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Abstract

Let f be a polynomial in Q[x]. We say that f is dynamically irreducible or
stable over Q if all its iterates fn := f ◦f ◦ . . .◦f︸ ︷︷ ︸

n

are irreducible over Q. Generally,

a polynomial is called eventually stable if the number of irreducible factors of any
iterate fn is bounded by some c ∈ Z+, in particular, if c = 1, then f is dynamically
irreducible. A polynomial defined over Q is said to be pure with respect to a prime
p if its Newton polygon consists of exactly one line, e.g., pr-Eisenstein polynomials
for some r ≥ 1.

In 1985, Odoni showed that Eisenstein polynomials are dynamically irreducible over
Q. Ali extended this result to include pr-Eisenstein polynomials for any r ≥ 1. In
this thesis, we present families of pure polynomials that are dynamically irreducible
in Q[x]. Under some conditions, we characterize certain families and develop some
criteria of dynamically irreducible polynomials that possess a pure iterate. In ad-
dition, we describe some iterative techniques to produce irreducible polynomials in
Q[x] from pure polynomials by composition.

Recently, Demark et al. investigated the eventual stability of a quadratic binomial
of the form x2 − 1

c ∈ Q[x] for some c ∈ Z\{0,−1}. In this work, we prove that pure
polynomials are eventually stable in Q[x]. Also, we display a family of eventually
stable polynomials that possess a pure iterate.
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Özet

f ∈ Q[x] bir polinom olsun. Eğer f ’in tüm iterasyonları fn := f ◦f ◦ . . .◦f︸ ︷︷ ︸
n

indirgen-

emez ise f , dinamik indirgenemez ya da Q üzerine stabil denir. Genel olarak,
eğer bir polinomun herhangi bir iterasyonunun fn indirgenemez çarpanlarının sayısı
bir c ∈ Z+ tamsayısı ile sınırlı ise bu polinoma zamanla stabil denir, özel olarak,
eğer c = 1 ise f dinamik indirgenemezdir. f , Q üzerine tanımlanmış bir polinom
olsun ve p asal olmak üzere eğer Newton poligonu kesin olarak bir doğru içeriy-
orsa bu polinoma saf denir. Örnek olarak pr-Eisenstein polinomları bazı r ≥ 1 için
verilebilir.

1985’de, Odoni Eisenstein polinomlarının Q üzerine dinamik indirgenemez olduğunu
gösterdi. Ali bu sonucu pr-Eisenstein polinomlarının her bir r ≥ 1 için genelleştirdi.
Bu tezde, Q[x] de dinamik indirgenemez olan saf polinom ailelerini tanımlıyoruz.
Bazı koşullar altında, belirli aileleri karakterize ediyoruz ve saf bir yinelemeye sahip
dinamik olarak indirgenemez polinomların bazı kriterlerini geliştiriyoruz. Ek olarak,
bileşimleri saf polinomlardan olan Q[x] cinsinden indirgenemez polinomlar üretmek
için bazı yinelemeli teknikleri açıklıyoruz.

Yakın zamanda, Demark ve diğerleri, x2 − 1
c ∈ Q[x] biçimindeki ikinci dereceden bir

iki terimlinin nihai kararlılığını bazı c ∈ Z\{0,−1} için araştırdı. Bu çalışmada, saf
polinomların Q[x] içinde zamanla stabil olduğunu kanıtlıyoruz. Ayrıca, saf yinelem-
eye sahip, zamanla stabil polinomların bir ailesini gösteriyoruz.
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“Know thyself deathless and able to know all things, all arts, sciences, the way of
every life. Become higher than the highest height and lower than the lowest depth.
Amass in thyself all senses of animals, fire, water, dryness and moistness. Think

of thyself in all places at the same time, earth, sea, sky, not yet born, in the womb,
young, old, dead, and in the after death state.”

