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ABSTRACT

CONTEXTUALITY AND NON-LOCALITY RELATIONS IN QUANTUM
SYSTEMS

FIRAT DİKER

PHYSICS Ph.D. DISSERTATION, DECEMBER 2022

Dissertation Supervisor: Prof. Mehmet Zafer Gedik

Keywords: Contextuality, Non-locality, Entanglement, Quantum Measurement,
Concurrence, Delayed-choice, the wave-particle duality

Quantum contextuality is the concept that the outcome of a measurement on a sys-
tem is not always independent of other measurements performed simultaneously on
the system. The simplest example where we observe quantum contextuality is the
Klyachko-Can-Binicioğlu-Shumovsky (KCBS) measurement scenario which includes
a five-measurement state-dependent non-contextuality inequality violated by some
qutrit states. We have approached the KCBS inequality from three different per-
spectives which form the main components of this thesis: (1) We have looked into
the symmetries of the KCBS pentagram, i.e., the conservation of quantum contex-
tuality under rotations in the physical space. We work with the quantum systems
belonging to the real subgroup of the three-dimensional Hilbert space. We provide
the data on Euler rotation angles for maximal quantum contextuality. By using
the data, we have found mathematical relations between rotation angles and qutrit
states parameterized with spherical coordinates; (2) In the second part of my the-
sis, we have found the relation between quantum contextuality and concurrence (a
measure of entanglement) in the KCBS measurement scenario. We have also found
the degree of quantum contextuality for a given concurrence when the KCBS mea-
surements are performed. Using this relation, we have made a comparison between
the maximal violations of the classical inequalities (the Bell and KCBS inequalities)
for any degree of entanglement. Moreover, we have calculated the degree of viola-
tion when maximal entanglement or non-entanglement is observed. We have found
a new lower bound for the non-entangled states in the KCBS scenario; (3) After
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discussing the different versions of the quantum delayed-choice experiment, we have
introduced a quantum circuit that corresponds to a modified version of the same
experiment where one sees that quantum contextuality and entanglement are well
correlated with wave and particle properties of a quantum state. This shows that
quantum contextuality is in good agreement with the wave-particle duality.
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ÖZET

KUANTUM SİSTEMLERİNDE BAĞLAMSALLIK VE YEREL OLMAMA
İLİŞKİLERİ

FIRAT DİKER

FİZİK DOKTORA TEZİ, ARALIK 2022

Tez Danışmanı: Prof. Dr. Mehmet Zafer Gedik

Anahtar Kelimeler: Bağlamsallık, Yerel olmama, Dolaşıklık, Kuantum ölçümü,
Uyum, Ertelemeli seçim, dalga-parçacık ikililiği

Kuantum bağlamsallık, bir ölçümün sonucunun birlikte gerçekleştirilen diğer ölçüm-
lerden bağımsız olmadığını ifade eden kavramdır. Kuantum bağlamsallığını gözlem-
lediğimiz en basit örnek, bazı qutrit durumları tarafından ihlal edilen beş ölçümlü du-
ruma bağlı bağlamsal olmayan eşitsizliği içeren Klyachko-Can-Binicioğlu-Shumovsky
(KCBS) ölçüm senaryosudur. KCBS eşitsizliğine, bu tezin ana bileşenlerini oluştu-
ran üç farklı açıdan yaklaştık: (1) KCBS pentagramının simetrilerini, yani fiziksel
Öklid uzayı E3’daki dönmeler altında kuantum bağlamsallığının korunmasını ince-
ledik. Üç boyutlu Hilbert uzayının gerçek alt grubuna ait kuantum sistemleriyle
çalıştık. Maksimum kuantum bağlamsallığı için Euler dönüş açılarına ilişkin verileri
sağlıyoruz. Verileri kullanarak, küresel koordinatlarla parametrelenmiş qutrit du-
rumları ile dönme açıları arasında matematiksel ilişkiler bulduk; (2) Tezimin ikinci
bölümünde, KCBS ölçüm senaryosunda kuantum bağlamsallık ile uyum (dolaşıklık
ölçütü) arasındaki ilişkiyi bulduk. Ayrıca, KCBS ölçümleri yapıldığında belirli bir
uyum için kuantum bağlamsallık derecesini de bulduk. Bu ilişkiyi kullanarak, keyfi
bir dolaşıklık için KCBS ve Bell eşitsizliklerinin maksimum ihlalleri arasında karşı-
laştırma yaptık. Ayrıca, maksimum dolaşıklık veya dolaşıklık olmama gözlemlendi-
ğinde ihlal derecesini hesapladık. KCBS senaryosundaki dolaşık olmayan durumlar
için yeni bir alt sınır bulduk; (3) Kuantum ertelemeli seçim deneyinin farklı versi-
yonlarından bahsettikten sonra aynı deneyin modifiye edilmiş haline karşılık gelen
ve kuantum bağlamsallık ile dolaşıklığın parçacığa ait dalga ve parçacık özellikleriyle
ilintili olduğu görülen bir kuantum devresi sunduk. Bu bize kuantum bağlamsallığın
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dalga-parçacık ikililiğiyle uyum içerisinde olduğunu gösterdi.
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1. INTRODUCTION

The quantum revolution has changed our understanding of the microscopic world
and took place at the beginning of the twentieth century. It is unprecedented in
human history. Not only did we see the failure of the rules of classical physics on a
small scale, but we found a better explanation that is far broader in scope and far
richer regarding applicability.

The pioneering works of quantum mechanics are de Broglie’s matter waves, the
Einstein-Debye theory of specific heats, Planck’s radiation law, the Bohr atom,
and some key experiments such as the Davisson-Germer-Thompson experiment, the
Compton effect, and the Franck-Hertz experiment. These made the physicists aban-
don the classical description of matter and energy for small-scale interactions. Fi-
nally, this led to the formulation of quantum mechanics.

For our survival, we make assumptions about nature and try to formulate them
to predict what may occur. Then, we test our predictions. These tests, namely,
scientific experiments, may or may not agree with our predictions. Depending on
the results of these experiments, we make physical laws about nature that thoroughly
accommodate quantum-mechanical observations. We will mainly follow the method
given in Sakurai’s textbook to discuss the basic subjects (Sakurai & Napolitano,
2011).

1.1 The Stern-Gerlach Experiment

We will discuss the Stem-Gerlach experiment in the first section. First, we heat
silver (Ag) atoms in an oven with a small hole. We see that some of the silver atoms
escape through that hole, and the beam affected by an inhomogeneous magnetic
field after it goes through a collimator. A pair of pole pieces produce the magnetic
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field, and one of the pieces has a very sharp edge.

We must answer the following question: What is the result when we apply the
magnetic field on the silver atoms? The silver atom is made up of 47 electrons and
a nucleus. 46 out of the 47 electrons are distributed in a spherically symmetrical
electron cloud and do not have net angular momentum. We observe that the atom
does have an angular momentum because of the spin-intrinsic as opposed to the last
electron’s orbital momentum. The atom’s magnetic moment is equal to the 47th
electron’s spin magnetic moment, which means µ ∝ S (µ is the magnetic moment
of the atom, S is the electron spin).

The interaction between the external magnetic field and the atom is due to its
magnetic moment:

(1.1) EI = −µ ·B,

and the z-component of the force exerted on the atom is as follows:

(1.2) Fz = ∂

∂z
(µ ·B) ≃ µz

∂Bz

∂z
.

We can ignore the components of the magnetic field in other directions. Because
the atom is too heavy, the classical concept of trajectory can be used.

When µz > 0 (Sz < 0), a downward force is exerted on the atom. While the µz

< 0 (Sz > 0), there is an upward force. The beam gets split depending on the
values of µz· In other words, in the Stern-Gerlach (SG) experiment, we measure µ

and S along the z-axis. The orientation of the atoms in the oven is random. We
do not try to select a specific direction for the orientation of µ. If the electrons
behaved like classical particles, we would measure all values of µz between |µ| and
-|µ|. We would observe the beams coming from the SG apparatus on the expected
range. Instead, we see that there are only two "spots" where we observe the atoms,
corresponding to "up" and "down" states. In other words, the silver beam is splitted
by the SG apparatus, and beams fall on two spots after splitting. This fact is called
"space quantization" when observed for the first time.

Only two values of the z-component of S are measured: up and down, which we
denote by Sz+ and Sz−. These are shown below:

(1.3) S±
z = ±h̄/2,
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where

h̄= 1.0546×10−27erg− s

= 6.5822×10−16eV − s
(1.4)

Observing the electron spin angular momentum is one of the pioneering works shap-
ing quantum physics.

According to the classical description of particles, the atoms would have been ob-
served over a vertical distance and distributed continuously. Instead, what we ob-
serve contradicts classical physics. The beam interestingly divides into two parts
(up and down).

One may apply an inhomogeneous field in different directions. For example, a field
is applied in the x-direction, and the beam proceeds in the y-direction. In this case,
the beam can be divided into Sx+ and Sx− components.

1.2 Spin-1/2 States

In this section, the spin-1/2 systems will be discussed. We use the base kets, |Sz;±⟩
denoted by |±⟩ for brevity. For these base kets, the identity operator is written as

(1.5) I = |+⟩⟨+|+ |−⟩⟨−| .

We can write Sz as

(1.6) Sz = (h̄/2)(|+⟩⟨+|− |−⟩⟨−|)

which gives

(1.7) Sz |±⟩ = ±h̄/2 |±⟩ .

There are two other operators which flip the spin of a particle by also adding the
constant h̄ as a coefficient,

(1.8) S+ = h̄ |+⟩⟨−| , S− = h̄ |−⟩⟨+| .
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If S+ acts on the spin-up ket, it turns into a null ket. This is also the case when S−

acts on the spin-down ket. S+ raises the spin by one unit of h̄. 2. It is impossible
to have a spin-3/2 particle out of a spin-1/2 particle, so we get a null state when
S+ acts on the spin-up state or S− is applied to the spin-down state. 1. The matrix
representations of the spin states in Sz basis are in the following:

(1.9) |+⟩ =
1

0

 , |−⟩ =
0

1

 .
The spin operator Sz is given as:

(1.10) Sz = h̄

2

1 0
0 −1

 ,
and the raising and lowering operators are

(1.11) S+ = h̄

0 1
0 0

 , S− = h̄

0 0
1 0

 .

1.2.1 Pauli Two-Component Formalism

Calculations with the states of spin-1/2 systems can be done in the spinor formalism
used by Pauli in 1926 for the first time. We can represent a ket (or a bra) in a column
(row) matrix. One needs to arrange the expansion coefficients so that any state can
be defined using the new base kets. The eigenstates of the Sz matrix are

(1.12) |+⟩ =
1

0

 , |−⟩ =
0

1

 ,
which may be shown in rows as well,

(1.13) ⟨+| = (1,0),⟨−| = (0,1).

Any state can be expressed using these base kets,

(1.14) |α⟩ = |+⟩⟨+|α⟩+ |−⟩⟨−|α⟩ =
⟨+|α⟩

⟨−|α⟩

 .
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We may denote ⟨±|α⟩ as c± which can be complex or real numbers. The matrix
elements ⟨±|Si |±⟩ give 2×2 matrices where i= x,y,z showing the physical dimen-
sions. These are called the Pauli matrices. The matrix representations of the Pauli
matrices are in the following:

(1.15) Sx = h̄

2

0 1
1 0

 ,Sy = h̄

2

0 −i
i 0

 ,Sz = h̄

2

1 0
0 −1

 .
One may prefer to express the Pauli matrices without h̄

2 . We wrote them with the
h̄
2 constant. In the literature, the Pauli matrices are shown with σk when the h̄
constant is omitted. For simplicity, we will use the version without the constant
from now on.

1.3 Spin-1 Systems

Pauli spin matrices represent the spin-1/2 particles’ spin measurements. In this sec-
tion, we discuss bosonic states’ spin operators which are called spin-1 measurement
operators. These operators are 3×3 matrices shown as

(1.16) Sx = 1√
2


0 1 0
1 0 1
0 1 0

 ,Sy = 1√
2i


0 1 0

−1 0 1
0 −1 0

 ,

and

(1.17) Sz =


1 0 0
0 0 0
0 0 −1

 .

The spin measurement operator along the z-axis is the matrix that we use for the
Klyachko-Can-Binicioğlu-Shumovsky (KCBS) scenario. The eigenkets of Sz are

(1.18) |1⟩ =


1
0
0

 , |0⟩ =


0
1
0

 , and |−1⟩ =


0
0
1

 .

Their eigenvalues are 1, 0 and −1, respectively. The mathematical framework of
spin-1/2 and spin-1 particles are very similar. We do not need to discuss the spin-1
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matrices since they will often be used when we consider the KCBS scenario.

1.4 Quantum Measurements

We will now discuss quantum measurements which have a crucial role in our work. P.
A. M. Dirac defines the measurement process in Quantum Theory as being different
from classical measurements (Dirac, 1958):

A measurement always causes the system to jump into an eigenstate of
the dynamical variable that is being measured.

The interpretation of this is as follows: Before we measure observable A, the system
is assumed to be in the state

(1.19) |α⟩ =
∑
a′
ca′
∣∣∣a′
〉

=
∑
a′

∣∣∣a′
〉〈
a′
∣∣∣α〉 .

After the measurement, the system collapses into one of the eigenstates. We may
show the process as follows:

(1.20) |α⟩ →
∣∣∣a′
〉
.

The observation affects the measurement, changing the initial state. The observed
state is different than it was just before the measurement, in general, if it was not
in one of the eigenstates of the measured quantity.

We can not know for 100 percent what we will observe as a result of a measurement.
However, we may calculate the probability of finding the state |a′⟩,

(1.21) Pa′ =
∣∣∣〈a′

∣∣∣α〉∣∣∣2.
Note that |α⟩ is normalized,

(1.22)
∑
a′
Pa′ = 1.

For a collection of identical physical systems, we need to consider a large number of
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measurements. Such a collection is called a pure ensemble.

If the state ket is |a′⟩, then the probability of getting a′ in A measurement is 1, which
is the expected result. When we measure once again, we only get a’. This is the
only result we obtain regardless of how many times we perform a measurement. The
probability of getting a′′ where a′′ ̸= a′ is zero. This is the orthogonality condition
between kets. When a particle is in the state |Sz;+⟩, one may certainly say that it
is not in the state |Sz;−⟩.

The probability of observing any a′ is nonnegative. Furthermore, the sum of prob-
abilities for all a′s must be one. This is expressed in Equation 1.22.

The expectation value of an observable A is

(1.23) ⟨A⟩ = ⟨α|A |α⟩

which can be rewritten as

⟨A⟩ =
∑
a′

∑
a′′

〈
α
∣∣∣a′′
〉〈
a′′
∣∣∣A ∣∣∣a′

〉〈
a′
∣∣∣α〉

=
∑
a′
a′
〈
α
∣∣∣a′
〉〈
a′
∣∣∣α〉

=
∑
a′
a′
∣∣∣〈α∣∣∣a′

〉∣∣∣2 =
∑
a′
a′P (a′).

(1.24)

We know well that this is the average of some statistical quantity. One should notice
that eigenvalues are not identical to expectation values. For example, ⟨Sz⟩ can be
any real number between -h̄/2 and h̄/2; in other words, the eigenvalues are the
bounds for the average value.

To understand the meaning of measurements better, we will discuss the notion
of selective measurement. Previously, we mentioned the Stern-Gerlach experiment
where we only observe one of the spin states, and the other state is completely
blocked. This is a measurement process performed by a device that lets only one
eigenket pass through. This is a selective measurement. Mathematically, we express
this as a projection operator,

(1.25) Λa′ =
∣∣∣a′
〉〈
a′
∣∣∣ .

1.5 Compatible Observables
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In this section, we will discuss the compatibility of observables. The compatibility
of the observables A and B are valid when they commute,

(1.26) [A,B] = 0.

If they are not compatible, they do not commute,

(1.27) [A,B] ̸= 0.

For example, S2 and Sz commute, so they are compatible; however, Sx and Sz do
not commute and hence are incompatible observables.

We need to introduce the concept of degeneracy. If some eigenkets of an observable
have the same eigenvalue, we say there is degeneracy in a quantum system. This
causes a problem with labeling each state since, for example, if two eigenkets have
the eigenvalue a′, we can not use the notation |a′⟩ for labeling. We said earlier that
the ket space is spanned by |a′⟩; however, when the number of dimensions is larger
than the number of distinct eigenvalues of the observable A, the spanning of the
ket space runs into difficulty. When a quantum system has degenerate states for
observable A, we may use the eigenvalues of some other observable to define the
degenerate states.

