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ABSTRACT

DAMAGE DETECTION OF LAMINATED COMPOSITE STRUCTURES
USING INVERSE FINITE ELEMENT METHOD

FARAZ GANJDOUST

MECHATRONICS ENGINEERING M.Sc. THESIS, JULY 2022

Thesis Supervisor: Assist. Prof. Adnan Kefal

Keywords: Damage detection, laminated composite shells, inverse finite element
method, refined zigzag theory, structural health monitoring

In recent years, structural health monitoring (SHM) has been revolutionized with the
advent of an inverse method based on the minimization of a weighted least squares
functional, known as inverse finite element method (iFEM). This approach is suitable
for detection of damage, thanks to its ability in accurate full-field reconstruction of
the displacement field over the problem domain. This study focuses on the applica-
tion of iFEM for shape sensing and damage detection in various case studies, using
numerically generated in-situ strain data via high fidelity forward finite element
modeling (FEM). The study is conducted utilizing quadrilateral inverse-plane, and
quadrilateral inverse-shell elements (iQS4). By utilizing the field variable achieved
via the iFEM, equivalent von Mises strains are computed, after that, through def-
inition of a damage index, the health of the structure is evaluated in terms of the
presence of damage as well as its extent. Additionally, a new strategy is introduced
for detection of the through-the-thickness damage in laminated composite materials
by incorporating refined zigzag theory (RZT) in the iFEM algorithm. As a result of
these analyses, the inverse algorithm shows its efficiency in detecting flawed regions
over the problem domain and through the thickness of layered materials, both in
terms of the location of the damage as well as its morphology.
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ÖZET

LAMİNE KOMPOZİT YAPILARDA TERS SONLU ELEMANLAR YÖNTEMİ
İLE HASAR TESPİTİ

FARAZ GANJDOUST

MEKATRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2022

Tez Danışmanı: Dr. Öğr. Üyesi Adnan Kefal

Anahtar Kelimeler: Hasar tespiti, lamine kompozit kabuklar, ters sonlu elemanlar
yöntemi, hassaslaştırılmış zikzak teorisi, yapısal sağlık izleme

Son yıllarda, ağırlıklı en küçük kareler fonksiyonelinin minimizasyonuna dayalı bir
yöntem olan ters sonlu elemanlar metodu (iFEM), yapısal sağlık izleme alanında bir
devrim yaratmıştır. Bu yaklaşım, problem alanı üzerindeki yer değiştirme alanının
isabetli bir biçimde tam saha yeniden yapılandırmasına imkân tanımasından dolayı
hasar tespiti için uygundur. Bu çalışma, iFEM’in direkt sonlu elemanlar yöntemi ile
yüksek doğrulukla elde edilmiş yerleşik gerinim verilerini kullanarak şekil algılama
ve hasar tespiti üzerine odaklanmaktadır. Burada dört kenarlı ters düzlem eleman-
ları ve dört kenarlı ters kabuk elemanları (iQS4) kullanılmıştır. iFEM kullanılarak
elde edilen alan değişkenleri ile eşdeğer von Mises gerinimleri hesaplanmış ve son-
rasında hasar endeksi tanımlanarak yapıdaki hasarın varlığı ve boyutuna ilişkin
değerlendirmeler yapılmıştır. Ek olarak, hassaslaştırılmış zikzak teorisini (RZT)
iFEM algoritması içerisinde kullanarak lamine kompozitlerde kalınlık boyunca hasar
tespiti için yeni bir strateji tanıtılmıştır. Bu analizler sonucunda ters analiz algorit-
ması, problem alanında ve katmanlı malzemelerin kalınlıkları yönünde hasarlı böl-
gelerin tespitini, hasarın konum ve şekli açısından, isabetli bir şekilde yapabildiğini
göstermektedir.
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1. INTRODUCTION

The dependency of modern affairs and economy on marine and aerospace vehicles
has entailed their respective industries to devote extra attention to design of such
structures. Hence, the manufacturers are always in a constant struggle to make a
compromise between the cost-efficiency of the manufactured parts, and their safety.
Furthermore, considering that any type of in-service accidents for such vehicles are
prone to having catastrophic outcomes, finely detailed monitoring procedures must
be devised with the purpose of studying the in-process state of various parts. This
not only saves lives and economic interests of companies through prevention of vi-
cious accidents, but also acts as a sign of warning for the operators to make necessary
modifications in the machinery, or halt the operation of certain parts so as to pro-
hibit the further progression of faults and defects in the mechanical system. SHM
provides the industrial units with valuable information of this sort. Among various
SHM methods, the iFEM shows great capabilities in terms of its robustness in full-
field reconstruction and damage sensing results it provides, as well as the fact that
it can also enable real-time monitoring of the structures by making use of strain
sensors mounted on and/or embedded within the structure.

By putting the aforementioned advantages of SHM in perspective, various techniques
have been proposed to conduct such operations. In their review study, Gherlone,
Cerracchio & Mattone (2018) underscored the importance of accurate full-field re-
construction of the displacement field in conducting a successful SHM operation
and classified the shape-sensing approaches. The first approach, originally targeting
the beam problems, was proposed by Ko, Richards & Tran (2007), and is based on
the reconstruction of the displacement field of the structure through the integration
of the strain data measured via strain gauges or fiber bragg grating (FBG) sensors
(Kang, Kim & Han, 2007; Kim, Kang & Han, 2011; Ko, Richards & Fleischer, 2009).
In another technique, continuous functions are fit over discrete in-situ strain data,
and through establishing the strain-displacement relations, the displacement field is
recovered. This approach is the generic form of the modal method (MM), which
is also known as modal transformation theory (MTT) (Bogert, Haugse & Gehrki,
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2003; Pisoni, Santolini, Hauf & Dubowsky, 1995; Rapp, Kang, Han, Mueller &
Baier, 2009). In this context, other shape-sensing methods were also developed
within the framework of artificial intelligence (AI) (Bruno, Toomarian & Salama,
1994). However, iFEM possesses features that make it more general in comparison to
the aforementioned approaches. Attributes such as the applicability of the method
with no requirement for material models and/or loading conditions, the ability of
full-field reconstruction of detailed and complex geometries, real-time delivery of the
monitoring results, and cost-efficiency and precision, even with strain data acquired
sparsely over the problem domain. These are the key properties of the iFEM which
makes it more appealing than the other shape-sensing techniques, and at the same
time distinguish iFEM and show its generality in contrast to other methods, such
as shape-sensing via AI, in which the network is trained only for a certain class of
problems. The inverse method, iFEM, was first introduced by Tessler & Spangler
(2005), and ever since, major contributions have been made to further develop this
approach numerically, and when coupled with experimental test data. Among theo-
retical efforts in the field, the studies of Tessler & Spangler (2004) through establish-
ing a three-node triangular inverse-shell element, iMIN3, Kefal, Oterkus, Tessler &
Spangler (2016) through developing a four-node quadrilateral inverse-shell element,
iQS4, and Kefal (2019) by introducing an eight-node curved inverse-shell element
stand out, as most of the numerical implementations of iFEM are made through
the utilization of these inverse elements. In this context, Abdollahzadeh, Kefal &
Yildiz (2020) presented a comparative study in which they evaluated the efficiency
of different types of inverse elements, namely iMIN3, iQS4, and iCS8, in terms of
their performance with regard to reconstructing the field variables. They concluded
that iCS8 is superior to the other two inverse element types, specifically for models
with more detailed and complex geometries. Furthermore, Kefal & Oterkus (2020)
established the mathematical framework for the isogeometric iFEM. To this end,
various numerical manipulations have been coupled with this inverse approach so
as to enhance its performance in the reconstruction of the field variable, the dis-
placement field. The primary, yet crucial problem which is covered in the work of
Roy, Tessler, Surace & Gherlone (2020) is the determination of a suitable sensor de-
ployment scheme to take the most advantage of the iFEM. Other works involve the
definition of smoothing methods, such as in Kefal, Tabrizi, Yildiz & Tessler (2021),
or pre-extrapolation of the strain data as exhibited in Oboe, Colombo, Sbarufatti
& Giglio (2021a).

In conjunction with such theoretical advances, in recent years, numerous studies
have incorporated iFEM for the purpose of SHM. Gherlone, Cerracchio, Mattone,
Di Sciuva & Tessler (2014) developed iFEM models for the shape-sensing of beams,
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by defining its kinematic relations based on the relations associated with the Tim-
oshenko beam, and showed that for a single element, using the in-situ strain mea-
surements, their model can reconstruct the shape of the beam. Then by increasing
the number of the inverse elements, they conducted a convergence study. It was also
shown that even with interference present, their model is capable of capturing defor-
mations. Cerracchio, Gherlone & Tessler (2015) applied iFEM to problems involving
static, dynamic, and thermal loads; through their numerical investigation, the ver-
satility of the iFEM algorithm for various types of loading was illustrated. Kefal &
Oterkus (2015) assessed the applicability of the four-node quadrilateral inverse-shell
element in several case studies, where they also targeted the effects of the number
of the strain sensors on the solution of iFEM in addition to the effects of the sensor
placement and discretization of the problem domain. By the same token, iFEM has
also been applied as a monitoring technique to various real-world engineering prob-
lems, including the health monitoring of a chemical tanker (Kefal & Oterkus, 2016a),
or the shape-sensing and stress reconstruction of a Panamax containership (Kefal &
Oterkus, 2016b), and real-time monitoring of bulk carriers (Kefal, Mayang, Oterkus
& Yildiz, 2018). Miller, Manalo & Tessler (2016) used iFEM for the reconstruction
of the displacements and internal loads of a half-span test wing. Additionally, Papa,
Russo, Lamboglia, Del Core & Iannuzzo (2017) undertook the controlling process of
an unmanned aircraft system (UAS) with the iFEM. Withal, Kefal & Yildiz (2017)
analyzed different sensor deployment schemes on a wing-shaped sandwich structure.
Furthermore, iFEM has also been used in order to monitor the deformations of
gantry structures via utilizing the strain data from embedded FBG sensors (Liu,
Zhang, Song, Zhou, Zhou & Zhou, 2018). De Mooij, Martinez & Benedictus (2019)
solved benchmark problems using forward analysis, and then utilizing the data ac-
quired from the forward analysis, conducted the inverse analysis. In their work, the
numerical data collected for their inverse algorithm were provided via displacement
sensors, strain sensors, or a combination of them. Li, Kefal, Oterkus & Oterkus
(2020) performed SHM using the iQS4 element, where they acquired the necessary
input data for the inverse analysis numerically and studied cases involving static
and dynamic loading while using the same sensor placement schemes for both types
of loading. It was shown that iFEM provides more accurate results in the case
of static loading than in the case of dynamic loading. Esposito & Gherlone (2020)
implemented iFEM along with Ko’s displacement method and MM, to a rather com-
plicated aerospace structure, and through a comparative study, determined that in
terms of precision, iFEM provides the best results; however, it requires more sen-
sor data than the other two approaches. Also, Oboe, Colombo, Sbarufatti & Giglio
(2021b) introduced a ‘simple iFEM model’, where they modeled a complex structure
with simplifications, specifically by simplifying the parts which do not contribute
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much to the stiffness of the structure and modeling them in detail, further compli-
cates the simulations as they introduce numerical errors in the calculations. In the
so-called simple model, the boundary conditions were applied through the definition
of a set of weighting coefficients that are calibrated in a way to model the real behav-
ior of the structure when subjected to these constraints. Moreover, through coupling
experimental analysis with numerical simulations, Kefal, Tabrizi, Tansan, Kisa &
Yildiz (2021) solved the shape-sensing problem for composite and sandwich struc-
tures in a case study including time-dependent loading. Abdollahzadeh, Tabrizi,
Kefal & Yildiz (2021) conducted a comparative study focusing on the efficiency of
iFEM-RZT and iFEM-FSDT (first-order shear deformation theory) when applied to
case studies incorporating moderately thick laminates, and concluded that the for-
mer is more effective. Moreover, in order to find the best sensor placement scheme,
they used pre-extrapolated strain measurements with different polynomial degrees.

