ϕ induces a 1-1 correspondence

between l-QC codes over Fq of length ml and linear codes over Rm of length l

(i.e. Rm-submodule in Rl
m).

ii: ([?], Corollary 3.3) Under this correspondence, we have ϕ(C⊥) = ϕ(C)⊥. Here

duality in Fml
q is with respect to the Euclidean inner product. Duality in Rl

m is

with respect to the inner product

(a0(x), . . . , al−1(x)).(b0(x), . . . , bl−1(x)) =
l−1∑
i=0

ai(x)b̄i(x),

where b̄i(x) = bi(x
−1) = bi(x

m−1).

From now on, we assume that q and m are relatively prime. With this assumption

we have the following factorization into distinct polynomials.

xm − 1 =
s∏

i=1

gi(x)
t∏

j=1

(hj(x)h
∗
j(x)).

Here gi(x) is self-reciprocal for 1 ≤ i ≤ s and hj(x) and h∗
j(x) are reciprocal pairs for

1 ≤ j ≤ t, where the reciprocal of a monic polynomial f(x) with non-zero constant

term is defined as

f ∗(x) = f(0)−1xdeg ff(x−1).

By the Chinese Remainder Theorem (CRT), Rm decomposes as follows:

Rm = (
s⊕

i=1

Gi)
⊕

(
t⊕

j=1

(H′
j

⊕
H′′

j)),

where for 1 ≤ i ≤ s, Gi =
Fq [x]

<gi(x)>
, and for 1 ≤ j ≤ t, H′

j =
Fq [x]

<hj(x)>
and H′′

j =
Fq [x]

<h∗
j (x)>

.

Thus

Rl
m = (

s⊕
i=1

Gl
i)
⊕

(
t⊕

j=1

(H′l
j

⊕
H′′l

j)).

Let ξ be a primitive mth root of unity and ξui , ξvj and ξ−vj be roots of gi(x), hj(x) and

h∗
j(x), respectively. Then we have

Gi
∼= Fq(ξ

ui) ∼= Fq2di , H′
j
∼= Fq(ξ

vj) ∼= Fqdj , H
′′
j
∼= Fq(ξ

−vj) ∼= Fqdj

8



where 2di = deg gi(x) and dj = deg hj(x) = deg h∗
j(x). Note that we use the fact that

the degree of a self-reciprocal polynomial is even.

Via the CRT decomposition of Rl
m, any QC code C can be decomposed as

C = (
s⊕

i=1

Ci)
⊕

(
t⊕

j=1

(C ′
j

⊕
C ′′

j )), (2.2)

where Ci, C
′
j, C

′′
j are linear codes of length l over the fields Gi,H′

j,H′′
j, respectively.

They are called the constituents of C. Moreover, we have

dim(C) =
s∑

i=1

deg gi(x) dim(Ci) +
t∑

j=1

deg hj(x)[dim(C ′
j) + dim(C ′′

j)].

It is well-known that the dual of an l-QC code is also an l-QC code of length ml and

it has the following CRT decomposition

C⊥ = (
s⊕

i=1

C⊥h
i )

⊕
(

t⊕
j=1

(C ′′⊥
j

⊕
C ′⊥

j )), (2.3)

where C⊥h
i denotes the Hermitian dual of Ci in Fqdeg gi . Hence we have

Hull(C) = C ∩ C⊥ = (
s⊕

i=1

(Ci ∩ C⊥h
i ))

⊕
(

t⊕
j=1

(C ′
j ∩ C ′′⊥

j )
⊕

(C ′′
j ∩ C⊥

j )), (2.4)

and the hull dimension is

h(C) =
s∑

i=1

deg gi(x) hh(Ci) +
t∑

j=1

deg hj(x)[h(C
′
j, C

′′
j) + h(C ′′

j, C
′
j)]

Hence the hull of an l-QC code C over Fq is formulated in terms of Hermitian hulls

and pairwise intersection of its constituent codes and their duals, which are codes of

length l over various field extensions of Fq. Let

ℓ = t1 +
s∑

i=2

2diti +
t∑

j=1

d′j(t
′
j + t′′j ) if m is odd (2.5)

ℓ = t1 + t2 +
s∑

i=3

2diti +
t∑

j=1

d′j(t
′
j + t′′j ) if m is even (2.6)

be integers, with ti ≤ ki, t
′
j ≤ k′

j and t′′j ≤ k′′
j, where ki = dim(Ci), k

′
j = dim(C ′

j) and

k′′
j = dim(C ′′

j). Note that these express possible hull dimensions for QC codes. Our

aim is to understand whether all such hull dimensions can be realized by l-QC codes.

9



2.2 Linear and QC Codes with Arbitrary Hull Di-

mension

In order to understand possible hull dimension for QC codes, we investigate existence

of linear codes with arbitrary Euclidean and Hermitian hull dimensions.

Proposition 2.2.1. Let n, k be positive integers such that 2k ≤ n. Then for any

t ≤ k, there exists an [n, k]q linear code with t-dimensional hull.

Proof. Define the matrix

Gt =

 Idk−t O

O D

 ∈ Mk×n(Fq)

where D ∈ M(t×(n−(k−t)))(Fq). Note that rank(GtG
T
t ) = k − t if and only if DDT = 0.

The following choices of the matrix D give us DDT = 0.

i: q = 2r for some r ≥ 1:

D =


1 1 0 0 . . . 0 0 . . . 0

0 0 1 1 . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . .

...

0 0 0 0 . . . 1 1 . . . 0


ii: q ≡ 1 (mod 4): In such finite fields −1 is a quadratic residue, i.e., there exists

α ∈ F∗
q such that α2 = −1. Take

D =


1 α 0 0 . . . 0 0 . . . 0

0 0 1 α . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . .

...

0 0 0 0 . . . 1 α . . . 0


Then DDT = 0.

Note that in both cases above at least 2t columns are needed to define D. We

have 2k ≤ n and t ≤ k ≤ n− k. Therefor 2t ≤ n− (k − t), so D is well-defined.

Also it is clear that in both cases rank(D) = t.

10



iii: q ≡ 3 (mod 4)

Consider the curve χ over Fq defined by

χ : x2 + y2 + (a− x)2 = 0

over Fq, where a ∈ F×
q . If we study the points at infinity, we have

2x2 + y2 = 0 so y2 = −2x2.

If −2 is a quadratic residue in Fq then χ has two points at infinity. This means

that χ has at least q− 1 affine rational points, since it is of genus 0 and has q+1

rational points.

Note that for q ≡ 3 (mod 4), a self-dual linear code exists only when n ≡ 0

(mod 4) (see the proof of Proposition 6.3 in ( [?])). Also for a self-dual code we

have h(C) = t = k = n
2
, which means that length is even. For this reason we

distinguish between the even and odd t.

– t is even:

D =



α β a− α 0 0 0 0 0 . . . 0 0 0 0 . . . 0

0 α− a β −α 0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 0 0 α β a− α 0 . . . 0 0 0 0 . . . 0

0 0 0 0 0 α− a β −α . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 . . . α β a− α 0 . . . 0

0 0 0 0 0 0 0 0 . . . 0 α− a β −α . . . 0


In this case again we need at least 2t columns and as before D is well-defined

with rank t.

