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ABSTRACT

ORDER OF REDUCTIONS OF ELLIPTIC CURVES IN ARITHMETIC
PROGRESSION

ANTIGONA PAJAZITI

Mathematics, Master Thesis, July 2022

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: elliptic curves, reduction, torsion subgroup

Let E be an elliptic curve defined over a number field K with ring of integers R.
We consider the set S of all the orders of reductions of E modulo the primes of R.
Given an integer m> 1, one may ask how many residue classes modulo m have an
intersection of positive density with S. Using results of Serre and Katz, we show
that there are at least two such residue classes; except for explicit families of elliptic
curves and corresponding values of m. We then describe this exceptional set of
elliptic curves and list the values of m when K is of degree at most 3; or K is Galois
of degree 4.

We also consider the following divisibility question on orders of elliptic surfaces over
finite fields. Given an integer m≥ 2 and a finite field k, is there an elliptic curve Et
over k[t] such that for all k-rational values of t the order of Et(k) is divisible by m ?
We suggest a method to construct such elliptic curves. Consequently, when m= 3,
we provide two such elliptic curves over k[t] whenever k is of prime order congruent
to 1 mod 3.

Finally, we discuss how the growth of the order of the torsion subgroup of an elliptic
curve E over K after a base change is linked to the divisibility of the orders of
reductions of E modulo the primes of R. In particular, we provide examples of
elliptic curves over the rational field for which we can list all the possible congruence
classes of the orders of the reductions modulo a certain integer m≥ 2; together with
the density of appearance of these congruence classes.
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ÖZET

ARİTMETİK DİZİDE ELİPTİK EĞRİLERİN İNDİRGEMESİNİN MERTEBESİ

ANTIGONA PAJAZITI

Matematik, Yüksek Lisans Tezi, Temmuz 2022

Tez Danışmanı: Assoc. Prof. Mohammad Sadek

Anahtar Kelimeler: eliptik eğri, indirgeme, burulma alt grubu

E, tamsayı halkası R olan bir sayı cismi K üzerinde tanımlanan bir eliptik eğri olsun.
S’yi, R’nin E-modülo asallarının indirgemelerinin tümünün eleman sayısı olarak ele
alıyoruz. Bir m> 1 tamsayı verildiğinde, modülo m’nin kaç tane rezidü sınıfının S ile
pozitif yoğunluğun kesişimine sahip olduğu sorulabilir. Serre ve Katz’ın sonuçlarını
kullanarak, eliptik eğrilerin belirli aileleri ve karşılık gelen m değerleri hariç tutarak
bu tür iki rezidü sınıfın olduğunu gösteriyoruz. Daha sonra bu istisnai eliptik eğriler
kümesini tanımlarız ve K derecesi en fazla 3 veya K, 4. dereceden Galois olduğunda
m’nin değerlerini listeleriz.

Ayrıca, sonlu cisimler üzerindeki eliptik yüzeylerin eleman sayıları hakkında aşağı-
daki bölünebilirlik sorusunu ele alıyoruz. Bir m ≥ 2 tamsayısı ve sonlu bir k cismi
verildiğinde, t’nin tüm k-rasyonel değerleri için Et(k) kümesinin eleman sayının m’ye
bölünebileceği şekilde k[t] üzerinde bir Et eliptik eğrisi var mıdır? Bu tür eliptik
eğriler oluşturmak için bir metot öneriyoruz. Sonuç olarak, m = 3 olduğunda; k, 3
modülünde 1’e kongruent asal mertebeden olduğunda, k[t] üzerinde böyle iki eliptik
eğri elde ederiz.

Son olarak, R’nin E-modülo asallarının indirgemelerinin eleman sayılarının
bölünebilmeleriyle ilişkili olan bir taban değişikliğinden sonra, K üzerindeki bir E
eliptik eğrisinin burulmalı altgruplarının eleman sayılarının büyümesini ele alacağız.
Özellikle, belirli bir m≥ 2 tamsayının modulo indirgeme eleman sayılarının tüm olası
denklik sınıflarını listeleyebildiğimiz rasyonel cisim üzerindeki eliptik eğri örneklerini
denklik sınıflarının görünüm yoğunluğu ile birlikte sunuyoruz.
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1. Introduction

Let E be an elliptic curve defined over a number field K with ring of integers R.
Elliptic curves can be represented by a Weierstrass equation of the form

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

with a1, ...,a6 ∈ K together with the point at infinity O. Elliptic curves have a
group structure and we can describe the group law geometrically using the chord
and tangent process. Let E(K) = {(x,y) ∈K2 : y2 +a1xy+a3y = x3 +a2x2 +a4x+
a6} ∪ {O} be the set of K- rational points of E. We call E(K) the Mordell-Weill
group of E. Moreover, E(K) is a finitely generated group, see [Theorem 1,[23]].
That is we can write, E(K) ∼= Zr ×E(K)tors, where r ≥ 0 is the Mordell-Weil rank
of E and E(K)tors is the torsion subgroup of the elliptic curve E.

The cardinality of the torsion subgroup of an elliptic curve E is finite. Merel in
[22], showed that the possibilities of torsion subgroups for an elliptic curve over any
number field are finite. Then the complete classification of possible torsion subgroups
for an elliptic curve E defined over Q was given by Mazur in [20]. Similarly, for an
elliptic curve defined over a quadratic field the complete classification of possible
torsion subgroups for E was given by Kenku and Momose in [17], and for an elliptic
curve defined over a cubic field in [5], by Derickx, Etropoloski, Morrow, Zuerick-
Brown and Van Hoeij. Finally, for an elliptic curve defined over a quartic Galois
field the complete classification of possible torsion subgroups for E was given by
Chou in [2].

Let p be a prime ideal in R with norm N(p) = q = pr, p is a prime and r ≥ 1 and, kp
the residue field of K at p. We denote the reduction of the elliptic curve E modulo
p by Ẽ. Now, if Ẽ is nonsingular then it is an elliptic curve, otherwise it has a
singular point which can be a node or a cusp. If Ẽ has a node we say that E has
bad multiplicative reduction at the prime p, if Ẽ has a cusp then E has bad additive
reduction at the prime p. One important quantity that we associate to the elliptic
curve Ẽ is the number of its rational points. We have that #Ẽ(kp) = 1+ q−ap(E).
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We call by ap(E) the trace of Frobenius of E at p. Hasse’s theorem, [[32], Chapter
5, Theorem 1.1] implies that, −2√

q ≤ ap(E) ≤ 2√
q.

Over a fixed finite field kp, Waterhouse in [Theorem 2.1, [34]] provides necessary and
sufficient conditions under which an element in the interval [−2√

q,2√
q] appears as

the trace of Frobenius for an elliptic curve E. Now, fix an elliptic curve E defined
over a number field K and an integer n. Can we have infinitely many primes p such
that the trace of Frobenius of E modulo p is n? If so, what is the density of such
primes?

We say that an elliptic curve E has complex multiplication if its endomorphism ring
End(E) does not equal Z. In [6], Deuring showed that for all elliptic curves over
Q with complex multiplication, ap(E) = 0 for primes p of density 1

2 . Furthermore,
in [15], Ji and Chin showed that for elliptic curves defined over Q with complex
multiplication by an imaginary quadratic field L of class number 1, ap(E) = r ̸= 0,
for specific nonzero integer r if and only if the prime p can be represented by a
quadratic polynomial of the form p= ax2 + bx+ c for some a,b,c ∈ Z. In particular,
for the integer 0 the case of elliptic curves over Q without complex multiplication,
was treated by Elkies in [25]. He showed that for elliptic curves over Q without
complex multiplication, ap(E) = 0 for infinitely many primes p. Moreover, in [26],
he extended his result to any elliptic curve E over any real number field.

In Chapter 2, we approach the question above using a different method. We inves-
tigate the possible values of congruence classes of #Ẽ(kp) modulo a fixed integer
m≥ 2. That is, we ask the following question

Question 1.1. Let m≥ 2 and β a non-negative integer. Does there exist an elliptic
curve E defined over a number field K such that #Ẽ(kp) ≡ β modm for almost all
primes p?

According to a result of Serre on the congruence classes of #Ẽ(kp) modm, for
some integer m, it follows that, if #Ẽ(kp) ≡ β modm holds for almost all primes
p, then β ≡ 0 modm, see, [[29], Proposition 2.2] for elliptic curves over Q and [[12],
Theorem 2.3] for elliptic curves defined over a number field K. We denote by Sd the
set Sd = {m : there is an elliptic curve E/K, where [K : Q] = d and m|#E(K)tors}.
Then using a result of Katz, see, [Theorem 2, [16]], in Chapter 3, Theorem 3.16, we
describe the values of m explicitly when K is of degree at most 3, or K is Galois
of degree 4. In particular, we show that the list of these m’s is finite and it only
depends on d.

Theorem 1.2. Let m ≥ 2 be an integer and K be a number field with [K : Q] = d.
Then there exists an elliptic curve E defined over K such that #Ẽ(kp) ≡ 0 modm
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for all the primes of good reduction if and only if m ∈ Sd where,

(a) S1 = {2,3,4,5,6,7,8,9,10,12,14,16}, if K = Q,

(b) S2 = {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,24}, if K is a quadratic
field,

(c) S3 = {2,3,4,5,6,7,8,9,10,11,12,13,15,18,20,21,24,28}, if K is a cubic field,

(d) S4 = {2,3,4,5,6,7,8,9,10,12,13,15,20,21,22,24,25,32,36}, if K is a quartic
Galois field.

We then observe that if the elliptic curve E/K does not satisfy one of the following
conditions:

(i) #Ẽ(kp) ≡ 0 modm for all primes of good reduction,

(ii) the integer m is not in Sd,

then there are at least two possible values βi modm such that #Ẽ(kp) ≡ βi modm
for primes p of positive density. This result can be found as Theorem 3.24 in Chapter
3.

The results above are provided for elliptic curves with good reduction for almost all
primes p. One may explore the possiblity that the order of the reduction of an elliptic
curve E is divisible by a certain integer m modulo all primes p. If an elliptic curve E
has good reduction at every prime p, we say that E has good reduction everywhere.
By [[32], Exercise 8.15], it follows that there is no elliptic curve E defined over Q
with everywhere good reduction. However, this is not always true when we work
over finite extensions of Q. In Chapter 3, Section 3.1, we prove the existence of
an elliptic curve satisfying #Ẽ(kp) ≡ 0 modm for all primes p. Moreover, for the
case of elliptic curves defined over Q, we show that m≤ 5. This result can be found
in Section 3.1 as Theorem 3.29. Furthermore, we present examples of families of
elliptic curves with non-trivial torsion subgroup for which such an integer m ≥ 2
exists and other examples for which no such integer m exists.