Theorem 1.1 Suppose that [A,B] = 0, and there is no degeneracy among the eigen-
values of A. The matrix elements (⟨a′′|B |a′⟩) are diagonal, and if we use |a′⟩ as the
base kets, the matrix elements of A are diagonal as well.

Due to the compatibility of observables, we see that

(1.28)
〈
a′′
∣∣∣ [A,B]

∣∣∣a′
〉

= (a′′ −a′)
〈
a′′
∣∣∣B ∣∣∣a′

〉
= 0.

So, ⟨a′′|B |a′⟩ is equal to zero if a′ ̸= a′′.

The matrix elements of B can be written as

(1.29)
〈
a′′
∣∣∣B ∣∣∣a′

〉
= δa′a′′

〈
a′
∣∣∣B ∣∣∣a′

〉
We can represent both observables A and B as diagonal matrices having the same
base kets. The observable B can be written as the following matrix:

(1.30) B =
∑
a′′

∣∣∣a′′
〉〈
a′′
∣∣∣B ∣∣∣a′′

〉〈
a′′
∣∣∣

8



When this operator is applied to an eigenstate of A,

B
∣∣∣a′
〉

=
∑
a′′

∣∣∣a′′
〉〈
a′′
∣∣∣B ∣∣∣a′′

〉〈
a′′
∣∣∣a′
〉

=
∑
a′′

∣∣∣a′′
〉〈
a′′
∣∣∣B ∣∣∣a′′

〉
δa′a′′

=
∣∣∣a′
〉〈
a′
∣∣∣B ∣∣∣a′

〉
.

(1.31)

This is the eigenvalue equation for the observable B with eigenvalue

(1.32) b′ =
〈
a′
∣∣∣B ∣∣∣a′

〉
.

The state |a′⟩ is an eigenket of both A and B operators. We may denote this state
as |a′, b′⟩.

The compatible observables have the same eigenkets, denoted by |a′, b′⟩, and have
the property

(1.33) A
∣∣∣a′, b′

〉
= a′

∣∣∣a′, b′
〉
,

(1.34) B
∣∣∣a′, b′

〉
= b′

∣∣∣a′, b′
〉
.

For degenerate systems, the notation |a′, b′⟩ is much more useful. The eigenvalues
of Lz (the z-component of orbital angular momentum) and L2 (orbital angular
momentum squared) are mlh̄ and h̄2l(l+1), respectively. mz = −l, −l+1 , . . ., +l
and l is an integer. To express an orbital angular-momentum state specifically, we
must specify l and mz. For example, if l = 2, the mz value can be 0, +2, +1, −1,
or −2; if mz = 2, l can be 2, 3, 4, 5, and so on. We can clearly express the orbital
angular-momentum state by specifying both quantities. K ′ is often used to denote
(a′, b′),

(1.35)
∣∣∣K ′

〉
=
∣∣∣a′, b′

〉
.

One may generalize to a case with several compatible observables, namely,

(1.36) [A,B] = [B,C] = [A,C] = ...= 0.

Let us assume that there are a set of commuting observables; that is, one may
not add any more operators in our case. The commutation relations are given in
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1.36. There may be degeneracies for each operator, but if we specifically give a
combination (a′, b′, c′, ...), then the common eigenket of A, B, C, . . . is expressed
clearly. One may again use K ′ to denote (a′, b′, c′, ...). The orthonormality relation
is given for

(1.37)
∣∣∣K ′

〉
=
∣∣∣a′, b′, c′, ...

〉
as in the following:

(1.38)
〈
K ′′

∣∣∣K ′
〉

= δK′K′′ = δa′a′′δb′b′′δc′c′′ ...

We can write the completeness relation as

(1.39)
∑
K′

∣∣∣K ′
〉〈
K ′
∣∣∣=∑

a′

∑
b′

∑
c′
...
∣∣∣a′, b′, c′, ...

〉〈
a′, b′, c′, ...

∣∣∣= 1.

Suppose that A and B are compatible observables. One measures the observable
A first, and we obtain a′. Subsequently, we may apply the operator B, and as a
result, we may obtain b′. Then we measure A again. We always obtain a′ as the
third result with certainty; that is, the measurement of the observable B does not
delete the information obtained in the first measurement of the operator A. The
measurement process is as follows:

(1.40) |α⟩ A measurement−−−−−−−−−−−→
∣∣∣a′, b′

〉
B measurement−−−−−−−−−−−→

∣∣∣a′, b′
〉

A measurement−−−−−−−−−−−→
∣∣∣a′, b′

〉
.

For the degenerate case, this is what happens: After the first measurement of the
observable A, yielding a′, the system collapses into some linear combination

(1.41)
n∑
i

c
(i)
a′

∣∣∣a′, b(i)
〉
.

We get the same eigenvalue a′ when the operator A acts on the set of the kets∣∣∣a′, b(i)
〉
. n is the degree of degeneracy. When the operator B acts on the state, one

of the terms in the linear combination may be selected. The third measurement of
the operator A gives a′ as a result. Regardless of degeneracy, A and B measurements
do not affect each other. This is called compatibility of the observables A and B.
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1.6 Incompatible Observables

In this section, we will discuss incompatible observables. We must point out that
incompatible observables have a partial set of the same eigenstates for different
operators. If we assume that the previous statement is false, we would have a set of
the same eigenkets in accordance with Equations 1.33 and 1.34. One can easily see
that

(1.42) AB
∣∣∣a′, b′

〉
= Ab′

∣∣∣a′, b′
〉

= a′b′
∣∣∣a′, b′

〉
,

and

(1.43) BA
∣∣∣a′, b′

〉
=Ba′

∣∣∣a′, b′
〉

= a′b′
∣∣∣a′, b′

〉
.

This leads to the commutation relation between the observables A and B,

(1.44) [A,B]
∣∣∣a′, b′

〉
= 0.

|a′, b′⟩ is not valid for incompatible observables; however, there is an example to
be discussed. There may exist a subspace of the ket space such that 1.44 is true
for the operators A and B with incompatibility between them. The example is as
follows: For an l = 0 state, even though Lx and Lz are not compatible, this state is
an eigenstate of both Lz and Lx (eigenvalue is zero).

Let us look at an example of selective measurements. There are filters (A), (B),
and (C), all of which select a particular state and reject others. The (A), (B), and
(C) filters select a′, b′, and c′, respectively. We want to calculate the probability of
getting |c′⟩ when the beam is normalized to unity after the first filter (A). We find
the probability as in the following:

(1.45) P (c′|b′)P (b′|a′) =
∣∣∣〈c′∣∣∣b′〉∣∣∣2∣∣∣〈b′∣∣∣a′

〉∣∣∣2.
The sum over b′ to consider all b′ paths is taken,

(1.46)
∑
b′
P (c′|b′)P (b′|a′).

Let us look at an example with a different arrangement, and in this arrangement the
(B) filter does not operate. Then the probability of obtaining |c′⟩ is just |⟨c′|a′⟩|2,
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which we can write as follows:

∣∣∣〈c′∣∣∣a′
〉∣∣∣2 =

∣∣∣∣∣∣
∑
b′

〈
c′
∣∣∣b′〉〈b′∣∣∣a′

〉∣∣∣∣∣∣
2

=
∑
b′

∑
b′′

〈
c′
∣∣∣b′〉〈b′∣∣∣a′

〉〈
a′
∣∣∣b′′〉〈b′′∣∣∣c′〉(1.47)

The state |a′⟩ can be written in terms of the B eigenkets

(1.48)
∣∣∣a′
〉

=
∑
b′

∣∣∣b′〉〈b′∣∣∣a′
〉
,

We sum over the values of b′, which correspond to all possible paths. The probability
of obtaining c′ depends on whether or not we perform (B) measurements.

1.7 The Uncertainty Relation

We will discuss the uncertainty relation in this section. For an observable A, the
following operator is given:

(1.49) ∆A= A−⟨A⟩.

The average value of (∆A)2 (the dispersion of A) is

⟨(∆A)2⟩ = ⟨A2 −2A⟨A⟩+ ⟨A⟩2⟩

= ⟨A2⟩−⟨A⟩2(1.50)

The last line of 1.50 is an alternative way of expressing dispersion, which is also
called mean square deviation, or variance. If the average is taken for an eigenstate
of A, dispersion is equal to zero. For example, for the Sz+ state, the variance of Sx

is found as below:

(1.51) ⟨Sx
2⟩−⟨Sx⟩2 = h̄2

4 .

We now explain the uncertainty relation. We have two observables, A and B. The
following inequality is valid for any state:

(1.52) ⟨(∆A)2⟩⟨(∆B)2⟩ ≥ 1
4 |⟨[A,B]⟩|2.
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For proof, we need to state three theorems.

Theorem 1.2 The Schwarz inequality is given in the following:

(1.53) ⟨α|α⟩⟨β|β⟩ ≥ |⟨α|β⟩|2,

which is similar to

(1.54) |a|2|b|2 ≥ |a ·b|2

in real space.

Theorem 1.3 We obtain a real number when the average value of a Hermitian
operator is taken.

Theorem 1.4 When we calculate the average value of an anti-Hermitian operator,
shown as

(1.55) C = −C†,

we get an imaginary number.

Using these theorems, we can prove the uncertainty relation given in 1.52. We make
use of Theorem 1.2 with

(1.56) |α⟩ = ∆A |⟩ ,

(1.57) |β⟩ = ∆B |⟩ .

Then we obtain the following inequality:

(1.58) ⟨(∆A)2⟩⟨(∆B)2⟩ ≥ |⟨∆A∆B⟩|2

Blank kets are used because they may be any state. Note that A andB are Hermitian
operators. We evaluate the right-hand side of Equation 1.58, but first, we write

(1.59) ∆A∆B = 1
2[A,B]+ 1

2{A,B}.

[∆A,∆B] = [A,B], and

(1.60) ([A,B])† = (AB−BA)† =BA−AB = −[A,B],
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which means that [A,B] is an anti-Hermitian operator. In contrast,

(1.61) {A,B}† = {A,B}.

So, on the right-hand side of the following equation,

(1.62) ⟨∆A∆B⟩ = 1
2⟨[A,B]⟩+ 1

2⟨{A,B}⟩,

the first term is purely imaginary, whereas the second is purely real. We have used
Theorems 1.3 and 1.4. Then,

(1.63) |⟨∆A∆B⟩|2 = 1
4 |⟨[A,B]⟩|2 + 1

4 |⟨{A,B}⟩|2.

From Equation 1.58, we know that

(1.64) ⟨(∆A)2⟩⟨(∆B)2⟩ ≥ 1
4 |⟨[A,B]⟩|2 + 1

4 |⟨{A,B}⟩|2.

The proof of the uncertainty relation is complete.

In the next section, we will discuss quantum contextuality in detail; but I want
to briefly mention its possible relation with the uncertainty relation. Since spin
measurement operators are used to test classical inequalities, possible uncertainty
relations may be investigated regarding the spin measurements used in various con-
textuality scenarios. This is an open problem of whether one may determine the
degree of contextuality using uncertainty relations. These uncertainties likely deter-
mine the degree of contextuality.
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2. QUANTUM CONTEXTUALITY AND ENTANGLEMENT

We are familiar with classical physics in our daily lives because it is usually ob-
servable with the naked eye. It is easier to make a connection between what is
happening and its numeric calculations. This is, however, not the case for quantum
physics. Some of the main reasons are: 1) Unlike in macro scale measurements,
some observables cannot be measured simultaneously beyond an uncertainty limit
(The Heisenberg uncertainty) (Heisenberg, 1927); 2) Quantum Physics is about what
happens in microscopic scales, so naked eyes are not helpful for observation; 3) Ob-
server affects the outcome when s/he observes; 4) Deterministic approach of classical
physics is not valid for quantum phenomena; in other words, the probabilistic ap-
proach is what one may use to determine possible outcomes of a measurement. The
fourth item will be mainly discussed in this thesis. It has been discussed if Quantum
Theory is a complete one (Einstein et al., 1935). In this context, it has been widely
discussed, and a new approach has been proposed that there may be a hidden vari-
able that may be why we need the probability theory. Along this direction, in the
following section, we will discuss the Einstein-Podolsky–Rosen (EPR) experiment
(Einstein et al., 1935) and the Bell inequality (Bell, 1966), which are the milestones
of ongoing discussions during the 20th century.

2.1 EPR and the Bell Inequality

As mentioned earlier, an observer acts as a part of the observed in some sense. This
is not the case for classical objects large enough to ignore small-scale corrections
imposed by Quantum Theory (QT). For example, when we see someone riding a
bicycle, we see ourselves independent of the moving objects, a human and a bicycle
in this case. This is not true while observing subatomic particles; an observer is part
of the physical system. According to QT, a particle does reveal physical properties
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as a part of the act of observation. Otherwise, as long as physical property is not
measured, that particle is not in a revealed state.

This initiated discussions among physicists, some of whom did not agree with the
probabilistic interpretation of QT. Albert Einstein was one of the famous scientists
who rejected the idea. In the famous EPR paper, he and co-authors Rosen and
Podolsky proposed a thought experiment, claiming that quantum mechanics is not
complete as a theory (Einstein et al., 1935). Let us check the following example to
understand what Einstein means by "spooky action": Suppose we have a maximally
entangled two-qubit state

(2.1) |ψ⟩ = |01⟩− |10⟩√
2

.

We have two agents, Alice and Bob, performing measurements on their respective
qubits. When Alice measures one of the qubits, she can predict the outcome of Bob’s
measurement with certainty. Alice acquires the information on the outcome of Bob’s
measurement instantaneously, which is incompatible with the fact that transmitting
information cannot be faster than the speed of light.

Nearly thirty years after the EPR paper was published, Bell’s experiment showed
that QT is compatible with Nature, and invalidated the EPR paper (Bell, 1966).
The result Bell found gave us the famous Bell’s inequality, which specifies the classi-
cal range to be violated by quantum mechanics. The Clauser-Horne-Shimony-Holt
CHSH inequality is an example of Bell inequalities (Clauser et al., 1969). In this
measurement scenario, there are two agents again, Alice and Bob, and we have a
quantum system of two qubits. Observers are far away from each other and mea-
sure spins of their respective qubits. Alice performs measurements on the first qubit,
whereas Bob measures the second one. Alice wants to measure the following ob-
servables: A1 = Z, A2 =X where Z and X are the usual Pauli spin matrices. Bob
wants to measure the following observables:

(2.2) B1 = −(Z+X)/
√

2

and

(2.3) B2 = (Z−X)/
√

2.

Bell defines the following the quantity

(2.4) SBell = A1B1 +A1B2 +A2B1 −A2B2
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which can be redefined as follows:

(2.5) SBell = (A1 +A2)B1 +(A1 −A2)B2.

Alice and Bob get two values for each measurement, +1 and −1. When A1 = A2,

(2.6) SBell = 2A1,2B1.

It is easy to see that SBell = ±2. When A1 ̸= A2,

(2.7) SBell = 2A1B1, or −2A2B1.

In any case, SBell = ±2. We already defined the observables Ai and Bi with Pauli
matrices so that we can write the following

(2.8) SBell = Z⊗ −(Z+X)√
2

+Z⊗ Z−X√
2

+X⊗ −(Z+X)√
2

+X⊗ Z−X√
2

.

The average of this Bell operator for a state

|ψ⟩ = |01⟩− |10⟩√
2

is given by

(2.9) ⟨SBell⟩ = 2
√

2.

This exceeds the classical upper bound shown in the Bell inequality. The violation of
the Bell inequality tells us that the classical predictions are not accurate in Nature.
On the contrary, QT is well obeyed by Nature. Recall that it does not matter how
far Alice and Bob are from each other. Distance between them does not affect
the outcome. The assumption that Alice does not influence the result of Bob’s
measurement is called ’locality’ which is invalid since one’s measurement determines
the other. In conclusion, our common sense about how the world works is wrong,
and we must deepen our understanding of physics to develop a good intuition.

2.2 Quantum Non-Locality
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As mentioned in the previous section, the principle of locality says that one’s ac-
tion on a physical state does not affect another physical state instantaneously; in
other words, physical actions are locally bounded according to this principle. How-
ever, as seen before, local boundaries imposed by the Bell inequality are exceeded
by measurements. Breaking the locality rule implies a new principle called ’quan-
tum non-locality’. This is a counterintuitive principle incompatible with our daily
life experience because we observe physical actions and define them locally. Local
limitations in classical physics govern any effect of physical activity.