Another crucial advantage of the iFEM is that it is also an effective tool for damage
detection. Numerous studies have focused on damage detection and crack propa-
gation recently. Specifically, as outlined in Tabrizi, Khan, Massarwa, Zanjani, Ali,
Demir & Yildiz (2019), composite materials that are widely used in aviation and
maritime industries, are susceptible to various modes of failure, and damage mech-
anisms in composite materials can be more intricate compared to metals. Among
the efforts undertaken for damage detection using iFEM, Colombo, Sbarufatti &
Giglio (2019) made a comparison between the results of the analysis when using
inverse-plane elements and when using inverse-shell elements. Also, they analyzed
the effects of the size and shape of the defect in the results of the damage sensitivity
of iFEM as well as the overall results. Furthermore, in Abdollahzadeh et al. (2020),
the performance of the various inverse-shell elements developed in Kefal (2019); Ke-
fal et al. (2016); Tessler & Spangler (2004) were assessed. It was seen that in terms
of damage detection, iCS8 proves to be better than flat elements (iMIN3 and iQS4).
Other studies, which have consolidated the superior capability of iFEM concerning
damage monitoring, include Li, Kefal, Cerik & Oterkus (2020) where they employed
iFEM for identification of dent damage. Their effort included several case studies,
where the input data for iFEM was generated numerically. Moreover, they pre-
sented results for damage index (a novel damage index was defined), as well as von
Mises strain contours, considering that the damage index alone might be deceiving.
Damage detection potential of iFEM has also been studied in the work presented by
Roy, Gherlone, Surace & Tessler (2021). By the same token, iFEM has proven to be
a viable method for studying damage in laminated composites. Several applications
of iFEM have been conducted to verify the inverse numerical results against the
experimental test data, as presented in Colombo, Oboe, Sbarufatti, Cadini, Russo
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& Giglio (2021) and Kefal, Tabrizi & Yildiz (2021). However, the mere application
of iFEM to crack monitoring problems in laminated shells is impractical given that
a realistic insight into the damage for this type of material is achieved by studying
the through-the-thickness profile of the defect. This phenomenon calls for a more
advanced set of kinematic relations that incorporate the RZT (Tessler, Di Sciuva &
Gherlone, 2010). This new formulation, known as iFEM-RZT herein, employed by
Cerracchio, Gherlone, Di Sciuva & Tessler (2015), facilitated the implementation of
iFEM to thick shells, nevertheless, the study was not comprehensive adequately as
the through-the-thickness profile of the stress/strain fields lacked accuracy. In this
context, Kefal, Tessler & Oterkus (2017) addressed the issue by adding complemen-
tary terms to the weighted-least-squares functional, which in turn led to a precise
through-the-thickness deformation reconstruction for laminated shells.

The groundwork for this study is primarily established in the work of Kefal &
Tessler (2021). In the present work, the capability of the iFEM for shape-sensing
is assessed, also it is evaluated in terms of damage detection and approximating
the shape of the flaw. For this purpose, several numerical examples, which become
more complicated in the order that are presented, have been solved. The first three
case studies are solved by utilization of the iFEM solely, whereas the last two case
studies have utilized iFEM-RZT. The example problems are namely an isotropic
plate subjected to tensile loading, a composite part with bending load, similarly a
T-beam subjected to a bending load case, a cross-ply composite plate with torsional
load, and a curved composite panel subjected to axial loading, where in all cases,
the problem domain includes single or multiple pre-defined defected areas. For these
analyses, inverse-plane elements and inverse-shell elements have been used. The in-
situ strain measurements are collected numerically through running high fidelity
forward analysis. Different sensor deployment models, dense and sparse, have been
implemented. In order to quantify damage, a damage index is defined. By the
same token, the damage sensitivity plots based on the maximum calculated damage
indices have been plotted. This study shows that both the inverse-plane element and
the inverse-shell element are effectively capable of predicting the location as well as
the shape of the flawed areas in the structure, independent of the material models
used (isotropic or orthotropic) and loading information. Furthermore, the iFEM-
RZT coupling exhibits promising results with regards to its potential as an efficient
tool to identify damage mechanisms such as delamination in composite materials
even when a sparse sensor placement scheme is devised, and through-the-thickness
strain data are collected from a remote location to the defected zone.
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1.1 Contribution Beyond the State of the Art

The main focus of the present effort is on exploitation of the abilities of the iFEM
in order to develop a viable tool for damage detection. Particularly, damage mech-
anisms such as delamination in laminated composite materials are among the most
common and critical damage types in this category of materials. Therefore, this
study suggests a novel formulation that enables a layer-wise study and damage detec-
tion procedure. In this regard, through utilization of the section strains, membrane
and bending strains, for calculating their respective equivalent von Mises strains,
membrane and twisting damage indices are defined. These two indices help identify
a region with high probability of structural damage. Then, through obtaining the
von Mises strain for each layer in the laminated structure, the ply with the highest
damage index, i.e., the lamina that contains (delamination) damage, is determined.

One of the significant advantages of this novel delamination damage strategy is that
it is robust in terms of adapting to experimental problems. The experimental strain
data obtained using strain sensors (rosettes and FBG) are processed simultaneously
in this algorithm, and the output is an accurate prediction of the shape and location
(in-plane and through-the-thickness) of the damage in the composite material.

6



2. INVERSE FINITE ELEMENT METHOD FORMULATION

The theoretical and mathematical framework associated with iFEM is provided in
this section. The material presented in this section include the governing mathemati-
cal relations for the inverse-plane element, inverse-shell element, and the formulation
for the inverse-shell element coupled with RZT, referred to as iRZT4 (Abdollahzadeh
et al., 2021). In order to perform the calculations for the aforementioned inverse
element types, three coordinate systems are utilized: a global coordinate system de-
noted by (X,Y,Z), a local coordinate system denoted by (x,y,z), and for the sake of
computationally effective numerical operations, an isoparametric coordinate system
is also defined as (s, t).

2.1 Quadrilateral Inverse-Plane Element

The inverse-plane element consists of four nodes and each node has two membrane
degrees of freedom, namely translation degrees of freedom along X-axis and Y -
axis, per node. The formulation for iFEM is developed utilizing the weighted least
squares functional defined in terms of the error between the measured (experimental)
strains and numerically calculated strains, i.e., the strains that are obtained using
the inverse approach. Figure 2.1 shows the global coordinate system and the positive
degrees of freedom associated with an individual node for the inverse-plane element.
On the other hand, Figure 2.2 shows the local and isoparametric coordinate systems
for this inverse element type. Additionally, a set of relations must be established
between the local and isoparametric coordinates for mapping. In this regard, the
position of every point in the local coordinate system can be written in terms of s
and t.
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Figure 2.1 (a) Global coordinate system for the inverse-plane element; (b) Positive
degrees of freedom for the i-th node of the inverse-plane element.

Figure 2.2 (a) Local coordinate system for the inverse-plane element; (b) Isopara-
metric coordinate system.

x≡ x(s, t) =
4∑
i=1

Nixi (2.1a)

y ≡ y(s, t) =
4∑
i=1

Niyi (2.1b)

where xi and yi are the horizontal and vertical components of the local nodal co-
ordinates of the inverse-plate element, respectively. Furthermore, Ni represent the
shape functions, which are calculated for each of the nodes in the element in the
isoparametric coordinate system for the inverse-plane element. The shape functions
for the inverse-plane element are provided in Appendix A. To this end, the horizon-
tal component of membrane displacement, u, as well as the vertical component, v,
can be defined in the following manner:
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u=
4∑
i=1

Niui (2.2a)

v =
4∑
i=1

Nivi (2.2b)

with ui representing the positive horizontal translations of nodal degrees of freedom,
and vi being the positive vertical translations of nodal degrees of freedom for an
individual inverse-plane element. Subsequently, for this type of element, membrane
strain terms are calculated using the strain-displacement relations, in the following
manner:

εxx = ∂u

∂x
(2.3a)

εyy = ∂v

∂y
(2.3b)

γxy = ∂u

∂y
+ ∂v

∂x
(2.3c)

where the terms εxx, εxx, and γxy, that are calculated by taking the first derivative
of the displacement terms with respect to the local coordinate system, are normal
membrane strain term along x-axis, normal membrane strain term along y-axis,
and in-plane membrane shear strain term (xy plane). Hence, the membrane strain
vector at the element level is defined as a function of the displacements which are
calculated locally, ue:

e(ue) =


εxx

εyy

γxy

= Bm
p ue (2.4a)

where

ue =
[
ue1 ue2 ue3 ue4

]T
(2.4b)

uei =
[
ui vi

]T
(i= 1,2,3,4) (2.4c)
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In the above equation, e(ue) is the membrane strain vector, and Bm
p is the no-

tation for the membrane strain-displacement matrix for the inverse-plane element
(Appendix A).

2.1.1 Strain Data Acquisition for Inverse-Plane Element

Owing to the fact that the inverse-plane element does not incorporate any form of
strain other than the membrane strain, in conjunction with the fact that rotations
cannot be calculated using this type of inverse element, the input strain data required
for the inverse method are merely the membrane strains that are measured through
mounting sensors only on one of the surfaces of the test samples. Additionally, in
this type of inverse element, thickness effects are negligible, hence, acquiring strain
data from only one of the bounding surfaces of the element is sufficient to provide
the iFEM algorithm with the required input data (Figure 2.3). In this context, the
measured membrane stiffness data for the inverse-plane element is defined as:

Figure 2.3 Strain data collection utilizing strain rosette with the inverse-plane as-
sumption.

eεi =


εxx,∗

εyy,∗

γxy,∗

 (i= 1,n) (2.5)
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where the expression eεi is used to show the in-situ strain data obtained from the
plane structure. Moreover, εxx,∗, εyy,∗, and γxy,∗ are the experimentally measured
normal strain along x-axis, normal strain along y-axis, and in-plane shear strain in
the xy plane. Also, n resembles the number of the data acquisition locations, i.e.,
the number of the sensors mounted on the test sample.