– t is odd:

D =



α β a− α 0 0 0 0 0 . . . 0 0 0 0 . . . 0

0 α− a β −α 0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 0 0 α β a− α 0 . . . 0 0 0 0 . . . 0

0 0 0 0 0 α− a β −α . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 . . . α β a− α 0 . . . 0


First note that, at least 2t + 2 columns are needed to define D. We have

t ≤ k− 1, and 2k ≤ n which means that 2k+1 < n. All together we obtain

that 2t+ 2 < n− (k − t), thus D is well-defined with rank t.
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In all the cases, where the description of D in Gt is given, rows of Gt are linearly

independent. Hence rank(Gt) = k. The code C generated by Gt is an [n, k]q linear

code with t-dim hull.

The next step is to show the existence of linear codes over square fields of given

t-dimensional Hermitian hull.

Proposition 2.2.2. Let q be a square, and n, k be positive integers such that 2k ≤ n.

Then for any t ≤ k, there exists an [n, k]q linear code with t-dimensional Hermitian

hull.

Proof. As in the proof of Proposition ?? define the matrix

Gt =

 Idk−t 0

0 D

 ∈ Mk×n(Fq),

where A = Idk−t, and D ∈ M(t×(n−(k−t)))(Fq). Note that rank(GtḠ
T
t ) = k − t if and

only if DD̄T = 0.

The following choices of the matrix D gives us DD̄T = 0.

i: q = 2r, where r is an even integer: Let α be an element of Fq , and β ∈ F∗
q be its

conjugate, i.e. ᾱ = α
√
q = β. Take

D =


α β 0 0 . . . 0 0 . . . 0

0 0 α β . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . . 0

0 0 0 0 . . . α β . . . 0


Then

D̄ =


β α 0 0 . . . 0 0 . . . 0

0 0 β α . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . . 0

0 0 0 0 . . . β α . . . 0


and DD̄T = 0.

ii: q = sr, with s an odd prime and r an even integer:
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|F∗
q| = q − 1 = (

√
q − 1)(

√
q + 1), so we have 2(

√
q + 1) | |F∗

q|. Thus, there exists

β ∈ F∗
q such that | < β > | = 2(

√
q + 1). Take

D =


1 β 0 0 . . . 0 0 . . . 0

0 0 1 β . . . 0 0 . . . 0
...

...
...

...
. . .

...
... . . . 0

0 0 0 0 . . . 1 β . . . 0

 .

Then

D̄ =


1 β

√
q 0 0 . . . 0 0 . . . 0

0 0 1 β
√
q . . . 0 0 . . . 0

...
...

...
...

. . .
...

... . . . 0

0 0 0 0 . . . 1 β
√
q . . . 0


and we have

DD̄T =


1 + β

√
q+1 0 . . . 0 . . . 0

0 1 + β
√
q+1 . . . 0 . . . 0

...
...

. . .
... . . . 0

0 0 . . . 1 + β
√
q+1 . . . 0


As β2(

√
q+1) = 1, we have β

√
q+1 = −1. Therefore DD̄T = 0.

Like the Euclidean case, D is a well-defined matrix of rank t. Thus Gt generates an

[n, k]q linear code of t-dimensional Hermitian hull.

Note that the hull of a QC code also involves intersection of two vector spaces.

Although finding spaces that intersect at desired dimension is clearly achievable, we

show the details in the following. Let C1 and C2 be two linear codes over a finite field.

Then

h(C1, C2)+h(C2, C1) = k1− rank(G1G
T
2 )+k2− rank(G2G

T
1 ) = k1+k2−2rank(G1G

T
2 ).

Without loss of generality assume that k1 ≤ k2. For the constituents coming from

reciprocal pairs, we need to find matrices G1 and G2 such that rank(G1G
T
2 ) = t, where

t ≤ k1. Let C1 and C2 be linear codes generated as follows

C1 =< e1, . . . , ek1 >,
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C2 =< e1, . . . , et, ek1+1, . . . , ek2 , ek2+1, . . . , ek2+k1−t > .

By Sylvester’s inequality we have

k1 + k2 − n ≤ t ⇒ k2 + k1 − t ≤ n.

Also, the number of vectors in the basis of C2 is

t+ (k2 − (k1 + 1) + 1) + (k2 + k1 − t− (k2 + 1) + 1) = k2

It is clear that all vectors are distinct, thus the basis is well-defined.

Therefore

G1 =



e1

e2
...

et

et+1

...

ek1


and G2 =



e1
...

et

ek1+1

...

ek2
...

ek2+k1−t


For the standard vectors ei’s, we have

ei.e
T
j = δij.

Therefor the ith-row of G1G
T
2 is

eiG
T
2 =

(
eie

T
1 . . . eie

T
t eie

t
k1+1 . . . eie

T
k2+k1−t,

)
,

and

G1G
T
2 =



e1
...

et
...

0
...

0


,
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which has rank t.

Note that, by Proposition 6.3 in [?], there is no self-dual l-QC codes of length ml when

l is odd and q ≡ 3 (mod 4). In such case there exists self-dual l-QC code if and only if

l is a multiple of 4.

From the discussion above, we reach the following consequence, which is the main

result of this section.

Theorem 2.2.3. Let Fq be a finite field, m a positive integer relatively prime to q,

0 < k ≤ ml and ℓ ≤ k. Then there exists an [ml, k]q l-QC code with ℓ-dimensional hull

if ℓ can be written as in ?? or ??, with the exception of ℓ = k is odd and q ≡ 3 (mod

4).
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CHAPTER 3

Double and Four Circulant Codes

The hull and LCP properties of a special class of one and two generator QC codes are

investigated in this chapter.

3.1 1-Generator QC Codes

Let C be a ρ-generator l-QC code of length ml over Fq, which is generated by

{(a1,1(x), . . . , a1,l(x)), . . . , (aρ,1(x), . . . , aρ,l(x))}

in Rl
m. Via CRT decomposition, one can write spanning sets for its constituents:

Ci := SpanGi
{(ab,1(ξui), . . . , ab,l(ξ

ui)) : 1 ≤ b ≤ ρ} for 1 ≤ i ≤ s

C ′
j := SpanH′

j
{(ab,1(ξvj), . . . , ab,l(ξvj)) : 1 ≤ b ≤ ρ} for 1 ≤ j ≤ t

C ′′
j := SpanH′′

j
{(ab,1(ξ−vj), . . . , ab,l(ξ

−vj)) : 1 ≤ b ≤ ρ} for 1 ≤ j ≤ t

.

We will consider 1-generator QC codes.

Definition 3.1.1. Let C =< (a1(x), . . . , al(x)) > be a 1-generator l-QC code over Fq.

i: The generator polynomial of C is defined by

g(x) := gcd(a1(x), . . . , al(x), x
m − 1).
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ii: A monic polynomial h(x) of the least degree is called the parity check polynomial

of C if h(x)ai(x) = 0 for all 1 ≤ i ≤ l.

The polynomials g(x) and h(x) are unique ([?], Lemma 2) and they satisfy

h(x)g(x) = xm − 1.

Lemma 3.1.1. ([?], Lemma 1) Let C =< a1(x), . . . , al(x)) > be a 1-generator l-QC

code of length ml over Fq. Then

dimC = m− deg g(x) = deg h(x).