Some physicists were reluctant to accept the probabilistic interpretations of quan-
tum mechanics, and some have argued that the outcomes of measurements appear
probabilistic due to unknown parameters. Until 1964, it may have been thought that
the theories based on hidden variables would give no different predictions. Then we
would have two approaches giving the same results while one tells there are un-
known parameters. Do we need such unknown parameters while we have a theory
giving the same results without any hidden variable? During these discussions, J.
S. Bell found an inequality to test the hidden variable model; however, it gave re-
sults compatible with quantum mechanical predictions (Bell, 1966). This is the Bell
inequality mentioned in the previous section. We think that the most important
result of the violation of Bell’s inequality is that we do not consider position, x.
Position is irrelevant in such a way that many physicists were irritated. Position in
no way can affect the outcome of measurements, which shows us that there is no
locality (non-locality). This is a unique feature of QT. The hidden variable model
has been discussed widely; however, it has been ruled out by many works (Bell, 1966;
Specker, 1960; Kochen & Specker, 1967; Bell, 1964; Aspect et al., 1982; Freedman
& Clauser, 1972). For further reading, please refer to (Sakurai & Napolitano, 2011)
and (Budroni et al., 2022).
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2.3 Quantum Contextuality

In the rest of this chapter, we will focus on another unique feature of QT: quantum
contextuality. First, we will discuss the pioneering work by Kochen and Specker (KS)
(Kochen & Specker, 1967) and some other scenarios in which quantum contextuality
has been shown. Later on, we will mention the KCBS inequality which is the
simplest example of KS-like scenarios (Klyachko, 2002; Klyachko et al., 2008). A
qutrit-system, a three-level quantum system, was studied to find possible contextual
properties in this scenario.

2.3.1 KS-like Scenarios

Kochen and Specker, who used 117 projective measurements in the real three-
dimensional space (Kochen & Specker, 1967), have proven Quantum contextuality
for the first time. Since then, many state-independent and state-dependent measure-
ment scenarios have been proposed to simplify measurement systems by reducing
the number of observables. State-independent means that one can observe quan-
tum contextuality for any state in a specific class; however, one should look into
the specific quantum states in a class to observe contextuality in state-dependent
scenarios. So much has been achieved, and the number of measurements drastically
decreased. In the following subsections, we will discuss the simplified versions of
KS-like measurement scenarios that do not require a specific group of qutrits to
exhibit contextuality.

2.3.1.1 State-Independent Proof of Quantum Contextuality with 13 Ob-

servables

Yu and Oh succeeded in revealing contextuality by using only 13 projective mea-
surements (Yu & Oh, 2012). Consider the observable

(2.10) Ai = I−2 |vi⟩⟨vi|
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where I is the identity matrix. |vi⟩ are the state vectors defined by Yu and Oh.
The set of these vectors is in the following:

1√
3


−1
1
1

 , 1√
2


0
1

±1

 ,


1
0
0

 , 1√
3


1

−1
1

 , 1√
2


1
0

±1

 ,


0
1
0

 , 1√
3


1
1

−1

 , 1√
2


1

±1
0

 ,


0
0
1

 , 1√
3


1
1
1

 .
We should note that there are three eigenstates for each Ai, two of which have
the same eigenvalue +1, and one has the eigenvalue −1. This is a semi-degenerate
system.

The following inequality must be satisfied for a non-contextual system to be valid,

(2.11) κ= 1
2

( 4∑
i=1

⟨Ai⟩−
4∑

i=1

10∑
j=5

Γij⟨AiAj⟩
)

+
13∑

k=5
⟨Ak⟩−

12∑
m=5

13∑
n>m

Γmn⟨AmAn⟩ ⩽ 9.

The authors set the following condition:

Γij = 1 for ⟨vi|vj⟩ = 0,
Γij = 0 for ⟨vi|vj⟩ ̸= 0.

If one checks all possible assignments of values, +1 and −1, s/he can see that the
upper bound can not be exceeded. This is very similar to the Bell case where we
assign the same values to measurement outcomes; however, there is also a lower
bound in addition to an upper bound. When we perform measurements on qutrit
states, Equation 2.11 gives the following:

(2.12) κ= 29
3 = 9+ 2

3 .

To note, Equation 2.11 is the improved version of Yu and Oh’s proposal (Cabello
et al., 2012) to make it experimentally more easily testable. The inequality given
in Equation 2.11 is violated by any qutrit state; therefore, it is a state-independent
contextuality.

Cabello et al. (Cabello et al., 2012) transformed this non-contextual inequality into
a Bell inequality, saying that performing two compatible measurements on a single
qutrit is the same as performing them on two separated qutrit states which are
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entangled as follows:

(2.13) |ψ⟩ = 1√
3
(

|0⟩1 |0⟩2 + |1⟩1 |1⟩2 + |2⟩1 |2⟩2
)
.

Since there are observers, Alice and Bob, one needs to determine how to distribute
these measurements between them. Alice is responsible for the measurements Ai (i
= 1, . . . ,4,11,12,13) while Bob performs measurements Bj ≡Aj (j = 5, . . . ,10).
Then the inequality in Equation 2.11 is transformed into a Bell-type non-contextual
inequality

(2.14)
κ′ = 1

2

(∑4
i=1⟨Ai⟩−∑4

i=1
∑10

j=5 Γij⟨AiBj⟩
)

+∑10
j=5⟨Bj⟩+∑13

k=11⟨Ak⟩

−∑13
k=11

∑10
j=5 Γkj⟨AkBj⟩−⟨A11A12⟩−⟨A11A13⟩−⟨A12A13⟩−⟨B5B6⟩

−⟨B7B8⟩−⟨B9B10⟩ ⩽ 9.

For the state given in Equation 2.13,

⟨AiBi⟩ = 1 for i= 1, ...,13.

By using this, Cabello et al. were able to replace ⟨AiAj⟩ and ⟨BiBj⟩ with

(2.15) 1
2
(
⟨AiBj⟩+ ⟨AjBi⟩−⟨AiBi⟩−⟨AjBj⟩

)
.

One then can obtain the following inequality,
(2.16)

β = 1
2

(∑4
i=1⟨Ai⟩−∑4

i=1
∑10

j=5 Γij⟨AiBj⟩+∑10
j=5⟨AjBj⟩−∑10

j=5
∑10

m=5 Γjm⟨AjBm⟩

−∑13
k=11

∑13
n=11 Γkn⟨AkBn⟩

)
+∑10

j=5⟨Bj⟩+∑13
k=11⟨Ak⟩−∑13

k=11
∑10

j=5 Γkj⟨AkBj⟩

+∑13
k=11⟨AkBk⟩ ⩽ 15.

When the given two-qutrit state is measured, it gives

(2.17) ⟨β⟩ = 47
3 = 15+ 2

3 .

Again we see a violation, which means that Cabello et al. successfully derived a
non-contextual inequality violated by any two-qutrit state (Cabello et al., 2012).
Equation 2.16 is in the form of a Bell-type inequality. Its importance comes from
the fact that it provides a link between the contextuality of a single qutrit and the
non-locality of an entangled pair. The observables are the same, with the differ-
ence in how the measurements are performed. Yu and Oh perform measurements
sequentially on the same system, whereas Cabello et al. do this on different systems.
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2.3.1.2 Contextuality of Qutrit States in a Nine-observable System

Reducing the number of measurements has been of great importance in understand-
ing contextuality in QT and can be essential in quantum information processing as
well. Simplification of measurement systems sheds light on how fundamental fea-
ture contextuality is. Along this direction, it has been shown that one can find nine
observables to observe contextuality for qutrits (Kurzyński & Kaszlikowski, 2012).
The authors used the following rays:

|1⟩ =


1
0
0

 , |2⟩ =


0
1
0

 , |3⟩ =


0
0
1

 , |4⟩ = 1√
2


0
1

−1

 , |5⟩ = 1√
3


1
0

−
√

2

 ,

|6⟩ = 1√
3


1

√
2

0

 , |7⟩ = 1
2


√

2
1
1

 , |8⟩ = 1
2


√

2
−1
−1

 , |9⟩ = 1
2


√

2
−1
1

 .

One assigns either 1 or 0 to observables, distributing them in any possible scenario.
As a result, one obtains the expectation values in the classical range for all possible
cases. Using the argument in (Kurzyński & Kaszlikowski, 2012), it was shown that
the classical upper bound is given by

(2.18)
9∑

i=1
⟨Πi⟩ ⩽ 3

where Πi = |i⟩⟨i|. One can define the following observable,

(2.19) Ai = 1−2Πi.

Then,

(2.20) AiAj = (1−2Πi)(1−2Πj) = 1−2Πj −2Πi +4ΠiΠj

which gives

(2.21) AiAj = 1−2Πj −2Πi
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when |i⟩ and |j⟩ are orthogonal to each other. Using this relation, one obtains the
following inequality,

(2.22)
∑

(i,j)∈E(G)
⟨AiAj⟩+ ⟨A9⟩ ≥ −4

where E(G) denotes the set of neighboring edges in the graph G. G is explicitly
illustrated in (Kurzyński & Kaszlikowski, 2012), showing the orthogonality relations
among nine rays. Equation 2.18 can be expressed as follows:

(2.23)
9∑

i=1
⟨Πi⟩ = ⟨C⟩.

C is equivalent to the summation of all projective measurements. Its eigenvalues
are

(2.24) λ1 = 10
3 , λ2 = 3, λ3 = 8

3 .

The authors used the argument that any density matrix, whose eigenvectors are
|ψ1⟩, |ψ2⟩, and |ψ3⟩, can be in a diagonal form,

(2.25) ρ= p |ψ1⟩⟨ψ1|+ q |ψ2⟩⟨ψ2|+ r |ψ3⟩⟨ψ3| ,

provided that

(2.26) p⩾ q ⩾ r.

One can calculate the expectation value of C as follows:

(2.27) ⟨C⟩ = Tr(ρC) = 1
3(10p+9q+8r)

which gives

(2.28) ⟨C⟩ = 3+ p− r

3

due to the normalization condition,

(2.29) q = 1−p− r.

⟨C⟩ = 3 when p = r = 1/3; otherwise, one obtains a result above the classical
upper bound, which means the inequality in Equation 2.18 is violated. This is very
similar to the CHSH scenario (Clauser et al., 1969) because one has to properly
arrange rays on which measurements are performed to observe contextuality. This
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Figure 2.1 We have unit vectors whose ends correspond to five corners of the penta-
gram. One performs each measurement along a unit vector. We have the following
condition for the vectors: i ⊥ i+ 1. We also show the symmetry axis of the penta-
gram. We have adapted this figure from the original KCBS article (Klyachko et al.,
2008)

work concludes that one can find nine projective measurements for any qutrit state
to observe quantum contextuality. We emphasize that nine projectors should be
determined separately for each qutrit.

2.3.2 The KCBS Scenario

In this section, we will talk about the KCBS scenario, including five projective
measurements performed on a three-level quantum system (Klyachko et al., 2008).
The setting is based on a spin-1 system to demonstrate the contextuality of a qutrit
system. The following observables are defined,

(2.30) Ai = 2S2
i −1

where Si are spin projection measurements, and i= 1,2, ...,5. We know that, for a
spin-1 system, there are three non-degenerate eigenstates with eigenvalues -1, 0, and
1. For spin values +1 and -1, one can see that we get the same eigenvalue when Ai is
measured. We may argue that the system is made into a semi-degenerate three-level
quantum system. We now have two eigenvalues, +1 and -1. Ai and Aj commute
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when n̂i ⊥ n̂j . Authors discovered five directions along which one can measure both
Ai and Ai+1. The following inequality must be satisfied for any non-contextual
system,

(2.31) ⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩+ ⟨A4A5⟩+ ⟨A5A1⟩ ≥ −3.

The KCBS operator, which corresponds to

(2.32)
∑

i mod5
AiAi+1,

is a diagonal matrix given as:

(2.33) SKCBS =


−5+2

√
5 0 0

0 5−4
√

5 0
0 0 −5+2

√
5

 .

It was shown that for the neutrally polarized spin state (with spin value 0) given as

(2.34) |0⟩ =


0
1
0

 ,

we get

⟨0|SKCBS |0⟩ =


0
1
0


T

.


−5+2

√
5 0 0

0 5−4
√

5 0
0 0 −5+2

√
5

 .


0
1
0


= 5−4

√
5 (≃ −3.94)

(2.35)

This is the lower quantum limit exceeding the classical bound; in other words, this
is the lowest value. That is a remarkable result because it tells us quantum systems
are intrinsically contextual, and there is no need for entanglement to observe non-
classical behaviors. For the eigenket |1⟩, we obtain the following result:

⟨1|SKCBS |1⟩ =


1
0
0


T

.


−5+2

√
5 0 0

0 5−4
√

5 0
0 0 −5+2

√
5

 .


1
0
0


= −5+2

√
5 (≃ −0,53).

(2.36)
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We get the same result for the eigenket |−1⟩. As one can see, these results are
within the classical range. Moreover, if we take the average of the KCBS operator
for the homogeneous linear combination of the kets |±1⟩, we still obtain the same
result (≃ −0,53). However, in the following section, we will see that the maximal
violation of the KCBS inequality is possible when one considers the homogeneous
combination of these kets when rotated.

2.3.3 Contextual Retrit States in the KCBS Scenario

The outline of this subsection is as follows: In Section 2.3.3.1, we investigate the
symmetry of the KCBS inequality through the rotational analysis (Diker & Gedik,
Diker & Gedik). In sections 2.3.3.2, 2.3.3.3 and 2.3.3.4 we keep on this rotational
analysis of the KCBS inequality for specific examples (Diker & Gedik, Diker &
Gedik). In Section 2.3.3.5, we look into the real subgroup of qutrit states and
classify them by their (non-)contextuality under certain rotations (Diker & Gedik,
Diker & Gedik). In Section 2.3.3.6, we provide the data on Euler angles and the
parameters of retrits. We also derive general formulas for them (Diker & Gedik,
Diker & Gedik).

2.3.3.1 Rotational invariance of the KCBS-type contextuality

The KCBS inequality is the simplest example of non-contextual inequalities. The
violation of this inequality shows us the contextual behavior of a particular group
of qutrit systems. It includes only five measurements performed by one agent on a
qutrit system. Within our knowledge, no one has not analyzed it, aiming at finding
symmetries in the Euclidean space E3. For this purpose, we will first check if the
KCBS operator is invariant under rotations about the symmetry axis (Z-axis). The
operator for a rotation about Z-axis by an angle alpha:

(2.37) e−i Sz
h̄ α

which is equal to

(2.38) I−Sz
2(1− cosα)− iSz sinα.
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We got this equation by expanding the exponential operator in power series. The
matrix representation of the rotation operator is in the following:

(2.39)


cos(α)− isin(α) 0 0

0 1 0
0 0 cos(α)+ isin(α)

 .

The KCBS operator is rotated around the Z-axis,

(2.40) ei Sz
h̄ α

[
A1A2 +A2A3 +A3A4 +A4A5 +A5A1

]
e−i Sz

h̄ α

which corresponds to the following matrix
−5+2

√
5 0 0

0 5−4
√

5 0
0 0 −5+2

√
5

 .

One can see the invariance of the KCBS operator under rotations around the Z-axis
which is the symmetry axis of the pentagram; in other words, non-contextuality (or
contextuality) is conserved for three-level quantum systems. This shows us that the
pentagram illustrated in Figure 2.1 is a nontrivial diagram since it is also symmetric.

2.3.3.2 Contextuality Region for Spin-zero State

The neutrally polarized spin state denoted by |0⟩ maximally violates the KCBS
inequality. It can be called the most non-classical state in the KCBS scenario;
however, we need to ask whether one can observe contextuality for this state if
rotated in the physical space. For this purpose, we analyze the KCBS operator
denoted by S through rotations as follows:

(2.41) ei Sz
h̄ αei

Sy
h̄ βei Sz

h̄ γSe−i Sz
h̄ γe−i

Sy
h̄ βe−i Sz

h̄ α = S′.

Note that α, β and γ are Euler angles. The expectation value for the |0⟩ state is

(2.42) ⟨0|S′ |0⟩ = (5−3
√

5)cos2β−
√

5
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which is a function of β, i.e., the only rotations we need to consider are the ones
around the Y -axis. The set of β values satisfying the following condition,

(2.43) ⟨S′⟩<−3

gives us the Euler angles for contextuality. The inequality in Equation 2.43 is
satisfied for the following sets: −31.717◦ <β < 31.717◦ and 148.283◦ <β < 211.717◦.
This tells us that the maximally contextual state, the neutrally polarized spin state
in our case, may behave classically under some rotations.

2.3.3.3 Non-contextuality of Spin-1 States is Invariant

In this section, we will check all rotations of the KCBS operator in the physical
Euclidean space E3 to determine any group of five measurements for which the
eigenstates of the spin-1 operator exhibits contextual behavior.