2.1.2 Weighted Least Squares Functional for Inverse-Plane Element

As it was discussed earlier, the iFEM model is based on the minimization of a
weighted least squares functional, defined as the difference between the in-situ strain
data, eε, and the numerically calculated strains Eq. (2.4a), e(ue). Hence, for a single
inverse-plane element, the functional is minimized through finding the optimum
solution for the functional below:

Φe
p(ue) = we∥e(ue)−eε∥2 (2.6)

In this equation, Φe
p is the functional for an individual inverse-plane element, defined

in terms of the locally calculated displacements, ue. By extending Eq. (2.6), it can
be written that:

∥e(ue)−eε∥2 = 1
n

∫∫
Ae

n∑
i=1

(e(ue)i−eεi )
2 dxdy (2.7)

This equation shows the normal Euclidean norm of the error functional. Further-
more, in Eq. (2.6), the term we is a weighting coefficient whose value is dependent
on the availability of the sensor data at a specific location on the structure, i.e., if
strain data is available for a certain element, then we = 1, however, if no sensor data
is available for the inverse element, then for that element, we = α where α is selected
very small relative to one, e.g., 10−3. This coefficient is chosen such that it does
not affect the solution of the problem. Moreover, the term Ae shows the surface
area of the element, over which, the integral in Eq. (2.7) is calculated. In order
to minimize the error, the local displacements corresponding to the minimum error
must be calculated. Thus, the derivative of Eq. (2.6) is calculated with respect to
the local displacement, i.e.,

∂Φe
p(ue)
∂ue

= 0 (2.8a)
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which yields the following:

keue = fe (2.8b)

Here, ke is the element stiffness matrix for the inverse-plane element, and by sub-
stituting Eq. (2.4) in Eq. (2.8), it can be derived as:

ke =
∫∫
Ae

we
(
Bm
p

)T
Bm
p dxdy (2.9)

and fe is the element force vector for the inverse-plane element, and by using Eq.
(2.4) with Eq. (2.8), it is defined as:

fe = 1
n

∫∫
Ae

n∑
i=1

we
(
Bm
p

)T
eεi dxdy (2.10)

2.2 Quadrilateral Inverse-Shell Element

The theoretical framework for the inverse-shell element, known as iQS4, was set by
Kefal et al. (2016). In contrast to the inverse-plane element, for the inverse-shell ele-
ment, the effects of curvature and thickness of the shells must be considered. In this
regard, other than in-plane membrane degrees of freedom, out-of-plane translations
and rotations will be taken into consideration, too. Therefore, for each quadrilateral
inverse-shell element, there are four nodes per element, and six degrees of freedom
per node. As it is mentioned in Kefal et al. (2016) for this inverse element, the
presence of an artificial drilling rotation degree of freedom, ensures that the calcu-
lated solutions are not singular. Figures 2.4-2.5 illustrate the configuration of an
individual inverse-shell element with reference to the global, local, and isoparamet-
ric coordinate systems. The mapping relations between the local coordinate system
and the isoparametric coordinate system provided in Eq. (2.1) are also applicable
to this type of inverse element. However, the calculation of the displacement terms
is different from those given in Eq. (2.2) due to the presence of rotation terms. In
this context, the membrane displacements can be calculated using the following:
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Figure 2.4 (a) Global coordinate system for the inverse-shell element, iQS4; (b)
Positive degrees of freedom for the i-th node of the inverse-shell element, iQS4.

Figure 2.5 (a) Local coordinate system for the inverse-shell element, iQS4; (b)
Isoparametric coordinate system.

u=
4∑
i=1

Niui+
4∑
i=1

Liθzi (2.11a)

v =
4∑
i=1

Nivi+
4∑
i=1

Miθzi (2.11b)

Here, Li and Mi are shape functions that are used to build a connection between
membrane displacements and hierarchical artificial drilling degree of freedom, θzi
which is deemed to be positive in clockwise rotations. It must also be noted that
the membrane displacements are not only dependent on the positive translations,
but they also rely on the artificial degree of freedom. As it was mentioned earlier,
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each node of the inverse-shell element consists of six degrees of freedom; to this end,
the degrees of freedom associated with displacement along z-axis, w, rotation about
x-axis, θx, and rotation about y-axis, θy, are interpolated using their corresponding
nodal values in Eq. (2.12), respectively (Tessler & Hughes, 1983):

w =
4∑
i=1

Niwi−
4∑
i=1

Liθxi−
4∑
i=1

Miθyi (2.12a)

θx =
4∑
i=1

Niθxi (2.12b)

θy =
4∑
i=1

Niθyi (2.12c)

In the equations above, wi are the nodal displacements along z-axis, whereas θx
and θy are the nodal rotations about the x-axis and y-axis, respectively. Utilizing
Eqs. (2.11-2.12) together, the displacement terms for each material point can be
obtained:

ux(x,y,z) ≡ ux = u+ zθy (2.13a)

uy(x,y,z) ≡ uy = v− zθx (2.13b)

uz(x,y,z) ≡ uz = w (2.13c)

with ux denoting displacement along x-axis, uy displacement along y-axis, and uz

being the notation for z-displacement of a material point in the inverse-shell element,
iQS4. Using the information acquired in Eq. (2.13), the membrane/bending strain
and transverse-shear strain components are calculated as:

εxx = ∂ux
∂x

= ∂u

∂x
+ z

∂θy
∂x

(2.14a)

εyy = ∂uy
∂y

= ∂v

∂y
− z

∂θx
∂y

(2.14b)
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γxy = ∂uy
∂x

+ ∂ux
∂y

= ∂v

∂x
+ ∂u

∂y
+ z

(
∂θy
∂y

− ∂θx
∂x

)
(2.14c)

γxz = ∂uz
∂x

+ ∂ux
∂z

= ∂w

∂x
+ θy (2.14d)

γyz = ∂uz
∂y

+ ∂uy
∂z

= ∂w

∂y
− θx (2.14e)

where, γxz is the transverse-shear strain in xz plane, and γyz is the transverse-shear
strain in yz plane. The strain-displacement relations can be established by further
utilization of the outcome of Eq. (2.14),

e(ue)+ zk(ue) =


εxx

εyy

γxy

= Bm
s ue+ zBbue (2.15a)

g(ue) =

γxzγyz

= Bsue (2.15b)

with ue being the element (local) displacement vector and is similar to the term for
the inverse-plane element given in Eq. (2.4b), however, the nodal displacements are
different from those provided in Eq. (2.4c):

ue =
[
ui vi wi θxi θyi θzi

]T
(i= 1,2,3,4) (2.15c)

here, k(ue) denotes the bending strains, and g(ue) is used for showing the transverse-
shear strains. Additionally, as can be seen in Eq. (2.15), three different strain-
displacement matrices have been used, which correspond to the three different strain
categories, i.e., Bm

s is used for membrane strains for the inverse-shell element, Bb

for bending strains, and Bs for transverse-shear strains. For the shape functions
and strain-displacement matrices, refer to Appendix A.
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2.2.1 Strain Data Acquisition for Inverse-Shell Element

Given that the inverse-shell element in addition to membrane displacements accounts
for the curvature data of the test sample as well, strain data from both bounding
surfaces of the test specimen is required to be used in the iFEM algorithm. Hence,
the in-situ strain data measured from the top and bottom surfaces of the shell can
be decomposed into two separate vectors, constituting the membrane strains, and
bending strains. Similar to the procedure for the inverse-plane element, assuming
that strain data are available discretely at a number of n locations over the domain
of interest, it can be written that:

Figure 2.6 Strain data collection utilizing strain rosettes with the inverse-shell as-
sumption.

eεi = 1
2


ε+
xx,∗ + ε−

xx,∗
ε+
yy,∗ + ε−

yy,∗
γ+
xy,∗ +γ−

xy,∗

 (i= 1,n) (2.16a)

kεi = 1
2h


ε+
xx,∗ − ε−

xx,∗
ε+
yy,∗ − ε−

yy,∗
γ+
xy,∗ −γ−

xy,∗

 (i= 1,n) (2.16b)

where eεi is the measured membrane strain, and kεi is the measured bending strain.
It should also be mentioned that ε+

xx,∗, ε+
yy,∗, and γ+

xy,∗ are the strain measurements
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made by the sensors mounted on the top surface of the shell, whereas ε−
xx,∗, ε−

yy,∗,
and γ−

xy,∗ are measured from the bottom surface of the shell. In addition, the term
2h used in Eq. (2.16b) is the thickness of the shell.

2.2.2 Weighted Least Squares Functional for Inverse-Shell Element

The weighted least squares functional for the iQS4 element is defined as the sum
of the error terms defined between the measured and numerically calculated values
of the membrane, bending, and transverse-shear strains. In this regard, for an
individual inverse-shell element, the functional will be an extended version of Eq.
(2.6):

Φe
s(ue) = we∥e(ue)−eε∥2 +wk∥k(ue)−kε∥2 +wg∥g(ue)−gε∥2 (2.17)

The expression gε is used to resemble the measured in-situ transverse-shear strains.
wk and wg are the weighting coefficients associated with those terms of the error
functional corresponding to bending and transverse-shear, respectively. Each of the
norms can be written in the following manner:

∥e(ue)−eε∥2 = 1
n

∫∫
Ae

n∑
i=1

(e(ue)i−eεi )
2 dxdy (2.18a)

∥k(ue)−kε∥2 = (2h)2

n

∫∫
Ae

n∑
i=1

(k(ue)i−kεi )
2 dxdy (2.18b)

∥g(ue)−gε∥2 = 1
n

∫∫
Ae

n∑
i=1

(g(ue)i−gεi )
2 dxdy (2.18c)

For the inverse-shell elements with in-situ strain data available within their domain,
the weighting coefficients are set as we = wk = wg = 1, whereas for the inverse el-
ements with no measured strain data available, these coefficients are set as a very
small value relative to one, i.e., we = wk = wg = α (e.g., α = 10−5). The functional
provided in Eq. (2.17) is minimized subjected to the local displacements, ue:

∂Φe
s(ue)
∂ue

= 0 (2.19a)

that gives:
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keue = fe (2.19b)

where ke is the element stiffness matrix for the inverse-shell element and is defined
as:

ke =
∫∫
Ae

(
we (Bm

s )T Bm
s +(2h)2wk

(
Bb
)T

Bb+wg (Bs)T Bs
)
dxdy (2.20)

and fe is the element force vector for the inverse-shell element and is defined as:

fe = 1
n

∫∫
Ae

n∑
i=1

(
we (Bm

s )T eεi +(2h)2wk
(
Bb
)T

kεi +wg (Bs)T gεi
)
dxdy (2.21)

By comparing Eqs. (2.9-2.10) with Eqs. (2.20-2.21), the more sophisticated math-
ematical basis of the iQS4 element, which emanates from employing the curvature
data and transverse-shear terms, is highlighted.

