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ABSTRACT

LAST MILE DELIVERY ROUTING PROBLEM USING AUTONOMOUS
ELECTRIC VEHICLES

NIMA MORADI

INDUSTRIAL ENGINEERING M.Sc. THESIS, JULY 2022

Thesis Supervisor: Prof. Bülent Çatay
Thesis Co-advisor: Dr. Mir Ehsan Hesam Sadati

Keywords: Vehicle routing problem, autonomous electric vehicle, covering-routing
problem, two-phase heuristic, variable neighbourhood search, simulated annealing

Distribution management is one of the important elements of the supply chain or
logistic system due to its large contribution to the total cost of the system. One
of the growing industries in distribution management is using autonomous electric
vehicles for last mile delivery. Applying autonomous delivery vehicles (ADV) to de-
liver the products has many applications in grocery shopping, logistics, food delivery,
etc. In the real-world situations for ADV, a subset of delivery sites (customers) is
visited directly; however, the remaining customers must be covered by (assigned
to) the delivery sites en-route with which their distance is within the maximum
walking distance. Accordingly, the present thesis studies a last-mile delivery routing
using ADV which is a covering-routing problem (or median-routing problem) sat-
isfying the load capacity, route distance/duration, and customer’s walking distance
constraints. The addressed problem is called Covering Electric Vehicle Routing
problem (CE-VRP). Two mathematical models are proposed for CE-VRP: one with
the assignment cost as the objective function, and the other with the assignment
distance as a constraint. The proposed models are developed according to efficient
mathematical models proposed for handling the constraints of the maximum route
distance/duration in the literature with the polynomial number of constraints and
decision variables. Due to the NP-hardness of the CE-VRP, a new two-phase heuris-
tic consisting of selecting the delivery sites and customers assignment (first phase),
and routing the vehicles visiting the delivery sites (second phase) is proposed to solve
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the large-sized instances. Also, several efficient repair and improvement operators
are proposed in the first phase, and a hybrid Variable Neighbourhood search with
Simulated Annealing (VNS-SA) metaheuristic is designed to find the high-quality
routes by diversifying and intensifying the solution space in the second phase. The
computational results show the efficiency of the proposed method in solving the
various-sized instances of CE-VRP and other covering-routing problems. Finally,
concluding remarks and suggestions for future studies are stated.
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ÖZET

OTONOM ELEKTRİKLİ ARAÇLAR İLE SON KİLOMETRE DAĞITIM
ROTALAMASI PROBLEMİ

NIMA MORADI

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Prof. Bülent Çatay
Tez Yardımcı Danışmanı: Dr. Mir Ehsan Hesam Sadati

Anahtar Kelimeler: Araç rotalama problemi, otonom elektrikli araç,
kapsama-rotalama problemi, iki aşamalı sezgisel, değişken komşuluk arama,

benzetimli Tavlama

Dağıtım yönetimi, sistemin toplam maliyetine yaptığı büyük katkı nedeniyle tedarik
zinciri veya lojistik sistemin önemli unsurlarından biridir. Elektrikli otonom
araçların son kilometre teslimatı için kullanımı dağıtım yönetiminde hızla gelişen
endüstrilerden biridir. Ürünlerin teslimatında otonom dağıtım araçlarının (ODA)
kullanımının, market alışverişi, lojistik, yiyecek dağıtımı vb. alanlarda birçok uygu-
laması bulunmaktadır. Gerçek hayatta ODA kullanılırken, teslimat yerlerinin bir alt
kümesi (müşteriler) doğrudan ziyaret edilir; ancak, kalan müşteriler, mesafelerinin
maksimum yürüme mesafesi içerisinde olduğu yol üzerindeki teslimat yerleri (atan-
mış) tarafından karşılanmalıdır. Bu tez çalışmasında, ODA kullanılarak son kilome-
tre teslimatının rotalandırılması, yük kapasitesi, rota mesafesi/süresi ve müşterinin
yürüme mesafesi kısıtlarını sağlayan kapsama rotalama (medyan rotalama) problemi
incelenmektedir. Bu problemi Elektrikli Araç Kapsama-Rotalama Problemi (EA-
KRP) olarak adlandırdık. EA-KRP için önerilen matematiksel modellerin ilkinde:
atama maliyeti amaç fonksiyonu olarak diğerinde ise atama mesafesi kısıt olarak
formüle edilmiştir. EA-KRP’nin NP zorluğu nedeniyle, büyük ölçekli problemleri
çözmek için teslimat yerlerinin seçilmesini ve müşterilerin atanmasını (birinci aşama)
ve teslimat yerlerini ziyaret eden araçların rotalandırılmasını (ikinci aşama) içeren
iki aşamalı bir sezgisel yöntem önerilmiştir. Birinci aşamada onarma ve iyileştirme
operatörlerinden faydalanılırken. ikinci aşamada çözüm uzayını çeşitlendirerek ve
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yoğunlaştırarak yüksek kaliteli rotaları bulabilmek için hibrit bir Değişken Komşu-
luk Araması Benzetilmiş Tavlama (DKA-BT) metasezgisel yaklaşım tasarlanmıştır.
Yapılan deneysel çalışmaların sonuçları, önerilen yöntemin çeşitli büyüklükteki EA-
KRP örnekleri ile Kapasiteli Araç Rotalama ve Kapsama Rotalama problemlerini
çözmedeki etkinliğini göstermektedir. Son olarak, elde edilen sonuçlar değerlendiril-
erek ve gelecek çalışmalar için öneriler sunulmuştur.
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1. INTRODUCTION

One of the important elements of a logistic or supply chain system is distribution
management. Distribution management is defined as the activities and processes
which lead to distributing the products from their origin to different destinations
or customers and delivering the products to the final consumer1. Distributing any
product or goods plays a critical role in the economical aspects of a service provider
company due to its direct impact on the company’s costs and customer satisfac-
tion (Farham-Nia & Ghaffari-Hadigheh, 2021). An important activity inside the
distribution system is the last-mile delivery, which is defined as the final step of
the product journey from the last delivery hub to the hand of the customer2. Also,
last-mile delivery activities can account for 53% of the total shipping costs and 41%
of total supply chain costs and even this number can be increased due to inefficient
policies in the supply chain or routing sectors3.

Nowadays, one approach to last-mile delivery is to use autonomous delivery vehicle
(ADV) to deliver the products in a cheap and fast way both of which are critical
criteria for any company providing delivery services. ADV’s are electric vehicles
(EV) in their nature, which are self-driving vehicles without any human role4. Due
to the large number of customers who prefer to order and buy a product via the
online platform, and fast delivery, ADV’s are becoming a major part of any ur-
ban logistic and product delivery in the next decade (Gao, Kaas, Mohr & Wee,
2016). It is expected that the ADV’s market "will rise at a Compound annual
growth rate (CAGR) of 11% from 2019 to reach the 200 billion USD in 2029" (see
the website https://aiworldschool.com/ for more information on ADV). Udelv5 is a
start-up company that applies the ADV’s for last-mile or middle-mile delivery with

1https://www.shipbob.com/blog/distribution-management/

2https://en.wikipedia.org/wiki/Last_mile_(transportation)

3https://onfleet.com/blog/what-is-last-mile-delivery/

4https://aiworldschool.com/

5https://www.udelv.com/
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the technology of the autonomous vehicles provided by Mobileye (a system software
company that is active in developing the autonomous driving technologies). Fig. 1.1
shows a sample of the ADV’s suggested by Udelv company to its customers. This
type of ADV is a multi-stop EV with a "hot-swappable modular cargo pod called the
uPod". Also, this multi-stop ADV has a load capacity at maximum 2,000 pounds of
goods, is able to stop 80 times on each trip, travels between 160 and 300 miles per
tour (trip) considering the battery level and is connected to "Udelv’s mobile apps"
to monitor its routing, delivery and returning activities6.

Figure 1.1 The first cab-less autonomous electric delivery vehicle designed
for multi-stop delivery provided by Udelv company (Source of the image:
https://mma.prnewswire.com/)

The multi-stop ADV will be one of the popular EV’s due to its efficiency and ca-
pability to deliver the products in an economical and fast way as a part of the
last-mile delivery processes7. One of the biggest challenges in the last-mile delivery
of ADV’s is the "routing" decisions which need a fast decision-maker algorithm to
route its path from origin to the final destination while delivering the products to
the customers on time and returning to the origin without violating the load ca-
pacity, maximum route distance/duration constraints. At first, after receiving the
orders of the customers, each ADV is filled with the ordered products considering
the load capacity and coverage area of the ADV (see Fig. 1.2). Next, the route
planning for an ADV with respect to the locations of the customers is found by a
route optimization algorithm connected to the central server system. Then, the cus-
tomers walk a distance to reach the stopping location of the ADV (delivery site or
"hot spots") to pick up their products or goods from the parcel lockers by providing

6https://www.prnewswire.com/

7https://www.udelv.com/about
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their electronic personal information (see Fig. 1.3). Finally, after delivering the all
products, the ADV moves to another stopping location or returns to the origin. A
successful use of the autonomous electric vehicles is the Mobile Locker for grocery
delivery (Draeger’s Market, a San Mateo, CA grocery store8). In this grocery de-
livery example, each autonomous vehicle is filled with the products and then after
traveling for 30 minutes, it arrives at the stopping location and then the customers
have 1 hour to pick up their orders.

Figure 1.2 The cargo section of the multi-stop autonomous electric delivery vehicle
provided by Udelv company ( Source of the image: https://mma.prnewswire.com/)

Figure 1.3 Customers delivery process from the parcel lockers within the au-
tonomous electric delivery van provided by Udelv company (Source of the image:
https://medium.com/)

In last-mile delivery by the ADV’s, route optimization plays a critical role in the
productivity of usage of ADV’s and justifying their usage as a delivery vehicle in
the transportation or supply chain systems. The multi-stop ADV, as mentioned

8https://medium.com/@udelv/mobile-lockers-new-delivery-methods-by-self-driving-cars-de04e50d4cea
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above, have limited traveling distance/duration and cargo capacity which limits
its capability in visiting more customers. Despite these limitations in using ADV,
efficient routing of the vehicles and assignment of the customers to a selected delivery
site (stopping location of ADV) will encounter limitations while minimizing the
routing and usage costs. Although the decision of routing the EV’s, known as the
Electric Vehicle Routing Problem (E-VRP) (Schneider, Stenger & Goeke, 2014),
has been studied by many researchers in recent years, there is no work on routing
the multi-stop ADV and assigning the customers to each stopping location of ADV
while considering the constraints of route duration (time) limit and distance (length)
limit, load capacity, and maximum walking distance for the customers to reach a
delivery site. Also, it is worthy to say that, in this thesis, the literature of E-VRP
or Green VRP (G-VRP) are not reviewed since in the E-VRP and its variants,
the location of the charging stations are found, which is not in the scope of this
thesis. For interested readers, some review works of E-VRP (Erdelić & Carić, 2019;
Kucukoglu, Dewil & Cattrysse, 2021; Lin, Zhou & Wolfson, 2016), G-VRP (Erdoğan
& Miller-Hooks, 2012; Lin, Choy, Ho, Chung & Lam, 2014; Moghdani, Salimifard,
Demir & Benyettou, 2021; Sharafi & Bashiri, 2016), Autonomous Vehicle Logistic
System (AVLS) (James & Lam, 2017), and Autonomous Vehicle Routing Problem
Solution (VRPS) considering pilot satisfaction (Yan, 2018) are suggested.

To find the optimal or near-optimal solution of routing the ADV considering the
several constraints, both routing and assigning (covering) decisions must be taken
into account. In the real-world situations for ADV, a subset of customers are visited
in their location; however, the remaining customers must be covered by or assigned
to a delivery site with which their distance is within the maximum walking distance.
So, the addressed problem in this thesis is different from the classic Vehicle Routing
Problem (VRP) (originally introduced in Dantzig & Ramser (1959)) in which all
customers must be visited directly exactly one time by one vehicle, and all vehicles
must start their trip from and return to the origin (depot). Accordingly, the last-
mile delivery routing using the autonomous electric vehicle, or ADV, is a covering-
routing problem (or median-routing problem) while considering the load capacity,
route distance/duration, and customer’s walking distance constraints. Considering
an upper bound on the walking distance of a customer is an important parameter
that indicates customer accessibility. This problem, the last-mile delivery routing
using the autonomous electric vehicles, is called Covering Electric-Vehicle Routing
Problem (CE-VRP) in the present thesis and it is the main addressed problem,
which has not been studied previously, to our best knowledge, in the literature.

CE-VRP not only has practical importance in the last-mile delivery of electric-
vehicles routing and urban logistics, but it has also theoretical attractiveness because
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of its complexity and extending the sub-problems that lie in the class of the VRP and
covering-routing problems. This thesis aims to address the CE-VRP (a covering-
routing problem finding the best routes for the vehicle to visit a subset of customers
directly and the optimal assignment of the unvisited customers to the customers on
the main routes (called delivery sites) satisfying the load capacity, route length/time,
and walking distance constraints) and propose a mathematical programming model
for it and design an efficient optimization solver based on heuristic/metaheuristic
methods. The main contributions of the present thesis can be listed as follows:

• A new covering-routing problem is introduced as Covering Electric-Vehicle
Routing Problem (CE-VRP) with respect to a real last-mile delivery routing
problem;

• A new classification scheme is introduced for the covering-routing problems in
which isolating the customers is not allowed and all customers must be either
visited or covered;

• The studied CE-VRP extends the literature on the covering-routing problems
by considering the load capacity, route distance & duration, and maximum
walking distance constraints;

• A new mixed-integer programming model is developed for the addressed prob-
lem;

• An efficient two-phase heuristic, consisting of a new greedy construction al-
gorithm, a hybrid metaheuristic to find the near-optimal routes, and several
problem-specific repair and improvement operators to optimize the covering
(assignment) decisions, is proposed to solve the large-sized instances of CE-
VRP;

• The performance of the proposed two-phase heuristic and repair & improve-
ment operators is validated by solving the various variants of CE-VRP and
comparing the results with the existing solvers in the literature;

The present thesis is structured as follows: in the second chapter, the literature on
the related problems from routing problem to covering-routing are reviewed while
introducing a new classification scheme for the most-related problem to the ad-
dressed problem in this thesis, CE-VRP. In the third chapter, the main problem is
stated and a mathematical model, which is polynomial in the number of decision
variables and constraints, is proposed in two versions. In the fourth chapter, the
solution methodology is explained briefly and a two-phase heuristic with efficient
repair and improvement operators is described. In the fifth chapter, the compu-
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tational results to validate the performance of the proposed solution method and
several improvement operators are presented beside the comparison study for eval-
uating the performance of the proposed heuristic in solving the main problem and
its variants. Finally, in the sixth chapter, the concluding remarks and suggestions
for future studies are stated.
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2. LITERATURE REVIEW

In this chapter, the related works to the main problem of the present thesis are
reviewed. The review is started with the general routing problems and then contin-
ued by introducing the various variants of it, and finally, the most-related problems
to the addressed problem in terms of features and assumptions are summarized by
introducing a new classification scheme for such problems.

2.1 Routing problems

Routing problems are among the well-known and well-studied Combinatorial Opti-
mization Problems (COP) in the context of Operations Research (OR) which find a
(closed) path starting from an initial point and finishing at a final point while opti-
mizing an objective and satisfying some constraints. From the graph1 perspective,
routing problems are classified into two sub-problems: incomplete tour, say path,
finding and complete tour, say cycle, construction problems. Path finding problems
consist of Single-Source Shortest Path (SSSP) (Medak & Gogoi, 2018) and All-Pairs
Shortest Path (APSP) (Katz & Kider, 2008). Cycle construction problems aim to
find a cycle (a complete tour) that goes through the nodes of the graph by traversing
the edges; it is called a cycle because after starting the tour from a specific node,
called as origin or depot, it finishes the tour at the same node (point).

The simple form of the cycle construction problem is known as Travelling Salesman
Problem (TSP) (Flood, 1956) which tries to find a minimum-length cycle inside
the graph visiting all nodes exactly one time. TSPs can be classified in two ways:
based on constraints, or Hamiltonian property (Laporte & Martín, 2007). If they
are classified based on the constraints, two general classes including unconstrained,

1A visual representation in discrete mathematics which works with a set of nodes (vertices) connected by a
set of arc (edges) (West, 2001)
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and constrained sub-problems are introduced. Also, if they are classified based on
Hamiltonian property, then Hamiltonian (section 2.2) and non-Hamiltonian (section
2.3) sub-problems appears. The present thesis focuses on the non-Hamiltonian cycle
construction problem and its extensions.

2.2 Hamiltonian cycle construction problems

In Hamiltonian cycle construction problems, all nodes (customers) must be visited
directly by the salesmen (vehicles); for example, in Capacitated VRP (CVRP),
the aim is to find the routes for more than one vehicle while satisfying the load
capacity of each vehicle and visiting each customer exactly one time. One of the
Hamiltonian cycle construction problems, which is close to the addressed problem
of the thesis, is Clustered VRP (CluVRP), first introduced by Sevaux & Sörensen
(2008). The CluVRP is the generalized version of Clustered TSP (CluTSP), in
which there are multiple vehicles (Snyder & Daskin, 2006). As a simple definition of
CluTSP, it tries to find the main cycle by constructing the secondary cycles on some
of the nodes assigned to the main cycle. In CluVRP, the clusters and the nodes
within each cluster are determined in advance, and two decisions include finding the
routes visiting the centers of each cluster and finding the routes serving all customers
within each cluster. For Hamiltonian cycle construction problems and their variants,
interested readers are referred to the review work of Toth & Vigo (2014).

2.3 Non-Hamiltonian cycle construction problems

In non-Hamiltonian cycle construction problems, the assumption of visiting all cus-
tomers is relaxed, so a subset of customers may not be visited. There are three
approaches to handling the non-visited customers: one way is to leave some of the
customers isolated (called non-Hamiltonian problems with profits); the second way
is to assign them to (cover them by) a customer or node which is on the vehicle’s
tour (called set covering non-Hamiltonian problems); and the third way which is
a combination of two previous approaches, in which customers are visited or cov-
ered or isolated (called maximal covering non-Hamiltonian problems). These three
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approaches with their sub-problems are explained in the following.

2.3.1 Non-Hamiltonian problems with profits

In the first approach, non-Hamiltonian problems with profits, or isolating some
customers, each customer associates with a prize, or reward or profit, to be visited
or not. For example, in non-Hamiltonian TSP with profits, some customers may not
be chosen to be on the tour, which leads to TSP with Profits (TSPP) (Feillet, Dejax
& Gendreau, 2005). Consequently, TSPP tries to find a solution with minimum tour
cost and maximum total profit collected from the customers while satisfying some
constraints (usually capacity or tour duration constraints). Both tour cost and total
profit can be considered either as an objective function or as a constraint. If the
objective function is the maximization of the collected total profit with an upper
bound on the total traveled distance, it is called selective TSP (Laporte & Martello,
1990) or Orienteering Problem (OP) (Golden, Levy & Vohra, 1987). If the objective
function is to minimize the total traveling (tour) cost with a lower bound on the total
profit collected, it is called Prize-collecting TSP (PCTSP) (Balas, 1989). Finally,
if the objective function is to optimize a combination of both tour cost and profit
collected without any restriction on them, it is known as (Capacitated) Profitable
Tour Problem (CPTP) (Jepsen, Petersen, Spoorendonk & Pisinger, 2014).

Moreover, in selective TSP, PCTSP, and CPTP sub-problems, if more than one
vehicle (salesman) is used, then three new variants of selective VRP, or Team Ori-
entation Problem (TOP)2 (Sabo, Pop & Horvat-Marc, 2020), Prize-collecting VRP
(PCVRP) (Tang & Wang, 2006), and Multi-vehicle CPTP (MCPTP) (Handoko,
Chuin, Gupta, Soon, Kim & Siew, 2015) are developed, respectively. Since this
thesis does not focus on the prize-related TSP’ss or VRP’s, the interested readers
are referred to the seminal works such as (Archetti, Speranza & Vigo, 2014; Balas,
2007; Dell’Amico, Maffioli & Värbrand, 1995; Gendreau, Laporte & Semet, 1998;
Laporte & Martello, 1990; Vidal, Maculan, Ochi & Vaz Penna, 2016). Furthermore,
there are several other problems which are very close to TSPP or VRP with Prof-
its (VRPP), namely Arc Routing Problem with Profits (ARPP) (Archetti, Feillet,
Hertz & Speranza, 2010) in which arcs associate with a prize or profit, Tourist Trip
Design Problem (TTDP) (Gavalas, Konstantopoulos, Mastakas & Pantziou, 2014),
Mixed TOP (MTOP) (Gavalas, Konstantopoulos, Mastakas, Pantziou & Vathis,

2TOP has been also studied under the name Multiple Tour Maximum Collection Problem (MTMCP) in
the literature (Butt & Cavalier, 1994).
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2016) which considers prize or profit for both nodes and arcs, Tour Suggestion
Problem for Leisure and Tourism (TSPLT) (Maervoet, Brackman, Verbeeck, Caus-
maecker & Berghe, 2013), Bus Touring Problem (BTP) (Deitch & Ladany, 2000),
VRP with Private Fleet and Common Carriers (VRPPC) (Bolduc, Renaud, Boctor
& Laporte, 2008), in which each customer must be visited by a private vehicle or
outsourced to a common carrier; VRPPC is very close to PCVRP if outsourcing a
customer is considered equal to not visiting a customer (minimizing the outsourcing
cost is equal to the minimizing the penalty cost of not visiting).

2.3.2 Set covering non-Hamiltonian problems

The second approach, set covering non-Hamiltonian problems, or covering a subset
of customers, leads to introducing a new class of tour construction problems known
as Median Cycle Problem (MCP), "cycle" for constructing a cycle, or ring or tour,
in the solution representation, and "median" for being a simple median problem at
some nodes to cover the remaining nodes; MCP is also known as Ring Star Problem
(RSP) in the literature (Labbé, Laporte, Martín & González, 2004) (see section
2.3.2.3). In other words, in MCP all customers must be either visited or covered by
another customer, or node, which is on the tour. Throughout this thesis, covering,
assigning, and allocating are referring to the same concept in the cycle construction
problem. In the following, MCP and its variants are more elaborated due to their
closeness to the present thesis’ scope.