Ancient Egyptian Proverb
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Introduction

Due to their role in Mathematics and other disciplines, irreducible polynomials have
always been an attractive research topic for a long time. In Disquisitiones Arith-
meticae, Gauss gave one of the first examples of a general irreducible polynomial
over Q, namely the cyclotomic polynomial of prime degree [6, p.467]. Consequently,
irreducibility criteria started to appear; one of the earliest criterion is attributed to
Theoder Schönemann in 1846. Later on, a weaker version of Schönemann’s criterion
appeared in an article by Gotthold Eisenstein1 in 1850. Further generalizations were
contributed by Koenigsberg (1895), Netto (1897), Bauer (1905) and Perron (1905).
All these generalizations are explained by Dumas Theorem (1906) which is discussed
in Chapter 4 , see [14, Section 1] for a proof. Due to applications in Cryptography,
Coding Theory and other disciplines, iterative techniques to construct irreducible
polynomials of arbitrary large degrees are being developed. For example, consider
the polynomial f(x) = x2 +2 ∈ Q[x]. It is irreducible over Q as a 2-Eisenstein poly-
nomial. If we define the nth iterate of the polynomial f to be

(1) fn := f ◦f . . .◦f︸ ︷︷ ︸
n-times

,

we obtain a sequence of polynomials f, . . . ,fn, . . .. In fact, if the preceding sequence of
polynomials are all irreducible in Q[x], then, we have an infinite tower of irreducible
polynomials in Q[x] and an iterative technique to construct irreducible polynomials
of arbitrary large degrees. In fact, for all n ≥ 1, the polynomials fn are 2-Eisenstein
polynomials. In general, Odoni [28, lemma 2.2] showed that if a polynomial f is a
P -Eisenstein polynomial over an integral domain R for some prime ideal P , then,
for all n ≥ 1, the iterates fn are all P -Eisenstein and thus irreducible over R.

The aforementioned example motivates the following definitions. First, the con-
struction in Equation (1) is an example of a discrete dynamical system. A discrete
dynamical system is a pair (S,ϕ) such that ϕ is the self map ϕ : S → S for some set
S. In addition, we define the nth iterate of the map ϕ to be

ϕn := ϕ◦ϕ. . .◦ϕ︸ ︷︷ ︸
n-times

In our example, S = Q, ϕ is a polynomial in Q[x] and ϕn(x) is the n-fold self-
composition of the polynomial ϕ for n ≥ 0 assuming ϕ0(x) = x as in Equation 1.
Second, if all the iterates are irreducible over some field K, in other words, fn

1Some authors call this criterion “Schönemann-Eisenstein” criterion instead as Theodor Schönemann pub-
lished a more general criterion four years before Gotthold Eisenstein. For a historical and mathematical
analysis of this dispute, see [10].
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is irreducible over K for all n ≥ 1, we say f is dynamically irreducible or stable
over K. Odoni [28] was the first to establish the concept of dynamical irreducibil-
ity (the credit of the term stable is attributed to him). In addition to his result
about Eisenstein polynomials, he presented the first nontrivial example of a dynam-
ically irreducible polynomial over Q; namely the polynomial x2 −x+1 (refer to [29,
Proposition 4.1]). In 1992, Stoll [31] produced a dynamical irreducibility criteria for
quadratic polynomials in Q[x] of the form f(x) = x2 +a. In fact, Stoll associated the
sequence c1 = −a and cn+1 = cn

2 +a = fn+1(0) for all n ≥ 2 to the iterations of the
previous quadratic binomial. He proved that if this sequence has no squares in Z,
then, f is dynamically irreducible (refer to [31, Corollary 1.3]). Jones [23] extended
this result to any quadratic polynomial over a field K with characteristic different
from 2 (see Proposition 1.6). Also, Danielson and Fein [11] extended Stoll’s result
to produce a dynamical irreducibility criterion for any polynomial in the form xn −b

over some specific rings (see Proposition 1.8). We will introduce new dynamical
irreducibility criteria in Chapter 3 and Chapter 4. For example, in one criterion
(see Corollary 3.14), we deduce dynamical irreducibility from the 2-adic valuations
of coefficients of a polynomial in Z[x] of the form x2m +1 (mod 2).