The neutrally polarized spin state is a maximally contextual quantum state violat-
ing the KCBS inequality under certain rotations. We will check if the other two
eigenstates exhibit the same type of behavior. The general rotation operator is

(2.44) e−i Sz
h̄ γe−i

Sy
h̄ βe−i Sz

h̄ α,

and the matrix form is as follows:

(2.45) D(α,β,γ) =


e−iα−iγ cos2

(
β
2

)
−e−iγ sin(β)√

2 eiα−iγ sin2
(

β
2

)
e−iα sin(β)√

2 cos(β) −eiα sin(β)√
2

eiγ−iα sin2
(

β
2

)
eiγ sin(β)√

2 eiα+iγ cos2
(

β
2

)
 .

The KCBS operator, denoted by S, is rotated as follows:

(2.46) D†(α,β,γ)SD(α,β,γ) = S′(α,β)

where S′ depends on α and β. Z-axis is the symmetry axis of the KCBS pentagram,
which is also rotated. The new symmetry axis is given as the following unit vector:
(sin(β)cos(γ),sin(β)sin(γ),cos(β)). The average of the new KCBS operator is found
as

(2.47) ⟨±1|S′ |±1⟩ = 1
2
((

3
√

5−5
)

cos(2β)+
√

5−5
)
,
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Figure 2.2 The average of the KCBS operator depends on α and repeats over intervals
of π radians. The classical limit that is −3 is not violated. We observe that the
spin states, having the spin values ±1, exhibit non-contextuality not affected by
rotations.

which means that the result depends on the rotation around the Y -axis. One may
see the plot for this result in Figure 2.2.

2.3.3.4 Contextuality of Homogeneous Linear Combination of Spin-1

States

As mentioned earlier, the spin states, |1⟩ and |−1⟩ give us non-contextual results
which are independent of rotations; in other words, we can not find any group of
five measurements to observe contextuality in the KCBS scenario. Our next step is
to check whether the homogeneous linear combination of those can violate the non-
contextuality inequality. For this, we calculate the expectation value of S′(α,β),

(2.48) ⟨ψ|S′(α,β) |ψ⟩

where

(2.49) |ψ⟩ = 1√
2

(|1⟩+ |−1⟩).

We obtain

(2.50) ⟨ψ|S′(α,β) |ψ⟩ =
(
−5+2

√
5
)

cos2(α)+
((

−5+3
√

5
)

cos(2β)−
√

5
)

sin2(α),
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Figure 2.3 The rotation of the KCBS operator. Red surfaces on the sphere corre-
spond to the contextual states for the homogeneous linear combination of |1⟩ and
|−1⟩. We observe the spherical symmetry for the red surfaces. We specify the ranges
of the Euler angles in degree units, for which we observe quantum contextuality.

which gives non-classical results for the following sets of Euler angles: 58.282◦ ≤ β ≤
121.718◦ and 58.282◦ ≤ α≤ 121.718◦, or 238.283◦ ≤ α≤ 301.718◦. In Figure 2.3, the
Euler angles, for which the KCBS inequality is violated, can be seen on the sphere.
We have found two minima of this function for β,α = 90◦ and α = 270◦, β = 90◦.
We find 5−4

√
5 for both minima, and the quantum state is maximally contextual.

The average of the spin-1 operator for |ψ⟩ is zero, as in the case of a zero-spin state,
and both |ψ⟩ and |0⟩ are maximally contextual. Recall that |1⟩ and |−1⟩ do not
exhibit contextuality when one measures separately in the KCBS scenario.

2.3.3.5 Classification of Retrit States

We work on the real subgroup of qutrit states and check if they are contextual
under some rotations. We consider the real subgroup spanning all possible linear
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combinations of |0⟩, |1⟩, and |−1⟩. The general form of a retrit state is as follows:

(2.51) |ψ⟩ = a |1⟩+ b |0⟩+ c |−1⟩

where a,b,c ∈ R. We may parameterize a retrit state by using spherical coordinates;

|ψ⟩ = sinθ cosϕ |1⟩+sinθ sinϕ |0⟩+cosθ |−1⟩

(0 ≤ θ < π, 0 ≤ ϕ < 2π).
(2.52)

We rotate the KCBS operator and calculate the expectation value,

(2.53) ⟨ψ|D†(α,β,γ)SD(α,β,γ) |ψ⟩ .

We obtain a function of α, β, θ and ϕ,

f(θ,ϕ,β,α) = 1
4

(
2((3

√
5−5)cos(2β)+

√
5−5)cos2(θ)

+(3
√

5−5)sin2(θ)(cos(2β)(3cos(2ϕ)−1)

−2
√

2sin(2β)cos(α)sin(2ϕ))

+4(3
√

5−5)sin(β)sin(2θ)(sin(β)cos(2α)cos(ϕ)

+
√

2cos(β)cos(α)sin(ϕ))

+sin2(θ)((3
√

5−5)cos(2ϕ)−
√

5−5)
)
.

(2.54)

We could not find the analytic solution to this function of four variables because it is
challenging; however, we may check the rotations of retrit states around the Y - and
Z-axis with certain rotation angles. We may simplify Equation 2.54 by assigning
values to β and α. This will help experimentalists to determine which Euler angles
should be used.

In the first example, we check the case with no rotation (β,α= 0), which gives

f(θ,ϕ,0,0) = 1
4

(
sin2(θ)

((
3
√

5−5
)

cos(2ϕ)−
√

5−5
)

+
(
3
√

5−5
)

sin2(θ)(3cos(2ϕ)−1)

+2
(
4
√

5−10
)

cos2(θ)
)
.

(2.55)

By doing straightforward calculations, f(θ,ϕ,β,α) can be found for different Euler
angles. The latter examples are for rotations around both Y - and Z-axis, or only

31



the Y -axis, which can be seen in the following:

f(θ,ϕ,π/2,0) = 1
4

(
sin2(θ)

((
3
√

5−5
)

cos(2ϕ)−
√

5−5
)

+
(
3
√

5−5
)

sin2(θ)(1−3cos(2ϕ))

+4
(
3
√

5−5
)

sin(2θ)cos(ϕ)−4
√

5cos2(θ)
)
,

(2.56)

f(θ,ϕ,π/4,0) = 1
8

(
2
(
3
√

5−5
)

sin2(θ)
(
cos(2ϕ)−2

√
2sin(2ϕ)

)
+4

(
3
√

5−5
)

sin(2θ)
(√

2sin(ϕ)+cos(ϕ)
)

+
(
3
√

5−5
)

cos(2θ)+
√

5−15
)
,

(2.57)

and

f(θ,ϕ,π/4,π/4) = 1
8

(
4
(
3
√

5−5
)

sin(2θ)sin(ϕ)

+2
(
3
√

5−5
)

sin2(θ)(cos(2ϕ)−2sin(2ϕ))

+
(
3
√

5−5
)

cos(2θ)+
√

5−15
)
.

(2.58)

In Figure 2.4, the region plots for Equations 2.55-2.58 are given. The red regions
shown on the spheres shrink and rotate as we apply the general rotation operator to
the KCBS operator. Whether we can observe contextuality in the KCBS scenario
does not depend on rotations around the Z-axis. Rotations around Z-axis affect
the result if and only if we rotate the KCBS operator around both Y -axis and Z-
axis. This causes the red regions to expand or shrink depending on Euler angles.
In conclusion, retrit states do not always exhibit contextual behavior in the KCBS
scenario; in other words, a qutrit state may be intrinsically contextual, but it does
not necessarily mean that we can observe quantum contextuality for any group of five
measurements. Furthermore, for a set of Euler angles, any retrit state can not violate
the KCBS inequality, i.e., they give results larger than the classical lower limit. Two
examples of the set of Euler angles for which we do not find any contextual retrit
state are provided: (1) 52.1◦ ≤ β ≤ 128◦, 232.2◦ ≤ β ≤ 308.1◦ where α = 41.8◦; (2)
32.9◦ ≤ β ≤ 61.5◦, 118.5◦ ≤ β ≤ 147.2◦, 213.0◦ ≤ β ≤ 241.6◦, and 298.7◦ ≤ β ≤ 327.3◦

where α = 104.5◦.
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Figure 2.4 We give the set of contextual retrit states shown as red regions on four
spheres under various rotations. The light grey region gives the set of non-contextual
states. The thick black arrow shows the symmetry axis of the KCBS pentagram.
The great circle is drawn to show the bows at ϕ = 0 and ϕ = π. The red regions
shrink and rotate while the KCBS operator is being rotated.

2.3.3.6 Relations between Euler Angles and Spherically-parameterized

Retrit States

In this section, we will find correlations between Euler rotation angles and the degree
of contextuality for retrit states by using the collected data. The general rotation
operator is

e−i Sz
h̄ γe−i

Sy
h̄ βe−i Sz

h̄ α,

where the last rotation around the Z-axis is ineffective, and we only take into account
the first rotation around the Z-axis together with the rotation around the Y -axis.
We need to determine the set of only β and α values for which we find maximally
contextual retrits. Retrit states are shown in spherical coordinates as follows: |ψ⟩ =
(sinθ cosϕ,sinθ sinϕ,cosθ) where 0 ≤ ϕ< 2π and 0 ≤ θ < π. There are four variables
in total. We aim to find retrit states that violate the KCBS inequality maximally,
and how they depend on Euler angles. Therefore, we need four relations where θmin

and ϕmin represent values for the global minima of f(θ,ϕ,β,α). Global minima
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are where we observe the maximal violation of the KCBS inequality. Finding the
minima is essential; however, it is a hard problem even in the real subgroup of qutrits.
Considering the most general solution, there are six parameters in total, making the
solution even harder. Two extra parameters are added to the problem from phases.
In our case, there are four variables in total. Instead of directly trying to solve
the problem, we chose to collect data for minima where the following equation is
satisfied:

(2.59) f(θmin,ϕmin,βmin,αmin) = 5−4
√

5,

which is the global minimum, i.e., the maximal contextuality. We acquired the data
for θmin, ϕmin, βmin and αmin. One can see it in Table 2.1. This data is important
for us to find possible trendlines between retrits and Euler angles and to show them
on two-dimensional plots.

By assigning some values to β (rotation angle around Y -axis), we found α (rotation
angle around Z-axis) values for which we observe maximal contextuality. We col-
lected the data for each variable satisfying Equation 2.59. We assigned the following
values to β:

β = 0, π16 ,
2π
16 ,

3π
16 , ...,

15π
16 ,π

for each of which it is possible to find θmin, ϕmin and αmin values to obtain Equation
2.59. We found these values for each assigned value of β. We saw that αmin ∈ {0,π}.
This eases our job and narrows down the solution set. Through the graph analysis
of Equation 2.59, we conjecture that β is continuously a part of the solution set for
minima.

We now look for possible relations between β and ϕ (θ) values. We provided the
data in Table 2.1 where one can see ϕ and θ values together with β values giving
the global minima (α is taken to be 0). In Figure 2.5, one may see data points and
its trendline on the β-ϕ graph given by:

(2.60) ϕmin(β) = 4.71239 −β.

Equation 2.60 gives us a straight line fitting almost perfectly; however, if one looks
closely, the collected data points can be seen, following a curve fluctuating around
the straight line. In light of this problem, we have added a trigonometric term with
a small coefficient. As a result, we obtain a curve fitting better, and ϕmin(β) can be
rewritten in a corrected form:

(2.61) 4.71239−β+(10
59)sin(2β).
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Table 2.1

Euler Angle Spherical Parameters of Retrits
βmin (rad) θmin (rad) ϕmin (rad)

0 1.57080 4.71239
π/16 1.43240 4.57265
2π/16 1.29678 4.42746
3π/16 1.16707 4.27100
4π/16 1.04720 4.09691
5π/16 0.94229 3.89869
6π/16 0.85888 3.67149
7π/16 0.80443 3.41581
8π/16 0.78540 3.14159
9π/16 0.80443 2.86737
10π/16 0.85888 2.61169
11π/16 0.94229 2.38449
12π/16 1.04720 2.18628
13π/16 1.16707 2.01218
14π/16 1.29678 1.85572
15π/16 1.43240 1.71053
16π/16 1.57080 1.57080
17π/16 1.70919 1.43106
18π/16 1.84481 1.28587
19π/16 1.97452 1.12941
20π/16 2.09439 0.95532
21π/16 2.19930 0.75710
22π/16 2.28271 0.52990
23π/16 2.33716 0.27422
24π/16 2.35619 0
25π/16 2.33716 -0.27422
26π/16 2.28271 -0.52990
27π/16 2.19930 -0.75710
28π/16 2.09439 -0.95532
29π/16 1.97452 -1.12941
30π/16 1.84481 -1.28587
31π/16 1.70919 -1.43106
32π/16 1.57080 -1.57080
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Figure 2.5 We show the data points taken for ϕmin and its linear trendline with
respect to β without correction.

The plot for Equation 2.61 is illustrated in Figure 2.6. In the next step, we will find
how θmin changes with rotation around the Y -axis. We can take αmin zero. One can
see the collected points and the curve in Figure 2.7. From the figure, it can be seen
that this is a usual trigonometric function with 2π-period. With some corrections,
we may get the following:

(2.62) θmin = 1.57−0.77sin(β).

The mathematical relations provided here are important because they provide the set
of Euler angles for which one observes maximal quantum contextuality. The relations
found are essential for experimental purposes. Recall that αmin can have two values,
π or 0, for maximally-contextual states, making finding the whole solution set easier.

Figure 2.6 We show the data points taken for ϕmin and its trendline with respect to
β with correction. We obtain a better-fitting curve than the one in Figure 2.5.
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Figure 2.7 The plot of θmin(β) which is a simple trigonometric function multiplied
by a coefficient. We also add a constant.

We took αmin zero for our case. When αmin = π, one should be able to find similar
relations due to symmetry.

2.3.3.7 The Set of Contextual Qutrit States in the Real Hilbert Space

In this section, we look into the real subspace of Hilbert space to determine the
always-non-contextual qutrit states; in other words, we will find the qutrit states
that do not violate the KCBS inequality for arbitrary Euler angles in the physical
space. We will check the subgroup spanning linear combinations of |0⟩ and |+⟩
where

(2.63) |+⟩ = 1√
2

(|1⟩+ |−1⟩).

Basis states are the usual eigenstates of the spin-1 operator (|0⟩, |1⟩, and |−1⟩ with
spin values 0, 1, and -1). We use the qutrit state in the following form:

(2.64) |ψ⟩ = a |0⟩+ b |+⟩

where a,b ∈ R. We rotate the KCBS operator and then calculate the expectation
value as follows:

(2.65) ⟨ψ|D†(θ,α,ϕ)SD(θ,α,ϕ) |ψ⟩
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which has four variables in total,a, b, α and θ,

Ψ(a,b,α,θ) = sin2(α)
((

2
√

5−5
)
a2 −

(
4
√

5−5
)
b2 sin2(θ)

)
+cos2(α)

((
5−4

√
5
)
a2 +

(
2
√

5−5
)
b2 sin2(θ)

)
+
(
2
√

5−5
)
b2 cos2(θ).

(2.66)

By using the normalization condition, one may reduce the number of variables. The
equation can be rewritten as

Ψ′(a,α,θ) = sin2(α)
((

4
√

5−5
)(
a2 −1

)
sin2(θ)+

(
2
√

5−5
)
a2
)

+cos2(α)
((

5−4
√

5
)
a2 −

(
2
√

5−5
)(
a2 −1

)
sin2(θ)

)
−
(
2
√

5−5
)(
a2 −1

)
cos2(θ)

(2.67)

where b=
√

1−a2 or −
√

1−a2. We need to find a values within the classical range;
in other words, we aim to find a values for which any group of five measurements
can not be found to observe the violation of KCBS inequality. We need to find the
set of a values satisfying the following,

(2.68) Ψ′(a,α,θ) ≥ −3,

and α ∈ [0,2π) and θ ∈ [0,2π). The set of a values for Equation 2.68 to be valid is as
follows: 0.5248 ≤ a≤ 0.8508 and −0.8508 ≤ a≤ −0.5248. By using the normalization
condition, the range for b can be easily found: 0.5254 ≤ b ≤ 0.8512. For b ≤ 0, one
can get the same results for a and −0.5254 ≥ b ≥ −0.8512. Any qutrit state with
coefficients inside these ranges can not violate the KCBS inequality independent of
Euler rotation angles; however, for the excluded a and b values, one may observe
contextuality by finding five measurement bases through rotations.