Definition 3.1.2. An [ml, k]q 1-generator l-QC code is called maximal if k = m.

If C is a maximal 1-generator l-QC code, we clearly have

g(x) = 1 & h(x) = xm − 1.

A class of such codes, namely Double Circulant (DC) codes, will be discussed later in

this chapter.

3.1.1 LCD 1-generator l-QC Codes

Let C be an [ml, k]q, l-QC code with the CRT decomposition as in (??). Then its

dual decomposes as in (??). A characterization of LCD QC codes has been provided

as follows.

Theorem 3.1.2. ( [?], Theorem 3.1) Let C be an l-QC code of length ml over Fq.

Then C is LCD if and only if Ci ∩ C⊥h
i = {0} for all 1 ≤ i ≤ s, and C ′

j ∩ C ′′⊥
j =

C ′′
j ∩ C ′⊥

j = {0} for all 1 ≤ j ≤ t.

LCD 1-generator QC codes can be characterized as follows.

Theorem 3.1.3. Let C =< (a1(x), . . . , al(x)) > be a 1-generator l-QC code of length

ml over Fq. Then C is LCD if and only if

gcd

(
l∑

r=1

ar(x)ar(x
m−1), h(x)

)
= 1.

Proof. Note that the constituents of C are either 0 or 1-dimensional codes over their

field of definition. So the intersections we have to understand are either trivial or

1-dimensional.
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� Ci ∩ C⊥h
i ̸= {0} if and only if

– Ci ̸= {0}, which means gi(x) | h(x),

– Ci ⊆ C⊥h
i which means that

∑l
r=1 ar(ξ

ui)ar(ξ
−ui) = 0. This implies that

gi(x) |
∑l

r=1 ar(x)ar(x
m−1).

� C ′
j ∩ C ′′⊥

j ̸= {0} if and only if

– C ′
j ̸= {0}, which means hj(x) | h(x),

– C ′
j ⊆ C ′′⊥

j , which means that
∑l

r=1 ar(ξ
vj)ar(ξ

−vj) = 0. This implies hj(x) |∑l
r=1 ar(x)ar(x

m−1).

� Using the same argument, C ′′
j ∩ C ′⊥

j ̸= {0} if and only if h∗
j | h(x) and h∗

j(x) |∑l
r=1 ar(x)ar(x

m−1).

Hence, C is LCD if and only if the factors of xm−1 divide either h(x) or
∑l

r=1 ar(x)ar(x
m−1),

but not both.

Remark 3.1.1. LCD characterization for a special class of maximal 1-generator 2-QC

codes (namely, double circulant codes), is given in ([?], Theorem 5.1). Theorem ??

generalizes this result.

Tables 3.1 and 3.2 illustrate binary and ternary LCD maximal 1-generator 2-QC

codes of length 2m. The search is done by the MAGMA software [?] for random

a1(x), a2(x) ∈ Rm satisfying gcd(a1(x)a1(x
m−1) + a2(x)a2(x

m−1), xm − 1) = 1. In these

two tables d presents the best possible minimum distance which can be attained by

an LCD maximal 1-generator 2-QC code C =< a1(x), a2(x)) >, d∗ represents optimal

minimum distance for binary or ternary linear codes of length 2m and dimension m,

according to code tables [?].
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m d d∗ a1(x) a2(x)

3 2 3 x+ 1 x2 + x+ 1

5 3 4 x3 + 1 x2 + x+ 1

7 4 4 x2 + 1 x3 + x+ 1

9 5 6 x5 + x+ 1 x5 + x2 + x+ 1

11 6 7 x4 + 1 x8 + x7 + x6 + x2 + 1

13 7 7 x5 + 1 x11 + x9 + x6 + x3 + 1

15 7 8 x6 + x2 + x+ 1 x5 + x+ 1

17 8 8 x6 + x4 + x+ 1 x5 + x4 + x3 + x+ 1

Table 3.1: Binary LCD maximal 1-generator 2-QC Codes.

m d d∗ a1(x) a2(x)

4 4 4 x+ 1 x+ 2

5 4 5 x+ 2 2x+ 2

7 6 6 2x+ 1 x3 + 2x2 + x+ 2

8 6 6 x3 + 2x+ 2 xx2 + 2x+ 2

10 6 7 x3 + x+ 1 x2 + 2x+ 1

11 7 8 x3 + 2x+ 2 x3 + 2x2 + 2x+ 1

13 8 8 x3 + x2 + x+ 1 x4 + x2 + 2x+ 2

14 8 9 x4 + x2 + x+ 2 x3 + 2x2 + x+ 1

Table 3.2: Ternary LCD maximal 1-generator 2-QC Codes.

As it is mentioned before, cyclic codes are 1-QC codes. It has been shown that

a cyclic code is LCD if and only if its generator polynomial is self-reciprocal ([?]).

The next proposition states that self-reciprocal generator polynomial is a necessary

condition for being LCD for 1-generator QC codes.

Proposition 3.1.4. Let C =< (a1(x), . . . , al(x)) > be a 1-generator l-QC code with

generator polynomial g(x). If C is LCD then g(x) is self-reciprocal.

Proof. Assume that g(x) is not self-reciprocal. This implies that there exists hj(x)

such that hj(x) | g(x) but h∗
j(x) ∤ g(x) (hence, h∗

j(x) | h(x)). Since hj(x) | g(x), we
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have that hj(x) | au(x), for all 1 ≤ u ≤ l. Therefore h∗
j(x) | au(xm−1) for all u. Hence

hj(x) | gcd(
l∑

r=1

ar(x)ar(x
m−1), h(x))

which contradicts the assumption that C is LCD.

The following example shows that the converse of Proposition ?? need not hold.

Example 3.1.1. Let C =< (x2 + x, x2 + 1 >) be [6, 2]2 1-generator 2-QC code. Note

that g(x) = x + 1 and h(x) = x2 + x + 1, and both are self-reciprocal polynomials.

However h(C) = 2, and hence it is not LCD.

Determining the hull of 1-generator l-QC codes is an immediate consequence of

Theorem ??.

Corollary 3.1.5. Let C =< (a1(x), . . . , al(x)) > be a 1-generator l-QC code of length

ml over Fq. Then h(C) = deg u(x), where

u(x) = gcd

(
l∑

r=1

ar(x)ar(x
m−1), h(x)

)
.

Proof. The proof of Theorem ?? showed that a constituent of C contributes to the hull

dimension if and only if the corresponding irreducible factor of xm−1 (gi(x), hj(x), h
∗
j(x))

does not divide g(x), hence divides h(x), and the same irreducible factor divides∑l
r=1 ar(x)ar(x

m−1). Since the contribution of any constituent is at most 1 over its

field of definition, this contribution is the degree of irreducible factor dividing u(x).

Hence the result follows.

3.1.2 LCP 1-Generator l-QC Codes

We start with a bound on the intersection dimension of two 1-generator l-QC codes.

Proposition 3.1.6. Let C =< (a1(x), . . . , al(x)) > and D =< (b1(x), . . . , bl(x)) > be

two 1-generator l-QC codes of length ml over Fq. If C and D are linear ℓ-intersection

pair of codes then ℓ ≤ m−gcd(e1(x), . . . , el(x), x
m−1), where ei(x) = lcm(ai(x), bi(x)).

