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ABSTRACT

QUALITATIVE ANALYSIS FOR THE DISPERSION GENERALIZED
CAMASSA-HOLM EQUATION

NESİBE AYHAN

Mathematics, Master of Science Thesis, 2022

Thesis Supervisor: Asst. Prof. Dr. Nilay Duruk Mutlubaş

Keywords: Generalized Camassa-Holm equation, Kato’s semigroup approach,
Local well-posedness

In this thesis, we establish local well-posedness of the Cauchy problem for a
dispersion generalized Camassa-Holm equation by using Kato’s semigroup approach
for quasi-linear evolution equations. We show that for initial data in the Sobolev
space Hs(R) with s > 7

2 + p, the Cauchy problem is locally well-posed, where p
is a positive real number determined by the order of the differential operator L
corresponding to the dispersive effect added to the Camassa-Holm equation. We
first explain Kato’s semigroup approach on the Camassa-Holm equation and then
give the proofs for the dispersion generalized Camassa-Holm equation. Finally, we
compare the results of both equations and propose open problems related to the
dispersion generalized Camassa-Holm equation.
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ÖZET

GENELLEŞTİRİLMİŞ DİSPERSİYON CAMASSA-HOLM DENKLEMİNİN
MATEMATİKSEL ANALİZİ

NESİBE AYHAN

Matematik, Yüksek Lisans Tezi, 2022

Tez Danışmanı: Dr. Öğr. Üyesi Nilay Duruk Mutlubaş

Anahtar Kelimeler: Genelleştirilmiş Camassa-Holm denklemi, Kato’nun yarıgrup
yaklaşımı, Yerel varlık

Bu tezde, genelleştirilmiş dispersiyon Camassa-Holm denklemi için yazılmış
Cauchy probleminin yerel olarak iyi konulmuş olduğu Kato’nun yarıgrup yaklaşımı
kullanılarak gösterilmistir. Başlangıç verileri s > 7

2 +p için Hs(R) Sobolev uzayında
alınarak ilgili Cauchy probleminin yerel olarak iyi konulmuş olduğu ispatlanmıştır.
Burada, bahsedilen p sayısı pozitif bir reel sayı olmakla birlikte Camassa-Holm
denklemine dispersif etki olarak eklenen L türev operatörünün mertebesidir. İlk
olarak Kato’nun yarıgrup yaklaşımı Camassa-Holm denklemi üzerinde açıklanmış,
daha sonra genelleştirilmiş dispersiyon Camassa-Holm denklemi için gerekli kanıtlar
verilmiştir. Son olarak, her iki denklemin sonuçları karşılaştırılmış ve genelleştirilmiş
dispersiyon Camassa-Holm denklemiyle ilgili açık problemler önerilmiştir.
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1. Introduction

The nonlinear dispersive wave equation

(1.1) ut +ux −uxxt +3uux = 2uxuxx +uuxxx,

was introduced by Camassa and Holm [Camassa & Holm (1993)] to model the
unidirectional propagation of shallow water waves over a flat bottom. u(x,t)
represents the fluid velocity at time t and in the spatial direction x [Wang, Li
& Qiao (2018)]. The equation is known as the Camassa–Holm (CH) equation,
whose various generalizations have appeared in the literature in recent years. These
generalizations are mostly based on the mathematical structure of the equation;
making comments about the physical meaning and derivation of these equations is
considered as another study subject.

To understand the concept of dispersion, let’s assume u(x,t) is a function
that satisfies the one dimensional single linear partial differential equation with
constant coefficients for −∞ < x < ∞ and t > 0,

P
(

∂
∂x , ∂

∂t

)
u(x,t) = 0,

where P is a polynomial, and t and x are independent time and space variables. We
seek a plane wave solution of the equation in the form

u(x,t) = Aei(kx−ωt),

where A is the amplitude, k is the wave number, and ω is the frequency. When
we substitute the solution into the partial differential equation, we get an algebraic
equation of the form

P (ik,−iω) = 0.

Assume that this equation can be solved explicitly given by ω = ω(k). Then, the
phase velocity of the waves can be defined by the relation

c = ω
k ,
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where it defines the velocity at which a surface of constant phase moves. Thus,
according to this relation, the phase velocity c depends on the wave number k. In
other words, different waves propagate with different phase velocities, and such
waves are called dispersive. On the other hand, waves are called non-dispersive if
the phase velocity c does not depend on the wave number k [Debnath & Debnath
(2005)]. In this case, the Camassa-Holm equation (1.1) has a phase velocity
c = 1

1+k2 , which makes it a dispersive wave equation.

When the terms in the CH equation are examined in detail, the uux term
denotes nonlinear steeping, the uxxt term denotes the linear dispersion effect,
and the 2uxuxx + uuxxx terms denote the nonlinear dispersion effect. When the
momentum density m = (1−∂2

x)u is defined, the CH equation becomes

(1.2) mt +mxu+2mux = 0.

There are generalizations of the CH equation for different momentum density forms
in the literature. Important examples of these can be given as follows:

(i) Hunter and Saxton in [Hunter & Saxton (1991)] considered the Camassa-
Holm equation with m = −∂2

xu.

(ii) Holm et al. in [Holm, Náraigh & Tronci (2009)] considered the following
Camassa-Holm equation

mt +2mux +mxu = 0, m = (1−α2∂2
x)u,

where α is a constant, and the fluid velocity u is a function of time t and position
x on the real line.

(iii) Khesin et al. in [Khesin, Lenells & Misiołek (2008)] introduced a µ-version of
Camassa-Holm equation as follows

mt +2mux +mxu = 0, m = (µ−∂2
x)u,

where u(x,t) is a time-dependent function on the unit circle S = R/Z and
µ(u) =

∫
Sudx denotes its mean. This equation describes evolution of rotators in

liquid crystals with external magnetic field and self-interaction. It is also studied in
[Fu, Liu & Qu (2012), Deng & Chen (2020), Yamane (2020), Wang, Luo, Fu & Qu
(2022)].
For the periodic case, Wang [Wang et al. (2018)] considered m = µ(u)−uxx +uxxxx.
Moreover, Wang studied the modified µ-version of Camassa-Holm equation in [Wang
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& Fu (2016)] as follows

mt +(2µ(u)u−u2
x)m)x = 0.

(iv) Wang considered with m = µ(u)+uxxxx in [Wang, Li & Qiao (2017)].

(v) Ding et al. considered with m = u−uxx +uxxxx in [Ding & Zhang (2017)].

(vi) There are also higher order forms of the CH equation, where m = (1−∂2
x)ku for

positive integer k [Constantin & Kolev (2003)], which describe exponential curves
of the manifold of smooth orientation-preserving diffeomorphisms of the unit circle
in the plane. Studies for k = 2 can be found in [McLachlan & Zhang (2009), Mu,
Zhou & Zeng (2011), Reyes, Zhu & Qiao (2021)].