Above we mentioned that the classification of possible torsion subgroups of E over Q,
was given by Mazur in [20]. Moreover, in [18], Kubert gave a parametrization of all
elliptic curves over Q with a certain torsion subgroup. Similarly, we mentioned that
a complete classification of possible torsion subgroups of E over a quadratic number
field K, was given by Kenku and Momose in [17]. Then, in [30], Rabarison provided
the parametrization of all elliptic curves over K with a certain torsion subgroup.
For all primes of good reduction such that p ∤ k(9k+ 4), in [4], Kim, Koo and Park
exhibited a family of elliptic curves given by E : y2 = x3 − (6k+3)x− (3k2 +6k+2)
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over a finite field Fp, such that #E(Fp) ≡ 0 mod 3. For any prime p, in Chapter
4, Theorem 4.3, we generalize the result of Kim, Koo and Park to obtain families
of elliptic curves of the form EA,B : y2 = x3 +Ax+B over a finite field kp such that
#E(kp) ≡ 0 mod p for some prime p.

Finally, let E(Q)tors be the torsion subgroup of an elliptic curve defined over Q. In
[Theorem 2, [8]], E. G. Jimenez and J. M. Tornero give the possible torsion subgroups
of E that appear when we change the base from Q to a quadratic extension K.
In [24], F. Najman gives a bound on the number of quadratic fields K such that
E(Q)tors ̸= E(K)tors by counting the possible number of the torsion subgroups of
quadratic twists Ed of the elliptic curve E. Moreover, in [[9], Theorem 2], by fixing
an elliptic curve E, E. G. Jimenez and J. M. Tornero produce the exact number of
possible quadratic fields K such that E(Q)tors ̸= E(K)tors. Then in [[9], Theorem
3], they provide the list of torsion subgroups E(K)tors that appear for a fixed elliptic
curve E depending on E(Q)tors.

Using these results, in Chapter 5, we count all the possible congruence classes that
can appear for #E(Fp) such that E(Q)tors ̸=E(K)tors. This can be found in Theo-
rem 5.10 in Chapter 5. In particular, we show that the growth of torsion subgroup of
an elliptic curve over a number field K has a close link with the congruence classes
of the order of the reduction of this elliptic curve. Moreover, we provide explicit ex-
amples of families of elliptic curves, and integers m such that #Ẽ(kp) ≡ βi modm,
i= 1, ..., ℓ with 2 ≤ ℓ≤ 4 for primes of positive density.
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2. Elliptic Curves

Let K be a perfect field. An elliptic curve is a non-singular abelian variety of
dimension 1 that has a K-rational point O = (0 : 1 : 0) called the point at infinity.
Any elliptic curve can be expressed explicitly by a Weierstrass equation of the form

E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

with a1, ...,a6 ∈ K together with the point O. We say E is defined over K and we
write E/K.

In the case of charK ̸= 2,3 we obtain a simpler form of Weierstrass equation of E,

E : y2 = x3 +Ax+B

where A,B ∈ K. We define ∆(E) = −16(4A3 + 27B2) to be the discriminant of
the latter equation. The fact that elliptic curve E is non-singular is equivalent to
∆(E) ̸= 0.

Remark 2.1. The above Weierstrass equation is not unique. We preserve this form
of the equation by applying the following changes of variables,

y = u3y′ and x= u2x′ for u ∈K∗.

That is, A= u4A′ and B = u6B′.

Throughout the thesis, we will be dealing with fields of characteristic different from
2 and 3. Therefore, we will be using the short Weierstrass equation of an elliptic
curve.

Elliptic curves possess a group structure. We can describe the group law geomet-
rically using the chord and tangent process. Let P1,P2 be two distinct points on
the elliptic curve E. Let L be the line passing through P1,P2. Bézout Theorem
implies the existence of a third intersection point between E and L, say, P3. Then
the reflection of P3 about the x-axis is P1 ⊕P2, see figure 1. In case of P1 = P2 then
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the line L is the tangent to E at P1, and the third intersection point is the point at
infinity. It is clear that the group law on E is abelian.

P1
P2

P3

P1 ⊕P2

Figure 1: y2 = x3 +Ax+B, A,B ∈ Q.

Let E(K) denote the set of K- rational points of E,

E(K) = {(x,y) ∈K2 : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6}∪{O}

Remark 2.2. The set E(K) is a subgroup of the elliptic curve E together with the
binary operation ⊕. We call E(K) the Mordell-Weil group of E.

Theorem 2.3 (Mordell-Weil). ([19],Theorem 1) Let A be an abelian variety over
a number field K, the group A(K) of K-rational points of A is a finitely-generated
abelian group.

When K = Q, the theorem is due Mordell [23]. For arbitrary elliptic curve over
number fields, it follows from Weil [35].

Most of all, we have the following corollary,

Corollary 2.4. We can find a non-negative integer r such that

E(K) ∼= Zr ×E(K)tors

where r is the Mordell-Weil the rank of E(K), E(K)tors is the torsion subgroup of
the elliptic curve E and the cardinality of E(K)tors is finite.
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2.1 Torsion Subgroup

The torsion subgroup of an elliptic curve E defined over a number field K, E(K)tors,
consists of all points in E that have finite order.

Definition 2.5. Let P = (x,y) be a rational point on the elliptic curve E defined
over K. We say that P has finite order n if and only if nP = O. If this is the case
we call P a n-torsion point. We denote the set of all n-torsion points by E[n].

To find what the coordinates of P can be, we need to examine some polynomials
called division polynomials of E.

Let E : y2 = x3 +ax+b be an elliptic curve defined over K. The division polynomials
of E are:

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 +6ax2 +12bx−a2,

ψ4 = 4y(x6 +5ax4 +20bx3 −5a2x2 −4abx−8b2 −a3),
...

ψ2m+1 = ψm+2ψ3
m−ψm−1ψ3

m+1 for m≥ 2,

ψ2m =
(
ψm
2y

)
· (ψm+2ψ2

m−1 −ψm−2ψ2
m+1) for m≥ 3.

All the polynomials above are defined in Z[x,y,a,b].

In particular, P is an n-torsion point if and only if the nth division polynomial of E
vanishes when evaluated at P .

Example 2.6. Let E : y2 = x3 +4 be an elliptic curve defined over Q. We calculate
the third division polynomial of E, ψ3 = x(x3 + 16). Then it follows that (0,0) is a
point of order 3 on E.

The complete classification of all torsion subgroups of an elliptic curve E over any
arbitrary number field K is still a working problem. Given any number field K

and an elliptic curve E defined over K, L. Merel in [22] proved that #E(K)tors
has a uniform bound depending on the degree of the number field K. That is, the
possibilities of torsion subgroups for an elliptic curve over any number field are finite.
Namely,
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Theorem 2.7. ([22], Merel’s Theorem) For every integer d≥ 1, there is a constant
N(d) such that for all number fields K with [K : Q] = d and all elliptic curves E/K,

|E(K)tors| ≤N(d)

We have a complete classification of possible torsion subgroups for a given elliptic
curve E/K when K = Q, K is a quadratic field, a cubic number field or a Galois
quartic field.

Theorem 2.8. [Mazur, [20], [21]]Let E be an elliptic curve defined over Q. Then
E(Q)tors is isomorphic to one of the following 15 groups:

Z/mZ where 1 ≤m≤ 12,m ̸= 11
Z/2Z×Z/2mZ where 1 ≤m≤ 4

Theorem 2.9. [M. A. Kenku, F. Momose, [17]] The torsion subgroup of an elliptic
curve defined over a quadratic field is isomorphic to one of the following 26 groups:

Z/mZ where 1 ≤m≤ 18,m ̸= 17
Z/2Z×Z/2mZ where 1 ≤m≤ 6
Z/3Z×Z/3mZ where m= 1,2

Z/4Z×Z/4Z

Theorem 2.10. [Derickx, Etropoloski, Morrow, Zuerick-Brown and Van Hoeij, [5]]
The torsion subgroup of an elliptic curve E defined over a cubic field K is isomorphic
to one of the following 27 groups:

Z/mZ where m= 1,2, ...,18,20,21
Z/2Z×Z/2mZ where 1 ≤m≤ 7.

Theorem 2.11. [Chou,[2]] The torsion subgroup of an elliptic curve over a quartic
Galois field is isomorphic to one of the following 27 groups:

Z/mZ where m= 1,2, ...,16,m ̸= 11,14
Z/2Z×Z/2mZ where m= 1,2, ..,6,8

Z/3Z×Z/3mZ where m= 1,2
Z/4Z×Z/4mZ where m= 1,2

Z/5Z×Z/5Z
Z/6Z×Z/6Z
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2.2 Elliptic Curves over Finite Fields

Let K be a number field, R be the ring of integers of K, and let p ∈ R be a prime
ideal with norm N(p) = q, where q = pr with p a prime and r ≥ 1. We denote by kp
the residue field of K at p.

Let E be an elliptic curve defined over the finite field kp. It is clear that E(kp) has
finite order. This follows since the number of the pairs (x,y) with x,y ∈ kp is finite.

One of the most important quantities that we associate to the elliptic curve E is
the cardinality of the group E(kp). That is, its number of rational points. Hasse
provides a bound for the number of rational points of E/kp. Moreover,

Theorem 2.12 (Hasse). ([32], Chapter 5, Theorem 1.1) Let E be an elliptic curve
defined over a finite field kp. Then,

|#E(kp)− q−1| ≤ 2√
q.

Set ap(E) := #E(kp) − q− 1. ap(E) is called the trace of Frobenius. By Hasse’s
theorem −2√

q ≤ ap(E) ≤ 2√
q.

Let E be an elliptic curve defined over K. We denote the reduction of E modulo
p by Ẽ/kp. The rational curve Ẽ/kp will be an elliptic curve provided there are no
singular points. That is Ẽ/kp is an elliptic curve if and only if ∆(E) ̸≡ 0 (modp).

Definition 2.13. Let E be an elliptic curve defined over a number field K. A
Weierstrass equation for E is called a minimal Weierstrass equation for E at prime
p if the valuation of the discriminant ∆(E) at the prime p is minimal.

All primes that divide the minimal discriminant ∆(E) are called bad primes of E,
otherwise E is said to have good reduction. Note that, there are finitely many bad
primes p.

We give a classification for the reduction Ẽ of E over a finite field kp depending on
the reduction modulo p.

Let charkp ̸= 2,3 and let Ẽ : y2 = x3 + Ãx+ B̃ with Ã, B̃ ∈ kp.

(a) If Ẽ is non-singular then it is an elliptic curve. In this case, we say E has good
reduction at the prime p.

(b) If Ẽ has a node then E has bad multiplicative reduction at the prime p.
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(c) If Ẽ has a cusp then E has bad additive reduction at the prime p.

There are two types of bad multiplicative reduction, split and non-split. If the slopes
of the tangent lines at the node belong to kp then we say E has split reduction,
otherwise it is said to have non-split reduction.