Proof. Let E :=< (e1(x), . . . , el(x)) >, E is a 1-generator l-QC code and

dim(E) = m− deg(gcd (e1(x), . . . , el(x), x
m − 1)).
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Claim: C ∩D ⊆ E.

Take d(x) = (d1(x), . . . , dl(x)) ∈ C ∩D. Then each coordinate of d(x) is divisible by

the corresponding coordinate of a(x) and b(x). Hence, ei(x) | di(x) for all 1 ≤ i ≤ l,

and we have d(x) ∈ E. Hence

dim(C ∩D) ≤ dimE = m− deg gE(x)

Next, we observe that LCP of 1-generator QC codes are rather constrained.

Proposition 3.1.7. i: If (C,D) is LCP of 1-generator l-QC codes, then l = 2 and

both C and D are maximal.

ii: For C =< (a1(x), a2(x)) > and D =< (b1(x), b2(x)) >, if xm−1 | lcm(ai(x), bi(x))

for i = 1, 2, then (C,D) is LCP.

Proof. i: By definition we have

dim(C) + dim(D) = ml

for an LCP of codes. For a 1-generator QC code, the maximal dimension is m.

Therefor, 2m ≥ ml. On the other hand, l is at least 2. Hence we obtain l = 2.

Since dim(C) = dim(D) is required for an LCP , we also see that both C and D

are maximal.

ii: Since xm − 1 | lcm (ai(x), bi(x)), we have E = {0}, where E is defined as in the

proof of Proposition ??. Since C ∩D ⊆ E, we reach the conclusion.

A characterization of LCP of l-QC codes is given in [?] as follows:

Theorem 3.1.8. (Theorem 3.1, [?]) Let C and D be l-QC codes of length ml over Fq.

Suppose that the CRT decomposition of C and D are as in (??).Then (C,D) is LCP if

and only if (Ci, Di) is LCP in Gl
i (for all 1 ≤ i ≤ s), (C ′

j, D
′
j) is LCP in H′l

j (for all

1 ≤ j ≤ t) and (C ′′
j, D

′′
j) is LCP in H′′l

j (for all 1 ≤ j ≤ t).

We now characterize LCP of maximal 1-generator 2-QC codes.
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Theorem 3.1.9. Let C =< (a1(x), a2(x)) > and D =< (b1(x), b2(x)) > be two maxi-

mal 1-generator 2-QC codes. Then (C,D) is LCP of codes if and only if

gcd(a1(x)b2(x)− a2(x)b1(x), x
m − 1) = 1.

Proof. Let C and D have the following CRT decompositions:

C = (
s⊕

i=1

Ci)
⊕

(
t⊕

j=1

(C ′
j

⊕
C ′′

j )),

D = (
s⊕

i=1

Di)
⊕

(
t⊕

j=1

(D′
j

⊕
D′′

j )).

Generator matrices of the constituents are as follows:

GCi
= [a1(ξ

ui) a2(ξ
ui)] , GC′

j
= [a1(ξ

vj) a2(ξ
vj)]

GC′′
j
= [a1(ξ

−vj) a2(ξ
−vj)]

GDi
= [a1(ξ

ui) a2(ξ
ui)] , GD′

j
= [a1(ξ

vj) a2(ξ
vj)]

GD′′
j
= [a1(ξ

−vj) a2(ξ
−vj)]

Moreover, parity check matrices for the constituents of D are easy to write as follows:

H̄Di
= [−b2(ξ

ui) b1(ξ
ui)] , HD′

j
= [−b2(ξ

−vj) b1(ξ
−vj)]

HD′′
j
= [−b2(ξ

vj) b1(ξ
vj)]

By Proposition ??, we have

dim(Ci ∩Di) = 0 ⇐⇒ rank(GCi
H̄T

Di
) = 1 ⇐⇒ a1(ξ

ui)b2(ξ
ui)− a2(ξ

ui)b1(ξ
ui)) ̸= 0

dim(C ′
j ∩D′

j) = 0 ⇐⇒ rank(GC′
j
H̄T

D′
j
) = 1 ⇐⇒ a1(ξ

vj)b2(ξ
vj)−a2(ξ

vj)b1(ξ
vj)) ̸= 0

dim(C ′′
j∩D′′

j) = 0 ⇐⇒ rank(GC′′
j
H̄T

D′′
j
) = 1 ⇐⇒ a1(−ξvj)b2(−ξvj)−a2(−ξvj)b1(−ξvj)) ̸= 0

Combining these observations, we obtain that (C,D) is LCP if and only if no irreducible

factor of xm − 1 divide the polynomial a1(x)b2(x)− a2(x)b1(x).
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3.2 Double Circulant Codes

A 1-generator 2-QC code of the form C =< (1, a(x)) >⊆ R2
m is called a double circulant

(DC) code. Note that [Idm | A] is a generator matrix of C, where A is the m × m

circulant matrix associated to the polynomial a(x) = a0 + a1(x) + . . .+ am−1x
m−1:

A =


a0 a1 · · · am−1

am−1 a0 · · · am−2

...
...

. . .
...

a1 a2 · · · a0


A DC code is clearly a maximal 2-QC code. By Corollary ??, we have the following:

Proposition 3.2.1. Let C =< (1, a(x)) >. Then

i: h(C) = deg gcd(1 + a(x)a(xm−1), xm − 1).

ii: If D =< (1, b(x)) >, then (C,D) is LCP if and only if gcd (b(x)− a(x), xm − 1) =

1.

Let us note that h = 0 (LCD) case of (i) was obtained in ([?], Theorem 5.1). Part

(ii) was given in ( [?], Proposition 3.2).

Since small hulls are of interest, as described in the Introduction, we focus on DC codes

with hull dimension 1.

Proposition 3.2.2. There exists a DC code with 1-dimensional hull over Fq if and

only if q ≡ 1 (mod 4) or q is even.

Proof. By the CRT decomposition, a 1-dimensional hull is possible only in the case

that Fq contains a square root of −1, which is possible if q is even or q ≡ 1 (mod 4).

For the converse, let us construct a(x) so that the resulting DC code has 1-dimensional

hull. In the case q ≡ 1 (mod 4), let α ∈ F×
q such that α2 = −1. Let a(x) = x− (α+1).

Then

1 + a(x)a(xm−1) = (α + (2− x− xm−1))

An mth root of unity ζ is a root of this polynomial if and only if

ζ−1 + ζ − 2 = 0 ⇐⇒ ζ2 − 2ζ + 1 = (ζ − 1)2 = 0 ⇐⇒ ζ = 1.
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Hence

deg
(
gcd

(
1 + a(x)a(xm−1), xm − 1

))
= 1.

For q even, let h(x) = xm−1
x−1

and set β = h(1) ̸= 0. If we set a(x) = h(x) + β + 1 and

v(x) = 1 + a(x)a(xm−1), we have

v(1) = 1 + (h(1) + β + 1)(h(1) + β + 1) = 1 + (2β + 1) = 1 + 1 = 0.