We checked the specific qutrit states of the real Hilbert space and categorized them
in terms of contextuality through rotational analysis. The classification of quantum
systems of all kinds is an important issue, and our work is a step toward this goal.
Our technique can be experimentally realized with current technology.
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2.4 The Violation of the Monogamy Relation Between Non-locality and

Contextuality

In this chapter, we will discuss the monogamy relation observed between non-
local and contextual characteristics in qutrit systems. The simple definition of the
monogamy relation is the constraint on two aspects of observable quantumness, non-
locality and contextuality. Observing one of them means the lack of observation for
the other.

Monogamy has been observed between non-locality and contextuality (Kurzyński
et al., 2014), which has been realized later (Zhan et al., 2016). In this scenario,
one observes the violation of one inequality while there is no violation of the other.
For example, if one observes the violation of the CHSH inequality, i.e., a quantum
system exhibits non-local behavior for a given state, then it does not violate the
KCBS inequality; in other words, it is a non-contextual state.

Let us look at the scenario where we observe this monogamy: We have two ob-
servers, Alice and Bob, sharing pairs of quantum systems. Alice performs five cyclic
measurements from the KCBS scenario, denoted by Ai in Equation 2.30. Recall
that Ai and Ai+1 are compatible measurements. Each measurement has two pos-
sible outcomes, −1 and +1. Alice chooses two compatible observables while Bob
selects only one of two incompatible measurements B1 or B2. There are two pos-
sible outcomes, −1 and +1, just like Alice’s outcomes. In total, there are seven

Figure 2.8 Compatibility among the measurements selected for both the KCBS and
CHSH scenarios, and to show the monogamy relation between them. A1, ... , A5 are
the measurements selected by Alice, forming the KCBS pentagram. B1 and B2 are
selected by Bob for the CHSH scenario. Vertices are measurements, and the lines
connecting them represent compatibility between pairs. This figure is adapted from
(Kurzyński et al., 2014).
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measurements, two of which are selected for both the KCBS and CHSH inequalities.
Their compatibility relations can be seen in Figure 2.8. The violation of the KCBS
inequality restrains the violation of the CHSH inequality, or vice versa. There is a
trade-off between the different aspects of a quantum system. This implies there is
a certain limit to quantumness. The generalization of monogamy had been of great
importance and had been yet to be proven explicitly. Therefore, one should ask
whether it is a fundamental relation. Along this direction, the monogamy relation
has been tested, and polygamy between these properties is observed (Xiao et al.,
2022). We will look at a two-qutrit quantum system.

Recall that the CHSH inequality is

−2 ⩽ ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩−⟨A2B2⟩ ⩽ +2

where

A1 = Z, A2 =X,

B1 = −(Z+X)/
√

2, B2 = (Z−X)/
√

2,

and also

X =
0 1

1 0

 ,Z =
1 0

0 −1

 .
The maximal violation of the CHSH inequality requires maximal entanglement of a
two-qubit state. It is possible to observe the maximal violation in a proper subspace
of qutrits. To do this, one defines effective two-qubit states by making use of the
following bases,

|1⟩ =


1
0
0

 , |0⟩ =


0
1
0

 , |−1⟩ =


0
0
1

 .
These are eigenstates of spin-1 operator to define new bases, |0⟩ and |+⟩ (|+⟩ =
(|1⟩+ |−1⟩)/

√
2). We consider the following quantum state,

|B1⟩ = a |00⟩+ b |++⟩

= a |00⟩+ b
[ 1√

2
(|1⟩+ |−1⟩)⊗ 1√

2
(|1⟩+ |−1⟩)

]
= a |00⟩+ b

2(|11⟩+ |1,−1⟩+ |−1,1⟩+ |−1,−1⟩).

(2.69)
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We define the effective Pauli operators, X ′ and Z ′, which leads to

SCHSH = Z ′ ⊗ −(Z ′ +X ′)√
2

+Z ′ ⊗ Z ′ −X ′
√

2

+X ′ ⊗ −(Z ′ +X ′)√
2

+X ′ ⊗ Z ′ −X ′
√

2

(2.70)

where

(2.71) Z ′ =


−1 0 0
0 1 0
0 0 −1

 , X ′ =


0 1√

2 0
1√
2 0 1√

2
0 1√

2 0

 .

The eigenvalues of the effective Pauli matrices, X ′ and Z ′, are +1 and −1, which
are the same as the eigenvalues of the usual Pauli matrices. The average value of
the CHSH operator is found as:

(2.72) ⟨B1|SCHSH |B1⟩ = −
√

2|a+ b|2

When a and b are taken 1√
2 , the expectation value of the CHSH operator is −2

√
2

which is the maximum quantum value, i.e., the maximal violation of the CHSH
inequality.

We can form the KCBS inequality by using the new bases, and five measurement
bases are determined accordingly. The z-axis is orthogonal to pentagram plane (Kly-
achko, 2002; Klyachko et al., 2008). We obtain the average of the KCBS operator
as follows:

(2.73) ⟨SKCBS⟩ =
(
5−4

√
5
)

|a|2 +
(
2
√

5−5
)

|b|2

Nine measurements are performed, four of which are for the CHSH scenario, whereas
the others are the five cyclic measurements for the KCBS test. Unlike (Kurzyński
et al., 2014), one does not use measurement bases common to both tests. Kurzyński
et al. have shown that there is a trade-off between the violations of both inequali-
ties; in other words, if one observes a violation of one of the inequalities, the other
inequality is not violated, giving results within the classical range (Kurzyński et al.,
2014). This approach is based on the No-disturbance principle which is satisfied
by QT. As mentioned earlier, in the scenario proposed by Kurzyński et al., Alice
and Bob perform measurements on a qutrit- and qubit-system, respectively. Al-
ice aims to observe the contextual nature of qutrits, and she and Bob try to find
non-local quantum states violating the CHSH inequality. In total, there are seven
measurements. The CHSH test includes four measurements, two of which are se-
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Figure 2.9 (1 ≥ b≥ 0, 1 ≥ a≥ −1) The expectation values of the CHSH and KCBS
operators and their sum. The classical bounds are also shown just to see the vio-
lations of both inequalities. All these measurements are performed in a two-qutrit
quantum state. The summation of ⟨SCHSH⟩ and ⟨SKCBS⟩ exceeds the lower limit,
−5, which is not in agreement with the monogamy relation.

lected among the KCBS measurements, provided that these are incompatible with
each other. The authors ask whether the monogamy relation always holds (Xiao
et al., 2022). To answer this, one finds the sum of Equations 2.72 and 2.73 where a
and b are taken as real numbers,

(2.74) S = ⟨SCHSH⟩+ ⟨SKCBS⟩ = −
√

2(a+ b)2 +
(
5−4

√
5
)
a2 +

(
2
√

5−5
)
b2.

b is a nonnegative real number, and due to the normalization condition, we are
allowed to write S as a function of a as seen in Figure 2.9. ⟨SCHSH⟩ and ⟨SKCBS⟩ are
lower than their respective bounds for some range of a, which means both inequalities
are violated; in other words, there is no monogamy. In Figure 2.10, one can see the
plot with −1 ≤ b≤ 0.

We looked into the subspace of two-qutrit states and, by using appropriate matrices,
we have seen the violation of the CHSH inequality. We applied the KCBS operator
on the states of the same subspace, and the expectation value of the KCBS operator
was found. We used independent observables, i.e., there is no common measurement
to both tests. We observed simultaneous violation of both tests; in other words, the
monogamy relation does not hold after choosing independent measurements (Xiao
et al., 2022).

One can also observe the violation of the monogamy relation for the two-qutrit state,

(2.75) |B2⟩ = a

(
|0⟩⊗ 1√

2
(

|1⟩+ |−1⟩
))

+ b

(
1√
2
(

|1⟩+ |−1⟩
)

⊗|0⟩
)
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Figure 2.10 The same plot as illustrated in Figure 2.9 except that the sign of b
values are minus here. (0 ≥ b≥ −1).

which can be rewritten as an effective two-qubit state,

(2.76) |B2⟩ = a |0+⟩+ b |+0⟩ .

a and b values are real again, and the above state is tested. One gets the average
values of both KCBS and CHSH operators plotted in Figures 2.11 and 2.12.

Both inequalities can be violated for a qutrit-qubit system. In this case, one should
use the usual Pauli spin operators X and Z for a qubit. Since X ′ and Z ′ are the
effective Pauli matrices which give the same eigenvalues as the usual Pauli operators,

Figure 2.11 (1 ≥ b ≥ 0, 1 ≥ a ≥ −1) The plots of the expectation values of KCBS
and CHSH operators for given a and b values. One performs the same measure-
ments on a two-qutrit state with different coefficients. Classical lower bounds for
non-contextuality and locality are shown so that dual violation can be seen. As
can be seen in the figure, there are contextually non-local states, which means the
monogamy relation is not always valid.
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Figure 2.12 (0 ≥ b ≥ −1) The similar plot as Figure 2.11 but the only difference is
that b takes negative values.

and probabilities purely depend on the coefficients, a and b, the expectation value
of SCHSH will be identical. Also, the plots will be the same as well. The main
difference between the scheme in (Kurzyński et al., 2014) and the current proposal
is that one uses nine measurements, none of which is common to both tests. In
contrast, two measurements from the CHSH scenario are chosen among the KCBS
measurements in (Kurzyński et al., 2014). We illustrated this difference in the graphs
from Figure 2.13.

In this chapter, we looked into a two-qutrit system for both inequalities. We saw that
there are contextually non-local quantum states (Xiao et al., 2022). In (Kurzyński
et al., 2014), two measurements are chosen from the KCBS scenario to test the
CHSH inequality, and this restriction is the main cause of the monogamy relation.
The trade-off between KCBS and CHSH violations is not necessarily fundamental,
which depends on the measurement scenario. In conclusion, it is impossible to
generalize the monogamy relation to any measurement scenario (Xiao et al., 2022).

2.5 Mathematical Relation between Contextuality and Entanglement

Quantum contextuality and non-locality are fundamental concepts of Quantum The-
ory and have been a hot topic since the pioneering works (Gleason, 1957; Bell, 1966;
Specker, 1960; Kochen & Specker, 1967). We need to understand these concepts to
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have a better idea of the governing dynamics in Quantum Theory. Finding possi-
ble correlations in various quantum systems is essential such that it may lead us
to realize the differences between quantum physics and the classical world. Non-
locality and contextuality are still under debate among the scientific community.
The hidden variables could have been the reason underlying these concepts; how-
ever, this possibility has later been denied by various works (Bell, 1966; Specker,
1960; Kochen & Specker, 1967; Bell, 1964; Aspect et al., 1982; Freedman & Clauser,
1972). As mentioned earlier, the Bell inequality and the KCBS inequality (Bell,
1966; Klyachko, 2002, 2007; Binicioǧlu et al., 2007; Klyachko et al., 2008) are the
simplest examples including four and five measurements, respectively. These are the
measurement scenarios where we observe non-locality and contextuality by using as
least measurements as possible. In this chapter, we will mainly discuss the KCBS
inequality where qutrit states (three-level quantum systems) are used, and spin-1
measurements are performed. Some qutrit states exhibit contextual behavior intrin-
sically and are compatible with quantum predictions without entanglement (Ahrens
et al., 2013; Łapkiewicz et al., 2011). As discussed earlier, quantum contextual-
ity can be observed for every qutrit state when more measurements are performed
(Kurzyński & Kaszlikowski, 2012; Yu & Oh, 2012).

The outline of this section is as follows: First, we will discuss the KCBS inequality

Figure 2.13 The top-side figure, including vertices and lines, is the graph for the
compatibility of the measurements in the monogamy scenario (Kurzyński et al.,
2014). Vertices represent measurements, and adjacent vertices show that they are
compatible with each other. On the bottom, one can see the compatibility graph
of the current scenario. There are nine measurements in total, none of which is
common to both tests.
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to recall it and what its violation means. Later, Majorana Stellar Representation
(MSR) will be introduced (Majorana, 1932; Bloch & Rabi, 1945; Mäkelä & Messina,
2010), and we will apply it to define effective qutrits corresponding to symmetric
two-qubit systems. MSR is in use for mutually unbiased basis (MUB)s and sym-
metric informationally complete positive operator valued measure (SIC-POVM)s
(Aravind, 2017). The qutrits of MSR will be investigated using the KCBS opera-
tor (Diker & Gedik, 2022). Furthermore, we will find the concurrence (Wootters,
2001) for two-qubit systems and its relation with the average value of the KCBS
operator (Klyachko, 2002, 2007; Binicioǧlu et al., 2007; Klyachko et al., 2008; Diker
& Gedik, 2022). The next step will be to derive the formula of the maximal con-
textuality when concurrence is known (Diker & Gedik, 2022). This will allow us to
find the relation between the maximal non-locality and contextuality by comparing
the KCBS scenario with the CHSH scenario (Diker & Gedik, 2022). When there is
no entanglement, we will see that the outcomes of measurements do not exceed a
limit (Diker & Gedik, 2022). How entanglement and contextuality are in connection
for the KCBS scenario will be seen explicitly (Diker & Gedik, 2022). Lastly, we
will divide qutrits based on their violations of the classical bounds (Diker & Gedik,
2022).

The action of an observer affects the observation in quantum physics, which differs
it from classical physics. This involvement affects the outcome of a measurement.
This is not in agreement with the locality principle. According to QT, a particle
does not reveal its properties independent of observation. What you observe is not
the state in which a particle was. Local restrictions are not valid anymore. As
mentioned before, Bell has tested locality and has seen that some quantum systems
are independent of local restrictions (Bell, 1966). Later, it has been shown that
any entangled state is capable of violating the locality inequality (Gisin, 1991). The
violation of the Bell inequality is observed in a 4-dim Hilbert space. The next step
was to show whether one can find an inequality that can be violated in a Hilbert
space with less than 4 dimensions. Kochen and Specker have succeeded in observing
non-classicality in a 3-dim Hilbert space (Specker, 1960; Kochen & Specker, 1967).
This is called contextuality, defined uniquely for quantum physics.

The KCBS test (Klyachko, 2002, 2007; Binicioǧlu et al., 2007; Klyachko et al., 2008),
which is the simplest contextuality scenario, has been discovered. We discussed it
earlier in detail. To recall the KCBS inequality, let us give it again:

⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩+ ⟨A4A5⟩+ ⟨A5A1⟩ ≥ −3,

which is a state-dependent non-contextuality inequality. Si are the usual spin-1
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operators and
Ai = 2S2

i −1.

The directions of Si and Si+1 are perpendicular to each other, allowing us to measure
Ai and Ai+1 together. We obtain the results outside the classical range; in other
words, qutrit states exhibit contextuality and do not have to be entangled with any
quantum system. The maximal violation of the KCBS inequality is observed for the
neutrally polarized spin state |0⟩. They have found the quantum lower limit close
to −4 (∼= −3,94).

2.5.1 Concurrence and the expectation value of the KCBS operator

It has been shown that a qutrit can be intrinsically entangled (Can et al., 2005). The
symmetric group of two-qubit states has been investigated and written as effective
qutrits for which the concurrence inequality has been found (Binicioǧlu et al., 2007).

We will use MSR for the symmetric two-qubit states to rewrite them as effective
qutrits. The symmetric set of two-qubit states violating the KCBS inequality has
already been found (Soeda et al., 2013). We aim to do the same using the MSR.
We take advantage of the MSR representation to work with the whole group of
qutrits. MSR of any qubit can be seen as a vector from the origin to a point on the
Bloch sphere. The subgroup of symmetric two-qubit states is needed in our case. A
symmetric two-qubit state represented in MSR can be expressed as follows:

(2.77) |ψ⟩ = 1
N

(|m⟩|n⟩+ |n⟩|m⟩)

where

(2.78) |m⟩, |n⟩ = (cos θ1,2
2 sin θ1,2

2 eiϕ1,2).

The matrix representation of the state in Equation 2.77 is as follows:

(2.79) |ψ⟩ = 1
2N


2cos

(
θ1
2

)
cos

(
θ2
2

)
eiϕ1 cos

(
θ2
2

)
sin
(

θ1
2

)
+ eiϕ2 cos

(
θ1
2

)
sin
(

θ2
2

)
eiϕ1 cos

(
θ2
2

)
sin
(

θ1
2

)
+ eiϕ2 cos

(
θ1
2

)
sin
(

θ2
2

)
2ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin
(

θ2
2

)


Symmetric two-qubit states can be rewritten as effective qutrits (Can et al., 2005).
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The state |ψ⟩ is a symmetric one, so we can express it as a qutrit:

(2.80) |ψ∗⟩ = 1
N


cos θ1

2 cos θ2
2

1√
2(eiϕ1 cos θ2

2 sin θ1
2 + eiϕ2 cos θ1

2 sin θ2
2 )

ei(ϕ1+ϕ2) sin θ1
2 sin θ2

2


where

(2.81) N =
√

1
4(sinθ1 sinθ2 cos(ϕ1 −ϕ2)+cosθ1 cosθ2 +3).

