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Abstract

During the last century, researchers studied integer partition theory extensively. We

are more interested in exploring partition identities among many aspects of integer par-

titions. In this thesis, we study a constructive method developed by Kurşungöz to find

new identities on Rogers-Ramanujan type integer partitions and overpartitions. For

this aim, we give a reproof of two Rogers-Ramanujan identities using the constructive

method.

Combining two types of partitions, we introduced 2-colored Rogers-Ramanujan

partitions. By finding some functional equations and using the constructive method,

some identities have been found. Our results coincide with some extreme cases of

Rogers-Ramanujan-Gordon’s identities. A correspondence between colored partitions

and those overpartitions is provided.

Our second result is finding the missing cases of parity consideration on Rogers-

Ramanujan-Gordon’s identities due to Andrews’s suggestion in his seminal paper about

parity in partition identities. Four cases had proven by Sang, Shi, and Yee, we reproved

them using the said constructive method and then found and proved the remaining

cases by the same method.



PARÇALANIŞ VE ÜST-PARÇALANIŞLAR İÇİN ROGERS-RAMANUJAN

GENELLEŞTİRMELERİNDE ÜRETEÇ FONKSİYON OLAN SERİLERİN İNŞASI

VE BUNLARIN DOĞRULAMA TARZI KANITLARI

Mohammad Zadeh Dabbagh

Matematik, Doktora Tezi, Temmuz 2022

Tez Danışmanı: Doç. Dr. Kağan Kurşungöz

Anahtar Kelimeler: Tamsayı Parçalanışları, Parçalanış özdeşlikleri, üst-parçalanışlar,

Renkli Parçalanışlar, q-serileri, Rogers-Ramanujan Tarzı Parçalanışlar

Özet

Geçtiğimiz yüzyılda araştırmacılar tamsayı parçalanış teorisini kapsamlı bir biçimde

çalışmışlardır. Biz tamsayı parçalanış özdeşlikleri ile daha çok ilgileniyoruz. Bu doktora

tezinde parçalanışlar ve üst-parçalanışlar için Rogers-Ramanujan tarzı özdeşliklerin

keşfi ve kanıtlanması için Kurşungöz tarafından geliştirilen inşalı bir metodu çalışıyoruz.

Bu amaç doğrultusunda Rogers-Ramanujan özdeşliklerini yeniden kanıtlıyoruz.

İki tip parçalanışı birleştirerek iki renkli Rogers-Ramanujan parçalanışlarını tanımladık.

Bazı fonksiyonel denklemleri bahsettiğimiz inşalı yöntem ile çözerek bazı özdeşlikler

bulduk. Bulduklarımız üst-parçalanışlar için Rogers-Ramanujan-Gordon özdeşliklerinin

uç durumları ile çakışmaktadır. Bu durumda renkli parçalanışlar ve bahsedilen üst-

parçalanışlar arasında birebir bir eşleme verilmiştir.

İkinci sonucumuz ise Andrews’ün parçalanış özdeşliklerinde teklik ve çiftliği in-

celediği yeni ufuklar açan makalesinde önerdiği bir açık problemin kısmi bir çözümünün

eksik durumlarının bulup kanıtlanarak tamamlanmasıdır. Bu problemin Sang, Shi

ve Yee’nin bulduğu dört durumdaki özdeşlikleri bahsettiğimiz inşalı metotla yeniden

kanıtlayıp kalan iki durumdaki özdeşlikleri de bularak kanıtladık.
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CHAPTER 1

Introduction

When we talk about a partition, it refers to breaking an object down into smaller

parts. It is the same for integer partitions, we want to study positive integers when we

decompose them into smaller positive integers. In fact, we are interested in classifying

all the ways that a positive integer n can be broken into other positive integers such

that the summation of them is n.

Definition 1.0.1 [2] A partition of a positive integer n is a finite non-increasing

sequence of positive integers λ1, · · ·λr such that
∑r

i=1 λi = n. The λi are called the

parts of the partition.

As an example, consider n = 4, then all the possible partitions are:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

The number of all possible partitions of n is denoted by p(n). In 1918, Hardy and

Ramanujan found an asymptotic formula for p(n).

Theorem 1.0.1 (Hardy-Ramanujan) [2] For positive integer n

p(n) ∼ eπ
√

2n
3

4n
√
n
.

Later in 1938, Rademacher found an exact formula for p(n) [16]. We can add

some restrictions or conditions on parts of all partitions of an integer. One may study

those partition types for other asymptotic or exact formulas. Studying different parti-

tion types also leads us to find partition identities, which will help us classify integer
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partitions. In the majority of partition identities, there are two types of conditions,

first, the multiplicity conditions such as all parts being distinct; second, the divisibility

conditions, such as all parts being divisible by 2.

The first known partition identity was given by Euler [2].

Theorem 1.0.2 The number of partitions of a positive integer n into distinct parts is

equal to the number of partitions of n into odd parts.

For n = 6, all four partitions of 6 into distinct parts are:

6, 5 + 1, 4 + 2, 3 + 2 + 1,

and partitions into odd parts are:

5 + 1, 3 + 3, 3 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

As we mentioned, partitions into distinct parts is a multiplicity condition, and it is

clear that the other side, parts being odd, is a divisibility condition.

The Rogers-Ramanujan identities are a milestone in integer partitions. These iden-

tities were first discovered and proved by Rogers in 1894 [2], later, in 1913, Ramanujan

rediscovered them without any proof [2], again, in 1919, Schur rediscovered and proved

them independently [2]. The first identity is as follows:

Theorem 1.0.3 (The first Rogers-Ramanujan identity) [2] The partitions of an inte-

ger n in which the difference between any two parts is at least 2 are equinumerous with

the partitions of n into parts congruent to 1 or 4 modulo 5.

For n = 9, there are 5 partitions in which the difference between parts is at least

2, as follows:

9, 8 + 1, 7 + 2, 6 + 3, 5 + 3 + 1,

and the number of partitions into parts congruent to 1 or 4 modulo 5 is again 5 and

they are

9, 6 + 1 + 1 + 1, 4 + 4 + 1, 4 + 1 + 1 + 1 + 1 + 1, 1 + · · ·+ 1.

The second one is:
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Theorem 1.0.4 (The second Rogers-Ramanujan identity) [2] The partitions of an in-

teger n in which the difference between any two parts is at least 2 and parts are greater

than 1 are equinumerous with the partitions of n into parts congruent to 2 or 3 modulo

5.

Again, let n = 9. Then there are 3 partitions in which the difference between parts

is at least 2 and parts greater than 1, as follows:

9, 7 + 2, 6 + 3,

and the number of partitions into parts congruent to 2 or 3 modulo 5 is again 3 and

they are

7 + 2, 3 + 3 + 3, 3 + 2 + 2 + 2.

For our purposes, we write them in terms of generating functions. We can rewrite

the first identity as follows:

R1(q) =
∑
n≥0

r1(n)qn =
(q2, q3, q5; q5)∞

(q; q)∞

where R1(q) is the generating function for partitions of n in which the difference be-

tween any two parts is at least 2 and the second one as

R2(q) =
∑
n≥0

r2(n)qn =
(q1, q4, q5; q5)∞

(q; q)∞

where R2(q) is the same as R1(q) with additional condition that parts are greater than

1, and

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1),

(a1, a2, · · · , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n,

(a; q)∞ = lim
n→∞

(a; q)n,

(a; q)0 = 1

are the q-Pochhammer symbols [2].

There are many generalization of the Rogers-Ramanujan identities, a very remark-

able generalization is given by Gordon in 1961.
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Theorem 1.0.5 (The Rogers-Ramanujan-Gordon identities) [10] For 1 ≤ a ≤ k, let

Ak,a(n) be the number of partitions of n into parts that are not congruent to 0 or ±a

modulo 2k + 1. Let Bk,a(n) be the number of partitions π of n of the form

π1 + π2 + · · ·+ πj,

where πi ≥ πi+1, πi − πi+k−1 ≥ 2, and at most a− 1 of the πi are equal to 1. Then for

all n ≥ 0,

Ak,a(n) = Bk,a(n).

In the study of integer partitions, we may go further and study other type of

partitions such as overpartitions, in which an overlined part can occur among other

parts [9]. Another one is colored partitions, in which parts may get different colors, we

talk about it later [3].

Definition 1.0.2 An overpartition of a positive integer n is a non-increasing sequence

of positive integers such that the summation of them is n and the first occurrence

(equivalently, the final occurrence) of any part can be overlined.

As an example, all overpartitions of 4 are,

4, 4̄, 3 + 1, 3̄ + 1, 3 + 1̄, 3̄ + 1̄, 2 + 2, 2̄ + 2,

2 + 1 + 1, 2̄ + 1 + 1, 2 + 1̄ + 1, 2̄ + 1̄ + 1, 1 + 1 + 1 + 1, 1̄ + 1 + 1 + 1

The number of all possible partitions of n is denoted by p(n).

Note that in terms of generating functions, for partitions and overpartitions, we

have [2]

P (q) =
∑
n≥0

p(n)qn =
1

(q; q)∞
,

and [7]

P (q) =
∑
n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

.

In the following chapters, we will talk about the constructive method, developed by

Kurşungöz [13] and [14], that we have used to find new identities of Rogers-Ramanujan

type, then we will see colored partitions and some identities on them, after that, we

will go through overpartitions, we will complete the parity condition consideration for
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Rogers-Ramanujan-Gordon identities for overpartitions; and finally, we will give some

open problems and ideas to generalize the results of this thesis.