2.3 Quadrilateral Inverse-Shell Element Coupled with RZT

The fundamental difference between the formulation for the iQS4 element and the
iRZT4 formulation stems from the definition of the zigzag rotations which affect the
expressions for the displacements of the material points. With the iRZT4 assump-
tion, for a laminated material with a total of N layers, the displacements of the
material points at each layer k are given as the following:

u(k)
x (x,y,z) = u+ zθx+ϕ(k)

x ψx (2.22a)

u(k)
y (x,y,z) = v+ zθy +ϕ(k)

y ψy (2.22b)

uz(x,y) = w (2.22c)

consequently,
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u(x,y) ≡ u =
[
u v w θx θy ψx ψy

]T
(2.22d)

The first three terms, namely (u,v,w) are the displacement terms associated with
translations, θx, θy are bending rotations, and ψx,ψy are zigzag rotations based on
RZT theory. According to RZT, through-the-thickness displacements of each ply in
a laminate may vary drastically from one layer to another, hence, a set of piecewise
functions are defined which account for the zigzag rotations of the laminae. These
functions are provided as:

ϕ
(k)
i = zβ

(k)
i +α

(k)
i (i= x,y) (2.23a)

where the slope of the piecewise function defined through the thickness of the lamina,
β

(k)
i , is given as:

β
(k)
i = Gi

Q
(k)
ii

−1 (i= x,y;k = 1,2, ...,N) (2.23b)

the constant α(k)
i is defined to maintain the continuity of the piecewise zigzag lines

through the thickness of the laminate:

α
(k)
i = β

(k)
i h+

k∑
j=2

2h(j−1)

 Gi

Q
(k)
ii

− Gi

Q
(j−1)
ii

 (i= x,y) (2.23c)

and the term Gi is the average shear stiffness of the layered material:

Gi =
1
h

N∑
j=1

h(j)

Q
(j)
ii

 (i= x,y) (2.23d)

In the above set of equations, 2h(k) is used to denote the thickness of a single
lamina. In addition, Q(k)

xx is the transformed shear modulus of the lamina for xz
plane, whereas, Q(k)

yy is the transformed shear modulus of the lamina for yz plane.
The elasticity relations for the k-th ply of the laminate is established in the order
presented below:

ε(k) ≡


ε

(k)
xx

ε
(k)
yy

γ
(k)
xy

= e(u)+ zκ(u)+µ(k)(u, z) (2.24a)
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γ(k) ≡

γ
(k)
xz

γ
(k)
yz

= H(k)
γ (z)γ(u)+H(k)

η (z)η(u) (2.24b)

Figure 2.7 (a) Laminated composite and its kinematic variables in global Cartesian
coordinates; (b) Zigzag rotations through the thickness of the laminated composite.

The in-plane membrane strain term, e(u), and the in-plane bending strain term,
κ(u), and the term accounting for the strain as a result of zigzag rotations, µ(k)(u, z),
are:

e(u) =
[
∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

]T
(2.25a)
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κ(u) =
[
∂θx
∂x

∂θy

∂y
∂θx
∂y + ∂θy

∂x

]T
(2.25b)

µ(k)(u, z) = H(k)
ϕ (z)

[
∂ψx
∂x

∂ψy

∂y
∂ψx
∂y

∂ψy

∂x

]T
(2.25c)

where,

H(k)
ϕ =


ϕ

(k)
x 0 0 0
0 ϕ

(k)
y 0 0

0 0 ϕ
(k)
x ϕ

(k)
y

 (2.25d)

By the same token, the strain terms associated with the transverse-shear strain given
in Eq. (2.24b), are calculated using the following:

γ(u) ≡
[
γx γy

]T
=
[
∂w
∂x + θx

∂w
∂y + θy

]T
(2.26a)

η(u) =
[
γx−ψx γy −ψy

]T
(2.26b)

Furthermore, the matrices of constants, H(k)
γ and H(k)

η , are defined as:

H(k)
γ =

1+β
(k)
x 0

0 1+β
(k)
y

 (2.26c)

H(k)
η =

−β(k)
x 0

0 −β(k)
y

 (2.26d)

The constant matrices, H(k)
ϕ , H(k)

γ , and H(k)
η , are only functions of the thickness

position of the laminate, z, and they are deemed to be constant over the in-plane
domain of each ply. Conversely, membrane/bending strain terms, i.e., the section
strains, are constant through the thickness of the plies and vary only over the in-
plane domain. The kinematic variables presented in Eqs. (2.25a-2.25c, 2.26a-2.26b)
are approximated using shape functions and their respective strain-displacement
relations are as follows:

χ(ue) = Bχue (χ= e,κ,µ,γ,η) (2.27)
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Figure 2.8 Experimental data acquisition from laminated composite with strain
rosettes mounted on bounding surfaces and FGB sensors embedded within the lam-
inate.

Experimental data used as the input for the iFEM-RZT algorithm are collected in a
process similar to what was seen for the inverse-shell element. However, one impor-
tant advantage of using iFEM-RZT is that its mathematical framework enables the
use of interlaminar strain data, which can be acquired via embedding FBG sensors
at various locations through the thickness of the composite laminate. Hence, an
additional equation should be added to Eq. (2.16), which represents the experimen-
tally collected zigzag strain data at the j-th boundary surface (between two plies)
of the laminate:

mj
i = ε

j
i −eεi − z(j)kεi (i= 1,2, ...,n) (2.28)

where ε
j
i is the strain at the j-th interface of the laminate measured at z = z(j),

and the subscript i is used to show the number of data acquisition locations. Fur-
thermore, by illustrating the experimental transverse-shear strain terms with the
notations, Γ and H, the weighted least squares functional can be developed over the
entire volume of the problem domain as the following:

Φ(u) = we∥e(u)−eεi∥2 +wκ∥κ(u)−kεi∥2 +wµ∥µ(k)(u, zj)−mj∥2+

wγ∥γ(u)−Γ∥2 +wη∥η(u)−H∥2 (2.29)

By incorporating Eq. (2.27) in Eq. (2.29), the functional is obtained at the element
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level, Φ(ue), and by minimizing it subject to the unknown local displacements, Eq.
(2.19) is repeated, hence the local stiffness matrix, ke, is derived as:

ke =
∫∫
Ae

[
we (Be)T Be+(2h)2wκ (Bκ)T Bκ+wµ (Bµ)T Bµ

+wγ (Bγ)T Bγ +wη (Bη)T Bη
]
dxdy

(2.30)

and the local force vector, fe, is:

fe = 1
n

∫∫
Ae

n∑
i=1

[
we (Be)T eεi +(2h)2wκ (Bκ)T kεi +wµ (Bµ)T mj

i

+wγ (Bγ)T Γi+wη (Bη)T Hi

]
dxdy

(2.31)

2.4 Inverse Finite Element Method Solution

After the local (element) stiffness matrices, ke, and the local (element) force vectors,
fe, are obtained for the inverse element, the same procedure must be followed for
determining the solution of the inverse method, regardless of the inverse element
type. Consequently, the global stiffness matrix K, and the global force vector F, are
calculated through assembly of the transformed local stiffness matrices (Eqs. 2.9,
2.20, and 2.30) and local force vectors (Eqs. 2.10, 2.21, and 2.31).

K =
numel∑
i=1

(Te)TkeTe (2.32a)

F =
numel∑
i=1

(Te)T fe (2.32b)

U =
numel∑
i=1

(Te)Tue (2.32c)

where U is the global displacement vector, and Te is the mapping from the local
reference frame to the global reference frame. Thereby, the equation below can be
written:

KU = F (2.33)
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The solution to the shape-sensing problem is solved through calculating the global
displacements from Eq. (2.33). To solve this equation in terms of the global dis-
placements, proper boundary conditions must be applied, and through elimination
of rows and columns corresponding to natural boundary conditions in the global
stiffness matrix and the global force and displacement vectors, the reduced global
displacement vector is obtained.

KRUR = FR (2.34a)

UR =
(
KR

)−1
FR (2.34b)

In this equation, KR, FR, and UR are the reduced global stiffness matrix, reduced
global force vector, and reduced global displacement vector, respectively. The global
displacement vector is then, determined by the assembly of the displacement values
corresponding to constrained degrees of freedom and the reduced global displacement
vector. The procedure associated with the iFEM algorithm is summarized through
a step-by-step schematic flowchart presentation in Figure 2.9.

Figure 2.9 The flowchart illustrating the iFEM algorithm.
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3. DAMAGE DETECTION STRATEGY

3.1 Stiffness Degradation

In the present effort, damage in the problem domain appears as a region with lesser
stiffness than the overall stiffness of the structure, indicating that damaged region
is pre-defined. The damaged domains are defined by introducing a stiffness degra-
dation factor, λ (Taheri-Behrooz & Bakhshan, 2018). Assuming that for an intact
element, the stiffness matrix is shown with DU , where the superscript U is used to
identify the undamaged state of the material, the mathematical representation of
the stiffness degradation is written in the following format:

De = (λI)DU (3.1)

In this equation, De is the element stiffness, and I is the identity matrix with the
same dimensions as the stiffness matrix. The identity matrix is used to guarantee
that the degradation coefficient is multiplied only by the diagonal terms of the DU

matrix. It is also worth mentioning that 0< λ≤ 1 , with λ= 1 corresponding to the
undamaged state of the material whereas 0< λ < 1 representing the damaged state
of the material.

3.2 Damage Detection

Structural damage can be determined through monitoring damage over the problem
domain with high concentrations of equivalent strain measures. In the present work,
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to achieve a clear understanding of the damage, equivalent strains are calculated,
and consequently, a damage index is defined using the calculated equivalent strain
terms for quantifying damage, as using the equivalent strains solely, might cause
misinterpretations of the damage (Li et al., 2020). Damage detection procedure can
be undertaken with specific considerations.

Damage monitoring can be performed in a basic manner, where through using the
iFEM, the in-plane position, shape, and size of the defected region are detected.
Hence, the damage index is defined as the percent error between the equivalent von
Mises strain for the intact state of the material and its damaged configuration. The
equivalent von Mises strain for a two-dimensional problem presented in this case
study can be calculated using the equation below:

εVM =
√

(ε1)2 − ε1ε2 +(ε2)2 (3.2a)

where,

ε1 = εxx+εyy

2 +
√

(εxx−εyy

2 )2 +(γxy

2 )2

ε2 = εxx+εyy

2 −
√

(εxx−εyy

2 )2 +(γxy

2 )2
(3.2b)

Thus, the damage index for this general assumption is achievable through the fol-
lowing equation:

DI(εVM ) =
∣∣∣∣∣εUVM − εVM

εmaxVM

∣∣∣∣∣×100% (3.3)

with εUVM being the equivalent von Mises strain calculated using iFEM with intact
material assumption, and εmaxVM denoting the maximum reconstructed von Mises
strain. Although the expression derived in Eq. (3.3) is capable of detecting damage
in laminated composite materials, it does not involve layer-by-layer investigation of
the flaws. In this context, a more sophisticated damage detection strategy is devel-
oped within the framework of iFEM-RZT, which also makes through-the-thickness
identification of the damage in materials, such as composite shells, possible; all the
while, it provides this information with strain data available only at certain loca-
tions over the problem domain. Additionally, it is suitable for real-time monitoring
of laminated composite structures.