Moreover, the order of Ẽ(kp), where p is a bad prime is, [[32],Chapter 3, Exercise
3.5]:

#Ẽ(kp) =


q, if E has split multiplicative reduction mod p

q+2, if E has non-split multiplicative reduction mod p

q+1, if E has additive reduction mod p

Let E/kp be an elliptic curve. It is clear that all points on E/kp are torsion points.
Furthermore,

Proposition 2.14. [[32], Chapter 8, Proposition 3.1, Application 3.2] Let E/K be
an elliptic curve defined over a number field K. Let n ≥ 1 be an integer that is
relatively prime to charkp. Assume that the reduction Ẽ/kp is nonsingular. Then
the reduction map

E(K)[n] → Ẽ(kp)

is injective. E(K)[n] is the set of all points of order n in E(K).

This proposition helps us analyse all torsion points of E(K). It also provides a
method for finding the torsion subgroup of E.

Example 2.15. Let E : y2 +y = x3 −x+1 be an elliptic curve defined over Q, The
minimal discriminant is ∆(E) = −13 · 47. Ẽ/Fp is an elliptic curve for p ̸= 13,47.
That is, Ẽ/F2 is an elliptic curve since 2 ̸ |∆(E). Then it follows that Ẽ(F2) = {O}.
By Proposition 2.14,

E(Q)[n] → Ẽ(F2) = {O}

as long as gcd(2,n) = 1. Also, E(Q)[2] = {O}. Therefore, E(Q)tors = {O}.

The following then describes the group structure of an elliptic curve E/kp.

Theorem 2.16. Let E/kp be an elliptic curve. Then E(kp) is isomorphic to one of
the following:

Z/mZ,

Z/mZ×Z/nZ with m|n.

10



2.3 Isogeny

We saw that elliptic curves own a group structure with respect to addition. One
important point of elliptic curves is the point at infinity O, the zero element of the
group E(K). So, for a further study of the structure of the group we are interested
in maps that preserve the group law together with the point at infinity.

Definition 2.17. Let E1 and E2 be two elliptic curves defined over a number field
K. A non-zero morphism Φ from E1 to E2 such that Φ(OE1) = OE2 is called an
isogeny.

The sum of two isogenies ϕ and ρ is defined as follows,

(ϕ+ρ)(P ) = ϕ(P )+ρ(P ).

The multiplication of two isogenies ϕ and ρ is their composition,

(ϕρ)(P ) = ϕ(ρ(P )).

The isogenies between elliptic curves form groups. We denote two of the correspond-
ing groups of isogenies of E as follows,

(a) Hom(E1,E2) = {isogenies E1 →E2} is a group with respect to addition. The
group Hom(E1,E2) is called the homomorphism group of E.

(b) End(E) = Hom(E,E) is a ring with respect to addition and composition. The
ring End(E) is called the endomorphism ring of E.

Moreover, the following theorem says that all isogenies are homomorphisms.

Theorem 2.18. Let ϕ : E1 → E2 be an isogeny. Then

ϕ(P +Q) = ϕ(P )+ϕ(Q)

for all P,Q ∈ E.

Let τP :E →E be a translation map defined as τP (Q) =Q+P and ψ :E →E be a
morphism. Then ϕ= τ−ψ(O) ◦ψ is an isogeny since ϕ(O) = O.

Theorem 2.19. Any morphism ψ : E → E is a composition of an isogeny and
translation map

ψ = τψ(O) ◦ϕ.

11



Isogenies provide a strong relation between two elliptic curves that are defined over
a finite field.

Theorem 2.20. [[32], Chapter 5, Exercise 5.4] Let E1 and E2 be elliptic curves
defined over Fp. If E1 and E2 are isogenous over Fp then

#E1(Fp) = #E2(Fp).

12



3. Order of reductions of elliptic curves for primes of good reduction

Let E be an elliptic curve defined over a number field K with ring of integers R, p
be a prime ideal in R and, kp be the residue field of K at p. Recall that ap(E) is the
trace of Frobenius of E at p. By Hasse’s theorem we have, −2√

q ≤ ap(E) ≤ 2√
q,

where N(p) = q = pr, p is a prime and r ≥ 1.

Theorem 3.1. ([34]) Let kp be a finite field. All the possible orders of E(kp) are
given by, #E(kp) = 1 + q− ap(E), with q = pr, r ≥ 1 and ap(E) is an integer with
|ap(E)| ≤ 2√

q satisfying one of the following conditions:

(a) (ap(E),p) = 1

(b) If r is even: ap(E) = ±2√
q

(c) If r is even and p ̸≡ 1 mod 3: ap(E) = ±√
q

(d) If r is odd and p= 2 or 3: ap(E) = ±p(n+1)/2

(e) If either r is odd or r is even, and p≡ 1 mod 4: ap(E) = 0

By Theorem 3.1, we have that, if we fix a finite field kp then we have necessary and
sufficient conditions under which an element in the interval [−2√

q,2√
q] is the trace

of Frobenius for an elliptic curve E defined over kp.

Now, one could ask:

Question 3.2. Given an elliptic curve E : y2 = x3 +Ax+B defined over a number
field K and an integer n, are there infinitely many primes p such that ap(E) = n?

Remark 3.3. Recall End(E) the endomorphism ring of the elliptic curve E. If
End(E) does not equal Z, then we say that E has complex multiplication.

If an elliptic curve over Q has complex multiplication then ap(E) = 0 for half of
primes p, [6]. Let E be an elliptic curve defined over the rationals with no complex
multiplication, Elkies in [25], showed that ap(E) = 0 for infinitely many primes p.
Also, in [26], he expanded his result to any elliptic curve E over any real number
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field.

Now, can we find an elliptic curve E defined over a number field K such that
ap(E) = n, where n is a nonzero integer, for infinitely many primes p?

For elliptic curves defined over Q with complex multiplication by an imaginary
quadratic field L of class number 1, in [15], Ji and Chin showed that for specific
nonzero integer n, ap(E) = n is satisfied if and only if p = ax2 + bx+ c for some
a,b,c ∈ Z. Therefore, if the following conjecture of Hardy and Littlewood on primes
being represented by quadratic polynomials, holds true, then the answer to Question
3.2 for these curves is affirmative.

Conjecture 3.4. (Hardy-Littlewood conjecture)([11]) Let a,b and c be integers such
that gcd(a,b,c) = 1. Assume that a+b and c are not both even, and that D= b2 −4ac
is not a square. There are infinitely many primes of the form at2 + bt+ c.

Example 3.5. [15] Let E : y2 = x3 +x be an elliptic curve defined over Q. For some
t ∈ Z and a prime p,

ap(E) = 2 if and only if p= t2 +1

In particular, there are infinitely many primes p of the form t2 + 1 if and only if
ap(E) = 2 for infinitely many primes.

We choose a different approach to this question. Instead of dealing with the exact
value of ap(E), we investigate the congruence classes of ap(E).

Since there is a linear relation between ap(E) and #E(kp), we start by looking
at the congruence classes of #E(kp). Mainly, if we fix an integer, say m, and a
congruence class β modm does there exist an elliptic curve E/K such that

#Ẽ(kp) ≡ β modm

for infinitely many primes p? If so, what is the density of such primes?

By density of primes we mean,

Definition 3.6. Let P be the set of prime ideals p ∈R, and let S ⊆ P. The density
of S is

δ(S) = lim
x→∞

#{p ∈ S :N(p) ≤ x}
#{p ∈ P :N(p) ≤ x}

Moreover, it is valid to ask the following question,

Question 3.7. Let m≥ 2 and β a non-negative integer. Does there exist an elliptic
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curve E defined over a number field K such that #Ẽ(kp) ≡ β modm for almost all
primes p?

We recall a result of Serre on the congruence classes of the reduction group of an
elliptic curve E defined over a number field K modulo a positive integer m. The
following was proved by Serre for elliptic curves over Q in [[29], Proposition 2.2].

Theorem 3.8. ([12], Theorem 2.3) Let m,β ∈Z and m> 1. Given an elliptic curve
E defined over a number field K the following two conditions are equivalent:

(a) #Ẽ(kp) ≡ β modm for almost all primes p ∈R.

(b) 1 + det(σ) − Tr(σ) ≡ β modm for all σ ∈ G(E,m), where G(E,m) ⊂
GL(2,Z/mZ) is the subgroup defined by the action of the absolute Galois group
Gal(K/K) on E[m], the set of m-torsion points of E.

Corollary 3.9. If there exists an elliptic curve E defined over a number field K

satisfying the conditions in Theorem 3.8, then m|β.

Proof. By applying σ = I2 =
( 1 0

0 1

)
in Theorem 3.8, we have that m|β .

Let m > 1 and β a non-negative integer, let E be an elliptic curve defined over
a number field K. According to Theorem 3.8 and Corollary 3.9, if #Ẽ(kp) ≡ β

modm for almost all primes p, then β ≡ 0 modm.

Now, we ask what the possible values of such an m are. To do so, we recall a result
of Katz.

Theorem 3.10. ([16], Theorem 2) Let E be an elliptic curve over number a field
K, and m≥ 2 an integer. For each prime p of K at which E has good reduction let
#Ẽ(kp) ≡ 0 modm for almost all primes p, then there exists a K-isogenous elliptic
curve E′ over K for which #E′(K)tors ≡ 0 modm.

Remark 3.11. Let E1 and E2 be elliptic curves defined over a number field K. If
E1 and E2 are isogenous over K it follows that they have the same primes of good
reduction and bad reduction, [[33], Chapter 4, Exercise 4.40]

Theorem 3.12. Let E be an elliptic curve defind over a number field K. One has
#Ẽ(kp) ≡ β modm for almost all primes p if and only if E is K-isogenous to an
elliptic curve E′, where #E′(K)tors ≡ β modm and in that case β ≡ 0 modm.

Proof. Let E be an elliptic curve defind over a number field K such that #Ẽ(kp) ≡ β

modm for almost all primes p then it follows by Theorem 3.8 and Corollary 3.9,
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that β ≡ 0 modm. Then by Theorem 3.10 there exists an elliptic curve E′ is K-
isogenous to E and #E′(K)tors ≡ β modm.

Conversely, let E′ be an elliptic curve K-isogenous to E and #E′(K)tors ≡ β

modm, where β ≡ 0 modm. Proposition 2.14 implies that, E′(K)tors is embedded
in E′(kp). Hence, #Ẽ(kp) ≡ β modm.

Recall Merel’s Theorems,

Theorem 3.13. ([22], Theorem 1) For every integer d≥ 1, there is a constant N(d)
such that for all number fields K with [K : Q] = d and all elliptic curves E/K,

|E(K)tors| ≤N(d).