The content of the thesis comes from parts of two articles, one of which is submitted

[19], and the other one is going to be submitted [15].
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CHAPTER 2

The Constructive Method

2.1 Jacobi’s Triple Product Identity and the Con-

structive Method

In this chapter we will discuss the constructive method, developed by Kurşungöz in

[13] and [14], to find new partition or overpartition identities of Rogers-Ramanujan

type, starting from the definition (in particular the multiplicity side), then using the

generating functions of them, we will find the divisibility side of the identities. For this

purpose, one of the important tools is using a transformation such as Jacobi’s triple

product identity.

Theorem 2.1.1 (Jacobi’s triple product) [2] For z 6= 0, |q| < 1,

∞∑
n=−∞

znqn
2

=
∞∏
n=0

(1− q2n+2)(1 + zq2n+1)(1 + z−1q2n+1).

By replacing q by qt+
1
2 and then setting z = −qt+ 1

2
−i, we can easily get the following

form of Jacobi’s triple product identity,

Corollary 2.1.2 [2] For |q| < 1, integers t and i,

∞∑
n=0

(−1)nq(2t+1)n(n+1)/2−in(1−q(2n+1)i) =
∞∏
n=0

(1−q(2t+1)(n+1))(1−q(2t+1)n+i)(1−q(2t+1)(n+1)−i).

In this method, first we enumerate a type of partitions with some special conditions

on parts, this gives us a family of generating functions and then we apply the following

steps to them:
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step 1: We find functional equations relating the generating functions.

step 2: We guess the type of series we want as solutions. The inspiration is Andrews’

H and J functions [2], which appear in the proof of many partition identities, in

those proofs, the generating functions will be related to H and J functions. In

the constructive method, we are trying to build those generating functions.

step 3: We use the functional equations and construct the series.

step 4: We apply x = 1, because we want the partitions to be independent from the

length, and then we use the Jacobi’s triple product theorem to find a q-series

identity.

In the next section, we will provide a proof for Rogers-Ramanujan identities using

the constructive method and we will see all the steps in more details. In fact, we will

go over a proof of the Rogers-Ramanujan identities, and try to reverse engineer it.

2.2 Reproof of Rogers-Ramanujan Identities

Let r1(m,n) counts all Rogers-Ramanujan type partitions of n with m parts, and

r2(m,n) count all Rogers-Ramanujan type partitions when all parts are more than 1

of n with m parts. Then R1(x) and R2(x) are the following double sums:

Ri(x) =
∑
m≥0

∑
n≥0

ri(m,n)xmqn ; i = 1, 2

It is not hard to find the following relations between them.

R2(x)−R1(x) = xqR1(xq), (2.1)

R1(x) = R2(xq). (2.2)

A proof to these functional equations is given in Andrews’ book [2]. In fact, these

functional equations and some initial conditions, which will be given shortly, uniquely

determine the generating functions. We assume that each of them has the form

Ri(x) =
∑
n≥0

αn(x)qnAi + βn(x)xBiqCiqnDi i = 1, 2 (2.3)

with the initial condition that Ri(0) = 1 (for the empty partition of 0).
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Our first goal is to find Ai, Bi, Ci and Di. For this end, we construct the functional

equations using the equation (2.1) in the following form∑
n≥0

αn(x)(qnA2 − qnA1) + βn(x)(xB2qC2qnD2 − xB1qC1qnD1)

=
∑
n≥0

αn(xq)xqqnA1 + βn(xq)xqxB1qC1qnD1

in the last term, we substitute n by n− 1, then we use another assumption that

αn(x)(qnA2 − qnA1) = βn−1(xq)xqxB1qC1q(n−1)D1

and

βn(x)(xB2qC2qnD2 − xB1qC1qnD1) = αn(xq)xqqnA1 .

Note that these imply the functional equations (2.1) and (2.2), but not implied

by them. After some calculation and simplification we can write αn(x) in terms of

α0(xq2n) and βn(x) in terms of α0(xq2n+1), which are

αn(x) = α0(xq2n)
x2nqn(2n+1)q−nA1

(qE; qE)n(xF qGqF−GqnH ; q2F−H)n
,

and

βn(x) = −α0(xq2n+1)
x2n+1q(n+1)(2n+1)x−B1q−C1q−nD1

(qE; qE)n(xF qGqnH ; q2F−H)n+1

where E = A2 − A1, F = B2 −B1, G = C2 − C1 and H = D2 −D1.

Now, we change the second finite product in both fractions into an infinite product,

and rename part of the equation as α̃0(x), then we have

αn(x) = α̃0(xq2n)
x2nqn(2n+1)q−nA1

(qE; qE)n(xF qGqF−GqnH ; q2F−H)∞

and

βn(x) = −α̃0(xq2n+1)
x2n+1q(n+1)(2n+1)x−B1q−C1q−nD1

(qE; qE)n(xF qGqnH ; q2F−H)∞

where

α̃0(xq2n) = α0(xq2n)((xq2n)F qGqF−H ; q2F−H)∞.

Next, we use these αn and βn in the equation (2.2) and again we shift n to n− 1 in

8



the last term on the right hand side, so we have∑
n≥0

α̃0(xq2n)
x2nqn(2n+1)qnE

(qE; qE)n(xF qGqF−GqnH ; q2F−H)∞

− α̃0(xq2n+1)
x2n+1q(n+1)(2n+1)xF qGqnH

(qE; qE)n(xF qGqnH ; q2F−H)∞

=
∑
n≥0

α̃0(xq2n+1)
x2nq2n2+3n

(qE; qE)n(xF qGq2F−GqnH ; q2F−H)∞

− α̃0(xq2n)
x2n−1q2n2+n+1

(qE; qE)n(xF qGqF−HqnH ; q2F−H)∞

In this step, we want α̃0 to be independent of x and after some simplification we

have
xq

(xF qGqF−HqnH ; q2F−H)∞
− x2q2n+2

(xF qGqnH ; q2F−H)∞

=
xq2n+1qnE(1− xF qGqnH)

(xF qGqnH ; q2F−H)∞
− xF qF+Gq(n−1)H(1− qnE)

(xF qGqF−HqnH ; q2F−H)∞

Now, we need one more assumption to simplify the infinite products and make

them into rational functions, then by cross-multiplying, we then obtain an identity

between polynomials, and we can find E,F ,G and H. This is also called similarity

of two terms involving infinite products [13]. The assumption that we need here is

2F −H|F −H, so F = 1−t
1−2t

H for some integer t, in this part we choose the smallest

or the simplest solutions among infinitely many ones, if they do not work, we choose

other ones. Note that after rearranging monomials, there should be the same number

of positive monomials on each side. Here, for t = 0, we have F = H, then

xq − x2q2q2n = xqqn(E+2) − xF+1qG+1qn(E+F ) − xF qGqnF + xF qGqn(E+F )

we can rearrange it to

xq + xF+1qG+1qn(E+F ) + xF qGqnF = xqqn(E+2) + xF qGqn(E+F ) + x2q2q2n.

So, there are three terms on each side, because every monomial on the left hand

side must correspond to one monomial on the right hand side, this gives us 3! = 6

different linear systems of equations, such as

xq = xqqn(E+2),

xF+1qG+1qn(E+F ) = xF qGqn(E+F )

9



and

xF qGqnF = x2q2q2n.

The idea is to identify the exponents of x, q and qn to find unknown parameters E,

F , G and H. If our choice in the previous step works, one of them has a solution, in

this case the solution is

F = G = H = 1 and E = −1.

We wanted α̃0 to be constant with respect to x. Note that in (2.3), if we put x = 0,

in the right hand side, all terms will be eliminated except α0(0) and in the left hand

side, we have Ri(0), the partitions of 0 which is 1 for the empty partition of 0, i.e.

α0(0) = 1, so α̃0(xq2n) = 1.

In this step, we apply x = 1, because xm was the term for the length of partitions,

but we want our generating function to be free of length, i.e. it works for any partition

of any length. Then we have

R1(1) =
1

(q)∞

∑
n≥0

(−1)nq
5n2+3n

2 (1− q2n+1)

and

R2(1) =
1

(q)∞

∑
n≥0

(−1)nq
5n2+n

2 (1− q4n+2)

now, we use corollary (2.1.2), for i = 1 and t = 2, then we have

R1(1) =

∏∞
n=0(1− q5(n+1))(1− q5n+1)(1− q5n+4)

(q)∞

which gives us the second Rogers-Ramanujan identity. Again, using corollary (2.1.2),

for i = 2 and t = 2, we have

R2(1) =

∏∞
n=0(1− q5(n+1))(1− q5n+2)(1− q5n+3)

(q)∞

which gives us the first one.
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CHAPTER 3

2-Colored Rogers-Ramanujan Partition Identities

3.1 Introduction

There are different ways of coloring partitions, each introduced for different purposes.

Andrews [3] introduced the two colored partitions, later, together with Agarwal [1],

they defined partitions with N copies of N , another type is 4-colored partitions, also

known as 4 parameters partitions introduced by Boulet [6] and developed by Uncu [5].

We will give a definition for arbitrary number of colors in a partition given by Chern,

Fu and Tang [8],

Definition 3.1.1 A k-colored partition of n is the one that each part can get any of k

different colors.