On the other hand, if ζ ̸= 1 is another mth root of unity, we have

v(ζ) = 1 + (h(ζ) + β + 1)(h(ζ−1) + β + 1).

Since h(ζ) = h(ζ−1) = 0, we obtain

v(ζ) = 1 + (β + 1)2 = 1 + β2 + 1 = β2.

Since β ̸= 0, v(ζ) ̸= 0. We have

deg
(
deg

(
1 + a(x)a(xm−1), xm − 1

))
= 1.

Take a(x) = h(x) + β + 1.

1 + a(x)a(x−1) = 1 + (h(x) + β + 1)(h(x−1) + β + 1)

1 + a(1)a(1−1) = 1 + (β + β + 1)(β + β + 1) = 0

So, x− 1 | u(x).

Let δ be another m-th root of unity.

1 + a(δ)a(δ−1) = 1 + (h(δ) + β + 1)(h(δ−1) + β + 1)

1 + (β + 1)(β + 1) = 1 + β2 + 1 = β2

Since β is nonzero, u(x) and h(x) are relatively prime.

Tables 3.3, 3.4 present the best possible distance for binary and quinary DC codes

with 1-dimensional hull. Here d∗ is the optimal minimum distance or the best known

minimum distance for binary or quinary linear codes of length 2m and dimension m,

according to codes tables [?], d is the best possible minimum distance which can be

attained by 1-dimensional hull DC code C =< 1, a(x) >.
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m d d∗ a(x)

3 2 3 x2 + x+ 1

5 4 4 x4 + x2 + 1

7 4 4 x6 + x3 + 1

9 6 6 x8 + x7 + x5 + x3 + x2

11 6 7 x10 + x8 + x5 + x2 + 1

13 6 7 x12 + x4 + x3 + x+ 1

15 8 8 x14 + · · ·+ x7 + x4 + x3 + x

17 8 8 x16 + · · ·+ x11 + x5 + x3 + x+ 1

Table 3.3: Binary DC Codes with 1-dimensional hull.

m d d∗ a(x)

3 3 4 x2 + x+ 1

4 4 4 x3 + x2 + 3x+ 3

6 6 6 x5 + x3 + 2x2 + 2x+ 1

7 6 6 x4 + x3 + x2 + 2x+ 3

8 7 7 x5 + 2x4 + 4x3 + 2x2 + 2x+ 2

9 6 7 x5 + x4 + x3 + 2x2 + x+ 2

11 8 8 x6 + x5 + x4 + 2x3 + x2 + 4x+ 2

12 8 8 x7 + x6 + 4x5 + 2x4 + 4x3 + 4x2 + 3x+ 4

Table 3.4: Quinary DC Codes with 1-dimensional hull.

We provide ternary LCP of DC codes with good security parameter in Table 3.5.

Here, d represents the security parameter of the pair and d∗ is the best minimum

distance for [2m,m]3 linear codes according to [?].

The following statement also holds and can be proved as in Proposition ??.

Corollary 3.2.3. A DC code with odd-dim hull over Fq exists if and only if q ≡

1 (mod 4) or q is even.

An example of a ternary DC code of length 8 with possible hull dimensions and the

best minimum distance is given in the following example.
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m d d∗ a(x) b(x) = −a(xm−1)

4 4 4 x3 + 2x+ 1 x3 + 2x+ 2

5 4 5 x4 + x+ 2 x4 + 2x+ 1

7 5 6 x6 + x3 + x+ 1 2x6 + 2x4 + 2x+ 2

8 6 6 x7 + x3 + x2 + 2x+ 2 x7 + 2x6 + 2x5 + 2x+ 1

10 7 7 x9 + x5 + x4 + x2 + x+ 2 2x9 + 2x8 + 2x6 + 2x5 + 2x+ 1

11 7 8 2x10 + 2x9 + 2x8 + x5 + x2 + 2 2x9 + 2x6 + x3 + x2 + x+ 1

Table 3.5: Ternary LCP DC Codes.

Example 3.2.1. Let q = 3, m = 8. Then

x8 − 1 = (x− 1)(x+ 1)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2).

Note that (x2+1) is self-reciprocal and (x2+x+2), (x2+2x+2) are reciprocal to each

other. By Corollary ??, possible hull dimensions for the [16, 8]3 DC code are 2,4,6.The

following choices of a(x) give a DC code with the highest possible minimum distance

for such codes.

� a(x) = 2x6+x4+x2+2x+1, gives a [16, 8, 6]3 DC code with 2-dimensional hull.

� a(x) = x4 + x3 + x+ 1, gives a [16, 8, 6]3 DC code with 4-dimensional hull.

� a(x) = x4 + x3 + 2x+ 1, gives a [16, 8, 6]3 DC code with 6-dimensional hull.

3.3 Four Circulant Codes

We now investigate a class of 2-generator 4-QC codes. The code

C =< (1, 0, a1(x), a2(x)), (0, 1,−a2(x
m−1), a1(x

m−1)) >∈ R4
m

is called a four circulant (FC) code. Via the identification between F4m
q and R4

m (??),

it is easy to see that the following is a generator matrix for C, when it is viewed as a

subspace of F4m
q :

G =

Idm 0 A1 A2

0 Idm −AT
2 AT

1


Here, Ai represents the circulant matrix corresponding to the polynomial ai(x) (for

i = 1, 2).
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It is also easy to see that the following matrices are generators for the 2-dimensional

constituents of C:

Gi =

1 0 a1(ξ
ui) a2(ξ

ui)

0 1 −a2(ξ
−ui) a1(ξ

−ui)

 for 1 ≤ i ≤ s

G′
j =

1 0 a1(ξ
vj) a2(ξ

vj)

0 1 −a2(ξ
−vj) a1(ξ

−vj)

 for 1 ≤ j ≤ t

G′′
j =

1 0 a1(ξ
−vj) a2(ξ

−vj)

0 1 −a2(ξ
vj) a1(ξ

vj)

 for 1 ≤ j ≤ t

The next result characterizes LCD FC codes.

Theorem 3.3.1. Let C =< (1, 0, a1(x), a2(x)), (0, 1,−a2(x
m−1), a1(x

m−1) > be an FC

code over Fq. Then C is LCD if and only if

gcd(1 + a1(x)a1(x
m−1) + a2(x)a2(x

m−1), xm − 1) = 1.

Proof. For the constituents Ci corresponding to self-reciprocal factors of xm − 1, we

have

GiḠ
T
i =

1 0 a1(ξ
ui) a2(ξ

ui)

0 1 −a2(ξ
−ui) a1(ξ

−ui)




1 0

0 1

a1(ξ
−ui) −a2(ξ

ui)

a2(ξ
−ui) a1(ξ

ui)


=

1 + a1(ξ
ui)a1(ξ

−ui) + a2(ξ
ui)a2(ξ

−ui) 0

0 1 + a1(ξ
ui)a1(ξ

−ui) + a2(ξ
ui)a2(ξ

−ui)

 .

This matrix has nonzero (in fact, 2) rank if and only if

1 + a1(ξ
ui)a1(ξ

−ui) + a2(ξ
ui)a2(ξ

−ui) ̸= 0.

This is equivalent to saying that gi(x) does not divide the polynomial

1 + a1(x)a1(x
m−1) + a2(x)a2(x

m−1).

