
GENERATING LANDMARK LABELS FOR SHORT DISTANCE
QUERIES IN A DISTRIBUTED SETTING

by
ARDA ŞENER

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
December 2022

Arda Şener 2022 ©

All Rights Reserved

ABSTRACT

GENERATING LANDMARK LABELS FOR SHORT DISTANCE QUERIES IN
A DISTRIBUTED SETTING

ARDA ŞENER

Computer Science & Engineering M.S. THESIS, DECEMBER 2022

Thesis Supervisor: Assoc. Prof. Kamer Kaya

Keywords: Graphs, High-Performance Computing, Parallel Algorithms, Distance
Queries

Distance queries are a fundamental part of many network analysis applications.
Distances can be used to infer the closeness of two users in social networks, the
relation between two websites in a web graph, or the importance of the interaction
between two proteins or molecules. As a result, being able to answer these queries
rapidly has many benefits to the area of network analysis as a whole. Pruned
landmark labeling is a technique used to generate an index for a given graph that
allows the shortest path queries to be completed in a fraction of the time when
compared to a standard BFS (Breadth First Search) based algorithm. PSL (Parallel
Shortest-distance Labeling) is a pruned landmark labeling algorithm that is designed
to be implemented in a multithreaded environment and works particularly well on
social networks. Unfortunately, even for a medium-size, 50 million vertex graph,
the index size can be as large as 300GB. On the same graph, a single CPU core
takes more than 12 days to generate the index. This thesis aims to implement
PSL in a distributed environment by partitioning the input graph and distributing
the partitions to the nodes. Our method can provide improvements in both the
execution time and the memory consumption by distributing both across multiple
nodes of a cluster. Furthermore, we develop techniques and conduct experiments
that can help increase the performance of the PSL algorithm.

iv

ÖZET

DAĞITIK ORTAMDA EN KISA YOL SORGULARI İÇİN YER İŞARETİ
ETİKETLERİ OLUŞTURMA

ARDA ŞENER

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK
2022

Tez Danışmanı: Doç. Dr. Kamer Kaya

Anahtar Kelimeler: Çizgeler, Yüksek Başarımlı Hesaplama, Paralel Algoritmalar,
Uzaklık Sorguları

Uzaklık sorguları ağ analiz işlemlerinin önemli ve temel bir parçasıdır. Bu sorgular
sosyal ağlarda kullanıcıların yakınlığının öğrenilmesi, internet üzerinde sitelerin il-
işkilerinin karşılaştırılması, biyolojik ağlarda moleküllerin birbiriyle etkileşimlerinin
incelenmesi gibi alanlarda kullanılabilir. Dolayısıyla, bu sorguların hızlı bir şek-
ilde cevaplanabilmesi ağ analizi alanına genel olarak yarar sağlamaktadır. PLL
(Pruned Landmark Labeling) adı verilen algoritma, bu sorguların çok daha kısa
sürede cevaplanabilmesini sağlayan yer işaretleri oluşturmak için literatürde sıklıkla
kullanılmaktadır. PSL (Parallel Shortest-distance Labeling) algoritması PLL tabanlı
paralel hesaplama yapılabilen ortamlarda kullanılmak üzere tasarlanmış ve özellikle
sosyal ağlarda kullanılan bir algoritmadır. Fakat PLL tabanlı algoritmaların hafıza
karmaşıklığı oldukça fazladır. Örneğin, orta boyutlu çizgeler için bile oluşturulan
yer işaretleri hafızada 300GB üzerinde yer kaplayabilmektedir. Bununla beraber,
orta boyutlu çizgelerde, modern bir CPU çekirdeği ile yer işaretlerini oluşturmak
için 12 günden uzun süre harcayabilmektedir. Bu tez PSL algoritmasının dağıtık
bir ortamda uygulanmasının çizgenin bölünmesi ve dağıtılması aracılığı ile uygulan-
ması üzerinedir. Bu teknik ile hem zaman, hem kullanılan hafıza açısından önemli
kazanımlar sağlanmıştır. Ek olarak, bu tez, PSL algoritmasının performansının
artırılmasına yönelik deney ve teknikler de içermektedir.

v

ACKNOWLEDGEMENTS

I want to thank;

My thesis advisor Dr. Kamer Kaya for his help and guidance throughout this project
and my education;

My colleagues from the Sabanci University HPC lab who shared their experiences
and knowledge with me;

My friends and family who were there for me and helped me deal with the stress
and pressure;

IT4Innovations National Supercomputing Center of the Technical University of Os-
trova for providing us access to the Karolina cluster which is used for most of the
experiments provided in this text.

This work was supported by the Scientific and Technological Research Council of
Turkey (TUBİTAK) and EuroHPC Joint Undertaking through grant agreement No.
220N254. The numerical calculations reported in this text were partially performed
at TUBİTAK ULAKBİM, High Performance and Grid Computing Center.

vi

Dedicated to my mother.

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

1. INTRODUCTION . 1

2. NOTATION AND TERMINOLOGY . 3

3. PROBLEM STATEMENT AND BACKGROUND 5
3.1. Problem Statement . 5
3.2. 2-Hop Labeling . 6
3.3. Sequential Approaches . 7
3.4. Parallel Approaches . 9
3.5. Distributed Approaches . 11
3.6. Compression Methods . 12
3.7. Bit-Parallel Labels . 13

4. METHODOLOGY . 16
4.1. Leaf Elimination . 16
4.2. Partitioning . 17
4.3. Vertex Separation . 18
4.4. Ranking the Vertex Separator . 20
4.5. Synchronization . 20
4.6. Summary and Hypothesis. 22
4.7. Technical Details . 23

5. EXPERIMENTAL RESULTS . 26
5.1. Experimental Setup . 26
5.2. Shared Memory Experiments . 28

5.2.1. Performance Evaluation of NPSL . 29
5.2.2. Bit-Parallel Label Experiments . 31

viii

5.2.3. Compression Experiments . 34
5.2.4. Ranking Experiments . 35
5.2.5. Vertical Scalability Experiments . 37

5.3. Distributed Memory Experiments . 41
5.3.1. Performance Evaluation of DPSL . 41
5.3.2. Comparison to Previous Work . 47

5.4. Threats to Validity . 50

6. CONCLUSION . 52

7. FUTURE WORK . 53

BIBLIOGRAPHY. 56

APPENDICES . 58

ix

LIST OF TABLES

Table 5.1. Specifications of the systems used for the experiments 26
Table 5.2. Graphs used for the experiments . 27
Table 5.3. Parameters for DPSL and NPSL . 28
Table 5.4. Compression levels for DPSL and NPSL . 28
Table 5.5. [Karolina] Comparison of indexing times between PSL and

NPSL with CL=2 on hard and moderately hard graphs. The first
two columns show the indexing times in seconds for PSL and NPSL
respectively. The last column shows the speedup of NPSL with re-
spect to PSL. 29

Table 5.6. [Karolina] Indexing time (in seconds) comparison of NPSL with
compression levels 2 and 3 on hard and moderately hard graphs with
the speedup obtained when going from CL=2 to CL=3. 34

Table 5.7. [Karolina] Comparison of memory consumption of labels be-
tween compression levels 2 and 3 of NPSL . 35

Table 5.8. [Gandalf] Memory used to store the labels (in gigabytes) with
different ranking methods on easy and moderately easy graphs. De-
gree refers to degree-based ranking. Degree + VS refers to degree-
based ranking where the ranks of the vertex separator (for a 4 node
partitioning) has been increased. Reduction shows the percentage
decrease in memory usage when going from Degree to Degree + VS. . 37

Table 5.9. [Gandalf] Memory used to store the labels (in gigabytes) with
different ranking methods on easy and moderately easy graphs. BC
refers to betweenness centrality-based ranking. BC + VS refers to
betweenness centrality-based ranking where the ranks of the vertex
separator (for a 4 node partitioning) has been increased. Reduction
shows the percentage decrease in memory usage when going from BC
to BC + VS. 37

Table 5.10. [Gandalf] LLC miss rate of NPSL on some moderately easy
graphs with varying thread counts with BP labels. 40

x

Table 5.11. [Gandalf] LLC miss rate of NPSL on some moderately easy
graphs with varying thread counts without BP labels. 40

Table 5.12. [Karolina] Indexing time (seconds) of DPSL on hard and mod-
erately hard graphs on a varying number of nodes . 44

Table 5.13. [Karolina] Speedup of DPSL on hard and moderately hard
graphs with respect to single node execution (NPSL) 44

Table 5.14. [Karolina] Total memory consumption (in GBs) of the label
cover in 2,4,8 node DPSL when compared to NPSL (denoted as 1
node) for hard and moderately hard graphs. For DPSL, the values
are the summation of the memory used to store the label sets across
every node.. 46

Table 5.15. [Karolina] Maximum per node memory consumption (in GBs)
of the label cover in 2,4,8 node DPSL when compared to NPSL (de-
noted as 1 node) for hard and moderately hard graphs. For DPSL,
the values are the memory consumption result from the node that
stores the largest number of labels. 46

Table 5.16. [Gandalf] Size of the label cover in gigabytes using degree rank-
ing for hard and moderately hard graphs. The first column is an un-
modified NPSL execution. The second column is an NPSL execution
where the vertex separator vertices are increased in rank as in Tables
5.8 and 5.9. The third column is a 4 node DPSL execution where
the generated label covers are merged with the duplicates removed.
The fourth column shows the increase from the second column to the
third column. 46

Table 5.17. [Karolina] Indexing time of DPSL in comparison to the prior
work DVCPLL on 4 nodes (32 threads per node) on hard and mod-
erately hard graphs. 49

Table A1. [Karolina] Indexing time (seconds) of NPSL on moderately easy
graphs when different OpenMP thread scheduling methods are used. . 58

xi

LIST OF FIGURES

Figure 3.1. A diagram showing the label set and label cover terms with
respect to a small example graph . 6

Figure 3.2. A figure representing the various terms used for BP labels.
The green vertex is the root, the blue vertices are sub-roots, and the
red vertex is any vertex in the graph.. 14

Figure 4.1. An example showing the effect of leaf elimination. The Green
vertex is the leaf, the yellow vertex is the parent of the leaf, gray
vertices are eliminated meaning they will not be processed during
indexing. The numbers on the vertices represent their ranks. We can
see that leaf elimination causes an additional vertex to be eliminated. 17

Figure 4.2. A diagram showing the various steps of our distributed PSL
algorithm. The numbers on the vertices indicate their ranks. The red
vertices are processed by all nodes and are synchronized. The blue
and green vertices are each processed by a different node. 22

Figure 4.3. Comparison of adjacency list (left) and CSR (right) sparse
data storage formats. 23

Figure 5.1. [Karolina] Comparison of indexing times for NPSL and PSL
using different compression levels on easy and moderately easy
graphs. CL=3 is not implemented in PSL and is omitted as a re-
sult. 30

Figure 5.2. [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on
the indexing time of NPSL on moderately easy and moderately hard
graphs. 32

Figure 5.3. [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on
the memory consumption of NPSL when processing the graphs TOPC
and DBLP. 33

Figure 5.4. [Karolina] Indexing time (in seconds) comparison of NPSL
with compression levels 2 and 3 on easy and moderately easy graphs. 34

xii

Figure 5.5. [Nebula] Effect of shuffling a portion of the vertex ranks on
the indexing time on moderately easy graphs. 35

Figure 5.6. [Nebula] Memory consumption of the labels generated by
NPSL when different ranking methods are used on moderately easy
graphs. 36

Figure 5.7. [Nebula] Indexing time of NPSL when different ranking meth-
ods are used on moderately easy graphs. 36

Figure 5.8. [Karolina] Indexing time of NPSL with varying thread counts
on moderately easy grahps. 38

Figure 5.9. [Karolina] Indexing time of NPSL with varying thread counts
on hard and moderately hard graphs . 38

Figure 5.10. [Karolina] Indexing time of NPSL with varying thread counts
on hard and moderately hard graphs without using BP labels 40