As an example, the fourteen 2-colored partitions of 3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1,

1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1 + 1

Combining Rogers-Ramanujan type partitions, defined in the second chapter, and

t-colored partitions, we define the following partition type,

Definition 3.1.2 A 2-colored Rogers-Ramanujan partition of n consists of two sepa-

rate list of parts, each of the same color, and the difference between every two consec-

utive parts of the same color is at least two, moreover, parts in different colors do not

overlap.
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As an example, the twelve 2-colored Rogers-Ramanujan partitions of 6 are

6, 6, 5 + 1, 5 + 1, 5 + 1, 5 + 1, 4 + 2, 4 + 2, 4 + 2, 4 + 2, 3 + 2 + 1, 3 + 2 + 1.

By this definition, we have the following identity.

Theorem 3.1.1 Let R1(n) denote the number of 2-colored Rogers-Ramanujan parti-

tions of n, then for |q| < 1,∑
n≥0

r1(n)qn =
(−q)∞(q2, q2, q4; q4)∞

(q)∞
.

Lovejoy [12] proved analogues of Gordon’s theorem for overpartitions in the cases

i = 1 and i = k. Later Chen et. al [7] found the missing cases as follows,

Theorem 3.1.2 For k ≥ a ≥ 1, let Dk,a(n) denote the number of overpartitions

of n of the form d1 + d2 + · · · + ds, such that 1 can occur as a non-overlined part

at most a − 1 times, and dj − dj+k−1 ≥ 1 if dj is overlined and dj − dj+k−1 ≥ 2

otherwise. For k > i ≥ 1, let Ck,i(n) denote the number of overpartitions of n whose

non-overlined parts are not congruent to 0,±i modulo 2k and let Ck,k(n) denote the

number of overpartitions of n with parts not divisible by k. Then Ck,i(n) = Dk,i(n).

In the following sections, we will go over the 2-colored Rogers-Ramanujan partition

type, accordingly, we will find two functional equations, and then constructively, we

will prove the theorem 3.1.1, we will also find two other partition identities. At the

end, a correspondence between our identities and the ones for overpartitions is given.

3.2 Colored Rogers-Ramanujan Partitions and the

Proof of Theorem 3.1.1

According to 2-colored Rogers-Ramanujan partitions, the following definition is given.

Definition 3.2.1 For 1 ≤ j ≤ 2, let Rj(x) be the generating function of 2-colored

Rogers-Ramanujan partitions with smallest part greater than or equal to j.

With respect to these definitions, one can find the following functional equations

relating R1(x) and R2(x). We use this equation as the construction equation in our

method.
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Theorem 3.2.1

R1(x)−R2(x) = xqR1(xq) + xqR2(xq). (3.1)

Proof 3.2.2 Let

Ri(x) =
∑
m≥0

∑
n≥0

ri(m,n)xmqn ; i = 1, 2

be the generating function for the types that have been mentioned above, where m is

referring to the number of parts in partitions.

Let π be a 2-Colored Rogers-Ramanujan partition of n with m parts. All 2-colored

Rogers-Ramanujan partitions will be counted by r1(m,n), and if the smallest part is

≥ 2, then it will be counted by r2(m,n). So, r1(m,n)− r2(m,n) will count the number

of partitions with the smallest part 1. If we remove 1 from all partitions, then we have

two cases:

(i) The smallest part is ≥ 2 with different color than 1, so one can subtract 1 from

each part, the enumeration of these partitions is by r1(m− 1, n−m).

(ii) The smallest part is ≥ 3 with the same color as 1, if 1 is subtracted from each

part, the enumeration of these partitions is r2(m− 1,m− n), note that a part 2

is not possible here.

So,

r1(m,n)− r2(m,n) = r1(m− 1, n−m) + r2(m− 1, n−m).

Multiplying all terms by xmqn and taking the summation over m and n for all terms,

m,n ≥ 0 and both integers, we have∑
m≥0

∑
n≥0

r1(m,n)xmqn −
∑
m≥0

∑
n≥0

r2(m,n)xmqn =

∑
m≥0

∑
n≥0

r1(m− 1, n−m)xmqn +
∑
m≥0

∑
n≥0

r2(m− 1, n−m)xmqn.

By changing m − 1 to m and n − m to n − m + 1 on the right hand side of this

equation, we have∑
m≥0

∑
n≥0

r1(m,n)xmqn −
∑
m≥0

∑
n≥0

r2(m,n)xmqn =

∑
m≥0

∑
n≥0

r1(m,n)xm+1qn+m+1 +
∑
m≥0

∑
n≥0

r2(m,n)xm+1qn+m+1.

This will get us the functional equation (3.1).
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Theorem 3.2.3 Another relation between R1(x) and R2(x) is as follows, we use this

one as our check equation.

R2(x) = R1(xq) (3.2)

Proof 3.2.4 Equation (3.2) is clear, as shifting every part of R1 by 1 unit it will

change it to R2.

Using steps described in the second chapter, with straightforward but long compu-

tations which we skipped here, by

Ri(x) =
∑
n≥0

αn(x)qnAi + βn(x)xBiqCiqnDi , i = 1, 2

we can find αn and βn in terms of α0,

αn(x) = α̃0(xq2n)
x2nqn(2n+1)q−nA2(−1; qE)n(−xF qGqF−HqnH ; q2F−H)∞

(qE; qE)n(xF qGqF−HqnH ; q2F−H)∞

and

βn(x) =− α̃0(xq2n+1)

x2n+1q(n+1)(2n+1)x−B2q−C2q−nD2(−1; qE)n+1(−xF qGq2F−HqnH ; q2F−H)∞
(qE; qE)n(xF qGqnH ; q2F−H)∞

where

α̃0(xq2n) = α0(xq2n)
((xq2n)F qGqF−H ; q2F−H)∞

(−(xq2n)F qGqF−H ; q2F−H)∞
,

also, E = A2 − A1, F = B2 −B1, G = C2 − C1 and H = D2 −D1.

Then, by equation (3.2) and considering some assumptions for equations to be

consistent, we can find E, F , G and H, in this case F = G = H = 1 and E = −1.

Putting them in the generating functions for Ri(x), α̃0 being constant with respect

to x, and applying x = 1, we have

R1(1) =
∑
n≥0

(−1)nqn(2n+1)(−1; q)n(−qn+1; q)∞
(q)n(qn+1; q)∞

− (3.3)

∑
n≥0

(−1)nq(n+1)(2n+2)(−1; q)n+1(−qn+2; q)∞
(q)n(qn+1; q)∞

(3.4)

and

R2(1) =
∑
n≥0

(−1)nqn(2n+2)(−1; q)n(−qn+1; q)∞
(q)n(qn+1; q)∞

− (3.5)

∑
n≥0

(−1)nq(n+1)(2n+1)(−1; q)n+1(−qn+2; q)∞
(q)n(qn+1; q)∞

. (3.6)
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hey can be rewritten as follows,

R1(1) = 2
(−q)∞
(q)∞

∑
n≥0

(−1)nqn(2n+1)(
1

1 + qn
− q3n+2

1 + qn+1
)

and

R2(1) = 2
(−q)∞
(q)∞

∑
n≥0

(−1)nqn(2n+2)(
1

1 + qn
− qn+1

1 + qn+1
).

So,

R1(1) = 2
(−q)∞
(q)∞

(
∑
n≥0

(−1)nqn(2n+1)

1 + qn
−
∑
n≥0

(−1)nqn(2n+1)q3n+2

1 + qn+1
)

=
(−q)∞
(q)∞

(1 + 2(
∑
n≥1

(−1)nqn(2n+1)

1 + qn
−
∑
n≥1

(−1)n−1q2n2

1 + qn
))

=
(−q)∞
(q)∞

(1 + 2(
∑
n≥1

(−1)nq2n2
(qn + 1)

1 + qn
))

=
(−q)∞
(q)∞

(1 + 2
∑
n≥1

(−1)nq2n2

) =
(−q)∞
(q)∞

∞∑
n=−∞

(−1)nq2n2

.

By Theorem (2.1.1) for z = −1 and q2, for 2-colored Rogers-Ramanujan type

partitions defined in (3.2.1) the following identity holds

R1(1) =
(−q)∞(q2, q2, q4; q4)∞

(q)∞
.

Moreover, the coefficients in the Taylor series of R2(1) coincides with the number

of partitions for 2-colored Rogers-Ramanujan partitions with parts more than 1,

1 + 2q2 + 2q3 + 2q4 + 4q5 + 6q6 + 8q7 + 10q8 + 14q9 + 18q10 + · · · .

We will come back to R2(n) at the end of this chapter.

3.3 Correspondence with Overpartitions

There is a one-to-one correspondence between 2-colored Rogers-Ramanujan type par-

titions and previously defined overpartitions Dk,a(n) for k = a = 2.

Let π = (y1, · · · , yi, yi+1, · · · , ym) be an arbitrary 2-colored partition of n, and

π = (z1, · · · , zi, zi+1, · · · , zm) be an arbitrary overpartition of n, both into m parts.

First of all, in both cases all parts are distinct. Secondly, for the case that there are t

number of consecutive parts, for the colored case, there are only two possibilities, they

15



should be alternatively red and black, e.g. for three consecutive parts i, i+ 1 and i+ 2,

the cases are

j, i, i+ 1, i+ 2, k and j, i, i+ 1, i+ 2, k

where j < i − 1 and k > i + 3. This means two consecutive parts can not be of the

same color. For the overpartition case, the first t − 1 parts should be overlined and

there are two possibilities for the last one, e.g. for three consecutive parts we have

j, i, i+ 1, i+ 2, k and j, i, i+ 1, i+ 2, k

where j < i−1 and k > i+3. This implies the first and the second part in the sequence

should be overlined, so there are two possibilities for the last past in the sequence, it

can be overlined or non-overlined.