Theorem 3.14. ([22], Theorem 2) Let E be an elliptic curve over a number field
K such that [K : Q] = d where d > 1. Let p be a prime number. If E(K) has a p

torsion point then p < d3d2.

This bound was improved by Oesterle in [27], to be (3d/2 +1)2

Theorem 3.15. Let E be an elliptic curve over a number field K such that
[K : Q] = d where d > 1. Assume that E satisfies #Ẽ(kp) ≡ β (mod m) for almost
all primes p. Then

(a) β ≡ 0 modm,

(b) there is a constant B(d) such that |m|<B(d),

(c) if a prime p divides m, then p < (3d/2 +1)2.

Proof. The proof of (a) follows by Theorem 3.8 and Corollary 3.9.

The proof of (b) it follows by Theorem 3.12 and Theorem 3.13.

The proof of (c) follows by Theorem 3.12 and Theorem 3.14 together with the
improved bound on the prime p given by Oesterle in [27].

Moreover, in the following theorem we describe the list of the values of m when K

is of degree at most 3, or K is Galois of degree 4.

Let Sd = {m : there is an elliptic curve E/K, where [K :Q] = d and m|#E(K)tors}.

Theorem 3.16. Let m≥ 2 be an integer and K be a number field with [K : Q] = d.
Then there exists an elliptic curve E defined over K such that #Ẽ(kp) ≡ 0 modm
for all primes of good reduction if and only if m ∈ Sd where,
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(a) S1 = {2,3,4,5,6,7,8,9,10,12,14,16}, if K = Q,

(b) S2 = {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,24}, if K is a quadratic
field,

(c) S3 = {2,3,4,5,6,7,8,9,10,11,12,13,15,18,20,21,24,28}, if K is a cubic field,

(d) S4 = {2,3,4,5,6,7,8,9,10,12,13,15,20,21,22,24,25,32,36}, if K is a quartic
Galois field.

Proof. Proof of (b). Suppose that there exists an elliptic curve E defined over a
quadratic number field K such that #Ẽ(kp) ≡ 0 modm. Then by Theorem 3.15,
we have that the possible values for m are finite. Therefore, by Theorem 2.9
m ∈ {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,24}.

Conversely, let m ∈ S2 where 2 = [K : Q]. Then by the Theorem 2.9 each of the
above integers divides the order of the torsion subgroup E(K)tors of an elliptic curve
E. By Proposition 2.14, E(K)tors is embedded in Ẽ(kp) for for almost all primes p.
This implies that #Ẽ(kp) ≡ 0 modm for almost all primes p.

Proof of (a), (c) and (d) are similar.

Remark 3.17. Let f(x) = ax+ b with gcd(a,b) = 1. Dirichlet’s theorem in arith-
metic progression states that there are infinitely many primes represented by f(x).
That is for infinitely many primes p there is np ∈ Z such that f(np) = p. Moreover,
the density of such primes is 1

φ(b) . Can we put together a similar question in the
case of elliptic curves?

As a consequence of Theorem 3.12 and Theorem 3.16 we have the following result,

Corollary 3.18. Let f(x) =mx+ b with m,b ∈ Z. Let m> 1 be a positive integer.
Let E be an elliptic curve defined over a number field K and [K : Q] = d. The
following are equivalent:

(a) #Ẽ(kp) = f(xp) for some xp ∈ Z for almost all primes p.

(b) E is K-isogenous to an elliptic curve with non-trivial torsion over K.

In the latter case; b = 0 and m belongs to a finite set of integers Sd whose size
depends on d= [K : Q].

Proof. The proof follows by Theorem 3.12 and Theorem 3.16.

17



If E/K is an elliptic curve defined over a number field K such that #Ẽ(kp) ≡ 0
modm, then E is K-isogenous to an elliptic curve E′ with a nontrivial torsion. We
may ask what is E(K)tors?

Theorem 3.19. ([32], Chapter 6, Corollary 6.2) Any elliptic curve E defined over
a number field K is K-isogenous to finitely many elliptic curves defined over K.

In [1], the classification of all pairs (E(Q)tors,E′(Q)tors) where E and E′ are Q-
isogenous was done. Therefore, we can give an answer to the above question over
Q.

Example 3.20. Let E be an elliptic curve defined over the rational field Q such that
#Ẽ(Fp) ≡ 0 mod 5 for all primes p of good reduction. Then by Theorem 3.10 there
exists an elliptic curve E′ such that E′ is Q-isogenous to E and #E′(Q)tors ≡ 0
mod 5. So, by Theorem 2.8 on torsion subgroups of an elliptic curve over Q, it
follows that E′(Q)tors ∼= Z/5Z or Z/10Z. Then by Table 1 and Table 3 in [1],
E′(Q)tors ∼= Z/5Z implies E(Q)tors ∼= Z/1Z or Z/5Z. Also, if E′(Q)tors ∼= Z/10Z
then E(Q)tors ∼= Z/2Z or Z/10Z. So, the possibilities for E(Q) are Z/1Z, Z/2Z,
Z/5Z and Z/10Z.

We may ask the following question,

Question 3.21. Does there exists an integer, say n, such that ap(E) ̸= n?

Observation. Let E : y2 + y = x3 +x2 +x with E(Q)tors ∼= Z/3Z. Using Magma
we calculate the value of ap(E) for p≤ 500,

[ 0, 3, -1, 3, -4, -3, 0, 6, -4, 2, -6, -1, -3, 12, -6, -1, -4, 6, -7, 8, 12, 12, 8, 6, 14, -18,
-16, 6, 2, -15,-3, -13, 21, -10, 14, 20, -18, -18, -18, 2, 3, -4, 18, 11, 14, -10, 12, 5,
-21, 15, -10, 21, 0, 9, 24, -16, -19, 6, -13, -12, 20, -3, -10, 6, -28, 32, 21, 17, -6, 15,
8, -4, -34, 12, 15, -7, 12, -4, -12,8, -24, 2, -10, -3, 0,-37, 9, -31, -27, -12, 2, 12, 5]

We notice that ap(E) mod 3 does not equal 1 in the range above. More precisely,
the list above mod 3 is

[0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0,
2, 2, 2, 0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2,
0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2]

Then we conclude the following:

Corollary 3.22. Let E be an elliptic curve defined over a number field K with
#E(K)tors =m. Then ap(E) ̸≡ 1 modm for almost all primes p with p ̸ |m, where
N(p) = pr, r ≥ 1.
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Proof. Recall that #Ẽ(kp) = 1 +N(p) − ap(E), where N(p) = pr, r ≥ 1. Then
ap(E) ≡ pr +1 modm. Since gcd(p,m) = 1, we have that ap(E) ̸≡ 1 modm.

Similarly,

Corollary 3.23. Let E be an elliptic curve defined over a number field K. Let
#E(K)tors = 2k for some k. Then ap(E) is even for almost all primes p.

Proof. We have that #Ẽ(kp) = 1 +N(p) − ap(E), where N(p) = pr, r ≥ 1. Then
ap(E) ≡ pr + 1 mod 2k. Since (p,2k) = 1 for p ̸= 2, we have that ap(E) is even for
almost all primes.

Now, let E be an elliptic curve defined over a number field K and fix an integer
m > 1. Assume that E and m are not given as in Theorem 3.16. That is either
E is not K- isogenous to an elliptic curve E′ with nontrivial torsion or m is not a
divisor of the order of E′(K)tors. Then according to Theorem 3.8, Corollary 3.9 and
Theorem 3.10, there exist at least two possible congruence classes β1,β2 modm
such that #Ẽ(kp) ≡ βi modm for primes of density δi, where 0< δi < 1.

We summarize all of this in the following theorem,

Theorem 3.24. Let E be an elliptic curve over a number field K and m > 1 an
integer. Assume that either E is not K-isogenous to an elliptic curve with nontrivial
torsion or m is not a divisor of the order of the torsion subgroup of any K-isogenous
elliptic curve to E.

There are at least two possible values βi modm such that #Ẽ(kp) ≡ βi modm for
primes p of positive density.

Example 3.25. ([4]) Let E : y2 = x3 −12x−11 be an elliptic curve defined over Q.
E is Q-isogenous to an elliptic curve with torsion Z/6Z.

#Ẽ(Fp) =

0 mod 12 if p≡ 1,9,11,13,17,19 mod 20

6 mod 12 if p≡ 3,7 mod 20
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3.1 Order of reductions of elliptic curves for all primes

Definition 3.26. Let K be a number field and R be the ring of integers of K. Let
E be an elliptic curve defined over K. We say that E has good reduction everywhere
if E has good reduction at every prime p ∈R.

There is no elliptic curve E defined over the rational field Q that has everywhere
good reduction, [[32], Chapter 8, Exercise 8.15]. However, this is not the case when
we work over the finite extensions of Q.

Example 3.27. Let be an elliptic curve defined over K = Q(
√

6) by

E : y2 + 3(−5−2
√

6)+31
2 xy+(−5+2

√
6)2y = x3

The elliptic curve has discriminant ∆(E) = −186298002
√

6+456335045. The norm
of the discriminant is, N(∆(E)) = 1. Therefore, it has everywhere good reduction
over K

That is, if an elliptic curve E defined over a number field K has everywhere good
reduction and m|#E(K)tors, then it is easy to see that, #Ẽ(kp) ≡ 0 modm for all
primes p. In the previous section we were interested in elliptic curves E defined
over number field K such that #Ẽ(kp) ≡ 0 modm for allmost all primes. In what
follows, we will investigate elliptic curves E over K with #Ẽ(kp) ≡ 0 modm for all
primes p and some integer m.

In this case, another question arises,

Question 3.28. Let K be a number field. Does there exist an elliptic curve E

defined over a number field K such that #Ẽ(kp) ≡ 0 modm for all primes p?

Recall that,

Sd = {m : there is an elliptic curve E/K, where [K :Q] = d and m|#E(K)tors}, see
Theorem 3.16.

Theorem 3.29. Let K be a number field with [K : Q] = d. Let m> 1 be an integer,
and let p ∈ R a prime ideal with norm N(p) = q,q = pr, r ≥ 1, p is a prime. There
exists an elliptic curve E defined over K such that #Ẽ(kp) ≡ 0 modm for all primes
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p if and only if m ∈ Sd and m|mp,where

mp =


q, if E has split multiplicative reduction mod p

q+2, if E has non-split multiplicative reduction mod p

q+1, if E has additive reduction mod p

In particular, m≤ 5 over Q.

Proof. Let K be a number field. Suppose that there exists an elliptic curve E defined
over K such that #Ẽ(kp) ≡ 0 modm for all primes p. Then by Theorem 3.16 it
follows that m ∈ Sd and since m|#Ẽ(kp) for all primes p it follows m|mp.

Conversely, let m ∈ Sd and m|mp. Then together with Theorem 3.16 we have that
there exists an elliptic curve such that #Ẽ(kp) ≡ 0 modm for all primes p.