Figure 5.11. [Gandalf, NT=15] Indexing time of the different levels of NPSL
and DPSL when processing DBLP. The first four series are the 4
processes used for DPSL, DPSL is the maximum of these four (the
other processes wait for the slowest one). 41

Figure 5.12. [Gandalf, NT=15] Label counts added on each level for NPSL
and DPSL when processing DBLP. The first four series are the 4
processes used for DPSL, DPSL total is the sum of those 4 processes,
DPSL Max. Per Node is the maximum value among all the processes. 42

Figure 5.13. [Karolina] Indexing time of DPSL on moderately easy graphs
with and without compression on a varying number of nodes 43

Figure 5.14. [Karolina] 128 thread NPSL and 32 thread 4 node DPSL ex-
ecution comparison on hard and moderately hard graphs in terms of
indexing time.. 44

Figure 5.15. [Karolina] Breakdown of the execution times of 4 node DPSL
executions on hard and moderately hard graphs. 45

Figure 5.16. [Karolina] Indexing time of DPSL in comparison to the prior
works DVCPLL and DPLANT on 4 nodes (32 threads per node) on
moderately easy graphs. 47

Figure 5.17. [Karolina] Indexing time of DPSL in comparison to the prior
works DVCPLL and DPLANT on a varying number of nodes (32
threads per node) on the graph DBLP . 48

Figure 5.18. [Karolina] Indexing time of DPSL in comparison to the prior
works DVCPLL and DPLANT on 4 nodes with a varying number of
threads on the graph DBLP . 49

xiii

Figure A1. [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on
the memory consumption of NPSL when processing moderately easy
graphs. 59

Figure A2. [Karolina] The experiment from Figure 5.18 repeated on the
graph FLIX . 60

xiv

1. INTRODUCTION

Given a graph, a distance is the length of a path between two given vertices where
the path is chosen based on a certain feature. For the shortest path distance, the
length of a shortest path between two vertices is taken. The problem of computing
the distance between only two specific vertices of a graph is referred to as the point-
to-point shortest-path distance (PPSD) problem.

Simple traversal-based algorithms can be used to answer queries for such distances
(Bellman, 1958; Dijkstra, 1959). However, running such an algorithm on every query
may not be feasible for all applications. For example, ranking searches and finding
influential communities in social networks require answering these queries faster than
the current traversal-based algorithms can achieve (Li, Wang, Deng, Yang, Sellis &
Yu, 2017; Vieira, Golgher, Fonseca, Reis, Damazio & Ribeiro-Neto, 2007).

A trivial solution to this problem is to use an algorithm like Dijkstra’s Algorithm
(Dijkstra, 1959) to compute PPSD for all pairs of vertices in the graph and store the
results in a lookup table. Then answering the queries can be done in constant time
by simply returning the result from the lookup table. However, many graphs used in
the previously mentioned applications are quite large, reaching billions of vertices.
As a result, the quadratic space consumption of this method makes it infeasible for
such applications.

One popular solution to this problem is the use of 2-hop labeling. With this ap-
proach, vertices store labels that are composed of a target vertex and the distance
to the target vertex. The combination of these labels forms a label cover of the
graph. Querying under this method involves finding a common vertex in the labels
of the vertices on the query. This querying method reduces the number of labels
needed and as a result, this method scales better to large graphs. However, finding
the minimal set of labels to be able to answer queries correctly is NP-hard (Cohen,
Halperin, Kaplan & Zwick, 2003). Several approaches to compute nearly optimal
label sets have been proposed in the literature.

Pruned Landmark Labeling (PLL) (Akiba, Iwata & Yoshida, 2013) is a very popular

1

approach and one that is the basis of most algorithms discussed in this text. In
this approach, the cover is generated by executing a traversal algorithm from each
vertex adding the label associated with the vertex to every other vertex. As the
algorithm’s name suggests, labels that would not improve the querying precision
are pruned. This method works better than many of its predecessors in terms of
speed, label set size, and its applicability to many different types of graphs. Several
parallel implementations of PLL exist but are often limited in performance due to
dependency issues caused by the pruning operation requiring previously generated
labels e.g., Jin, Peng, Wu, Dragan, Agrawal & Ren (2020); Lakhotia, Dong, Kannan
& Prasanna (2019); Qiu, Zhao, Zhu, Wang, Yuan & Wolf (2018).

Parallel Shortest-Distance Labeling (PSL) (Li, Qiao, Qin, Zhang, Chang & Lin,
2021) is an algorithm derived from PLL that is designed specifically for parallelism
and use with low-diameter graphs (such as social networks and web graphs). In this
approach, the label set is generated by each vertex taking labels from its neighbor-
hood repeatedly. Similar to PLL, a pruning step is applied to only take the necessary
labels. The label set generated by this method is identical to PLL. Li et al. (2021)
suggested several compression methods to reduce the size of this set.

The contributions of this thesis are as follows:

• A new implementation of the PSL algorithm with improvements on the index-
ing time,

• Application of a new compression technique to the PSL algorithm which has
a small but consistent effect on the memory usage,

• A distributed implementation of the PSL algorithm utilizing graph partition-
ing,

• Experiments on various parameters of the PSL algorithm like bit-parallel label
size and ranking method.

2

2. NOTATION AND TERMINOLOGY

We describe a graph informally as a set of objects referred to as vertices connected
by another set of objects referred to as edges. Formally, we can denote a graph
as G = (V,E) where V = {v0,v1,v2, · · · ,vN} is the set of vertices and E ⊆ V ×V is
the set of edges. The vertex and edge sets can optionally be weighted by assigning
additional numerical values to each vertex and edge respectively. This work is
mostly focused on unweighted graphs which contain neither edge nor vertex weights.
Graphs can also be directed or undirected. An undirected graph has the property
(vx,vy) ∈ E =⇒ (vy,vx) ∈ E for any distinct vx,vy ∈ V . This property does not
exist on directed graphs. This work is mostly focused on undirected graphs.

When referring to the members of the set V of the graph G = (V,E) we will exclu-
sively use the term “vertex”. A common synonym for “vertex” is “node” which is
exclusively used in this text to refer to the computation nodes present in a compute
cluster.

The neighborhood of a vertex v on an undirected graph G = (V,E) is defined as a
set ngh(v) such that, (v,u)∈E for all u∈ ngh(v). The degree of a vertex v (deg(v))
is simply the number of vertices in its neighborhood.

Some of the symbols and notations used in this text:

• G = (V,E) : The graph where V is the set of vertices and E is the set of edges.

• N : The number of vertices in the graph. (i.e., |V |)

• M : The number of edges in the graph. (i.e., |E|)

• B : The number of bit-parallel label roots used in the PSL and DPSL algo-
rithms.

• ϵ : The user-defined balance constraint of the partitioning algorithm.

• ngh(v) : The neighborhood of the vertex v.

• rank(v) : The rank of the vertex v.

3

• deg(v) : The degree of the vertex v (i.e., |ngh(v)|)

• L(v) : The label set for the vertex v. When all label sets for vertices in V are
combined they form a label cover of the graph G = (V,E). This cover will be
denoted by L.

• D(v,w) : The distance between vertices v and w stored as a part of the label
in L(v)

4

3. PROBLEM STATEMENT AND BACKGROUND

3.1 Problem Statement

Given an undirected, unweighted graph G = (V,E), a path between two vertices
vx,vy ∈ V is defined as a list of edges P (vx,vy) = e0, e1, · · · , en such that vx ∈ e0,
vy ∈ en and any consecutive edges em, em+1 ∈ P must share a vertex such that the
second vertex of em is the first vertex of em+1 for 0≤m < n.

The point-to-point shortest path on an undirected, unweighted graph G = (V,E)
given two vertices vx,vy ∈ V is the path from vx to vy that contains the least amount
of edges. The point-to-point shortest path distance (PPSD) problem is concerned
with finding the length (i.e., the number of edges) of this path.

PPSD is not a new problem and research on it is abundant. PPSD can be solved
using well-known traversal-based algorithms. Depending on the type of the input
graph Bellman-Ford (Bellman, 1958), Dijkstra (Dijkstra, 1959) or Delta-Stepping
(Meyer & Sanders, 2003) algorithms could be used. A simple algorithm based on
Breadth-First Search (BFS) could suffice if the graph is unweighted. The literature
also contains optimizations and parallel implementations of these algorithms (Dhuli-
pala, Blelloch & Shun, 2017; Firoz, Zalewski, Kanewala & Lumsdaine, 2019; Leiser-
son & Schardl, 2010; Nguyen, Lenharth & Pingali, 2013). Furthermore distributed
BFS algorithms can also be found (Makki, 1996; Ueno, Suzumura, Maruyama, Fu-
jisawa & Matsuoka, 2017).

The solutions presented above all require the graph to be traversed in some manner.
However, this may not be feasible in a scenario where PPSD queries need to be an-
swered within a short period of time. Such queries are useful in certain applications
such as ranking searches in social networks (Vieira et al., 2007; Yahia, Benedikt, Lak-
shmanan & Stoyanovichy, 2008), finding influential communities in social networks

5

(Li et al., 2017), fact-checking in knowledge graphs (Shiralkar, Flammini, Menczer
& Ciampaglia, 2017) and finding close points on road networks (Abeywickrama &
Cheema, 2017).

A trivial solution for answering PPSD queries is storing the answers to all possible
queries. However, for a graph with N vertices this method requires O(N2) memory.
The problem we are interested in is reducing this memory requirement by storing
just enough information to answer the query in a reasonable amount of time.

3.2 2-Hop Labeling

A popular solution to the problem laid out in Section 3.1 is the 2-hop labeling
method (Cohen et al., 2003). As part of this method, each vertex stores a set of
labels. Each label is composed of two elements; an integer identifying a vertex in
the graph and an integer denoting the PPSD distance to that vertex from the vertex
that is storing this label. We will refer to the composition of all label sets L(v) for
v ∈ V for a graph G = (V,E) as the label cover of that graph. This notation is
illustrated in Figure 3.1. The process of generating the label cover will be referred
to as indexing.

Figure 3.1 A diagram showing the label set and label cover terms with respect to a
small example graph

Given an undirected graph G = (V,E), and a label cover, the PPSD distance between
two arbitrary vertices v,u∈ V can be calculated by finding a vertex w ∈ V such that
w ∈ L(v)∩L(u) and summing the distances D(v,w) and D(u,w) which are stored
in those label sets. However, for queries to be answered correctly enough of these

6

labels should be generated. Since space efficiency is a big portion of this problem, we
want to avoid generating more than the necessary amount of labels. Unfortunately,
finding the minimum number of labels required for successful queries is NP-hard
(Cohen et al., 2003). We will discuss some solutions to generating a nearly minimal
label cover in the following sections.

3.3 Sequential Approaches

Pruned landmark labeling is an algorithm used for generating 2-hop covers of graphs
originally introduced by Akiba et al. (2013). A simplified pseudo-code for the algo-
rithm can be seen in Algorithm 1.

7

Algorithm 1 PLL (Pruned Landmark Labeling) Algorithm
Input: The input graph G = (V,E)
Output: The label cover L

procedure PLL(G)
for u in V do

Push(u)

procedure Push(u)
Q← a queue
dist← an array of size N

dist(v)←∞ for all v in V

dist(u)← 0
add u to Q

while Q is not empty do
Dequeue v from Q

if not Prune(u, v, d) then
add u to L(v)
D(u,v)← dist(v)
for w in ngh(v) do

enqueue w to Q

dist(w)← dist(v)+1

procedure Prune(u, v, d)
for w in L(v)∩L(u) do

dv←D(v,w)
du←D(u,w)
if dv +du <= d then return true

return false

We classify PLL as a push-based algorithm where a push operation is defined to be
a traversal algorithm that inserts the source vertex to the label sets of the visited
vertices. Completing a push operation from each vertex of the graph generates a
complete 2-hop label set.

During the push operation, a pruning operation is performed to reduce the number
of labels. The label sets of the visited vertex and the source vertex are compared to
find a common vertex. If such a vertex is found, the distances in both label sets are
added together to get a 2-hop distance between the source and the visited vertex.
If this distance is less than the depth of the BFS operation the label is pruned so it

8

is not added to the visited vertex’s label set. To optimize this operation the label
set of the source vertex is densified into a single array (i.e., distance cache) which
allows the intersection operation in the pruning procedure to be done with a single
loop over L(v).