In this thesis, a new classification framework for set covering non-Hamiltonian prob-
lems is introduced which is adapted from the classification scheme for maximal cov-
ering non-Hamiltonian problems, under the name routing and path planning with
spatial coverage, originally introduced by Glock & Meyer (2022).

2.3.2.1 Classification scheme

In this section, a new classification scheme for set covering non-Hamiltonian prob-
lems is presented. In this thesis, all set covering non-Hamiltonian problems are
defined by ten characteristics, including "depot type", "customer type", "Steiner
point type", "depot kind", "customer kind", "Steiner point kind", "constraint type",
"objective function", "the number of tours (vehicles)", and "the number of depots"
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as given in Table 2.1. Also, in this classification, we do not consider the set cover-
ing non-Hamiltonian problems with partial or probabilistic coverage and continuous
topological space since the main focus of this thesis is not reviewing and classifying
all problems but related ones. First of all, three first characteristics, including "depot
type", "customer type", and "Steiner point type" are explained in the following.

Table 2.1 Classification scheme for set covering non-Hamiltonian problems

Characteristic Notation
Depot type D
Customer type C
Steiner point type S
Depot kind Optional Do

Mandatory Dm

Customer kind Optional Co

Mandatory Cm

Steiner point kind Optional So

Mandatory Sm

Constraint type Load capacity (LC) LC
Distance-constrained vehicles (DV) DV
Time-constrained vehicles (TV) T V
Time windows (TW) T W
Backhaul customers (BC) BC
Pickup and delivery (PD) PD
Precedence relationship (PR) PR
Maximum walking distance MC

Objective function Min. route cost O1
Min. assignment cost O2
Min. delivery site opening cost O3
Min. depot opening cost O4

The number of routes (vehicles) Single K1
Multiple K2

The number of depots (delivery site) Single W1
Multiple W2

Suppose there is only a node, or a point, with several directed arcs. Now let’s
assume that the direction of each arc represents the flow of the products or goods.
For example, −→ means that some products are transported from the left-hand side
to the right-hand side. According to the different combinations of a node and single
(multiple) in-degree or out-degree of the node, a total of nine various combinations
could be generated as given in Table 2.2.

Now we define the "depot" as a node which can be represented by any types of "a"
to "i" (given in Table 2.2). The "customer" is defined as a special kind of "depot"
that cannot generate any product, or the out-degree of the "customer" node must
be zero (note that a "customer" node can have an out-degree, which leads to the
routing problems with pickup and backhaul customers; so based on the definition
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here, the "customer" node can be represented by any types of "b", "d", "e", "g", "h", or
"i" (note that a customer with the type of "a" is considered in the non-Hamiltonian
problems with profits or maximal covering non-Hamiltonian problems in which the
customer can be left isolated). Also, another node type is defined which must have
at least one out-degree (except in the case in which there is no in-degree, then it
can have no out-degree), and also it cannot be an initial or origin node. This new
node is known as the "Steiner point", or transit or transition point, in the literature
(Baldacci, Dell’Amico & González, 2007), which is just for helping the products to
flow between the nodes; in other words, the "Steiner point" cannot be a node having
no out-degree (cannot be a terminal or sink node). Therefore, "Steiner point" can
only be represented by the types of "a", "d", "g", "h", or "i". Finally, a "delivery site
point" (Ceselli, Righini & Tresoldi, 2014) or "parcel locker" (Jiang, Zang, Dong &
Liang, 2022) is equivalent to the "Steiner point", so throughout this thesis, "Steiner
point", "delivery site point", and "parcel locker" refer to the same type of node.
Accordingly, the provided above definitions for "depot", "customer", and "Steiner
point" are true for the depots, customers, and delivery sites in the remaining part
of the thesis.

Table 2.2 Different combinations of a node and single (multiple) in-degree or out-
degree of the node

Combination of a node and arcs In-degree Out-degree Name notation
0 0 Isolated node a
1 0 Terminal node b
0 1 Initial node c
1 1 On-route node d

> 1 0 Sink node e

0 > 1 Origin node f

> 1 > 1 Hub node type 1 g

1 > 1 Hub node type 2 h

> 1 1 Hub node type 3 i

As a result, each depot, customer and Steiner point can be represented by the node
types given in Table 2.2. For instance, depot type is defined by a non-empty subset
of the set {a,b,c,d,e, f,g,h, i}, customer type is defined by a non-empty subset of the
set {b,d,e,g,h, i}, and Steiner (delivery site) type is defined by a non-empty subset
of the set {a,d,g,h, i} in any set covering non-Hamiltonian problem.

In the proposed classification scheme, kind of each depot, customer or Steiner point
can be in two modes of optional or mandatory (Glock & Meyer, 2022). For example,
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a depot node with kind of optional is free to be on the tours or not; however, a depot
node with kind of mandatory, which must be on at least one tour, has no freedom
to be an isolated node. Also, suppose a customer with optional kind to be visited
or covered, then the type of this customer can be chosen from the set {b,d,e,g,h, i};
however, if a customer is with mandatory kind, which must be visited or be on a tour,
then this customer cannot be covered, so its type is reduced to the set {d,g,h, i}.
Therefore, considering the kinds of optional or mandatory for each node is important
and it has to be taken into account in classifying the set covering non-Hamiltonian
problems.

Moreover, the characteristic of constraint type in the classification scheme consists
of seven constraints defined for tour construction problems plus the maximum cov-
erage distance for the nodes with notation MC. The characteristic of the objective
function indicates the type of the objective function of a problem which can be one
or more of the following objectives: minimizing the route cost, minimizing the as-
signment (covering) cost, minimizing the opening cost of a delivery (Steiner) site,
and minimizing the opening cost of a depot (in multi-depot problems).

In the following, various set covering non-Hamiltonian problems from the simplest
to more complex, introduced in the literature, are explained briefly and then these
problems are classified according to the proposed classification scheme at the end
to determine their similarities and differences with the addressed problem in the
present thesis.

2.3.2.2 Location Set Covering Problem

The covering problems try to locate the facilities such that they are able to "cover" or
serve a set of customers. In this context, a customer is coverable by a facility if and
only if the customer is located within a predefined coverage distance of dmax from the
facility. There are two types of the objective functions in covering models as follows:
trying to cover all customers with the smallest number of facilities; or covering as
many customers as possible with a given number of facilities. The former objective
type is referred to as Location Set Covering Problem (LSCP) (first introduced by
Toregas, Swain, ReVelle & Bergman (1971)), and the latter one is known as Location
Maximal Covering Problem (LMCP).
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2.3.2.3 Median Cycle Problem (MCP) or Ring Star Problem (RSP)

MCP was first introduced by Labbé, Laporte, Martín & González (1999) in 1999.
MCP is also known as RSP in the literature; both MCP and RSP have the same
mathematical model (Labbé et al., 2004); however, mostly, RSP refers to a problem
with the assignment cost in the objective function, and MCP refers to a problem
with an upper bound on the assignment cost (as a constraint) (Laporte & Martín,
2007). RSP aims to find a cycle containing a subset of nodes of a graph while
minimizing two kinds of costs: the routing cost of the cycle, and the cost of the
nodes’ assignment (allocation) to the nodes which are on the cycle.

According to the literature, two main solution procedures have been designed for
MCP and RSP: exact approaches, and heuristic-based solvers. Several exact solu-
tion techniques have been proposed for MCP/RSP as follows: branch-and-cut algo-
rithm (Kedad-Sidhoum & Nguyen, 2010; Labbé et al., 1999), Separation procedures
with branch-and-cut algorithm (Labbé, Laporte, Martın & González, 2005), epsilon-
constraint method (Püskül, Aslan, Onay, Erdogan & Taşgetiren, 2022). Moreover,
heuristic solvers for MCP include Variable Neighborhood Tabu Search (VNTS)
(Martín, 2000; Pérez, Moreno-Vega & Martın, 2003), greedy Evolutionary Algo-
rithm (EA) (Renaud, Boctor & Laporte, 2003,0), elitist EA and a population-based
local search (Liefooghe, Jourdan & Talbi, 2010), differential EA (Tasgetiren, Bulut,
Pan & Suganthan, 2011), EA (Calvete, Galé & Iranzo, 2013a), approximation and
heuristic algorithms (Chen, Hu, Tang, Wang & Zhang, 2017), Ant Colony System
Algorithm (Zang, Jiang, Ding & Fang, 2021), Multi-objective EA with Local Search
(MEALS) (Calvete, Galé & Iranzo, 2016).

Moreover, if in MCP/RSP there exists an upper bound on the number of the nodes
(or stops) on the cycle (tour), then MCP/RSP becomes Median Tour Problem
(MTP) (Current & Schilling, 1994). There are several works on the MTP and
its variants in the literature, such as heuristics on MTP (Current & Schilling, 1996),
and recently introduced Generalized MTP (GMTP) (Obreque, Paredes-Belmar, Mi-
randa, Campuzano & Gutiérrez-Jarpa, 2020). Also, if in MCP/RSP only some
specific nodes (Steiner points) must be on the cycle (tour) and the customers must
be assigned to these Steiner points, then MCP/RSP becomes Steiner RSP (SRSP),
originally introduced by Lee, Chiu & Sanchez (1998). SRSP has been studied by
proposing mathematical models and solution techniques, including MIP modeling
(Yuh, Lee & Park, 2014), and First Level Scatter Search (SS) algorithm (Xu, Chiu
& Glover, 2001),
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2.3.2.4 Covering Salesman Problem (CSP)

In TSP, if the assumption to visit directly all customers at their node is relaxed,
then a new variant of TSP, called Covering Salesman Problem (CSP) (Current &
Schilling, 1989), appeared. In CSP, the customers must be visited directly by a
vehicle or covered by another node (customer, delivery, or distribution points). In
other words, CSP tries to find a route to visit some customers, not all of them
and then assigns the non-visited customers to the nodes on the route (covers them)
while minimizing the route and assignment (covering) costs. In CSP, in addition to
visiting or covering a customer, the covered customer must be within a pre-specified
covering distance from the covering customer to be assignable to (coverable by) it.
Also, the only difference between CSP and RSP is that in CSP the assignment part is
considered as a constraint with an upper bound on the traveled (covering) distance
for each customer; however, RSP minimizes the assignment cost as the objective
function without considering a maximum on covering distance.

Moreover, a recent extension of CSP is Generalized CSP (GCSP), in which each
customer i needs to be assigned (covered) at least ki times, and also visiting each
node associates with a cost (Golden, Naji-Azimi, Raghavan, Salari & Toth, 2012;
Naji Azimi, Salari, Golden, Raghavan & Toth, 2009). Also, if in CSP it is assumed
that some customers must be visited and the remaining ones must be covered, then
CSP becomes Covering Tour Problem (CTP) (Gendreau, Laporte & Semet, 1997).
In addition, it can be assumed that some arcs (edges) in the graph of CSP are
removed, known as a non-complete graph. Also, it can be defined that a node i

is coverable by node j if and only if both nodes would be adjacent to each other
(there exists an arc from i to j or vice versa). If in CSP the coverability is defined
by adjacent nodes in a non-complete graph, and it is allowed the cycle not to visit
some of the nodes, then CSP becomes a very new problem, Maximum Covering
Cycle Problem (MCCP), first introduced by Grosso, Salassa & Vancroonenburg
(2016) (for some mathematical proofs on MCCP see (Briskorn, 2019)). MCCP has
been also solved by branch-and-cut (Álvarez-Miranda & Sinnl, 2020).

CSP and its variants have been investigated by several models and solution tech-
niques, such as Approximation algorithms (Arkin & Hassin, 1994), integer pro-
gramming (IP)-based local search (Salari & Naji-Azimi, 2012), branch-and-bound
(Maziero, Usberti & Cavellucci, 2021), SS (Baldacci, Boschetti, Maniezzo & Zam-
boni, 2005), Variable Neighbourhood Search (VNS) (Shaelaiea, Naji-Azimib &
Salaria, 2014), Artificial Bee Colony (ABC) with Genetic algorithm (GA) (Pandiri,
Singh & Rossi, 2020), A multi-start Iterated Local Search (ILS) (Venkatesh, Srivas-
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tava & Singh, 2019), GA (Tripathy, Tulshyan, Kar & Pal, 2017), parallel VNS (Zang,
Jiang, Ratli & Ding, 2020), hybrid EA (Lu, Benlic & Wu, 2021), Deep Reinforce-
ment Learning (Li, Zhang, Wang, Wang, Han & Wang, 2021), heuristic algorithms
(Alinaghian & Goli, 2015), heuristic for CSP with Nodes and Segments (CSPNS)
(Matsuura & Kimura, 2017) in which both nodes and segments on the tour can
cover the nodes not on the tour, and Non-dominated Sorting GA (NSGA)-II for
multi-objective CSP (Tripathy, Biswas & Pal, 2021).

Furthermore, several methods have been proposed for CTP, including reduction
rules (Motta, Nogueira & Ochi, 2010; Motta, Ochi & Martinhon, 2001b), com-
bined cooperative strategy (EA with branch-and-cut algorithm) (Jozefowiez, Semet
& Talbi, 2007), ABC (Pandiri & Singh, 2019), Greedy Randomized Adaptive Search
Procedure (GRASP) (Motta, Ochi & Martinhon, 2001a), A selector operator-based
adaptive Large Neighborhood Search (LNS) (Leticia Vargas, Jozefowiez & Ngueveu,
2015; Vargas, Jozefowiez & Ngueveu, 2015), dynamic programming (Vargas, Joze-
fowiez & Ngueveu, 2017), heuristic algorithm using local search (Murakami, 2018a).
Also, according to the literature, the other variants and extensions of CTP are multi-
objective CTP (Nolz, Doerner, Gutjahr & Hartl, 2010), Multi-vehicle CTP (m-CTP)
(Ha, Bostel, Langevin & Rousseau, 2013; Hachicha, Hodgson, Laporte & Semet,
2000; Jozefowiez, 2014; Kammoun, Derbel, Ratli & Jarboui, 2015,1; Lopes, Souza
& da Cunha, 2013; Margolis, Song & Mason, 2022; Murakami, 2014,1; Oliveira,
Moretti & Reis, 2015; Ziegler, 2013) in which m routes are found to visit a part of
the customers and cover the remaining ones while satisfying a maximum tour length,
multi-objective m-CTP (Glize, Roberti, Jozefowiez & Ngueveu, 2020), m-CTP with
split delivery (Naji-Azimi, Renaud, Ruiz & Salari, 2012), Multi-vehicle multi-CTP
(mm-CTP) (Kammoun, Derbel & Jarboui, 2018,2; Pham, Hà & Nguyen, 2017) (for
dataset description on mm-CTP see (Pham, Hà & Nguyen, 2018)), Multi-Vehicle
Probabilistic CTP (MVPCTP) (Karaoğlan, Erdoğan & Koç, 2018), Prize-collecting
CTP (PCCTP) (Clímaco, Rosseti, Silva & Guerine, 2021), stochastic CTP (Tri-
coire, Graf & Gutjahr, 2012; Zehetner & Gutjahr, 2018), geometric CTP (Arkin
& Hassin, 1991),online CTP (Zhang & Xu, 2018), distance-constrained generalized
m-CTP (Singh, Kamthane & Tanksale, 2021), Multi-vehicle Cumulative CTP (m-
CCTP) (Flores-Garza, Salazar-Aguilar, Ngueveu & Laporte, 2017), Multi-Depot
Covering Tour Vehicle Routing Problem (MDCTVRP), first introduced by Allah-
yari, Salari & Vigo (2015), in which CTP is generalized by considering more than
one vehicle and more than one depot.
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2.3.2.5 Capacitated Multiple-Ring Star Problem (Cm-RSP)

Capacitated Multi-Ring Star Problem (Cm-RSP) was first introduced by Baldacci
et al. (2007). Cm-RSP aims to find the set of cycles (rings), so that, each cycle
includes a central depot, a subset of customers, and other possible points called
transition (transit or Steiner) points that can be used to reduce routing costs. Each
customer must be either on a cycle or assigned to a customer, which is on a cycle, or
a transit point. Also, each transit point can be visited at most once and it cannot be
assigned to a customer or other transit point. The number of customers on a cycle
plus the number of customers assigned to at least one of the customers or transit
points on that cycle must not exceed the capacity of the cycle (route). Therefore,
Cm-RSP extends the MCP/RSP by considering the capacitated m ring stars.

Due to the theoretical and practical importance, Cm-RSP have been studied in terms
of both modeling and solution procedures. For example, in addition to two-index for-
mulation (Baldacci et al., 2007), Cm-RSP has been also modeled by two-commodity
flow formulation (Baldacci et al., 2007), and set covering formulation (Hoshino &
De Souza, 2012) in the literature. Moreover, there are two main solution approaches
for Cm-RSP, including exact and metaheuristics. The works proposing exact solvers
for Cm-RSP are as follows: branch-and-cut (Baldacci et al., 2007), Column Gen-
eration (Hoshino & Souza, 2008), branch-and-cut-and-price (Fouilhoux & Questel,
2014a; Hoshino & de Souza, 2009; Hoshino & De Souza, 2012), branch-and-cut
(Berinsky & Zabala, 2011), Dynamic programming (Baldacci, Hill, Hoshino & Lim,
2017). Also, heuristic/metaheuristic works on Cm-RSP consist of Heuristic algo-
rithms (Naji Azimi, Salari & Toth, 2009; Naji-Azimi, Salari & Toth, 2010), IP-based
Local Search (Toth, Naji Azimi & Salari, 2011), VNS with an IP-based improvement
(Naji-Azimi, Salari & Toth, 2012; Salari, Naji Azimi & Toth, 2011), Memetic Algo-
rithm (MA) (Zhang, Qin & Lim, 2014), combined GRASP and Tabu Search (TS)
(Mauttone, Nesmachnow, Olivera & Amoza, 2008), VNS (Franco, López-Santana &
Mendez-Giraldo, 2016; Salari, Naji-Azimi & Toth, 2010). Furthermore, several vari-
ants for Cm-RSP have been introduced in the literature, such as Cm-RSP under Di-
ameter Constrained Reliability (Cm-RSP-DCR) (Bayá, Mauttone, Robledo, Romero
& Rubino, 2016), multi-objective Cm-RSP (Barma, Dutta, Mukherjee & Kar, 2021;
Calvete, Galé & Iranzo, 2013b), Capacitated m Two-Node Survivable Star Prob-
lem (Cm-TNSSP) (Baya, Mauttone & Robledo, 2017; Bayá, Mauttone, Robledo
& Romero, 2016a,1; Bayá Mantani, Mauttone Vidales & Robledo Amoza, 2015),
Non-Disjoint Multi-Ring-Star Problem (NDRSP) (Fouilhoux & Questel, 2012,1).
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2.3.2.6 Generalized Vehicle Routing Problem (GVRP)

In the Generalized VRP (GVRP) the customers are clustered into several groups,
but visiting a customer in each group suffices to visiting all remaining customers
in the cluster. The GVRP finds the optimal routes for the vehicles considering
the constraints of load capacity, visiting exactly one of the customers within each
cluster to minimize the route costs. Therefore, GVRP is composed of three decisions:
assignment of the vehicles to each cluster, routing the vehicles, and selection of a
specific node in each cluster as a stopping point (delivery site) for the vehicle visiting
that cluster. Also, GVRP is the extended version of Generalized TSP (GTSP) in
which there is only one route (vehicle).

GVRP was first introduced by Ghiani & Improta (2000) as an extension of VRP.
After that, GVRP has been studied by several researchers due to its both theoret-
ical and practical consequences (Baldacci, Bartolini & Laporte, 2010; Shimizu &
Sakaguchi, 2013). In GVRP, the set of the nodes is partitioned into c + 1 mutually
exclusive nonempty subsets, called clusters, R0,R1, ...,Rc. The cluster R0 has only
one node 0, which represents the depot, and the remaining n nodes are distributed
among the other clusters. Each customer has a certain amount of demand and the
total demand of each cluster can be satisfied by any of its nodes. Also, there exist m

vehicles with a capacity of Q. Also, here, for GVRP, the demand of each customer
is considered equal to the total demand of that customer’s cluster. The decision
variables of GVRP are defined as follows: xijm: Binary variable equals to 1 if vehi-
cle m travels from i ∈ V to j ∈ V ; 0 otherwise. zi: Binary variable equals to 1 if the
customer i is selected in the tour; 0 otherwise.

The GVRP and its variants have been solved by several exact and approximate
solvers: constructive and local search algorithms for GVRP (Pop, Zelina, Lupşe,
Sitar & Chira, 2011), TS for GVRP with Time Windows (GVRPTW) (Moccia,
Cordeau & Laporte, 2012), branch-and-cut for GVRP (Bektaş, Erdoğan & Røpke,
2011), new IP for GVRP (Pop, Kara & Marc, 2012), GA with a local–global ap-
proach for GVRP (Pop, Matei & Sitar, 2013), Mixed-integer Linear Programming
(MIP) and a heuristic for GVRP with Backhaul and Linehaul Customers (GVRPB)
Mitra (2005), Ant Colony Algorithm (ACA) for GVRP (Pop, Pintea, Zelina & Du-
mitrescu, 2009), Column Generation (CG) and two metaheuristics for GVRP with
Flexible Fleet Size (GVRP-flex) (Afsar, Prins & Santos, 2014), branch-and-cut and
GRASP for GVRP-flex (Hà, Bostel, Langevin & Rousseau, 2014), branch-and-cut
for GVRP with Stochastic Demands (GVRPSD) (Biesinger, Hu & Raidl, 2016), VNS
for GVRP (Pop, Fuksz & Marc, 2014), CG for GVRPTW (Yuan, Cattaruzza, Ogier,
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Semet & Vigo, 2021), GA for GVRPSD (Biesinger, Hu & Raidl, 2018), GA for GVRP
(Pop, Matei & Valean, 2011), VNS for GVRPSD (Biesinger, Hu & Raidl, 2015),
ACA for Dynamic GVRP (DGVRP) (Pop, Pintea & Dumitrescu, 2009), branch-cut-
and-price algorithm for GVRP (Reihaneh & Ghoniem, 2017a), LNS for GVRPTW
(Dumez, Tilk, Irnich, Lehuédé & Péton, 2021), branch-and-cut for GTSP with Time
Windows (GTSPTW) (Yuan, Cattaruzza, Ogier & Semet, 2020), LNS for GVRP
(Mattila, 2018), parallel universes’ algorithms with TS for GVRP (Navidadham,
Arbabsadeghi, Bayat & Didehvar, 2015), comparison of heuristics on GVRP (Pop,
Matei, Burzu & Gyorodi, 2011), heuristic algorithm for Distance-Constrained GVRP
(DGVRP) (Mattila, 2016), MIP for GVRP with synchronization and precedence
side constraints (Quttineh, Larsson, Lundberg & Holmberg, 2013), Dantzig–Wolfe
decomposition and CG for time-indexed GVRP (Van den Bergh, Quttineh, Larsson
& Beliën, 2016).