We calculate the average of the KCBS operator, which gives the following:

(2.82) ⟨ψ∗|SKCBS |ψ∗⟩ =
4
(
3
√

5−5
)

(cosθ1 cosθ2 +1)
sinθ1 sinθ2 cos(ϕ1 −ϕ2)+cosθ1 cosθ2 +3 +(5−4

√
5).

We obtain a function of θ1, θ2 and ∆ϕ where

(2.83) ∆ϕ= ϕ1 −ϕ2.

One may denote the average of the KCBS operator as follows: S = ⟨ψ∗|SKCBS |ψ∗⟩.
In Figure 2.14, the distinction between contextuality and non-contextuality regions is
shown in a 3-dim plot. We find the numeric part of the right-hand side in Equation
2.82 equal to the quantum lower limit (∼= −3,94), i.e., we observe the maximal
violation of the KCBS equality. Since that part is the lowest value possible in
QT, we can see that as a reference point for the determination of the degree of
contextuality (recall that, for classical measurements, we obtain −3 as the classical
lower limit).

Next, we will find the concurrence of two-qubit states, which will give us the measure
of self-entanglement for effective qutrits (Wootters, 2001). For two-qubit states given
in the general form as below:

(2.84) |Ψ⟩ = a |00⟩+ b |01⟩+ c |10⟩+d |11⟩ ,

we use the following formula to find concurrence:

(2.85) C = 2|ad− bc|.

We apply this to our symmetric two-qubit states given in Equation 2.79 and get

(2.86) C(θ1, θ2,∆ϕ) = 1− cosθ1 cosθ2 − cos∆ϕsinθ1 sinθ2
3+sinθ1 sinθ2 cos∆ϕ+cosθ1 cosθ2

.
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This can be rewritten as:

(2.87) C[f(θ1, θ2,∆ϕ)] = 1−f(θ1, θ2,∆ϕ)
3+f(θ1, θ2,∆ϕ) .

The function f(θ1, θ2,∆ϕ) is a trigonometric function which is

(2.88) f(θ1, θ2,∆ϕ) = sinθ1 sinθ2 cos∆ϕ+cosθ1 cosθ2.

We can define Equation 2.88 as follows:

(2.89) f(θ1, θ2,∆ϕ) = cos2θmn,

and θmn corresponds to the angle between state vectors, |m⟩ and |n⟩. We can rewrite
Equation 2.86 in terms of θmn,

(2.90) C(θ1, θ2,∆ϕ) = 1− cos2θmn

3+cos2θmn
.

The concurrence depends on the relative angle between these state vectors, |n⟩ and
|m⟩. We may write Equation 2.88,

(2.91) f(θ1, θ2,∆ϕ) = 1−3C(θ1, θ2,∆ϕ)
1+C(θ1, θ2,∆ϕ) .

One may define Equation 2.82 using f(θ1, θ2,∆ϕ) as in the following:

(2.92) S(θ1, θ2,∆ϕ) =
4
(
3
√

5−5
)

(cosθ1 cosθ2 +1)
f(θ1, θ2,∆ϕ)+3 +

(
5−4

√
5
)

When we use Equation 2.91 to redefine Equation 2.82, we obtain the following
relation between concurrence and the average of the KCBS operator:

S(θ1, θ2,∆ϕ) =
4
(
3
√

5−5
)

(cosθ1 cosθ2 +1)
1−3C(θ1,θ2,∆ϕ)
1+C(θ1,θ2,∆ϕ) +3

+
(
5−4

√
5
)

=
(
3
√

5−5
)

(C(θ1, θ2,∆ϕ)+1)(cosθ1 cosθ2 +1)+5−4
√

5,

(2.93)

which may be rewritten as:

(2.94) S(θ1, θ2,∆ϕ) =
(
3
√

5−5
)(1− cos2θmn

3+cos2θmn
+1

)
(cosθ1 cosθ2 +1)+5−4

√
5.

We have obtained the direct relation between concurrence and contextuality. Since
concurrence depends on θ’s and ∆ϕ, other cosine terms are correlated with concur-
rence. One can clearly see that the cosine terms make Equation 2.93 more compli-
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Figure 2.14 The illustration of (non-)contextuality regions for the S function defined
as S(θi,∆ϕ) (i= 1,2). The red part corresponds to the contextuality region (S <−3);
the blue translucent part is the region for the non-contextual states (S > −3). We
observe the maximum violation when θ1 = 0, θ2 = π and θ1 = π, θ2 = 0 (the maximal
contextuality of states does not depend on ∆ϕ). The two edges of the rectangular
cuboid in the red region correspond to the maximal contextuality.

cated. Unfortunately, this is the neatest form one can write.

We will answer what happens to the S function when concurrence is known; in
other words, for a given concurrence, we will give the degree of contextuality in the
KCBS scenario. To do this, Equation 2.88 should not change so that concurrence is
constant. Two variables(θi=1,2) are correlated such that C is constant. The following
condition provides that:

(2.95) cos(∆ϕ) =
1−3C
1+C − cosθ1 cosθ2

sinθ1 sinθ2
,

and −1 ≤ cos(∆ϕ) ≤ 1. In Equation 2.93, the coefficient of the part containing
cosine terms is above zero. θ values should be adjusted to make the cosine part as
small as possible because we want to find the lowest value of the S function when
concurrence is given. We will find the limit for θ1 −→ 0 and θ2 −→ π, or vice versa due
to the symmetry between θs. It is obvious that

(2.96) lim
θ1→0
θ2→π

cos(∆ϕ) = ±∞,

which does not make sense due to trigonometric restrictions. One needs to find the
set of θ values for the upper and lower limits for Equation 2.95 (−1 ≤ cos(∆ϕ) ≤ 1).
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When cos(∆ϕ) = ±1, we find that

(2.97) cos−1
(1−3C

1+C

)
= θ1 − θ2

and

(2.98) cos−1
(1−3C

1+C

)
= θ1 + θ2.

We make use of these relations to express θ1 in terms of θ2 and concurrence. Recall
that the expectation value of the KCBS operator, S(θ1, θ2,∆ϕ) has three degrees of
freedom. Since θs can be defined in terms of each other and concurrence is taken
to be constant, reducing the number of variables is possible, leaving us with only
one parameter. The S function has only one variable (S(θi)). Notice that we look
into the case for the minimum of S(θi) when cos(∆ϕ) = ±1. Next, one solves for
dS(θ2)/dθ2 = 0 and finds the following solutions:

(2.99) θ2 ∈
{1

2

(
π+cos−1

(1−3C
1+C

))
,
1
2

(
π− cos−1

(1−3C
1+C

))}
.

This gives us the following:

(2.100) Smin
KCBS =

(
5−3

√
5
)
C−

√
5.

This gives the lower bound of the S function when concurrence is known. Equation
2.100 shows us the degree of violation of the KCBS inequality for a given concurrence.
This is a simple linear relation between contextuality and the degree of entanglement.
We know that

(2.101) 0 ≤ C ≤ 1.

For C = 0,

(2.102) Smin
KCBS = −

√
5

which is the lower bound for locally-defined states. We obtain the classical lower
bound imposed by local restrictions, and the classical lower bound is shifted from
−3 to −

√
5 and draws a clearer line between classicality and quantumness. For the

cases when the outcomes of measurements are below this new limit, we see only
non-local quantum states. For two maximally-entangled particles (C = 1),

(2.103) Smin
KCBS = 5−4

√
5
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which corresponds to the maximal contextuality for the KCBS scenario. The lower
bound for non-contextuality is SKCBS = −3, and this gives us

(2.104) C ∼= 0.447.

That is not a small number considering that the upper limit for concurrence is one.
Quantum states must be well entangled so that it is possible to observe quantum
contextuality. This is a significant result for us to see the relation between contex-
tuality and entanglement. Similarly, the CHSH inequality is maximally violated for
a known concurrence according to the following equation:

(2.105) β = 2
√

1+C2.

One takes the average of the CHSH operator, which is β (Wootters, 1998; Verstraete
& Wolf, 2002). The relation between the maximal violations of both inequalities is
given in the following:

(2.106) S ∝ −
√
β2 −4.

This is the direct relation between contextuality and non-locality for when they are
as maximal as possible (concurrence is constant).

2.6 Quantum Correlations in the Delayed-Choice Experiment

In this section, we will discuss the delayed-choice experiment of which there are
two versions: Wheeler’s delayed-choice experiment (Wheeler et al., 1984; Wheeler,
1978) and the Quantum Delayed-Choice Experiment QDCE (Ionicioiu & Terno,
2011; Peruzzo et al., 2012). Then, we will mention the different version of the
QDCE by using the polarization property of a photon instead of the spatial modes
used in the original QDCE. Lastly, we will investigate quantum correlations in this
experiment concerning entanglement and quantum contextuality. This will give
readers an idea of how these fundamental concepts of Quantum Theory are related
to the wave-particle duality.
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Figure 2.15 Young’s slit experiment. One may or may not choose to observe if an
electron goes through slit B or C. We use the brackets for the optionality of the
observation

2.6.1 Wheeler’s Delayed-Choice Experiment

The wave-particle duality is the fundamental concept of quantum mechanics and
has been intriguing since its observation. In Figure 2.15, the standard Young’s slits
setup is shown, and we observe the usual interference pattern on the screen. This
is the wave behavior of electrons used in this experiment. If electrons are detected
on the intermediate slits, they take only one of the routes and go through one of
the holes; in other words, they behave as a classical particle. In this case, they are
observed on the specific spots of the screen, and no interference occurs. If photons
are used instead of electrons, we observe the same duality. For photons, one removes
the screen and uses a pair of detectors instead. We see that one detector or the other
clicks but both of them never click simultaneously. One can see the setup for photons
in Figure 2.16.

If the photon goes through Slit C, Detector 1 clicks. When Detector 2 clicks, it means
that the photon came through B. Bohr concluded that whether one observes wave
or particle properties of particles depends on the arrangement of the experimental
apparatus. The arrangements for observing wave-like and particle-like properties
are always mutually exclusive (complementarity). This can be easily seen in the
example of the photon. We will discuss only the case of photons in this section.

Does the photon know in advance whether the arrangement has been made to ob-
serve the wave property (Figure 2.16) or the particle property? This question was
asked (Weizsäcker, 1931) in the beginning stage of quantum mechanics, and in 1978
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Figure 2.16 A setup where we observe “wave-particle duality” for photons. The
brackets around the screen show that we may put it there (to observe the “wave”
aspect) or remove it (to observe the “particle” aspect)

John Archibald Wheeler showed that one can answer this question by setting up
an experiment in which we decide which configuration to use until after the pho-
ton is within the apparatus (Wheeler et al., 1984; Wheeler, 1978). We call this
experiment a “delayed-choice” experiment since the decision is made later when the
photon is already inside the apparatus. Several have been demonstrated over the
last three decades using not only photons but also neutrons and atoms. The choice
of configuration in advance or only at the last moment does not change the counting
statistics.

When photons are used, and the lengths of the apparatus are taken in the order of
3 m, the time needed for a photon to transit is about 10 ns. So we need to make the
choice in a time shorter than this. This makes it impossible to insert or remove a
screen as in Figure 2.16; however, by using the polarization degree of photons, one
can get rid of this difficulty. One needs to correlate (or decline to correlate) the path
with the polarization of a photon. A choice is made over a few nanoseconds using a
device such as a Pockels cell. The plane of polarization is rotated by 90◦ using this
device.

A schematic realization of the experiment is given in Figure 2.17. The source emits
the photons which are polarized in the plane of the paper, and when there is not the
Pockels cell (or not activated), both beams are polarized throughout the experiment.
At BS2, they interfere with a relative phase, and the relative phase is controlled by
the phase shifter. Thus, under these conditions provided by the apparatus, we see
that the output of the Detector 1 depends on the phase difference introduced by
the shifter. The phase difference corresponds to the wave behavior of the photons.
If we activate the Pockels cell, we rotate the polarization of a photon in the lower
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Figure 2.17 The polarization-mediated delayed-choice experiment. The notation
after the Pockels cell shows both choices: the direction of polarization may be either
out-of-plane or in-plane.

beam, so it is perpendicular to the polarization of the other beam. In this case,
we use polarization for labeling the path taken by a given photon. This means no
interference at BS2 assumed to be polarization insensitive. The output of detector
Detector 1 is equal to the sum of what we would find for each of the two beams
separately; because the output does not depend on the position of the phase shifter,
the total output of Detector 1 with the activated Pockels cell is not affected by the
latter (particle property). One should notice that the cell can be activated after the
splitting of the photon wave packet at Beam Splitter 1 (BS1).

Over the last two decades, a number of experiments have been demonstrated. One of
them is the most similar to Wheeler’s original experiment (Jacques et al., 2007), in
which a setup similar to that of Figure 2.17 is used. In this work, the interferometer
length was 48 m, and a quantum random number generator (QRNG) decides whether
or not to activate the switching cell. This decision is made close to the far end. After
the photon has gone through the first beam splitter, it goes into the future light cone
of the random choice event. We use QRNG to ensure that the photon can not know
the choice in advance. When the wave configuration is realized for photons, and the
output of one of the detectors depends on the phase shift between the two beams,
one observes a sinusoidal plot with a visibility of 94%. If the particle configuration
is realized, we observe the flat pattern.

It has been shown that there is an interesting variant of the “delayed-choice” ex-
periment (Kim et al., 2000). In Figure 2.18, the schematic setup is illustrated. One
prepares the source such that we have nonzero mutually coherent amplitudes for
two photons to be generated consecutively by either of two parts, A and B. Before
Photon 2 reaches BS1 or BS2, screen S registers Photon 1. We aim to detect any
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photon only coming from source A(B) at Detector 3 (Detector 4); on the other hand,
if a photon arrives in Detector 1 or Detector 2, it could have been emitted by either
source. If photons 1 are selected when their partners 2 were detected in Detector
4, the distribution of the photons seen on screen S is flat. In other case, only those
with partners detected in Detector 1 are selected. Then, one observes a fringe pat-
tern with a complementary one for those with their partners clicking Detector 2. It
may seem baffling because Photon 1 was detected on screen S before Photon 2 knew
whether BS1/2 would transmit or reflect it and thus whether Detector 3/Detector
4 or Detector 1/Detector 2 would detect.

This is not a paradox; the results are very consistent with an application of quantum
measurements. Let us give an example: we detect photon 1, and there is a node
for the observed pattern for the Detector 1-correlated subensemble. The detection
of the photon means that a (quasi-) macroscopic event has been induced by it, and
the photon has been measured. If we perform the projection measurement on the
two-photon system, we see that the amplitude of photon 2 is automatically zero, so
everything makes sense. In the delayed-choice experiments, we observe the pitfalls
of applying the projection measurement too early. At the same time, we have not
seen anything macroscopically, and it is still possible to obtain a pattern of mutual
interference of alternatives.

Figure 2.18 The setup proposed by Kim et al. (Kim et al., 2000)
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2.6.2 The Quantum Delayed-Choice Experiment

Since the pioneering work by Einstein, Podolsky, and Rosen (Einstein et al., 1935),
the quantum non-locality, which means that some physical quantities are indepen-
dent of local restrictions defined in classical physics, has attracted the attention
of the scientific community (Bell, 1966, 1964; Herbert & Karush, 1978; Heywood
& Redhead, 1983; Stapp, 1982). The entanglement of quantum systems is directly
related to non-locality, which made it possible to demonstrate the quantum delayed-
choice experiment (QDCE) (Ionicioiu & Terno, 2011; Peruzzo et al., 2012). This is
an adaptation of Wheeler’s work concerning the notion of the wave-particle duality
(Wheeler et al., 1984; Wheeler, 1978). Over the years, this duality has been dis-
cussed in detail by various researchers (Wheeler et al., 1984; Feynman et al., 1965;
Scully et al., 1991; Englert, 1996); however, it had not been clear as to whether
photons know beforehand how to act in specific measurement scenarios. Along this
direction, Wheeler proposed a gedanken experiment (Wheeler et al., 1984; Wheeler,
1978) whose purpose is to test whether a photon behaves depending on a hidden
variable. The result of this experiment is that a photon acts as a wave or particle,
depending on how one arranges the experimental setup. Since the change in the
setup is made while the photon goes through the interferometer, it cannot know
beforehand what it will encounter. The delayed-choice experiment has been demon-
strated in various setups (Hellmuth et al., 1987; Lawson-Daku et al., 1996; Kim
et al., 2000; Zeilinger et al., 2005; Jacques et al., 2007; Manning et al., 2015).