To acquire a minimal label cover, the vertices of the graph should be indexed in a
particular order. This is achieved by ranking the vertices based on some metric
and processing them from the highest rank to the lowest rank. Processing central
vertices first is advantageous as they are likely to be in many shortest paths. As a
result, vertices are usually ranked using their degrees or betweenness centrality.

PLL and any other push-based algorithms are inherently difficult to parallelize. As
explained in the previous paragraph indexing vertices in a certain order is advan-
tageous. If multiple vertices are indexed simultaneously the order between them is
lost. Furthermore, the pruning algorithm requires the label cover generated up to
that point to be able to prune effectively. Indexing multiple vertices simultaneously
creates a dependency issue where these simultaneous processes can not prune labels
based on the label sets generated by each other.

Another commonly used sequential solution is the Pruned Highway Labeling (PHL)
algorithm (Akiba, Iwata, Kawarabayashi & Kawata, 2014). This algorithm is pri-
marily focused on indexing road networks and does not perform well on social net-
works, web graphs, and other low-diameter graphs which is the primary focus of
this study.

3.4 Parallel Approaches

The PLL algorithm discussed in Section 3.3 is not designed with parallelism in
mind. Despite this, several parallelized variants of the PLL algorithm exist in the
literature.

Qiu et al. (2018) presented a work called ParaPLL where different vertices of the
input graph are distributed among the threads, each thread performing the push
operation shown in Algorithm 1. Processing multiple vertices at the same time in
the PLL algorithms causes inefficiency in the pruning stage as the labels generated
simultaneously in other threads are not available to the pruning algorithm. As a
result, this algorithm often produces a larger label set than desired.

9

Lakhotia et al. (2019) suggested the Label Construction and Cleaning (LCC) and
Global Local Labeling (GLL) algorithms which follow a similar structure to ParaPLL
but incorporate a cleaning stage to reduce the label set size.

Jin et al. (2020) suggested an approach called VC-PLL which implements the PLL
algorithm using a scatter-gather approach. With this approach, they were able to
generate label sets with identical sizes to those generated by PLL.

Parallel Shortest-distance Labeling (PSL) is another 2-hop labeling algorithm, orig-
inally suggested by Li et al. (2021). Given the same graph and parameters, PSL
can create an identical label set to PLL even when running in parallel. A simplified
pseudo-code for the algorithm can be seen in Algorithm 2.

Algorithm 2 PSL (Parallel Shortest-distance Labeling) Algorithm
Input: The input graph G = (V,E)
Output: The label cover L

procedure PSL
d← 2
while new labels were added in the last iteration do

for u in V do
Pull(u, d)

d← d+1

procedure Pull(u, d)
for v in ngh(u) do

for w in L(v) where D(v,w) = d−1 do
if not Prune(u, w, d) then

add w to L(v)
D(v,w)← d

We classify PSL as a pull-based algorithm with a pull operation defined as a vertex
taking labels for a particular distance from its neighbor vertices. Labels of distance
0 (vertices themselves) or 1 (immediate neighbor vertices) are initialized at the
beginning of the algorithm. Then a pull operation is performed from every vertex
(this will be referred to as a level from here on), starting with a distance of 2 and
increasing after every vertex is processed once. This operation continues until no
improvement can be made to the label sets. Since the distances keep increasing, the
number of iterations is limited by the diameter of the input graph. This limits the
usage of the algorithm on large-diameter graphs such as road networks.

10

During the pull operation, every vertex checks the label sets of each of its neighbors
and considers adding each label to its own label set (i.e., pull the label) through the
same pruning operation as in PLL. The distance cache optimization explained in
Section 3.3 is also applied here. When a label is pulled, its distance is increased by
1 since the path length represented by that label is now 1 longer. Due to the nature
of the algorithm, each distance is processed in order (i.e., each distance is processed
at a different level). As a result, when the distance d labels are being added we are
only concerned with d− 1 distance labels of the neighbor vertices as they are the
only ones that can result in a distance of d when pulled. Furthermore, when the
distance d labels are being added, we only use labels with less than d distance for
pruning since the pruning operation is only successful if it finds a shorter distance
than d. To summarize, when a d distance label is pulled, other d distance labels
can not affect the result. This allows each level of the algorithm to be internally
independent. So during a level, each vertex can be processed simultaneously without
any dependency problems such as the ones we saw with PLL.

3.5 Distributed Approaches

Several of the works based on PLL mentioned in Section 3.4 also present distributed
approaches. We will discuss some of these in this section. To our knowledge, there
is no distributed implementation of the PSL algorithm in the literature.

Qiu et al. (2018) presented a distributed variant of their ParaPLL work (DParaPLL)
where the vertices are distributed among the nodes and are processed in parallel.
For efficient pruning, the labels should be synchronized. DParaPLL does this syn-
chronization step at certain intervals to reduce communication bottlenecks. As a
result, the frequency of this synchronization has a direct effect on the number of
labels generated.

Lakhotia et al. (2019) presented multiple distributed algorithms. DGLL which is
a distributed variant of their Global Local Labeling (GLL) algorithm utilizes a
synchronization and cleaning step to remove unnecessarily generated labels. As is
the case with DParaPLL, these unnecessary labels are often generated due to the
inefficiency of the pruning operation when the full label cover is not available. They

11

also provided a hybrid algorithm with DGLL and PLaNT (which we referred to as
DPLANT) where the indexing starts using the PLaNT algorithm and eventually
switches to DGLL after a trigger.

Jin et al. (2020) presented a distributed variant of their VC-PLL work (which we
referred to as DVCPLL). In this variant, the vertices are modeled using a master-
mirror notion. The label set of each vertex is only stored on a single node, in this
particular node, the vertex is labeled as a master. Every other node contains a
mirror for this vertex and relies on information sent from the master for pruning
operations.

3.6 Compression Methods

Several compression methods can be used to decrease the number of labels gener-
ated by the PSL and PLL algorithms. For instance, Li et al. (2021) suggested 2
compression methods for their PSL algorithm.

The first method involves merging identical vertices in the input graph. Given
two vertices u and v they are considered identical if one of the following is true:

• ngh(u) is identical to ngh(v)

• ngh(u)/v is identical to ngh(v)/u

Such vertices can be merged into a single vertex and queries made with either vertex
can simply be redirected to this single vertex. This method is applicable to both
PSL and PLL algorithms.

The second method is local minimum elimination which involves eliminating
vertices whose rank is the minimum among the ranks of their neighborhood. More
formally, given a vertex v, v is said to be the local minimum if rank(v) < rank(u) for
every u ∈ ngh(v). Such vertices are not removed from the graph entirely but simply
ignored during the indexing operation of PSL which results in their label sets re-
maining empty. During querying, the label set of these vertices can be reconstructed
by visiting the neighboring vertices.

Anirban, Wang, Islam, Kayesh, Li & Huang (2022) suggested some well-performing
compression methods as well. However, their Compressed Distance Labeling (CDL)

12

technique is only applicable to directed graphs and their Linear Set Compression
(LC) technique is more suitable for road networks neither of which is the focus of
this study.

3.7 Bit-Parallel Labels

Bit-Parallel (BP) labels are an optimization for the PLL algorithm introduced by
Akiba et al. (2013). The general idea is to store some commonly used label informa-
tion in a dense manner to allow for additional and faster pruning. This optimization
also works on the PSL algorithm and is used by Li et al. (2021). This section will
feature an explanation of this optimization in detail as it is an important parameter
of the algorithm and we performed several experiments to find its optimal value.
These experiments are discussed in Section 5.2.2.

BP labels are generated before the actual indexing operation of the algorithms be-
gins. They are generated directly from the raw unprocessed graph, meaning that
other parameters of the algorithm such as compression, and the number of threads
do not affect BP labels. However, they are affected by the ranking method used.

BP label generation starts by choosing the highest-ranked vertex r in the graph as
the root vertex. A fixed number of neighbors of the root vertex are also chosen as
sub-roots which we will denote as the set Sr. This choice is again made by favoring
the highest-ranked vertices. Then for each vertex v in the graph, we compute the
following information:

1. Shortest-path distance between r and v.

2. For each vertex s in Sr, the shortest-path distance between v and s subtracted
from the shortest-path distance between v and r.

13

Figure 3.2 A figure representing the various terms used for BP labels. The green
vertex is the root, the blue vertices are sub-roots, and the red vertex is any vertex

in the graph.

Computing the first value can simply be done by the use of a BFS algorithm. This
information is stored as an integer value. If the graph in question is a low-diameter
graph such as a social network or a knowledge graph, we can store this value using
a lower bit-rate to save space since the expected distances will be small.

Computing the second value (which will be referred to as the offset) can again be
done by the use of a BFS algorithm with the results being subtracted from the first
value. For each vertex v and sub-root s, the offset can be stored using only 2-bits.
This is because of the fact that this subtraction can only result in 3 values which are
0, −1, and +1. This is a direct result of the sub-roots being neighbors of the root
meaning any shortest-path distance originating from these vertices can only differ
by 1 at most. By setting the sub-root count as 64, the offset of all sub-roots can be
stored as two 64-bit integers. This can be done by the following process:

1. Initialize both integers to 0.

2. Set the bits of the first integer to 1 when the sub-root at that index has an
offset of 0.

3. Set the bits of the second integer to 1 when the sub-root at that index has an
offset of -1.

Once generated, the BP labels can be used during the pruning stages of the algo-
rithm. For example, when considering the addition of the label w to the label set
of vertex v, we can get the distance to both vertices from the root vertex using BP

14

labels. Summing these two distances gives an upper bound to the actual shortest-
path distance between w and v. Furthermore, by performing bitwise operations on
the two integers representing the sub-roots, we can find a tighter upper bound.

This method can be repeated for multiple root vertices. The memory consumption
of BP labels is directly proportional to the product of the number of roots and the
number of vertices of the graph. Since BP labels are used in the pruning stages of
PSL and PLL algorithms, they directly have an effect on which labels get added.
As a result, they are required during the query operation and become an integral
part of the final labels.

15

4. METHODOLOGY

4.1 Leaf Elimination

We define a leaf as a vertex with degree one that is connected to a vertex with a
higher degree. More formally, given an undirected graph G = (V,E) if for v ∈ V ,
there exists only one u ∈ V such that (v,u) ∈ E then v is a leaf if and only if
deg(u) > 1.

The label set of a leaf can be generated using the label set of its parent due to
Lemma 4.1.1. This situation can also be handled during the query with minimal
performance impacts by performing the query operation using the parent vertex and
then incrementing the results by 1. Furthermore, since the only vertex connected to
a leaf is its parent, it can not affect the rest of the graph. As a result, eliminating
the leaf vertices from the graph is possible without affecting the final query results.

Lemma 4.1.1. A leaf’s label set can only contain itself and the labels of its parent.

Proof. Due to the nature of the PSL algorithm, labels can only propagate through
neighboring vertices. As a result, for a vertex v to add a certain label w to its label
set, w should exist in another vertex u in the neighborhood of v. If v is a leaf,
then there is only a single vertex in its neighborhood and as a result, u must be the
parent vertex.

The local minimum elimination discussed in Section 3.6 is often sufficient to elim-
inate the leaves. If we assume a degree-based ranking strategy, the rank of the
parent vertex will be higher than the leaf by the very definition of the leaf. This
means that the leaf vertex is a local minimum and will be eliminated when local
minimum elimination is used. With another ranking strategy, this is not guaran-
teed, however, in most centrality-based metrics the leaves are extremely likely to be

16

a local minimum as well. In fact, for closeness centrality and betweenness centrality
rankings, the parent vertex will always be ranked higher than a neighbor leaf vertex.
However, we found that applying leaf elimination before local minimum elimination
is actually beneficial. The reason for this is that when leaves are present they pre-
vent their parents from being selected as local minimum vertices. Since each parent
is connected to a low-rank leaf vertex, they can not have the lowest rank in their
neighborhood. Applying leaf elimination first allows parent vertices to be eliminated
as local minimum vertices. This process is illustrated in Figure 4.1.