(vii) For r ≥ 1, Camassa-Holm system with two components, where m = (1−∂2
x)ru

is studied in [Chen & Zhou (2017)].

The common feature of the examples in the literature is that they put different
effects on linear and non-linear dispersive terms to observe the results. In this
thesis, our main aim is to study

(1.3) mt +ux + bmxu+amux = 0, a,b > 0,

with the following form of momentum density:

(1.4) m = (1−L∂2
x)u.

Note that for L as an identity operator, a = 2 and b = 1, it becomes Camassa-Holm
equation.

Here, L is a general differential operator in spatial variable x whose order is
a positive real number p. With this momentum density, the dispersive effect is
increased in (1.3), since new dispersion relation will be c = 1

1+k2+p . Note that
choosing L as the identity operator corresponds to the CH equation given by (1.1),
choosing as (1 − α2∂2

x) corresponds to the example (ii), choosing (1 − ∂2
x + ∂4

x) to
the example (v), and choosing (1−∂2

x)2 to the example (vi).

In the literature, the dispersion generalized CH equation with (1.4) has not been
studied yet. Although it seems that there are similar forms, it should be emphasized
that in these studies—for example, Zhu et al. 2017 [Zhu & Wang (2017)], Darwich
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et al. 2021 [Darwich & Israwi (2021)]—only the linear dispersion effect has changed.
In the equation that is considered in this thesis, unlike those, both the linear and
the non-linear dispersion effects have changed. In terms of qualitative analysis, this
makes a big difference since L operator is given in closed form and applies also on
nonlinear terms in the equation.

This thesis presents the dispersion generalized Camassa-Holm equation given by
(1.3)-(1.4) and proves local well-posedness of the solutions for the corresponding
Cauchy problem. It can be considered as a non-local and nonlinear dispersive partial
differential equation and mathematical generalization of Camassa-Holm equation
rather than a physical generalization. We prove that the Cauchy problem is locally
well-posed for the initial data in Hs, s > 7

2 + p. The positive real number p is the
order of the general differential operator L which appears in closed form.

Our proof relies on Kato’s semigroup approach for quasilinear equations. For this
reason, in Section 2, we present a short review of the definitions and theorems we
need. Some special function spaces, Sobolev spaces, Sobolev embedding theorems,
commutator estimates, and Kato’s semigroup approach are briefly given. We also
give some useful inequalities at the end of Section 2.

Before discussing the local well-posedness of the solutions of Cauchy problem
corresponding to the dispersion generalized Camassa-Holm equation, we present
the Cauchy problem for the Camassa-Holm equation in Section 3. In the literature,
it is studied in [Constantin & Escher (1998)] for the periodic case, and local
results are improved in [Rodríguez-Blanco (2001)]. We want to show how Kato’s
semigroup approach applies to a problem in which the form of the equation and the
assumed initial data are appropriate to prove local well-posedness results. It is also
necessary to observe the results for CH equation in order to enlighten the effects of
the changes in the proposed form.

In Section 4, we establish local well-posedness for the dispersion generalized
Camassa-Holm equation. We make use of commutator operators to obtain a suitable
form of the equation to use Kato’s semigroup approach. Main reason is that L

is in closed form among the nonlinear terms in the equation as well and usual
differentiation rules do not apply. We follow the approach and prove the assumptions
to show that the Cauchy problem is well-posed.

As a conclusion, in Section 5, we compare the results we found in Sections 3 and 4 for
Camassa-Holm and dispersion generalized Camassa-Holm equations. The changes in
the dispersive effect, the differences in their non-local forms, the initial data classes
chosen for the corresponding Cauchy problems are discussed.
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We end the thesis with Section 6 in which we provide open problems to be
discussed. According to mathematical analysis questions for the Camassa-Holm
equation appearing in the literature, we can say that further qualitative analysis is
also possible for the dispersion generalized Camassa-Holm equation, such as global
well-posedness and finite time blow-up.

5



2. Preliminaries

2.1 Some Special Function Spaces

In this subsection, we give some special function spaces that will be needed
throughout this thesis. We will use them while introducing some definitions and
inequalities later. We refer to Evans (2010) for the definitions given below.

Let Ω be an open subset of Rn, and f(x) : Ω → R be a measurable function.

Definition 2.1.1 [Evans (2010)]
The space C(Ω) denotes all continuous functions on Ω, and Cb(Ω) denotes all
continuous, bounded functions on Ω with the sup-norm

||f ||∞ = supx∈Ω|f(x)|.

Definition 2.1.2
The space Ck

b (Ω) denotes all bounded, continuous functions on Ω whose derivatives
up to order k also belong to Cb(Ω) with the norm

||f ||Ck
b (Ω) =

k∑
n=0

∣∣∣∣∣∣dnf

dxn
(x)

∣∣∣∣∣∣
∞

.

Definition 2.1.3
Let 1 ≤ p < ∞. The space Lp(Ω) consists of all measurable functions with the norm

||f ||Lp =
(∫

Ω
|f(x)|pdx

)1/p

.

Similarly, Lp
loc(Ω) denotes the space of all locally integrable functions instead of

integrable ones.
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Definition 2.1.4
A function is essentially bounded on Ω if it is measurable and there exists a real
number M > 0 such that |u(x)| ≤ M for almost all x ∈ Ω. The infumum of all such
numbers M is called essential supremum of f and is denoted by

ess supx∈Ω|f(x)|.

Definition 2.1.5
The space L∞(Ω) consists of all measurable functions that are essentially bounded
on Ω with the norm

||f ||L∞ = ess supx∈Ω|f(x)|.

We see that the given spaces are Banach Spaces with the chosen norms [Evans
(2010)].

Let X be a Banach space with norm ||.||.

Definition 2.1.6
Let 1 ≤ p < ∞, −∞ ≤ a < b ≤ ∞. Then, the space Lp((a,b);X) consists of all
measurable functions with the norm

||f ||Lp((a,b);X) =
(∫ b

a
(||f(t)||X)pdt

)1/p

.

Definition 2.1.7
Let p = ∞, −∞ ≤ a < b ≤ ∞. Then, the space L∞((a,b);X) consists of all
measurable functions that are essentially bounded with the norm

||f ||L∞((a,b);X) = ess supt∈(a,b)||f(t)||X .

Definition 2.1.8
Let −∞ < a < b < ∞. The space C([a,b];X) consists of continuous Banach-valued
functions with the norm

||f ||C([a,b];X) = maxt∈[a,b]||f(t)||X .