2.3.2.7 Location-Routing Problem (LRP)

The Location-Routing Problem (LRP) (Laporte, 1987) is composed of a set of cus-
tomers with known demand and a set of potential depot sites. LRP finds the location
of the depots and the vehicle routes from the depots to the customers by minimizing
the locating depots and routing costs. Also, there is a fixed depot opening cost at
each potential site and the route costs. Each customer is assigned to exactly one
depot where the available vehicles are located. A vehicle route must start from and
end at the same depot. Some limitations may be considered in LRP, such as the
maximum travel time of a route, the maximum distance traveled by a vehicle, the
maximum capacity of a vehicle, or the maximum capacity of a depot.

2.3.2.8 Vehicle Routing with Demand Allocation Problem (VRDAP)

Vehicle Routing with Demand Allocation Problem (VRDAP) (Ghoniem, Scherrer &
Solak, 2013) can be considered in the context of LRP, and VRP with Intermediate
Facilities (VRP-IF) (Angelelli & Speranza, 2002; Schneider, Stenger & Hof, 2015).
VRDAP can be represented by a graph G = (N,E), where N = {0}∪K ∪S, and
K is the set of customers, S is the set of potential delivery sites, and {0} is the
central depot. Also, V is the set of vehicles with the capacity Q. Each vehicle starts
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from the central depot and sequentially visits a subset of delivery sites to supply
goods to customers, and returns the central depot. Each delivery site is visited at
most one time by a vehicle. Each customer i ∈K has a demand di. Also, each edge
(i, j) has the route cost cij and fij as the cost of assigning customer j ∈K to the
delivery site i ∈ S. Decision variables of VRDAP are as follows: sij = 1 iff customer
i ∈K is assigned to the delivery site j ∈ S, eijk = 1 iff the edge (i, j) is traversed
by the vehicle k, θijk = 1 iff the delivery site i ∈ S, to which the customer j ∈K is
assigned, is visited by the vehicle k, and qiv is the total cumulative deliveries made
upon serving site i ∈ S by the vehicle v.

2.3.2.9 Multi-depot Covering Tour Vehicle Routing Problem (MD-

CTVRP)

As mentioned in the previous section, MDCTVRP was first introduced by Allahyari
et al. (2015) (To our best knowledge this is the only work on MDCTVRP), in which
CSP is generalized by considering more than one vehicle and more than one depot.
In the proposed MDCTVRP by Allahyari et al. (2015), not only is there more than
one depot, but there is also more than one heterogeneous vehicle. The demand of
each customer is satisfied by either visiting or covering it by the customers on the
tours (if it is placed within a coverage distance from the customers on the routes). In
other words, MDCTVRP is a combination of the Multi-depot VRP (MDVRP) and
CSP (Allahyari et al., 2015). MDCTVRP aims to find the minimum-cost tours for
a fleet of heterogeneous vehicles departing from a selected depot of a set of potential
depots and return to it while covering the non-visited customers with a minimum
covering (assignment) cost.

2.3.2.10 Covering Vehicle Routing Problem (CoVRP)

Covering Vehicle Routing Problem (CoVRP)3, recently introduced by Buluc, Peker,
Kara & Dora (2021), aims to find the routes to visit a subset of customers and
cover the remaining customers if they are located within a predetermined coverage
distance from the customers on the routes. In other words, CoVRP generalizes the

3In this thesis, we choose the abbreviation "CoVRP" for Covering Vehicle Routing Problem to avoid any
conflict with the well-known CVRP (capacitated version)
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CSP with considering multiple vehicles. Also, CoVRP is very similar to m-CTP, but
in m-CTP unlike the CoVRP, the set of the nodes that can be visited are different
from the nodes that can be covered e.g., Steiner points are not considered in CoVRP.
Moreover, CoVRP has a distance constraint on the tour duration for each vehicle,
which is not considered in m-CTP. Also, CoVRP has not assumed any capacity load
for each vehicle unlike the m-CTP and most of VRP variants. In the same work,
Buluc et al. (2021) generalized the CoVRP by finding the tours for the covered nodes
instead of enforcing the covered customers to visit the covering (stopping) customer.
This new variant was called CoVRP with integrated tours (CoVRPwIT) which finds
two kinds of routes: the main routes which visit the part of the customers, and the
secondary routes which are designed for the covered customers by the customers on
the main routes. CoVRPwIT can be helpful and applicable when it is not possible
or profitable for customers to come to the covering nodes, instead, the company
finds profitable secondary routes to visit the covered customers.

2.3.2.11 Capacitated Ring Tree Problem (CRTP)

Capacitated Ring Tree Problem (CRTP) has appeared for the first time in the work
of Hill & Voß (2016), which provided a general representation of the variants of
routing-allocation and ring star problems. CRTP is the combination between the
cycle (ring)-based models like TSP with tree-based models like Steiner Tree Problem
(STP) (Imase & Waxman, 1991) considering capacity constraint. In network design
models, ring tree is defined as a graph consisting of a cycle C and a set of "node
disjoint tress" T , each of them intersecting with C in exactly one node. If the
number of cycles (rings) equals 1 i.e., |C | = 1, then the ring tree is called a pure
tree, and also if T = 0, then the ring tree becomes a cycle. So, if in m-RSP some
customers are visited directly or covered, then Cm-RSP becomes CRTP. Therefore,
in CRTP each customer (U) must be either on a cycle (ring) or connected to a cycle
using the assignment. Also, Steiner points are just for helping the network design
to reduce the routing and assignment costs, so they can be on a cycle or not. There
must be at most m ring trees, each of them contains at most q customers (both
visited and allocated), ring tree capacity. CRTP reduces to TSP if U1 = ∅, W = ∅,
m = 1, and q = |U2|; as a result, CRTP is NP-hard (Hill & Voß, 2016).

The facility location version of CRTP is known as the Ring Tree Facility Location
Problem (RTFLP) and it was first introduced by Abe, Hoshino & Hill (2015). RT-
FLP combines VRP and STP. Two layers of networks are designed in RTFLP to
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connect two different types of customers to a central depot. "The first (inner) layer
consists of cycles that intersect in the depot and collect all type 2 customers, and
some of the type 1 customers. The second (outer) layer consists of a forest that con-
tains the remaining type 1 customers such that each tree shares exactly one vertex
with the inner layer" (Abe et al., 2015). For each ring tree and tree of the forest,
there is an upper bound on the number of customers in each tree and tree capacity.

2.3.3 Maximal covering non-Hamiltonian problems

In the third approach, maximal covering non-Hamiltonian problems, customers have
three destinies: they are visited, or covered, or not visited (not covered). Nice recent
work on classifying the maximal covering non-Hamiltonian problems is the work by
Glock & Meyer (2022), in which these kinds of problems are called "routing and path
planning problems with spatial coverage". In the following, some maximal covering
non-Hamiltonian problems, which are close to this thesis’ problem, are described.

2.3.3.1 Vehicle Routing-Allocation problem (VRAP)

In the Vehicle Routing-Allocation Problem (VRAP) (Beasley & Nascimento, 1996)
there are three alternatives to serve the customers (nodes): visiting directly by a ve-
hicle, assigning a customer to a customer visited directly by a vehicle, or not visiting
a customer. In other words, there is no need to visit all customers by the vehicles.
But, nonvisited customers have to be either allocated (assigned) to a customer on
a tour or left isolated. VRAP aims to minimize the routing costs, allocation (as-
signment) costs for nonvisited customers, and costs related to isolated customers
(neither visited nor allocated). In addition to VRAP, several sub-problems for the
class of maximal covering non-Hamiltonian problems have been introduced in the
literature as follows:

• Maximal Covering Tour Problem (MCTP) (Current & Schilling, 1994), a spe-
cial version of MTP, in which the assignment objective is to maximize the
total demand (coverage as much as possible) while satisfying the pre-specified
maximum travel distance from a tour stop.

• Time-constrained Maximal Covering Salesman Problem (TCMCSP) (Dast-
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mardi, Mohammadi & Naderi, 2020; Naji-Azimi & Salari, 2014; Ozbaygin,
Yaman & Karasan, 2016), which aims to find a cycle visiting a subset of cus-
tomers with an upper bound on the traveled time while maximizing the total
satisfied demands.

• Time-constrained Maximal Covering Routing Problem (TCMCRP) (Amiri &
Salari, 2019; Sinnl, 2021), which Generalizes TCMCSP to find the K cycles
(routes). In both TCMCSP and TCMCRP, customers are either visited, or
covered, or left isolated.

• Budgeted Prize-collecting Covering Sub-graph Problem (BPCCSP), intro-
duced in the unpublished work of Morandi, Leus & Yaman (2021), in which
each customer can be visited, covered, or not covered, and the objective is
to find a connected sub-graph while maximizing the total collected profit and
covered customers and satisfying the constraints on the length of the sub-graph
and coverage capacity of each customer.

• Covering Traveling Salesman Problem with Profit (CTSPP) (Jiang et al.,
2022), which aims to find a Hamiltonian cycle visiting the most profitable
customers or covering the customers as much as possible by parcel lockers
while not violating a maximum budget on the tour length.

• Distance-constrained Generalized Covering Traveling Salesman Problem
(DGCTSP) (Singh et al., 2021), which extends the GCSP by finding minimum-
cost m covering tours and considering an upper bound on the distance of each
tour.

• Routing Mobile Medical Facilities (RMMF) (Yücel, Salman, Bozkaya &
Gökalp, 2020), which is a variant of TOP where prizes (profits) come from
covered customers’ locations. Also, it minimizes the total route cost while
fully or partially covering the customers according to their closeness to a mo-
bile facility.

• Bi-objective Maximal Covering Minimal Tour Problem (BCTP) (Goldani,
2020), which is very close to CTP and aims at finding a cycle while mini-
mizing the route cost and maximizing the covered demands. In BCTP, there
is a subset of customers who must be on the tour and a subset of customers
from which the covered customers are chosen.

• Close-enough Vehicle Routing Problem (CEVRP) (Mennell, 2009), Close-
enough Arc Routing Problem (CEARP) (Ha, Bostel, Langevin & Rousseau,
2014), Set Orienteering Problem (SOP) (Archetti, Carrabs & Cerulli, 2018),

23



Close-enough Orienteering Problem (CEOP) (Štefaníková, Váňa & Faigl,
2020), Informative Path Planning (IPP) (Binney & Sukhatme, 2012), etc (for
full explanation on these problems or related ones see the review work of Glock
& Meyer (2022)).

2.4 Comparison of the problem of thesis with related works

To clarify the differences between the proposed problem with the existing problems
in the literature, Table 2.3 is presented (according to the ten characteristics provided
in section 2.3.2.1). Note that in Table 2.3, the maximal covering non-Hamiltonian
problems are not considered in the comparison with the present work. Moreover,
Table 2.4 represents the comparison between the non-Hamiltonian problems with
profits plus maximal covering non-Hamiltonian problems with the present work.
Note that in Table 2.4, the objective function (O5) is the maximization of the col-
lected prize (profit) which is just considered in the non-Hamiltonian problems with
profits and maximal covering non-Hamiltonian problems. Also, the constraint T W
is removed since it has not been considered in the related problems. Moreover,
Table 2.5 compares the present work with the most-related problems in the liter-
ature with their references and solution approaches. In Table 2.5, to prevent the
Table from lengthening, the references for the problems with sign * are not pro-
vided completely, so the reader is referred to their related description in previous
sections of this chapter. Moreover, in Table 2.5, if in a problem there exist some
customers that must be visited or must be covered, they are shown with words "Mv"
or "Mc", respectively; otherwise, if it is not mandatory to visit or cover a subset of
customers, then it is shown with word "O" in the column of service approach. Also,
in the column of delivery point, the word "C " means that the customer nodes are
used as the delivery points, and the word "S" means that the Steiner nodes (a kind
of customer with 0 demand) or potential delivery sites are used as delivery points,
and finally, the word "C/S" means that the delivery points (stopping locations) are
chosen among both customer and Steiner points. Also, to illustrate the differences of
the addressed problem, CE-VRP (see chapter 3), Fig. 2.1 is provided which shows
how the main problem of this thesis is reduced or converted to the other related
problems in the literature. In this figure, the notations are defined as follows: m is
the number of vehicles, Q is the load capacity, T is the maximum route time, D is
the maximum route distance, dmax is the maximum walking/coverage distance for
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the customers/delivery sites, and s is the service time on nodes.

According to Fig. 2.1, CE-VRP can be reduced to three sub-problems including
CoVRP (by removing load capacity and maximum route time constraints), Cm-
RSP (by removing maximum route length and time and considering some customers
as the Steiner points (nodes)), and DGVRP (by removing maximum route time
and assuming that the clusters are known in advance with no maximum walking
distance). Also, CoVRP reduces to m-CTP if some customers are considered as the
Steiner points and a subset of customers must be visited or covered. Moreover, Cm-
RSP reduces to three sub-problems including MTP (by not considering the Steiner
points, considering an upper bound on the number of stops en-route, removing
the load capacity constraint while routing with only one vehicle), RSP (by removing
load capacity and Steiner points and routing with a single vehicle), and VRDAP (by
assuming that it is mandatory to visit/cover a subset of the customers). Moreover,
RSP reduces to CSP if the Steiner points are included among the nodes, and RSP
also becomes another version, MCP, if the maximum walking distance is included
as a constraint in the model. In addition, DGVRP reduces to Distance-constrained
CVRP (DCVRP) if the clusters are removed i.e., the maximum walking distance is
zero. And DCVRP reduces to the well-known CVRP after removing the maximum
route distance.

Figure 2.1 The relationship between the addressed problem in the thesis, CE-VRP,
with other most-related problems in the literature
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3. PROBLEM DESCRIPTION AND FORMULATION

In this section, a new set covering non-Hamiltonian problem, called as Covering
Electric Vehicle Routing Problem (CE-VRP), which tries to find the optimal routes
and location for delivery sites while visiting or covering all customers and satisfying
the capacity, traveled time and distance constraints, is presented. In CE-VRP each
customer must be either visited directly by a vehicle (be on a tour or a cycle) or
assigned to a customer, which is on the tour (cycle or route). In other words, a
vehicle delivers the products to a customer either by visiting him/her directly in
his/her place or by waiting for him/her to come to the allocated (assigned) delivery
site. Furthermore, CE-VRP can be seen as a routing-clustering problem in which
the customers are first clustered and then the centroid of each cluster (delivery
site) is found with respect to the minimum routing cost between the centroids and
the minimum assignment cost within that cluster (the closest node, according to
Euclidean distance, to the remaining nodes of the cluster). Also, each vehicle has
a maximum capacity Q, maximum travelling length D, and maximum travelling
duration T , which limits the number of served customers by that cycle (vehicle).

Hence, CE-VRP is a variant of CVRP in which vehicles choose a location to stop
and wait for customers to deliver their products besides clustering the customers
to make a trade-off between vehicle travel cost and customer service accessibility
(assignment cost). Moreover, CE-VRP extends the well-known GVRP (Ghiani &
Improta, 2000) by assuming that the clusters are unknown and there is no a priori
knowledge of the nodes within the clusters. Also, CE-VRP extends the Cm-RSP
(Baldacci et al., 2007) by assuming a maximum tour length and time duration on
each cycle (tour or ring). In addition, in CE-VRP, there is no Steiner point (|W |= ∅)
unlike the Cm-RSP. Furthermore, CE-VRP is different from VRDAP (Reihaneh &
Ghoniem, 2019) in the sense that the potential delivery sites are chosen from the
customers’ place in CE-VRP and the mathematical models of the proposed CE-
VRP and VRDAP have different decision variables and constraints. To clarify the
explained problem, a numerical example is given as follows: suppose that in an
example of CE-VRP, there are 8 customers and 1 depot. One possible solution of
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CE-VRP could be that customers 1, 3, 4, 7, and 8 are selected as the delivery sites,
or they can cover the other customers. On the other hand, customers 2, 5, and 6
are not chosen as the delivery sites, so they must be covered by the customers which
are delivery sites (Fig 3.1). Fig. 3.1 indicates that customers 1 and 2 are covered
by customer 1 (if customer i covers the customer i, this means the customer i is a
delivery site), customer 3 is a delivery site, and covers only itself, customers 4, 5,
and 6 are assigned to the customer 4, and finally, customers 7 and 8 are chosen as
the delivery sites which do not cover any customer except themselves. Moreover, in
this example, the first vehicle, or route, starts its trip from the depot (0) and visits
customers 1 and 3 and then returns to the depot (0); again the second vehicle leaves
the depot and visits the customer 4 and returns to the depot (0); finally, the third
vehicle leaves the depot (0), visits the customers 7 and 8 and reruns to the depot
(0). All these three routes must satisfy the load capacity, route distance, and route
duration constraints.

Figure 3.1 The graph of the example for CE-VRP

3.1 Mathematical model for CE-VRP

The CE-VRP can be defined on an undirected graph G = (V,E), where V =
{0,1,2, ...,n}, a set of nodes (vertices) including the customers {1,2, ...,n}, and a
depot 0. Also, E is the set of edges linking each pair of nodes i, j ∈ V . A fleet of
homogeneous autonomous delivery electric vehicles is situated at the depot, where
the vehicles start and end their trip while serving the customers. Each route has
the maximum distance (D) and maximum duration (T ). For each edge [i, j] ∈ E, a
non-negative travel cost dij , an assignment cost cij are defined (For the sake of sim-
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plicity, assume that both cij and dij are the distances between two nodes i, j ∈ V ).
Each customer has a certain amount of demand qi ( i ∈ V \{0}) with a fixed service
time of s. The total demand of each route (cycle) is equal to the sum of the de-
mands of its customers. Moreover, the walking distance for each customer to reach
a delivery site has an upper bound of dmax. Also, each autonomous delivery vehicle
has a capacity Q and a fixed (utilization) cost F . The objective function of CE-VRP
is to minimize the total traveled distances for both customers (assignment or intra-
cluster cost) and vehicles (route or inter-cluster cost) and minimize the number of
used vehicles. The sets, parameters and decision variables of CE-VRP are provided
in Table 3.1.

Table 3.1 Notation and parameters of CE-VRP

Sets:
V Set of nodes (customers and depot),V = {0,1, ...,n}, {0} is (home) depot
Parameters:
n Total number of customers
qi Demand of customer i ∈ V \{0}
dij The route cost (distance) between pair of nodes i, j ∈ V

cij The assignment cost (distance) between pair of customers i, j ∈ V \{0}
tij The travel time between pair of nodes i, j ∈ V

si Service time at node i ∈ V \{0}
Q Cargo capacity of each vehicle
F Fixed usage (utilization) cost of vehicle
D Driving range of each vehicle (maximum tour length)
T Maximum planning horizon (maximum tour time)
dmax Maximum walking distance to stopping location
Decision variables:
xij 1 if the vehicle travels from customer i to customer j; 0 otherwise
zij 1 if a customer i is assigned to (covered by) the customer j; 0 otherwise
wij The total travelled distance from the depot to the node j, where i is the predecessor of the node j

w′
ij The total travelled time from the depot to the node j, where i is the predecessor of the node j

ui The remaining cargo for a vehicle before visiting the node i

Two flow-based MIP models are proposed for CE-VRP. In the first model, CE-VRP-
1, the assignment cost is included in the objective function; on the other hand, in
the second model, CE-VRP-2, the assignment cost is removed from the objective
function, but an upper bound for the traveled distance for the assigned customers
is considered as the constraint. In both proposed models, an efficient flow-based
(arc-based) formulation for distance and time-constrained routes is considered from
the literature, which is computationally efficient (Almoustafa, 2013; Kara, 2011)
and outperforms the formulations proposed by Golden, Magnanti & Nguyen (1977);
Kulkarni & Bhave (1985); Laporte, Nobert & Desrochers (1985); Li, Simchi-Levi
& Desrochers (1992). Therefore, the first flow-based MIP model, CE-VRP-1, is
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presented as follows:

(3.1) Min
∑

i,j∈V

dijxij +
∑

i,j∈V \{0}
cijzij +

∑
j∈V \{0}

Fx0j

s.t.,

(3.2)
∑

j∈V \{0}
zij = 1, ∀i ∈ V \{0}

(3.3) zij ≤ zjj , ∀i ∈ V \{0}, ∀j ∈ V \{0}

(3.4)
∑

j∈V,j ̸=i

xij = zii, ∀i ∈ V \{0}

(3.5)
∑
i∈V

xii = 0

(3.6)
∑
i∈V

xik−
∑
j∈V

xkj = 0, ∀k ∈ V \{0}

(3.7) 0≤ ui ≤ uj−
∑

k∈V \{0}
qkzkj +Q(1−xij), ∀i, j ∈ V \{0}

(3.8)
∑
j∈V

(wij−wji) =
∑
j∈V

dijxij , ∀i ∈ V \{0}

(3.9) w0i = d0ix0i, ∀i ∈ V \{0}
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(3.10) wij ≤ (D−dj0)xij , ∀i, j ∈ V,j ̸= 0

(3.11) wij ≥ (dij +d0i)xij , ∀i, j ∈ V,i ̸= 0

(3.12) wi0 ≤Dxi0, ∀i ∈ V \{0}

(3.13)
∑
j∈V

(w′
ij−w′

ji) =
∑
j∈V

(tij + si)xij , ∀i ∈ V \{0}

(3.14) w′
0i = t0ix0i, ∀i ∈ V \{0}

(3.15) w′
ij ≤ (T − tj0)xij , ∀i, j ∈ V,j ̸= 0

(3.16) w′
ij ≥ (tij + t0i + si)xij , ∀i, j ∈ V,i ̸= 0

(3.17) w′
i0 ≤ Txi0, ∀i ∈ V \{0}

(3.18) xij , zij ∈ {0,1}, ∀i, j ∈ V

In the proposed MIP for CE-VRP-1, the objective function (3.1) minimizes the to-
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tal travel and assignment cost in the network and the number of used autonomous
delivery vehicles. Constraints (3.2) ensure that each customer is allocated to ex-
actly one stopping customer location (delivery site). Constraints (3.3) guarantee
that service from a stopping customer location at a node is provided only if there
exists a stopping customer location at that node. Constraints (3.4) ensure that an
autonomous delivery vehicle, stopped at the delivery site, can visit another delivery
site or return to the depot. Constraint (3.5) ensures that there must not be a route
from a node to itself. Constraints (3.6) ensure that the number of autonomous deliv-
ery vehicles entering every delivery site (stopping customer location) and the depot
must be equal to the number of autonomous delivery vehicles leaving. The capacity
and sub-tour elimination constraint are ensured by constraints (3.7). Constraints
(3.8)-(3.12) ensure that the traveled distance for each vehicle (tour or cycle length)
to reach the customer stopping locations must not exceed a specific upper bound
(D). Constraints (3.13)-(3.17) ensure that the travelled time for each vehicle during
the tour must not exceed a specific upper bound (T ). Constraints (3.18) indicate
the type of decision variables of the problem.