Figure 4.1 An example showing the effect of leaf elimination. The Green vertex is
the leaf, the yellow vertex is the parent of the leaf, gray vertices are eliminated

meaning they will not be processed during indexing. The numbers on the vertices
represent their ranks. We can see that leaf elimination causes an additional vertex

to be eliminated.

4.2 Partitioning

Given a graph G = (V,E), the act of partitioning the graph is defined as creating
a number of disjoint sets (called partitions) whose union should result in the set
V . The balanced graph partitioning problem can then be defined as creating these

17

disjoint sets such that the sum of the vertex weights in any of the sets is within
a certain range of the average denoted by ϵ (Lasalle, Mostofa, Patwary, Satish,
Sundaram, Karypis & Dubey, 2015).

Our goal is to use one of the many existing partitioning algorithms to partition the
graph into multiple partitions. These partitions can then be distributed among a
set of nodes each running the PSL algorithm independently. However, there would
need to be some communication in between to ensure the correctness of the results.
Our expectation from this approach was the following:

• Ability to scale better to a high number of cores by having those cores reside
on different machines with independent memory structures which we cover in
this thesis.

• Ability to process larger graphs due to the better scalability of memory when
multiple machines are involved.

• Ability to use multiple accelerators like GPUs (Graphical Processing Units) by
providing each accelerator with a partition to process which is a future work.

As discussed previously, for the correctness of the results there was a necessity for
communication between the nodes. If this was not implemented, it would not be
possible to accurately answer queries that contain two vertices on different partitions.
This is because answering a query when the two vertices u and v are reachable from
each other involves finding a common vertex w in the label sets of u and v. However,
since partitions are by definition disjoint, if u and v reside in different partitions then
the common vertex w can be in the same partition with at most one of u and v. As
a result, without some form of synchronization between the nodes, it would not be
possible to answer all potential queries.

4.3 Vertex Separation

In order to deal with the synchronization requirement mentioned in Section 4.2, we
used a vertex separation-based approach. A vertex separator is defined as a set of
vertices which when removed from the graph, causes the graph to become multiple
disconnected graphs (Lasalle & Karypis, 2013a). Some graph partitioners (Lasalle
& Karypis, 2013b)

18

For our algorithm instead of removing the vertex separator from the graph, we
duplicated it on each partition. As a result, each node had a copy of the vertices on
the vertex separator. We used the vertex separator as a synchronization zone where
at the end of each level of the PSL algorithm the labels generated by each node can
be unified. This is possible due to Lemma 4.3.2, as any label that is propagated
between two different partitions would have to go through the vertex separator.

Lemma 4.3.1. Given a graph with a vertex separator-based partitioning, no vertex
outside of the vertex separator can be connected to a vertex from a different partition
in the original graph.

Proof. Consider a graph G = (V,E), let the vertex separator be denoted as W and
W splits the graph into n partitions denoted as G1 = (V1,E1), G2 = (V2,E2) ...
Gn = (Vn,En). Contrary to the lemma, assume there exists a vertex vi ∈ Vi and
vi /∈ W such that (vi,vj) ∈ E for some vj ∈ Vj and vj /∈ W . However, if this is
the case, removing W from the original graph G would leave the edge (vi,vj) since
neither vertex is in W . This suggests that the partitions are not disconnected which
is against the definition of the vertex separator. As a result, our assumption must
have been wrong and no such vi should exist.

Lemma 4.3.2. If the PSL algorithm is applied to a graph with a vertex separator-
based partitioning, a vertex can contain the label for a vertex from a different parti-
tion if and only if that label also exists in a vertex in the vertex separator.

Proof. Due to the nature of the PSL algorithm, labels are propagated only to neigh-
boring vertices. As a result of this, a vertex can contain the label for another vertex
if and only if there is a path between those two vertices and the label should be
included on all vertices along this path. Since by Lemma 4.3.1, only the vertices
on the vertex separator can be connected to vertices from different partitions, paths
between two vertices from different partitions should always pass through a vertex
on the vertex separator.

The pruning stage of the PSL algorithm causes some trouble with this approach.
Pruning occurs in a similar fashion to querying, meaning the label sets of both the
currently processed vertex and the label vertex being considered are required for
cross-comparison. However, if these two vertices reside in different partitions then
only one of them will be available to the node. As a result, allowing propagation of
all labels over the vertex separator is not feasible as it would require an unreasonable
amount of data to be replicated.

19

4.4 Ranking the Vertex Separator

As explained in Section 3.3, the PSL algorithm features a rank-based pruning oper-
ation to reduce the number of labels generated. We made use of this feature to filter
the labels that are propagated over the vertex separator. Essentially, our goal was
to limit the labels on the vertex separator to only consist of vertices on the vertex
separator. Since the vertices of the vertex separator and their labels are already du-
plicated on all partitions, this would solve the pruning problem discussed in Section
4.3. This can be achieved by setting the rank of each vertex on the vertex separator
to a high value such that no vertex outside of the vertex separator has a higher rank.
Due to the rank-based pruning stage of the PSL algorithm discussed in Section 3.3,
a vertex can only contain labels for vertices that have a higher rank than its own
rank. When the ranks of the vertex separator vertices are increased in this way, we
ensure that they can only contain each other as labels. When this is coupled with
Lemma 4.3.2, we find that no vertex outside of the vertex separator can be a label
in a different partition than its own.

There is a caveat to this approach. Modifying the ranks of the vertices could have
performance impacts as it directly affects the number of labels generated and the
effectiveness of the pruning operation. This will be discussed further in Section
5.2.4.

4.5 Synchronization

Synchronization of the vertex separator needs to occur after every level (every it-
eration of the outermost loop shown in Algorithm 2) for a correct set of labels to
be generated. Since the vertex separator is replicated across all nodes, each node
contains a set of labels for each vertex on the vertex separator. The synchronization
step involves computing the union of all sets for each of these vertices. In the end,
every node should contain identical label sets for every vertex on the vertex separa-
tor. Furthermore, we want to avoid any duplication of labels as this can cause some
unnecessary computation to occur at later levels.

To get the union of the label sets we use Algorithm 5. Our initial approach involved

20

using a single node to perform this operation handling each vertex in a separate
thread. Since this algorithm has significantly lower complexity than PSL, this step
would not be the bottleneck of the algorithm. However, we found the communication
load to cause significant slowdowns. Handling everything in a single node involves
all other nodes sending their data to this one node and overloading the network
capacity of that node.

Algorithm 3 Label Set Union
Input: The input graph G = (V,E) and the label cover of the vertex separator

L = [L0,L1, · · · ,Lk]
Output: The union label cover Γ

seen ← a boolean array of size N
seen(v) ← false for all v ∈ V

for v in V do
for Li in L do

for w in Li(v) do
if not seen(w) then

seen(w) ← true
add w to Γ(v)

As a result, we decided to distribute to load among the nodes. Each node was
assigned a set of vertices on the vertex separator to apply the union operation.
To reduce the communication load, we developed a round-robin tournament-based
approach (the algorithm is included in the appendix). Specifically, we used a tem-
porarily dense single round-robin (DSRR) approach where the nodes are paired with
each other in multiple rounds such that each node pairing is encountered once and
each node is paired only once for every round. Limiting ourselves to an even node
count of k, we end up with k(k−1) pairings and k−1 rounds (Henz, Müller & Thiel,
2004). At each pairing, the two nodes exchange the information they need from each
other to perform the union. Once every union is created, they are broadcasted to
all of the nodes.

21

4.6 Summary and Hypothesis

Various steps of our distributed PSL method are illustrated in Figure 4.2. Our
hypothesis was that our distributed method would generate more labels overall and
require more memory as a result. However, this memory requirement would be
distributed among multiple machines. If queries are to be performed on a single
machine, the labels can be combined removing any copies and this operation would
result in a set of labels closer in size to those generated by PSL. Furthermore, as a
result of having more computational power available, the indexing operation would
take less time.

Figure 4.2 A diagram showing the various steps of our distributed PSL algorithm.
The numbers on the vertices indicate their ranks. The red vertices are processed

by all nodes and are synchronized. The blue and green vertices are each processed
by a different node.

22

4.7 Technical Details

Both our implementation of PSL on shared memory and our partitioning-based
distributed method was implemented in C++17 using OpenMP and OpenMPI. We
used the constexpr feature of C++ to ensure only the necessary sections of the codes
are compiled for the parameters selected. For example, when the leaf elimination
feature discussed in Section 4.1 is turned off, all code sections related to it are not
compiled and as a result, it can not affect the execution time in any way. We
used the PIGO library for faster input of graph files (Gabert & Çatalyürek, 2021).
For OpenMP, we used dynamic thread scheduling with a chunk size of 256 (some
comparisons for this parameter are included in the Appendix).

To achieve better cache utilization, all of our implementations represent the input
graph using a Compressed Sparse-Row (CSR) format. CSR stores the adjacency
lists of the vertices in a single continuous array rather that the multiple disjoint
arrays used in the original PSL implementation. The difference is illustrated in
Figure 4.3.

Figure 4.3 Comparison of adjacency list (left) and CSR (right) sparse data storage
formats.

To represent the label sets, we used a data structure similar to a CSR. For each
vertex, we store two arrays. The first one contains the vertices of the labels for
this vertex. The second one stores the start and end indices of the distances. Since
labels are generated in order of their distances, there is no need to sort the arrays
at any point. The exact data structure is included in the appendix. This is quite
different than the method used in the original PSL implementation which stores the
distance and the vertices bitwise in a single integer. However, this method creates a

23

limit on maximum distance and graph size. Specifically, a large graph with a high
number of vertices can not be indexed precisely since the number of bits left for the
distance information is reduced. Our method avoids this issue and according to our
tests does not cause any performance issues.

To obtain the vertex separator explained in Section 4.3, we used off-the-shelf par-
titioning tools. Some of these tools such as mtmetis (Lasalle & Karypis, 2013a)
provide built-in procedures for finding vertex separators. However, we found con-
structing the vertex separator from a standard partitioning (edge cut) to be a better
approach. The method we used for this task is shown in Algorithm 4. For any edge,
where the two endpoints are on different partitions we choose the one with the
higher rank to add to the vertex separator. We believe this rank-based choice gives
a better result due to the modification we make to the ranks of the graph explained
in Section 4.4.

Algorithm 4 Algorithm to obtain the vertex separator from a standard partitioning
Input: The input graph G=(V,E) and the partitioning array P
Output: The vertex separator S

for each edge (u,v) in E do
if P (u) is not P (v) then

if u not in S and v not in S then
if rank(u) > rank(v) then

Insert u into S
else

Insert v into S

We experimented with different partitioners and different parameters. The best and
most consistent results we obtained came from Mt-KaHyPar with its default con-
figuration (Gottesbüren, Heuer, Sanders & Schlag, 2021). Mt-KaHyPar consistently
provided small vertex separators and better load balancing. There is also a qual-
ity focussed configuration of Mt-KaHyPar (Gottesbüren, Heuer, Sanders & Schlag,
2022). However the time it took to partition the graph with this configuration was
too high for our purposes and could often be higher than the indexing time. As a
result, we used the default configuration of Mt-KaHyPar for our results.

We found that balancing the load between the partitions was problematic especially
when the compression methods discussed in Sections 3.6 and 4.1 are used. We also
found that using the logarithm of the degrees of the vertices as weights when parti-
tioning provided a better load balancing for most graphs we tested when compared
to uniform and degree weights. Our proposed reason for this is that label counts and

24

processing times of vertices are not strongly correlated with their degrees or rank.
However, our research did indicate a weak correlation between degrees and label
counts. Using the logarithm of the degree allowed us to use degrees as weights with
a lower influence. To fix the problem with compression, we decreased the weights of
compressed and eliminated vertices by a flat amount when partitioning. While this
approach did not eliminate the load balancing issue, it did reduce it.