Definition 2.1.9
Let −∞ < a < b < ∞. The space Ck([a,b];X) consists of all bounded, continuous
functions whose derivatives up to order k also belong to X with the norm

||f ||Ck([a,b];X) =
k∑

n=0
maxt∈[a,b]

∣∣∣∣∣∣dnf

dxn
(t)

∣∣∣∣∣∣
X

.
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2.2 Sobolev Spaces

In this subsection, we introduce Sobolev spaces and related concepts, Evans (2010).

Definition 2.2.1 [Evans (2010)]
Let u be a function in L1([a,b]). A function v in L1([a,b]) is a weak derivative of u

if ∫ b

a
uϕ′(x)dx = −

∫ b

a
vϕ(x) dx,

for all infinitely integrable functions ϕ with ϕ(a) = ϕ(b) = 0.

Generalizing to n dimension, if u and v are in L1
loc(Ω) for some Ω be an

open set in Rn, and α = (α1, ...,αn) be a multiindex, it is said that v is the αth-weak
derivative of u if ∫

Ω
uDαϕ dx = (−1)|α|

∫
Ω

vϕ dx,

where

Dαϕ = ∂α1

∂x
α1
1

... ∂αn

∂xαn
n

ϕ,

for all ϕ ∈ C∞
c (Ω), that is, for all infinitely differentiable functions ϕ with compact

support in Ω.

Remark 2.2.2
The weak derivative is unique up to a set of measure zero. So, if u has a weak
derivative, then it is generally denoted by Dαu.

Definition 2.2.3
Suppose that Ω is an open set in Rn, 1 ≤ p ≤ ∞ and k is a nonnegative integer.
The Sobolev space W k,p(Ω) consists of all locally integrable functions u : Ω → R
such that for each multiindex α,

Dαu ∈ Lp(Ω), for 0 ≤ |α| ≤ k.

Similarly, W k,p
loc (Ω) denotes the space of locally integrable functions instead of

integrable ones.

Then, we have the following sequence of inclusions of Sobolev spaces:

Lp(Ω) = W 0,p(Ω) ⊃ W 1,p(Ω) ⊃ W 2,p(Ω) ⊃ ...
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A sequence (uk) → u in W k,p(Ω) if and only if Dαuk → Dαu in Lp(Ω) as k → ∞ for
all multiindices α such that |α| ≤ k.

Theorem 2.2.4
For 1 ≤ p ≤ ∞ and k = 1,2, .., the Sobolev space W k,p(U) is a Banach space with
the norm

||u||W k,p(Ω) =
( ∑

|α|≤k

|Dαu|p
)1/p

, for 1 ≤ p < ∞,

and

||u||W k,p(Ω) =
∑

|α|≤k

ess supΩ|Dαu|, for p = ∞.

Remark 2.2.5
For p = 2, we have W k,2(Ω), which is a Hilbert space. Therefore, we use the notation

Hk(U) = W k,2(U), where k = 0,1, ...

Also, note that H0(U) = L2(U).

Definition 2.2.6
The dual space of H1

0 (Ω) is denoted by H−1(Ω). In other words, f ∈ H−1(Ω) means
that f is a bounded linear functional of H1

0 (Ω), where

f : H1
0 (Ω) → R.

Definition 2.2.7
If f ∈ H−1(Ω), we define the norm as

||f ||−1
H (Ω) = sup

{
< f,u > |u ∈ H1

0 (Ω), ||u||H1
0 (Ω) ≤ 1

}
.

2.3 Sobolev Embedding Theorems

In this subsection, we give Sobolev embedding theorems, Evans (2010).

Let X and Y be Banach spaces with norms ||.||x and ||.||y, respectively.

Definition 2.3.1 [Evans (2010)]
A Banach space X is continuously embedded into Y if

9



• X ⊂ Y ,
• ∀x ∈ X, there exists C > 0 such that

||x||Y ≤ C||x||X .

The notation X ↪→ Y is used for continuous embedding.

Definition 2.3.2-
A Banach space X is compactly embedded into Y if
• X ⊂ Y ,
• Each bounded set M ⊂ X is compact in Y .
The notation X ⊂⊂ Y is used for compact embedding.

Theorem 2.3.3
If Ω ∈ Rn is a bounded domain, then H1(Ω) ⊂⊂ L2(Ω).

Lemma 2.3.4
Suppose that Ω ∈ Rn is an open domain, 1 ≤ p ≤ q ≤ r, and 1

q = θ
p + 1−θ

r , where
θ ∈ (0,1). If u ∈ Lp(Ω)∩Lr(Ω), then u ∈ Lq(Ω), and the following inequality holds

||u||q ≤ ||u||θp||u||1−θ
r .

Theorem 2.3.5
Let Ω ∈ Rn be a bounded domain and p > 1. Then, W 1,p

0 (Ω) is compactly embedded
into Lp(Ω).

Theorem 2.3.6 (Rellich-Kondrashov)
Suppose that Ω ∈ Rn is a bounded domain and 1 ≤ q ≤ p∗ = np

n−p , 1 ≤ p < n. Then,
W 1,p

0 (Ω) is compactly embedded into Lq(Ω).

Theorem 2.3.7
If Ω ∈ Rn is a bounded domain, then H1(Ω) = W 1,2(Ω) is compactly embedded into
L2(Ω).

Theorem 2.3.8
Assume that Ω ∈ Rn is a bounded domain with sufficiently smooth boundary,
1 < p ≤ q < ∞, m,k ∈ Z+, m ≥ k, and the following inequality holds

(2.1) m− n

p
≥ k − n

q

Then,
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W m,p(Ω) ↪→ W k,q(Ω).

If the inequality 2.1 is strict, then

W m,p(Ω) ⊂⊂ W k,q(Ω).

Theorem 2.3.9
Assume that Ω ∈ Rn is a bounded domain with sufficiently smooth boundary,
1 ≤ p ≤ ∞, m ∈ Z+, and k ≤ m− n

p . Then,

W m,p(Ω) ↪→ Ck(Ω).

If the above inequality is strict, then

W m,p(Ω) ⊂⊂ Ck(Ω).

2.4 Commutator Estimates

In this subsection, we give some commutator estimates used in various steps while
proving the assumptions of Kato’s semigroup approach.

Definition 2.4.1 [Jørgensen & Moore (2012)]
The commutator of two operators A and B is defined as

[A,B] = AB −BA.

Proposition 2.4.2 [Jørgensen & Moore (2012)]
The following properties are useful while working with commutators:
• [A,B] = −[B,A]
• [A,B +C] = [A,B]+ [A,C]
• c[A,B] = [cA,B] = [A,cB]

Proposition 2.4.3 [Kato (1983))]
Let f ∈ Hs, s > 3

2 , and Mf be the operator of multiplication by f . Then,
Λ−r[Λr+t+1,Mf ]Λ−t ∈ L(L2(R)) if |r|, |t| ≤ s−1. Moreover,

||Λ−r[Λr+t+1,Mf ]Λ−t||L(L2(R)) ≤ c||f ||s,

where c is a constant depending only on r, t, and L(L2(R)) denotes the bounded
linear operators in L2(R).
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Proposition 2.4.4 [Lannes (2013))]
Let n > 0, s ≥ 0, and 3/2 < s + n ≤ σ. Then, for all f ∈ Hσ and g ∈ Hs+n−1, one
has

||[Λn, f ]g||s ≤ c||f ||σ||g||s+n−1,

where c is a constant which is independent of f and g.