Wheeler’s proposal has been changed into a quantum optical version where pho-
tons reveal the particle and wave properties simultaneously by using a mode-based
quantum circuit (Ionicioiu & Terno, 2011; Peruzzo et al., 2012). In this section, we
will mainly discuss this approach and later introduce a polarization-based quantum
circuit to show that the wave-particle duality is also observable using polarization-
based photonic states.

The QDCE modifies Wheeler’s approach and allows us to observe both the particle-
and the wave-like properties of a photon with the help of an extra photon. On this
circuit, we have a control-Hadamard gate (c-Had) acting as a two-qubit quantum
gate whose transformations are in the following:

(2.107) cHad |10⟩ = |1⟩⊗ 1√
2

(|0⟩+ |1⟩),

57



and

(2.108) cHad |11⟩ = |1⟩⊗ 1√
2

(|0⟩− |1⟩).

States |0⟩ and |1⟩ are the spatial modes of a photon; in other words, they corre-
spond to the paths taken by the photons. One can realize the c-Had gate by using
nondeterministic phase gates (Ralph et al., 2002; Hofmann & Takeuchi, 2002). The
detailed schematic depiction of the process is shown in Figure 2.19. The c-Had en-
tangles two photons, which allows us to observe the wave-particle duality. There
are two photonic states, one of which is the ancillary photon. Its state is given as

(2.109) |ψ⟩ = cosα |0⟩+sinα |1⟩

where the system photon is in the state |0⟩. The first gate is a single-qubit Hadamard
gate which acts on the system photon,

(2.110) Had |0⟩ = 1√
2

(|0⟩+ |1⟩).

After this transformation, the global state of the system is

(2.111) |Ψi(α)⟩ = cosα√
2

(|00⟩+ |01⟩)+ sinα√
2

(|10⟩+ |11⟩).

Then, we apply the phase shifter (P ) to the system photon (denoted by |λ⟩) giving
us:

(2.112) P |λ⟩ = 1√
2

(|0⟩+ eiϕ |1⟩).

We get an entangled biphotonic state after the c-Had gate acts on both photons.
Hence, we obtain the final state as in the following:

∣∣∣Ψf (α,ϕ)
〉

= cosα
( 1√

2
(|0⟩s + eiϕ|1⟩s)

)
|0⟩a

+ eiϕ/2 sinα
(

cos ϕ2 |0⟩s − isin ϕ2 |1⟩s

)
|1⟩a,

(2.113)

which gives information on both cases (whether the second beam splitter is absent
or not). a and s correspond to the subspaces of the ancillary photon and the system
photon, respectively. Using Equation 2.113, we find the intensity I0 at detector D0,

(2.114) I0(α,ϕ) = 1
2cos2α+cos2 ϕ

2 sin2α.
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Figure 2.19 Ancillary photon, whose state is given in the top-left corner of the figure,
goes into the circuit. The system photon, which is prepared to be in the state |0⟩,
also goes into the circuit. The operation of the Hadamard gate is realized by a beam
splitter, giving us a superposition of two modes. Later on, we shift the phase for one
of the modes so that we can observe the wave-like property at the end. Both the
system photon and the ancillary photon go through the c-Had gate (shown in blue),
after which we obtain the global state in Equation 2.113. Intensities at D0 and D1
depend on the relative amplitude (particle-like property) and the phase (wave-like
property).

This naturally gives the intensity at detector D1 as follows:

(2.115) I1 = 1− I0.

Both intensities depend on α and ϕ. Why is this important? We need to understand
the physical meaning of these parameters in the context of QDCE. Since ϕ is the
relative phase between two modes of the system photon, the intensities carry infor-
mation on the wave-like property. Moreover, they depend on α as well; however,
the state function of the system photon initially depends only on ϕ. The parameter
α later comes from the interaction between the photons due to the action of c-Had
gate. In other words, entangling two photons directly leads to the intensities af-
fected by the particles’ interaction. That is why the parameter α corresponds to the
particle-like behavior. When the system photon is detected, we observe the wave-
and particle-like properties of a photon.
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2.6.2.1 The Polarization-based Quantum Delayed-Choice Experiment

In this subsection, we will propose a quantum circuit based on polarization trans-
formation by modifying the original one to observe particle- and wave-like behaviors
(Diker, 2018). Naturally, we make use of the polarization degree of freedom of a pho-
ton. The kets |0⟩ and |1⟩ are horizontally and vertically polarized photonic states.
We aim to apply the same transformations and reach the same results regarding
intensities (probability of detecting a photon). We make the following changes in
the optical scheme: the role of first beam splitter in the original QDCE is given to
a half-wave plate HWP. Two polarizing beam splitters PBSs and a phase shifter are
used (Figure 2.20). After the first HWP act on the initial state |H⟩, the system
photon is transformed as follows:

(2.116) HWP |H⟩ = 1√
2

(|H⟩+ |V ⟩).

What a beam splitter does to mode states of a photon is done by the HWP to the
polarization states. Horizontal and vertical polarizations are denoted by H and V,
respectively. To add the wave property (phase) to the system photon, one needs to
use a phase shifter between polarizations. Then, the photon is in a superposition of
two paths by means of a PBS, on one of which we put a phase shifter. Here, the
spatial mode, which is an extra degree of freedom of a photon, is temporarily created
to shift the phase between the V and the H components of the system photon, giving
us

(2.117) |Ψ∗⟩ = 1√
2

(|H⟩ |a⟩+ eiϕ |V ⟩ |b⟩).

The kets |a⟩ and |b⟩ are the spatial modes, shown in Figure 2.20. These spatial
modes allow us to perform the phase-shifting operation. The next HWP gets rid of
the mode degeneracy, and the state of the system photon is

(2.118) |Ψ∗∗⟩ = 1√
2

(|H⟩+ eiϕ |V ⟩).

Before the system photon is detected, the last operator c-Had, which is the main
component of our circuit, acts on the two-photon state. As a result, the global state
of the system of two photons (the ancillary photon and the system photon) is given
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Figure 2.20 We send the system photon and the ancillary photon into the optical
apparatus. On the top-left of the figure, the state of the ancillary photon is given,
where angle α is set manually. HWP oriented at an angle α

2 is used to obtain such
a state. One can see that the system photon, which is horizontally polarized, is sent
along the lower path. The first HWP at an angle π

8 corresponds to a Hadamard
gate giving a superposition of two polarization states as output. The first PBS is
used to create a temporary spatial mode; hence, we are able to shift the relative
phase between these states. We get rid of the mode degeneracy by using the second
PBS which combines pol-based photonic states. Later, the c-Had is used to entangle
the ancillary photon with the system photon. Thus, one can observe both wave-
and particle-like behaviors of the system photon. The last PBS divides the V- and
H-polarized components into two modes so one can detect them separately.

as:
∣∣∣Ψf (α,ϕ)

〉
= cosα

( 1√
2

(|H⟩s + eiϕ|V ⟩s)
)
|H⟩a

+ eiϕ/2 sinα
(

cos ϕ2 |H⟩s − isin ϕ2 |V ⟩s

)
|V ⟩a

(2.119)

We obtain the same result as with Equation 2.113, except Equation 2.119 gives the
global state of the system based on polarization instead of the spatial mode. We
may observe the wave properties of a photon by using polarization- and mode-based
states. The last PBS is used to create a mode degeneracy again correlated with
polarizations for detection. We find the intensity at detector D0 as

(2.120) I0(α,ϕ) = 1
2cos2α+cos2 ϕ

2 sin2α,

which is the same as Equation 2.114, while again I1 = 1− I0.

The most sophisticated component of the optical circuit is the c-Had gate which acts
on a two-qubit state. The realization of this gate has been demonstrated in QDCE,
which transforms the mode-based photonic states (Ionicioiu & Terno, 2011). The
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Figure 2.21 The c-Had gate. The c-Had is composed of a cZ gate and two W gates
as in the order shown in the figure, where a cZ gate is composed of two Hadamard
gates and a cNOT gate.

c-Had consists of several tools, as shown in Figure 2.21. We use a pol-based c-Had,
which has been used to construct W-state-based quantum networks (Yesilyurt et al.,
2016). The Hadamard gates can be realized by using HWPs at an angle of π/8, and
we can realize W gates with HWPs at an angle of π/16. There are also experimental
and theoretical works for the realization of an optical cNOT gate (Clark et al., 2009;
Nemoto & Munro, 2004). A pair of photons can be emitted at 808 nm via parametric
down-conversion (Peruzzo et al., 2012).

2.6.2.2 Some Applications of the c-Had Gate

In this subsection, we will discuss some works regarding the practical use of the
c-Had gate. This will give an idea of how this quantum gate is essential and what it
is capable of. We will introduce optical quantum circuits where one aims to generate
W-state-based quantum networks.

The first work we introduce is about the expansion of W states whose entanglement
is unique (Yesilyurt et al., 2016), and this type of states is a convenient choice for
information processing tasks due to its robustness against environmental effects.
The general expression for a W state is given as:

(2.121) |Wn⟩ = 1√
n

[|(n−1)H⟩a|1V ⟩1 +
√
n−1|Wn−1⟩a|1H⟩1].

In this proposal, the authors aim to obtain a W state whose size is twice as much;
in other words, they aim to construct a circuit that transforms the input W state
as follows:

(2.122) |Wn⟩ −→ |W2n⟩

where n is the number of qubits belonging to a W state. We will not get into details
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on each transformation step, but one can see the expansion of a Bell state in Figure
2.22. This is the most basic expansion because one simply expands a Bell state
given in the following:

(2.123) |W2⟩ = 1√
2

(|HV ⟩+ |V H⟩),

and creates a W state of four photons. The whole process can be summarized as in
the following:

(2.124) E |W2⟩ = |W4⟩

where

(2.125) |W4⟩ = 1√
4

(|HHHV ⟩+ |HHVH⟩+ |HVHH⟩+ |V HHH⟩).

The operator of the whole circuit, composed of 2 c-Had and two cNOT gates, is
denoted by E. As a result, one doubles the size of the initial Bell state. If one
repeats the same process to double the size of the four-photon W state, 8 two-qubit
gates and 4 independent photons are required. The size of the circuit is as twice
as the first circuit given in Figure 2.22. For expanding an n-qubit W state into a
2n-qubit W state, the number of required two-qubit gates is 2n.

The other proposal we would like to discuss is about the construction of W states;
however, in this work one generates a W state with arbitrary size starting from inde-
pendent photons (Diker, 2022). It means that one does not need any entanglement
among photons.

Initially, we start with three independent photons and transform their polarization
states as in the previous case. The first circuit for creating a three-photon W state is
shown in Figure 2.23. We have two cNOT gates and two F gates. The input photon
in mode 1 is polarized vertically, whereas the others are in the horizontally-polarized
state. Each spatial mode is in the order starting from left to right in each ket. The
transformations of the F gates in different colors are different. The black F gate can
be decomposed into half-wave plates HWPs with an angle of π/8 and is the usual
c-Had gate. We call these gates F to generalize for all angles. The quantum gates
act on different qubits; therefore, two subindices are used to show the spatial modes
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Figure 2.22 The quantum circuit for the generation of a four-qubit W state. One
accesses each qubit of the Bell state (solid black spheres) and make them interact
with independent photons (solid blue spheres). Thus, independent photons become
entangled with the ones of the Bell state, and we obtain a W -state of four qubits as
an output.

of the control and target qubit. Each step of the whole operation is as follows:

F23cNOT21F12 |V HH⟩ = F23cNOT21[|V ⟩⊗ ( 1√
3

|H⟩+
√

2
3 |V ⟩)⊗|H⟩]

= F23cNOT21[ 1√
3

|V HH⟩+
√

2
3 |V V H⟩]

= F23[ 1√
3

|V HH⟩+
√

2
3 |HVH⟩]

= 1√
3
(

|V HH⟩+ |HVH⟩+ |HV V ⟩
)
.

(2.126)

Finally, the last gate acting on our state is the cNOT gate and gives a W state of
three qubits as output,

cNOT32[ 1√
3
(

|V HH⟩+ |HVH⟩+ |HV V ⟩
)
]

= 1√
3
(

|V HH⟩+ |HVH⟩+ |HHV ⟩
)
.

(2.127)

In the second circuit, four photons are used to create a W state with four qubits.
The circuit is composed of five cNOT s and three F gates (Figure 2.24). The whole
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Figure 2.23 We send three photons into the circuit composed of two cNOT gates
and two F gates. All the gates correspond to the box U . The input state is |V HH⟩,
and, in the end, a W state of three qubits is obtained as output.

operator is shown as the U box (Figure 2.23). The U box acts on the photons as in
the following:

(2.128) U |V HH⟩ = |W3⟩ ,

and |W3⟩ is a three-photon W state. One can see the operations of each gate in the
following:

(2.129) F12 |V HHH⟩ = 1√
4

|V HHH⟩+
√

3
4 |V V HH⟩ .

U box transforms the second qubit of the resultant state because the photon’s state

Figure 2.24 The enhanced optical scheme. This circuit consists of eight two-qubit
gates, five of which are cNOT s. The other ones are F gates. We send four photons
into the circuit to obtain a four-qubit W state.
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Figure 2.25 The optical circuit for the generation of a five-qubit W state. This circuit
consists of a F gate, four cNOT gates, and Ũ corresponding to the generation circuit
for a 4-qubit W state. We add extra gates to the previous circuit, Ũ , whose number
is equal to the size of the resultant state.

is |V ⟩ in mode 2,

(2.130)

UF12 |V HHH⟩ = U
[
|V ⟩⊗

( 1√
4

|HHH⟩+
√

3
4 |V HH⟩

)]
= |V ⟩⊗

( 1√
4

|HHH⟩+
√

3
4 |W3⟩

)
= 1√

4
(|V HHH⟩+ |V V HH⟩+ |V HV H⟩+ |V HHV ⟩).

After the action of the last three cNOT gates, we obtain a W state of four photons:

(2.131)
cNOT21cNOT31cNOT41[ 1√

4
(|V HHH⟩+ |V V HH⟩+ |V HV H⟩+ |V HHV ⟩)]

= cNOT21cNOT31[ 1√
4

(|V HHH⟩+ |V V HH⟩+ |V HV H⟩+ |HHHV ⟩)]

= cNOT21[ 1√
4

(|V HHH⟩+ |V V HH⟩+ |HHVH⟩+ |HHHV ⟩)]

= 1√
4

(|V HHH⟩+ |HVHH⟩+ |HHVH⟩+ |HHHV ⟩)

= |W4⟩ .

One can generate a W state of five qubits by using an ancillary photon. The cor-
responding circuit is shown in Figure 2.25. The previous network, which can be
used to generate a four-qubit W state, is denoted by Ũ . The transformations of the
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Table 2.2 The number of gates required for the generation of W states.

Resultant W state Two-qubit gates used F gates cNOT gates
|W3⟩ 4 2 2
|W4⟩ 8 3 5
|W5⟩ 13 4 9
|W6⟩ 19 5 14
|W7⟩ 26 6 20

initially independent photons are given below:

(2.132) ŨF12 |V HHHH⟩ = 1√
5

|V HHHH⟩+
√

4
5 |V ⟩⊗ |W4⟩ ,

(2.133)
cNOT21cNOT31cNOT41cNOT51ŨF12 |V HHHH⟩

= cNOT21cNOT31cNOT41cNOT51
[ 1√

5
|V HHHH⟩+

√
4
5 |V ⟩⊗ |W4⟩

]
= 1√

5
(|V HHHH⟩+ |HVHHH⟩+ |HHVHH⟩+ |HHHVH⟩+ |HHHHV ⟩)

= |W5⟩ .

Three circuits have been shown, and the total number of required two-qubit gates
are 4, 8, and 13 to obtain three-, four- and five-qubit W states, respectively. When
one wants to enlarge the size of a W state by one qubit, n two-qubit gates must
be integrated into the circuit which generates the initial W state (n is the number
of qubits of the desired W state). This shows a pattern for the number of gates
required for each W state, and we obtain

(2.134) n(n+1)−4
2

which gives the number of required two-qubit gates. The number of F gates we need

(2.135) n−1,

and the number of cNOT gates is given as

(2.136) (n−2)(n+1)
2 .

For the generation of an n-qubit W state, we need n−1 F gates with transformations
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Figure 2.26 The blue dashed line shows the relation between the number of qubits
and the total number of two-qubit gates. The green dashed-dotted line shows the
relation between n (the number of qubits of W state) and the number of cNOT
gates. The solid purple line shows the relation between the number of F gates and
n.

given in the following:

(2.137)

F(n−1)n |10⟩ = |1⟩⊗ 1√
2(|0⟩+ |1⟩),

F(n−2)(n−1) |10⟩ = |1⟩⊗ ( 1√
3 |0⟩+

√
2
3 |1⟩),

.