In particular over Q, if we have good reduction at prime 2 when we apply Hasse
bound we have, |#Ẽ(F2)| ≤ 5. Moreover, if we have bad reduction at the prime 2
than mp = 2,3 or 4. Thus, m≤ 5 over Q.

Example 3.30. The elliptic curve E : y2 +xy+ y = x3 −x2 − 199x+ 510 has even
reduction for every prime p.

We have, E(Q)tors ∼= Z/4Z. Using Magma we calculate the bad primes of E. The
only bad prime is 17. E has additive reduction at p= 17, then mp = 18. Therefore,
by Theorem 3.29 reduction of E is even for every prime p.

Example 3.31. The reduction of elliptic curve E : y2 = x3 + x2 − 333x− 3537 is
divisible by 3 for every prime p.

The torsion subgroup of E is E(Q)tors ∼= Z/3Z. Using Magma we calculate the bad
primes of E. The bad primes of E are 2, 3 and 5. E had additive reduction at both
primes 2 and 5, and split multiplicative reduction at prime 3. Then, m2 = 3, m3 = 3
and m5 = 6. Therefore, by Theorem 3.29 it follows that #Ẽ(Fp) ≡ 0 mod 3 for all
primes p.

Example 3.32. The elliptic curve E : y2 + xy = x3 − x2 − 1773x− 5270 satisfies
#Ẽ(Fp) ≡ 0 mod 4 for every prime p.

The torsion subgroup of E is E(Q)tors ∼= Z/2Z×Z/2Z. Using Magma we calculate
the bad primes of E. The bad primes of E are 3 and 7. E had additive reduction at
both primes 3 and 7. Then, m3 = 4, m7 = 8. Therefore, by Theorem 3.29 it follows
that #Ẽ(Fp) ≡ 0 mod 4 for all primes p.
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Example 3.33. Let E be an elliptic curve over K = Q(
√

33) by

E : y2 = x3 +96(−323 −1728)u2x−2(−323 −1728)2u3

with u= −462−84
√

33. The torsion subgroup of E is, E(K)tors ∼= Z/3Z. Moreover,
E has good reduction everywhere. Hence, #Ẽ(kp) ≡ 0 mod 3 for every prime ideal
p.

Example 3.34. Let E be an elliptic curve defined over K = Q(
√

33) by

E : y2 = x3 +(28296
√

33−162675)x+35441118−6168312
√

33.

E has torsion subgroup, E(K)tors ∼= Z/18Z. The bad places of E are at the prime
ideals (−1/2

√
33+5/2) and (−1/2

√
33−5/2). E has bad split multiplicative reduc-

tion at prime ideal (−1/2
√

33 + 5/2) and (−1/2
√

33 − 5/2), respectively. Norm of
these ideals is N(−1/2

√
33+5/2) =N(−1/2

√
33−5/2) = 2.

Thus, mpi = 2 for p1 = (−1/2
√

33 + 5/2) and p2 = (−1/2
√

33 − 5/2). Hence, by
Theorem 3.29, #Ẽ(kp) ≡ 0 mod 2 for every prime ideal p.

Example 3.35. Let E be an elliptic curve defined over K = Q(
√

6) by

E : y2 + 3(−5−2
√

6)+31
2 xy+(−5+2

√
6)2y = x3.

E(K)tors ∼=Z/6Z and E has good reduction everywhere. Then it follows #Ẽ(kp) ≡ 0
mod 6 for every prime p.

To investigate the primes of bad reduction for an elliptic curve E we associate to E
a quantity called the conductor of E. We denote the conductor of E by NE .

NE =
∏

p prime
pδp

The conductor exponent δp is given as follows,

δp =



0 if E is nonsingular,

1 if E has bad multiplicative reduction at p,

2 if E has bad additive reduction and p ̸= 2,3,

≥ 2 if E has additive reduction and p= 2,3

for δ2 and δ3 refer to [[32], Chapter 10].
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Corollary 3.36. All elliptic curves E with conductor 72 and 172, with a rational
point of order 2, have even reduction for all primes p.

Proof. In [Table 1, [3]] the elliptic curves E with conductor 72 have bad additive
reduction at the prime 7, and the elliptic curves with conductor 172 have bad additive
reduction at the prime 17. Then m7 = 8, m17 = 18, respectively. Together with the
fact that they posses a rational point of order 2, Theorem 3.29 implies that these
elliptic curves have even reduction for all primes p.

Moreover, there are exactly four such elliptic curves with conductor 72, four elliptic
curves with conductor 172. Cremona’s table, [[3], Table 1] gives the isogeny class
of these elliptic curves together with their conductor. In particular, the list of all
elliptic curves in Corollary 3.36 of conductor 72 are

y2 +xy = x3 −x2 −2x−1,

y2 +xy = x3 −x2 −37x−78,

y2 +xy = x3 −x2 −107x+552,

y2 +xy = x3 −x2 −1822x+30393,

whereas the list of elliptic curves in Corollary 3.36 with conductor 172 are:

y2 +xy+y = x3 −x2 −199x+510,

y2 +xy+y = x3 −x2 −1644x−24922,

y2 +xy+y = x3 −x2 −26209x−1626560,

y2 +xy+y = x3 −x2 −199x−68272.

Example 3.37. ([7]) Consider the set of all elliptic curves E defined over the
rationals Q with conductor NE = p2, 7 ≤ p ≤ 5000 such that |c6(E)| ≤ 25 × 106. In
this list there are exactly two elliptic curves #Ẽ(Fp) ≡ 0 mod 2 for every prime p.
These curves are,

y2 +xy = x3 −x2 −37x−78,

y2 −xy = x3 −x2 −2x−1

Corollary 3.38. Let E be an elliptic curve defined over Q with conductor NE =
3 × 2λ or NE = 9 × 2λ. There exists no integer d ≥ 2 such that d|#Ẽ(Fp) for every
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prime p.

Proof. In [28], Ogg showed that all of these curves have a rational point of order
2. The elliptic curves with conductor NE = 3×2λ have additive reduction at prime
2 and multiplicative reduction at prime 3. This implies that m2 = 3 and if E
has split multiplicative reduction at 3, we have m3 = 3 (m3 = 5 if E has non-split
multiplicative reduction at 3). By Theorem 3.29 it follows that there exists no
integer d≥ 2 such that d|#Ẽ(Fp) for every prime p.

Similarly, the elliptic curves with conductor NE = 9 × 2λ, have additive reduction
at primes 2 and 3. Then m2 = 3 and m3 = 4. Theorem 3.29 implies that there exists
no integer d≥ 2 such that d|#Ẽp(Fp) for every prime p.

Corollary 3.39. Let E be an elliptic curve defined over Q of conductor NE =
3l× 5m, l ≥ 2,m≥ 1, with a rational point of order 3. There exists no integer d≥ 2
such that d|#Ẽ(Fp) for every prime p.

Proof. In [[10], Table 2] there are 10 such elliptic curves with torsion subgroup
E(Q) ∼= Z/3Z. The elliptic curves with conductor NE = 3l×5m, l ≥ 2 have additive
reduction at the prime 3, that is m3 = 4. Six curves have additive reduction at the
prime 5, so, m5 = 6 and four curves have multiplicative reduction at the prime 5,
m5 = 5. Hence, by Theorem 3.29 there exists no integer d ≥ 2 such that d|#Ẽ(Fp)
for every prime p.
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4. Parametrization of Elliptic Curves over Finite Fields

Let E be an elliptic curve defined over Q. We recall that Mazur gave a com-
plete classification of the possible order of the torsion subgroup of an elliptic curve
E/Q, see Theorem 2.8. Namely, the order of the torsion subgroup lies in the set
{1,2,3,4,5,6,7,8,9,10,12,16}. In [18], Kubert gave a parametrization of all elliptic
curves with a torsion point of order n ∈ {1,2,3,4,5,6,7,8,9,10,12,16}.

Let E be an elliptic curve defined over a quadratic number field K. Recall that
Kenku and Momose gave a complete classification of the possible torsion subgroup
that appear for E/K, see Theorem 2.9. In [30], Rabarison gave the parametrization
of elliptic curves defined over a quadratic field with a certain torsion subgroup.

Now, let E be an elliptic curve defined over a finite field Fp.

Theorem 4.1 ([4], Kim, Koo and Park). Let p > 3 be a prime and k ∈ Z such that
k(9k+4) ̸≡ 0 mod p. Let E be an elliptic curve given by,

E : y2 = x3 − (6k+3)x−3k2 +6k+2.

Then #E(Fp) ≡ 0 mod 3.

In this chapter, we generalize Theorem 4.1 to obtain families of elliptic curves over
kp with #E(kp) ≡ 0 mod p for some prime p.

Let E1 and E2 be elliptic curves defined over Fp. Recall that, if E1 and E2 are
isogenous over Fp then

#E1(Fp) = #E2(Fp),

see [[32], Chapter 5, Exercise 5.4].

So, if an elliptic curve E is Q- isogenous to an elliptic curve E′ with a point of order
n. Then it follows that n|#Ẽ(Fp) for primes p of good reduction.

Furthermore, recall that a point P of an elliptic curve E has order n if and only if
the nth division polynomial of E vanishes when evaluated at P .
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Lemma 4.2. Let E : y2 = x3 +Ax+B be an elliptic curve defined over a finite field
kp. Let P be a point in E(kp) which is not a point at infinity. Then the following
are equivalent,

(a) P is a point of order n in E(kp),

(b) The nth division polynomial of E, ψn(P ) ≡ 0 mod p.

Recall that if E is an elliptic curve defined by y2 = x3 + ax+ b, then the division
polynomial ψm is a polynomial in Z[a,b,x], see [[32], exercise 3.7(a)].

Theorem 4.3. Let p ̸= 2 be a rational prime. Let K be a number field, with ring of
integers R, and p be a prime of K with charkp ̸= 2,3.

Fix T ∈ R. Let (A,B) be a kp-solution of the polynomial equation GT (a,b) ≡ 0
mod p, where

GT (a,b) = ψp(a,b,T ) ∈ kp[a,b].

If the following two conditions hold

1) 4A3 +27B2 ̸≡ 0 mod p, and

2) T 3 +AT +B ≡ z2
T mod p for some zT ∈ kp,

then the elliptic curve EA,B : y2 = x3 +Ax+B over kp satisfies #EA,B(kp) ≡ 0
mod p.

Proof. Condition 1) guarantees that EA,B is an elliptic curve over kp. Moreover
condition 2) implies that PT = (T,zT ) ∈EA,B(kp). Finally, the fact that GT (A,B) ≡
0 mod p together with Lemma 4.2 asserts that PT is a point of order p in EA,B(kp).