Since there are different types of irreducible polynomials and many irreducibility
tests, characterizing all irreducible polynomials is a hard question. Yet, in 1793
Schubert provided the first algorithm to factorize a polynomial in finitely many
steps and thus check irreducibility. Later on, Kronecker [26] in 1882 rediscovered
Schubert’s algorithm and extended it for any algebraic extension of Q. Another
important algorithm was devised by Berlekamp in 1967. He was able to factor-
ize a polynomial of degree n and r irreducible factors over Zp for some prime p

with a complexity of O(n3 +prn2). In 1969, Zassenhaus proposed the idea of using
Hensel’s lemma in factorization algorithms over Z. He presented an algorithm to
lift the polynomial f(x) ∈ Z[x] from f(x) (mod p) to f(x) (mod pt) in just t itera-
tions. Zassenhaus’s idea is used to combine factorization algorithms over finite and
rational fields (for more details, check [25]). Finally, one of the most important algo-
rithms was discovered in 1982 by Arjen Lenstra, Hendrik Lenstra and László Lovász.
The LLL Algorithm was one of the first algorithms with polynomial complexity to
factorize polynomials in Z[x]. Its complexity is

O
(
d12 +d9(logh)3)

for a primitive polynomial f(x) = adxd + . . . + a0 in Z[x] such that h =√
ad

2 + . . .+a02.

In general, not all irreducible polynomials are dynamically irreducible; consider the
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polynomial
f(x) = x2 − 4

3 .

It is irreducible over Q, but,

f2(x) =
(

x2 −2x+ 2
3

)(
x2 +2x+ 2

3

)

is reducible over Q [9, Example 2.2]. Inspired by the previous example, one specu-
lates that it might be sufficient to check the first few iterations to test a polynomial
for dynamical irreducibility. However, In [19, Section 3], Illig et al. produced families
of polynomials whose first two iterates are irreducible but the third is reducible. We
also present another example of a polynomial f such that f, . . . ,f5 are irreducible
but f6 is reducible, check Example 1.14. Since there is no known characterization
of irreducible polynomials, there is also no known characterization of dynamically
irreducible polynomials. In his treatise about Irreducibility criteria, Dorwart [14]
classified irreducible polynomials into three types: criteria depending on the divis-
ibility of coefficients, criteria depending on the comparative sizes of the coefficients
and criteria depending on integer evaluations of a polynomial. The Eisenstein cri-
terion is the most famous example of the first type as it depends on the divisibility
of the coefficients by some prime. The pr-Eisenstein criterion is another prime type
criterion. Ali [2] proved that pr-Eisenstein polynomials for some prime p and r ≥ 1
are dynamically irreducible in Q[x]. We generalize this result in Chapter 4 and prove
that pr-Dumas polynomials are dynamically irreducible, see Corollary 4.17.

In practice, we do not always apply an irreducibility criterion to show a polynomial
is irreducible. Consider the following family of irreducible polynomials.

f(x) = xpm

+px+1 where p is an odd prime and m ≥ 1.

Note that f(x−1) is p-Eisenstein and thus f is irreducible. We shall show that the
preceding family is also dynamically irreducible, see Example 3.27. Dynamically,
Bush, Hindes and Looper [7] constructed families of dynamically irreducible poly-
nomials over a number field from Eisenstein polynomials by conjugation. Similarly,
Odoni [28] noticed that if one of the iterates is dynamically irreducible then all the
iterates are dynamically irreducible. We use Odoni’s lemma to produce two dy-
namically irreducible families in Chapters 3 and 4, namely eventually p-Eisenstein
polynomials and specific family of eventually pr-Dumas polynomials. In order to
show such results, we need to characterize polynomials for which one of its iterates
is eventually of the form f(x) ≡ axd (mod p) for some a ∈ Q with νp(a) = 0 and
identify the least iteration to reach such a form. In Chapter 2, we introduce p-
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type polynomials, characterize eventually p-type polynomials and identify the least
iteration of an eventually p-type to become p-type.