25

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

We evaluated our work using multiple systems, the specifications of which can be
found in Table 5.1. The machine used for each experiment is indicated in the caption
of the corresponding figures and tables. For comparisons, we used the Karolina
system as it was the most powerful and up-to-date system available to us. Nebula
and Gandalf were mostly used for experiments where the execution time was not the
primary focus. All source codes by previous works and us were compiled with -O3
optimization flag using the compilers g++ and mpic++ with the versions specified
on Table 5.1. All distributed codes running on the Karolina cluster are set to use
InfiniBand HDR (200 Gb/s) for communication.

Name Number of Nodes CPU GCC Version OpenMPI Version Operating
System

Karolina 72 2 x (AMD 7763,
64 cores, 2,45
GHz)

10.2.0 4.1.1 CentOS 7
(Core), Linux
3.10.0

Nebula 1 2 x (Intel Xeon
E5-2620, 8 cores,
2.10 GHz)

9.3.0 4.0.3 Ubuntu 20.04.2,
Linux 5.4.0

Gandalf 1 Intel Xeon E7-
4870, 60 Cores,
2.30 GHz

11.3.0 4.1.2 Ubuntu 22.04.1,
Linux 5.15.0

Table 5.1 Specifications of the systems used for the experiments

We used multiple different graphs for our experiments, these are listed in Table 5.2.
Our algorithms are designed for undirected and unweighted graphs as a result none
of these graphs feature weights and they are all interpreted as undirected graphs.

26

Group Abbreviation Name N M Source

Easy
DELI soc-delicous 536,109 2,731,922 Rossi & Ahmed (2015)
LAST soc-lastfm 1,191,806 9,038,660 Rossi & Ahmed (2015)
DIGG soc-digg 770,800 11,814,264 Rossi & Ahmed (2015)

Moderately Easy

FLIX soc-flixster 2,523,387 15,837,602 Rossi & Ahmed (2015)
CITE coPapersCiteseer 434,103 32,073,440 Davis & Hu (2011)
DBLP coPapersDBLP 540,487 30,491,458 Davis & Hu (2011)
TOPC wiki-topcats 1,791,490 57,016,282 Davis & Hu (2011)

Moderately Hard
FBA socfb-A-anon 3,097,166 47,334,788 Rossi & Ahmed (2015)
FBB socfb-B-anon 2,937,613 41,919,708 Rossi & Ahmed (2015)

Hard
POKE Pokec 1,632,804 61,245,128 Davis & Hu (2011)
LIVE LiveJournal 5,363,261 155,983,028 Davis & Hu (2011)

Table 5.2 Graphs used for the experiments

The implementations tested in this chapter are abbreviated for ease of reading.
PSL refers to the original PSL implementation by Li et al. (2021). NPSL refers to
our shared-memory implementation of the PSL algorithm using the improvements
discussed in Chapter 4. DPSL refers to our partitioning-based distributed imple-
mentation of the PSL algorithm.

Our experiments mainly focus on 2 metrics: the indexing time and the final mem-
ory consumption of the generated labels. The indexing time is measured without
taking the preprocessing steps into account including Bit-Parallel label generation.
The final memory consumption of the generated labels also excludes the memory
consumption of the Bit-Parallel labels. This is done since the generation time and
size of Bit-Parallel labels are directly related to the input variables N and B. They
are not influenced by any of the changes introduced by us. A more in-depth investi-
gation of Bit-Parallel labels is included in Section 5.2.2. Other preprocessing steps
such as partitioning, ranking, and compression are also excluded from the indexing
times but are measured separately and will be referred to when necessary. All of
the reported timings are calculated by taking the average of a minimum of 5 runs.
In cases where the variation between the runs was too high, the number of runs was
increased.

NPSL and DPSL support various parameters. These are described in Table 5.3.
Unless specified otherwise the default values listed in Table 5.3 are used for all
experiments. Table 5.4 displays possible values for the compression level (CL) pa-
rameter. This parameter directly corresponds to the techniques introduced by Li
et al. (2021). Specifically, PSL corresponds to a compression level of 0, PSL+ corre-
sponds to a compression level of 1, and PSL* corresponds to a compression level of
2. Compression level 3 adds the leaf elimination technique we suggested in Section
4.1 to compression level 2.

27

Abbreviation Name Description Default Value
NT OpenMP Thread Count Number of threads to be used

in OpenMP sections.
32

SCHE OpenMP Schedule Scheduling strategy used in
OpenMP sections.

dynamic, 256

BPR BP Root Count Number of roots used dur-
ing bit-parallel label con-
struction.

15

RNKM Ranking Method Method (or metric) used to
order and rank the vertices.

degree

CL Compression Level Determines the compression
and elimination methods to
be used. Please see Table 5.4.

3

LBO Load Balance Offset Reduces the weight of the
eliminated/compressed ver-
tices by this amount.

100

MMSG Maximum Message Size Determines the maximum
amount of data sent during
synchronization. Larger data
will be sent in chunks.

1.07E+09

Table 5.3 Parameters for DPSL and NPSL

Level Identical Vertex Compression Local Minimum Elimination Leaf Elimination
0 No No No
1 Yes No No
2 Yes Yes No
3 Yes Yes Yes

Table 5.4 Compression levels for DPSL and NPSL

5.2 Shared Memory Experiments

28

5.2.1 Performance Evaluation of NPSL

Figure 5.1 and Table 5.5 show the performance of NPSL with respect to the original
PSL implementation by Li et al. (2021). It can be seen that on all the graphs tested
NPSL was faster. Since the differences between the implementations are numerous,
we can not point out the concrete source of the speedup. However, we are aware that
the data structures used for the input graph and label sets as discussed in Section
4.7 contributed positively to the performance.

PSL Indexing Time NPSL Indexing Time NPSL Speedup
FBB 742.69 630.72 1.18
FBA 1063.29 872.90 1.22
POKE 2289.61 2069.76 1.11
LIVE 3312.06 3203.23 1.06

Table 5.5 [Karolina] Comparison of indexing times between PSL and NPSL with
CL=2 on hard and moderately hard graphs. The first two columns show the

indexing times in seconds for PSL and NPSL respectively. The last column shows
the speedup of NPSL with respect to PSL.

29

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

100.00

200.00

300.00

400.00

DELI LAST DIGG FLIX CITE DBLP TOPC

NPSL PSL

(a) Using CL=0

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

20.00

40.00

60.00

80.00

DELI LAST DIGG FLIX CITE DBLP TOPC

NPSL PSL

(b) Using CL=1

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

10.00

20.00

30.00

40.00

50.00

DELI LAST DIGG FLIX CITE DBLP TOPC

NPSL Indexing Time PSL Indexing Time

(c) Using CL=2

Figure 5.1 [Karolina] Comparison of indexing times for NPSL and PSL using
different compression levels on easy and moderately easy graphs. CL=3 is not

implemented in PSL and is omitted as a result.

30

5.2.2 Bit-Parallel Label Experiments

The experiments in this section show the effect of varying the number of roots used
during BP label generation (see Section 3.7). We chose to use 0, 15, 30, 45, and
60 as the number of roots during these experiments. These translate to 0, 255,
510, 765, and 1020 bytes per vertex respectively. With padding introduced by the
C++ compiler, these values become 0, 256, 512, 768, and 1024 bytes per vertex
respectively.

Figure 5.2 demonstrates the change in indexing time with the number of roots used.
On TOPC, using 15 roots produced a speedup of 220% when compared to not
using BP labels. On FBA, we also saw a significant speedup of 154%. While not
as extreme, all the graphs we tested exhibited some speedup when BP labels are
introduced. As a result, we can state that BP labels are a crucial component of the
performance of NPSL.

However, increasing the number of roots beyond 15 did not improve the indexing
times significantly. On TOPC, using 30 roots produced a speedup of only 106%, and
on FBA, we actually saw a slight increase in indexing times. We have two possible
explanations for this situation:

1. While for each root vertex the sub-roots are processed in parallel using bitwise
operations, each root vertex is processed sequentially. As a result, increasing
the number of roots also increases the pruning time. Up to a certain number
of roots, this is balanced by the reduction of the labels generated and other
pruning operations that need to be performed.

2. Increasing the root count increases the amount of memory required to store
the BP labels. During the pruning stage, these labels are accessed in a pseudo-
random manner which puts more load on the last-level cache (LLC) of modern
CPUs by Intel and AMD.

Figure 5.3 demonstrates the breakdown of the memory usage of the generated labels.
As stated in Section 3.7, BP labels are an integral part of the final labels and are
required for querying. We saw that increasing the number of roots to 30 and beyond
often resulted in a larger memory footprint.

31

BP Root Count

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

25

50

75

100

0 15 30 45 60

TOPC CITE FLIX DBLP

(a) Moderately Easy Graphs

BP Root Count

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00E+0

5.00E+2

1.00E+3

1.50E+3

2.00E+3

2.50E+3

0 15 30 45 60

FBA FBB

(b) Moderately Hard Graphs

Figure 5.2 [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on the
indexing time of NPSL on moderately easy and moderately hard graphs.

32

BP Root Count

M
em

or
y

C
on

su
m

pt
io

n
(g

ig
ab

yt
es

)

0

1

2

3

0 15 30 45 60

BP Size (GB) Label Size (GB)

(a) TOPC

BP Root Count

M
em

or
y

C
on

su
m

pt
io

n
(g

ig
ab

yt
es

)

0.0

0.5

1.0

1.5

2.0

0 15 30 45 60

BP Size (GB) Label Size (GB)

(b) DBLP

Figure 5.3 [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on the
memory consumption of NPSL when processing the graphs TOPC and DBLP.

To sum up this section, as a result of the larger memory footprint and the decrease in
performance we suggest using a minimal number of roots for BP labels with imple-
mentations of the PSL algorithm. PLL-based implementations may have different
results as the order of operations are quite different between the two algorithms.

33

5.2.3 Compression Experiments

In this section, we evaluated the performance of our leaf elimination optimization
described in Section 4.1. The compression methods introduced by Li et al. (2021)
are also used in our implementation of NPSL. However since these are explored in
detail in the original paper, we decided not the evaluate them further.

Figure 5.4 and Table 5.6 demonstrate the effect of leaf elimination on the indexing
time of NPSL. While the effect is not greatly pronounced, it is consistent across all
the graphs we tested and indicates a speedup of up to 106%.

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

10.00

20.00

30.00

DELI LAST DIGG FLIX CITE DBLP TOPC

CL=2 CL=3

Figure 5.4 [Karolina] Indexing time (in seconds) comparison of NPSL with
compression levels 2 and 3 on easy and moderately easy graphs.

CL=2 CL=3 Speedup
FBA 872.90 822.03 1.06
FBB 630.72 625.41 1.01
POKE 2,069.76 1,985.23 1.04
LIVE 3203.23 3144.05 1.02

Table 5.6 [Karolina] Indexing time (in seconds) comparison of NPSL with
compression levels 2 and 3 on hard and moderately hard graphs with the speedup

obtained when going from CL=2 to CL=3.

Table 5.7 demonstrates the effect of leaf elimination on the memory consumption of
the labels on NPSL. We found that leaf elimination had a consistent reduction on
the final label size across all the graphs we tested.

34

CL=2 CL=3 Reduction
DELI 0.04 0.04 9.59%
LAST 0.18 0.18 1.95%
DIGG 0.21 0.20 7.27%
FLIX 0.66 0.62 6.66%
CITE 0.41 0.40 3.12%
DBLP 1.37 1.34 1.78%
TOPC 1.22 1.21 0.08%
FBA 13.97 13.89 0.55%
FBB 10.46 10.38 0.76%
POKE 26.77 26.38 1.46%
LIVE 44.16 41.53 5.95%

Table 5.7 [Karolina] Comparison of memory consumption of labels between
compression levels 2 and 3 of NPSL

5.2.4 Ranking Experiments

Figure 5.5 shows an experiment we performed to demonstrate the importance of
ranking. The vertices are initially ranked based on their degrees. Then a varying
percentage of the highest-ranked vertices are shuffled among themselves. The figure
displays the effect of this shuffling operation on the indexing time of NPSL. We can
see that on TOPC shuffling of just 1% of the vertices caused the indexing time to
triple.