Corollary 4.4. For every prime p≡ 1 mod 3, the following elliptic curve over Fp[t]

Et : y2 = x3 +2tx− t2

3 + t+ 1
4

satisfies #Et(Fp) ≡ 0 mod 3 where (6t+1)(2t+3)3 ̸≡ 0 mod p.

Proof. We have that,

ψEt,3(x) = (x+1)
(
x3 −x2 +(4t+1)x− 4

3t
2
)
.

Then
(−1)3 +2t(−1)− t2

3 + t+ 1
4 = −1

12 (2t+3)2 ≡ z2
t mod p
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since p≡ 1 mod 3.

Therefore, by Theorem 4.3 it follows that Et : y2 = x3 + 2tx+ −t2
3 + t+ 1

4 satisfies
#Et(Fp) ≡ 0 mod 3 for all primes p of good reduction such that p≡ 1 mod 3.

Corollary 4.5. For every prime p≡ 1 mod 3, the following elliptic curve over Fp[t]

Et : y2 = x3 +6tx− t2

12 +108t+9 ·362

satisfies #Et(Fp) ≡ 0 mod 3 where 3(t+648)3(t+72) ̸≡ 0 mod p.

Proof. The proof is similar as in Corollary 3.4. We have that,

ψEt,3 = (x+36)
(
x3 −36x2 +(12t+1296)x− 1

3t
2
)

Also,

(−36)3 +6t(−36)− t2

12 +108t+9 ·362 = −1
12 (t+2334)2 ≡ z2

t mod p

since p≡ 1 mod 3.

Therefore, Theorem 4.3 implies that for all primes p of good reduction such that p≡ 1
mod 3, we have that Et : y2 = x3 + 6tx− ( t

2

12 − 108t− 9 · 362) satisfies #Et(Fp) ≡ 0
mod 3

Furthermore, the factorization of the elliptic curve Et : y2 = x3 + 6tx− ( t
2

12 − 108t−
9 ·362) in Corollary 3.5 for t= −558, −522, −360, −198, −162, 810 is as follows,

x3 −3348x−74547 = (x+33)(x2 −33x−2259)

x3 −3132x−67419 = (x+33)(x2 −33x−2043)

x3 −2160x−38016 = (x+24)(x2 −24x−1584)

x3 −1188x−12987 = (x−39)(x2 +39x+333)

x3 −972x−8019 = (x+9)(x2 −9x−891)

x3 +4860x+44469 = (x+9)(x2 −9x+4941)

Hence, any of the elliptic curves above has either one torsion point of order two or
4 torsion points of order two depending on their factorization modulo p. Therefore,
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for all primes p≡ 1 mod 3 such that p ∤ −3(t+648)3(t+72), it follows that 6 or 12
divide #Et(Fp), where t= −558, −522, −360, −198, −162, 810.
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5. The order of the reduction and base change

Let K be a quadratic number field with ring of integers R. Let p ∈ R be a prime
ideal in R and, kp be the residue field of K at p.

In Chapter 3, we showed that given an elliptic curve E defined over a number field
K such that the conditions of Theorem 3.24 hold, there are at least two possible
congruence classes βi modm such that #Ẽ(kp) ≡ βi modm for primes p of positive
density.

Now, in this chapter we will investigate what happens to the congruence classes of
the order of the reduction group #Ẽ(Fp) when we change the base field of E from
Q to a quadratic number field K.

Let E be an elliptic curve defined over Q with torsion subgroup E(Q)tors. We refer
to Theorem 2 in [8] to see the possible torsion subgroups of E that appear when we
change the base from Q to K, where [K : Q] = 2.

We notice that if E/Q is an elliptic curve with E(Q)tors ∼= Z/7Z,Z/9Z or Z/2Z×
Z/8Z, E(K)tors stays the same when we change base from Q to a quadratic number
field K.

We are interested in the cases where E(Q)tors ̸= E(K)tors. The following theorem
assures that there are finitely many such cases.

Theorem 5.1 ([14], Lemma 3.4). Let E be an elliptic curve defined over the ratio-
nals. Then there are finitely many quadratic extensions K of Q such that

E(Q)tors ̸= E(K)tors.

Recall, the division polynomials of an elliptic curve E : y2 = x3 +ax+ b,

ψ1 = 1,

ψ2 = 2y,
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ψ3 = 3x4 +6ax2 +12bx−a2,

ψ4 = 4y(x6 +5ax4 +20bx3 −5a2x2 −4abx−8b2 −a3),
...

ψ2m+1 = ψm+2ψ3
m−ψm−1ψ3

m+1 for m≥ 2,

ψ2m =
(
ψm
2y

)
· (ψm+2ψ2

m−1 −ψm−2ψ2
m+1) for m≥ 3.

All the polynomials above are defined in Z[x,y,a,b]. Moreover, we can treat all of
these polynomials in Z[x,a,b], see [[32], Chapter 3, Exercise 3.7(a)].

Recall that ψn(x) satisfies ψn(P ) = 0 for a point P of an elliptic curve E if and only
if P has order n.

The following example shows how the factors of the division polynomial ψn(x) may
be used to determine the possible number fields L such that E(Q)tors ̸= E(L)tors.

Example 5.2. Let E : y2 +xy = x3 − 34x− 217 be an elliptic curve defined over Q
with torsion subgroup E(Q) ∼= Z/2Z. The 4th division polynomial of E is,

ψE,4 = (x−20)
(
x− 31

4
)(
x+ 9

2
)
(x2 +8x+28)(x4 +16x3 +168x2 −296x+3667).

The 4-torsion points of E are all points (x,y) such that x is a root of the
division polynomial ψE,4. We have, the point (20,y) ∈ E(Q(

√
3)), therefore

E(Q(
√

3))tors ∼= Z/4Z, the point
(

31
4 ,y

)
∈ E(Q) and E(Q)tors ∼= Z/2Z, the point(

−9
2 ,y

)
∈E(Q(

√
−1)), so, E(Q(

√
−1))tors ∼= Z/4Z. Moreover, Q(

√
−3) is the split-

ting field of the polynomial x2 + 8x+ 28, therefore E(Q(
√

−3))tors ∼= Z/2Z×Z/2Z.
Finally the splitting field of the polynomial x4 + 16x3 + 168x2 − 296x+ 3667 is
Q(

√
−3, 4√−3) then E(Q(

√
−3, 4√−3))tors ∼= Z/2Z×Z/4Z

In particular, by Theorem 3 in [9], no other torsion subgroup can appear for E over
a quadratic extension different from the torsion subgroups above.

Definition 5.3. [[13], Chapter 5, Definition 5.38] Let K be a quadratic number field
with ring of integers R and p be a prime in K. We say that,

• p splits in K if (p) = p1p2 for p1 ̸= p2 two ideals of norm p.

• p is inert in K if (p) is a prime ideal in R of norm p2.

• p is ramified in K if (p) = p2 for some prime ideal p of norm p.

Remark 5.4. For a number field K, the primes p ̸= 2 in Q which ramify are those
dividing the discriminant of the integer ring R of K. Therefore, there are finitely
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many such primes.

Theorem 5.5. [[13], Chapter 5, Section 5.9] Consider K = Q(
√
d), where d is a

nonsquare. Let p ̸= 2 be a prime. Then,

(a) p splits in K if
(
d
p

)
= 1,

(b) p is inert in K if
(
d
p

)
= −1.

Let E be an elliptic curve defined over a number field L. Recall that,

#Ẽ(kp) = 1+N(p)−ap(E),

where ap(E) is the trace of Frobenius of E at p. By Hasse’s theorem we have,
|ap(E)| ≤ 2

√
N(p), where N(p) = pr, p is a prime and r ≥ 1.

Now, let E/Fq be an elliptic curve, where q = pr, p is a prime and r ≥ 1. For each
n≥ 1 let an = 1+ qn−#E(Fqn). Then the linear recurrence,

an+2(E) = a1(E)an+1(E)−pan(E), for all n≥ 0

where a0 = 2 and a1 = 1 + q− #E(Fq), provides a way to compute the trace of
Frobenius of E in extensions of Fq, [[32], Chapter 5, Exercise 5.13].

Moreover, for an elliptic curve E given by y2 = x3 +ax+b defined over Q, we denote
by Ed : dy2 = x3 +ax+ b its quadratic twist by a squarefree integer d.

Corollary 5.6 ([8], Corollary 4). Let E be an elliptic curve defined over Q, d an
square-free integer and K = (Q(

√
d)). If n is odd, then there exists an isomorphism

E(Q(
√
d))[n] ∼= E(Q)[n]⊕Ed(Q)[n].

Lemma 5.7. [[31], Proposition 3.21] Let E be an elliptic curve defined over a finite
field Fp and let Ed be a twist of E. Then

#E(Fp)+#Ed(Fp) = 2p+2.

In the following theorem, we compute the order of the reduction of an elliptic curve
when we change the base field from Q to Q(

√
d).

Theorem 5.8. Let E/Q be an elliptic curve. Let K = Q(
√
d) where d is a square

31



free integer, and p be a prime in K. Then,

#Ẽ(kp) =

#Ẽ(Fp) if p ̸= 2 splits in K

#Ẽ(Fp) ·#Ẽd(Fp) if p ̸= 2 is inert in K
.

Proof. Let p be a prime ideal K, and let p be a prime that splits in K. Then by
Definition 5.3, N(p) = p. Now, p = N(p) = #kp implies that kp ∼= Fp. Therefore,
#Ẽ(kp) = #Ẽ(Fp).

Let the prime p be inert in K. Then

ap(E) = a2
p−2p= (1+p−#Ẽ(Fp))2 −2p= 1+p2 −2(1+p)#Ẽ(Fp)+#Ẽ(Fp)2.

Hence,

#Ẽ(kp) = 1+p2 −ap(E) = 1+p2 − (1+p2 −2(1+p)#Ẽ(Fp)+#Ẽ(Fp)2)

= #Ẽ(Fp)(2(1+p)−#Ẽ(Fp)).

Then it follows by Lemma 5.7 that #Ẽ(kp) = #Ẽ(Fp) ·#Ẽd(Fp).

As a consequence of Theorem 5.8 we have the following Corollary.

Corollary 5.9. Let E/Q be an elliptic curve with torsion subgroup G = E(Q)tors.
Let H = E(K)tors, where [K : Q] = 2, such that H ̸=G and m= |H|. Then

#Ẽ(Fp) ≡ 0 modm

for all primes p of good reduction of E that split in K. In particular, the density of
primes such that #Ẽ(Fp) ≡ 0 modm is at least 1

2 .

Proof. It follows from Theorem 5.8 that for the primes that split in K, #Ẽ(kp) =
#Ẽ(Fp) where p is a prime lying above p. The result follows by noting that #Ẽ(kp) ≡
0 modm.