If a polynomial is reducible, one is still interested in collecting facts about the
number, degree and types of the irreducible factors of the polynomial. Dumas
Theorem, see Proposition 4.5, sets an upper bound on the number and degree of
irreducible factors just from the Newton polygon of a polynomial. In a similar way,
Eisenstein mistakenly claimed that for some polynomial f(x) = adxd + . . .+a0 ∈Z[x],
if there exists some prime p such that p ∤ ad and p|ai for 1 ≤ i ≤ d − 1, but, p2 ∤ ak

for some 1 ≤ k ≤ d−1, then, f is irreducible over Q. In [32], Weintraub provided a
family of counterexamples. He proposed a correction to Eisenstein’s claim by letting
k0 to be the smallest value of k such that p2 ∤ ak0 so that if f(x) = g(x)h(x), then,
the minimum degree of both g and h is at most k0, see Theorem 1 in [32] for a proof.

Dynamically, we say a polynomial f is eventually stable if the number of irreducible
factors of any iterate is at most some c ∈ Z+. In particular, if c = 1, then, f is dy-
namically irreducible. Most results discuss quadratic eventually stable polynomials
(see [24], [13] and [17]) in addition to a discussion in [27] about polynomials of the
form zd + 1

c where c ∈ Z\{0}. In Chapter 4, we introduce pure polynomials and
use a result by Jakhar [21] to show they are eventually stable, see Theorem 4.26.
In Chapter 4 also, we provide a complete characterization of a family of eventually
pure polynomials, see Theorem 4.34.

Even if a polynomial is reducible, one may extract an iterative sequence of irreducible
polynomials. For example, if g(x) = xp + p for some prime p and f(x) = x2, then,
g (fn(x)) = x2np + p is irreducible for all n ≥ 1. In such a case we say g is f -stable.
In general, if f is eventually stable, the number of irreducible factors of the iterates
will not change after some iteration. In other words, there exists an iteration k ≥ 1
such that fn+k has s ≥ 2 irreducible factors for all n ≥ 1. So, if

fk(x) = g1(x) · . . . ·gs(x)

for some irreducible factors g1, . . . ,gs, then,

fk+n(x) = g1 ◦fn · . . . ·gs ◦fn.

Note that g1 ◦fn, . . . , gs ◦fn are irreducible for all n ≥ 1. This means that, g1, . . . ,gs

are f -stable. In Chapter 4, we provide some families of f -stable polynomials inspired
by the previous argument, see Corollaries 4.20, 4.22 and 4.23. It is worth mentioning
that all the computations were performed using Mathematica [20].
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Chapter 1

Preliminaries

Definition 1.1. [4] A (discrete) dynamical system (S,ϕ) is a set S along with
a self-map ϕ : S → S. The nth-iterate of the map ϕ is defined as:

ϕn := ϕ◦ϕ. . .◦ϕ︸ ︷︷ ︸
n-times

Conventionally, ϕ0 is the identity map on S

In this thesis, our main scope is polynomial maps in Q[x]. In particular, we focus on
the irreducibility of iterations of a polynomial map. Nevertheless, we first establish
the concept of irreducibility.

Definition 1.2. [30, p.48] Let K be a field. A polynomial f ∈ K[x] is called re-
ducible over K if f = gh, where g and h are polynomials of positive degree in
K[x], otherwise, f is called irreducible over K.

Given Irreducibility and composition of polynomials are our main focus, it is valid
to ask the following question: If f and g are polynomials over a field K, under
what conditions is f ◦ g irreducible over K? This question is answered by Capelli’s
Lemma.

Proposition 1.3. [3, Lemma 1] Let K be a field and f,g be polynomials in K[x].
Suppose α is any root of f in the algebraic closure of K. Then, f ◦ g is irreducible
over K if and only if f is irreducible over K and g(x)−α is irreducible over K(α).

Dynamically, we are interested in the irreducibility of polynomial iterates. For this
purpose, we need the following definition.

Definition 1.4. [1] Let K be a field. The polynomial f in K[x] is called stable or
dynamically irreducible if all the iterates f,f2, . . . ,fn, . . . are irreducible over K.