Since hh(Ci) = 2− rank(GiḠi
T
), this is the condition for constituents Ci to be LCD.

For the constituents C ′
j, C

′′
j of C, we have

h(C ′
j, C

′′
j) = dim(C ′

j ∩ C ′′⊥
j ) = 2− rank(G′

jG
′′T
j ).
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We have

G′
jG

′′T
j =

1 0 a1(ξ
vj) a2(ξ

vj)

0 1 −a2(ξ
−vj) a1(ξ

−vj)




1 0

0 1

a1(ξ
−vj) −a2(ξ

vj)

a2(ξ
−vj) a1(ξ

vj)


=

1 + a1(ξ
vj)a1(ξ

−vj) + a2(ξ
vj)a2(ξ

−vj) 0

0 1 + a1(ξ
vj)a1(ξ

−vj) + a2(ξ
vj)a2(ξ

−vj)

 .

Hence h(C ′
j, C

′′
j) = 0 if and only if hj(x) does not divide

1 + a1(x)a1(x
m−1) + a2(x)a2(x

m−1).

The same analysis, can be carried out for h(C ′′
j, C

′
j), which yields the result.

The following immediately follows, using arguments in the proof of Theorem ??.

Corollary 3.3.2. Let C =< (1, 0, a1(x), a2(x)), (0, 1,−a2(x
m−1), a1(x

m−1) > be a FC

code over Fq. Then

i: h(C) = 2 deg u(x), where u(x) = gcd(1+a1(x)a1(x
m−1)+a2(x)a2(x

m−1), xm−1).

ii: There exists no FC code with odd hull dimension.

Tables 3.6 and 3.7 present the best possible distances of binary and ternary LCD

FC codes. Again, d presents the best possible minimum distance which can be attained

by binary or ternary LCD FC codes, and d∗ presents optimal minimum distance for

binary or ternary [4m, 2m] linear codes, according to code tables [?].

m d d∗ a1(x) a2(x)

3 2 4 x+ 1 x2 + x

5 5 6 x2 x2 + x+ 1

7 6 8 x6 + x5 + x4 + x3 x+ 1

9 8 8 x7 + x6 + x5 + x3 + x x3 + x+ 1

11 9 10 x5 + x3 + x2 x7 + x6 + x5 + x+ 1

13 10 10 x7 + x6 + x+ 1 x4 + x3 + x2 + 1

Table 3.6: Binary LCD FC codes.
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m d d∗ a1(x) a2(x)

4 6 6 2x3 + x2 + 1 2x3 + 1

5 7 7 x4 + 2x2 + x+ 2 2x4 + 2x2 + 1

7 8 9 x6 + 2x5 + x3 + x 2x5 + x4 + x3 + 2

8 9 10 2x5 + x2 + 1 x5 + x4 + x3 + 2x+ 1

10 11 12 2(x7 + . . .+ x) + 1 x7 + 2x5 + 2x4 + x2 + 2x+ 1

Table 3.7: Ternary LCD FC codes.

Our next result characterizes LCP of FC codes.

Theorem 3.3.3. Let C =< (1, 0, a1(x), a2(x)), (0, 1,−a2(x
m−1), a1(x

m−1) > and D =<

(1, 0, b1(x), b2(x)), (0, 1,−b2(x
m−1), b1(x

m−1) > be two FC codes of length 4m over Fq.

(C,D) is LCP if and only if

gcd

(
2∑

r=1

[(ar(x)− br(x))(ar(x
m−1)− br(x

m−1)], xm − 1

)
= 1.

Proof. Let C and D have the following CRT decompositions:

C = (
s⊕

i=1

Ci)
⊕

(
t⊕

j=1

(C ′
j

⊕
C ′′

j ))

D = (
s⊕

i=1

Di)
⊕

(
t⊕

j=1

(D′
j

⊕
D′′

j ))

Generator matrices of the constituents are as follows:

GCi
=

1 0 a1(ξ
ui) a2(ξ

ui)

0 1 −a2(ξ
−ui) a1(ξ

−ui)

 , GC′
j
=

1 0 a1(ξ
vj) a2(ξ

vj)

0 1 −a2(ξ
−vj) a1(ξ

−vj)



GC′′
j
=

1 0 a1(ξ
−vj) a2(ξ

−vj)

0 1 −a2(ξ
vj) a1(ξ

vj)


DCi

=

1 0 b1(ξ
ui) b2(ξ

ui)

0 1 −b2(ξ
−ui) b1(ξ

−ui)

 , GC′
j
=

1 0 b1(ξ
vj) b2(ξ

vj)

0 1 −b2(ξ
−vj) b1(ξ

−vj)


GC′′

j
=

1 0 b1(ξ
−vj) b2(ξ

−vj)

0 1 −b2(ξ
vj) b1(ξ

vj)
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Moreover, parity check matrices for the constituents of D are easy to write as follows:

H̄Di
=

−b1(ξ
−ui) b2(ξ

ui) 1 0

−b2(ξ
−ui) −b1(ξ

ui) 0 1

 , HD′
j
=

−b1(ξ
vj) b2(ξ

−vj) 1 0

−b2(ξ
vj) −b1(ξ

−vj) 0 1



HD′′
j
=

−b1(ξ
−vj) b2(ξ

vj) 1 0

−b2(ξ
−vj) −b1(ξ

vj) 0 1


By Proposition ?? we have

dim(Ci ∩Di) = 0 ⇐⇒ rank(GCi
H̄Di

) = 2 ⇐⇒ det(GCi
H̄Di

T
) ̸= 0

⇐⇒
2∑

r=1

[ar(ξ
ui)ar(ξ

−ui) + br(ξ
ui)br(ξ

−ui)− ar(ξ
ui)br(ξ

−ui)− ar(ξ
−ui)br(ξ

ui)] ̸= 0

dim(C ′
j ∩D′

j) = 0 ⇐⇒ rank(GC′
j
HT

D′
j
) = 2 ⇐⇒ det(GC′

j
HT

D′
j
) ̸= 0

⇐⇒
2∑

r=1

[ar(ξ
vj)ar(ξ

−vj) + br(ξ
vj)br(ξ

−vj)− ar(ξ
vj)br(ξ

−vj)− ar(ξ
−vj)br(ξ

vj)] ̸= 0

dim(C ′′
j ∩D′′

j) = 0 ⇐⇒ rank(GC′′
j
HT

D′′
j
) = 2 ⇐⇒ det(GC′′

j
HT

D′′
j
) ̸= 0

⇐⇒
2∑

r=1

[ar(ξ
vj)ar(ξ

−vj) + br(ξ
vj)br(ξ

−vj)− ar(ξ
vj)br(ξ

−vj)− ar(ξ
−vj)br(ξ

vj)] ̸= 0

Combining these together, we obtain (C,D) is LCP if and only if no irreducible factor

of xm − 1 is a divisor of
∑2

r=1[(ar(x)− br(x))(ar(x
m−1)− br(x

m−1)].
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Table 3.8 presents ternary LCP of FC codes with good security parameter.

m d d∗ a1(x) a2(x)

4 6 6 2x3 + 2x2 + x x2 + 1

5 7 7 x2 + 2x+ 1 2x3 + x+ 1

7 9 9 x3 + 2x2 + 1 2x5 + 2x3 + 2x2 + x+ 1

8 9 10 x3 + x2 + x+ 2 x4 + x2 + 2x+ 1

Table 3.8: Ternary LCP of FC codes.