After the global displacement vector is calculated using the iFEM algorithm, mem-
brane/bending strains can be reconstructed. Similar to the damage detection strat-
egy introduced earlier, equivalent strain measures are calculated for both the in-plane
membrane strain,

[
εxx εyy γxy

]T
, and in-plane bending strain,

[
κxx κyy κxy

]T
.
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εχVM =
√(

εχ1
)2

− εχ1ε
χ
2 +

(
εχ2
)2

(χ= ε,κ) (3.4a)

where,

ε
χ
1 = χxx+χyy

2 +
√

(χxx−χyy

2 )2 +(χxy

2 )2

εχ2 = χxx+χyy

2 −
√

(χxx−χyy

2 )2 +(χxy

2 )2
(χ= ε,κ) (3.4b)

are the principal section strain terms calculated for the in-plane membrane and in-
plane bending strains. The equivalent strain obtained from Eq. (3.4a) does not vary
through the thickness of the layered structure, as a consequence, it can be used as
a tool for identifying the in-plane location and approximating the morphology of
the defected region. Additionally, employing RZT in the iFEM algorithm further
enhances the damage detection capabilities of the method for detecting through-
the-thickness flaws. In this regard, the average equivalent von Mises section strains
for each lamina is obtained via using the following equation:

ε̄
(k)
VM = 1

2h(k)

z(k)∫
z(k−1)

√(
ε

(k)
1

)2
− ε

(k)
1 ε

(k)
2 +

(
ε

(k)
2

)2
dz (3.5a)

with ε
(k)
1 and ε

(k)
2 being the principal section strains of each layer:


ε

(k)
1 = ε

(k)
xx +ε(k)

yy

2 +
√

(ε
(k)
xx −ε(k)

yy

2 )2 +(γ
(k)
xy

2 )2

ε
(k)
2 = ε

(k)
xx +ε(k)

yy

2 −
√

(ε
(k)
xx −ε(k)

yy

2 )2 +(γ
(k)
xy

2 )2
(3.5b)

here, ε(k)
xx , ε(k)

yy , and γ
(k)
xy , are obtained from Eq. (2.24a). Now, by utilizing the

equivalent section strains for the entire laminate, the in-plane location of the defected
region is determined by establishing a relation similar to Eq. (3.3).

DIχ(εχVM ) =

∣∣∣∣∣∣ε
χ,U
VM − εχVM
εχ,maxVM

∣∣∣∣∣∣×100% (χ= ε,κ) (3.6)

DIχ is the damage index corresponding to each section strain term derived for the
in-plane damage detection of the laminate. On the other hand, the location of the
defect through the thickness of the laminate is determined by using the average
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equivalent strain for each ply.

DI(k)(ε̄(k)
VM ) =

∣∣∣∣∣∣(ε̄
(k)
VM )U − ε̄

(k)
VM

(ε̄(k)
VM )max

∣∣∣∣∣∣×100% (3.7)

In the equation above, DI(k) is the damage index for each ply. The maximum
value of the damage indices obtained in Eqs. (3.3, 3.6-3.7), highlights a region
with an irregular distribution of the equivalent strain measure (irregular gradient
of the equivalent strain measure) over the problem domain, indicating the existence
of damage in that area. For a more clear understanding of the damage detection
process, a flowchart is provided in Figure 3.1 that describes the road-map associated
with the damage detection method developed herein.
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Figure 3.1 The flowchart illustrating the damage detection process.
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4. NUMERICAL EXAMPLES

The inverse elements, for which the formulation was provided in the previous section,
are implemented in case studies presented herein. These case studies include differ-
ent problems, and in the problem domain for each case, one or multiple pre-defined
defected regions exist. These problems include a plate with damage, a compos-
ite shell with damage, transverse bending of a T-beam with damage, a cross-ply
composite plate with torsional load, and a curved composite panel subjected to ax-
ial loading. The in-situ strain measurements are acquired numerically via running
high fidelity forward analysis. In order to better assess the capability of the iFEM
method, damage sensitivity plots have been provided, which show the variation of
the maximum damage index as the stiffness degradation factor acquires different
values.

4.1 Tensile Loading of a Plate

In this case study, a rectangular plate is subjected to tensile loading. In the center
of the plate, a circular defected region exists. The plate has a width of 0.01 m, a
length of 0.03 m, and a thickness of 0.0001 m. As mentioned, the center of the plate
is damaged, and the defected region has a radius of 0.001 m. The geometry of the
plate yields a span-to-thickness ratio of 0.03

0.0001 = 300, characterizing this geometry
as a thin plate. Additionally, the plate is isotropic, with its Young’s modulus equal
to 200 GPa, and its Poisson’s ratio equal to 0.3. Two ends of the plate, along the
vertical direction, are subjected to 120 N/mm of force. In Figure 4.1, the geometry
of the plate, loading conditions, and boundary conditions are depicted.

30



Figure 4.1 (a) Geometry and loading conditions for the plate; (b) Boundary condi-
tions.

For nodes along the green line, degrees of freedom along the X-axis are fixed,
whereas, for the nodes along the red line, degrees of freedom are constrained along
the Y -axis. Furthermore, the in-situ strain measurements are provided numerically
using high fidelity forward analysis. The FE model used for this purpose consists
of 1296 elements (Figure 4.2). As it is evident in this figure, a detailed, fine mesh
is generated for the FEM analysis. This mesh also takes into account the circular
pre-defined damaged region. On the other hand, for the inverse analysis, the mesh is
considerably coarser, with a structured grid. In this context, the number of inverse-
plane elements for this case study is 48 elements. The data collection scheme is
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devised through building 3×3 blocks of elements (Figure 4.3) in the forward model
and then using the strain data from the center element of these blocks for the inverse
analysis.

Figure 4.2 Discretization of the problem domain with 1296 elements for conducting
the forward analysis.

Figure 4.3 Data collection scheme from the forward analysis to the inverse analysis
(color yellow denotes the presence of sensor data).

Herein, two distinct sensor placement models have been implemented. These mod-
els are namely dense (D), and sparse (S) sensor distribution models. For the dense
model, strain data are provided for all the inverse elements, while for the sparse
model only a number of the elements are equipped with the in-situ strain measure-
ments. Figure 4.4 shows the iFEM mesh, as well as the sensor deployment models
for the inverse analysis.
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Figure 4.4 (a) Discretization of the problem domain with 48 inverse-plane elements
in order to conduct inverse analysis; (b) Dense, D, sensor placement model; (c)
Sparse, S, sensor placement model.

Through performing the forward analysis, the strain data are collected from the FEM
model depicted in Figure 4.2, and as depicted in the schematic plot of Figure 4.3,
they are transferred to the iFEM algorithm. Then, based on the sensor placement
models depicted in Figure 4.4, they are utilized to perform the inverse simulations
with the aim of detecting the location and the shape of the damaged region on the
plate. Here, the results of the forward analysis are used as reference values, and
the displacement values calculated using the inverse analysis are compared with the
reference solution. Moreover, when using the sparse model, the weighting coefficient
α, for inverse-plane elements with no sensor data is set as α = 10−3. For the dis-
placements along the X-axis, the results are illustrated in Figure 4.5. The results of
iFEM analysis are also depicted in Figures 4.5(b-c). As it is evident, the inverse al-
gorithm has been able to show the variation of the displacement field in the vicinity
of the damaged region. Through comparison of the maximum values presented in
the U contours, for FEM and iFEM solutions, the percent errors are calculated as
7.83%, and 11.85% for the dense model and the sparse model, respectively. However,
the vertical component of the displacement field is reconstructed more accurately in
comparison to the horizontal component. The percent errors are given as 1.91% for
the dense model, and 0.53% for the sparse model (Figure 4.6). Counter-intuitively,
it is seen that the sparse model has a better performance than the dense model in
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this case.

Figure 4.6 Displacement V contours: (a) Forward FEM analysis; (b) iFEM analysis
using dense sensor distribution; (c) iFEM analysis using sparse sensor distribution.

In continuation, the contour plots for the von Mises strain are presented in Figure
4.7. The contours in these Figures show that a region of high von Mises strain gradi-
ent has been identified using either the dense sensor placement model or the sparse
model. This indicates that the plate, at this hot spot is experiencing structural
damage.
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Figure 4.5 Displacement U contours: (a) Forward FEM analysis; (b) iFEM analysis
using dense sensor distribution; (c) iFEM analysis using sparse sensor distribution.
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Figure 4.7 Equivalent strain εVM contours: (a) iFEM analysis using dense sensor
distribution; (b) iFEM analysis using sparse sensor distribution.

Hence, the relation for calculating the damage index provided in Eq. (3.3) is used.
As shown in Figure 4.8, the damage has been successfully detected and quantified
using both sensor deployment models as a circular region at the center of the plate.

Figure 4.8 Damage index DI(εVM ) contours: (a) iFEM analysis using dense sensor
distribution; (b) iFEM analysis using sparse sensor distribution.

It can be noted that both models have captured the location of the damage and
have delivered a rough approximation of the shape of the damage, too. Figure
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4.8(a), depicts more conservative results for damage index, with its maximum value
computed 24.542%, while for the sparse model, Figure 4.6(b), the maximum damage
index is calculated as 23.957%. Nonetheless, the difference between these values is
negligible, indicating that the sparse model can confidently be implemented instead
of the dense model, which is an important remark, considering that by using this
model, less instrumentation equipment is used, hence it is more economical.

In addition to the results of this subsection, damage sensitivity plots have also been
demonstrated, plotting the maximum damage index obtained for various stiffness
degradation coefficients, λ , prove to be useful tools in order to evaluate the damage
detection capabilities of the inverse algorithm. For both models, the graphs in Figure
4.9 follow the same trend. It is seen that as the degradation factor approaches one,
the maximum damage index calculated utilizing the equivalent strain becomes lower.
According to the results presented in this subsection, it can be concluded that the
application of inverse-plane element for two-dimensional problems, with the aim of
studying and detecting damage guarantees reliable results. The use of this element
can be further extended to experimental applications, where the requisite input
strain measurements are provided via strain gauges, and/or FBG sensors.