2.5 Kato’s semigroup approach

In this subsection, first we give some definitions and related lemmas about
C0-semigroup approach. Then, Kato’s semigroup approach and the related theorem
is given. We refer to Pazy (2012) for the definitions given below.

Let X be a Banach space with norm ||.||.

Definition 2.5.1 [Pazy (2012)]
A one parameter family T (t), 0 ≤ t < ∞, of bounded linear operators from X to X

is a semigroup of bounded linear operator on X if

(i) T (0) = I, I is the identity operator on X.
(ii) T (s+ t) = T (s)T (t), for all s, t ≥ 0, the semigroup property.

Definition 2.5.2
The linear operator A : D(A) ⊂ X → X defined by

D(A) = {x ∈ X : limt→0
1
t (T (t)x−x)exists}

and

Ax = limt→0
1
t (T (t)x−x), x ∈ D(A).

is called the infinitesimal generator of the given semigroup, where D(A) is the
domain of A.

Definition 2.5.3
A semigroup T (t), 0 ≤ t < ∞, of bounded linear operators on X is a strongly

12



continuous semigroup of bounded linear operators if

limt→0 ||T (t)x−x|| = 0, for all x ∈ X.

A strongly continuous semigroup of bounded linear operators on X is simply
denoted by C0-semigroup.

Lemma 2.5.4
Let T be a C0-semigroup on X. There exists a constant M ≥ 1 and µ ∈ R such that

||T (t)|| ≤ Meµt, for all t ≥ 0.

Lemma 2.5.5
Let T be a C0-semigroup on X with generator A. Then,

(i) D(A) is dense in X.

(ii) A is a closed operator.

Definition 2.5.6 [Kato (2013)]
An operator A : D(A) → X, where D(A) is its domain, is called accretive if

||u−v|| ≤ ||u−v +λ(A(u)−A(v))||,

for all u,v ∈ D(A) and λ ∈ R+. If −A is accretive, then it is called dissipative.

We say that A is quasi-accretive if A+α is accretive for some scalar α.

If, in addition, Range(I + λA) = X for every λ > 0, then A is called m-accretive,
where I is the identity operator. Similarly, we say that, A is quasi-m-accretive if
A+α is m-accretive for some scalar α.

Remark 2.5.7
The preceding definitions are for the operator A(u), which appears in the form
ut = A(u)u+f(u). However, we take into account the quasi-linear equations of the
form ut +A(u)u = f(u). Therefore, the definitions should be considered accordingly.

Now, consider the Cauchy problem for the quasi-linear equation of evolution:

(2.2) du

dt
+A(u)u = f(u), t ≥ 0, u(0) = u0.

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded
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in X, and let Q : Y → X be a topological isomorphism. Assume that

(A1) Let Br(0) be an open ball centered in the origin in Y with radius r > 0. The
linear operator A(u) : X → X generates a C0-semigroup T (t) on X which satisfies

||T (t)||L(X) ≤ eβt, for all t ∈ [0,∞),

for a constant β > 0.

(A2) For any u ∈ Y , A(u) is a bounded linear operator from Y to X, i.e,
A(u) ∈ L(Y,X) with

||(A(u)−A(v))w||X ≤ λ1||u−v||X ||w||Y , u,v,w ∈ X.

(A3) For any u ∈ Y , there exists a bounded linear operator B(u) ∈ L(X) satisfying
B(u) = QA(u)Q−1 − A(u), where B : Y → L(X) is uniformly bounded sets in Y .
Moreover,

||(B(u)−B(v))w||X ≤ λ2||u−v||Y ||w||X , u,v ∈ Y , w ∈ X.

(A4) For all t ∈ [0,∞), f is uniformly bounded on bounded sets in Y . Moreover,
the map f : Y → Y is locally X-Lipschitz continuous in the sense that there exists
a constant λ3 > 0 such that

||f(u)−f(v)||X ≤ λ3||u−v||X , for all u,v ∈ Br(0) ⊆ Y ,

and locally Y -Lipschitz continuous in the sense that there exists a constant λ4 > 0
such that

||f(u)−f(v)||Y ≤ λ4||u−v||Y , for all u,v ∈ Br(0) ⊆ Y .

Here, for all r > 0,λ1,λ2,λ3, and λ4 depend only on r.

Theorem 2.5.8 (Kato’s Semigroup Approach) [Kato (1975)]
Assume that (A1) − (A4) hold. For given u0 ∈ Y , there is a T > 0, depending on
u0, and a unique solution u to (2.2) such that

u = u(u0, .) ∈ C([0,T ),Y )∩C1([0,T ),X).

Moreover, the solution depends continuously on the initial data, i.e, the map
u0 → u(u0, .) is continuous from Y to C([0,T ),Y )∩C1([0,T ),X).
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2.6 Some Useful Inequalities

In this subsection, we give some useful inequalities used in various steps while
proving the assumptions of Kato’s semigroup approach.

Lemma 2.6.1 (Minkowski’s Inequality) [Evans (2010)]
Let u.v ∈ Lp(Ω) and 1 ≤ p ≤ ∞. Then

||u+v||Lp(Ω) ≤ ||u||Lp(Ω) + ||v||Lp(Ω).

Lemma 2.6.2 (Sobolev Inequalities) [Evans (2010)]
• Let Ω ⊂ Rn be an open set and 1 ≤ p < n. Then, for each function u ∈ W 1,p

0 (Ω),

||u||Lp∗(Ω) ≤ C(n,p)||Du||Lp(Ω),

where p∗ = np
n−p , and C(n,p) = p(n−1)

n−p .

• For any 0 < s1 ≤ s2 < ∞, the followings hold:

Hs2(R) ⊂ Hs1(R),

and

||f ||Hs1(R) ≤ ||f ||Hs2(R).

• Let f,g ∈ Hs(R) and s ≥ 0. Then,

||fg||Hs(R) ≤ C
(
||f ||Hs(R)||g||L∞(R) + ||f ||L∞(R)||g||Hs(R)

)
.

• Let n = 1,p = 2, s > 1
2 . Then,

Hs(R) ↪→ L∞(R),

and there exists a constant d depends on s such that

||f ||L∞ ≤ d||f ||Hs .
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3. Cauchy Problem for the Camassa-Holm Equation

In this subsection, we apply Kato’s semigroup approach to establish local
well-posedness for the Cauchy problem associated to the Camassa-Holm equation:

(3.1)

ut −uxxt +3uux = 2uxuxx +uuxxx, t > 0, x ∈ R,

u(x,0) = u0(x).