If yi+1 − yi > 1, and zi+1 − zi > 1, then there are four cases for both colored

cases and overpartition one, for colored partition, both can be of the same color or

both may have different colors, and for the overpartition, it is possible for each part

to be overlined or non-overlined, so in this case again, we have the same number of

cases, and the correspondence in this case is also clear. So, there exists a one-to-one

correspondence between them.

It is not hard to see another correspondence between D2,1(n) and the following

partition type.

Definition 3.3.1 Let R3(n) denote the number of 2-colored Rogers-Ramanujan parti-

tions which do not allow to have a red 1 in the partition.

With respect to this definition and the mentioned correspondence, we have the

following identity.

Theorem 3.3.1 For definition (3.3.1) and |q| < 1 the following identity holds∑
n≥0

r3(n)qn =
∑
q≥0

d2,1(n)qn =
(−q)∞(q1, q3, q4; q4)∞

(q)∞
.

Here D2,1(n) is again as in [7] for k = 2 and a = 1.

Note that in the definition of R3(n), we can choose any of two colors. In fact, we

have

R2(x) = 2R3(x)−R1(x).

So, we have the following identity for R2(n).
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Theorem 3.3.2 For |q| < 1,∑
n≥0

r2(n)qn = 2
(−q)∞(q1, q3, q4; q4)∞

(q)∞
− (−q)∞(q2, q2, q4; q4)∞

(q)∞
.

17



CHAPTER 4

Parity considerations in Rogers-Ramanujan-Gordon type overpartition, all

cases

4.1 Definitions

In 2010, Andrews [4] applied parity conditions on Rogers-Ramanujan-Gordon identi-

ties. He asked the extension to overpartition as an open problem. In 2021, Sang, Shi

and Yee [18] defined the following partition types, and discovered new identities with

respect to these parity restrictions for overpartitions. In the two following definitions,

ifi refers to the number of parts for integer i, if there is no confusion, we write fi, note

that fi = 0 or 1.

Definition 4.1.1 [18] For k ≥ a ≥ 1, let Uk,a(n) denote the number of overpartitions

of n of the form (1f1, 1f1, 2f2, 2f2, · · · ) such that

(i) f1 ≤ a− 1 + f1;

(ii) f2l−1 ≥ f2l−1;

(iii) f2l + f2l ≡ 0 (mod 2);

(iv) fl + fl + fl+1 ≤ k − 1 + fl+1.

As an example, all 7 overpartitions of U4,4(6) are

5 + 1, 3 + 3, 3 + 3, 3 + 1 + 1 + 1, 3 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 2 + 1 + 1.
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Definition 4.1.2 [18] For k ≥ a ≥ 1, let Uk,a(n) denote the number of overpartitions

of n of the form (1f1, 1f1, 2f2, 2f2, · · · ) such that

(i) f1 ≤ a− 1 + f1;

(ii) f2l ≥ f2l;

(iii) f2l−1 + f2l−1 ≡ 0 (mod 2);

(iv) fl + fl + fl+1 ≤ k − 1 + fl+1.

An example for this overpartition type will be all 10 overpartition of U4,4(6),

6, 4+2, 4+1+1, 4+1+1, 3+3, 3+3, 2+2+2, 2+2+2, 2+2+1+1, 2+2+1+1.

Note that with respect to the definition 4.1.2, we have the following lemma for the

fixed first index and difference one for the second index in U .

Lemma 4.1.1 [18] For k ≥ a ≥ 1, if a ≡ 0 (mod 2), then

Uk,a(n) = Uk,a−1(n).

The proof is straightforward, from conditions (i) and (iii) in the definition (4.1.2)

and the assumption a ≡ 0 (mod 2), we see that f1 never reaches the upper bound,

a−1 +f1, this means f1 ≤ a−2 +f1, so both sides of the equality of this lemma count

the same number of overpartitions. To find the new identities, we need to separate

cases depending on the first index or the second one to be even or odd, so there will

be 6 different identities. The first one is for the case that both indices are even of U .

Theorem 4.1.2 For k ≥ a ≥ 1,∑
n≥0

u2k,2a(n)qn =
(−q; q)∞(q2a, q4k−2a, q4k; q4k)∞

(q2; q2)∞
.

The other case when the first index is even and the second index is odd for U is

the following.

Theorem 4.1.3 For k ≥ a ≥ 1,∑
n≥0

u2k,2a+1(n)qn =
(−q2; q)∞(q2a+2, q4k−2a−2, q4k; q4k)∞

(q2; q2)∞

+
q(−q2; q)∞(q2a, q4k−2a, q4k; q4k)∞

(q2; q2)∞
.
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When both indices are odd, we have the following identity for U .

Theorem 4.1.4 For k ≥ a ≥ 1,∑
n≥0

u2k+1,2a+1(n)qn =
(−q; q)2

∞(q2a+1, q4k−2a+1, q4k+2; q4k+2)∞
(q2; q2)∞

.

The last case for U will be as follows.

Theorem 4.1.5 For k ≥ a ≥ 1,∑
n≥0

u2k+1,2a(n)qn =
(−q2; q)∞(q2a+1, q4k−2a+1, q4k+2; q4k+2)∞

(q2; q2)∞

+
q(−q2; q)∞(q2a−1, q4k−2a+3, q4k+2; q4k+2)∞

(q2; q2)∞
.

For U with respect to (4.1.1), we have two following identities, then first one is for

the case that both indices are even.

Theorem 4.1.6 For k ≥ a ≥ 1,∑
n≥0

u2k,2a(n)qn =
(−q2; q2)2

∞(q2a, q4k−2a, q4k; q4k)∞
(q2; q2)∞

.

And the next one is for the case that the first index is odd and the second index is

even.

Theorem 4.1.7 For k ≥ a ≥ 1,∑
n≥0

u2k+1,2a(n)qn =
(−q2; q2)2

∞(q2a, q4k+2−2a, q4k+2; q4k+2)∞
(q2; q2)∞

.

Note that for both theorems 4.1.7 and 4.1.7, we can have 2a − 1 instead of 2a for

the second index, with respect to the lemma 4.1.1.

In the following sections, we will give some functional equations that we will use for

our constructive method, then we will prove those equations. At the end we will reprove

the identities introduced by Chen, Shi and Yee, then the proofs of the remaining cases

will be given.

4.2 Functional Equations

As described in the second chapter, we need some functional equations relating the

generating functions of the overpartition types defined in the previous section to use
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for constructive method to find the divisibility part of our identities, to this pur-

pose, some functional equation are given in this section. For all proofs, let π be

an arbitrary overpartition on n with m parts, we denote the number of overpar-

titions of π in the first form by rk,a(m,n), then Uk,a(n) =
∑

m,n≥0 rk,a(m,n), also

rk,a(m,n) denotes the number of overpartitions of π for the second definition, simi-

larly, Uk,a(n) =
∑

m,n≥0 rk,a(m,n).

Through all the proofs, note that rk,a(m,n) = 0 whenever m < 0 or n < 0.

Theorem 4.2.1 For k ≥ a ≥ 1, we have

U2k,2a(x)− U2k,2a−1(x) = (xq)2a−1U2k,2k−2a+1(xq) + (xq)2a+1U2k,2k−2a−1(xq). (4.1)

Proof 4.2.2 Consider r2k,2a(m,n) − r2k,2a−1(m,n). Then all overpartitions counted

by r2k,2a−1(m,n) are also counted by r2k,2a(m,n), so with respect to the definition of

U2k,2a(n), we have two cases,

(i) there is no overlined 1 in the overpartition, i.e. f1 = 0, so with respect to the

first condition, there are exactly 2a− 1 of non-overlined 1’s in the overpartition,

now by the last condition, f2 ≤ 2k − 2a + f2, removing all 1’s and subtracting 1

from all remaining parts, f1 ≤ (2k− 2a+ 1)− 1 + f1 and other conditions of the

second definition also hold, so we have overpartitions of n−m with m− 2a + 1

parts of the second type, r2k,2k−2a+1(m− 2a+ 1, n−m).

(ii) there is an overlined 1 in the overpartition, i.e. f1 = 1, so we have exactly 2a non-

overlined 1’s and one overlined ones in the overpartition, note that by assumption

2a ≥ 1, so by the last condition f2 ≤ 2k−2a−2+f2, now by removing all 1’s,and

subtracting 1 from all remaining parts, f1 ≤ (2k − 2a − 1) − 1 + f1 and again

other conditions of the second definition also hold, so we have overpartitions of

n−m with m− 2a− 1 parts of the second type, r2k,2k−2a−1(m− 2a− 1, n−m).

So,

r2k,2a(m,n)−r2k,2a−1(m,n) = r2k,2k−2a+1(m−2a+1, n−m)+r2k,2k−2a−1(m−2a−1, n−m).

Multiplying all terms by xmqn and taking the summation over m and n for all terms,
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m,n ≥ 0 and both integers, we have∑
m,n≥0

r2k,2a(m,n)xmqn −
∑
m,n≥0

r2k,2a−1(m,n)xmqn =

∑
m,n≥0

r2k,2k−2a+1(m− 2a+ 1, n−m)xmqn +
∑
m,n≥0

r2k,2k−2a−1(m− 2a− 1, n−m)xmqn.