Figure 4.9 Damage sensitivity for plate with pre-defined damage.
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4.2 Transverse Bending of a Laminated Composite Shell

Laminated composite materials are prone to various damage mechanisms, which
makes their health monitoring a crucial topic for study. To this end, for a composite
laminate with a stacking sequence of [90,0,−90,0]s, a distributed transverse bending
load with a magnitude of 1 kN is applied to its free edge. The shell has a width
of 0.08 m and a length of 0.24 m, with the thickness of the laminate being 0.0024
m, indicating that 2h = 0.0024 m (the thickness of each lamina being 0.0003 m),
hence the span-to-thickness ratio is 0.24

0.0024 = 100 and it is seen that this case study,
similar to the previous one, is a thin shell problem. Moreover, two damaged areas
are present over the problem domain, which are similar to each other, both in terms
of their geometries, and stiffness degradation. Additionally, it is assumed that in
the damaged region, all of the plies in the laminate are weakened by the same
degradation factor, λ. Furthermore, the orthotropic material properties for a single
lamina are listed in Table 4.1, and are chosen with reference to Tabrizi et al. (2019).

Unidirectional Carbon-Epoxy Composite
Young’s Modulus [GPa] Poisson’s Ratio Shear Modulus [GPa]

E1 = 133.9 ν12 = ν13 = 0.32 G12 =G13 = 4.8
E2 = E3 = 11.5 ν23 = 0.37 G23 = 4.2

Table 4.1 Material properties of a single ply: Transverse bending of a laminated
composite shell.

The geometry and boundary conditions associated with the composite shell are
depicted in Figure 4.10. As illustrated, the left edge of the composite laminate
is clamped. The two shaded areas represent the damaged region. The centroids of
these damaged regions are at 0.06 m and 0.18 m from the clamped edge, respectively.

The required in-situ strain values are provided through performing high fidelity
forward analysis. The forward FEM analysis is conducted utilizing the commercial
finite element software, ANSYS-APDL. Then, after acquiring strain data from the
model, they are transferred to in-house iFEM code, which is developed within the
mathematical framework of iQS4 inverse-shell element. For the inverse analysis,
two different sensor placement schemes have been devised. These sensor placement
models consist of one dense model (denoted by D), and one sparse model (denoted
by S) (Figure 4.11). Herein, Figure 4.11(b), shows the dense distribution of strain
measurement devices over the laminate. In this model, all of the inverse elements are
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equipped with sensor data in their respective top and bottom surfaces. On the other
hand, Figure 4.11(c), shows the sparse sensor placement scheme, and as depicted,
only a select set of inverse-shell elements possess sensor data.

Figure 4.10 The geometry, boundary conditions, and loading conditions of the lam-
inated composite shell.

Figure 4.11 (a) Discretization of the laminated composite shell with 192 inverse-shell
elements in order to perform inverse analysis; (b) Dense, D, sensor placement model;
(c) Sparse, S, sensor placement model.
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As it was discussed in the previous section, for the inverse-shell element, after the
strain data are collected from both bounding surfaces of the shell, i.e., top and
bottom surfaces, via strain gauges and/or FBG sensors, or numerically through
running high fidelity forward FEM simulations, Eq. (2.16) is used to process these
data and feed them as an input to the inverse algorithm. For inverse-shell elements
with sensors mounted on or embedded within them, the weighting coefficients in Eq.
(2.17) are set as we =wk =wg = 1 , whereas for inverse elements with no input strain
information, we = wk = wg = α = 10−5. In this problem, the results obtained from
the FEM simulation are set as a reference for the results of the inverse approach.
Next, through implementation of dense and sparse models (Figures 4.11(b-c)) in
the iFEM algorithm, results for W , θX , and θY are obtained and compared to the
reference solution, as for other degrees of freedom the displacement and rotation
components are equal to zero.

The results for W are illustrated in Figure 4.12. It is evident that iFEM has re-
constructed the displacement field in an accurate manner (Figures 4.12(b-c)). The
percent error calculated using the maximum displacements shown in Figure 4.12
yields 0.06% for the dense model and 0.37% when the sparse model is implemented.
Besides, the rotations about the X- and Y -axes have also been calculated, and their
contour plots are displayed in Figures 4.13-4.14. For rotations about the X-axis,
θX , the percent error is calculated by utilizing the maximum values of the rotation,
and in this regard, for the dense model 9.11% error is calculated, whereas, for the
sparse model, the percent error is 2.37%. On the other hand, the reconstruction of
the rotations about the Y -axis, θY , using iFEM yields better results. It is seen that
the dense model has an error of 0.006%, whereas the sparse model has a percent
error of 0.096%. In this case study, iFEM proves to be a positively powerful means
of SHM, as it provides results that are extremely close to the reference solution.
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Figure 4.12 DisplacementW contours: (a) Forward FEM analysis; (b) iFEM analysis
using dense sensor distribution; (c) iFEM analysis using sparse sensor distribution.
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Figure 4.13 Rotation θX contours: (a) Forward FEM analysis; (b) iFEM analysis
using dense sensor distribution; (c) iFEM analysis using sparse sensor distribution.
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Figure 4.14 Rotation θY contours: (a) Forward FEM analysis; (b) iFEM analysis
using dense sensor distribution; (c) iFEM analysis using sparse sensor distribution.

Moreover, in order to conduct the damage detection study, it is of paramount impor-
tance to use the equivalent von Mises strain contours and the damage index contours
together. As a result, the equivalent von Mises strain can be calculated using Eq.
(4.1). Evidently, this equation is different from the definition provided in Eq. (3.4a),
and it stems from the fact that, for the inverse-shell element, in conjunction with the
membrane strain terms, normal strain component εzz transverse-shear strain terms,
namely γxz and γyz, also exist.

εVM = 1
3

√
2
[
(εxx− εyy)2 +(εyy − εzz)2 +(εzz − εxx)2 + 3

2(γ2
xy +γ2

yz +γ2
zx)
]

(4.1)

The contour plots for the equivalent von Mises strains are presented below. Evi-
dently, the iFEM has successfully detected the flawed regions. The gradient of the
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von Mises strain is proof of the matter. A comparison between the results of both
sensor models can also be conducted, and thereby, it is seen that they capture a
relatively similar shape for the regions with a high probability of damage and rel-
atively similar ranges for the values of the equivalent strains that are captured via
the iFEM (Figure 4.15).

Figure 4.15 Equivalent strain εVM contours: (a) iFEM analysis using dense sensor
distribution; (b) iFEM analysis using sparse sensor distribution.

Additionally, the damage index for both inverse solutions can be calculated using
Eq. (3.3). This, along with the results illustrated in Figure 4.15, will contribute
to understanding the state and extent of damage in the laminated composite shell.
The damage index contours, as depicted in Figure 4.16, show that for both of the
damaged areas, the intensity of the damage is similar, and almost indistinguishable.
Conversely, this is not the visual conclusion to be made by using the plots in Figure
4.15. Thus, in terms of understanding damage, the contour plots in Figures 4.15-4.16
must be studied together.
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Figure 4.16 Damage index DI(εVM ) contours: (a) iFEM analysis using dense sensor
distribution; (b) iFEM analysis using sparse sensor distribution.

Figure 4.17 Damage sensitivity for laminated composite shell with pre-defined dam-
age.
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Furthermore, it is visible that the locations of the defected regions are predicted
correctly, while the shape of the damage is roughly estimated as a rectangular area.
To this end, the sensitivity of iFEM, when using iQS4 element can also be assessed.
As a consequence, the damage sensitivity plots show that the sensitivity of both
sensor placement models to damage decrease at λ = 10−5. The graphs show that
the damage sensitivity follows the same pattern for both models, with the dense
model being more conservative than the sparse model, given that for the same
strain input, the maximum damage index calculated for dense sensor deployment
is more than that of sparse sensor deployment model, similar to the case with the
inverse-plane element. Nevertheless, this phenomenon is expected, because in the
dense model, strain data are available over the entire problem domain. By the same
token, through close examination of the reconstructed displacement field for both
the dense and the sparse models, it is concluded that using the sparse model is more
preferable as the solution of the iFEM with this model is adequately precise and to
implement it, lesser number of sensors is required.

4.3 Transverse Bending of a T-Beam Structure

T-beams are widely used in maritime and aerospace industries. T-beams are struc-
tured in way that a haphazard loading can be experienced as either an in-plane or
transverse load by its various constituents, i.e., the base plate and stiffeners. In this
case study, inverse analysis is performed on a T-beam structure. The geometry of
the structure, in conjunction with a cross-sectional view of the T-beam used in this
study, can be seen in Figure 4.18. This Figure also shows the boundary conditions
applied to the structure. As depicted in the Figure, the structure is clamped in
one of its edges, while the other edge undergoes a distributed bending load applied
along Z direction. The structure is assumed to have a defected region which includes
parts of a stiffener (Figure 4.18). Similar to the previous examples, λ= 10−9. This
study is performed with the aim to capture damage in structures that are more
complicated than a simple shell structure. Furthermore, since promising results
were achieved by implementing the iQS4 element for the inverse analysis of a shell
structure, the T-beam can be modeled as a combination of multiple shells, making
it feasible to utilize the mentioned inverse-shell element, iQS4. The structure is as-
sumed to be composed of an isotropic material, with Young’s modulus of 210 GPa,
and a Poisson’s ratio of 0.3.
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Figure 4.18 The geometry, dimensions, and the boundary conditions of the T-beam
structure.

Considering that the performance of the inverse-shell element with various types of
sensor placement models was evaluated in the previous case study, for this problem,
only one sparse sensor placement scheme is utilized. The iFEM discretization and
the sensor placement scheme of the T-beam are illustrated in Figure 4.20. The prob-
lem domain is discretized into 240 inverse-shell elements. Moreover, in the inverse
analysis, the strain data for the corresponding inverse elements are provided in both
the top and bottom surfaces of the element (local coordinate system perspective).
The strain data set is acquired via simulations performed in ANSYS-APDL, and
then they are processed in the inverse algorithm. The same weighting coefficients
for Eq. (2.17), which were used in the previous case study are utilized.

The loading condition for this example problem is defined as a distributed force with
a magnitude of 2 kN applied in the negative direction of the Z-axis (Figure 4.19).
At the first glance, it might be speculated that this load is going to affect the overall
stiffened structured as a bending load does to a plate, however, as discussed earlier,
during a load case, different components of the T-beam are subjected to different
modes of loading.
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Figure 4.19 Distributed load along Z-axis exerted on the T-beam.

The field variable calculated via iFEM, global displacement vector, consists of com-
ponents of displacement (translations), U , V , and W , and components of rotation,
θX , θY , and θZ . In order to present the results in a more cohesive and comprehensi-
ble manner, the magnitude of the vector sum of the nodal values of the displacement
(translation) terms, UT , and rotation terms, θT , have been displayed (Eq. 4.2). In
this context, the contour plots of the displacements (translations) and rotations for
both the forward analysis and inverse analysis, have been exhibited with an isometric
perspective in Figures 4.21-4.22.