Moreover, the second flow-based MIP model, CE-VRP-2, is presented as follows:

(3.19) Min
∑

i,j∈V

dijxij +
∑

j∈V \{0}
Fx0j

s.t., constraints (3.2)-(3.18), and

(3.20)
∑

j∈V \{0}
cijzij ≤ dmax,∀i ∈ V \{0}

In the proposed CE-VRP-2, objective function (3.19) minimizes the route cost and
the number of used vehicles. Also, constraints (3.20) ensure that the travel distance
of each customer to reach the delivery site must not be greater than a specific upper
bound (dmax).

In the proposed models, when dmax is large enough, the problem reduces to the
1-Median problem; and when dmax is lower than the minimum distance, the prob-
lem reduces to CVRP. Moreover, for the first model, CE-VRP-1, the number of
constraints and decision variables are O(n2) and O(n2), respectively. Also, the sec-
ond model, similar to the first model, has O(n2) constraints and decision variables.
Therefore, both proposed models are polynomial in the number of constraints and
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decision variables. In the next chapter, the proposed heuristic method to solve the
large-sized instances of CE-VRP is introduced.
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4. SOLUTION PROCEDURE

In this chapter, the methodology of the proposed solution method is explained which
is designed to obtain the solutions with high quality for the main problem of the
present thesis where the exact solvers are not able to find the optimal for large-sized
instances.

4.1 Variable Neighbourhood Search Algorithm

VNS, first introduced by Mladenović & Hansen (1997), is among the popular meta-
heuristics due to its simplicity and effectiveness. Its main power is in the "systematic
change of neighborhood within a local search algorithm" (Mladenović & Hansen,
1997). Several different versions for VNS are provided in the literature as follows:
(1) Variable Neighborhood Descent (VND) (Chen, Huang & Dong, 2010), which
changes the neighbourhoods in a deterministic way; (2) Reduced Variable Neighbor-
hood Search (RVNS) (Xiao, Kaku, Zhao & Zhang, 2011), which applies a stochastic
way (shaking) in each neighbourhood; (3) Basic VNS (BVNS) (Hansen, Mladenović,
Brimberg & Pérez, 2019), which combines both deterministic and stochastic mecha-
nisms (the algorithm of BVNS in the literature is given in Algorithm 4 in Appendix
A, in which three sub-functions including Shake (moving to a neighbour solution
in a randomized way), First_Improvement function, and Neighborhood_Change

function are embedded, and kmax is the number of neighbourhood mechanisms); (4)
General Variable Neighborhood Search (GVNS) (Mladenović, Dražić, Kovačevic-
Vujčić & Čangalović, 2008), which uses the VND as the local search within the
BVNS; (5) Skewed Variable Neighborhood Search (SVNS) (Macedo, Alves, Hanafi,
Jarboui, Mladenović, Ramos & De Carvalho, 2015), which diversifies the solution of
the neighborhoods which are not close to the current (incumbent) solution; (6) Vari-
able Neighborhood Decomposition Search (VNDS)(Hansen, Mladenović & Perez-
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Britos, 2001), which divides the VNS into two levels by decomposing the problem
and extends the BVNS.

VNS has been proposed for various covering-routing problems in the literature; for
instance, Pérez et al. (2003) proposed a Variable Neighbourhood Tabu Search to
solve the MCP instances. Their hybrid proposed metaheuristic applied standard
moves and shakes for VNS part and TS as the local search to avoid the local op-
tima solutions according to the Tabu list. Moreover, (Salari et al., 2010) proposed
a VNS-based solver combined with IP-based improvement heuristic for Cm-RSP.
In addition, Naji-Azimi et al. (2012) has improved and developed the method in
the work by Salari et al. (2010) by designing a VNS-based solver enhanced with
several improvement operators and IP-based improvement method. Also, they used
a Shaking function to explore the solution space and then exploit by applying a lo-
cal search consisting of swap and Extraction & Assignment improvement heuristics,
ILP-based Procedure, Modified Assignment Problem (to find the optimal assign-
ment of the customers to the other customers on the route or Steiner nodes), and
Lin–Kernighan TSP Procedure (Lin & Kernighan, 1973) (to decrease the routing
costs).

4.2 Simulated Annealing Algorithm

Simulated Annealing (SA) was first introduced by Kirkpatrick, Gelatt Jr & Vecchi
(1983) and according to the reports in the literature, it is an efficient metaheuristic
in solving the combinatorial optimization problems (Aarts & Van Laarhoven, 1989).
SA is among the local search-based metaheuristics, which generate a single solution
and improve it during the optimization process. Also, SA exploits the neighborhood
by local search operators which are designed specifically for each problem and ex-
plores the solution space by accepting worse solutions at the first iterations of the
algorithm. Accepting or rejecting worse solution also helps the SA to escape from
the local minima or maxima points (for more details on SA see (Aarts, Korst &
Michiels, 2005; Bertsimas & Tsitsiklis, 1993; Van Laarhoven & Aarts, 1987)). The
pseudo-code of the general SA is given in Algorithm 5 (see Appendix A), in which
Tmax, Tmin, F (T ), S0, and f(S) are the maximum (initial) temperature, the min-
imum (final) temperature, cooling function, initial solution, and fitness function,
respectively.
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4.3 The proposed two-phase heuristic for CE-VRP

When the parameters are set as T =∞, D∞, s = 0, and dmax = 0, CE-VRP reduces
to the well-known CVRP, which is proven to be an NP-hard problem. As a result,
the addressed problem, CE-VRP, is also an NP-hard problem based on the compu-
tational complexity theory. In this section, due to the NP-hardness of the CE-VRP,
a new two-phase heuristic algorithm consisting of selecting the delivery sites (the
first phase) and routing the vehicles (the second phase) is proposed to solve the
large-sized CE-VRP instances in an acceptable time. In the first phase, a greedy
Repair_Improvement approach with perturbation moves is applied to select the
delivery sites and assign the unvisited customers to the delivery sites. Next, in the
second phase, a hybrid Variable Neighbourhood Search with Simulated Annealing
(VNS-SA) algorithm is proposed to find the routes visiting the delivery sites. The
proposed VNS-SA for finding the routes is composed of the BVNS (for shaking,
diversification, and a systematic neighbourhood change) with SA (for intensifica-
tion) as its local search. As mentioned in the previous section, VNS is an efficient
metaheuristic in solving combinatorial problems including TSP, and CVRP; how-
ever, VNS needs a local search heuristic to find the high-quality solutions within
the solution space (Pekel & Kara, 2019). Moreover, SA is an efficient metaheuris-
tic for searching the neighbourhood effectively by applying both intensification and
diversification mechanisms. Accordingly, combining the VNS with SA (considering
SA as a local search heuristic within the VNS) will result in a high-performance
solution procedure that can benefit from SA’s capability in escaping from the local
optimum and VNS’s efficiency in searching the solution space and its neighbourhood
in a systematized manner.

The pseudo-code of the proposed two-phase heuristic is given in Algorithm 1. Also,
the pseudo-code of the proposed VNS-SA for the second phase is given in Algorithm
2 (notations defined for the proposed two-phase heuristic are given in Table ??). In
the proposed two-phase heuristic, the Repair_Improvement(.) function is followed
by the Perturbation(.) function because it is possible that Repair_Improvement(.)
function may not improve the solution quality, so perturbing the current solution
is needed to explore the solution space (Naji-Azimi et al., 2010). Also, the pro-
posed Repair_Improvement(.) algorithms are executed sequentially in the order
that at first improvement operators are executed one by one and, finally, the repair

operator is performed (see section 4.3.3 for more details).
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Table 4.1 Notations of the proposed two-phase heuristic

Notation Definition
N Total number of iterations of VNS-SA
M The number of iterations at each temperature
N ′ The maximum number of iterations of the two-phase method
k′

max Total number of perturbation moves on matrix R
α Cooling rate
mmax The number of move operators
kmax Total number of shaking moves on RO

Algorithm 1 The pseudo-code of the proposed two-phase heuristic for CE-VRP
Require: k′

max,N ′

1: S← S0 ▷ S0 is constructed by the greedy construction algorithm (see
Appendix A)

2: n← 1
3: while n≤N ′ do
4: k′← 1
5: while k′ ≤ k′

max do
6: <First phase starts>
7: S′←Repair_Improvement(S)
8: S′′← Perturbation(S′,k′) ▷ Perturbation(.) moves are defined in

section 4.3.4.1
9: <First phase ends>

10: <Second phase starts>
11: S′′′← V NS_SA(S′′) ▷ V NS_SA(.) is given in Alg. 2
12: <Second phase ends>
13: k′← k′ +1
14: end while
15: n← n+1
16: end while
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Algorithm 2 The proposed VNS-SA algorithm in the second phase (V NS_SA(.))
Require: S,N,M,Tmax,Tmin,α,kmax

1: n← 1
2: while n≤N do
3: k← 1
4: while k ≤ kmax do
5: S′← Shake_V NS(S,k) ▷ Shake_V NS(.) moves are defined in section

4.3.4.2
6: <SA (local search) starts>
7: T ← Tmax

8: while T ≥ Tmin do
9: t← 1

10: while t≤M do
11: S′′← First_Improvement(S′) ▷ F irst_Improvement is given

in Alg. 3
12: t← t+1
13: end while
14: T ← α∗T ▷ Temperature is updated
15: end while
16: <SA (local search) ends>
17: Neighborhood_Change(S,S′′,k)
18: end while
19: n← n+1
20: end while

The steps of the proposed two-phase heuristic for CE-VRP are briefly described in
the following.

4.3.1 Solution representation

To encode a solution of the instance of CE-VRP, the following representation is
used: R is a n-row matrix indicating that the customer i (1≤ i≤ n) is selected as a
delivery site or not; thus, R is a n-row matrix with binary elements e.g., ri ∈ {0,1}.
X is a n-row matrix indicating the the customer i (1≤ i≤ n) is assigned to (covered
by) the customer j (1 ≤ j ≤ n); thus, X is a n-row matrix with bounded integer
elements e.g., xi ∈ {1,2, ...,n}. RO is a (2n+1)-row matrix indicating the routes of

40



Algorithm 3 First_Improvement algorithm in the second phase (VNS-SA)
Require: S,P ▷ P : the maximum number of opportunities that is given to

First_Improvement to accept a solution
1: r← 0
2: p← 0
3: while (r < 1) & (p < P ) do
4: S′←Neighbourhood(S) ▷ Neighbourhood(.) is the move operators applied

on matrix RO (see section 4.3.4) plus the lines 8-30 in the Algorithm 7
5: if f(S′) < f(S) then
6: S← S′

7: r← r +1
8: else
9: Accept S′ with the probability e(f(S)−f(S′)/T

10: r← r +1
11: end if
12: p← p+1
13: end while

each vehicle, so its elements are either 0 or an integer value between 1 and n (coding
of the routes for MCP by Pérez et al. (2003)). Also, it is obvious that this solution
representation, or encoding, can be used for CVRP by considering only the matrix
RO.

To clarify the explained representation, a numerical example is given as follows:
suppose that in an example of CE-VRP, there are 8 customers and 1 depot (Fig.
3.1). A solution of this instance could be represented by the following row matrices,
or vectors:

R :
[
1 0 1 1 0 0 1 1

]
The matrix R indicates that customers 1, 3, 4, 7, and 8 are selected as the delivery
sites, or they can cover the other customers. On the other hand, customers 2, 5,
and 6 are not chosen as the delivery sites, so they must be covered by the customers
which are delivery sites.

X :
[
1 1 3 4 4 4 7 8

]
The matrix X indicates that customers 1 and 2 are covered by customer 1 (if cus-
tomer i covers the customer i, this means the customer i is a delivery site), customer
3 is a delivery site, and covers only itself, customers 4, 5, and 6 are assigned to the
customer 4, and finally, customers 7 and 8 are chosen as the delivery sites which do
not cover any customer except themselves.

RO :
[
0 1 3 0 4 0 7 8 0 0 0 0 0 0 0 0 0

]
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The matrix RO represents the routes of each vehicle. For example, the first vehicle,
or route, starts its trip from the depot (0) and visits the customers 1 and 3 and
then returns to the depot (0); again the second vehicle leaves the depot and visits
customer 4 and returns to the depot (0); finally, the third vehicle leaves the depot
(0), visits customers 7 and 8 and reruns to the depot (0). Since the Matrix RO is a
17-row matrix, the remaining 0’s mean that there is no other route in this solution.

As mentioned above, after generating the matrices R, X , and RO, they may be
the infeasible solutions. Initializing the proposed algorithm, repairing the infeasible
solutions, or improving them, and the local search mechanism used in the proposed
VNS-SA are explained briefly in the following.

4.3.2 Initialization algorithms

To initialize the optimization process of the CVRP, or CE-VRP instances, an initial
solution must be generated. Here, in the proposed VNS-SA, a feasible single solution
is constructed by applying a greedy construction algorithm.

4.3.2.1 A greedy construction heuristic

The proposed greedy construction heuristic starts by finding the minimum number
of delivery sites among the customers, such that, the selected customers are able to
cover the nearest remaining customers considering the maximum coverage distance.
If a customer cannot be covered by another customer, or it is not within the coverage
distance of any customer, then it becomes a delivery site. Next, the near-optimal
routes are found among the selected delivery sites by iterative 2-opt operator satisfy-
ing the capacity, and distance/time constraints. The detailed description is provided
in Appendix A. Moreover, the proposed greedy construction heuristic is a unique
construction algorithm in the literature (also can be applied on CoVRP). The other
approach in the literature which is used as an construction step for covering-routing
problems is Clustering algorithm by Naji-Azimi et al. (2010) proposed for Cm-RSP.
The proposed greedy construction heuristic in this thesis, unlike the Clustering al-
gorithm (Naji-Azimi et al., 2010), does not find as far as customers to pick them
as the delivery site; while it selects the customers which have more access to cover
the other customers. The efficiency of the proposed greedy construction algorithm
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is analyzed in section 5.3.1.

4.3.3 Repair_Improvement operators

Designing a simple operator to improve or repair the solutions of the covering-routing
problem like MCP, RSP, MTP, CoVRP, or CE-VRP will lead to a poor performance
and weak-quality solutions (Renaud et al., 2003). Thus, a problem-specific operator
must be designed to enhance the performance of the solution algorithm when there
are covering and routing elements in the problem. In this section, five improvement

and one repair operators are introduced to improve the feasible solution and repair
the infeasible solution to reach a solution with better quality. The proposed five
improvement operators enhance the current solution by checking if it improves the
objective function or not; on the other hand, the proposed repair operator repairs
the infeasible solution so that it satisfies the constraints of the problem such as
vehicle capacity, distance and time constraints. Here, five improvement and one
repair operators are called I1, I2, I3, I4, I5, and R1, respectively.

The first proposed improvement operator exchanges the role of a delivery site with
one of its assigned customers (the customer which is the delivery site becomes an
inactive stopping location and the assigned customer becomes a new delivery site).
If after exchanging, the customers which were covered by the old delivery site are
still within the coverage distance of the new active delivery site, and the length of the
route, which includes the old delivery site, becomes shorter, then this improvement

operator applies successfully and exchanges the role of the old delivery site with its
assigned customer and then a new delivery site becomes active and the process is
repeated for all delivery sites (the algorithm of the first improvement operator is
given in Appendix A). The first improvement operator is similar to Vertex exchange
procedure introduced by Renaud et al. (2004) and Swap procedure by Naji-Azimi
et al. (2010).

The second improvement operator only applies on the delivery sites which have only
one covered customer. The role of the delivery site with its one assigned customer is
changed. If this change decreases the length of the tour, on which the old delivery
site was located, then this improvement operator exchanges the role of the delivery
site with its one assigned customer, and this process is repeated for all delivery sites
with one assigned customer. In other words, this heuristic is a special case of the
first improvement operator in which the delivery sites with only one covered node
are found (the algorithm of the second improvement operator is given in Appendix
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A). Also, the second improvement operator is the same as the General exchange
(GE) procedure used by Pandiri et al. (2020) for CSP instances.

The third improvement operator finds the common customer who is within the cov-
erage distance of two or more delivery sites (stopping locations). If after activating
this common customer, the other customers, which are covered by these delivery
sites, are still within the coverage distance of this common customer or other active
delivery sites, then this improvement operator chooses this common customer as
a new delivery site, and the old delivery sites, which were covering the common
customer, become inactive. This process is repeated for all nonvisited customers
(the algorithm of the third improvement operator is given in Appendix A). Also,
the third improvement operator is close to the Cycle augmentation procedure pre-
sented in Renaud et al. (2003); however, the Cycle augmentation checks all unvisited
nodes even if they are covered by a single delivery site or a customer on the route.

The fourth improvement operator finds the delivery sites which are "redundant"; by
redundant delivery site, it means that if the delivery site becomes inactive, then its
covered customers can be still covered by the other active delivery sites. So, by in-
activating redundant delivery sites, the vehicles will travel less distance and this will
leads to a shorter tour. This process is again applied to all remaining delivery sites
(the algorithm of the fourth improvement operator is given in Appendix A). The
fourth improvement operator is similar to the Cycle reduction procedure introduced
in Renaud et al. (2004) for MCP, and Extraction & Reassignment procedure used
in Naji-Azimi et al. (2010,1); Salari & Naji-Azimi (2012) for Cm-RSP. Also, the
fourth improvement operator is similar to the Steiner node removal procedure used
by Naji-Azimi et al. (2010); Zhang et al. (2014). Moreover, the fourth improvement

procedure is close to the Extract-assign operator introduced by Zhang et al. (2014),
but the Extract-assign operator extracts a subset of visited nodes with their covered
nodes and then reassigns them to their best position (while considering all possi-
ble positions) in random order. In addition, the other operator close to the fourth
improvement operator is Delivery site removal proposed by Reihaneh & Ghoniem
(2018), which removes the redundant delivery sites and reassigns their covered nodes
according to the criteria of "total estimated savings" calculated after removing that
delivery site.

The fifth improvement operator is a special case of the fourth proposed
improvement operator and the Cycle_reduction procedure introduced in Renaud
et al. (2004). This improvement operator removes the redundant delivery sites by
finding two delivery sites where at least one of them has no covered customers and
both are within the maximum walking (coverage) distance from each other. Then
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the delivery site with no covered customer is deactivated and assigned to the second
delivery site. This operator improves the solution quality by reducing the number
of delivery sites that must be visited by the vehicles (the algorithm of the fifth
improvement operator is given in Appendix A).

Finally, the repair operator applies to the infeasible solutions, which could be gen-
erated when a delivery site covers the demands of the customers more than the
capacity of the vehicles. In other words, in repair operator, if a delivery site covers
the demands greater than the vehicle’s capacity, then no vehicle is able to visit that
delivery site. So, the proposed repair operator searches and finds these kinds of
infeasible delivery sites and makes them feasible by reducing the customers assigned
to them. Then, the unassigned customers are allocated to another delivery site that
has available capacity; otherwise, they become active delivery sites if no delivery site
is found for them (the algorithm of the repair operator is given in Appendix A). It
is noteworthy to say that the improvement and repair operators are only applied
on the matrices R and X .

4.3.4 Move operators (Neighbourhoods)

In this section, the perturbation and shaking moves used within the two-phase
heuristic with neighbourhood moves are briefly explained.

4.3.4.1 Perturbation moves on matrix R in the first phase

For perturbing the current solution (incumbent) of matrix R, three move operators
are used. All these three move operators are applied on the matrix R. The first
perturbation, P1, is the simple 1-mutation operator. It chooses one of the elements
of matrix R randomly, and if the element is 1, then it becomes 0, and vice versa.
The second perturbation, P2, is 1-1 adjacent exchange move for adjacent nodes.
It randomly chooses one of the elements of the matrix R which is 1, and if the
selected element has at least one covered node, then one of its covered nodes is
selected at random and then they are swapped. The third perturbation, P3, is 1-1
exchange operator. It first chooses two random elements in the matrix R, which
are not adjacent to each other, and then swaps (exchanges) them. At final, the
obtained new R generates the matrix X and then by Route_Generate(.) function
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in Alg. 7 (see Appendix A), the matrix RO is generated and sent to the second
phase (V NS_SA(.) in Alg. 2).

4.3.4.2 Shaking operators on matrix RO in the second phase

In this section, the shaking moves used during the VNS-SA are explained. Four
move operators are used for shaking the solution space of the matrix RO, called
S′1-S′4 while all these shaking operators are applied to the customers of the different
routes i.e., inter-route moves. Also, these shaking moves are ordered in a way that
the first shaking move shakes the solution space with small changes (smaller neigh-
bourhood) and the last move shakes the solution space with a larger neighbourhood.
The shaking moves are 1-1 exchange (swap), 1-0 node relocation (insertion), subse-
quences swap (equivalent to cross-exchange of Taillard, Badeau, Gendreau, Guertin
& Potvin (1997)), and subsequences insertion operators. Moreover, the feasibility
of the shaking moves on the matrix RO is not checked.