By substituting n by n+m, then m by m+2a−1 for the first term and n by n+m,

then m by m + 2a + 1 for the second term on the right hand side of this equation, we

have∑
m,n≥0

r2k,2a(m,n)xmqn −
∑
m,n≥0

r2k,2a−1(m,n)xmqn =

∑
m,n≥0

r2k,2k−2a+1(m,n)xm+2a−1qn+m+2a−1 +
∑
m,n≥0

r2k,2k−2a−1(m,n)xm+2a−1qn+m+2a−1 =

(xq)2a−1
∑
m,n≥0

r2k,2k−2a+1(m,n)(xq)mqn + (xq)2a+1
∑
m,n≥0

r2k,2k−2a−1(m,n)(xq)mqn.

This gives us the equation (4.1).

Next functional equation that we want to use in construction step will be as follows.

Theorem 4.2.3 For k ≥ a ≥ 1, we have

U2k,2a+1(x)− U2k,2a(x) = (xq)2aU2k,2k−2a(xq) + (xq)2a+2U2k,2k−2a−2(xq). (4.2)

The proof for Theorem (4.2.3) is the same as proof of Theorem (4.2.1), we only

need to replace 2a by 2a + 1, we will skip the rest. Now, we will introduce another

functional equation from U to U .

Theorem 4.2.4 For k ≥ a ≥ 1, we have

U2k,2a(x)− U2k,2a−2(x) = (xq)2aU2k,2k−2a(xq) + (xq)2a−2U2k,2k−2a+2(xq). (4.3)

Proof 4.2.5 Consider U2k,2a(x) − U2k,2a−2(x), when 1 ≤ 2a ≤ 2k, in this case for

r2k,2a(m,n)− r2k,2a−2(m,n), there are two cases

(i) f1 = 0, then f1 = 2a, so by the fourth condition f2 ≤ k − 2a− 1 + f2, removing

all 1’s and subtracting 1 from all remaining parts, we have f1 ≤ (k− 2a)− 1 + f1

and other conditions of the definition of U2k,2a(n) also hold for the new partition,

and they will be counted by r2k,2k−2a(m− 2a, n−m).

22



(ii) f1 = 1, then f1 = 2a + 1, same as before we have that f2 ≤ 2k − 2a − 3 + f2,

removing all 1’s and subtracting 1 from all other parts, f1 ≤ (2k−2a−2)−1+f1,

and other conditions hold for the first type partition hold, so they will counted by

r2k,2k−2a−2(m− 2a+ 2, n).

So,

r2k,2a(m,n)− r2k,2a−2(m,n) = r2k,2k−2a(m−2a, n−m)+ r2k,2k−2a+2(m−2a+2, n−m).

Multiplying all terms by xmqn and taking the summation over m and n for all terms,

m,n ≥ 0 and both integers, we have∑
m,n≥0

r2k,2a(m,n)xmqn −
∑
m,n≥0

r2k,2a−2(m,n)xmqn =

∑
m,n≥0

r2k,2k−2a(m− 2a, n−m)xmqn +
∑
m,n≥0

r2k,2k−2a−2(m− 2a+ 2, n−m)xmqn.

By substituting n by n + m, then m by m + 2a for the first term and n by n + m,

then m by m + 2a− 2 for the second term on the right hand side of this equation, we

have ∑
m,n≥0

r2k,2a(m,n)xmqn −
∑
m,n≥0

r2k,2a−2(m,n)xmqn =

∑
m,n≥0

r2k,2k−2a(m,n)xm+2aqn+m+2a +
∑
m,n≥0

r2k,2k−2a−2(m,n)xm+2a−2qn+m+2a−2

(xq)2a
∑
m,n≥0

r2k,2k−2a(m,n)(xq)mqn + (xq)2a−2
∑
m,n≥0

r2k,2k−2a−2(m,n)(xq)mqn.

This gives us the equation (4.3).

We will use these three functional equations to find identities for U and U when

their first index is even. Next, we will prove three other functional equations using to

find identities for the odd case of U and U .

Theorem 4.2.6 For k ≥ a ≥ 1, we have

U2k+1,2a(x)− U2k+1,2a−1(x) = (xq)2a−1U2k+1,2k−2a+2(xq) + (xq)2a+1U2k+1,2k−2a(xq).

(4.4)

Proof 4.2.7 Consider r2k+1,2a(m,n) − r2k+1,2a−1(m,n), all overpartitions counted by

r2k+1,a−1(m,n) are already in the r2k+1,2a(m,n), so with respect to the definition of

U2k+1,2a(n), we can consider two cases,
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(i) there is no overlined 1 in the overpartition, i.e. f1 = 0, so with respect to the

first condition, there are exactly 2a− 1 of non-overlined 1’s in the overpartition,

now by the last condition, f2 ≤ 2k−a+1+f2, removing all 1’s and subtracting 1

from all remaining parts, f1 ≤ (2k− 2a+ 2)− 1 + f1 and other conditions of the

second definition also hold, so we have overpartitions of n−m with m− 2a + 1

parts of the second type, r2k+1,2k−2a+2(m− 2a+ 1, n−m).

(ii) there is an overlined 1 in the overpartition, i.e. f1 = 1, so we have exactly a non-

overlined 1’s and one overlined ones in the overpartition, note that by assumption

a ≥ 1, so by the last condition f2 ≤ 2k−2a−1 +f2, now by removing all 1’s,and

subtracting 1 from all remaining parts, f1 ≤ (2k − 2a) − 1 + f1 and again other

conditions of the second definition also hold, so we have overpartitions of n−m

with m− 2a− 1 parts of the second type, r2k+1,2k−2a(m− 2a− 1, n−m).

So,

r2k+1,2a(m,n)− r2k+1,2a−1(m,n)

= r2k+1,2k−2a+2(m− 2a+ 1, n−m) + r2k+1,2k−2a(m− 2a− 1, n−m).

Multiplying all terms by xmqn and taking the summation over m and n for all terms,

m,n ≥ 0 and both integers, we have∑
m,n≥0

r2k+1,2a(m,n)xmqn −
∑
m,n≥0

r2k+1,2a−1(m,n)xmqn =

∑
m,n≥0

r2k+1,2k−2a+2(m− 2a+ 1, n−m)xmqn+

∑
m,n≥0

r2k+1,2k−2a(m− 2a− 1, n−m)xmqn.

By substituting n by n+m, then m by m+2a−1 for the first term and n by n+m,

then m by m + 2a + 1 for the second term on the right hand side of this equation, we

have∑
m,n≥0

r2k+1,2a(m,n)xmqn −
∑
m,n≥0

r2k+1,2a−1(m,n)xmqn =

∑
m,n≥0

r2k+1,2k−2a+2(m,n)xm+2a−1qn+m+2a−1 +
∑
m,n≥0

r2k+1,2k−2a(m,n)xm+2a+1qn+m+2a+1

(xq)2a−1
∑
m,n≥0

r2k+1,2k−2a+2(m,n)(xq)mqn + (xq)2a+1
∑
m,n≥0

r2k+1,2k−2a(m,n)(xq)mqn.

This gives us the equation (4.4).
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The second one is similar.

Theorem 4.2.8 For k ≥ a ≥ 1, we have

U2k+1,2a+1(x)−U2k+1,2a(x) = (xq)2aU2k+1,2k−2a+2(xq) + (xq)2a+2U2k+1,2k−2a(xq). (4.5)

The proof of Theorem (4.2.8) is the same as Theorem (4.2.6), we just need to replace

2a by 2a+ 1, and at the end we need to use Lemma (4.1.1) as follows

U2k+1,2k−2a+1(xq) = U2k+1,2k−2a+2(xq)

and

U2k+1,2k−2a−1(xq) = U2k+1,2k−2a(xq).

Lastly, we have the following functional equation from U to U ,

Theorem 4.2.9 For k ≥ a ≥ 1, we have

U2k+1,2a(x)− U2k+1,2a−2(x) = (xq)2aU2k+1,2k−2a+1(xq) + (xq)2a−2U2k+1,2k−2a+3(xq).

(4.6)

Proof 4.2.10 Consider U2k+1,2a(x) − U2k+1,2a−2(x), when 1 ≤ 2a ≤ 2k, in this case

for r2k+1,2a(m,n)− r2k+1,2a−2(m,n), there are two cases

(i) f1̄ = 1, then f1 = 2a − 1, so according to the last condition in the definition,

f2 ≤ 2k − 2a + f2̄, removing all 1’s and subtracting 1 from all remaining parts,

the new partition satisfies in the conditions of the first definition for 2k and

2k − 2a+ 1, r2k+1,2k−2a+1(m− 2a, n−m).

(ii) f1̄ = 0, then f1 = 2a − 2, so according to the last condition in the definition,

f2 ≤ 2k − 2a + 2 + f2̄, removing all 1’s and subtracting 1 from all remaining

parts, the new partition satisfies in the conditions of the first definition for 2k

and 2k − 2a+ 3, r2k+1,2k−2a+3(m− 2a+ 2, n−m).

So,

r2k+1,2a(m,n)−r2k+1,2a−2(m,n) =

r2k+1,2k−2a+1(m− 2a, n−m) + r2k+1,2k−2a+3(m− 2a+ 2, n−m).
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Multiplying all terms by xmqn and taking the summation over m and n for all terms,

m,n ≥ 0 and both integers, we have∑
m,n≥0

r2k+1,2a(m,n)xmqn −
∑
m,n≥0

r2k+1,2a−2(m,n)xmqn =

∑
m,n≥0

r2k+1,2k−2a+1(m− 2a, n−m)xmqn +
∑
m,n≥0

r2k+1,2k−2a+3(m− 2a+ 2, n−m)xmqn.