Figure 4.20 (a) Discretization of the T-beam structure with 240 inverse-shell el-
ements in order to perform inverse analysis; (b) Sensor placement model for the
inverse analysis.

UT =
√
U2 +V 2 +W 2 (4.2a)
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θT =
√
θ2
X + θ2

Y + θ2
Z (4.2b)

Figure 4.21 Total displacement UT contours for distributed load along Z-axis: (a)
FEM solution; (b) iFEM solution.
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Figure 4.22 Total rotation θT contours for distributed load along Z-axis: (a) FEM
solution; (b) iFEM solution.
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The results for the total nodal displacement show a decent agreement between FEM
and iFEM. The percent error calculated using the maximum values of total dis-
placement is 0.53%. In addition, the total nodal rotations are also computed and
exhibited in Figure 4.22, which shows the percent error for the rotations derived as
0.36%. These percentages indicate that iFEM accurately reconstructs the displace-
ment field. Besides, considering that iFEM-iQS4 is occasionally prone to exhibiting
inaccurate results in the cases of in-plane bending (stiffener perspective), these val-
ues show successful implementation of this inverse element type which has led to
minimization of the functional derived in Eq. (2.17) to produce decent results. Ad-
ditionally, the displacement field shows traces of discontinuity, which is a sign of
damage. Yet, as a more reliable and precise means of detecting damage, the equiv-
alent von Mises strain is calculated using Eq. (4.1), and the corresponding contour
plot is visible in Figure 4.23.

The von Mises strain contour shows that over the problem domain, on one of the
stiffeners which will be denoted as the horizontal stiffener, strain gradient is formed,
demonstrating the existence of defect. In addition, more important and noteworthy
results can be observed from the damage index contour (Figure 4.24). The defected
areas over the problem domain are revealed in the contour plots by consulting the
regions where an equivalent strain hot spot has been generated. In this regard,
Figure 4.24 shows a high concentration of damage index at this location with a
percentage of 99.949%, indicating that this region is experiencing almost complete
structural failure.

Figure 4.23 Equivalent strain εVM contours for distributed load along Z-axis, ob-
tained via the iFEM algorithm.
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Figure 4.24 Damage index DI(εVM ) contours for distributed load along Z-axis.

4.4 Composite Plate with Torsional Loading

The examples studied earlier show the robustness of the iFEM in its ability to detect
in-plane location of the damage successfully, for both simple and relatively compli-
cated structures such as T-beams. However, in the case of laminated structures,
through-the-thickness location of damage also gains significance. In the example of
the laminated composite shell subjected to bending load, the in-plane location of
the flaw was depicted with high precision, however, iFEM did not provide further
information which could attest to its capability in determining the position of the
defect through the thickness of the laminated shell. To give the iFEM the ability to
predict through-the-thickness defects, RZT was incorporated within iFEM (Kefal &
Tessler, 2021).

This section of the present study has targeted through-the-thickness damage detec-
tion in a cross-ply laminated composite plate. In the mentioned plate, laminae have
been oriented according to the stacking sequence [0,90,0,90,0]. The plate is clamped
in one end and over its free edge, a torsional distributed force with a magnitude of
90 N/m is applied (Figure 4.25). The 100×400 mm2 plate has a thickness of 2 mm
(0.4 mm/lamina), making it a thin structure (span-to-thickness ratio= 400

2 = 200).
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The orthotropic material properties for the plate are presented in Table (4.2). It
is assumed that damage is a circular domain in the second layer of the laminated
plate, and in the location of the defected region, the material properties are reduced
by a factor of 10−5.

Unidirectional Carbon-Epoxy Composite
Young’s Modulus [GPa] Poisson’s Ratio Shear Modulus [GPa]

E1 = 157.9 ν12 = ν13 = 0.32 G12 =G13 = 5.93
E2 = E3 = 9.584 ν23 = 0.49 G23 = 3.227

Table 4.2 Material properties of a single ply: Composite plate with torsional loading.

Figure 4.25 Geometry, loading conditions, and boundary conditions of the composite
plate with torsional loading.

In this example problem, the strain data are acquired from the top and bottom
bounding surfaces of the laminated plate. Moreover, from within the structure strain
data are collected from the interface of the fourth and fifth layers of the plate, i.e.,
the farthest through-the-thickness location from the defected region where strain
data can be collected through embedding sensors (e.g., FBG sensors) as illustrated
in Figure 2.8. The discretization of the model in the forward analysis consists of
a 288 × 72 grid (20736 elements in total). Then, the strain data which are utilized
in the iFEM algorithm are selected in a similar method as depicted in Figure 4.3,
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however, in this case study, an individual element block in the forward analysis is a
9×9 grid, indicating that the inverse model consists of 256 elements (Figure 4.26).

Figure 4.26 Strain data processing from FEM to iFEM.

Strain data used in the inverse algorithm are gathered according to a sparse sensor
deployment scheme, illustrated in Figure 4.27(b).

Figure 4.27 Laminated composite plate: (a) iFEM mesh; (b) Sparse sensor placement
scheme.

The first set of results in this case study, include the reconstruction of the dis-
placement field through employing the strain data obtained from FEM in iFEM
algorithm according to Figures 4.26 and 4.27. The total displacement contours cal-
culated using Eq. (4.2a) are plotted in Figure 4.28. As evident, the iFEM results
are presented with reference FEM solution. The percent error calculated using the
maximum displacement values is 0.218%, attesting to the robustness of the iFEM in
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processing strain data obtained as a result of relatively complex loading condition,
e.g., torsional loading, as well its performance even when operating with a set of
sparsely provided data.

Figure 4.28 Total displacement UT contours for torsional loading of the laminated
composite plate: (a) FEM solution; (b) iFEM solution.

The weighting coefficients for the iRZT4 element (Eq. 2.29) play a key role in
obtaining accurate results. These coefficients must be chosen with utmost care in
accordance to the problem type and even the geometry of the problem domain.
The inverse elements with available sensor data, the weighting coefficients are set
as wχ = 1 (χ= e,κ,µ,γ,η). Conversely, for the elements which do not possess any
strain inputs, the coefficients are chosen as wχ = α = 10−6.

The damage sensing capabilities of iFEM-RZT are assessed using two outputs from
the study. The membrane damage index which is obtained from Eq. (3.6) when χ= ε

outlines a region where the existence of damage is the most probable (Figure 4.29)
and thereby, highlighting the in-plane position and shape of the defected region.

Figure 4.29 Membrane damage index contour for torsional loading of the laminated
composite plate; Specifying the region with high probability of damage.
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Additionally the twisting damage (Eq. (3.6) with χ= κ) predicts the in-plane loca-
tion of the defected region, and as it is shown, it also provides an estimation of the
circular morphology of the defected region at the center of the plate, too (Figure
4.30).

Figure 4.30 Twisting damage index contour for torsional loading of the laminated
composite plate; Specifying the location and morphology of the defected region.

Nevertheless, the main advantage of the iFEM-RZT coupling is that it gives fur-
ther insight regarding through-the-thickness location of the damage. For laminated
shells, one of the most common modes of failure is delamination damage. The strain
data obtained through-the-thickness of the laminated plate numerically or via em-
bedded sensors can be utilized for detecting damage of this sort. Figure 4.31 shows
that the iFEM has predicted the location of the damage in the laminated struc-
ture successfully, even when the sensors within the structure are embedded at the
farthest location from the damage.

A close examination of the results presented in the Figures 4.29-4.30, exhibited
the localization of the damage index at the center of the plate, i.e., the in-plane
configuration of the flawed region was identified. By the same token, layer-by-layer
scrutiny of the damage index values at the area of interest (the region with localized
damage index values), shows the respective damage indices calculated based on the
principal strains for each layer, using Eq. (3.7), at the said location is the maximum
for the layer corresponding to the counter k = 2, namely the second layer (Figure
4.31).

The results obtained thus far show that by using a sparse sensor distribution model
the in-plane location and shape of the defected region are captured successfully.
Additionally, through-the-thickness damage detection results are obtained in the
circumstance that the strain data within the structure was acquired from the inter-
face of the fourth and fifth layers in laminated plate according to the same sparse
sensor placement model illustrated in Figure 4.27(b), vividly revealing the superior
performance of the iFEM-RZT for study and detection of damage mechanisms such
as delamination damage, which occur through-the-thickness of the structure.
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Figure 4.31 Damage index contours for each layer at the region of interest for de-
tecting through-the-thickness location of the damage.

4.5 Axial Loading of a Curved Composite Panel

In the previous subsection the damage detection capabilities of iFEM-RZT for de-
termining the in-plane and through-the-thickness location and morphology of the
flawed domain were evaluated successfully by employing this coupled algorithm to
a simple flat geometry with a complex loading condition. Albeit the results of this
case study were promising and shed light on the study of damage in laminated com-
posite shells, it is by no means sufficient to reach general conclusions based on these
results, solely. In this context, an additional case study involving the axial loading
of a curved panel is presented herein.
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Figure 4.32 Geometry, loading conditions, and boundary conditions of the curved
composite panel.

The curved composite panel in this example problem is a quasi-isotropic laminate
with a stacking sequence of [0,±45,90]s. One edge of the panel, as can be seen in
Figure 4.32, is clamped, while an axial load is applied to the other end with its
magnitude 3200 N/mm. The Geometry of the structure is evident in Figure 4.32.
The panel has a thickness of 3.2 mm (0.4 mm/lamina) and as can be seen, this
curved panel is also a thin structure similar to the case studies presented before
(span-to-thickness ratio 0.5

0.0032 ≈ 156). The material model for curved structure is
developed based on the material properties provided in Table 4.2 for a single lamina.
Furthermore, a curved rectangular defected region (λ = 10−5) between the seventh
and eighth layers of the panel (Figure 4.32).

The strain data for the inverse analysis of this curved composite panel are collected in
a procedure similar to what is shown in Figure 4.26. The inverse model of the panel
consists of 15×20 elements. As depicted in Figure 4.33, sensors are distributed over
the bounding surfaces of the laminated panel and embedded in the interface region
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between the first and second laminae in order to prevent the data from having a
dominant effect on the solution of the inverse analysis and producing biased results.

Figure 4.33 Curved composite panel: (a) iFEM Mesh; (b) Sparse sensor placement
scheme.

Total displacement contours of the curved shell are derived using the FEM, and
then, the displacement field of this structure is reconstructed using the iFEM-RZT
algorithm. The respective weighting coefficients (Eq. 2.29) of the elements for which
the sensor data are available are assigned as wχ = 1, whereas for the elements with
no strain sensor data, wχ = 10−6 (χ= e,κ,µ,γ,η).

Figure 4.34 Total displacement UT for axial loading of the curved composite panel:
(a) FEM solution; (b) iFEM solution.