To clarify the move operators in the proposed VNS-SA, one example is defined and
then the moves are explained on the example. Suppose a network with 1 depot {0}
and 8 customers, the current solution (matrix RO) for the routing problem is as
follows:

RO :
[
0 1 3 0 4 2 7 0 8 5 0 6 0 0 0 0 0

]
First of all, to apply the move operators, the zero elements in the matrix RO are
removed (it becomes a TSP solution) and then the obtained matrix is called RO′

presented as follows:

RO′ :
[
1 3 4 2 7 8 5 6

]
The first shaking (S′1), 1-1 exchange move, chooses two elements of the current
solution (RO′) and changes (swaps) them; by applying this move operator, the new
solution (RO′′) will be as follows (assume that the nodes 3 and 8 are chosen for
swapping):

RO′′ :
[
1 8 4 2 7 3 5 6

]
The second shaking (S′2), 1-0 node relocation (insertion) operator, chooses one
element of the current solution (RO′) and moves it to another position; by applying
this move operator, the new solution (RO′′) will be as follows (assume that the node
3 is chosen and it is moved to the fifth position):
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RO′′ :
[
1 4 2 7 3 8 5 6

]
The third shaking, subsequences swap operator (S′3), chooses two subsets of ele-
ments (each subset has more than 1 element) of the current solution (RO′) and
swaps them; by applying this move operator, the new solution (RO′′) will be as
follows (assume that the set of nodes 3, 4, and 2 with the set of nodes 5 and 6 are
chosen and swapped):

RO′′ :
[
1 5 6 7 8 3 4 2

]
The fourth shaking (S′4), subsequences insertion operator, chooses a subset of ele-
ments (more than 1 element) of the current solution (RO′) and moves it to another
position; by applying this move operator, the new solution (RO′′) will be as follows
(assume that the set of nodes 3, 4, and 2 are chosen and it is moved to the last
position):

RO′′ :
[
1 7 8 5 6 3 4 2

]

4.3.4.3 Move operators on matrix RO in the local search (SA) of the

second phase

After shaking a solution, the neighbourhood of the current solution must be searched
efficiently to find a near-optimal solution in its local solutions. The local search
(SA) embedded in the VNS-SA uses seven move operators including two intra-route
(M1-M2), and five two-adjacent-route moves (M3-M7). Two intra-routes are 1-
1 exchange (swap) and 2-opt operators. Assume that the current solution is the
following matrix:

RO :
[
0 1 3 0 4 2 7 0 8 5 0 6 0 0 0 0 0

]
Assume that the third route is chosen randomly to apply the intra-route move
operators. The sub-matrix of the matrix above (one route) is obtained as follows:

RO′ :
[
4 2 7

]
And now the 1-1 exchange and 2-opt operates are applied on this route. The 1-1
exchange move is explained in the previous section. The 2-opt operator (M2) chooses
two elements of the current sub-matrix (RO′) and reverses all elements between
them including themselves; by applying this move operator, the new solution (RO′′)
will be as follows (assume that the customers 4 and 7 are chosen and reversed):
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RO′′ :
[
7 2 4

]
The next five two-adjacent-routes move operators are 2-opt (M3), subsequences
swap (M4), subsequences insertion (M5), reversed subsequences swap (M6), and
reversed subsequence insertion (M7) operators. The moves M3-M5 are described
before. Now the last two moves M6 and M7 are explained with the example.
Assume that the current solution is the following matrix:

RO :
[
0 1 3 0 4 2 7 0 8 5 0 6 0 0 0 0 0

]
And assume that the second and third routes which are two-adjacent-routes are
chosen. The sub-matrix after removing the zero elements will be obtained as follows:

RO′ :
[
4 2 7 8 5

]
The sixth move operator (M6), reversed subsequences swap operator chooses two
subsets of elements of the current solution (RO′) and swaps them and also reverses
all elements within each set; by applying this move operator, the new solution (RO′′)
will be as follows (assume that the subset of the customers 4 and 2 with the subset
of the customers 8 and 5 are chosen and then swapped and finally reversed):

RO′′ :
[
5 8 7 2 4

]
The seventh move operator (M7), reversed subsequence insertion operator, chooses
one subset of elements of the current solution (RO′) and inserts it in another position
and also reverses all elements within the set; by applying this move operator, the
new solution (RO′′) will be as follows (assume that the subset of customers 4 and
2 are chosen to insert in the last position and then reversed):

RO′′ :
[
7 8 5 2 4

]
Finally, after applying each seven move operators on the matrix RO in the local
search (SA), the obtained matrix becomes feasible with lines 8-30 presented in the
Algorithm 7 (see Appendix A).

4.3.5 Handling the constraints of the problem

4.3.5.1 Capacity constraint
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The load capacity of each vehicle, vehicle, is satisfied during the VNS-SA in two
places: one in the repair operator (Alg. 13 in Appendix A) and the other one with
the lines 8-30 of Route_Generate(.) function (Alg. 7 in Appendix A) within the
V NS_SA(.), Alg. 2, after moving to the new neighbourhoods.

4.3.5.2 Maximum walking distance constraint

This constraint is first satisfied with line 3 in the greedy construction heuristic (Alg.
6 in Appendix A) and then it is kept from being violated by the four improvement

operators (Algs. 8-11 in Appendix A) while assigning the customers to the delivery
sites.

4.3.5.3 Distance-constrained routes

This constraint is satisfied with the lines 8-30 in the Route_Generate algorithm
(Alg. 7 in Appendix A) within the V NS_SA(.), Alg. 2, after moving to the new
neighbourhoods.

4.3.5.4 Time-constrained routes

This constraint is also satisfied with the lines 8-30 in the Route_Generate algorithm
(Alg. 7 in Appendix A) within the V NS_SA(.), Alg. 2, after moving to the new
neighbourhoods.

4.3.6 Fitness function

The fitness function is the summation of total routing costs, and total usage cost
of the vehicles. The fitness function in the Neighborhood_Change(.) function is
calculated by the following steps:
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1.1 f = 0; (f is the value of the fitness function);

1.2 For (i = 0 to 2N−1) do {f = f +droi,roi+1} (N is the number of customers, dij

is the distance between nodes i, j, roi is the i-th element of the matrix RO);

1.3 f = f +F ×K (K is the number of vehicles used);

1.4 Return f ;

However, within the V NS_SA(.), after moving to a new feasible solution, then
the new solution is compared with the current (incumbent) solution to accept or
reject it (lines 12-15 in the V NS_SA algorithm, Alg. 2). To avoid time-consuming
computations, the comparison between the two solutions is only done by calculating
the saving values obtained after applying a move. If the saving value is positive,
then the new solution is accepted; on the other hand, the new solution is accepted
according to a given probability (line 15 in Alg. 2).

50



5. COMPUTATIONAL STUDY

In this chapter, computational results and experiments related to the performance of
the proposed two-phase heuristic are explained briefly. Moreover, parameter tuning,
comparison with exact solver (Gurobi) over the small-sized instances, performance
evaluation over the medium and large-sized instances, and sensitivity analysis for the
proposed two-phase heuristic are conducted. All experiments and runs are performed
on a laptop with features of Intel Core, 1.60 GHz, and 16 GB RAM. Also, the Gurobi
solver is executed on the Anaconda navigator Spyder environment written in Python.
The proposed metaheuristic is coded in C++ programming Language compiled with
Dev-C++ software.

5.1 Instance generation for CE-VRP

To evaluate the performance of the proposed heuristic and validate the results,
three datasets are generated for the addressed problem, CE-VRP, in this thesis.
The value chosen for each parameter determines the complexity of an instance;
moreover, choosing an inappropriate value will result in an infeasible solution or
redundant parameter. Here, the parameters Q (vehicle capacity), dmax (maximum
walking distance), D (maximum route length), and T (maximum route time) must
be chosen as a value that is applicable in generating the CE-VRP instances. For
example, the load capacity Q must be greater than the minimum demand and lower
than the sum of the total demands; otherwise, it will not be a CVRP instance. dmax

must be greater and lower than the minimum and maximum distance between the
customers, respectively; otherwise, it will not be a covering-routing problem.

To validate the mathematical model developed and analyze the performance of the
proposed heuristic for the CE-VRP, three datasets are generated in this thesis.
The first dataset (small-sized instances) are generated based on 6 CVRP instances
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including A-n32-k5, A-n33-k5, B-n31-k5, P-n16-k8, and P-n19-k2 with different
values of n (number of customers), Q, s, T , and dmax. 20 small-sized instances with
several customers from 8 to 33 are generated for the first dataset. This dataset is
able to evaluate the performance of the different solvers when the new parameters
related to covering problem are changed, but the distance matrix is fixed. The
features of the instances of the first dataset are given in Table B.1 in Appendix B.

In the second generated dataset for the CE-VRP, unlike the first dataset, most of
the parameters related to the covering problem are fixed, but the matrix distance
(VRP part) are changed. This dataset is created based on the CVRP instances of
the set A provided by Augerat et al. (1995). The distance between the nodes, n, and
Q are the values of the original instance; however, the new parameters are added
to each instance of set A to generate the second dataset of the CE-VRP. Therefore,
a total of 20 medium and large-sized instances are generated. The features of the
instances of the second dataset are given in Table B.2 in Appendix B.

The third dataset is based on the data related to a real case study of covering-
routing problem originally provided by Kara & Savaser (2018) which is related to
one of the cities in Turkey, Burdur, with 45 villages (customers). In these instances,
the maximum walking distance (coverage distance), and the speed of the vehicles are
considered as 50 or 90 min. and 1 km/h, respectively. The distance matrix between
the customers and the number of the customers of the original data is not changed
while the new parameters including Q, s, and T are added. Also, to include the
load capacity constraint to the instances of the third dataset, the demand of each
customer is set 1. The modified dataset is called the third dataset of the CE-VRP
instances. The features of the instances of the third dataset are given in Table B.3
in Appendix B. Furthermore, it is noteworthy that in all generated datasets, the
assignment cost, distances between the nodes, and travel time between nodes are
equal to each other and have the same value as the distance matrix in the instances.

5.2 Parameter tuning of the proposed two-phase heuristic

In this section, the parameters of the proposed two-phase heuristics are tuned over
the ten CE-VRP instances with various sizes chosen from the three datasets (A-n10-
50.cevrp, A-n10-100.cevrp, A-n39.cevrp, A-n45.cevrp, A-n54.cevrp, A-n60.cevrp, A-
n64.cevrp, A-n69.cevrp, KS_1, KS_2 ). The parameters to be tuned are as follows:
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maximum temperature (Tmax), minimum temperature (Tmin), cooling rate (α), the
maximum number of iterations as the stopping criterion of two-phase method (N ′),
the maximum number of iterations as the first stopping criterion of VNS-SA (N),
and the maximum number of iterations as the second stopping criterion of VNS-SA
(M). To tune a parameter, it gets values from a range while other parameters are
remained fixed. A value of the parameter, which causes the objective function to
have minimum value, is considered as a proper value for that parameter.

First of all, the parameter of maximum (initial) temperature is tuned. The range
of [1,1000] is considered for Tmax while the other parameters have the fixed value
as follows: Tmin = 0.1, α = 0.98, N = 100, and M = 10. The best value for the
parameter of Tmax, by which the objective function is minimized, is found for every
instance in this experiment and also each instance is executed 10 times for each
value of Tmax. According to the best-found value of Tmax in each instance, Tmax

is assigned a value by which the proposed two-phase method returns the minimum
objective function in most instances. If in one instance, there is more than one
proper value for Tmax the value leading to lower execution time is selected.

Similar process to tune the Tmax is conducted for other parameters. The range of
the parameter Tmin is [0.001,0.1] while the other parameters have the fixed values of
Tmax = 10, α = 0.98, N ′ = 100 N = 10, and M = 10. Also, the values of parameter
α is chosen from the range of [0.9,0.99] while other parameters are fixed with values
of Tmax = 10, Tmin = 0.01, N ′ = 100 N = 10, and M = 10. In addition, the range of
the parameter N ′ is set as [10,1000] while other parameters are fixed as Tmax = 10,
Tmin = 0.01, α = 0.98, N = 10, and M = 10. Moreover, the value of the parameter
N is chosen from the range of [10,5000] and other parameters have the fixed values
of Tmax = 10, Tmin = 0.01, α = 0.98, N ′ = 100 and M = 10. For the last parameter,
M is assigned a value from the range of [5,200] while other parameters are assigned
a fixed value of Tmax = 10, Tmin = 0.01, α = 0.98, N ′ = 100 and N = 10. Finally, the
best tuned values for the parameters of the proposed two-phase method are given
in Table 5.1.

Table 5.1 Values of the two-phase heuristic parameters after parameter tuning

Tmax Tmin α N ′ N M

Value of parameter after parameter tuning 10 0.01 0.98 500 10 10
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5.3 Performance evaluation of the proposed two-phase heuristic

To evaluate the performance of the proposed two-phase heuristic, the instances
of five problems including CVRP, TCVRP, CoVRP (introduced by Buluc et al.
(2021)), Time-constrained capacitated CoVRP (TCCVRP), and CE-VRP (Problem
addressed in the present thesis) are solved by two-phase heuristic and the results
are compared with the existing solvers in the literature and Gurobi solver, which is
designed to solve mixed-integer, integer linear programming models. The relation-
ship among the above problems is given in Fig. 5.1. In this figure, the parameters
near the arrows indicate how the main problem, CE-VRP, is reduced to the other
problems, and also compared to the other instances mentioned, CE-VRP is the only
problem which has the assignment cost in its objective function. Also, it is note-
worthy to say that the objective function of the CoVRP, and TCCVRP have no
assignment cost; on the other hand, the addressed problem in this thesis, CE-VRP,
has the assignment cost in its objective function. According to Fig 5.1, CE-VRP
reduces to CoVRP by removing capacity and route time constraints. Also, CE-VRP
reduces to TCVRP by removing the route distance and walking distance constraints.
Then, TCVRP reduces to CVRP if time-constrained route are removed. Also, CE-
VRP reduces to another new problem in the literature, TCCVRP, after removing
the distance-constrained routes assumption i.e., D =∞.

Figure 5.1 The relationship among the various addressed problems in the present
thesis
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5.3.1 Investigating the performance of the proposed greedy construction

algorithm

To evaluate the performance of the proposed greedy construction heuristic in the
first phase of the two-phase method, its performance is compared with the solution
returned by the Gurobi-Python interface over the first dataset (see Appendix B) for
both TCCVRP and CE-VRP. The comparisons between the results of the greedy
construction algorithm and the objective function found by the Gurobi solver over
the instances of TCCVRP and CE-VRP are given in Tables 5.2 and 5.3, respectively.
In Tables 5.2 and 5.3, OFV , Gap%, ∆%, and t indicate the best-found objective
function value, the gap returned by Gurobi-Python interface, the gap between the
best-found solutions by Gurobi solver and greedy construction heuristic, and the
execution time in seconds, respectively. To use the instances of the first dataset
for TCCVRP, the value of parameter D (maximum route length) is considered as a
very large number e.g., ∞. The results show that the proposed greedy construction
heuristic, despite its simplicity and using no improvement operator, is able to gen-
erate an initial solution that has a lower than 2% gap with the optimal solution in
lower than 0.5 seconds over TCCVRP instances (even it finds the optimal solution
of the instance of A-n15-100.tccvrp). Also, the greedy construction heuristic has an
acceptable performance over CE-VRP instances by proving the solutions within the
gap of 5% to the optimal solutions on average for small and medium-sized instances.

Table 5.2 Computational results of solving the instances of the first dataset by the
proposed greedy construction heuristic for TCCVRP

Instance Gurobi Greedy construction heuristic
OFV Gap% t OFV ∆% t

A-n9-50.tccvrp 3427.97 0.00 63.61 3461.57 0.98 0.13
A-n9-100.tccvrp 2305.27 0.00 134.30 2323.16 0.78 0.19
A-n10-50.tccvrp 3427.97 0.00 590.39 3437 0.26 0.08
A-n10-100.tccvrp 2305.27 0.00 1023.71 2314.23 0.39 0.10
A-n15-100.tccvrp 2374.88 41.69 7200.00 2374.88 0.00 0.13
A-n20-100.tccvrp 3464.66 60.58 7200.00 3486.81 0.64 0.14
A-n32-100.tccvrp 5611.66 76.16 7200.00 5665.71 0.96 0.18
A-n33-100.tccvrp 5484.86 77.36 7200.00 5497.48 0.23 0.19
B-n8-100.tccvrp 2306.27 0.00 28.95 2331.79 1.11 0.08
B-n9-100.tccvrp 2302.39 0.00 136.07 2331.79 1.28 0.07
B-n10-100.tccvrp 2302.39 0.00 1956.15 2345.19 1.86 0.09
B-n12-100.tccvrp 2302.39 44.55 7200.00 2369.19 2.90 0.05
Continued on next page
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Table 5.2 Continued from previous Table
Instance Gurobi Greedy construction heuristic

OFV Gap% t OFV ∆% t

B-n8-90.tccvrp 2306.27 0.00 11.76 2338.04 1.38 0.10
B-n9-90.tccvrp 2302.39 0.00 173.62 2358.77 2.45 0.43
B-n10-90.tccvrp 2302.39 0.00 1757.77 2365.92 2.76 0.07
B-n12-90.tccvrp 2302.39 44.60 7200.00 2379.50 3.35 0.08
P-n10-35.tccvrp 6246.91 0.00 0.22 6271.47 0.39 0.07
P-n12-35.tccvrp 6271.81 0.00 42.00 6309.68 0.60 0.14
P-n10-160.tccvrp 2051.87 0.00 669.17 2092.68 1.99 0.08
P-n9-160.tccvrp 2051.87 0.00 44.01 2092.68 1.99 0.06
Average 3172.59 17.25 2491.62 3207.37 1.31 0.12

Table 5.3 Computational results of solving the small-sized instances of the first
dataset by the proposed greedy construction heuristic for CE-VRP

Instance Gurobi Greedy construction heuristic
OFV Gap% t OFV ∆% t

A-n9-50.cevrp 3427.97 0.00 74.21 3494.76 1.95 0.21
A-n9-100.cevrp 2305.27 0.00 62.55 2356.35 2.22 0.27
A-n10-50.cevrp 3427.97 0.00 483.75 3489.4 1.79 0.18
A-n10-100.cevrp 2305.27 0.00 384.16 2366.63 2.66 0.26
B-n8-100.cevrp 2306.27 0.00 16.73 2437.06 5.67 0.11
B-n9-100.cevrp 2302.39 0.00 129.49 2459.15 6.81 0.14
B-n10-100.cevrp 2302.38 0.00 1541.64 2466.31 7.12 0.17
B-n12-100.cevrp 2302.38 44.72 7200.00 2498.87 8.53 0.14
B-n8-90.cevrp 2306.27 0.00 42.68 2437.06 5.67 0.12
B-n9-90.cevrp 2302.39 0.00 220.22 2479.89 7.71 0.11
B-n10-90.cevrp 2302.38 0.00 2008.39 2487.04 8.02 0.18
P-n10-35.cevrp 6246.90 0.00 0.32 6290.68 0.70 0.17
P-n12-35.cevrp 6271.81 0.00 10.83 6328.89 0.91 0.19
P-n10-160.cevrp 2051.86 0.00 1224.31 2220.37 8.21 0.12
P-n9-160.cevrp 2051.86 0.00 180.54 2193.45 6.90 0.11
Average 2947.55 2.98 905.32 3360.37 4.99 0.21
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5.3.2 Investigating the performance of the proposed improvement opera-

tors for CE-VRP

To analyze the performance of five improvement operators used in the first phase
of the proposed two-phase method, six versions of the two-phase heuristics are com-
pared with each other. These six versions are presented as follows:

• TPH_0 : Two-phase heuristic without any improvement operator;

• TPH_1 : Two-phase heuristic with only the first improvement operator;

• TPH_2 : Two-phase heuristic with only the second improvement operator;

• TPH_3 : Two-phase heuristic with only the third improvement operator;

• TPH_4 : Two-phase heuristic with only the fourth improvement operator;

• TPH_5 : Two-phase heuristic with only the fifth improvement operator;

Table 5.4 shows the solution results of the CE-VRP instances by six versions of
the two-phase method (TPH_0 -TPH_5 ) and original two-phase heuristic (with
all improvement operators) over the second dataset. According to Table 5.4,
all improvement operators, used in the first phase of the two-phase method,
improve the solution quality returned by the two-phase method without any
improvement operator, or TPH_0, which shows the validity and efficiency of the
used improvement operators. Also, the fourth improvement operator is more ef-
ficient compared to the other operators; however, the fifth operator has the best
performance in three instances. In Table 5.4, OFV, t, and Imp% are the average
of the objective function values in ten runs, execution time in seconds (which are
rounded to the nearest integer number), and improvement percentage which is calcu-
lated as follows (f : the objective function returned by the TPH_0, f ′: the objective
function returned by one of the versions TPH_1 to TPH_5 ):

Imp% = ((f −f ′)/f)×100

5.3.3 Solution of CVRP and TCVRP by the proposed two-phase heuristic

To solve the instances of well-known CVRP, the proposed two-phase heuristic is
modified to solve the problem in which the maximum walking distance (dmax) be-
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comes zero, and the parameters D and T get a very large number, and s becomes
zero i.e., the first phase of the proposed two-phase heuristic is disabled to solve the
CVRP instances. Here, four well-known CVRP datasets are solved by the proposed
two-phase heuristic to validate their performance. Tables C.1-C.4 (see Appendix C)
show the computational results of solving the instances of the set A, B, P, and CMT
(CVRP instances), respectively. In all of these results, the two-phase heuristic is
executed 10 times, and the best objective function (Best) and the average of the
objective functions (Average) are reported with their best computational time in
seconds. Moreover, sets A, B, and P are first provided by Augerat et al. (1995), and
the CMT dataset is introduced by Christofides et al. (1979). All CVRP instances
and their optimal or best-known solutions are available in the CVRPLIB database1.
Also, the results of the two-phase heuristic over CVRP instances are compared with
the existing solvers in the literature as given in Tables D.1-D.4 (see Appendix C) for
sets A, B, P and CMT (CVRP instances), respectively. The computational results
show that the proposed two-phase heuristic is efficient in solving the various CVRP
instances with different sizes and reaching the best-known solutions in most of the
instances. Also, the proposed two-phase heuristic outperforms the other solvers of
the literature in terms of solution quality which shows its efficiency and competi-
tiveness. Therefore, according to the results, the proposed local search (VNS-SA),
which finds the routes between the delivery sites, is validated and is an efficient local
search in the second phase of the two-phase heuristic.