By substituting n by n + m, then m by m + 2a for the first term and n by n + m,

then m by m + 2a− 2 for the second term on the right hand side of this equation, we

have∑
m,n≥0

r2k+1,2a(m,n)xmqn −
∑
m,n≥0

r2k+1,2a−2(m,n)xmqn =

∑
m,n≥0

r2k+1,2k−2a+1(m,n)xm+2aqn+m+2a +
∑
m,n≥0

r2k+1,2k−2a+3(m,n)xm+2a−2qn+m+2a−2

(xq)2a
∑
m,n≥0

r2k+1,2k−2a+1(m,n)(xq)mqn + (xq)2a−2
∑
m,n≥0

r2k+1,2k−2a+3(m,n)(xq)mqn

This gives us the equation (4.6).

4.3 Even cases

In this section, we will go through the results from Sang, Shi and Yee’s paper, we will

find identities for U2k,2a, U2k,2a+1 and U2k,2a = U2k,2a−1 using our constructive method.

For this purpose, we will use the functional equations (4.1), (4.2) and (4.3).

Then, as it has been discussed in the chapter 2 and used for other Rogers-Ramanujan

type partitions given in the chapters 2 and 3, we will use the following form of gener-

ating functions for U and U ,

U2k,2a(x) =
∑
n≥0

αen(x)q2anA1 + βen(x)x2aB1q2aC1q2anD1

for the even first index and the even second one,

U2k,2a+1(x) =
∑
n≥0

αon(x)q(2a+1)nA1 + βon(x)x(2a+1)B1q(2a+1)C1q(2a+1)nD1

for the even first index and the odd second one, and

U2k,2a(x) =
∑
n≥0

αn(x)q2anA2 + βn(x)x2aB2q2aC2q2anD2 .
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Note that if the second index is odd, we can change it to even by Theorem (4.1.1).

By functional equations (4.1) and (4.2), we have

αen(x)q2anA1 − αon(x)q(2a−1)nA1 = βn−1(xq)(xq)2a−1x(2k−2a+2)B2

×q(2k−2a+2)(B2+C2)q(2k−2a+2)(n−1)D2(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2),
(4.7)

αon(x)q(2a+1)nA1 − αen(x)q2anA1 = βn−1(xq)(xq)2ax(2k−2a)B2

×q(2k−2a)(B2+C2)q(2k−2a)(n−1)D2(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2),
(4.8)

βen(x)x2aB1q2aC1q2anD1 − βon(x)x(2a−1)B1q(2a−1)C1q(2a−1)nD1

= αn(xq)(xq)2a−1q(2k−2a+2)nA2(1 + x2q2q−2nA2)
(4.9)

and

βon(x)x(2a+1)B1q(2a+1)C1q(2a+1)nD1 − βen(x)x2aB1q2aC1q2anD1

= αn(xq)(xq)2aq(2k−2a)nA2(1 + x2q2q−2nA2),
(4.10)

also, by functional equation (4.3), we have

αn(x) = −βen−1(xq) (4.11)

× (xq)2ax(2k−2a)B1q(2k−2a)(B1+C1)q(2k−2a)(n−1)D1(1 + x−2q−2x2B1q2B1+2C1q2(n−1)D1)

q(2a−2)nA2(1− q2nA2)

and

βn(x) = −αen(xq)
(xq)2aq(2k−2a)nA1(1 + x−2q−2q2nA1)

x(2a−2)B2q(2a−2)C2q(2a−2)nD2(1− x2B2q2C2q2nD2)
. (4.12)

From the two first equations (4.7) and (4.8), we have q2anA1 −q(2a−1)nA1

−q2anA1 q(2a+1)nA1

αen(x)

αon(x)

 = βn−1(xq)(xq)2a−1x(2k−2a+2)B2q(2k−2a+2)(B2+C2)

× q(2k−2a+2)(n−1)D2(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2)

 1

xqx−2B2q−2B2−2C2q−2(n−1)D2


and similarly, for the second pair, from equations (4.9) and (4.10), we have x2aB1q2aC1q2anD1 −x(2a−1)B1q(2a−1)C1q(2a−1)nD1

−x2aB1q2aC1q2anD1 x(2a+1)B1q(2a+1)C1q(2a+1)nD1

βen(x)

βon(x)


= αn(xq)(xq)2a−1q(2k−2a+2)nA2(1 + x2q2q−2nA2)

 1

xqq−2nA2

 .
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From this system, we need αen(x) and βen(x), so

αn(x) = −βen−1(xq)
(xq)2ax(2k−2a)B1q(2k−2a)(B1+C1+(n−1)D1)

q(2a−2)nA2

× (1 + x−2q−2x2B1q2B1+2C1+2(n−1)D1)

(1− q2nA2)
,

βn(x) = −αen(xq)
(xq)2aq(2k−2a)nA1(1 + x−2q−2q2nA1)

x(2a−2)B2q(2a−2)C2+(2a−2)nD2(1− x2B2q2C2q2nD2)
,

αen(x) = −βn−1(xq)
(xq)2a−1x(2k−2a+2)B2q(2k−2a+2)(B2+C2+(n−1)D2)

q(2a−2)nA1

×(1 + x2q2x−2B2q−2B2−2C2−2(n−1)D2)(1 + xqx−2B2q−2nA1−2B2−2C2−2(n−1)D2)

(1− q2nA1)

and

βen(x) = −αn(xq)
(xq)2a−1q(2k−2a+2)nA2(1 + x2q2q−2nA2)(1 + xqx−2B1q−2nA2−2C1−2nD1)

x(2a−2)B1q(2a−2)(C1+nD1)(1− x2B1q2C1q2nD1)
.

By this recurrence, we can find αen and βn in terms of αe0, also αn and βen in terms

of α0, then we can make some of finite products into infinite products, and we have

αen(x) =α̃e0(xq2n)fa(x)

× (−x2q4q−2(n−1)A1 ; q4+2A1)∞(−x2q2x−2B2q−2B2−2C2−2(n−1)D2 ; q4−4B2+2D2)n
(q−2A1 ; q−2A1)n

× (−x−1q−1x2B2q2nA1+2B2+2C2+2(n−1)D2 ; q−2−2A1+4B2−2D2)∞
(x2B2q2B2+2C2+2(n−1)D2 ; q4B2−2D2)∞

,

βen(x) =α̃0(xq2n+1)ga(x)

× (−x2q2q−2nA2 ; q4+2A2)∞(−x2q4x−2B1q−4B1−2C1−2(n−1)D1 ; q4−4B1+2D1)n
(q−2A2 ; q−2A2)n

× (−x−1q−1x2B1q2nA2+2C1+2nD1 ; q−2−2A2+4B1−2D1)∞
(x2B1q2C1+2nD1 ; q4B1−2D1)∞

,

αn(x) =α̃0(xq2n)f ′a(x)

× (−x2q4q−2(n−1)A2 ; q4+2A2)∞(−x2q2x−2B1q−2B1−2C1−2(n−1)D1 ; q4−4B1+2D1)n
(q−2A2 ; q−2A2)n

× (−x−1q−2x2B1q2(n−1)A2+2B1+2C1+2(n−1)D1 ; q−2−2A2+4B1−2D1)∞
(x2B1q2B1+2C1+2(n−1)D1 ; q4B1−2D1)∞

and

βn(x) =α̃e0(xq2n+1)g′a(x)

× (−x2q2q−2nA1 ; q4+2A1)∞(−x2q4x−2B2q−4B2−2C2−2(n−1)D2 ; q4−4B2+2D2)n
(q−2A1 ; q−2A1)n

× (−x−1q−2x2B2q2nA1+4B2+2C2+2(n−1)D2 ; q−2−2A1+4B2−2D2)∞
(x2B2q2C2+2nD2 ; q4B2−2D2)∞
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where

fa(x) =(−1)nx4an−2n+(2k−4a+2)nB2

× q2n(2n+1)a−2n(n+1)+(n(n−1)(k−a+1)−n(n+1)(a+1))A1+(k−2a+1)(2n2B2+2nC2+n(n−1)D2),

ga(x) =(−1)nx2(2n+1)a−2n+(−4an−2a+2k+2n)B1

× q(2n+1)(2n+2)a−2n(n+1)+(k−2a)n(n+1)A2+(k−2a+1)(2n(n+1)B1+2nC1+n(n−1)D1),

f ′a(x) =(−1)nx4an−2n+(2k−4a+2)nB1

× q2n(2n+1)a−2n2+(n(n−1)(k−a)−n(n+1)a)A2+(k−2a+1)(2n2B1+2nC1+n(n−1)D1),

g′a(x) =(−1)nx2(2n+1)a−2(n+1)+(2k−2a+2)nB2−(2a−2)B2q(2n+1)(2n+2)a−2n2−4n−2

× q(k−2a)n(n+1)A1+(k−2a+1)(2n(n+1)B2+2nC2)−(2a−2)C2+((k−a)n(n−1)−(a−1)n(n+1))D2 ,

α̃e0(xq2n) =αe0(xq2n)
(x2B2q(4n+2)B2+2C2−2D2 ; q4B2−2D2)∞

(−x2q4q2A1+4n; q4+2A1)∞

× 1

(−x−1q−1x2B2q(4n+2)B2+2C2−2D2−2n; q−2−2A1+4B2−2D2)∞

and

α̃0(xq2n) =α0(xq2n)
(x2B1q(4n+2)B1+2C1−2D1 ; q4B1−2D1)∞

(−x2q4q2A2+4n; q4+2A2)∞

× 1

(−x−1q−2x2B1q−2A2+(4n+2)B1+2C1−2D1−2n; q−2−2A2+4B1−2D1)∞
.