Observe that

(1−∂2
x)(uux) = uux −3uxuxx −uuxxx.

By using this equality, we can write

3uux −2uxuxx −uuxxx = (1−∂2
x)(uux)+2uux +uxuxx.

Then, the CH equation becomes

(1−∂2
x)(ut)+(1−∂2

x)(uux)+2uux +uxuxx = 0.

Notice that 2uux = (u2)x and uxuxx = (1
2u2

x)x. Then, we can rewrite CH as

ut +uux = −∂x(1−∂2
x)−1(1

2u2
x +u2).

Note that −∂x(1−∂2
x)−1(1

2u2
x +u2) can be written as

−∂xp∗ (1
2u2

x +u2),

where p(x) = 1
2e−|x| is the Green’s function for the operator (1 − ∂2

x), and
(f ∗g)(x) =

∫ ∞
−∞ f(x−y)g(y)dy being the convolution operator.

Then, the equation takes the form of a quasi-linear equation:

ut +A(u)u = f(u),

where

A(u) = u∂x,
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and

f(u) = −∂x(1−∂2
x)−1(1

2u2
x +u2).

Kato’s semigroup approach gives the following result provided that (A1)-(A4) are
verified:

Theorem 3.1
Assume that (A1)− (A4) hold. Let u0 ∈ Hs(R), s > 3

2 be given. Then, there exists
a maximal time of existence T > 0, depending on u0, such that there is a unique
solution u to (3.1) satisfying

u ∈ C([0,T ),Hs)∩C1([0,T ),Hs−1).

Moreover, the solution depends continuously on the initial data, i.e, the map
u0 ∈ Hs → u ∈ C([0,T ),Hs).

In order to prove this result, we will apply Kato’s semigroup approach with
X = Hs−1, Y = Hs, and Q = (1−∂2

x)1/2, where Q is an isomorphism from Hs−1 to
Hs. Now, we need to verify that A(u) and f(u) satisfy the assumptions (A1)−(A4).

Proof of Assumption (A1):

Below, you will find the needed lemmas to be used in the proof of assumption (A1).

Lemma 3.2
The operator A(u) = u∂x in Hs−1, with u ∈ Hs, s > 3

2 is quasi-m-accretive.

Proof
It can be found in [Rodríguez-Blanco (2001)].

Similar arguments will be discussed in Section 4 for the dispersion generalized
Camassa-Holm equation.
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Proof of Assumption (A2):

Below, you will find the needed lemmas to be used in the proof of assumption (A2).

Lemma 3.3
Let the operator A(u) = u∂x, with u ∈ Hs, s > 3

2 . Then, A(u) ∈ L(Hs,Hs−1), for
any u ∈ Hs. Moreover,

||(A(u)−A(v))w||s−1 ≤ λ1||u−v||s−1||w||s, u,v,w ∈ Hs.

Proof
Let u,v,w ∈ Hs, s > 3

2 , and note that Hs−1 is a Banach algebra. Then, we have

||(A(u)−A(v))w||s−1 = ||(u∂x −v∂x)w||s−1

= ||((u−v)∂x)w||s−1

≤ c||u−v||s−1||∂xw||s−1

≤ λ1||u−v||s−1||w||s,

where λ1 is a constant. Then, we get

||(A(u)−A(v))w||s−1 ≤ λ1||u−v||s−1||w||s.

If we take v = 0 in the above inequality, we will get ||A(u)w||s−1 ≤ c||w||s, which
implies that A(u) ∈ L(Hs,Hs−1).

Proof of Assumption (A3):

Below, you will find the needed lemmas to be used in the proof of assumption (A3).

Lemma 3.4
For any u ∈ Hs, there exists a bounded linear operator B(u) ∈ L(Hs−1) satisfying
B(u) = ΛA(u)Λ−1 − A(u), where B : Hs → L(Hs−1) is uniformly bounded sets in
Hs. Moreover,

||(B(u)−B(v))w||s−1 ≤ λ2||u−v||s||w||s−1, u,v ∈ Hs, w ∈ Hs−1.
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Proof
Note that we can rewrite B(u) as

B(u) = ΛA(u)Λ−1 −A(u) = Λu∂xΛ−1 −u∂x = [Λ,u∂x]Λ−1.

Then, for u,v ∈ Hs, s > 3
2 , w ∈ Hs−1,

||(B(u)−B(v))w||s−1 = ||[Λ, (u−v)∂x]Λ−1w||s−1

= ||Λs−1[Λ, (u−v)∂x]Λ−1w||0

= ||Λs−1[Λ, (u−v)]Λ−1∂xw||0

= ||Λs−1[Λ, (u−v)]Λ1−sΛs−2∂xw||0

≤ ||Λs−1[Λ(u−v)]Λ1−s||0||Λs−2∂xw||0

≤ ||Λs−1[Λ(u−v)]Λ1−s||L(L2)||Λs−2∂xw||0

≤ λ2||u−v||s||w||s−1,

where λ2 is a constant, and we use the commutator estimate (Proposition 2.4) with
r = 1 − s and t = s − 1. Also, if we take v = 0 in the above inequality, we get
||B(u)w||s−1 ≤ λ2||w||s−1, which implies that B(u) ∈ L(Hs−1).

Proof of Assumption (A4):

Below, you will find the needed lemmas to be used in the proof of assumption (A4).

Lemma 3.5
For all t ∈ [0,∞), f is uniformly bounded on bounded sets in Hs. Moreover, the
map f : Hs → Hs is locally Hs−1-Lipschitz continuous in the sense that there exists
a constant λ3 > 0 such that

||f(u)−f(v)||s−1 ≤ λ3||u−v||s−1, for all u,v ∈ Br(0) ⊆ Hs,

and locally Hs-Lipschitz continuous in the sense that there exists a constant λ4 > 0
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such that

||f(u)−f(v)||s ≤ λ4||u−v||s, for all u,v ∈ Br(0) ⊆ Hs.

Proof
Recall that we have f(u) = −∂x(1 − ∂2

x)−1(1
2u2

x + u2). We will start with the first
inequality:

Let u,v ∈ Hs, s > 3
2 . Note that Hs−1 is a Banach algebra. Then, we have

||f(u)−f(v)||s−1 = ||∂x(1−∂2
x)−1(1

2(u2
x −v2

x))+(u2 −v2)||s−1

≤ ||(u2
x −v2

x)+(u2 −v2)||s−2

≤ ||(u2
x −v2

x)||s−2 + ||(u2 −v2)||s−2

≤ ||(ux +vx)(ux −vx)||s−2 + ||(u+v)(u−v)||s−2

≤ ||∂x(u+v)||s−2||∂x(u−v)||s−2 + ||(u+v)||s−2||(u−v)||s−2

≤ c
(
||u||s−1 + ||v||s−1

)
||u−v||s−2

≤ λ3||u−v||s−1,

where λ3 is a constant depending on ||u||s−1 and ||v||s−1. We use the Cauchy-
Schwartz inequality and the fact ||.||s−2 ≤ ||.||s−1. This proves Hs−1-Lipschitz
continuity.