If in the previous problem, CVRP, the constraint of the maximum route time is
added, then the other variant, called TCVRP, appeared. One famous benchmark
instances for TCVRP is the instances introduced by Christofides et al. (1979), in
which instances CMT 6-10 and CMT 13-14 have the maximum duration for each
tour (T ) and the service time (s) for each node. Here, the computational results of
solving all CMT instances including CVRP and TCVRP by the proposed two-phase
heuristic and the comparison between the proposed solver and the solution methods
in the literature are given in Tables C.5 and D.5 (see Appendix C). The results show
the efficiency and validity of the proposed two-phase heuristic in solving the various
CVRP and TCVRP instances.

1http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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5.3.4 Comparison of the proposed two-phase heuristic with Gurobi solver

over small and medium-sized instances

In this section, the performance of the proposed two-phase method and Gurobi solver
(in the Python interface) are compared over the small and medium-sized instances
for CoVRP, TCCVRP, and CE-VRP. In the following, after shortly describing the
problems, the computational results of the two-phase method and Gurobi solver are
presented.

If in the CE-VRP the capacity and time-constrained conditions are relaxed and the
objective function is changed to minimize the route cost among visited customers,
then CE-VRP becomes CoVRP, which was introduced by Buluc et al. (2021). In
CoVRP, there are two constraints including the distance-constrained routes, and
the maximum walking distance for each customer to reach a delivery site. In Table
5.5, the comparison of the results between the proposed two-phase heuristic and the
Gurobi solver is presented (Time execution is limited to 7200 seconds for Gurobi).
The instances of CoVRP used in this thesis as the benchmark are the third dataset
of CE-VRP (see Appendix B) with s = 0, T =∞, and Q =∞. In these instances, the
maximum coverage distance, and the speed of the vehicles are considered as 50 or
90 min. and 1 km/h, respectively. In Table 5.5, n, m, D, dmax, OFV , Gap%, ∆%,
and t are the number of nodes, fleet size, maximum route length, maximum walking
(coverage) distance, the objective function value, the gap returned by Gurobi, the
gap between the objective functions of the two-phase heuristic and Gurobi, and the
execution time in seconds, respectively. Table 5.5 shows that the proposed two-
phase heuristic has found the optimal solution in 12 of 14 CoVRP instances and
all solutions returned by it have zero gaps with the Gurobi solver in lower than 75
seconds on average; which shows the efficiency of the proposed heuristic in solving
the CoVRP instances.

Moreover, the performance of the proposed two-phase heuristic is evaluated by com-
paring its solutions against the results of the Gurobi-Python interface on TCCVRP
instances. Here, the two-phase heuristic is implemented on a new version of CE-
VRP, called TCCVRP, which is a reduced version of the CE-VRP by relaxing
the distance-constrained routes; in other words, TCCVRP considers only four con-
straints including time-constrained routes, capacity, and maximum walking distance.
It is noteworthy to say that the TCCVRP has not been studied in the literature in
terms of both mathematical models and heuristics.

Table 5.6 shows the solution results of the TCCVRP instances (the first dataset
in Appendix B) by the proposed two-phase heuristic and Gurobi solver. Table 5.6
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Table 5.5 Comparison of computational results of the proposed two-phase heuristic
with Gurobi solver on the instances of CoVRP

Instance features Gurobi Two-phase heuristic
Name n m D dmax OFV Gap% t OFV ∆% t
KS_1 45 2 1200 90 2091.50 0.00 630.54 2091.50 0.00 52
KS_2 45 2 1300 90 2071.26 2.61 7200.00 2071.26 0.00 73
KS_3 45 2 1500 90 1869.29 0.00 68.74 1869.29 0.00 31
KS_4 45 2 1700 90 1856.70 0.00 251.37 1856.70 0.00 49
KS_5 45 2 1500 50 2670.80 0.00 630.54 2670.80 0.00 66
KS_6 45 2 1700 50 2669.53 0.00 1227.49 2669.53 0.00 91
KS_7 45 3 1000 90 2533.37 0.00 564.78 2533.37 0.00 106
KS_8 45 3 1050 90 2270.40 0.00 353.35 2270.40 0.00 56
KS_9 45 3 1100 90 2270.40 0.00 947.87 2270.40 0.00 129
KS_10 45 3 1200 90 2166.86 0.00 679.86 2166.86 0.00 88
KS_11 45 3 1200 50 2916.27 0.00 452.31 2916.27 0.00 74
KS_11 45 3 1300 50 2844.35 0.00 599.33 2844.35 0.00 68
KS_13 45 4 1000 50 3607.07 0.00 1628.26 3607.07 0.00 85
KS_14 45 4 1050 50 3341.32 3.32 7200.00 3341.32 0.00 71

Average 2512.79 0.42 1574.19 2512.79 0.00 74.21

shows that the proposed two-phase method has reached the solution returned by
Gurobi (most of them are optimal due to gap% of zero) over TCCVRP instances.
Also, the two-phase heuristic has solved the instances with various sizes in about 19
seconds on average which shows the efficiency of the proposed heuristic in solving
TCCVRP instances.

Table 5.6 Computational results of solving the instances of the first dataset by the
proposed two-phase heuristic for TCCVRP

Instance Gurobi Two-phase heuristic
OFV Gap% t OFV ∆% t

A-n9-50.tccvrp 3427.97 0.00 63.61 3427.97 0.00 3
A-n9-100.tccvrp 2305.27 0.00 134.30 2305.27 0.00 14
A-n10-50.tccvrp 3427.97 0.00 590.39 3427.9 0.00 15
A-n10-100.tccvrp 2305.27 0.00 1023.71 2305.27 0.00 2
A-n15-100.tccvrp 2374.88 41.69 7200.00 2374.88 0.00 0.32
A-n20-100.tccvrp 3464.66 60.58 7200.00 3464.66 0.00 4
A-n32-100.tccvrp 5611.66 76.16 7200.00 5611.66 0.00 83
A-n33-100.tccvrp 5484.86 77.36 7200.00 5484.86 0.00 121
B-n8-100.tccvrp 2306.27 0.00 28.95 2306.27 0.00 0.29
B-n9-100.tccvrp 2302.39 0.00 136.07 2302.39 0.00 2
B-n10-100.tccvrp 2302.39 0.00 1956.15 2302.39 0.00 1
Continued on next page
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Table 5.6 Continued from previous Table
Instance Gurobi Two-phase heuristic

OFV Gap% t OFV ∆% t

B-n12-100.tccvrp 2302.39 44.55 7200.00 2302.39 0.00 14
B-n8-90.tccvrp 2306.27 0.00 11.76 2306.27 0.00 0.63
B-n9-90.tccvrp 2302.39 0.00 173.62 2302.39 0.00 5
B-n10-90.tccvrp 2302.39 0.00 1757.77 2302.39 0.00 27
B-n12-90.tccvrp 2302.39 44.60 7200.00 2302.39 0.00 44
P-n10-35.tccvrp 6246.91 0.00 0.22 6246.91 0.00 1
P-n12-35.tccvrp 6271.81 0.00 42.00 6271.81 0.00 13
P-n10-160.tccvrp 2051.87 0.00 669.17 2051.87 0.00 18
P-n9-160.tccvrp 2051.87 0.00 44.01 2051.87 0.00 3
Average 3172.59 17.25 2491.62 3172.59 0.00 18.56

Finally, the performance of the proposed two-phase method is compared with the
results by the Gurobi solver over CE-VRP (the main addressed problem in the
present thesis). In this experiment, the small-sized instances of the first dataset are
solved by both the two-phase method and the Gurobi (Table 5.7). The results show
that the proposed method is able to reach the optimal solutions in about 22 seconds
on average for small-sized CE-VRP instances.

Table 5.7 Computational results of solving the small-sized instances of the first
dataset by the proposed two-phase heuristic for CE-VRP

Instance Gurobi Two-phase heuristic
OFV Gap% t OFV ∆% t

A-n9-50.cevrp 3427.97 0.00 74.21 3427.97 0.00 5
A-n9-100.cevrp 2305.27 0.00 62.55 2305.27 0.00 8
A-n10-50.cevrp 3427.97 0.00 483.75 3427.97 0.00 30
A-n10-100.cevrp 2305.27 0.00 384.16 2305.27 0.00 28
B-n8-100.cevrp 2306.27 0.00 16.73 2306.27 0.00 1
B-n9-100.cevrp 2302.39 0.00 129.49 2302.39 0.00 7
B-n10-100.cevrp 2302.38 0.00 1541.64 2302.38 0.00 52
B-n12-100.cevrp 2302.38 44.72 7200.00 2302.38 0.00 82
B-n8-90.cevrp 2306.27 0.00 42.68 2306.27 0.00 2
B-n9-90.cevrp 2302.39 0.00 220.22 2302.39 0.00 22
B-n10-90.cevrp 2302.38 0.00 2008.39 2302.38 0.00 39
P-n10-35.cevrp 6246.90 0.00 0.32 6246.9 0.00 1
Continued on next page
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Table 5.7 Continued from previous Table
Instance Gurobi Two-phase heuristic

OFV Gap% t OFV ∆% t

P-n12-35.cevrp 6271.81 0.00 10.83 6271.81 0.00 1
P-n10-160.cevrp 2051.86 0.00 1224.31 2051.86 0.00 41
P-n9-160.cevrp 2051.86 0.00 180.54 2051.86 0.00 9
Average 2947.55 2.98 905.32 2947.55 0.00 21.86

5.3.5 Solution of the large-sized instances of CE-VRP by the proposed

two-phase method

In this section, the large-sized instances of CE-VRP in all three generated instances
are solved by the proposed two-phase heuristic. Also, to verify efficiency of the
hybrid VNS-SA in the second phase, two other versions of the second phase in-
cluding solo VNS and solo SA. These two versions with the original version are
called TPH_VNS, TPH_SA, and TPH_VNS-SA, respectively (for algorithms of
TPH_VNS and TPH_SA see Appendix A). Tables 5.8-5.10 show the computa-
tional results obtained by these three versions of the two-phase heuristic method
over the large-sized instances of the first and seconds dataset and real data (third
dataset), respectively. Moreover, in Tables 5.8-5.10, columns of best, Avg., t, ∆1%
and ∆2% are the best objective function value returned by the related solver in 10
runs, average of the objective function values, the average execution time in sec-
onds, the gap between the solutions of TPH_VNS and TPH_VNS-SA, and the gap
between the solutions of TPH_SA and TPH_VNS-SA, respectively. Also, in this
experiment, the parameter of TPH_VNS-SA are adjusted to the values by which the
execution time of it is close to the execution time of the TPH_VNS and TPH_SA.
The parameters of the TPH_VNS-SA are set as Tmax = 10, Tmin = 0.1, α = 0.98,
N ′ = 200, N = 10 and M = 10. Also, the parameters of TPH_VNS are set N ′ = 500
N = 100, and parameters of TPH_SA are set as Tmax = 10, Tmin = 0.1, α = 0.98,
and N ′ = 200 M = 10.

According to Tables 5.8-5.10, when the proposed two-phase method is applied with
VNS-SA as its second phase outperforms the other two versions including the two-
phase method with VNS or SA as the heuristics in the second phase. Therefore,
hybrid VNS and SA is an efficient heuristic in the second phase of the two-phase
method to find the near-optimal routes visiting the delivery sites.
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Table 5.8 Comparison of the proposed two-phase method with two version of it over
the instances of the first dataset of CE-VRP

Instance TPH_VNS TPH_SA TPH_VNS-SA
Name Optimal2 best Avg.% ∆1% t best Avg.% ∆2% t best Avg.% t

A-n9-50.cevrp 3427.98 3427.98 3427.98 0.00 4 3427.98 3427.98 0.00 5 3427.98 3427.98 5
A-n9-100.cevrp 2305.27 2305.27 2305.27 0.00 4 2305.27 2305.27 0.00 5 2305.27 2305.27 5
A-n10-50.cevrp 3427.97 3427.97 3427.97 0.00 10 3427.97 3427.97 0.00 6 3427.97 3427.97 13
A-n10-100.cevrp 2305.27 2305.27 2305.27 0.00 10 2305.27 2305.27 0.00 6 2305.27 2305.27 14
A-n15-100.cevrp - 2374.88 2374.88 0.00 13 2374.88 2374.88 0.00 7 2374.88 2374.88 13
A-n20-100.cevrp - 3464.66 3465.01 0.00 14 3464.66 3465.02 0.00 8 3464.66 3464.89 16
A-n32-100.cevrp - 5621.63 5633.42 0.00 13 5634.95 5642.77 0.24 11 5616.05 5627.08 15
A-n33-100.cevrp - 5486.59 5496.09 0.00 14 5492.07 5506.98 0.10 11 5486.59 5504.17 15
B-n8-100.cevrp 2306.27 2306.27 2306.27 0.00 10 2306.27 2306.27 0.00 5 2306.27 2306.27 11
B-n9-100.cevrp 2302.39 2306.27 2302.39 0.00 11 2306.27 2302.39 0.00 5 2306.27 2302.39 11
B-n10-100.cevrp 2302.38 2302.38 2302.38 0.00 10 2302.38 2302.38 0.00 6 2302.38 2302.38 12
B-n12-100.cevrp 2302.38 2306.28 2307.88 0.17 11 2309.74 2312.09 0.32 7 2302.38 2302.38 12
B-n8-90.cevrp 2306.27 2306.27 2306.27 0.00 9 2306.27 2306.27 0.00 5 2306.27 2306.27 10
B-n9-90.cevrp 2302.39 2302.39 2302.39 0.00 10 2302.39 2302.39 0.00 6 2302.39 2302.39 10
B-n10-90.cevrp 2302.38 2302.38 2302.38 0.00 11 2302.38 2302.38 0.00 6 2302.38 2302.38 12
B-n12-90.cevrp - 2313.43 2313.43 0.00 11 2314.60 2318.09 0.05 6 2313.43 2314.01 11
P-n10-35.cevrp 6246.90 6246.90 6246.90 0.00 1 6246.90 6246.90 0.00 4 6246.90 6246.90 5
P-n12-35.cevrp 6271.81 6285.11 6286.11 0.21 6 6286.11 6287.24 0.23 6 6271.81 6271.81 9
P-n10-160.cevrp 2051.86 2051.86 2051.86 0.00 11 2051.86 2051.86 0.00 6 2051.86 2051.86 12
P-n9-160.cevrp 2051.86 2051.86 2051.86 0.00 9 2051.86 2051.86 0.00 6 2051.86 2051.86 11

Average 3174.58 3175.80 0.02 9.60 3175.81 3177.31 0.05 6.35 3173.72 3175.02 11.10

Table 5.9 Comparison of the proposed two-phase method with two version of it over
the instances of the second dataset of CE-VRP

Instance TPH_VNS TPH_SA TPH_VNS-SA
Name best Avg.% ∆1% t best Avg.% ∆2% t best Avg.% t

A-n34.cevrp 5459.79 5476.01 0.61 13 5432.61 5439.03 0.11 12 5426.61 5438.77 16
A-n36.cevrp 5496.88 5513.88 0.48 13 5529.27 5537.11 1.08 12 5470.38 5511.89 17
A-n37.cevrp 5282.62 5306.53 0.02 14 5293.25 5307.79 0.23 11 5281.30 5298.34 16
A-n38.cevrp 5387.91 5410.11 0.72 14 5443.16 5466.79 1.75 12 5349.51 5486.19 17
A-n39.cevrp 5480.26 5501.33 0.14 13 5517.81 5539.22 0.83 13 5472.53 5487.70 17
A-n44.cevrp 6618.59 6634.55 0.34 19 6638.74 6650.64 0.65 14 6595.95 6612.12 21
A-n45.cevrp 6683.95 6705.69 0.12 16 6717.35 6750.11 0.62 14 6676.01 6702.01 20
A-n46.cevrp 7683.56 7689.03 0.25 17 7667.02 7702.85 0.04 15 7664.28 7688.91 19
A-n48.cevrp 7814.13 7831.49 0.58 16 7835.50 7839.69 0.85 15 7769.44 7784.47 20
A-n53.cevrp 7750.34 7765.01 0.09 18 7749.00 7759.66 0.07 15 7743.40 7759.42 22
A-n54.cevrp 7934.71 7959.66 0.86 18 7930.69 7938.79 0.80 16 7867.37 7908.66 22
A-n55.cevrp 9956.80 9972.29 2.16 19 9896.76 9900.50 1.54 16 9746.51 9860.93 23
A-n60.cevrp 10184.00 10228.39 1.15 20 10118.20 10156.71 0.49 17 10068.70 10109.32 26
A-n61.cevrp 10070.20 10136.52 1.30 21 10070.40 10118.22 1.30 20 9941.42 9968.93 26
A-n62.cevrp 9033.66 9082.03 0.52 21 9010.04 9045.44 0.25 17 8987.22 9017.40 27
A-n63.cevrp 10617.40 10728.30 1.83 22 10591.10 10622.09 1.58 19 10426.10 10506.54 25
A-n64.cevrp 10271.70 10308.33 1.58 22 10277.10 10314.41 1.63 20 10070.1 10160.86 28
A-n65.cevrp 10200.40 10250.66 3.38 23 10115.50 10152.91 2.52 20 9866.91 10007.82 26
A-n69.cevrp 9952.94 10070.39 1.03 23 9980.05 9993.09 1.31 21 9851.33 9868.94 27
A-n80.cevrp 11867.50 11959.89 2.27 28 11811.60 11871.22 1.79 23 11604.20 11634.40 30

Average 8187.36 8226.48 0.97 18.50 8181.25 8205.30 0.97 16.10 8096.06 8140.67 22.25

Table 5.10 Comparison of the proposed two-phase method with two version of it
over the instances of the third dataset of CE-VRP

Instance TPH_VNS TPH_SA TPH_VNS-SA
Name best Avg.% ∆1% t best Avg.% ∆2% t best Avg.% t

KS_1 7079.58 7105.99 0.14 14 7086.36 7119.04 0.24 12 7069.44 7102.09 17
KS_2 5537.51 5651.21 4.34 18 5445.59 5516.42 2.61 13 5307.17 5463.59 18
KS_3 5420.43 5485.95 1.27 16 5373.64 5420.19 0.39 13 5352.50 5405.01 19
KS_4 5423.68 5471.01 27.40 18 4324.83 5022.85 1.61 13 4256.18 4879.44 20
KS_5 7922.99 7929.33 4.99 18 7655.25 7695.07 1.44 14 7546.36 7595.07 20
KS_6 7839.95 7901.29 25.70 18 6368.47 6394.46 2.13 14 6235.67 6388.29 22
KS_7 9940.59 9972.05 12.00 16 8914.49 9871.92 0.45 13 8874.57 8903.92 17
KS_8 7209.51 7247.83 0.67 17 7187.44 7223.54 0.36 13 7161.56 7164.14 20
KS_9 7226.44 7278.09 1.53 15 7177.66 7221.05 0.84 12 7117.80 7188.02 19

Continued on next page

2The optimal solutions were obtained by Gurobi solver (see Table 5.7)
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Table 5.10 Continued from previous Table
Instance TPH_VNS TPH_SA TPH_VNS-SA
Name best Avg.% ∆1% t best Avg.% ∆2% t best Avg.% t

KS_10 7179.62 7226.66 0.76 15 7224.70 7231.62 1.40 13 7125.24 7201.33 23
KS_11 10651.50 10923.41 0.54 17 10723.60 10737.59 1.22 15 10594.10 10653.52 21
KS_12 10809.90 10830.54 16.90 16 9318.70 9402.85 0.73 16 9148.01 9252.32 22
KS_13 10809.90 10830.54 16.90 16 9318.70 9402.85 0.73 16 9148.01 9252.32 22
KS_14 12360.50 12902.01 3.21 18 12350.70 13005.04 3.13 16 11975.80 12114.99 23
Average 8243.72 8339.70 8.31 16.57 7747.86 7947.45 1.24 13.78 7651.27 7768.85 20.21

Moreover, Fig. 5.2 shows the convergence history of the various versions of the pro-
posed two-phase method in the instances of A-n64.cevrp-A-n80.cevrp, and KS_13 -
KS_14, respectively, in which the horizontal axis is time in seconds, and vertical
axis is the objective function value. This figure shows that the original two-phase
method with hybrid VNS-SA is more efficient than the two-phase method with only
either VNS or SA. Finally, as a sample, the best-found solution by the proposed
greedy construction algorithm and the two-phase heuristic for the instance of A-
n32-100.cevrp is given in Figs. 5.3-5.4, respectively.

Figure 5.2 The convergence history of the various versions of the two-phase heuristic
for several CE-VRP instance
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Figure 5.3 The solution found by the proposed greedy construction heuristic for the
instance of A-n32-100.cevrp

Figure 5.4 The solution found by the proposed two-phase heuristic for the instance
of A-n32-100.cevrp

5.4 Sensitivity analysis

In this section, several analyses on the behavior of the objective function of CE-VRP
are conducted. In all experiments of this section, the Gurobi solver is used to obtain
the results with a time limit of 60 seconds where the first model of the CE-VRP is
solved.
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5.4.1 Analysis of the maximum walking distance (dmax)

First of all, one of the important parameters in the CE-VRP is the maximum walking
distance (dmax) for customers to reach the nearest delivery sites. dmax must be
greater than the minimum distance between the customers; otherwise, there is no
covering in the problem and CE-VRP reduces to TCVRP. Also, choosing a value
for dmax greater than the maximum distance between the customers reduces the
CE-VRP to the 1-Median Problem and no routing decision. It is important for
decision-makers or managers of the companies providing distribution or delivery
services to consider a proper upper bound for the walking distance (walking cost) for
each customer. A larger maximum walking distance, although, reduces the number
of delivery sites leading to the lower route cost of the vehicles, it will enforce the
customers to travel more distance to reach the delivery site leading to raising the
lack of satisfaction.

Moreover, although considering a lower dmax increases the customers’ accessibility
(decreases the assignment cost) for the company, it increases the routing costs and
usage cost of the vehicles. Therefore, the trade-off analysis is needed to observe the
behaviour of the objective function with respect to the different values of dmax. To
do the trade-off analysis, the sum of the total traveled distance by the customers
to reach the delivery sites is included in the objective function i.e., the objective
function (3.1), where cij is equal to dij for the sake of simplicity. Fig. 5.5 shows
the behaviour of the objective function with respect to the different values of dmax

over ten CE-VRP instances. Also, Fig. 5.6 presents the behaviour of the normalized
value3 of objective function for instances of A-n32-100 -A-n33-100, and A-n64 -A-
n80 to clarify the observation.