For the check step we will use the check equations

U2k,0(x) = U2k,0(x) = 0 (4.13)

which is a boundary condition. We want the equations to be consistent, in fact, this

check equation is a verification to the construction step, so we consider some assump-

tions, as A1 = A2, B1 = B2, D1 = D2, 4B1 − 2D1 | 2B1 − 2D1 and 4 + 2A1 | 2, so

B1 = 1−s
1−2s

D1 and A1 = 1−2s′

s′
for some integers s and s′, same as described in the second

chapter, we choose the simplest ones, in this case s = 0 and s′ = 1, then by putting in

the check equation (4.13), we have Ai = −1 and Bi = Ci = Di = 1 for i = 1, 2. So,

U2k,2a(x) =
∑
n≥0

(−1)nqn(n+1)(2k+1) (−x2q2n+2; q2)∞(−xq; q2)∞(−q−2n; q2)n
(q2; q2)n(xq2n+2; q2)∞

× (x2knq−2an − x2aq2aq2an)
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and

U2k,2a(x) =
∑
n≥0

(−1)nx2knqn(n+1)(2k+1) (−x2q2n+2; q2)∞(−xq2; q2)∞(−q−2n; q2)n
(q2; q2)n(xq2n+2; q2)∞

× (q−2an − x(2n+3)aq2aq2an).

Now, we apply x = 1, so the generating functions is for any partition of any length.

U2k,2a(1) =
(−q; q)∞
(q2; q2)∞

∑
n≥0

(−1)nq2n(n+1)k−2an(1− q(2n+1)2a)

and

U2k,2a(1) =
(−q2; q2)2

∞
(q2; q2)∞

∑
n≥0

(−1)nq2n(n+1)k−2an(1− q(2n+1)2a).

Then by using (2.1.2), for i = 2a and t = 4k−1
2

, we have

U2k,2a(1) =
(−q; q)∞(q2a, q4k−2a, q4k; q4k)∞

(q2; q2)∞

and

U2k,2a(1) =
(−q2; q2)2

∞(q2a, q4k−2a, q4k; q4k)∞
(q2; q2)∞

.

These prove Theorems (4.1.2) and (4.1.6). For the remaining case, U2k,2a+1, we use

functional equations (4.2.1) and (4.2.3) to find αon(x) in terms of βn−1(xq) and βon(x) in

terms of αn(xq), then having αn and βn−1 in terms of α0, we can find our last identity

in this case.

αon(x) =α̃e0(xq2n+1)

× (−1)nx2knq2kn2+2kn−n(−x2q2n+2; q2)∞(−xq3; q2)∞(−q2; q2)n(1 + xq2n+1)

(q2; q2)n(x2q2n+2; q2)∞

and

βon(x) =− α̃0(xq2n+2)

× (−1)nx2knq2kn2+2kn−n(−x2q2n+2; q2)∞(−xq3; q2)∞(−q2; q2)n(1 + xq2n+1)

(q2; q2)n(x2q2n+2; q2)∞
.

So, from

U2k,2a+1(x) =
∑
n≥0

αon(x)q−(2a+1)n + βon(x)x2a+1q(2a+1)(n+1)
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we have

U2k,2a+1(1) =
(−q2; q)∞
(q2; q2)∞

∑
n≥0

(−1)nq2kn2+2kn−n−(2a+1)n(1 + q2n+1)(1− q(2n+1)(2a+1))

=
(−q2; q)∞
(q2; q2)∞

∑
n≥0

(−1)nq2kn2+2kn−(2a+2)n(1− q(2n+1)(2a+2))

+
q(−q2; q)∞
(q2; q2)∞

∑
n≥0

(−1)nq2kn2+2kn−2an(1− q(2n+1)2a).

Using (2.1.2) twice, once for i = 2a + 1 and t = 4k−1
2

, and again for i = 2a and

t = 4k−1
2

, we have

U2k,2a+1(1) =
(−q2; q)∞(q2a+2, q4k−2a−2, q4k; q4k)∞

(q2; q2)∞
+
q(−q2; q)∞(q2a, q4k−2a, q4k; q4k)∞

(q2; q2)∞

This proves our last identity for even case, Theorem (4.1.3).

4.4 Odd cases

Same as the even case, we want to find identities for U2k+1,2a, U2k+1,2a+1 and U2k+1,2a =

U2k+1,2a−1. We use the functional equations (4.2.6), (4.2.8) and (4.2.9).

Same as even case, by

U2k+1,2a(x) =
∑
n≥0

αen(x)q2anA1 + βen(x)x2aB1q2aC1q2anD1

for the odd first index and the even second one,

U2k+1,2a+1(x) =
∑
n≥0

αon(x)q(2a+1)nA1 + βon(x)x(2a+1)B1q(2a+1)C1q(2a+1)nD1

for the odd first index and the odd second one, and

U2k+1,2a(x) =
∑
n≥0

αn(x)q2anA2 + βn(x)x2aB2q2aC2q2anD2 .

Same as section (4.3), for odd a we use Lemma (4.1.1) to make it even. By functional

equations (4.4) and (4.5), we have

αen(x)q2anA1 − αon(x)q(2a−1)nA1 = βn−1(xq)(xq)2a−1x(2k−2a+2)B1q(2k−2a+2)(B2+C2)

q(2k−2a+2)(n−1)D2(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2),
(4.14)

αon(x)q(2a+1)nA1 − αen(x)q2anA1 = βn−1(xq)(xq)2ax(2k−2a+2)B1q(2k−2a+2)(B2+C2)

q(2k−2a+2)(n−1)D2(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2),
(4.15)
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βen(x)x2aB1q2aC1q2anD1 − βon(x)x(2a−1)B1q(2a−1)B1q(2a−1)nD1 =

αn(xq)(xq)2a−1q(2k−2a+2)nA2(1 + x2q2q−2nA2)
(4.16)

and

βon(x)x(2a+1)B1q(2a+1)C1q(2a+1)nD1 − βen(x)x2aB1q2aB1q2anD1 = αn(xq)(xq)2aq(2k−2a+2)nA2

(1 + x2q2q−2nA2),

(4.17)

also, by functional equation (4.6), we have

αn(x)q(2a−2)nA2(1− q2nA2) = −βon−1(xq)(xq)2ax(2k−2a+1)B1

q(2k−2a+1)(B1+C1)q(2k−2a+)(n−1)D1(1 + x−2q−2x2B1q2B1+2C1q2(n−1)D1)
(4.18)

and

βn(x)x(2a−2)B2q(2a−2)C2q(2a−2)nD2(1− x2B2q2C2q2nD2) = −αon(xq)(xq)2a

q(2k−2a+1)nA1(1 + x−2q−2q2nA1).
(4.19)

From the two first equations (4.14) and (4.15), we have q2anA1 −q(2a−1)nA1

−q2anA1 q(2a+1)nA1

αen(x)

αon(x)

 = βn−1(xq)(1 + x2q2x−2B2q−2B2−2C2q−2(n−1)D2)

(xq)2a−1x(2k−2a+2)B2q(2k−2a+2)(B2+C2+(n−1)D2)

 1

xq


and from equations (4.16) and (4.17), we have x2aB1q2a(C+nD1) −x(2a−1)B1q(2a−1)(C1+nD1)

−x2aB1q2a(C1+nD1) x(2a+1)B1q(2a+1)(C1+nD1)

βen(x)

βon(x)

 = αn(xq)(xq)2a−1

q(2k−2a+2)nA2(1 + x2q2q−2nA2)

 1

xq

 .

From these systems, we need αon(x) and βon(x), in fact, with respect to equations

(4.18) and (4.19), to make the recurrences work, we must take them αon(x) and βon(x),

so

αn(x) = −βon−1(xq)
(xq)2ax(2k−2a+1)B1q(2k−2a+1)(B1+C1+(n−1)D1)

q(2a−2)nA2

(1 + x−2q−2x2B1q2B1+2C1+2(n−1)D1)

(1− q2nA2)
,
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βn(x) = −αon(xq)
(xq)2aq(2k−2a+1)nA1(1 + x−2q−2q2nA1)

x(2a−2)B2q(2a−2)C2+(2a−2)nD2(1− x2B2q2C2q2nD2)
,

αon(x) = −βn−1(xq)
(xq)2a−1x(2k−2a+2)B2q(2k−2a+2)(B2+C2+(n−1)D2)

q(2a−1)nA1

(1 + x2q2x−2B2q−2B2−2C2−2(n−1)D2)(1 + xq)

(1− q2nA1)

and

βon(x) = −αn(xq)
(xq)2a−1q(2k−2a+2)nA2(1 + x2q2q−2nA2)(1 + xq)

x(2a−1)B1q(2a−1)(C1+nD1)(1− x2B1q2C1q2nD1)
.