Now, we will show that the second inequality also holds for our f(u):

Let u,v ∈ Hs, s > 3
2 . Also, note that Hs is a Banach algebra. Then, we
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have

||f(u)−f(v)||s = ||∂x(1−∂2
x)−1(1

2(u2
x −v2

x))+(u2 −v2)||s

≤ ||(u2
x −v2

x)+(u2 −v2)||s−1

≤ ||(u2
x −v2

x)||s−1 + ||(u2 −v2)||s−1

≤ ||(ux +vx)(ux −vx)||s−1 + ||(u+v)(u−v)||s−1

≤ ||∂x(u+v)||s−1||∂x(u−v)||s−1 + ||(u+v)||s−1||(u−v)||s−1

≤ c
(
||u||s + ||v||s

)
||u−v||s

≤ λ4||u−v||s,

where λ4 is a constant depending on ||u||s and ||v||s. Again, we used the Cauchy-
Schwartz inequality and the fact ||.||s−1 ≤ ||.||s. This proves Hs-Lipschitz continuity.

As we verify that all the assumptions (A1) − (A4) hold in Theorem (3.1),
local well-posedness for the Camassa-Holm equation is established.

21



4. Cauchy Problem for the Dispersion Generalized Camassa-Holm

Equation

In this subsection, we apply Kato’s semigroup approach to establish local
well-posedness for the Cauchy problem associated to the generalized Camassa-Holm
equation:

(4.1)

ut −L∂2
xut +(a+ b)uux −auxL∂2

xu− buL∂2
xux = 0, t > 0, x ∈ R,

u(x,0) = u0(x), x ∈ R,

where a and b are positive constants, L is a positive operator with positive even order
p. To construct a non-local form of this equation, we use commutator operator:

[L∂2
x,u]ux = L∂2

x(uux)−uL∂2
xux.

Then,

(a+ b)[L∂2
x,u]ux = (a+ b)L∂2

x(uux)− (a+ b)uL∂2
xux

= (a+ b)L∂2
x(uux)−auL∂2

xux − buL∂2
xux .

So, we can write

(a+ b)uux − buL∂2
xux = (a+ b)(1−L∂2

x)(uux)+(a+ b)[L∂2
x,u]ux +auL∂2

xux.

Then, we have

(1−L∂2
x)ut +(a+ b)(1−L∂2

x)(uux)+(a+ b)[L∂2
x,u]ux +auL∂2

xux −auxL∂2
xu = 0.
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Also, it can be seen that

auL∂2
xux −auxL∂2

xu = a(uL∂2
xux −uxL∂2

xu)

= a(uL∂2
xux − (L∂2

xu)ux)

= a(uL∂2
x − (L∂2

xu))ux

= −a[L∂2
x,u]ux.

Then, the equation (4.1) becomes

(1−L∂2
x)ut +(a+ b)(1−L∂2

x)(uux)+ b[L∂2
x,u]ux = 0.

With Γs = (1−L∂2
x)s/p+2, the equation takes the form of a quasi-linear:

ut +A(u)u = f(u),

where

A(u) = (a+ b)u∂x + bΓ−(p+2)[L∂2
x,u]∂x = r(u)∂x,

and

f(u) = 0.

Here, you may notice that it looks different from the Camassa-Holm equation. The
reason is that the operator L is in a closed form. For example, the usual partial
derivative operators and rules in the Camassa-Holm equation are clear, and to use
Kato’s semigroup approach, the non-local form of the equation is easily obtained.
However, since L is in closed form, similar derivative operators and rules cannot be
applied. Since there are more than one possible ways of writing non-local form of
an equation, the form where we collect nonlinear effects in the operator A(u), as
above, holds and serves for our purpose.

Now, we recall Section 2.5 and give the main theorem about local well-posedness:

Theorem 4.1
Assume that assumptions (A1) − (A4) hold. Let u0 ∈ Hs(R), s > 7

2 + p be given.
Then, there exists a maximal time of existence T > 0, depending on u0, such that
there is a unique solution u to (4.1) satisfying

u ∈ C([0,T ),Hs)∩C1([0,T ),Hs−1).
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Moreover, the solution depends continuously on the initial data, i.e, the map
u0 → u(u0, .) is continuous from Hs to C([0,T ),Hs)∩C1([0,T ),Hs−1).

In order to prove this result, we will apply Kato’s semigroup approach with
Q = Γ = (1 − L∂2

x)1/p+2, where Q is an isomorphism from Hs−1 to Hs. Since
f(u) = 0 in our Cauchy problem, we only need to verify assumptions (A1)-(A3).

Note that for L as an identity operator, a = 2 and b = 1, we get the Camassa-Holm
equation. Considering this, the steps in the proof can be followed clearly.

Proof of Assumption (A1):

Below, you will find the lemmas to be used in the proof of assumption (A1).

Lemma 4.2
The operator A(u) = r(u)∂x in L2, with u ∈ Hs, s > 7

2 +p is quasi-m-accretive.

Proof
Since L2 is a Hilbert space, A(u) is quasi-m-accretive if and only if there is a real
number β such that

(a) (A(u)w,w)0 ≥ −β||w||20,
(b) The range of A(u)+λ is all of X for some (or all) λ > β.

First, we will prove part (a). By using integration by parts, the left-hand
side of the equality can be written as follows:

(A(u)w,w)0 = (r(u)∂xw,w)0 = −1
2 ((r(u))xw,w)0

since if we let

K = (r(u)wx, w)0 = −((r(u)w)x, w)0

= −(r(u)wx, w)0 − ((r(u))xw, w)0,
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where −(r(u)wx, w)0 = −K. Then,

2K = −((r(u))xw, w)0

K = −1
2((r(u))xw, w)0.

Then, it follows that

|(r(u)∂xw,w)0| = |−1
2 ((r(u))xw,w)0|

≤ c||(r(u))xw||0||w||0

≤ c||(r(u))x||L∞ ||w||20

≤ c||(r(u)||s||w||20

≤ β||w||20,

where ||r(u)||s < ∞ and β = c||r(u)||s. Since u ∈ Hs with s > 7
2 + p, it follows that

||ux||L∞ ≤ ||u||s. We show that the operator A is dissipative for all λ > β. That
means the operator −A is accretive, where we have (A(u)w,w)0 ≥ −β||w||20 as
required.