3The process of converting a distribution into a Normal distribution
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Figure 5.5 The behaviour of the objective function value in respect to the different
values of dmax over ten CE-VRP instances

Figure 5.6 The behaviour of the normalized objective function value in respect to
the different values of dmax over six CE-VRP instances

According to Figs. 5.5-5.6, if traveling costs for vehicles and customers have the same
priority for the managers, then a large value of dmax is not a profitable decision
for the company. For example, in Fig. 5.6, the proper value of dmax, by which
the objective function has the minimum value, lies in the range of 5-15, which is
comparatively a small value. Also, Fig. 5.7 shows the behaviour of the vehicles’
route cost (vertical axis) and assignment cost of the customers (horizontal axis) in
respect to the different values of dmax (data labels) over the instance of A-n80.cevrp.
The red point on Fig. 5.7 indicates the minimum total cost where the distribution
of the solutions is similar to a Pareto frontier (red curve) and also this distribution
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shows that the trade-off decision between the route and assignment costs is affected
by the value of dmax.

Figure 5.7 The trade-off analysis between the route and assignment costs with re-
spect to various values of dmax over the instance of A-n80.cevrp

5.4.2 Analysis of the maximum number of available delivery sites (P )

One of the factors that has an impact on choosing a value of dmax is the maximum
number of delivery sites. This case could happen in the situation that company has
no sufficient number of vehicles to serve the customers or several stopping times for
a vehicle is not applicable because of battery and charging considerations; so, the
managers should know how the lower maximum number of delivery sites can affect
the behaviour of the objective function.

To do the analysis on the maximum number of delivery sites, a new constraint of
(5.1) is added to the CE-VRP model as follows:

(5.1)
∑

j∈V \{0}
zjj ≤ P

where P is the maximum number of delivery sites. Table 5.11 shows the behaviour
of the objective function values with respect to the different maximum number of
delivery sites over five CE-VRP instances in which the infeasible solutions are left
blank and optimal value of P is made bold. Table 5.11 shows that considering a
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lower value for P could make the problem infeasible; in this case, an alternative
to avoid the infeasibility is to increase the maximum walking (coverage) distance.
Also, the larger value of P does not have an impact on the objective function since
it is not profitable for the company to use more delivery sites increasing the route
costs while the maximum walking distance is unchanged.

Table 5.11 The behaviour of the objective function values in respect to the different
values of the maximum number of delivery sites over CE-VRP instances

Instance P (the maximum number of delivery sites)
A-n32-100.cevrp 17 16 15 14 13 12 11 10 9

5616.05 5616.05 5616.05 5616.05 5616.05 5616.05 5633.94 - -
A-n33-100.cevrp 14 13 12 11 10 9 8 7 6

5486.59 5486.59 5486.59 5486.59 5486.59 6538.66 - - -
A-n64.cevrp 22 21 20 19 18 17 16 15 14

10070.10 10070.10 10070.10 10070.10 10070.10 10113.40 10113.40 10113.40 -
KS_13 34 33 32 31 30 29 28 27 26

9148.01 9148.01 9148.01 9148.01 9148.01 9148.01 9191.44 - -
KS_14 32 31 30 29 28 27 26 25 24

11974.60 11974.60 11974.60 11974.60 11974.60 13470.20 - - -

5.5 Discussion on results

In the previous section, the computational results of solving the various variants of
the covering-routing problem by the proposed two-phase method and Gurobi solver
(an exact general solver) with sensitivity analysis on the results were presented.
After parameter tuning of the proposed method, the performance of the proposed
greedy heuristic to find the initial solutions was evaluated and validated. Next, the
repair and improvement operators used to find the solutions with better quality
were evaluated and their efficiency was shown over the various-sized instances com-
pared to the two-phase method without them. Moreover, the solutions found by
the proposed two-phase method for the CVRP (with its well-known benchmarks),
and TCVRP showed that it outperforms the existing solvers proposed for VRP in-
stances although the focus of the present thesis is not to compete with those solvers.
Furthermore, several covering-routing problems including CoVRP, TCCVRP, and
CE-VRP were solved by the proposed method in a short time on average and a
comparison of the results with the Gurobi solver showed the efficiency and validity
of the proposed two-phase heuristic; the best-found solutions have zero gaps with
the Gurobi results. Also, the two-phase method with VNS-SA heuristic as the sec-
ond phase outperformed the two-phase method with either solo VNS or solo SA in
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all CE-VRP instances, which shows the efficiency of the combination of VNS and
SA in solving the routing part. Moreover, the convergence history of the proposed
method shows the capability of the method in finding high-quality solutions in a
low running time; at initial seconds, a solution with good quality is found and then
improved during the execution of the algorithm.

Finally, the impact of the important covering parameters such as dmax (maximum
walking distance for customers) and P (maximum available delivery sites) on the
behaviour of the objective function value is analyzed. Sensitivity analysis shows
that dmax has a significant role in finding a trade-off between the routing cost of
the vehicles and customers’ covering costs. The larger values for dmax decrease the
route cost of the vehicle and increase the cost of the customers’ walking; on the other
hand, smaller values of dmax increase the route costs and decrease the assignment
cost. So that, by increasing the dmax, the objective function is decreased which is
due to decreasing the route costs of the vehicles.
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6. CONCLUSION AND SUGGESTIONS FOR FUTURE STUDIES

This thesis studies a covering-routing problem that arises in the real-world situation
of routing the autonomous delivery electric vehicles while satisfying the technical
constraints of the last mile delivery problem. So, a new problem in the context of
the covering-routing problem is introduced as Covering-routing of the autonomous
electric vehicles, or CE-VRP, which extends both covering-routing and VRP prob-
lems. In CE-VRP, there is no obligation to visit all customers unlike most VRP’s,
but all customers must be visited directly or covered by (assigned to) the customers
on the routes if they are within a maximum walking (coverage) distance to those
customers. The customers en route are called delivery site or stopping customer
location. Hence CE-VRP finds the optimal routes for the vehicles visiting a subset
of the customers (delivery sites) and optimal assignment of the remaining customers
to the delivery sites according to the maximum walking distance while satisfying
the load capacity of the vehicles, maximum route distance, and maximum route
duration. The maximum route distance (length) must be taken into account since
there is no recharging stations for the (electric) vehicles during their trip; also, the
maximum route duration (time) is equivalent to considering a time window for the
vehicles to exit from the depot and return to it.

After defining the problem and indicating its position in the literature on the
covering-routing and VRP’s, two MIP models are developed for CE-VRP; one with
the assignment cost in its objective function, and the other with the maximum walk-
ing distance as its constraint. Two MIP models are developed according to efficient
mathematical models proposed for handling the constraints of the maximum route
distance/duration in the literature with the polynomial number of constraints and
decision variables. Due to the NP-hardness of the studied problem, CE-VRP, a new
two-phase heuristic with a greedy initialization algorithm consisting of selecting the
delivery sites and assigning the customers to the delivery sites (first phase), and
routing the vehicles visiting the delivery sites (second phase) is proposed to solve
the large-sized instances. The first phase is composed of various efficient repair and
improvement operators which repair the infeasible solutions and improve the qual-
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ity of the feasible solutions. For the second phase, a hybrid VNS-SA metaheuristic
is proposed which finds the high-quality routes by diversifying (with neighbourhood
change and shaking mechanisms of VNS) and intensifying (with intra-route and
adjacent-routes move operators defined within SA) the solution space.

The computational results show the efficiency of the greedy initialization algorithm,
the repair and improvement operators used in the first phase, and SA as the local
search within the hybrid VNS-SA in the second phase. Also, the proposed two-
phase heuristic is efficient in solving the other problems of the literature such as
CVRP, TCVRP, CoVRP, and TCCVRP, where it outperforms the existing solvers
and Gurobi solver and reaches the best-known solution in the most instances. Next,
the proposed two-phase method is validated by solving the small-sized CE-VRP
instances to the optimality. Finally, the sensitivity analysis indicates that the max-
imum walking distance has a significant impact on finding a trade-off between the
routing cost of the vehicles and customers’ covering (assignment) cost.

For future studies, some suggestions are presented as follows: extending the problem
by considering the assumption that a subset of the customers can be left isolated,
which creates a new problem of time & distance-constrained maximal covering-
routing problem; the stochastic or fuzzy parameters can be added to the problem to
make it close to real-world situations; solving the problem related to a real case-study
to verify the proposed method and compare the solutions given by both heuristic
and the methods (policies) the companies apply; developing the proposed method by
considering the population-based VNS-SA to search the solution space extensively.
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APPENDIX A

VNS and SA algorithms in the literature

Algorithm 4 The pseudo-code of the BVNS introduced in the literature
Require: kmax,S0

1: S← S0

2: while <The stopping condition is not satisfied> do
3: k← 1
4: while k ≤ kmax do
5: S′← Shake(S,k)
6: S′′← First_Improvement(S′)
7: Neighborhood_Change(S,S′′,k)
8: end while
9: end while

Algorithm 5 The pseudo-code of general SA introduced in the literature
Require: S0

1: T ← Tmax

2: S← S0

3: while T ≥ Tmin do
4: while <The stopping condition is not satisfied> do
5: S′←Neighbourhood_Generate(S)
6: if f(S′) < f(S) then
7: S← S′

8: else
9: Accept S′ with the probability e(f(S)−f(S′)/T

10: end if
11: end while
12: T ← F (T ) ▷ Temperature updated
13: end while
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Initialization algorithm in the proposed two-phase heuristic

Algorithm 6 The proposed greedy initialization heuristic
Require: dij (distance between node i and j); dmax (maximum walking distance); qi (Demand of node i); Q

(vehicle capacity)
1: for i← 1 to N do
2: for j← 1 to N do
3: if (i ̸= j) & (dij ≤ dmax) then
4: N_Covi←N_Covi + 1 ▷ N_Covi: the number of nodes that node i can cover
5: end if
6: end for
7: end for
8: Sort N_Covi in descending order by a sorting algorithm;
9: for i← 1 to N do

10: ri←−1 ▷ ri: the element i-th of the matrix R (section 4.3.1)
11: xi← 0 ▷ xi: the element i-th of the matrix X (section 4.3.1)
12: end for
13: for i← 1 to N do
14: for j← 1 to N do
15: if <Center i is not opened (from top of sorted N_Covi) and the node j is within the

coverage of node i> then
16: <The node j is assigned to the node (center) i> or xj = i

17: end if
18: end for
19: end for
20: for i← 1 to N do
21: if xi = 0 then xi← i, ri← 1 ▷ Not covered node i becomes a delivery site
22: end if
23: end for
24: for i← 1 to N do
25: if ri = 1 then
26: t← 0
27: for j← 1 to N do
28: if xj = i then
29: t← t + qj

30: if t > Q then xj ← 0, t← t− qj , q′
i← t

31: else q′
i← t ▷ q′

i: updated demand of node i after assigning the other nodes to it
32: end if
33: end if
34: end for
35: end if
36: end for
37: for i← 1 to N do
38: if xi = 0 then xi← i, ri← 1, q′

i← qi

39: end if
40: end for
41: RO←Route_Generate(R,X , q′

i) ▷ Route_Generate(.) function is given in Alg. 7
42: RO← V NS_SA(RO)
43: return R,X ,RO
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Algorithm 7 The Route_Generate(.) function
Require: R,X , q′

i

1: k← 0
2: for i← 1 to N do
3: if ri = 1 then
4: rok← i ▷ rok: the element k-th of the matrix RO (section 4.3.1)
5: k← k +1
6: end if
7: end for
8: z← q′

ro0

9: z′← t0,ro0 + s ▷ tij : duration between nodes i, j, s: service time
10: z′′← d0,ro0 ▷ dij : distance between nodes i, j

11: ro′
0← 0 ▷ ro′

k: the element k-th of the matrix RO′; this matrix is the feasible
version of the matrix RO

12: ro′
1← ro0

13: k← 2
14: for i← 1 to N do
15: z← z + q′

roi

16: z′← z′ + ti−1,i + s

17: z′′← di−1,i

18: if (z ≤Q) & (z′ + troi,0 ≤ T ) & (z′′ +droi,0 ≤D) then
19: ro′

k← roi

20: k← k +1
21: else
22: ro′

k← 0
23: ro′

k+1← roi

24: k← k +2
25: z← q′

roi

26: z′← t0,roi + s

27: z′′← d0,roi

28: end if
29: end for
30: ro′

k← 0
31: return RO, RO′
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Algorithm of Repair_Improvement operators

Algorithm 8 The first proposed improvement operator (I1)
Require: R,X

1: l← 0
2: l′← 0
3: for i← 1 to N do
4: if ri = 1 then
5: t← 0
6: for j← 1 to N do
7: if (i ̸= j) & (xj = i) then
8: for k← 1 to N do
9: if (xk = i) & (j ̸= k) & (djk > dmax) then

10: t← t+1
11: end if
12: if t = 0 then
13: Save0

l′ ← i ▷ Save0
i saves the potential i-th delivery site for exchange

14: Save1
l′ ← j ▷ Save1

i saves the potential i-th covered node for exchange
15: l′← l′ +1
16: l← l +1
17: end if
18: end for
19: end if
20: end for
21: end if
22: end for
23: if l > 0 then
24: for i← 0 to l′ do
25: for j← 1 to 2N do
26: if Save0

i = roj then
27: if droj−1,Save1

i
+dSave1

i
,roj+1

>droj−1,roj +droj ,roj+1 then
28: rSave0

i
← 0

29: rSave1
i
← 1 ▷ Matrix R is updated

30: xSave0
i
← Save0

i

31: xSave1
i
← Save1

i ▷ Matrix X is updated
32: end if
33: end if
34: end for
35: end for
36: end if
37: return improved R,X
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Algorithm 9 The second proposed improvement operator (I2)
Require: R,X

1: l← 0
2: l′← 0
3: for i← 1 to N do
4: if ri = 1 then
5: t← 0
6: for j← 1 to N do
7: if (xj = i) & (i ̸= j) then
8: t← t+1
9: a← j

10: end if
11: end for
12: if t = 1 then
13: Save0

l′ ← i ▷ Save0
i saves the potential i-th delivery site for exchange

14: Save1
l′ ← a ▷ Save1

i saves the potential i-th covered node for
exchange

15: l′← l′ +1
16: l← l +1
17: end if
18: end if
19: end for
20: if l > 0 then
21: for i← 0 to l′ do
22: for j← 1 to 2N do
23: if Save0

i = roj then
24: if droj−1,Save1

i
+dSave1

i ,roj+1
>droj−1,roj +droj ,roj+1 then

25: rSave0
i
← 0

26: rSave1
i
← 1 ▷ Matrix R is updated

27: xSave0
i
← Save0

i

28: xSave1
i
← Save1

i ▷ Matrix X is updated
29: end if
30: end if
31: end for
32: end for
33: end if
34: return improved R,X
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Algorithm 10 The third proposed improvement operator (I3)
Require: R,X

1: for i← 1 to N do
2: if ri = 0 then
3: for j← 1 to N do
4: if (rj = 1) & (i ̸= j) & (dij ≤ dmax) then
5: t← 0
6: for k← 1 to N do
7: t′← 0
8: if (xk = j) & (j ̸= k) then
9: for y← 1 to N do

10: if (ry = 1) & (dyi > dmax) & (dyk ≤ dmax) then
11: t′← t′ +1
12: end if
13: end for
14: if dik ≤ dmax then
15: t′← t′ +1
16: end if
17: end if
18: if t′ = 0 then
19: t← t+1
20: end if
21: end for
22: if t = 0 then
23: rj ← 0
24: l← l +1
25: end if
26: end if
27: end for
28: if l ≥ 2 then
29: ri← 1
30: end if
31: end if
32: end for
33: return improved R,X
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Algorithm 11 The fourth proposed improvement operator (I4)
Require: R,X

1: for i← 1 to N do
2: if ri = 1 then
3: t← 0
4: for j← 1 to N do
5: if (i ̸= j) & (xj = i) then
6: t′← 0
7: for k← 1 to N do
8: if (djk ≤ dmax) & (rk = 1) & (i ̸= k) then
9: t′← t′ +1

10: end if
11: end for
12: if t′ = 0 then
13: t← t+1
14: end if
15: end if
16: end for
17: if t = 0 then
18: ri = 0
19: end if
20: end if
21: end for
22: return improved R,X
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Algorithm 12 The fifth proposed improvement operator (I5)
Require: R,X , k ▷ k is a delivery site which is selected randomly

1: t← 0
2: for i← 1 to N do
3: if (k ̸= i) & (xi = k) then
4: t← t+1
5: end if
6: end for
7: if t = 0 then
8: for j← 1 to N do
9: if (k ̸= j) & (dk,j ≤ dmax) & (rj = 1) then

10: rk← 0
11: xk← j

12: end if
13: end for
14: end if
15: return improved R,X

Algorithm 13 The proposed repair operator (R1)
Require: R,X

1: for i← 1 to N do
2: if ri = 1 then
3: t← 0
4: for j← 1 to N do
5: if xj = i then
6: t← t+ qj

7: if t > Q then xj ← 0, t← t− qj , q′
i← t

8: else q′
i← t

9: end if
10: end if
11: end for
12: end if
13: end for
14: for i← 1 to N do
15: if xi = 0 then xi← i, ri← 1, q′

i← qi

16: end if
17: end for
18: return repaired R,X
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Algorithms of TPH_VNS and TPH_SA (another versions of the second
phase of the two-phase method)

Algorithm 14 The proposed solo VNS algorithm as the second phase (V NS(.))
Require: S,N,kmax ▷ kmax : the number of neighbourhoods

1: n← 1
2: while n≤N do
3: k← 1
4: while k ≤ kmax do
5: S′← Shake_V NS(S,k) ▷ Shake_V NS(.) moves are defined in section

4.3.4.2
6: S′′← First_Improvement(S′) ▷ F irst_Improvement is given in Alg.

15
7: Neighborhood_Change(S,S′′,k)
8: end while
9: n← n+1

10: end while

Algorithm 15 First_Improvement algorithm in the second phase (VNS)
Require: S,P ▷ P : the maximum number of opportunities that is given to

First_Improvement to accept a solution
1: r← 0
2: p← 0
3: while (r < 1) & (p < P ) do
4: S′←Neighbourhood(S) ▷ Neighbourhood(.) is the move operators

explained in section 4.3.4 plus the lines 8-30 in the Algorithm 7
5: if f(S′) < f(S) then
6: S← S′

7: r← r +1
8: end if
9: p← p+1

10: end while
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Algorithm 16 The proposed solo SA algorithm in the second phase (SA(.))
Require: S,M,Tmax,Tmin,α

1: T ← Tmax

2: while T ≥ Tmin do
3: t← 1
4: while t≤M do
5: S′← Shake(S) ▷ Shake(.) moves are defined in section 4.3.4.2
6: S′′← First_Improvement(S′) ▷ F irst_Improvement is given in Alg.

3
7: t← t+1
8: end while
9: T ← α∗T ▷ Temperature is updated

10: end while
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APPENDIX B

CE-VRP instances generated in this thesis

Table B.1 The features of the first dataset generated for CE-VRP (small-
sized instances)

Original instance Modified instance n Q s T dmax D

A-n32-k5.vrp A-n9-50.cevrp 9 50 5 500 20 600
A-n32-k5.vrp A-n9-100.cevrp 9 100 5 500 20 600
A-n32-k5.vrp A-n10-50.cevrp 10 50 5 500 20 600
A-n32-k5.vrp A-n10-100.cevrp 10 100 5 500 20 600
A-n32-k5.vrp A-n15-100.cevrp 15 100 5 500 20 650
A-n32-k5.vrp A-n20-100.cevrp 20 100 5 500 20 700
A-n32-k5.vrp A-n32-100.cevrp 32 100 5 500 20 700
A-n33-k5.vrp A-n33-100.cevrp 33 100 5 500 20 700
B-n31-k5.vrp B-n8-100.cevrp 8 100 10 700 40 800
B-n31-k5.vrp B-n9-100.cevrp 9 100 10 700 40 800
B-n31-k5.vrp B-n10-100.cevrp 10 100 10 700 40 800
B-n31-k5.vrp B-n12-100.cevrp 12 100 10 700 40 800
B-n31-k5.vrp B-n8-90.cevrp 8 90 10 700 40 800
B-n31-k5.vrp B-n9-90.cevrp 9 90 10 700 40 800
B-n31-k5.vrp B-n10-90.cevrp 10 90 10 700 40 800
B-n31-k5.vrp B-n12-90.cevrp 12 90 10 700 40 800
P-n16-k8.vrp P-n10-35.cevrp 10 35 15 900 30 1000
P-n16-k8.vrp P-n12-35.cevrp 12 35 15 900 30 1000
P-n19-k2.vrp P-n10-160.cevrp 10 160 15 900 30 1000
P-n19-k2.vrp P-n9-160.cevrp 9 160 15 900 30 1000

Table B.2 The features of the second dataset generated for CE-VRP (medium and
large-sized instances)

Original instance Modified instance n Q s T dmax D

A-n34-k5.vrp A-n34.cevrp 34 100 5 500 50 600
Continued on next page
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Table B.2 Continued from previous Table
Original instance Modified instance n Q s T dmax D

A-n36-k5.vrp A-n36.cevrp 36 100 5 500 50 600
A-n37-k5.vrp A-n37.cevrp 37 100 5 500 50 600
A-n38-k5.vrp A-n38.cevrp 38 100 5 500 50 600
A-n39-k5.vrp A-n39.cevrp 39 100 5 500 50 600
A-n44-k6.vrp A-n44.cevrp 44 100 5 500 50 600
A-n45-k6.vrp A-n45.cevrp 45 100 5 500 50 600
A-n46-k7.vrp A-n46.cevrp 46 100 5 500 50 600
A-n48-k7.vrp A-n48.cevrp 48 100 5 500 50 600
A-n53-k7.vrp A-n53.cevrp 53 100 10 700 50 800
A-n54-k7.vrp A-n54.cevrp 54 100 10 700 50 800
A-n55-k9.vrp A-n55.cevrp 55 100 10 700 50 800
A-n60-k9.vrp A-n60.cevrp 60 100 10 700 50 800
A-n61-k9.vrp A-n61.cevrp 61 100 10 700 50 800
A-n62-k8.vrp A-n62.cevrp 62 100 10 700 50 800
A-n63-k9.vrp A-n63.cevrp 63 100 10 700 50 800
A-n64-k9.vrp A-n64.cevrp 64 100 10 700 50 800
A-n65-k9.vrp A-n65.cevrp 65 100 10 700 50 800
A-n69-k9.vrp A-n69.cevrp 69 100 10 700 50 800
A-n80-k10.vrp A-n80.cevrp 80 100 10 700 50 800