3.4 Enumeration and Asymptotics

We present enumeration results on DC and FC codes with small hull dimension. We

also study the asymptotic performance of DC codes with 0 or 1 dimensional hull.

For DC codes with small hull dimension (i.e. 0 or 1) over Fq, we need to count the

number of LCD (for 0 dimension) or self-dual (for 1 dimension) codes over Fq, the

number of Hermitian LCD codes over square extensions of Fq, and the number of pair

(C1, C2) of codes over extensions of Fq, such that C1 ∩ C⊥
2 = C2 ∩ C⊥

1 = {0}.

Lemma 3.4.1. The number of solutions in Fq of the equation

1 + x2 = 0

is 1 if q is even and 2 if q ≡ 1 (mod 4).

Proof. If q is even then

1 + x2 = (1 + x)2.

Clearly x = 1 is the only root of this equation.

If q ≡ 1 (mod 4), there exits α ∈ F×
q such that α2 = −1. Then α and −α are the roots

of 1 + x2.

Lemma 3.4.2. The number of solutions x in Fq2 of the equation

1 + xq+1 = 0

is q + 1.
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Proof. Let f(x) = 1 + xq+1. First note that f(x) has at most q + 1 roots in the

algebraic closure F̄q2 . We also have f ′(x) = xq. Since gcd(f, f ′) = 1 this equation has

no repeated root.

We need to show that, every root of f(x) is in Fq2 . Let f(α) = 0. Then we have

αq+1 = −1.

If q is odd, we have

(αq+1)q−1 = 1 =⇒ αq2−1 = 1 =⇒ α ∈ Fq2 .

If q is even, we have

αq+1 = −1 = 1 =⇒ (αq+1)q−1 = 1 =⇒ αq2−1 = 1 =⇒ α ∈ Fq2 .

Lemma 3.4.3. (Lemma 2.10 [?]) The number of solutions of 1+x1y1+. . . , xt−1yt−1 = 0

is

q2t−3 − qt−2.

The enumeration results are as follows:

Proposition 3.4.4. The number of LCD DC codes of length 2m over Fq is

� (q − 2)
∏s

i=2(q
2di − qdi − 1)

∏t
j=1(q

2d′j+ − qd
′
j + 1) if m is odd and q ≡ 1 (mod 4)

� (q− 2)2
∏s

i=3(q
2di − qdi − 2)

∏t
j=1(q

2d′j − qd
′
j +1), if m is even and q ≡ 1 (mod 4)

� (q − 1)
∏s

i=2(q
2di − qdi − 1)

∏t
j=1(q

2d′j − 2qd
′
j + 1) if m is odd and q is even.

� q
∏s

i=2(q
2di − qdi − 1)

∏t
j=1(q

2d′j − 2qd
′
j + 1) if m is odd and q ≡ 3 (mod 4)

� q2
∏s

i=3(q
2di − q2di − 1)

∏t
j=1(q

2d′j − qd
′
j + 1) if m is even and q ≡ 3 (mod 4)

Proof. We use the CRT decomposition of Rm. To count LCD DC codes over Fq, we

are reduced to counting the number of [2, 1] codes over some extension fields FQ of Fq.

If m is odd, then x − 1 is the only self-reciprocal linear factor. By Lemma ??, the

number of self-dual [2, 1]q linear codes is equal to 1 and 2, when q is even and q ≡ 1

(mod 4), respectively. We obtain (q − 1) and (q − 2), [2, 1] LCD linear codes of the

form [1 a], for q is even and q ≡ 1 (mod 4), respectively.
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If m is even, then we have x + 1 as another linear factor also we have q ≡ 1 (mod 4).

In this case, we obtain (q − 2)2, [2, 1] LCD linear codes of the form [1 a].

Over extension fields corresponding to the self-reciprocal factor gi(x), we have Q = q2di ,

where 2di = deg gi(x). The number of [2, 1] Hermitian self-dual linear codes of the form

[1 ai] over Fq is equivalent to counting the number of solutions of the equation

1 + xqdi ,

which by ?? is qdi +1. Thus we obtain q2di − qdi − 1, [2, 1]Q Hermitian LCD codes over

FQ.

A pair hj(x) and h∗j(x) leads us to the extension FQ, with Q = qd
′
j , here d′j = deg h′

j(x).

The number of pair (C ′
j, C

′′
j) of linear codes of the form [1 a′j] and [1 a′′j ] satisfying

C ′
j = C ′′⊥

j is equivalent to counting the number of solutions of the equation

1 + xy = 0,

which by ?? is qd
′
j − 1. Thus we obtain q2d

′
j − qd

′
j + 1 of pair (C ′

j, C
′′
j) such that

C ′
j ∩ C ′′

j = C ′′
j ∩ C ′

j = {0}.

Proposition 3.4.5. Let q be a prime power, q ≡ 1 (mod 4) or q is even, m an integer

relatively prime to q. Then the number of DC codes of length 2m with 1-dimensional

hull is equal to

i: 2
∏s

j=2(q
2di − qdi − 1)

∏t
j=1(q

2d′j − qd
′
j + 1) if m is odd and q ≡ 1 (mod 4).

ii: 4(q−2)
∏s

j=3(q
2di − qdi −1)

∏t
j=1(q

2d′j − qd
′
j +1), if m is even and q ≡ 1 (mod 4).

iii:
∏s

j=2(q
2di − qdi − 1)

∏t
j=1(q

2d′j − qd
′
j + 1) if m is odd and q is even.

Proof. The proof is similar to the proof of Proposition ??, with the difference that in

this case we have self-dual codes over field G1 or G2, depending on the parity of m.

To count the number of LCD FC and FC codes with 2-dimensional hull, we need to

count the number of LCD (for 0 dimension) or self-dual (for 2 dimension) codes over

Fq, the number of Hermitian LCD codes over square extensions of Fq, and the number

of pair (C1, C2) of codes over extensions of Fq, such that C1 ∩ C⊥
2 = C2 ∩ C⊥

1 = {0}.

For the enumeration we use the following results from [?]:
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Lemma 3.4.6. (Lemma 2.7, [?]) If q is odd, then the number of solutions (x, y) in

Fq2 of the equation 1 + x1+q + y1+q = 0 is

q3 − q.

Lemma 3.4.7. (Corollary 2.9, [?]) If q is odd, then the number of solutions (x, y) in

Fq of the equation 1 + x2 + y2 = 0 is

q − η(−1),

where η(x) is the quadratic character of Fq defined as

η(x) =


1 x is square

0 x = 0

−1 x is non-square

.

Note that the constituents of a FC code C are either 0 or 2-dimensional over the

field they are defined.

� Let C be a linear code with generator matrix GC =

1 0 a b

0 1 −b a

 over Fq.

Then, h(C) = 2 if and only if

1 + a2 + b2 = 0.

By Lemma ??, there are q − η(−1) such codes. Thus there are q2 − q + η(−1)

LCD codes with the generator matrix as GC .