The error between the total displacement calculated via FEM and iFEM is calculated
as 3.94%. As it is evident from Figure 4.34, the results of the forward analysis show a
region where the structure is disturbed as a consequence of the stiffness degradation.
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The robustness of the iFEM-RZT algorithm enables reconstruction of the detailed
features of the structure as such (Figure 4.35).

Figure 4.35 Detailed reconstruction of the displacement field utilizing iFEM-RZT
algorithm with a sparse distribution of the strain sensors.

Damage monitoring capabilities of the iFEM-RZT have been assessed herein, similar
to the previous case studies. In this regard, first, the in-plane detection of damage
is undertaken. This goal is accomplished through determining and plotting the
membrane (Figure 4.36) and twisting (Figure 4.37) damage indices over the entire
domain of the problem. Herein, it is seen that the contours for these damage indices
show a rectangular region with a high gradient of the damage index at the center
of the structure, which clearly indicates the approximate location and shape of the
defected region.

On the other hand, the location of the damage, in this case delamination damage,
along the thickness of the laminated curved panel is determined by evaluating the
damage indices obtained for each ply, and comparing the maximum value of the
index calculated for each lamina.
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Figure 4.36 Membrane damage contour for torsional loading of the curved composite
panel.

Figure 4.37 Twisting damage contour for torsional loading of the curved composite
panel.
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Figure 4.38 Damage indices calculated for each layer of the curved composite panel,
for detection of the through-the-thickness location of the defected region.

Through studying the contour plots for the layer-wise damage indices, it is deter-
mined that the location of damage, is either at the seventh, or the eighth layer or
in the interfacial region between the two plies. This conclusion is supported by the
maximum damage index values calculated for these laminae. Hence, iFEM-RZT
algorithm proves to be a viable and powerful tool for detection and monitoring of
damage both in terms of identifying the in-plane location and shape of the defect
and at the same time its through-the-thickness position.
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5. CONCLUDING REMARKS

In the present work, several case studies including tensile loading of a plate, trans-
verse bending of laminate composite, and a T-beam, laminated plate with torsional
load, and a curved composite panel with axial loading were analyzed to assess the
shape-sensing and damage detection capabilities of iFEM. All of these structures
were thin plane and plate/shell structures and in all of the case studies, the problem
domain possessed a single region or multiple areas with degraded stiffness at various
locations over the domain, with similar or different morphology. The inverse analysis
was conducted using inverse element types with plane assumption, shell assumption,
iQS4, and a combination of the inverse-shell element with RZT assumptions, iRZT4.
The input data for the iFEM were generated numerically through performing for-
ward FEM analysis, afterwards, displacement field, equivalent strain, and damage
index were exhibited using contour plots. It was seen that the solutions achieved
by iFEM are in keeping with the FEM solutions. Nevertheless, in terms of the
proximity of results of the inverse method to reference FEM solutions, the inverse-
shell element had a better performance in comparison to the inverse-plane element,
as the calculated percent errors were considerably lower, and in cases approaching
zero. For the first example problem, albeit the results were in an acceptable range,
the application of the inverse element is not practical, due to the fact that the so-
lution does not provide results other than two-dimensional displacements, while in
complex structures that are commonly used in maritime or aviation industries, a
three-dimensional reconstruction of the displacements is required, in conjunction
with the recovery of the rotations. In addition, the successful application of the
inverse-shell element, iQS4, to a defected composite shell illustrated the robustness
of iFEM. The shape-sensing of the laminated shell subjected to transverse bending
was precisely conducted, and the locations and shapes of the defected areas were
detected.

The validity of the results for the first two case studies paved the way for the ap-
plication of the iQS4 inverse element to the detection of damage in a more complex
structure. To this end, a flawed T-beam was modeled with a distributed bending
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load applied along Z direction. The solution to the inverse analysis demonstrated
the superior performance of iFEM concerning the shape-sensing of the T-beam struc-
ture. In particular, the iQS4 element proved to be very effective in its capability to
reconstruct the displacement field with an acceptable correlation between the refer-
ence and calculated results, independent of the nature of loading, while specifying
the damage and its extent in the problem domain. Yet, owing to the structural
design of T-beams, and to the fact that various components of such structures un-
dergo various types of loading, damage index, being a function of the equivalent von
Mises strain, appeared to be a reliable source of studying damage when used along
with the equivalent strain measures, highlighting the essence of using the von Mises
strain contours. The outcome of this case study becomes even more critical as the
real-world applications of this method to more complex structures, which can be
readily found in maritime and aerospace industries, are considered. T-beams can
be deemed as a simplified version of such structures, and with the accurate results
obtained herein, it can confidently be concluded that iFEM as a SHM approach,
possesses a high potential and efficiency as a damage-sensing approach.

In conjunction with these results, the essence of the through-the-thickness study
of damage was also acknowledged, and a novel strategy was developed to address
this problem. In this context, the RZT was employed within the iFEM. In this
method, the equivalent strain measure, von Mises strain is calculated using the
principal section strains, resulting in an approximation of the shape and location
of the damage. In addition, a layer-wise calculation of the von Mises strain based
on the principal strain values for each lamina is also performed, using which, the
damage index for every ply is calculated. Then through comparison of the damage
index values for all of the layers of the laminated material, the defected layer in
the material is identified. By applying this strategy to a composite plate under
torsional loading and a curved composite panel, the position, shape, and size of
the damage, both through-the-thickness and in-plane, were configured accurately.
The significance of these results is further underscored considering that the strain
data acquired from within the laminated structure were from the layer farthest from
the delamination damage location, and the sparse placement of the strain sensors,
along with preventing the reconstruction of a set of biased solutions, imposes further
numerical challenges for the operation of the iFEM-RZT algorithm.

Overall, it was shown that iFEM as a SHM technique, is able to administer solutions
to shape-sensing and damage detection of thin laminated structures and compos-
ite materials, utilizing the inverse-plane element, the inverse-shell element, or the
inverse-shell element coupled with the RZT. Nonetheless, due to the rapid growth
of composite technologies and their various industrial applications, the use of this
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method can be beneficial in the respective fields. Specifically, for composite materi-
als, the results of this work can be further extended to conduct a study on various
damage mechanisms in composite structures. In this context, future studies are
expected to detect non-deterministic flaws in composite materials by using experi-
mental test data, and further extending the present damage detection toolbox for
identifying the modes of the failure as well.
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APPENDIX A

A complementary set of equations is presented herein in connection with the
shape functions and the strain-displacement matrices for both the inverse-plane and
inverse-shell elements. The shape functions Ni are defined in the following order:

N1 = 1
4(1− s)(1− t) (A.1)

N2 = 1
4(1+ s)(1− t) (A.2)

N3 = 1
4(1+ s)(1+ t) (A.3)

N4 = 1
4(1− s)(1+ t) (A.4)

N5 = 1
16(1− s2)(1− t) (A.5)

N6 = 1
16(1+ s)(1− t2) (A.6)

N7 = 1
16(1− s2)(1+ t) (A.7)

N8 = 1
16(1+ s)(1− t2) (A.8)

As illustrated, these functions are defined in the isoparametric space, with −1 ≤
s, t ≤ +1. The Eqs. (A.1-A.4) are used for the inverse-plane element, while for the
inverse-shell element, all of the shape functions in Eqs. (A.1-A.8) are utilized. The
strain-displacement matrix for the inverse-plane element, mentioned in Eq. (2.4),
is obtained by calculating the derivative of the shape functions with respect to the
local reference frame. To this end,

Bm
p,i =


Ni,x 0

0 Ni,y

Ni,y Ni,x

 (i= 1,2,3,4) (A.9)

hence,
Bm
p =

[
Bm
p,1 Bm

p,2 Bm
p,3 Bm

p,4
]

(A.10)
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For the inverse-shell element, the shape functions Li, and Mi are similarly, defined
in the isoparametric reference frame. Using the Eqs. (A.1-A.8), the Li and Mi are
defined as links between the translation degrees of freedom and hierarchical artificial
rotation degree of freedom:

L1 = y14N8 −y21N5 (A.11)

L2 = y21N5 −y32N6 (A.12)

L3 = y32N6 −y43N7 (A.13)

L4 = y43N7 −y14N8 (A.14)

M1 = x41N8 −x12N5 (A.15)

M2 = x12N5 −x23N6 (A.16)

M3 = x23N6 −x34N7 (A.17)

M4 = x34N7 −x41N8 (A.18)

where,
xij = xi−xj

yij = yi−yj

 (i= 1,2,3,4)(j = 1,2,3,4) (A.19)

are the edge lengths of the inverse-shell element. The strain-displacement matrices
for membrane, Bm

s , for bending, Bb, and for transverse shear, Bs, are derived as the
following:

Bm
s,i =


Ni,x 0 0 0 0 Li,x

0 Ni,y 0 0 0 Mi,y

Ni,y Ni,x 0 0 0 Li,y +Mi,x

 (i= 1,2,3,4) (A.20)

Bb
i =


0 0 0 0 Ni,x 0
0 0 0 −Ni,y 0 0
0 0 0 −Ni,x Ni,y 0

 (i= 1,2,3,4) (A.21)
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Bs
i =

0 0 Ni,x −Li,x −Mi,x+Ni 0
0 0 Ni,y −Li,y −Ni −Mi,y 0

 (i= 1,2,3,4) (A.22)

subsequently,
Bm
s =

[
Bm
s,1 Bm

s,2 Bm
s,3 Bm

s,4
]

(A.23)

Bb =
[
Bb

1 Bb
2 Bb

3 Bb
4
]

(A.24)

Bs =
[
Bs

1 Bs
2 Bs

3 Bs
4
]

(A.25)

However, it was noted that for the iRZT4 element, there were complementary strain-
displacement relations. The strain-displacement matrices for this inverse-element
type are presented below. It must be noted that matrices corresponding to the
membrane, bending, and transverse-shear strain modes are already calculated when
deriving the relations for the inverse-shell element. Hence, it can be written that,

Be = Bm
s (A.26)

Bκ = Bb (A.27)

Bγ = Bs (A.28)

Furthermore for the strain-displacement matrix emerging as a result of zigzag rota-
tions,

Bµ
i =


0 0 0 0 0 0 0 Ni,x 0
0 0 0 0 0 0 −Ni,y 0 0
0 0 0 0 0 0 0 Ni,y 0
0 0 0 0 0 0 −Ni,x 0 0

 (A.29a)

hence,

Bµ =
[
Bµ

1 Bµ
2 Bµ

3 Bµ
4
]

(A.29b)

And for the transverse-shear strain term associated with χ= η in Eq. (2.27),
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Bη
i =

0 0 Ni,x −Li,x −Mi,x+Ni 0 Li,x Mi,x−Ni 0
0 0 Ni,y −Li,y −Ni −Mi,y 0 Li,y +Ni Mi,y 0

 (A.30a)

yielding

Bη =
[
Bη

1 Bη
2 Bη

3 Bη
4
]

(A.30b)
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