Now, we will prove part (b). Note that if A is a closed operator, then A(u) + λ has
closed range in X for all λ > β. So, it is enough to show that A(u) + λ has dense
range in x for all λ > β.

First, we will show that A is a closed operator in L2. Let (vn) be a sequence in D(A)
which converges to v ∈ L2 and Avn converges to w ∈ L2. Then, since vn ∈ D(A)
and D(A) = {w ∈ L2 | r(u)w ∈ H1} ⊂ L2, we can conclude that rvn ∈ H1. Also,
by the continuity of the multiplication Hr × L2 → L2 for r > 1

2 , both rvn → rv

and rxvn → rxv in L2, which implies that (rvn)x → w + rxv in L2. Then, we have
the sequences (rvn) and (rvn)x converges in L2. Then we can conclude that (rvn)
converges to rv in H1, which implies that v ∈ D(A). Moreover, by continuity of
∂x : H1 → L2 implies that limn→∞(rvn)x = (rv)x, thus we get w = (rv)x −rxv = Av.
Hence, by definition, we showed that A is a closed operator.
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Now, we need to show that (A(u) + λ) has dense range in L2 for all λ > β.
Note that the adjoint operator of the A(u) = r(u)∂x can be written as

A∗(u) = −rx(u)− r(u)∂x.

Then,

A∗(u)w = −rx(u)w − r(u)wx = −(r(u)w)x,

where rx(u)w ∈ L2 since ux ∈ L∞ and w ∈ L2, and r(u)wx = A(u) ∈ L2 for w ∈ D(A).
Hence, we can obtain that

D(A∗) = {w ∈ L2 | A∗(u)w ∈ L2}.

On the contrary, assume that the range of (A(u) + λ) is not all of L2. Then, there
exists z ̸= 0 ∈ L2 such that

(A(u)w,z)0 = 0, ∀w ∈ D(A(u)).

Since H1 ⊂ D(A), D(A) is dense in L2. Then, due to D(A∗) is closed, z ∈ D(A∗).
Then, by using the fact that D(A) = D(A∗), we can write

((A(u)+λ)w,z)0 = (w,(A(u)+λ)∗z)0 = 0,

which implies that (A(u)∗ +λ)z = 0 in L2. After multiplying this equality by z, we
can rewrite it as

0 = ((A∗(u)+λ)z,z)0 = (A∗(u)z,z)0 +(λz,z)0

= (z,A(u)z)0 +(λz,z)0

≥ (λ−β)||z||20, ∀λ > β.

Since for all λ > β, the term (λ − β) > 0. Therefore, z = 0. However, it contradicts
with the assumption z ̸= 0, which completes the proof of Lemma (4.2).

Lemma 4.3
The operator A(u) = r(u)∂x in Hs−1, with u ∈ Hs, s > 7

2 +p is quasi-m-accretive.

Proof
Since Hs−1 is a Hilbert space, A(u) = r(u)∂x is quasi-m-accretive if and only if
there is a real number β such that

(a) (A(u)w,w)s−1 ≥ −β||w||2s−1,
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(b) -A(u) is the infinitesimal generator of a C0-semigroup on Hs−1, for some (or
all) λ > β.

First, we will prove part (a). Since u ∈ Hs, with s > 7
2 , we can say that u

and ux belong to L∞. Then, it follows that ||ux||L∞ ≤ ||u||s. Note that

Γs−1(r(u)∂xw) = [Γs−1, r(u)]∂xw + r(u)Γs−1(∂xw)

= [Γs−1, r(u)]∂xw + r(u)∂xΓs−1w.

Then, we have

(A(u)w,w)s−1 = (r(u)∂xw, w)s−1

= (Γs−1r(u)∂xw, Γs−1w)0

= ([Γs−1, r(u)]∂xw, Γs−1w)0 +(r(u)∂xΓs−1w, Λs−1w)0.

For the first term ([Γs−1, r(u)]∂xw, Γs−1w)0, use the commutator estimate
(Proposition 2.4) with n = s−1, and σ = s. Then, we get

|([Γs−1, r(u)]∂xw, Γs−1w)0| ≤ c||(r(u)||s||∂xw||s−2||w||s−1

≤ c̃||w||2s−1,

where c̃ is a constant depending on ||u||s.

For the second term (r(u)∂xΓs−1w, Γs−1w)0, use the integration by parts to
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get

|(r(u)∂xΓs−1w, Γs−1w)0| =
∣∣∣ − 1

2(r(u)x, Γs−1w)2)0
∣∣∣

≤ c||r(u)x||L∞ ||Γs−1w||20

≤ c||r(u)x||L∞ ||w||2s−1

≤ c̃||w||2s−1,

where c̃ is a constant depending on ||u||s.

Set β = c̃||u||s. Then, we get (A(u)w,w)s−1 ≥ −β||w||2s−1, as required.

Now, we will prove part (b). Let Q = Γs−1, note that Q is an isomorphism
of Hs−1 to L2, and Hs−1 is continuously and densely embedded into L2 as s > 3

2 .
Define

A1(u) := QA(u)Q−1 = Γs−1A(u)Γ1−s

= Γs−1r(u)∂xΓ1−s

= Γs−1r(u)Γ1−s∂x

and B1 = A1(u)+ A(u).
Let w ∈ L2 and u ∈ Hs, where s > 7

2 +p. Then, we have

||B1(u)||0 = ||[Γs−1, A(u)]Γ1−sw||0

= ||[Γs−1, r(u)]Γ1−s∂xw||0

≤ c||r(u)||s||Γ1−s∂xw||s−2

≤ c||r(u)||s||w||0 ,

where we again use the commutator estimate (Proposition 2.4) with n = s − 1, and
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σ = s. Therefore, we obtain B1(u) ∈ L(L2).

Lemma 4.4 [Pazy (2012)]
Let X and Y be two Banach spaces such that Y is continuously and densely
embedded in X. Let -A be the infinitesimal generator of the C0-semigroup T (t)
on X and let Q be an isomorphism from Y onto X. Then Y is -A-admissible (i.e.
T (t)Y ⊂ Y for all t ≥ 0, and the restriction of T (t) to Y is a C0-semigroup on Y

) if and only if -A1 = - QAQ−1 is the infinitesimal generator of the C0-semigroup
T1(t) = QT (t)Q−1 on X. Moreover, if Y is -A-admissible, then the part of -A in Y

is the infinitesimal generator of the restriction T (t) to Y .