� Let C be a linear code with generator matrix GC =

1 0 a b

0 1 −bq aq

 over Fq2 .

Then, h(C) = 2 if and only if

1 + aq+1 + bq+1 = 0.

By Lemma ??, there are q3− q such codes. Thus there are q4− q3+ q LCD codes

with generator matrix as GC .

� Let C and D be two linear codes with generator matrices

GC =

1 0 a1 a2

0 1 −b2 b1

 GD =

1 0 b1 b2

0 1 −a2 a1

 .
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Then, h(C,D) = 2 if and only if rank(GCG
T
D) = 0:

1 0 a1 a2

0 1 −b2 b1




1 0

0 1

b1 −a2

b2 a1

 =

1 + a1b1 + a2b2 −a1a2 + a1a2

−b1b2 + b1b2 1 + a1b1 + a2b2



This matrix has rank 0 if and only if

1 + a1b1 + a2b2 = 0.

By Lemma ??, there are q3− q of such pair of codes. Thus the number of (C,D)

such that C = D⊥ is q4 − q3 + q.

Theorem 4.3 in ([?]), gave enumeration results for LCD FC codes. While we were

trying to examine our enumeration results for LCD case, it did not match their result.

After carefully checking, we found their missing point and revised the enumeration

result as follow.

Theorem 3.4.8. Let q be odd, then the number of LCD FC codes of length 4m over

Fq is

i: (q2 − q + η(−1))
∏s

i=2(q
4di − q3di + qdi)

∏t
j=1(q

4d′j − q3d
′
j + qd

′
j),if m is odd.

i: (q2 − q + η(−1))2
∏s

i=3(q
4di − q3di + qdi)

∏t
j=1(q

4d′j − q3d
′
j + qd

′
j),if m is even.

Proof. Again by using the CRT decomposition of Rm, we need to count the number of

codes with the 0 dimensional hull over the field they are defined.

For the constituents from x− 1 or x+ 1, this number is (q2 − q + η(−1)).

Self-reciprocal factor gi(x), leads us to count the number of [4, 2] Hermitian LCD codes

over Fq2di , which is equal to (q4di − q3di + qdi). A pair hj(x) and h∗
j(x), leads us to

the pair (C ′
j, C

′′
j) over F

q
d′
j
such that h(C ′

j, C
′′
j) = h(C ′′

j, C
′
j) = 0, which is equal to

q4d
′
j − q3d

′
j + qd

′
j .

By Corollary ??, 2-dimensional hull FC codes corresponds to the polynomial a1(x), a2(x)

such that

gcd(1 + a(x)a(xm−1) + b(x)b(xm−1), xm − 1) = x− 1,

or

gcd(1 + a(x)a(xm−1) + b(x)b(xm−1), xm − 1) = x+ 1,

depending on the parity of m.
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Theorem 3.4.9. The number of FC codes of length 4m and hull dimension 2 over Fq

is

i: (q − η(−1))
∏s

i=2(q
4di − q3di + qdi)

∏t
j=1(q

4d′j − q3d
′
j + qd

′
j), if m is odd.

i: 2(q − η(−1))(q2 − q + η(−1))
∏s

i=3(q
4di − q3di + qdi)

∏t
j=1(q

4d′j − q3d
′
j + qd

′
j), if m is

even.

Tables 3.9 and 3.10 present binary and ternary FC codes with 2-dimensional hull.

m d d∗ a1(x) a2(x)

3 4 4 x2 + x x2

5 4 6 x3 + 1 x4 + x2 + 1

7 8 8 x6 + x5 + x4 + x+ 1 x6 + x3

9 8 8 x8 + . . .+ x4 x8 + x

11 8 10 x3 + x2 + 1 x6 + x2 + x+ 1

13 11 8 x7 + . . .+ x2 x12 + x7 + x3

Table 3.9: Binary FC codes with 2-dimensional hull

m d d∗ a1(x) a2(x)

4 6 6 2x4 + x2 + 2 2x+ 2

5 7 7 2x4 + 2x3 + 1 x4 + x2 + 2

7 8 9 x5 + 2x3 + 2x2 + 2 2x6 + x+ 2

8 9 10 x6 + 2x4 + x3 + 2x+ 1 x7 + x2 + 1

10 11 12 x6 + x4 + x3 + x2 + 2x+ 2 x6 + x5 + x4 + x2 + x+ 1

Table 3.10: Ternary FC codes with 2-dimensional hull
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We now turn our attention to the asymptotic performance of DC codes with small

hull dimension. If C(i) is a family of linear codes with parameters [ni, ki, di]q, the rate

and relative distance of this family is defined as

R = lim
i→∞

sup
ki
ni

,

and

δ = lim
i→∞

sup
di
i
.

C(i) is called asymptotically good if Rδ > 0.

An integer g is called a primitive root modulo m if g generates the group of units

Z×
m of the ring Zm. Artin’s conjecture on primitive roots, which was proved in [?]

under Generalized Riemann Hypothesis, states that any positive integer, which is not

square, is a primitive root modulo infinitely many primes m. This implies that for

a non-square q, there exists infinitely many primes m such that xm − 1 factors into

irreducible polynomials over Fq as

xm − 1 = (x− 1)u(x).

Lemma 3.4.10. (Lemma 6, [?]) With above assumption, let 0 ̸= u(x) ∈ R2
m. If

u has Hamming weight less than m, then there are at most q polynomials such that

u ∈ Ca =< (1, a(x)) >.

The q-ary entropy function is defined for 0 < t < 1− 1
q
by

Hq(t) = t logq(q − 1)− t logq(t)− (1− t)logq(1− t).

The volume of the Hamming ball of radius tn (or the number of vectors of weight ≤ tn)

is approximately qnHq(t) ([?], Lemma 2.10.3).

Theorem 3.4.11. i) Let q be a non-square, m an odd prime such that gcd(q,m) =

1. Then there exit infinite families of LCD DC codes of length 2m and relative

distance satisfying

δ ≥ H−1
q (

1

2
).

In particular such families are asymptotically good.
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ii) Let q be a non-square which is either even or q ≡ 1 (mod 4), m an odd prime

such that gcd(q,m) = 1. Then there exist infinite families of 1-dim hull DC codes

of length 2m and relative distance satisfying

δ ≥ H−1
q (

1

2
).

In particular such families are asymptotically good.

Proof. With our assumption, let

xm − 1 = (x− 1)u(x).

i) Let Γm denotes the number of LCD DC codes of length 2m. Then by Proposition

(??), Γm ∼ qm.

Denote the number of double circulant codes of length 2m containing a vector of

weight d ∼ 2mδ or less by γm. By Lemma ?? and (Lemma 2.10.3, [?]),

γm ∼ q.q2mHq(δ) ∼ q2mHq(δ)

If Γm > γm, then there exist LCD DC codes of length 2m and minimum distance

at least d ∼ 2mδ. Let δ′ be the largest possible number such that Γm > γm.

Then for any δ ≥ δ′ we have Γm ∼ γm as m → ∞ or equivalently

2mHq(δ) ≥ m =⇒ δ ≥ H−1
q (

1

2
)

Note that for such a family we have R = 1
2
, thus Rδ > 0.

ii) The proof is analogous to the proof of part (i), utilizing Proposition (??) this

time.
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