Table B.3 The features of the third dataset generated for CE-VRP (based on real
data)

Name n m Q D T dmax s

KS_1 45 2 25 1200 1000 90 10
KS_2 45 2 25 1300 1100 90 10
KS_3 45 2 25 1500 1200 90 10
KS_4 45 2 25 1700 1300 90 10
KS_5 45 2 25 1500 1200 50 10
KS_6 45 2 25 1700 1300 50 10
KS_7 45 3 25 1000 800 90 10
KS_8 45 3 25 1050 850 90 10
KS_9 45 3 20 1100 900 90 10
KS_10 45 3 20 1200 900 90 10
KS_11 45 3 20 1200 900 50 10
KS_12 45 3 20 1300 1000 50 10
Continued on next page
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Table B.3 Continued from previous Table
Name n m Q D T dmax s

KS_13 45 4 20 1300 1000 50 10
KS_14 45 4 20 1050 800 50 10
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APPENDIX C

Computational results of solving CVRP and TCVRP instances by the
proposed two-phase heuristic

Table C.1 Computational results of solving the instances of set A by the proposed
two-phase heuristic (n: number of customers, m: number of vehicles, ∆%: the gap
between the best-known solution and the best-found solution by two-phase heuristic)

Instance features Two-phase heuristic
Name n m Best-known solution Best Average ∆% Time (s)
A-n32-k5.vrp 32 5 784 784 784 0.00 1
A-n33-k5.vrp 33 5 661 661 661 0.00 1
A-n33-k6.vrp 33 6 742 742 742 0.00 7
A-n34-k5.vrp 34 5 778 778 778 0.00 2
A-n36-k5.vrp 36 5 799 799 799 0.00 3
A-n37-k5.vrp 37 5 669 669 669 0.00 6
A-n37-k6.vrp 37 6 949 949 949 0.00 13
A-n38-k5.vrp 38 5 730 730 730 0.00 2
A-n39-k5.vrp 39 5 822 822 822 0.00 31
A-n39-k6.vrp 39 6 831 831 831 0.00 14
A-n44-k6.vrp 44 6 937 937 937 0.00 15
A-n45-k6.vrp 45 6 944 948 948.8 0.42 89
A-n45-k7.vrp 45 7 1146 1146 1146 0.00 2
A-n46-k7.vrp 46 7 914 914 914 0.00 12
A-n48-k7.vrp 48 7 1073 1073 1073 0.00 6
A-n53-k7.vrp 53 7 1010 1010 1010 0.00 58
A-n54-k7.vrp 54 7 1167 1167 1167 0.00 15
A-n55-k9.vrp 55 9 1073 1073 1073 0.00 39
A-n60-k9.vrp 60 9 1354 1354 1354 0.00 13
A-n61-k9.vrp 61 9 1034 1035 1037.6 0.10 522
A-n62-k8.vrp 62 8 1288 1290 1291.8 0.16 219
A-n63-k9.vrp 63 9 1616 1629 1632.5 0.80 133
A-n63-k10.vrp 63 10 1314 1318 1322.1 0.30 302
A-n64-k9.vrp 64 9 1401 1413 1418.2 0.86 98
A-n65-k9.vrp 65 9 1174 1177 1179.9 0.26 35
A-n69-k9.vrp 69 9 1159 1165 1168.3 0.52 275
A-n80-k10.vrp 80 10 1763 1783 1786.1 1.13 311

Average - - 0.17 82.37
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Table C.2 Computational results of solving the instances of set B by the proposed
two-phase heuristic (n: number of customers, m: number of vehicles, ∆%: the gap
between the best-known solution and the best-found solution by two-phase heuristic)

Instance features Two-phase heuristic
Name n m Best-known solution Best Average ∆% Time (s)

B-n31-k5.vrp 31 5 672 672 672 0.00 9
B-n33-k5.vrp 33 5 788 788 788 0.00 1
B-n35-k5.vrp 35 5 955 955 955 0.00 2
B-n38-k6.vrp 38 6 805 805 805 0.00 3
B-n39-k5.vrp 39 5 549 549 549 0.00 17
B-n41-k6.vrp 41 6 829 829 829 0.00 68
B-n43-k6.vrp 43 6 742 742 742 0.00 4
B-n44-k7.vrp 44 7 909 909 909 0.00 2
B-n45-k5.vrp 45 5 751 751 751 0.00 5
B-n45-k6.vrp 33 5 678 678 678 0.00 43
B-n50-k7.vrp 50 7 741 741 741 0.00 1
B-n50-k8.vrp 50 8 1312 1313 1313.2 0.08 98
B-n51-k7.vrp 51 7 1032 1032 1032 0.00 2
B-n52-k7.vrp 52 5 747 747 747 0.00 29
B-n56-k7.vrp 56 7 707 709 711.2 0.28 166
B-n57-k7.vrp 57 7 1153 1153 1154.9 0.00 172
B-n57-k9.vrp 57 9 1598 1599 1560.6 0.06 148
B-n63-k10.vrp 63 10 1496 1503 1508.3 0.47 133
B-n64-k9.vrp 64 9 861 861 864.1 0.00 202
B-n66-k9.vrp 66 9 1316 1319 1321.9 0.23 39
B-n67-k10.vrp 67 10 1032 1034 1040.3 0.19 109
B-n68-k9.vrp 68 9 1272 1275 1276.9 0.24 68
B-n78-k10.vrp 78 10 1221 1234 1237.2 1.06 77

Average - - 0.11 60.78

Table C.3 Computational results of solving the instances of set P by the proposed
two-phase heuristic (n: number of customers, m: number of vehicles, ∆%: the gap
between the best-known solution and the best-found solution by two-phase heuristic)

Instance features Two-phase heuristic
Name n m Best-known solution Best Average ∆% Time (s)

P-n16-k8.vrp 16 8 450 450 450 0.00 1
P-n19-k2.vrp 19 2 212 212 212 0.00 1
P-n20-k2.vrp 20 2 216 216 216 0.00 1
P-n21-k2.vrp 21 2 211 211 211 0.00 1
P-n22-k2.vrp 22 2 216 216 216 0.00 1
P-n22-k8.vrp 22 8 603 603 603 0.00 2
P-n23-k8.vrp 23 8 529 529 529 0.00 3
P-n40-k5.vrp 40 5 458 458 458 0.00 10
P-n45-k5.vrp 45 5 510 510 510 0.00 16
Continued on next page
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Table C.3 Continued from previous Table
Instance features Two-phase heuristic

Name n m Best-known solution Best Average ∆% Time (s)
P-n50-k7.vrp 50 7 554 554 555.4 0.00 42
P-n50-k8.vrp 50 8 631 631 631 0.00 8
P-n50-k10.vrp 50 10 696 697 699.8 0.14 99
P-n51-k10.vrp 51 10 741 743 745.2 0.27 87
P-n55-k7.vrp 55 7 568 570 571.9 0.35 91
P-n55-k10.vrp 55 10 694 698 700.8 0.58 55
P-n60-k10.vrp 60 10 744 750 753.4 0.81 59
P-n60-k15.vrp 60 15 968 972 974.3 0.41 73
P-n65-k10.vrp 65 10 792 798 802.8 0.76 68
P-n70-k10.vrp 70 10 827 835 837.3 0.97 106
P-n76-k4.vrp 76 4 593 593 595.1 0.00 199
P-n101-k4.vrp 101 4 681 689 692.7 1.17 202

Average - - 0.26 59.27

Table C.4 Computational results of solving the CMT instances (CMT 1-5, and CMT
11-12) by the proposed two-phase heuristic (n: number of customers, m: number of
vehicles, ∆%: the gap between the best-known solution and the best-found solution
by two-phase heuristic)

Instance features Two-phase heuristic
Name n m Best-known solution Best Average ∆% Time (s)
CMT 1 50 5 524.61 524.61 524.61 0.00 18
CMT 2 75 10 835.26 835.26 837.77 0.00 76
CMT 3 100 8 826.14 831.12 832.88 0.60 91
CMT 4 150 12 1028.42 1042.90 1049.01 1.41 299
CMT 5 199 17 1291.29 1328.44 1338.05 2.88 312
CMT 11 120 7 1042.11 1042.11 1048.09 0.00 401
CMT 12 100 10 819.56 819.56 825.04 0.00 437

Average - - 0.70 233.43

Table C.5 Computational results of solving the CMT instances by the proposed two-
phase heuristic (n: number of customers, m: number of vehicles, T : route maximum
time, s: service time at each node, BKS: best-known solution, ∆%: the gap between
the best-known solution and the best-found solution by two-phase heuristic)

Instance features Two-phase heuristic
Name n m T s BKS Best Average ∆% Time (s)
CMT 1 50 5 ∞ 0 524.61 524.61 524.61 0.00 18
CMT 2 75 10 ∞ 0 835.26 835.26 837.77 0.00 76
CMT 3 100 8 ∞ 0 826.14 831.12 832.88 0.60 91
CMT 4 150 12 ∞ 0 1028.42 1042.90 1049.01 1.41 299
Continued on next page
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Table C.5 Continued from previous Table
Instance features Two-phase heuristic

Name n m T s BKS Best Average ∆% Time (s)
CMT 5 199 17 ∞ 0 1291.29 1328.44 1338.05 2.88 312
CMT 6 50 6 200 10 555.43 555.43 555.43 0.00 27
CMT 7 75 11 160 10 909.68 911.761 914.44 0.23 71
CMT 8 100 9 230 10 865.94 870.322 879.02 0.51 97
CMT 9 150 14 200 10 1162.55 1164.64 1166.21 0.18 73
CMT 10 199 18 200 10 1395.85 1443.02 1459.82 3.38 522
CMT 11 120 7 ∞ 0 1042.11 1042.11 1048.09 0.00 401
CMT 12 100 10 ∞ 0 819.56 819.56 825.04 0.00 437
CMT 13 120 11 720 50 1541.14 1557.43 1567.93 1.06 154
CMT 14 100 11 1040 90 866.37 867.352 870.11 0.11 77

Average - - 0.74 189.64

106



APPENDIX D

Performance evaluation of the proposed two-phase heuristic in solving
CVRP and TCVRP instances

Table D.1 Comparison of computational results of the proposed two-phase heuristic with
other solution methods over the set A instances (Augerat et al., 1995)

Reference Heuristic ADFB% a CPU timeb Operating machine
Sbai, Krichen & Limam (2020) GA-VNS 0.03 73.39 Intel Core i3
Stanojević, Stanojević & Vujošević (2013) SC-ESAc 0.16 756.00 N/A
Present work Two-phase heuristic 0.17 82.37 Intel Core i5 1.60 GHZ
Sbai et al. (2020) GA 0.29 72.31 Intel Core i3
Kır, Yazgan & Tüncel (2017) TS-ALNSd 0.59 5002.30 N/A
Akpinar (2016) LNS–ACO 0.60 2335.66 Core i7 2.80 GHz
Akpinar (2016) LNSae 0.84 2288.95 Core i7 2.80 GHz
Stanojević et al. (2013) R-ESAf 1.62 38.00 N/A
Akpinar (2016) LNSig 2.05 2277.27 Core i7 2.80 GHz
Stanojević et al. (2013) ESA 4.37 0.14 N/Ah

aAverage deviation from best known results

bCPU time in seconds

cset-covering-based Extended Savings Algorithm

dAdaptive Neighborhood Search Algorithm

eLNS by using a solution acceptance criterion

fRandomized ESA

gLNS by accepting only the improving solutions

hSource code available on https://code.google.com/archive/p/esa-vrp/
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Table D.2 Comparison of computational results of the proposed two-phase heuristic
with other solution methods over the set B instances (Augerat et al., 1995)

Reference Heuristic ADFB% CPU time Operating machine
Present work Two-phase heuristic 0.11 60.78 Intel Core i5 1.60 GHZ
Sbai et al. (2020) GA-VNS 0.20 46.76 Intel Core i3
Akpinar (2016) LNS–ACO 0.35 2489.59 Core i7 2.80 GHz
Akpinar (2016) LNSa 0.63 2464.70 Core i7 2.80 GHz
Stanojević et al. (2013) SC-ESA 0.95 490.00 N/A
Sbai et al. (2020) GA 1.21 46.27 Intel Core i3
Akpinar (2016) LNSi 1.64 2452.25 Core i7 2.80 GHz
Stanojević et al. (2013) R-ESA 2.13 39.00 N/A
Stanojević et al. (2013) ESA 3.91 0.14 N/A

Table D.3 Comparison of computational results of the proposed two-phase heuristic
with other solution methods over the set P instances (Augerat et al., 1995)

Reference Heuristic ADFB% CPU time Operating machine
Sbai et al. (2020) GA-VNS 0.08 74.81 Intel Core i3
Present work Two-phase heuristic 0.26 59.27 Intel Core i5 1.60 GHZ
Stanojević et al. (2013) SC-ESA 0.54 376.00 N/A
Akpinar (2016) LNS–ACO 0.48 2270.75 Core i7 2.80 GHz
Akpinar (2016) LNSa 0.81 2202.63 Core i7 2.80 GHz
Sbai et al. (2020) GA 1.70 73.05 Intel Core i3
Akpinar (2016) LNSi 1.97 2191.28 Core i7 2.80 GHz
Stanojević et al. (2013) R-ESA 2.08 40.00 N/A
Stanojević et al. (2013) ESA 7.33 0.15 N/A

Table D.4 Comparison of computational results of the proposed two-phase heuristic
with other solution methods over the set CMT instances (CMT 1-5, and CMT 11-12)
(Christofides et al., 1979)

Reference Heuristic ADFB% CPU time Operating machine
Subramanian, Uchoa & Ochi (2013) MILS1 0.00 104 Intel Core i7 2.93 GHz
Vidal, Crainic, Gendreau, Lahrichi &
Rei (2012)

HGA2 0.00 115 AMD Opteron 250 2.4 GHz

Groër, Golden & Wasil (2011) PA3 0.00 N/A Intel core i2 2.3 GHz
Nazif & Lee (2012) Enhanced GA 0.09 257 Pentium 4 2.0 GHz
Punriboon, So-In, Aimtongkham &
Rujirakul (2019)

ABC 0.13 274 Intel core i3 2.66 GHz

Dam, Li & Fournier-Viger (2017) CRO-TS 0.21 119 Intel Core i2 2.40 GHz
Yu, Yang & Yao (2009) ACO 0.22 146 Pentium 1000 MHz
Continued on next page

1Modified Iterated Local Search

2Hybrid GA

3Parallel Algorithm
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Table D.4 – Continued from previous Table
Reference Heuristic ADFB% CPU time Operating machine
Bouzid, Haddadene & Salhi (2017) LS-VNS4 0.22 251 Intel Core i3 2.20 GHz×4
Vincent, Redi, Yang, Ruskartina &
Santosa (2017)

SOS5 0.24 86 Intel core i7 3.4 GHz

Toth & Vigo (2003) GTS6 0.47 186 Pentium 200 MHz PC
Szeto, Wu & Ho (2011) ABO 0.58 234 Pentium 1.73 GHz
Present work Two-phase heuristic 0.70 233 Intel Core i5 1.60 GHZ
Rego (2001) NEC7 0.72 1792 33 MHz Sun IPC
Rego & Roucairol (1996) PTS8 0.96 848 HP 9000/712
Ai & Kachitvichyanukul (2009) PSO 0.99 143 Intel P4 3.4GHz
Alipour, Emami & Abdolhosseinzadeh
(2022)

MAS9 1.26 0.93 Intel Core i5 1.6 GHz

Créput & Koukam (2008) MSOM-L 10 1.38 934 AMD Athlon 2000MHz
Rego (1998) SEM11 1.41 127 Intel P4 3.4 GHz
Yurtkuran & Emel (2010) HELA12 1.60 131 Intel Core i2 2.00 GHz
Kheirkhahzadeh & Barforoush (2009) ACO 2.65 32 2.0 GHz CPU
Créput & Koukam (2008) MSOM-F 13 3.79 11 AMD Athlon 2000MHz
Modares, Somhom & Enkawa (1999) SONN14 4.42 N/A SUN SPARC 10
Ghaziri (1996) HDN15 5.22 2.34 N/A
Bullnheimer, Hartl & Strauss (1999) Ant System 5.61 1260 Pentium 100 MHz
Clarke & Wright (1964) CWSA 7.05 N/A16 N/A

Table D.5 Comparison of computational results of the proposed two-phase heuristic
with other solution methods over the set CMT instances (Christofides et al., 1979)

Reference Heuristic ADFB% CPU
time

Operating machine

Teymourian, Kayvanfar, Komaki &
Zandieh (2016)

LSHA-
POHA17

0.00 83 Intel Core i7 3.4 GHz

Subramanian et al. (2013) MILS 0.00 101 Intel Core i7 2.93 GHz
Vidal et al. (2012) HGA 0.00 132 AMD Opteron 250 2.4 GHz
Continued on next page

4Lagrangian split-VNS

5Symbiotic Organisms Search

6Granular TS

7Node-ejection chains

8Parallel TS

9Multi-agent system

10Memetic Self-organizing Map-long

11Subpath Ejection Method

12Hybrid Electromagnetism-like Algorithm

13MSOM-fast

14Self-organizing Neural Network

15Hierarchical Deformable Nets

16The execution time depends on the machine on which the algorithm is run

17Local Search Hybrid Algorithm with Post-optimization Hybrid Algorithm
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Table D.5 – Continued from previous Table
Reference Heuristic ADFB% CPU

time
Operating machine

Nagata & Bräysy (2009) EAX-
MA18

0.00 828 Opteron 2.4 GHz

Rochat & Taillard (1995) PDI-LS19 0.00 N/A Silicon Graphics 100 MHz
Mester & Bräysy (2007) AGES20 0.03 168 Pentium IV 2.8 GHz
Marinakis, Marinaki & Dounias (2010) HBMOA21 0.03 48 Pentium M750 1.86 GHz
Yang & Ke (2019) FWA22 0.03 50 Pentium IV 2.4 GHz
Taillard (1993) PISM23 0.05 N/A Silicon Graphics 100 MHz
Goel & Maini (2018) HAFA24 0.09 N/A Core i3 2.3 GHz
Nazif & Lee (2012) Enhanced

GA
0.11 274 Pentium 4 2.0 GHz

Gokalp & Ugur (2020) MA_ILS-
RVND25

0.13 169 Intel Core i7 3.40 GHz

Punriboon et al. (2019) ABC 0.13 291 Intel core i3 2.66 GHz
Yu et al. (2009) ACO 0.14 172 Pentium 1000 MHz
Dam et al. (2017) CRO-TS 0.15 119 Intel Core i2 2.40 GHz
Gokalp & Ugur (2020) M_ILS-

RVND26
0.18 169 Intel Core i7 3.40 GHz

Vincent et al. (2017) SOS 0.24 78 Intel core i7 3.4 GHz
Prins (2009) GRASP-

ILS
0.24 311 Pentium 1 GHz

Lin, Lee, Ying & Lee (2009) SA-TS 0.35 493 Pentium IV 2.8 GHz
Gokalp & Ugur (2020) A_ILS-

RVND27
0.38 159 Intel Core i7 3.40 GHz

Gokalp & Ugur (2020) ILS-
RVND28

0.45 151 Intel Core i7 3.40 GHz

Szeto et al. (2011) ABO 0.46 264 Pentium 1.73 GHz
Reimann, Doerner & Hartl (2004) SAS29 0.48 218 Pentium 900 MHz
Berger & Barkaoui (2003) Hybrid GA 0.49 1275 Pentium 400 MHz
Ho & Gendreau (2006) PR30 0.54 248 Pentium 2.53 GHz
Rego & Roucairol (1996) PTS 0.55 1440 HP 9000/712
Rego (2001) NEC 0.55 1501 33 MHz Sun IPC
Akpinar (2016) LNS–ACO 0.55 N/A Core i7 2.80 GHz
Continued on next page

18Edge assembly-based Memetic Algorithm

19Probabilistic diversification and intensification Local Search

20Active-guided evolution strategies

21Honey Bees Mating Optimization Algorithm

22Fireworks Algorithm

23Parallel Iterative Search Methods

24Hybrid of Ant Colony and Firefly Algorithms

25Multi-start ILS-RVND with adaptive acceptance strategies

26Multi-start ILS-RVND

27ILS-RVND with adaptive acceptance strategy

28Iterated Local Search and Random Variable Neighborhood Descent

29Savings based Ant System

30Path Relinking
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Table D.5 – Continued from previous Table
Reference Heuristic ADFB% CPU

time
Operating machine

Cordeau, Laporte & Mercier (2001) TS 0.56 1477 Pentium IV 2 GHz
Baker & Ayechew (2003) GA 0.56 1747 Pentium 266 MHz
Lee, Lee, Lin & Ying (2010) Enhanced

ACO
0.57 3600 Pentium 4 3 GHz

Toth & Vigo (2003) GTS 0.64 230 Pentium 200 MHz PC
Present work Two-phase

heuristic
0.74 190 Intel Core i5 1.60 GHZ

Gendreau, Hertz & Laporte (1994) TS 0.86 2808 Silicon Graphics 36 MHz
Ai & Kachitvichyanukul (2009) PSO 0.88 163 Intel P4 3.4GHz
Yurtkuran & Emel (2010) HELA 1.04 132 Intel Core i2 2.00 GHz
Créput & Koukam (2008) MSOM-L 1.20 1060 AMD Athlon 2000MHz
Rego (1998) SEM 1.54 139 Intel P4 3.4 GHz
Osman (1993) SA-TS 2.11 9060 VAX 8600
Créput & Koukam (2008) MSOM-F 3.49 19 AMD Athlon 2000MHz
Ghaziri (1996) HDN 5.37 7 N/A
Clarke & Wright (1964) CWSA 7.58 N/A31 N/A
Bullnheimer et al. (1999) Ant Sys-

tem
8.85 2100 Pentium 100 MHz

31The execution time depends on the machine on which the algorithm is run
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