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

25

50

75

100

125

TOPC CITE FLIX DBLP

Degree Degree + 0.1% Shuffle Degree + 0.5% Shuffle Degree + 1% Shuffle

Figure 5.5 [Nebula] Effect of shuffling a portion of the vertex ranks on the indexing
time on moderately easy graphs.

35

Figures 5.6 and 5.7 display the memory consumption and indexing time respectively
of NPSL under different ranking methods. These results are the averages of a
minimum of 5 runs and we checked the standard deviation of the results to keep the
variation under control. Our results confirm the tests performed by Li et al. (2021)
where betweenness centrality outperformed degree.

Graph

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

0.00

0.50

1.00

1.50

TOPC CITE FLIX DBLP

Degree Betweenness Centrality Eigenvector Centrality Degree + Betweenness Centrality Degree + Eigenvector Centrality

Figure 5.6 [Nebula] Memory consumption of the labels generated by NPSL when
different ranking methods are used on moderately easy graphs.

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

10.00

20.00

30.00

40.00

50.00

TOPC CITE FLIX DBLP

Degree Betweenness Centrality Eigenvector Centrality Degree + Betweenness Centrality Degree + Eigenvector Centrality

Figure 5.7 [Nebula] Indexing time of NPSL when different ranking methods are
used on moderately easy graphs.

Despite the better performance of betweenness centrality, many of the experiments
we performed used degrees for ranking since they were performed before we obtained
these results. Furthermore, degree-based ranking is commonly used in the literature
and specifically is used in the prior works we compared our results to.

The rank modification explained in Section 4.4 is a fundamental part of our dis-
tributed method. To see the effect it has on the label cover size in isolation, we
applied the same modification in a single node setting. This was done by creating a
vertex separator using the Mt-KaHyPar default preset (Gottesbüren et al., 2021) for
4 partitions and modifying the rank of the vertex separator in the same way as the
distribution method. The results can be seen in Tables 5.8 and 5.9 and show that the

36

modification is beneficial when applied to a degree-based ranking in most graphs in
terms of label cover size. Conversely, when applied to a betweenness centrality-based
ranking the method often causes a small increase in label cover size.

Degree Degree + VS Reduction
DELI 0.040 0.040 -0.29%
LAST 0.177 0.168 5.09%
DIGG 0.198 0.193 2.75%
TOPC 1.214 1.206 0.68%
CITE 0.396 0.354 10.67%
FLIX 0.618 0.589 4.70%
DBLP 1.344 1.282 4.59%

Table 5.8 [Gandalf] Memory used to
store the labels (in gigabytes) with
different ranking methods on easy

and moderately easy graphs. Degree
refers to degree-based ranking.

Degree + VS refers to degree-based
ranking where the ranks of the
vertex separator (for a 4 node

partitioning) has been increased.
Reduction shows the percentage
decrease in memory usage when

going from Degree to Degree + VS.

BC BC + VS Reduction
DELI 0.044 0.043 0.71%
LAST 0.158 0.152 3.80%
DIGG 0.182 0.178 1.99%
TOPC 1.183 1.184 -0.15%
CITE 0.317 0.337 -6.12%
FLIX 0.543 0.525 3.44%
DBLP 1.204 1.246 -3.55%

Table 5.9 [Gandalf] Memory used to
store the labels (in gigabytes) with
different ranking methods on easy
and moderately easy graphs. BC

refers to betweenness
centrality-based ranking. BC + VS

refers to betweenness
centrality-based ranking where the

ranks of the vertex separator (for a 4
node partitioning) has been

increased. Reduction shows the
percentage decrease in memory usage

when going from BC to BC + VS.

5.2.5 Vertical Scalability Experiments

Vertical scaling is defined as the process of increasing the resources (usually CPU
and memory) available to a single node (Barzu, Carabas & Tapus, 2017). As such,
the algorithm is said to be vertically scalable if it can adequately benefit from
such an increase. In this section, we evaluated the vertical scalability of our NPSL
implementation by measuring and comparing its indexing time on varying thread
counts. Increasing the thread count will cause the program to use more of the
available cores of the CPU. As these experiments were carried out on Karolina (a
system with 128 physical CPU cores per node), we limited the maximum thread
count to 128.

Figure 5.8 demonstrates the indexing time of our implementation with respect to
different thread counts. We found that up to a thread count of 16, the implemen-

37

tation scaled near-linearly. However, with higher thread counts the scalability was
sublinear. This is also supported by Figure 5.9 which features larger graphs. These
experiments were repeated on the original PSL implementation by Li et al. (2021)
and we saw similar results.

Number of Threads

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

50.00

100.00

150.00

200.00

4 8 16 32 64 128

FLIX CITE DBLP TOPC

Figure 5.8 [Karolina] Indexing time of NPSL with varying thread counts on
moderately easy grahps.

Number of Threads

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00E+0

1.00E+3

2.00E+3

3.00E+3

32 64 128

FBA FBB POKE LIVE

Figure 5.9 [Karolina] Indexing time of NPSL with varying thread counts on hard
and moderately hard graphs

We suggest that this problem stems from Last-Level Cache (LLC) usage. The CPUs
38

used in Karolina feature LLCs of 256MB. Each node has 2 CPUs which results in
512MB of LLC memory. This amount is the same regardless of the number of
threads used. LLC is utilized heavily in NPSL. Specifically, LLC is used by the
following:

• As explained in Section 3.4, PSL uses a dense array to store the distances for
the vertex currently being processed. When the algorithm considers adding a
vertex v to a vertex u’ label set, the pruning procedure performs lookups on
this array for the labels of vertex v. Since the labels of a vertex are hard to
predict and are not contiguous, this causes a lot of unaligned memory accesses
and as a result, fills LLC. Since each thread processes a distinct vertex in PSL,
there needs to be a distinct instance of this array per thread. Increasing the
thread count increases the total memory used for this purpose and fills LLC
more quickly.

• As explained in Section 5.2.2, BP labels can occupy a lot of memory and are
also accessed in an unaligned manner.

While increasing the number of threads allows for more computational power, we
propose that this is offset by the amount of cache misses caused by the higher traffic
in LLC. To illustrate this point, we repeated the experiment from Figure 5.9 without
using BP labels. The results can be seen in Figure 5.10 and indicate a speedup closer
to linear than in Figure 5.9. We can also see that LIVE, POKE, and FBA were
processed faster by a small margin on 128 threads when BP was not used. As
explained in Section 5.2.2, BP almost always has a significant positive effect on the
indexing time. However, contrary to the general assumption within the literature,
these results show that this is not the case when a high number of threads is used.

39

Number of Threads

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

1000

2000

3000

4000

32 64 128

FBA FBB POKE LIVE

Figure 5.10 [Karolina] Indexing time of NPSL with varying thread counts on hard
and moderately hard graphs without using BP labels

The previous result is supported by Tables 5.10 and 5.11 where the LLC miss rate
of NPSL was measured using the Linux tool perf. Two situations can be observed
in these results. Firstly, in most cases LLC miss rate increases when the thread
count increases. Secondly, LLC miss rate consistently decreases when BP labels are
turned off. Gandalf has a lower core count than Karolina and is overall slower. As
a result, unlike Karolina, it can not reach the point where the algorithm no longer
scales. We would like to repeat these experiments on Karolina however are unable
to do so due to having no access to the hardware counters. Despite this, the results
here make a strong argument for the negative effect of BP labels when the thread
count is high.

Graph Thread Count LLC Miss Rate (%)
DBLP 15 40.18
DBLP 30 42.78
DBLP 60 43.63
TOPC 15 18.03
TOPC 30 18.89
TOPC 60 20.19
FLIX 15 21.8
FLIX 30 21.27
FLIX 60 23.7

Table 5.10 [Gandalf] LLC miss rate
of NPSL on some moderately easy
graphs with varying thread counts

with BP labels.

Graph Thread Count LLC Miss Rate (%)
DBLP 15 31.83
DBLP 30 33.29
DBLP 60 35.26
TOPC 15 11.45
TOPC 30 12.19
TOPC 60 13.35
FLIX 15 17.38
FLIX 30 17.94
FLIX 60 18.64

Table 5.11 [Gandalf] LLC miss rate
of NPSL on some moderately easy
graphs with varying thread counts

without BP labels.
40

5.3 Distributed Memory Experiments

5.3.1 Performance Evaluation of DPSL

Figures 5.11 and 5.12 show the correctness of the hypothesis we presented in Section
4.6. In Figure 5.11, we can see that DPSL provides an overall lower indexing time
per level when compared to NPSL when identical parameters are used for both.
DPSL indexing time is equivalent to the indexing time of the slowest MPI process
as other processes need to wait for the slowest one to finish for synchronization. It
should be noted however that this run excludes the synchronization steps and as a
result the network cost which is demonstrated later. In Figure 5.12, we can see that
each node generates and therefore stores fewer labels than the single node NPSL
execution. However, it can be seen that DPSL uses more memory overall when the
total across all nodes is taken into account. This total can be reduced significantly
by removing the duplicate labels that reside in the vertex separator.

Level

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

5

10

15

20

25

2 4 6 8 10

P0

P1

P2

P3

DPSL

NPSL

Figure 5.11 [Gandalf, NT=15] Indexing time of the different levels of NPSL and
DPSL when processing DBLP. The first four series are the 4 processes used for
DPSL, DPSL is the maximum of these four (the other processes wait for the

slowest one).

41

Level

N
um

be
r o

f N
ew

 L
ab

el
s

A
dd

ed

0.00E+0

1.00E+8

2.00E+8

3.00E+8

2 4 6 8 10

P0

P1

P2

P3

DPSL Total

DPSL Max. Per Node

NPSL

Figure 5.12 [Gandalf, NT=15] Label counts added on each level for NPSL and
DPSL when processing DBLP. The first four series are the 4 processes used for
DPSL, DPSL total is the sum of those 4 processes, DPSL Max. Per Node is the

maximum value among all the processes.

Figure 5.13 shows the indexing time of DPSL on 2,4 and 8 nodes with and with-
out compression. The single node results mentioned are provided using NPSL. The
results without compression indicated a higher speedup than the results with com-
pression. This is largely related to the load balancing issue discussed in Section 4.7.
For CITE the run without compression indicates a higher than 2x speedup for the
2 node runs. This can be explained by the vertex separator ranking DPSL performs
as explained in Section 5.2.4.

42

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

50.00

100.00

150.00

200.00

250.00

FLIX CITE DBLP TOPC

1 2 4 8

(a) CL=0

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00

10.00

20.00

30.00

FLIX CITE DBLP TOPC

1 2 4 8

(b) CL=3

Figure 5.13 [Karolina] Indexing time of DPSL on moderately easy graphs with and
without compression on a varying number of nodes

Tables 5.12 and 5.13 show the indexing time and speedup of DPSL respectively on
some larger graphs.

43

1 2 4 8
FBA 822.03 785.62 625.26 720.75
FBB 625.41 425.40 417.27 560.95
POKE 1,985.23 1,623.47 1,427.47 1,321.55
LIVE 3,144.05 1,719.25 1,476.37 1,347.11

Table 5.12 [Karolina] Indexing time (seconds) of DPSL on hard and moderately
hard graphs on a varying number of nodes

1 2 4 8
FBA 1.00 1.05 1.31 1.14
FBB 1.00 1.47 1.50 1.11
POKE 1.00 1.22 1.39 1.50
LIVE 1.00 1.83 2.13 2.33

Table 5.13 [Karolina] Speedup of DPSL on hard and moderately hard graphs with
respect to single node execution (NPSL)

The speedups obtained from DPSL, coupled with the vertical scalability problem
explained in Section 5.2.5 allow DPSL to outperform NPSL when the same number
of cores is used for both as shown in Figure 5.14.

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0.00E+0

5.00E+2

1.00E+3

1.50E+3

2.00E+3

2.50E+3

FBA FBB POKE LIVE

NPSL (128 Threads) DPSL (4x32 Threads)

Figure 5.14 [Karolina] 128 thread NPSL and 32 thread 4 node DPSL execution
comparison on hard and moderately hard graphs in terms of indexing time.