Let E/Q be an elliptic curve with torsion subgroup E(Q)tors. In [24], F. Najman
gives the possible orders of torsion subgroups of quadratic twist Ed of E in terms
of the order of the torsion subgroup E(Q)tors. Also in [[9], Theorem 2] Enrique
Gonzalez-Jimenez and Jose M. Tornero give the exact number of possible quadratic
fields K such that E(Q)tors ̸= E(K)tors for a fixed elliptic curve E defined over Q.
Moreover, they give the list of the possible torsion subgroups E(K)tors. Using these
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results, we classify the possible congruence classes that can appear for #Ẽ(Fp) given
that E(Q)tors ̸= E(K)tors.

Theorem 5.10. Let E be an elliptic curve defined over Q with E(Q)tors = G and
E(K)tors = H, for some [K : Q] = 2, such that G ̸= H. Let ℓ be a prime divisor of
|H|. Let p ̸= 2 be a prime of good reduction of E. Then

#Ẽ(Fp) ≡


0 mod ℓ if p splits in K

2p+2 mod ℓ if p is inert in K and ℓ | #Ẽd(Fp)

2p+2−#Ẽd(Fp) mod ℓ if p is inert in K and ℓ ∤ #Ẽd(Fp)

Proof. If the prime p splits in K then it follows by Theorem 5.8 that #Ẽ(Fp) ≡ 0
modm. If the prime p is inert in K then the result follows from Lemma 5.7.

In [Theorem 3, [9]] Enrique Gonzalez-Jimenez and Jose M. Tornero list all possible
torsion subgroups that can appear for E over a quadratic extension of Q. Moreover,
in [Table 1, [9]] they give examples for every possible situation. Referring to Table
1, we give some examples where we can list the possible congruence classes that
appear for an elliptic curve E with a given torsion subgroup E(Q)tors.

All elliptic curves in the following examples are represented with a minimal equation
of the form E : y2 +a1xy+a2y = x3 +a4x+a6.

Example 5.11. Let E : y2 + y = x3 −x2 + 217x− 282 be an elliptic curve defined
over Q with E(Q)tors = {0} and E(Q(

√
5))tors ∼= Z/3Z. The torsion subgroup of the

quadratic twist of E5 is E5(Q)tors ∼= Z/3Z. We have that, a prime p splits in Q(
√

5)
if p ≡ 1,4 mod 5, otherwise is inert. Then Theorem 5.10 implies that #Ẽ(Fp) ≡ 0
mod 3 for all primes p ≡ 1,4 mod 5. Furthermore, since 3 | #Ẽd(Fp), again by
Theorem 5.10 it follows that

#Ẽ(Fp) ≡ 0,1 mod 3 if p≡ 2,3 mod 5.

Therefore,

#Ẽ(Fp) ≡

0 mod 3 if p≡ 1,4 mod 5

0,1 mod 3 if p≡ 2,3 mod 5
.

Remark 5.12. One may see in the example above that #Ẽ(Fp) is divisible by 3
for primes of density at least 1/2. In addition, it follows from Theorem 3.24 that
#Ẽ(Fp) ≡ 1 mod 3 for primes p of positive density.

Example 5.13. Let E : y2 + y = x3 − x2 + 42x+ 443 be an elliptic curve defined
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over Q with E(Q)tors = {0} and E(Q(
√

5))tors ∼= Z/5Z. The torsion subgroup of
the quadratic twist of E5 is E5(Q)tors ∼= Z/5Z. Similarly as in Example 5.11, by
Theorem 5.10 it follows that,

#Ẽ(Fp) ≡


0 mod 5 if p≡ 1,4 mod 5

1 mod 5 if p≡ 2 mod 5

3 mod 5 if p≡ 3 mod 5

.

Remark 5.14. Notice that #Ẽ(Fp) ≡ 0 mod 5 for primes p of density 1
2 . In addi-

tion, we have that #Ẽ(Fp) ≡ 1 mod 5 and #Ẽ(Fp) ≡ 3 mod 5 for primes of density
1
4 .

Example 5.15. Let E : y2 = x3 −43x−166 be an elliptic curve defined over Q with
E(Q)tors = {0} and E(Q(

√
−1))tors ∼= Z/7Z. The torsion subgroup of the quadratic

twist of E−1 is E−1(Q)tors ∼= Z/7Z. We have that a prime p splits in Q(
√

−1) if
p≡ 1 mod 4, otherwise p is inert. Then similarly as in Example 5.11, by Theorem
5.8 it follows that,

#Ẽ(Fp) ≡

0 mod 7 if p≡ 1 mod 4

0,1,3,4,5,6 mod 7 if p≡ 3 mod 4
.

Remark 5.16. One may notice that in the example above, #Ẽ(Fp) ≡ 0 mod 7
for primes p of density at least 1

2 . Moreover, it follows by Theorem 3.24, that
#Ẽ(Fp) ≡ 1,3,4,5,6 mod 7 for primes p of positive density.

Example 5.17. Let E : y2 +xy = x3 −x2 − 123x− 667 be an elliptic curve defined
over Q with E(Q)tors = {0} and E(Q(

√
−3))tors ∼= Z/9Z. Also, the torsion subgroup

of the quadratic twist of E−3 is E−3(Q)tors ∼= Z/9Z. Moreover, a prime p splits in
Q(

√
−3) if p≡ 1 mod 3, otherwise p is inert. So, similarly as in example 5.11, by

Theorem 5.8 it follows,

#Ẽ(Fp) ≡

0 mod 9 if p≡ 1 mod 3

0,3,6 mod 9 if p≡ 2 mod 3
.

Remark 5.18. Notice that #Ẽ(Fp) is divisible by 9 for primes p of density at least
1
2 . Moreover, it follows by Theorem 3.24 that, #Ẽ(Fp) ≡ 3,6 mod 9 for primes p of
positive density.

Example 5.19. Let E : y2 +xy= x3 +x2 −1740x+22184 be an elliptic curve defined
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over Q with E(Q)tors ∼= Z/2Z and E(Q(
√

−7))tors ∼= Z/6Z. Moreover, the torsion
subgroup of the quadratic twist of E−7 is E−7(Q)tors ∼= Z/6Z. A prime p splits
in Q(

√
−7) if p ≡ 1,2,4 mod 7 otherwise p is inert. Then as in Example 5.11, it

follows by Theorem 5.10,

#Ẽ(Fp) ≡

0 mod 6 if p≡ 1,2,4 mod 7

0,4 mod 6 if p≡ 3,5,6 mod 7
.

Remark 5.20. One may see that #Ẽ(Fp) ≡ 0 mod 6 for primes p of density at
least 1

2 . Furthermore, it follows by Theorem 3.24, #Ẽ(Fp) ≡ 4 mod 6 for primes p
of positive density.

Example 5.21. Let E : y2 = x3 +20148x+586096 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/2Z and E(Q(

√
−6))tors ∼= Z/8Z. Also, the torsion subgroup

of the quadratic twist of E−6 is E−6(Q)tors ∼= Z/8Z. We have that, a prime p splits
in Q(

√
−6) if p ≡ 1,5,7,11 mod 24 otherwise p is inert. Therefore as in previous

examples, by Theorem 5.10 it follows that

#Ẽ(Fp) ≡

0 mod 8 if p≡ 1,5,7,11,19,23 mod 24

4 mod 8 if p≡ 13,17 mod 24
.

Remark 5.22. The congruence class #Ẽ(Fp) ≡ 0 mod 8 appears for primes of
density at least 1

2 . It follows by Theorem 3.24, #Ẽ(Fp) ≡ 4 mod 8 for primes p of
positive density.

Example 5.23. Let E : y2 +xy = x3 +x2 −700x+34000 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/2Z and E(Q(

√
5))tors ∼= Z/10Z. The torsion subgroup of

the quadratic twist E5 is E5(Q)tors ∼= Z/10Z. Thus, Theorem 5.10 implies that

#Ẽ(Fp) ≡


0 mod 10 if p≡ 1,4 mod 5

6 mod 10 if p≡ 2 mod 5

8 mod 10 if p≡ 3 mod 5

.

Remark 5.24. Notice that #Ẽ(Fp) ≡ 0 mod 10 for primes p of density 1
2 , and

#Ẽ(Fp) ≡ 6 mod 10 for primes of density 1
4 , similarly #Ẽ(Fp) ≡ 8 mod 10 for

primes of density 1
4 .

Example 5.25. Let E : y2 +xy+y= x3 −x2 +47245x−2990253 be an elliptic curve
defined over Q with E(Q)tors ∼= Z/2Z and E(Q(

√
−15))tors ∼= Z/16Z. Also, the
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torsion subgroup of the quadratic twist E−15 is E−15(Q)tors ∼=Z/8Z. A prime p splits
in Q(

√
−15) if p≡ 1,2,4,8 mod 15 otherwise p is inert. Moreover, if p≡ 7,11,13,14

mod 15 then #Ẽ−15(Fp) ≡ 0,8 mod 16 and 2p+ 2 ≡ 0,4,8,12 mod 16. It follows
by Theorem 5.10,

#Ẽ(Fp) ≡

0 mod 16 if p≡ 1,2,4,8 mod 15

0,4,8,12 mod 16 if p≡ 7,11,13,14 mod 15
.

Remark 5.26. One may notice that #Ẽ(Fp) ≡ 0 mod 16 for primes p of density
at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4,8,12 mod 16 for
primes p of positive density.

Example 5.27. Let E : y2 +xy+ y = x3 − 171x− 874 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/2Z and E(Q(

√
−7))tors ∼= Z/2Z×Z/2Z. Moreover, the

torsion of the quadratic twist E−7 is E−7(Q)tors ∼= Z/2Z. In particular, a prime
p splits in Q(

√
−7) if p ≡ 1,2,4 mod 7, otherwise p is inert. Then similarly as in

Example 5.25 together with Theorem 5.10 we have that,

#Ẽ(Fp) ≡

0 mod 4 if p≡ 1,2,4 mod 7

0,2 mod 4 if p≡ 3,5,6 mod 7
.

Remark 5.28. One may notice that #Ẽ(Fp) ≡ 0 mod 4 for primes p of density at
least 1

2 . In addition, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 2 mod 4 for primes
p of positive density.

Example 5.29. Let E : y2 = x3 − 27 be an elliptic curve defined over Q with
E(Q)tors ∼= Z/2Z and E(Q(

√
−3))tors ∼= Z/2Z × Z/6Z. Also, the torsion of the

quadratic twist E−3 is E−3(Q)tors ∼= Z/6Z. A prime p splits in Q(
√

−3) if p ≡ 1
mod 3, otherwise p is inert. Then similarly as in Example 5.25 and by Theorem
5.10, we have

#Ẽ(Fp) ≡

0 mod 12 if p≡ 1 mod 3

0,6 mod 12 if p≡ 2 mod 3
.

Remark 5.30. One may notice that #Ẽ(Fp) ≡ 0 mod 12 for primes p of density at
least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 6 mod 12 for primes
p of positive density.