We show that A(u) is quasi-m-accretive in L2, i.e, -A(u) is the infinitesimal
generator of C0-semigroup on Hs−1 by Lemma (4.3). Thus, by using the perturba-
tion theorem for semigroup [Pazy (2012)], we can say that A1(u) = A(u)+B1(u) is
also the infinitesimal generator of C0-semigroup on L2. Then, we can conclude that
Hs−1 is -A-admissible. Hence, -A(u) is the infinitesimal generator of C0-semigroup
on Hs−1 by Lemma 4.4 with X = L2, Y = Hs−1, and Q = Γs−1. This completes
the proof of Lemma 4.3, and thus assumption (A1).

Proof of Assumption (A2):

Below, you will find the needed lemmas to be used in the proof of assumption (A2).

Lemma 4.5
Let the operator A(u) = r(u)∂x, with u ∈ Hs, s > 7

2 +p. Then, A(u) ∈ L(Hs,Hs−1),
for any u ∈ Hs. Moreover,

||(A(u)−A(v))w||s−1 ≤ λ1||u−v||s−1||w||s, u,v,w ∈ Hs.

Proof
Let u,v,w ∈ Hs with s > 7

2 +p, and note that Hs−1 is a Banach algebra.
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Then, we have

||(A(u)−A(v))w||s−1 = ||((a+ b)(u−v)∂x + bΓ−(p+2)[L∂2
x,(u−v)]∂x)w||s−1

≤ ||(a+ b)(u−v)∂xw||s−1 + ||bΓ−(p+2)[L∂2
x,(u−v)]∂xw||s−1

≤ ||(u−v)||s−1||∂xw||s−1 + ||[L∂2
x,(u−v)]∂xw||s−p−3 .

We will use the commutator estimate (Proposition 2.4) with n = p+2, s = s−p−3,
and σ = s−1, which implies s+n−1 = s−2. Then, for f = u−v and g = ∂xw, we
get

||[L∂2
x,(u−v)]∂xw||s−p−3 ≤ c||(u−v)||s−1||∂xw||s−2

≤ c||u−v||s−1||w||s−1

≤ λ1||u−v||s−1||w||s,

where λ1 is a constant. Then, we get

||(A(u)−A(v))w||s−1 ≤ λ1||u−v||s−1||w||s.

Take v = 0 in the above inequality to obtain A(u) ∈ L(Hs, Hs−1). This completes
the proof of Lemma 4.5, and thus assumption (A2).

Proof of Assumption (A3):

Below, you will find the needed lemmas to be used in the proof of assumption (A3).

Lemma 4.6
For any u ∈ Hs, there exists a bounded linear operator B(u) ∈ L(Hs−1) satisfying
B(u) = ΓA(u)Γ−1 − A(u), where B : Hs → L(Hs−1) is uniformly bounded sets in
Hs−1. Moreover,

||(B(u)−B(v))w||s−1 ≤ λ2||u−v||s||w||s−1, u,v ∈ Hs, w ∈ Hs−1.

Proof
Note that since ∂x and Γ commute, we can rewrite B(u) as
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B(u) = ΓA(u)Γ−1 −A(u) = Γr(u)∂xΓ−1 − r(u)∂x = [Γ, r(u)]Γ−1∂x.

First, we will show that B(u) is bounded. To do that again we will use the
commutator estimate (Prop. 2.4.4) with n = 1, s = s − 1, and σ = s − 1, which
implies s + n − 1 = s − 1. Then, for f = r(u) and g = Γ−1∂xw, where w ∈ Hs−1, we
can write

||B(u)w||s−1 = ||[Γ, r(u)]Γ−1∂xw||s−1

≤ ||r(u)||s||Γ−1∂xw||s−1

≤ ||r(u)||s||w||s−1

≤ c||w||s−1,

where c depends on ||u||s.

Moreover,

||(B(u)−B(v))w||s−1 = ||[Γ, r(u)− r(v)]Γ−1∂xw||s−1

≤ ||r(u)− r(v)||s||Γ−1∂xw||s−1

≤ ||r(u)− r(v)||s||w||s−1

≤ ||(a+ b)(u−v)+aΓ−(p+2)[L∂2
x,u−v]||s||w||s−1

≤
(
||u−v||s + ||[L∂2

x,u−v]s−p−2
)
||w||s−1

≤
(
||u−v||s + ||u−v||s

)
||w||s−1

≤ λ2||w||s−1,

where λ2 is a constant depending on ||u||s and ||v||s. Take v = 0 in the above
inequality to obtain B(u) ∈ L(Hs−1). This completes the proof of Lemma 4.6, and
thus assumption (A3).
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Proof of Assumption (A4):

Since f(u) = 0, it is trivial.

As we verify all the assumptions (A1) − (A4) in Theorem 4.1, local well-posedness
for the dispersion generalized Camassa-Holm equation is established.
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5. Conclusion

In this section, we briefly summarize the results of Section 3 and 4.

In Section 3, we establish the local well-posedness of the Camassa-Holm equation
by using Kato’s semigroup approach. There are various studies in the literature
for Camassa-Holm equation since it is a dispersive equation which can model wave
breaking in shallow water wave theory. The 2:1 ratio of the coefficients corre-
sponding to nonlinear terms enables to write non-local form in a simple manner.
Afterwards, we show that A(u) and f(u) satisfy the assumptions (A1) − (A4) of
the theorem. At the end, we see that choosing the initial data u0 from Hs, where
s > 3

2 , the local well-posedness is established.

In Section 4, we prove the local well-posedness of the dispersion generalized
Camassa-Holm equation by using the Kato’s semigroup approach again. We use
an operator L with a positive order p in a closed form. This operator represents
the increment of the dispersive effect. Choosing L as the identity operator
and constants a = 2, b = 1, the equation reduces to Camassa-Holm equation.
Quasi-linear form is not easily obtained as in the Camassa-Holm equation. Since
L is in a closed form in the nonlinear terms, we use the commutator operators
to get the required form. We obtain the results by making assumptions only on
the order of L. So, getting those results without writing the operator L explicitly
will offer the chance to evaluate the results of the equation in a very wide class.
After trying many ways, we need to write the quasi-linear form of the equation
by collecting all nonlinear terms in the operator A(u). Therefore, in this case,
f becomes zero. Thus, it is enough to show that A(u) satisfies the (A1) − (A3)
of the theorem. At the end, we see that choosing the initial data u0 from Hs,
where s > 7

2 + p, the local well-posedness is established. One can observe that
the initial data class needs to be more regular compared to Camassa-Holm equation.
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6. Future Work

Natural questions arising after this thesis study are the following:

1. Can we extend the maximal existence time to infinity so that we get global
well-posedness?

2. Is the energy conserved as it is for Camassa-Holm equation?

3. Is there a time at which there is finite-time blow-up? In which form does it
occur? Is it similar to the Camassa-Holm equation or, since the equation is
more dispersive, does the blow-up occur later or never?

These are all open questions since this equation will appear in the literature for
the first time. As we proceed, there can be more qualitative properties to analyze
according to the results found, such as stability analysis.
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