44

Figure 5.15 shows the breakdown of the execution time of DPSL. When processing
hard and moderately hard graphs, both the partitioning and synchronization times
constituted less than 2.4% of the execution time.

Graph

Ti
m

e
(s

ec
on

ds
)

0.00

500.00

1,000.00

1,500.00

FBA FBB POKE LIVE

Sync. Time Partition Time Indexing Time

Figure 5.15 [Karolina] Breakdown of the execution times of 4 node DPSL
executions on hard and moderately hard graphs.

Tables 5.14 and 5.15 show two different memory consumption interpretations for
the DPSL algorithm. Table 5.14 shows that the memory consumed across all nodes
increases with the number of nodes used. This is to be expected due to the duplicated
labels on the vertex separator. Table 5.15 shows the highest memory consumption
among the nodes and a decrease as the number of nodes increases can be observed.
As a result, DPSL can potentially process graphs that NPSL can not (due to the
limited amount of memory on each node) by distributing the memory load among
the nodes. These results are highly dependent on the quality of the partitioning.
The size of the vertex separator is crucial as it determines the number of labels that
need to be replicated. The balance of the partitions is also very important since the
largest graphs we can process with this method are limited by the maximum memory
consumption shown in Table 5.15, meaning that the partition with the heaviest load
will dictate this variable. As shown in Tables 5.15 and 5.12, the partitions for FBA
and FBB on the 8 node runs were not of sufficient quality and as a result, an increase
in the memory consumption and indexing time was observed.

45

1 2 4 8
FBA 13.89 20.33 38.68 53.54
FBB 10.38 14.07 25.85 54.07
POKE 26.38 36.76 68.26 137.76
LIVE 41.20 48.77 78.34 142.35

Table 5.14 [Karolina] Total memory consumption (in GBs) of the label cover in
2,4,8 node DPSL when compared to NPSL (denoted as 1 node) for hard and

moderately hard graphs. For DPSL, the values are the summation of the memory
used to store the label sets across every node.

1 2 4 8
FBA 13.89 10.64 10.02 10.16
FBB 10.38 7.43 6.72 6.91
POKE 26.38 19.23 17.62 17.47
LIVE 41.20 25.04 22.01 19.16

Table 5.15 [Karolina] Maximum per node memory consumption (in GBs) of the
label cover in 2,4,8 node DPSL when compared to NPSL (denoted as 1 node) for

hard and moderately hard graphs. For DPSL, the values are the memory
consumption result from the node that stores the largest number of labels.

We explained in Section 5.2.4, that due to the ranking modification on the vertex
separator, our DPSL method generates a label cover with a different size. This effect
could be negative or positive depending on the ranking method used. Due to the
synchronization method used, DPSL is not able to prune the labels on the vertex
separator as effectively as NPSL. As a result, the size of the label cover is slightly
larger than what was suggested in Section 5.2.4. In our tests, this slight increase
did not exceed 0.36% as can be seen in Table 5.16.

NPSL NPSL (VS Order) DPSL (4 Nodes) Increase
FBA 13.89 13.12 13.13 0.08%
FBB 10.38 9.73 9.75 0.21%
POKE 26.38 25.86 25.88 0.07%
LIVE 41.20 36.89 37.02 0.36%

Table 5.16 [Gandalf] Size of the label cover in gigabytes using degree ranking for
hard and moderately hard graphs. The first column is an unmodified NPSL

execution. The second column is an NPSL execution where the vertex separator
vertices are increased in rank as in Tables 5.8 and 5.9. The third column is a 4

node DPSL execution where the generated label covers are merged with the
duplicates removed. The fourth column shows the increase from the second

column to the third column.

46

5.3.2 Comparison to Previous Work

To our knowledge, no distributed implementation of the PSL algorithm exists other
than this work. We compared our implementation against two distributed PLL
implementations. The first implementation will be denoted as DPLANT and is
introduced by Lakhotia et al. (2019). We used their hybrid implementation for
comparisons as it reportedly achieves better performance and scalability. The second
implementation will be denoted as DVCPLL and is introduced by Jin et al. (2020).
DVCPLL also uses the BP label optimization explained in Section 3.7. We used the
same BP root count of 15 for all runs of DVCPLL and DPSL. Preprocessing steps
such as BP label generation and ranking were not included in the indexing time
calculations.

Figure 5.16 shows the indexing time of all the implementations on different graphs
when running on Karolina with 4 nodes. Each node is set to use 32 threads for all
implementations. DVCPLL and DPLANT do not utilize any form of compression on
the input graph as a result we also included results using a compression level of 0 for
DPSL. These should provide a fairer comparison. Some of the compression methods
mentioned in this text are also applicable to the PLL algorithm and could be used
with DVCPLL and DPLANT. We can report that DPSL had a better performance
on all the graphs tested with respect to DVCPLL and DPLANT in this setting.

Graph

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

250

500

750

1000

FLIX CITE DBLP TOPC

DPSL CL=3 DPSL CL=0 DVCPLL DPLANT

Figure 5.16 [Karolina] Indexing time of DPSL in comparison to the prior works
DVCPLL and DPLANT on 4 nodes (32 threads per node) on moderately easy

graphs.

Figure 5.17 demonstrates the scalability of the algorithms when the number of nodes
used on the Karolina cluster increases. Each node is again set to use 32 threads for all
implementations. We found that despite its initial low performance in Figure 5.16,
DPLANT exhibited better scalability than DPSL and DVCPLL. As a result, it could

47

outperform the others on larger clusters with more nodes. In fact, Lakhotia et al.
(2019) suggested that their algorithms can achieve super-linear speedup when the
number of nodes is increased due to a release of pressure on the memory management
system. Figure 5.18 shows the scalability of the algorithm when the number of
threads used on each node is increased. Again, DPLANT scaled better despite
being overall slower than the others.

Number of Computation Nodes

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

100

200

300

400

500

600

700

800

900

2 4 8

DPSL CL=3 DPSL CL=0 DVCPLL DPLANT

Figure 5.17 [Karolina] Indexing time of DPSL in comparison to the prior works
DVCPLL and DPLANT on a varying number of nodes (32 threads per node) on

the graph DBLP

48

Number of Threads (per Node)

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

1000

2000

3000

4000

4 8 16 32 64

DPSL CL=3 DPSL CL=0 DVCPLL DPLANT

Figure 5.18 [Karolina] Indexing time of DPSL in comparison to the prior works
DVCPLL and DPLANT on 4 nodes with a varying number of threads on the

graph DBLP

We also performed indexing time comparisons between DVCPLL and DPSL on 4
nodes using hard and moderately hard graphs as shown in Table 5.17. DPLANT
was omitted from this experiment as it was outperformed by DVCPLL within the
parameters of this experiment. The results from this experiment confirm the superior
performance of DPSL. DVCPLL performs better than DPSL CL=0 on FBB, likely
as a result of the relatively low average degree of FBB.

DPSL CL=3 DPSL CL=0 DVCPLL
FBA 625.26 1,596.14 1,610.91
FBB 417.27 1,243.18 1,056.84
POKE 1,427.47 1,710.88 4,572.89
LIVE 1,476.37 2,621.28 8,327.82

Table 5.17 [Karolina] Indexing time of DPSL in comparison to the prior work
DVCPLL on 4 nodes (32 threads per node) on hard and moderately hard graphs.

It should be noted that, both DVCPLL and DPLANT contain additional features
that DPSL does not support in its current form. Specifically, DPLANT is report-
edly compatible with directed and weighted graphs and DVCPLL while focusing
on undirected graphs is said to be extendible to directed and weighted graphs as
well. However, Li et al. (2021) suggest that the PSL algorithm can be extended to
directed graphs by splitting the label set in two, we believe this approach would be

49

applicable to DPSL as well. Furthermore, DPSL does not perform well on high-
diameter graphs such as road networks which DVCPLL and DPLANT can process
without issue. Since this is an issue with the nature of the algorithm itself, it is
unlikely to be resolved.

5.4 Threats to Validity

There are several threats to the validity of this research and these experiments.
Some of these are listed below and will be addressed in this section.

1. The specified experiments are not enough to indicate the correctness of the
algorithms presented.

2. The results are taken from a limited set of data. More specifically different
graph types (for example, road networks) are not included in the experiments.

3. The performance results are not reliable due to the low number of repeated
experiments.

To address the first threat, we tested the algorithms further in terms of the correct-
ness of their results. Both DPSL and NPSL are tested using randomized queries
and the results are compared against a sequential Breadth First Search (BFS) algo-
rithm. This experiment was repeated on multiple graphs for different Bit-Parallel
label sizes, ranking methods, and with all the compression techniques mentioned.
For a selection of smaller graphs, we also performed queries for all possible pairs of
vertices and again compared the results to a sequential BFS algorithm. For NPSL
only, we performed comparison-based tests against the original PSL code. In these
tests, the numbers of the labels generated by the algorithms were compared. This
comparison was done for each level of the algorithms on each vertex separately. In
all of these tests, we found no indication that either implementation was generating
incorrect label sets. Furthermore, we believe the explanations and proofs provided
in Chapter 4 provides solid reasoning for the correctness of the methods.

To address the second threat, we tried to test the algorithms with different graphs of
different sizes acquired from different sources. However, the algorithm is designed for
low-diameter graphs like social networks. There is an upper limit on the distances
the algorithm can index. As a result, on high-diameter graphs like road networks,
the algorithm will stop once it hits this upper limit. The query results obtained

50

would not be reliable since any distance larger than the upper limit can not be
accounted for. Furthermore, certain optimizations are not designed for such large
distances and can cause the results to be incorrect due to overflows. As a result, we
decided to avoid any performance results involving such graphs. The other works
mentioned in this text, DPLANT (Lakhotia et al., 2019) and DVCPLL (Jin et al.,
2020) are designed to work with various types of networks and should be preferred
when working with high-diameter graphs.

To address the third threat, we measured the standard deviation of all timing-
related results mentioned throughout this text. For both DPSL and NPSL repeated
executions on the same graph with the same setting had a standard deviation of less
than 11%. Specifically, on the graph POKE we saw a maximum standard deviation
of 8.51% and on the graph LIVE we saw a maximum standard deviation of 6.41%.

51

6. CONCLUSION

In this thesis, we presented several optimizations and extensions around the PSL
algorithm. Our implementation based on the CSR data structure increased the speed
of the indexing. Furthermore, the results we presented in Sections 5.2.2, 5.2.4, 5.2.5
should help with the fine-tuning of the parameters of the algorithm.

We also argued and showed that a leaf elimination algorithm could increase the
speed of the indexing and reduce the final label size. This method can also be
combined with other compression methods discussed in Section 3.6.

Finally, we introduced a partition-based distributed implementation of the PSL
algorithm. With this implementation, we were able to reduce the indexing time
of the algorithm by distributing the computational load to multiple nodes. As
discussed in Section 5.2.5, we had trouble scaling the PSL algorithm to CPUs with
large amounts of cores. Our method allows using several less powerful CPUs to
exceed the performance of a larger CPU such as the one in the Karolina cluster
we used. Furthermore, our method could allow the processing of larger graphs by
reducing the memory requirements as shown in Section 5.3.1.

52

7. FUTURE WORK

We had success using the leaf elimination technique discussed in Section 3.6. Other
methods for eliminating certain vertices or compressing the graph could be investi-
gated. We suspect that the linear set compression technique suggested by Anirban
et al. (2022) could be used and might allow the algorithm to perform better on
large-diameter graphs such as road networks.

Our research indicates that predicting the number of labels that will be generated
for each vertex is not a trivial task. Specifically, we found no strong correlation
between the number of labels and the ranks, degrees, and various centrality metrics
of vertices. Similarly, the indexing time of each individual vertex is hard to predict
and is not strongly correlated with any other data we collected. However, we suspect
a more detailed analysis (perhaps making use of machine learning models) could
help with such a prediction. Being able to predict these metrics would allow for
better load balancing through the partitioning algorithm and should increase the
performance of DPSL.