Example 5.31. Let E : y2 +xy+y = x3 −x2 − 6305x− 924303 be an elliptic curve
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defined over Q with E(Q)tors ∼= Z/2Z and E(Q(
√

−15))tors ∼= Z/2Z×Z/10Z. Also,
the torsion subgroup of the quadratic twist E−15 is E−15(Q)tors ∼= Z/10Z. In par-
ticular, a prime p splits in Q(

√
−15) if p ≡ 1,2,4,8 mod 15, otherwise p is inert.

Then similarly as in Example 5.25, it follows by Theorem 5.10 that

#Ẽ(Fp) ≡



0 mod 20 if p≡ 1,2,4,8 mod 15

6,16 mod 20 if p≡ 7 mod 15

4,14 mod 20 if p≡ 11 mod 15

8,18 mod 20 if p≡ 13 mod 15

0,10 mod 20 if p≡ 14 mod 15

.

Remark 5.32. One may notice that #Ẽ(Fp) ≡ 0 mod 20 for primes p of density at
least 1

2 . Moreover, it follows by Theorem 3.24 that all the other congruence classes
happen for primes p of positive density.

Example 5.33. Let E : y2 +xy+y = x3 −76x+298 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/3Z and E(Q(

√
5))tors ∼= Z/15Z. Also, the torsion subgroup of

the quadratic twist E5 is E5(Q)tors ∼= Z/5Z. Then as in Example 5.25, by Theorem
5.10 it follows,

#Ẽ(Fp) ≡


0 mod 15 if p≡ 1,4 mod 5

3 mod 15 if p≡ 3 mod 5

6 mod 15 if p≡ 2 mod 5

.

Remark 5.34. Notice that #Ẽ(Fp) ≡ 0 mod 15 for primes p of density 1
2 , and the

other two congruence classes #Ẽ(Fp) ≡ 3 mod 15 and #Ẽ(Fp) ≡ 6 mod 15 each
happen for primes p of density 1

4 .

Example 5.35. Let E : y2 + y = x3 +x2 − 9x− 15 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/3Z and E(Q(

√
−3))tors ∼= Z/3Z×Z/3Z. Furthermore, the

torsion subgroup of the quadratic twist E−3 is E−3(Q)tors ∼= Z/3Z. Similarly as in
Example 5.25, by Theorem 5.10 we have,

#Ẽ(Fp) ≡

0 mod 9 if p≡ 1,2 mod 3

0,3,6 mod 9 if p≡ 2 mod 3
.

Remark 5.36. One may see that in the example above, #Ẽ(Fp) ≡ 0 mod 9 for
primes p of density at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡
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3,6 mod 9 for primes p of positive density.

Example 5.37. Let E : y2 +xy+ y = x3 −x2 −x− 14 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/4Z and E(Q(

√
−1))tors ∼= Z/2Z×Z/4Z. Moreover, the

torsion subgroup of the quadratic twist E−1 is E−1(Q)tors ∼=Z/4Z. Then by Theorem
5.10 it follows,

#Ẽ(Fp) ≡

0 mod 8 if p≡ 1 mod 4

0,4 mod 8 if p≡ 3 mod 4
.

Remark 5.38. One may notice that #Ẽ(Fp) ≡ 0 mod 8 for primes p of density at
least 1

2 . In addition, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4 mod 8 for primes
p of positive density.

Example 5.39. Let E : y2 = x3 +x2 + 63x− 1377 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/4Z and E(Q(

√
−2))tors ∼= Z/2Z×Z/8Z. We have that the

torsion subgroup of the quadratic twist E−2 is E−2(Q)tors ∼= Z/8Z. Furthermore, a
prime p splits in Q(

√
−2) if p≡ 1,3 mod 8, otherwise p is inert. Then similarly to

Example 5.25, by Theorem 5.10 it follows

#Ẽ(Fp) ≡


0 mod 16 if p≡ 1,3 mod 8

4,12 mod 16 if p≡ 5 mod 8

0,8 mod 16 if p≡ 7 mod 8

.

Remark 5.40. We notice that in the example above, #Ẽ(Fp) ≡ 0 mod 16 for primes
p of density at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4,8,12
mod 16 for primes p of positive density.

Example 5.41. Let E : y2 + xy+ y = x3 + x2 − 338x− 7969 be an elliptic curve
defined over Q with E(Q)tors ∼= Z/4Z and E(Q(

√
−15))tors ∼= Z/2Z×Z/12Z. Also,

the torsion subgroup of the quadratic twist E−15 is E−15(Q)tors ∼= Z/12Z. Then by
Theorem 5.10 it follows,

#Ẽ(Fp) ≡


0 mod 24 if p≡ 1,2,4,8 mod 15

0,12 mod 24 if p≡ 11,14 mod 15

4,16 mod 24 if p≡ 7,13 mod 15

.

Remark 5.42. One may notice that #Ẽ(Fp) ≡ 0 mod 24 for primes p of density
at least 1

2 . Furthermore, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4,12,16 mod 24
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for primes p of positive density.

Example 5.43. Let E : y2 +xy+ y = x3 +x2 − 3x+ 1 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/5Z and E(Q(

√
5))tors ∼= Z/15Z. Furthermore, the torsion

subgroup of the quadratic twist E5 is E5(Q)tors ∼= Z/3Z. Then by Theorem 5.10 we
have that,

#Ẽ(Fp) ≡

0 mod 15 if p≡ 1,4 mod 5

0,10 mod 15 if p≡ 2,3 mod 5
.

Remark 5.44. One may see that, #Ẽ(Fp) ≡ 0 mod 15 for primes p of density at
least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 10 mod 15 for primes
p of positive density.

Example 5.45. Let E : y2 +xy+y = x3 −x be an elliptic curve defined over Q with
E(Q)tors ∼= Z/6Z and E(Q(

√
−7))tors ∼= Z/2Z×Z/6Z. Also, the torsion subgroup

of the quadratic twist E−7 is E−7(Q)tors ∼= Z/2Z. Then by Theorem 5.10 it follows,

#Ẽ(Fp) ≡

0 mod 12 if p≡ 1,2,4 mod 7

0,6 mod 12 if p≡ 3,5,6 mod 7
.

Remark 5.46. Notice that in the example above, #Ẽ(Fp) ≡ 0 mod 12 for primes
p of density at least 1

2 . In addition, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 6
mod 12 for primes p of positive density.

Example 5.47. Let E : y2 +xy+ y = x3 + 4x− 6 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/6Z and E(Q(

√
−3))tors ∼= Z/3Z×Z/6Z. Also, the torsion

subgroup of the quadratic twist E−3 is E−3(Q)tors ∼= Z/6Z. Then by Theorem 5.10,

#Ẽ(Fp) ≡

0 mod 18 if p≡ 1 mod 3

0,6,12 mod 18 if p≡ 2 mod 3
.

Remark 5.48. One may notice that #Ẽ(Fp) ≡ 0 mod 18 for primes p of density
at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 6,12 mod 18 for
primes p of positive density.

Example 5.49. Let E : y2 +xy+y = x3 +x2 +35x−28 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/8Z and E(Q(

√
−1))tors ∼= Z/2Z×Z/8Z. In particular,

the torsion subgroup of the quadratic twist E−1 is E−1(Q)tors ∼= Z/4Z. Then by
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Theorem 5.10 we have that,

#Ẽ(Fp) ≡

0 mod 16 if p≡ 1 mod 4

0,8 mod 16 if p≡ −1 mod 4
.

Remark 5.50. One may see that #Ẽ(Fp) ≡ 0 mod 16 for primes p of density at
least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 8 mod 16 for primes
p of positive density.

Example 5.51. Let E : y2 +xy = x3 −x2 −36x+27 be an elliptic curve defined over
Q with E(Q)tors ∼= Z/2Z×Z/2Z and E(Q(

√
−3))tors ∼= Z/2Z×Z/8Z. Furthermore,

the torsion subgroup of the quadratic twist E−3 is E−3(Q)tors ∼= Z/2Z×Z/4Z. Then
by Theorem 5.10 it follows,

#Ẽ(Fp) ≡

0 mod 16 if p≡ 1 mod 3

0,4,8,12 mod 16 if p≡ −1 mod 3
.

Remark 5.52. One may notice that #Ẽ(Fp) ≡ 0 mod 16 for primes p of density
at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4,8,12 mod 16 for
primes p of positive density.

Example 5.53. Let E : y2 = x3 +x2 −21345x+1190943 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/2Z×Z/2Z and E(Q(

√
6))tors ∼= Z/2Z×Z/12Z. More-

over, the torsion subgroup of the quadratic twist E6 is E6(Q)tors ∼= Z/2Z×Z/6Z.
Then by Theorem 5.10 we have that,

#Ẽ(Fp) ≡


0 mod 24 if p≡ 1,5,19,23 mod 24

4,16 mod 24 if p≡ 7,13 mod 24

0,12 mod 24 if p≡ 11,17 mod 24

.

Remark 5.54. Notice that in the example above, #Ẽ(Fp) ≡ 0 mod 24 for primes p
of density at least 1

2 . Moreover, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 4,12,16
mod 24 for primes p of positive density.

Example 5.55. Let E : y2 +xy+ y = x3 +x2 − 5x+ 2 be an elliptic curve defined
over Q with E(Q)tors ∼= Z/2Z×Z/4Z and E(Q(

√
5))tors ∼= Z/2Z×Z/8Z. Moreover,

the torsion subgroup of the quadratic twist E5 is E5(Q)tors ∼= Z/2Z×Z/2Z. Then
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by Theorem 5.10 it follows that,

#Ẽ(Fp) ≡

0 mod 16 if p≡ 1,4 mod 5

0,8 mod 16 if p≡ 2,3 mod 5
.

Remark 5.56. One may notice that #Ẽ(Fp) ≡ 0 mod 16 for primes p of density
at least 1

2 . In addition, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 8 mod 16 for
primes p of positive density.

Example 5.57. Let E : y2 +xy+ y = x3 −x2 − 3002x+ 63929 be an elliptic curve
defined over Q with E(Q)tors ∼= Z/2Z×Z/6Z and E(Q(

√
6))tors ∼= Z/2Z×Z/12Z.

Moreover, the torsion subgroup of the quadratic twist E6 is E6(Q)tors ∼= Z/2Z×
Z/2Z. Then by Theorem 5.10 it follows,

#Ẽ(Fp) ≡

0 mod 24 if p≡ 1,5,19,23 mod 24

0,12 mod 24 if p≡ 7,11,13,17 mod 24
.

Remark 5.58. One may notice that #Ẽ(Fp) ≡ 0 mod 24 for primes p of density
at least 1

2 . Furthermore, it follows by Theorem 3.24 that #Ẽ(Fp) ≡ 12 mod 24 for
primes p of positive density.
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