.

.

F23 |10⟩ = |1⟩⊗ ( 1√
n−1 |0⟩+

√
n−2
n−1 |1⟩),

F12 |10⟩ = |1⟩⊗ ( 1√
n

|0⟩+
√

n−1
n |1⟩)

where the subindices give the modes of qubits. The first and the second indices
are the modes of the control and target qubits, respectively. One can check Table
2.2 on which we show the number of gates needed for the generation of certain W

states. The number of two-qubit gates required to generate an n-qubit W state is
proportional to n2, which means a quadratic increase. We give the graph between
the total number of cNOT s and the size of the resultant W state in Figure 2.26. We
provide the graph between the angle of the first HWP and the size of the obtained
W state in Figure 2.27. We see that

(2.138) θ = 1
4 arccos[ 1√

n
].

Three optical setups have been proposed, which create W states of three, four, and
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five qubits with unit probability (not considering the application probabilities of the
quantum gates). A W state of any size can be generated by integrating extra gates
into the initial circuit. We have also found the formula which gives the number of
gates required. Our proposal is capable of creating any W state, and the number of
gates depends on the size of the W state to be obtained. Also, we only use cZ and
cNOT gates and do not need any larger gate. The realization of the cNOT gate
has been shown in the literature.

2.6.2.3 Entanglement in the Quantum Delayed-Choice Experiment

As mentioned earlier, the QDCE has been demonstrated to show that photons may
reveal both the particle and wave properties simultaneously. In this experiment, a
two-photon state is transformed by quantum gates in the optical scheme. Recall that
the essential component of the circuit is the c-Had gate (a two-qubit quantum gate).
We have already discussed how it transforms states and how to realize it using mode-
and polarization-based methods. One uses entangled two-photon states to observe
the wave- and particle-like properties through its intensity. We use the c-Had gate

Figure 2.27 A graph of the relation between the orientation angle of the first HWP
and the number of qubits belonging to the resultant W state. The other HWPs act
on the qubits as shown in Eq.2.137. The relation between n and the angles of the
other HWPs is also shown in the graph. This graph guides us how to arrange our
HWPs such that the circuit creates an n-qubit W state.
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to entangle two photons. Let us recall the resultant state:

∣∣∣Ψf (α,ϕ)
〉

= cosα
( 1√

2
(|0⟩s + eiϕ|1⟩s)

)
|0⟩a

+sinα
(

cos ϕ2 |0⟩s − isin ϕ2 |1⟩s

)
|1⟩a,

which was given previously. By measuring the intensity of the system photon, we
get

I0(α,ϕ) = 1
2cos2α+cos2 ϕ

2 sin2α.

We will investigate this experiment from the point of entanglement (Diker, 2021).
The general concurrence expression is given as

(2.139) C(ϕ) =
〈
ϕ
∣∣∣ϕ̃〉

for two-qubit states (Wootters, 2001). We simply apply this to the global state of
two photons (Diker, 2021) and get

(2.140) C(α,ϕ) = 1√
2

(|sin2α|
√

1+sin2ϕ).

Concurrence depends on both the relative phase and the amplitude, which implies a
correlation between concurrence (the measure of entanglement) and the probability
of observing the system photon. Concurrence and intensity can be expressed in
terms of each other (together with α and ϕ). Using this fact, we find the equation,

(2.141) I0(α,ϕ) = 1
2

(
cos2α+cos2 ϕ

2
C(α,ϕ)2

cos2α(1+sin2ϕ)

)
.

The intensity equation and concurrence are correlated with each other through the
parameters α and ϕ (Diker, 2021). One should notice that concurrence and other
trigonometric terms are also correlated with each other as well; because concurrence
and intensity depend on the same parameters. We observe not only particle and wave
behaviors but also the entanglement between the photons (Diker, 2021). Equation
2.141 gives the direct correlation between entanglement and intensity. The c-Had
gate is the main component which entangles photons.
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2.6.2.4 Quantum Contextuality in The Delayed-Choice Experiment

The importance of the KCBS inequality comes from the fact that it is the sim-
plest non-contextuality inequality. Let us recall the KCBS scenario which is a five-
measurement non-contextuality inequality (Klyachko, 2002, 2007; Binicioǧlu et al.,
2007; Klyachko et al., 2008):

⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩+ ⟨A4A5⟩+ ⟨A5A1⟩ ≥ −3

where Ai = 2S2
i − 1. (Si are the 3 × 3 spin-1 matrices). In real space, one may find

five directions for spin measurements performed on qutrit states. Ai and Ai+1 are
compatible observables. It means that one may measure them together. Recall that
the quantum lower limit can be as low as ∼= −3,94 for the neutrally polarized spin
state |0⟩.

Contextuality is an intrinsically defined feature for qutrit states; in other words,
one does not need to take into account the spatial parameters. Nevertheless, a
qutrit can have self-entanglement (Can et al., 2005) which can be defined as an
embedded entanglement in a qutrit system. The symmetric subgroup of two-qubit
states, which corresponds to effective qutrits, has been investigated. One finds the
concurrence inequality as a measure of self-entanglement (Binicioǧlu et al., 2007).
We will discuss an optical scheme where the symmetric two-qubit states are used as
input and show the direct relation between the wave-particle duality and quantum
contextuality (Diker, view). Along this direction, we will discuss how the KCBS test
is applied, and which operators we will need.

As mentioned earlier, the symmetric two-qubit states are inputs because they cor-
respond to effective qutrits on which one performs the KCBS measurements. The
most general symmetric expression of two-qubit states is given as:

(2.142) |Ψ⟩ = α1|00⟩+β

(
|01⟩+ |10⟩√

2

)
+α2|11⟩

where α1 and α2 are taken as equal,

(2.143) α1 = α2 = αeiγ , β = βeη.

The phase difference between the probability amplitudes is η− γ = ϕ. Equation
2.142 gives the initial state put into our circuit. Then, consecutive gates act on this
state before we perform the final test. This test includes the KCBS measurements
performed on both qubits along the vectors seen in Figure 2.1. The optical circuit
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is composed of a cZ gate, a cNOT gate, and a Hadamard gate. Finally, the KCBS
measurements are performed. Qubits physically correspond to spin-1/2 particles.
Recall that the cNOT gate transforms a quantum state only when the control qubit
is in the |1⟩ state corresponding to a particle with −1

2 spin. The state of the target
qubit is changed from |0⟩ to |1⟩, or |1⟩ to |0⟩. A Hadamard gate is applied onto the
second qubit as follows: H |0⟩ = 1/

√
2(|0⟩ + |1⟩), and H |1⟩ = 1/

√
2(|0⟩ − |1⟩). The

cZ gate is a two-qubit gate whose transformation is given as:

(2.144) cZ |11⟩ = −|11⟩

while all other states remain unchanged. One can see the whole circuit in Figure
2.28. Let us look at each step of transformation performed by each gate. The first
one is the Hadamard gate which acts on the initial state as follows:

(I⊗H)|Ψ⟩ = α1√
2

|0⟩⊗ (|0⟩+ |1⟩)

+ β√
2

(
|0⟩⊗ 1√

2
(|0⟩− |1⟩)+ |1⟩⊗ 1√

2
(|0⟩+ |1⟩)

)

+ α2√
2

|1⟩⊗ (|0⟩− |1⟩).

(2.145)

Next, the cZ gate transforms the state in Equation 2.145 as in the following:

cZ(I⊗H)|Ψ⟩ = α1√
2

|0⟩⊗ (|0⟩+ |1⟩)

+ β√
2

(
|0⟩⊗ 1√

2
(|0⟩− |1⟩)+ |1⟩⊗ 1√

2
(|0⟩− |1⟩)

)

+ α2√
2

|1⟩⊗ (|0⟩+ |1⟩).

(2.146)

The last gate we use is the cNOT gate which gives the final state as follows:

cNOT12cZ(I⊗H)|Ψ⟩ = α√
2

+ βeiϕ

2 |00⟩+ α√
2

− βeiϕ

2 |01⟩

+ α√
2

− βeiϕ

2 |10⟩+ α√
2

+ βeiϕ

2 |11⟩.
(2.147)

We have specifically chosen these gates to keep the symmetry of the final form. Thus,
the final expression of the two-qubit state given in Equation 2.147 corresponds to
an effective qutrit (three-level quantum system). We can rewrite it as

(2.148) |Ψ∗⟩ = α√
2

+ βeiϕ

2 |1⟩+α− βeiϕ

√
2

|0⟩+ α√
2

+ βeiϕ

2 |−1⟩.
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Figure 2.28 The circuit consists of 2 two-qubit gates(a cZ and a cNOT gates) and
a Hadamard gate. In the end, the total spin of two spin-1/2 particles is measured,
which corresponds to a spin measurement of a spin-1 particle.

We use the normalization condition,

(2.149) 2α2 +β2 = 1

to rewrite α and β as below:

(2.150) α = cosθ√
2
,β = sinθ.

This allows us to write the state as a function of ϕ and θ, |Ψ∗(θ,ϕ)⟩. Finally, we
test it by performing the KCBS measurements. The operation of the KCBS test is
denoted by SKCBS . We calculate the average of the KCBS operator and get

(2.151) ⟨Ψ∗|SKCBS |Ψ∗⟩ = −
(
3
√

5−5
)(

cos2 θ− sin2θ cosϕ
)

−
√

5

Equation 2.151 depends on both θ and ϕ; in other words, quantum contextuality
depends on the wave- and particle-like features (Diker, view). It is known that a
subgroup of qutrits violates the KCBS inequality (Klyachko, 2002, 2007; Binicioǧlu
et al., 2007; Klyachko et al., 2008). Yet, the degree of violation changes from state
to state. We observe maximal contextuality for the state |0⟩. Through Equation
2.151, one can clearly find the quantum lower limit when

(2.152) cos2 θ− sin2θ cosϕ= 1.

We have the θ variable corresponding to the particle property of the photon, whereas
ϕ is the initial relative phase between the amplitudes. It is trivial to say that
this is the wave nature of the photon. The probability amplitude of the state
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|0⟩ given in Equation 2.148 is dependent on β, α and ϕ. The α parameter ex-
presses the particle interaction when the gates act on both photons. Both α and
β depend on θ; therefore, the θ parameter corresponds to the particle nature of
photons. A two-qubit system exhibits wave- and particle-like properties such that
The KCBS inequality is maximally violated; in other words, both particles exhibit
these properties in accordance with the maximal contextuality (Diker, view). Let us
say ϕ = π

2 , the KCBS inequality is maximally violated for θ = nπ(n is an integer).
If one increases the phase difference from π

2 to π, the violation is maximal when
θ ∈ {tan−1(2),π,tan−1(2)−π,2π}.
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3. CONCLUSION

The KCBS inequality is the simple and elegant example of KS-like inequalities.
Therefore, we did the rotational-symmetry analysis of the KCBS scenario. We have
seen its symmetry about the Z-axis and found the contextuality region for the
neutrally-polarized state, which maximally violates the KCBS inequality. The other
eigenstates of the spin-1 measurement operator have also been investigated, and it
has been shown that they exhibit non-contextuality without regard to rotation. Yet,
their homogeneous linear combination exhibit contextuality in the KCBS scenario.

The specific set of qutrits with real probability amplitudes (retrits) have been inves-
tigated. By doing a graph analysis, we have determined the set of contextual retrits
through physical rotations. The (non-)contextuality regions have been shown on
spheres. Furthermore, the set of rotation angles has been found for which no contex-
tuality is observed, i.e., the set of KCBS measurements yielding results compatible
with the classical approach have been determined.

The data have been provided for specific Euler angles giving maximal contextuality.
Data points have been shown on graphs, and we have fitted the corresponding
curve to find general formulas. This sets the condition for a state to be maximally
contextual. This is an important step towards the classification of quantum systems
in terms of their (non-)contextuality.

After we have analyzed quantum contextuality regarding its symmetry in the physi-
cal space, we have decided to determine the degree of contextuality for the symmetric
subgroup of two-qubit states expressed in MSR. Later, a connection between contex-
tuality and concurrence has been found in Equation 2.93. We have made use of this
relation to find the maximal quantum contextuality when concurrence (the measure
of entanglement) is given. We have found a linear relation between the measure of
entanglement and contextuality. We have also checked the non-entanglement and
maximal entanglement cases, which give us the quantum and the classical lower
limits. These limits show that non-locality is necessary but insufficient for a qutrit
to violate the non-contextuality inequality. They have to be non-local as well to
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observe the violation of the KCBS inequality. These conditions have been shown
in (Klyachko, 2007; Klyachko et al., 2008), and the authors have already shown the
correlation between the degree of entanglement and contextuality. We succeeded
in showing this correlation explicitly. The qutrit states can be divided into three
groups:

i. The qutrits which never exhibit contextuality in the KCBS scenario;

ii. The states which exhibit contextuality in the KCBS scenario to a certain
degree (not maximally);

iii. The maximally contextual states that yield the quantum lower limit.

Subcategories may be added to divide qutrits into:

i. non-local and contextual states for S <−3;

ii. Those that exhibit non-contextuality and non-locality (−3 ≤ S <−
√

5);

iii. Those that exhibit non-contextuality and locality (−
√

5 ≤ S).

We use the relation between concurrence and contextuality to determine these cate-
gories. One can use the results in (Soeda et al., 2013) based on the relation between
the CHSH and KCBS inequalities to categorize qutrits in a similar manner. Cate-
gorization of qutrit states based on their contextuality and entanglement is required
for a better understanding of these concepts. Moreover, we chose the KCBS scenario
for this purpose because it is the simplest example of a classical inequality.

After we investigated the symmetries of the KCBS scenario and how its violation
is related to entanglement, we have looked into the delayed-choice experiment in
the context of contextuality. We have seen that the QDCE can be demonstrated
by using a polarization-based optical circuit and how the wave- and particle-like
properties are related to the degree of entanglement in a two-photon system. The
QDCE has already been proposed using polarization-based photons (Diker, 2018);
however, our scheme is composed of fewer optical tools. We have used a polarization-
based c-Had not to require an entanglement source since it entangles the photonic
states. The QDCE has been realized via various methods, including single-atom
protocol and nuclear magnetic resonance techniques (Manning et al., 2015; Roy
et al., 2012; Tang et al., 2012). Lately, entanglement-assisted QDCEs have been
discussed, and the hidden-variable models have been considered as to whether they
are in agreement with the results (Ionicioiu et al., 2014; Xin et al., 2015). The
polarization-based scheme is yet to be demonstrated experimentally; however, one
can realize the cNOT gate via linear optics, and the other tools are easy to find in
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laboratories.

It has been shown that the wave-particle duality and entanglement may be ob-
served simultaneously through the intensity of a photon. Two unique concepts of
quantumness: entanglement and the wave-particle duality can be observed simulta-
neously due to their strong correlation in the QDCE. One may generate entangle-
ment between the particle and wave states in a two-photon state (Rab et al., 2017);
however, entanglement (together with the wave-particle duality) can be observed in
the QDCE. The QDCE has also been demonstrated in a multi-path scheme, which
uses control-Hadamard gates (Chen et al., 2021). There is an open problem as to
whether one may observe entanglement and the wave-particle duality simultaneously
in a generalized scenario. Our results are important to understand the connection
between the wave-particle duality and entanglement.

In the context of the QDCE, we have proposed a quantum circuit that is the modi-
fied QDCE and seen that quantum contextuality and the wave-particle duality are
correlated with each other in a two-qubit system. We have obtained the equation
showing the direct relation between these. This proposal is realizable since we use
well-known tools. Our result is essential to understand the fundamental properties
of Quantum Theory. The KCBS inequality was a good choice to look for possible
relations between these fundamental concepts due to its simplicity.

Finally, we are ready to manifest the physical reality of quantum contextuality. Let
us look at the following fundamental properties concerning the role of quantum
contextuality in Quantum Theory:

i. There is not a generalized monogamy relation between non-locality and quan-
tum contextuality; in other words: observing one or another depends on the
measurements, but it cannot be generalized to any case (Xiao et al., 2022).

ii. There is a rotational symmetry of quantum contextuality in the KCBS mea-
surement scenario, which is likely to be valid for other measurement scenarios
as well.

iii. Entanglement and quantum contextuality are linearly related in the KCBS
scenario.

iv. The lower bound we have found (−
√

5) is the stricter separation between
classical and quantum measurements. We have drawn a more precise line
between quantum and classical worlds and stepped towards understanding
quantum dynamics better.

v. Quantum contextuality is as strongly correlated with entanglement as with
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the wave-particle duality. Entanglement is also well correlated with the wave
and particle properties of a particle.
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