Our distributed method should be applicable to GPUs as well. In a multi-GPU
setting, the partitions can be distributed among the GPUs. A hybrid GPU-CPU
algorithm should also be possible by assigning a partition to the CPU as well.
However, this requires the implementation of the PSL algorithm on GPUs. We
worked on this problem and found that there were several issues that could affect
such an implementation. Most importantly, due to the limited amount of memory
and the high number of cores on a typical modern GPU it is not feasible to create
a distance cache (described in Section 4.7) for each thread if we set the thread
count to be equivalent to the number of cores. Creating fewer threads would cause
the performance to drop. We suspect this can be resolved by assigning a group of
threads to each vertex and thus allowing them to share the distance cache but this
has the downside of requiring more synchronization and complexity. Furthermore,
our CPU PSL implementation makes high use of dynamically allocated memory

53

and we found memory allocation within GPU kernels to be slow. We suspect this
could be solved by pre-allocating all the memory and coming up with a system to
distribute it among the threads as necessary.

We exclusively focussed on uniform partitionings where each partition had the same
target weight. This was done as the nodes on the cluster were identical and thus
we required equivalent computational loads. This may not necessarily be the case
on all systems. Many of the partitioning tools we referred to in this thesis allow
non-uniform partitionings to be created which should allow a set of heterogenous
nodes to share the work more fairly. This could also be used with the hypothetical
GPU implementation we mentioned previously. In cases where the machine contains
multiple different GPUs or a hybrid CPU-GPU method is used, the computational
power of each unit is likely to be different and should benefit from non-uniform
partitioning. Furthermore, even if the GPU implementation fails to reach the per-
formance of the CPU implementation, it can still be useful in the hybrid case by
simply being assigned a smaller partition requiring less computation.

In our method, we created a single vertex separator for the whole graph even in
cases where more than 2 partitions were created. We suspect this might be partially
responsible for the method’s poor performance on 8 nodes. Implementing a recursive
bi-partitioning-based method could bring better results on higher node counts. In
such a partitioning, the graph would be recursively divided in two, each division
creating a different vertex separator. This could improve communication in the
synchronization algorithm as it can be done recursively. However, as mentioned
in Section 4.5, we did not have performance problems with our synchronization
algorithm. The main benefits we would expect from this approach are a reduction
in duplicated labels and better load balancing.

A hybrid approach could be applied to DPSL where the labels on the vertex separa-
tor are precomputed in a shared memory setting. This theoretically would remove
the necessity for the synchronization step of DPSL. However, it would reduce the
amount of pruning that can be done on the vertex separator and can increase the
final label count. It should be noted that Lakhotia et al. (2019) saw success with a
similar approach in their hybrid algorithm.

We developed a distributed querying algorithm to test the correctness of the labels
generated by DPSL. However, due to time constraints, we did not optimize this
algorithm or tested any other approach to querying in a distributed setting. DPSL
can still be used by combining the label sets generated on each machine and per-
forming the queries on a single machine. However, the development of an efficient
distributed querying algorithm would make it more substantial.

54

Li et al. (2021) developed an improved ranking method based on betweenness cen-
trality which takes local minimum vertices into account. We were not able to test
this on DPSL due to time constraints. Such a ranking method may help improve
the load balancing of the algorithm if it is used during the partitioning stage.

55

BIBLIOGRAPHY

Abeywickrama, T. & Cheema, M. A. (2017). Efficient landmark-based candidate
generation for knn queries on road networks. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 10178 LNCS, 425–440.

Akiba, T., Iwata, Y., Kawarabayashi, K.-I., & Kawata, Y. (2014). Fast shortest-
path distance queries on road networks by pruned highway labeling.

Akiba, T., Iwata, Y., & Yoshida, Y. (2013). Fast exact shortest-path distance
queries on large networks by pruned landmark labeling.

Anirban, S., Wang, J., Islam, M. S., Kayesh, H., Li, J., & Huang, M. L. (2022).
Compression techniques for 2-hop labeling for shortest distance queries. World
Wide Web, 25, 151–174.

Barzu, A. P., Carabas, M., & Tapus, N. (2017). Scalability of a web server: How
does vertical scalability improve the performance of a server? Proceedings -
2017 21st International Conference on Control Systems and Computer, CSCS
2017, 115–122.

Bellman, R. (1958). On a routing problem. Quart. Appl. Math., 16, 87–90.
Cohen, E., Halperin, E., Kaplan, H., & Zwick, U. (2003). Reachability and distance

queries via 2-hop labels. SIAM Journal on Computing, 32, 1338–1355.
Davis, T. A. & Hu, Y. (2011). The university of florida sparse matrix collection.

ACM Transactions on Mathematical Software (TOMS), 38.
Dhulipala, L., Blelloch, G., & Shun, J. (2017). Julienne: A framework for parallel

graph algorithms using work-efficient bucketing. volume Part F129316, (pp.
293–304). Association for Computing Machinery.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Nu-
merische Mathematik 1, 269–296.

Firoz, J. S., Zalewski, M., Kanewala, T., & Lumsdaine, A. (2019). Synchronization-
avoiding graph algorithms. (pp. 52–61). Institute of Electrical and Electronics
Engineers Inc.

Gabert, K. & Çatalyürek, U. V. (2021). PIGO: A parallel graph input/output
library. In 2021 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), (pp. 276–279). IEEE.

Gottesbüren, L., Heuer, T., Sanders, P., & Schlag, S. (2022). Shared-memory n-
level hypergraph partitioning. In 24th Workshop on Algorithm Engineering
and Experiments (ALENEX 2022). SIAM.

Gottesbüren, L., Heuer, T., Sanders, P., & Schlag, S. (2021). Scalable shared-
memory hypergraph partitioning. In 23rd Workshop on Algorithm Engineering
and Experiments (ALENEX 2021), (pp. 16–30). SIAM.

Henz, M., Müller, T., & Thiel, S. (2004). Global constraints for round robin tourna-
ment scheduling. European Journal of Operational Research, 153 (1), 92–101.

Jin, R., Peng, Z., Wu, W., Dragan, F., Agrawal, G., & Ren, B. (2020). Parallelizing
pruned landmark labeling: Dealing with dependencies in graph algorithms.
Association for Computing Machinery.

Lakhotia, K., Dong, Q., Kannan, R., & Prasanna, V. (2019). Planting trees for
scalable and efficient canonical hub labeling.

56

Lasalle, D. & Karypis, G. (2013a). Efficient nested dissection for multicore archi-
tectures. In 27th IEEE International Parallel & Distributed Processing Sym-
posium, 2013.

Lasalle, D. & Karypis, G. (2013b). Multi-threaded graph partitioning.
Lasalle, D., Mostofa, M., Patwary, A., Satish, N., Sundaram, N., Karypis, G., &

Dubey, P. (2015). Improving graph partitioning for modern graphs and archi-
tectures. In 5th Workshop on Irregular applications: Architectures and Algo-
rithms, Supercomputing, 2015.

Leiserson, C. E. & Schardl, T. B. (2010). A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers). (pp.
303–314).

Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., & Yu, J. X. (2017). Most influen-
tial community search over large social networks. Proceedings - International
Conference on Data Engineering, 871–882.

Li, W., Qiao, M., Qin, L., Zhang, Y., Chang, L., & Lin, X. (2021). Distance labeling:
on parallelism, compression, and ordering. VLDB Journal.

Makki, S. A. M. (1996). Efficient distributed breadth-first search algorithm. com-
puter communications ELSEVIER Computer Communications, 19, 628–636.

Meyer, U. & Sanders, P. (2003). -stepping: A parallelizable shortest path algorithm.
Journal of Algorithms, 49, 114–152.

Nguyen, D., Lenharth, A., & Pingali, K. (2013). A lightweight infrastructure for
graph analytics. (pp. 456–471).

Qiu, K., Zhao, J., Zhu, Y., Wang, X., Yuan, J., & Wolf, T. (2018). Parapll: Fast
parallel shortest-path distance query on large-scale weighted graphs. Associa-
tion for Computing Machinery.

Rossi, R. A. & Ahmed, N. K. (2015). The network data repository with interactive
graph analytics and visualization. In AAAI.

Shiralkar, P., Flammini, A., Menczer, F., & Ciampaglia, G. L. (2017). Finding
streams in knowledge graphs to support fact checking. Proceedings - IEEE
International Conference on Data Mining, ICDM, 2017-November, 859–864.

Ueno, K., Suzumura, T., Maruyama, N., Fujisawa, K., & Matsuoka, S. (2017).
Efficient breadth-first search on massively parallel and distributed-memory
machines. Data Science and Engineering, 2, 22–35.

Vieira, M. V., Golgher, P. B., Fonseca, B. M., Reis, D. C. D., Damazio, R., &
Ribeiro-Neto, B. (2007). Efficient search ranking in social networks. undefined,
563–572.

Yahia, S. A., Benedikt, M., Lakshmanan, L. V., & Stoyanovichy, J. (2008). Efficient
network aware search in collaborative tagging sites. Proceedings of the VLDB
Endowment, 1, 710–721.

57

Source Code 1 C++ data structure for storing the labels for a vertex. Each vertex
in the graph has a LabelSet associated with it.
// Stores the labels for each vertex

struct LabelSet {

// IDs of the vertices in order of distances

vector<IDType> vertices;

// Indices for the start and end of distances for the vertices vector

vector<IDType> dist_ptrs;

};

Algorithm 5 Round Robin Tournament
Input: Number of nodes k (must be even)

C← an array of size k

C(i)← i for i ∈ 0,1...k

for i in 0,1...k−1 do
for j in 0,1...k do

p← (k− j−1) mod k

pair C(j) with C(p)

rotate C right except for the first element

Static, 1 Static, 256 Dynamic, 1 Dynamic, 256 Guided, 1 Guided, 256
FLIX 10.85 10.80 11.80 10.13 10.66 10.61
CITE 4.43 4.11 5.07 3.79 5.31 5.31
DBLP 33.42 33.56 29.91 28.39 42.02 44.16
TOPC 21.49 21.99 21.38 21.27 19.55 20.79

Table A1 [Karolina] Indexing time (seconds) of NPSL on moderately easy graphs
when different OpenMP thread scheduling methods are used.

58

14.5475 14.6302 14.8463 15.1477 15.4124

BP Root Count

M
em

or
y

C
on

su
m

pt
io

n
(g

ig
ab

yt
es

)

0

5

10

15

20

0 15 30 45 60

BP Size (GB) Label Size (GB)

(a) FBA

11.14 11.08 11.23 11.48 11.76

BP Root Count

M
em

or
y

C
on

su
m

pt
io

n
(g

ig
ab

yt
es

)

0

2

4

6

8

10

12

0 15 30 45 60

BP Size (GB) Label Size (GB)

(b) FBB

Figure A1 [Karolina] Effect of Bit-Parallel Label’s root count (BPR) on the
memory consumption of NPSL when processing moderately easy graphs.

59

Number of Threads (per Node)

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

0

250

500

750

1000

4 8 16 32 64

DPSL CL=3 DPSL CL=0 DVCPLL DPLANT

Figure A2 [Karolina] The experiment from Figure 5.18 repeated on the graph FLIX

60

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	NOTATION AND TERMINOLOGY
	PROBLEM STATEMENT AND BACKGROUND
	Problem Statement
	2-Hop Labeling
	Sequential Approaches
	Parallel Approaches
	Distributed Approaches
	Compression Methods
	Bit-Parallel Labels

	METHODOLOGY
	Leaf Elimination
	Partitioning
	Vertex Separation
	Ranking the Vertex Separator
	Synchronization
	Summary and Hypothesis
	Technical Details

	EXPERIMENTAL RESULTS
	Experimental Setup
	Shared Memory Experiments
	Performance Evaluation of NPSL
	Bit-Parallel Label Experiments
	Compression Experiments
	Ranking Experiments
	Vertical Scalability Experiments

	Distributed Memory Experiments
	Performance Evaluation of DPSL
	Comparison to Previous Work

	Threats to Validity

	CONCLUSION
	FUTURE WORK
	BIBLIOGRAPHY
	APPENDICES