Same as the even case, by this recurrence, we can find αon and βn in terms of αo0,

also αn and βon in terms of α0, then we can make some of finite products into infinite

products, and we have

αon(x) =α̃o0(xq2n)fa(x)
(−x2q4q−2(n−1)A1 ; q4+2A1)∞

(x2B2q2B2+2C2+2(n−1)D2 ; q4B2−2D2)∞

(−xq; q2)∞(−x2q2x−2B2q−2B2−2C2−2(n−1)D2 ; q4−4B2+2D2)n
(q−2A1 ; q−2A1)n

,

βon(x) =α̃0(xq2n+1)ga(x)
(−x2q2q−2nA2 ; q4+2A2)∞

(x2B1q2C1+2nD1 ; q4B1−2D1)∞

(−xq; q2)∞(−x2q4x−2B1q−4B1−2C1−2(n−1)D1 ; q4−4B1+2D1)n
(q−2A2 ; q−2A2)n

,

αn(x) =α̃0(xq2n)f ′a(x)
(−x2q4q−2(n−1)A2 ; q4+2A2)∞

(x2B1q2B1+2C1+2(n−1)D1 ; q4B1−2D1)∞

(−xq2; q2)∞(−x2q2x−2B1q−2B1−2C1−2(n−1)D1 ; q4−4B1+2D1)n
(q−2A2 ; q−2A2)n

and

βn(x) =α̃o0(xq2n+1)g′a(x)
(−x2q2q−2nA1 ; q4+2A1)∞

(x2B2q2C2+2nD2 ; q4B2−2D2)∞

(−xq2; q2)∞(−x2q4x−2B2q−4B2−2C2−2(n−1)D2 ; q4−4B2+2D2)n
(q−2A1 ; q−2A1)n

where

fa(x) =(−1)nx4an−3n+(2k−4a+4)nB2q2n(2n+1)a−n(3n+2)+(n(n−1)(2k−2a+2)−n(n+1)
2

(2a+1))A1

q(2k−4a+4)(n2B2+nC2+
n(n−1

2
)D2),
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ga(x) =(−1)nx2(2n+1)a−(3n+1)+(2k−4a+4)nB1−(2a−1)B1q(2n+1)(2n+2)a−(n+1)(3n+1)

q(k−2a+1)n(n+1)A2+(2k−4a+4)(n(n+1)B1+nC1)−(2a−1)C1+((2k−2a+3)
n(n−1)

2
−(2a−1)

n(n+1)
2

)D1),

f ′a(x) =(−1)nx4an−3n+(2k−4a+4)nB1q2n(2n+1)a−n(3n+1)+(n(n−1)(k−a+1)−n(n+1)a)A2

q(k−2a+2)(2n2B1+2nC1+n(n−1)D1),

g′a(x) =(−1)nx2(2n+1)a−(3n+2)+(2k−4a+4)nB2−(2a−2)B2q(2n+1)(2n+2)a−(n+1)(3n−2)

q(k−2a+1)n(n+1)A1+(2k−4a+4)(n(n+1)B2+nC2)−(2a−2)C2+((k−2a+2)n(n−1)−(2a−2)n)D2 ,

α̃o0(xq2n) = αo0(xq2n)
(x2B2q2B2+2C2+2(n−1)D2+n(4B2−2D2); q4B2−2D2)∞

(−x2q2q−2(n−1)A1+n(4+2A1); q4+2A1)∞(−xq2n+1; q2)∞

and

α̃0(xq2n) = α0(xq2n)
(x2B1q2B1+2C1+2(n−1)D1+n(4B1−2D1); q4B1−2D1)∞

(−x2q4q−2(n−1)A2+n(4+2A2); q4+2A2)∞(−xq2n+2; q2)∞
.

The check equation U2k,0(x) = 0 is again a boundary condition, and with the same

argument that we had for even case, we have Ai = −1 and Bi = Ci = Di = 1 for

i = 1, 2. So,

U2k+1,2a(x) =
∑
n≥0

(−1)nx(2k+1)nq2n(n+1)(k+1)(q−2an − x2aq2aq2an)

(−x2q2n+2; q2)∞(−xq2; q2)∞(−q−2n; q2)n
(q2; q2)n(xq2n+2; q2)∞

and

U2k+1,2a+1(x) =
∑
n≥0

(−1)nx(2k+1)nq2n(n+1)(k+1)(q−(2a+1)n − x2a+1q(2a+1)(n+1))

(−x2q2n+2; q2)∞(−xq; q2)∞(−q−2n; q2)n
(q2; q2)n(xq2n+2; q2)∞

.

Applying x = 1, we have

U2k+1,2a(1) =
(−q2; q2)2

∞
(q2; q2)∞

∑
n≥0

(−1)nqn(n+1)(2k+1)−2an(1− q(2n+1)2a)

and

U2k+1,2a+1(1) =
(−q; q)∞
(q2; q2)∞

∑
n≥0

(−1)nqn(n+1)(2k+1)−(2a+1)n(1− q(2n+1)(2a+1)).
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So, using Corollary (2.1.2), for i = 2a + 1 and t = 4k+1
2

for U , and i = 2a + 1 and

t = 4k+1
2

for U , we have

U2k+1,2a(1) =
(−q2; q2)2

∞(q2a, q4k+2−2a, q4k+2; q4k+2)∞
(q2; q2)∞

and

U2k+1,2a+1(1) =
(−q; q)2

∞(q2a+1, q4k−2a+1, q4k+2; q4k+2)∞
(q2; q2)∞

.

These prove Theorems (4.1.4) and (4.1.7). Finally, for the last identity of this case,

U2k+1,2a, same as even case, we have

αen(x) =α̃o0(xq2n)(−1)nx(2k+1)nq2kn2+2kn+n2

(−x2q2n+2; q2)∞(−xq3; q2)∞(−q2; q2)n−1(1 + q2n)(1 + xq2n+1)

(q2; q2)n(x2q2n+2; q2)∞

and

βen(x) =− α̃0(xq2n+1)(−1)nx(2k+1)nq2kn2+2kn+n2

(−x2q2n+2; q2)∞(−xq3; q2)∞(−q2; q2)n(1 + xq2n+1)

(q2; q2)n(x2q2n+2; q2)∞
.

So, from

U2k+1,2a(x) =
∑
n≥0

αon(x)q−2an + βon(x)x2aq2a(n+1)

we have

U2k+1,2a(1) =
(−q2; q)∞
(q2; q2)∞

∑
n≥0

(−1)nq2kn2+2kn+n2−2an(1 + q2n+1)(1− q(2n+1)2a)

=
(−q2; q)∞
(q2; q2)∞

(
∑
n≥0

(−1)nq2kn2+2kn+n2+n−(2a+1)n(1− q(2n+1)(2a+1))

+ q
∑
n≥0

(−1)nq2kn2+2kn+n2+n−(2a−1)n(1− q(2n+1)(2a−1)))

Using Corollary (2.1.2), twice, once for i = 2a and t = 4k+1
2

, and again for i = 2a+1

and t = 4k+11
2

, we will have

U2k+1,2a(1) =
(−q2; q)∞(q2a+1, q4k−2a+1, q4k+2; q4k+2)∞

(q2; q2)∞

+
q(−q2; q)∞(q2a−1, q4k−2a+3, q4k+2; q4k+2)∞

(q2; q2)∞
.

This proves our last identity for odd case, Theorem (4.1.5).
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CHAPTER 5

Conclusion and future work

The constructive method is effective for some Rogers-Ramanujan type partition

identities other than the original identities, the ones that the partitions have multiplic-

ity conditions on two consecutive parts, such as Rogers-Ramanujan-Gordon’s identity

for overpartitions, because the multiplicity condition is on i and i + 1, but in Schur’s

identity [2], the multiplicity condition in on i, i+ 1 and i+ 2, so the exact method that

we used does not work for that. There is a possibility that the constructive method

works on other partition types by modifying the generating function, such as Schur’s

identity or Göllnitz-Gordon identities [11].

In this thesis, we construct identities for two other Rogers-Ramanujan types iden-

tities for overpartitions and colored partitions using this method. In fact, we finished

the parity consideration on Rogers-Ramanujan-Gordon’s identities for overpartitions

with respect to the some restrictions on parts defined by Chen, Sang and Yee, the most

important restriction they made was the second condition in the definitions (4.1.1) and

(4.1.2), where the existence of an overlined part has a significant role in finding the

new identities. Note that in the constructive method, we start with a definition for a

partition type and if we can not reach to the other side of the identity, we may change

the definition by adding new restrictions, then try the method for the new definition.

For future work, one idea is to remove some restrictions in the definitions (4.1.1)

and (4.1.2), then find functional equations relating their generating functions and find

identities in a more general case. Another problem to think of can be considering

higher or even arbitrary congruence on parts instead of 2, e.g. three overpartition

types, Ui’s when f3l+i + f3l+i ≡ 0 (mod 3) for i = 0, 1, 2. In the third chapter, we
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realized that 2-colored Rogers-Ramanujan type partitions are related to some special

case of overpartitions. We can generalize those colored partition identities for more

colors, for generalized case of Rogers-Ramanujan type partitions, i.e parts of each

color be of Rogers-Ramanujan-Gordon’s type partitions or for both. Another idea can

be considering the parity condition on the parts of each color.

In the process of our work, we used some some computer algebra software such

as Maxima, Mathematica and Maple, first to find the partitions with those given

conditions, and then to verify our final results. Other than those, we use them to

verify some parts on construction step. For future, one of our plans is to write and

develop programs in those software that generate partitions and overpartitions with

respect to the condition that we put on parts, in this way, we may guess the relation

between parts and then find new identities related to those partition or overpartition

types. It may help us to find new identities.
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[13] K. Kurşungöz, Andrews style partition identities, Ramanujan J 36, 249265 (2015).
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