An extension of Definition 1.4 is the following.
5



Definition 1.5. [23, Definition 2.1] Let K be a field and f,g ∈ K[x]. We say that
g is f-stable if g ◦ fn is irreducible over K for n = 0,1,2, . . .. In particular, f is
dynamically irreducible whenever g = f .

Next, we present a survey of some results on dynamically irreducible polynomials in
Q[x]. For further elaboration, We shall apply these results to the polynomial x2 +1.

Proposition 1.6. [23, Proposition 2.3] Let K be a field with characteristic not
equal to 2. Suppose the polynomial f(x) = ax2 + bx + c ∈ K[x] has a critical point
γ = −b

2a . Then, f is dynamically irreducible over K if af2(γ),af3(γ), . . . ,afn(γ), . . .
and −af(γ) are all nonsquares in K.

Example 1.7. For x2 +1 in Q[x], the critical point is γ = 0 and for all n > 1, it is
obvious that fn(0) and −f(0) = −1 are all nonsquares in Q. Hence, it is dynamically
irreducible over Q.

Proposition 1.8. [11, Corollary 5] Let R be either Z, Z[t] or K[t] where K is an
algebraically closed field. If f(x) = xn − b ∈ R[x] is irreducible over R, then, it is
dynamically irreducible.

Example 1.9. Note that x2 +1 is irreducible over Z and by the previous proposition
it is dynamically irreducible over Z. By Gauss’s lemma, we conclude that x2 + 1 is
dynamically irreducible over Q.

Proposition 1.10. [22, Theorem 4.5] Let f(x) = (x − γ)2 + γ + m ∈ Z[x] be irre-
ducible and suppose that |m| > 6 + 3

√
|γ|+1 (if γ ∈ Z then |m| > 1 +

√
|γ|+1 is

sufficient), and that
−m±

√
f2(γ)

2 ̸∈ Q∗2.

Then, f is dynamically irreducible.

Example 1.11. We can not use Proposition 1.10 to prove that f(x) = x2 +1 is dy-
namically irreducible as γ = 0 ∈ Z, m = 1 and |1| < 6+3 = 9. Yet, for the irreducible
polynomial g(x) = x2 + 4x + 5 = (x+2)2 − 2 + 3 with γ = −2 and m = 3, we notice
that

|3| > 1+1 = 2

and
−3±

√
50

2 ̸∈ Q∗2.

So, g is dynamically irreducible.

Given Proposition 1.3, one should not expect each irreducible polynomial to be
dynamically irreducible. For instance, consider the following example.

6



Example 1.12. [19, Introduction] The polynomial g(x) = x2 − x − 1 is irreducible
but

g3(x) = (x4 −3x3 +4x−1)(x4 −x3 −3x2 +x+1) is reducible.

In light of the previous example, we introduce the following definition.

Definition 1.13. [19] Let K be a field. The polynomial f in K[x] is called n-
newly reducible if f, . . . ,fn−1 are irreducible over K, but, fn is reducible for some
iteration n.

For a discussion on newly reducible polynomials, refer to [19] and [9]. Unlike testing
for irreducibility, it is unknown if dynamical irreducibility over a field can be tested
in finitely many steps as the degrees of the iterates grow exponentially. Also, the
first few irreducible iterates of a polynomial do not always imply its dynamical
irreducibility. For instance, consider the following example.

Example 1.14. Consider f(x) = x2 + 1 over F43. The iterates f2,f3,f4 and f5

are irreducible. However, the iterate f6 is reducible. In other words, f is 6-newly
reducible. In conclusion, the irreducibility of the first 5 iterates does not imply that
f is dynamically irreducible.

Moving on to newly reducible polynomials, one is interested to find an upper bound
for the number of irreducible factors of the reducible iterates. To be a dynamical
property, the bound should not depend on the iteration. For this purpose, we have
the following extension of Definition 1.4

Definition 1.15. [13, Definition 1.1] Let K be a field, f be a polynomial in K[x],
and α ∈ K. We say (f,α) is eventually stable over K if there exists a constant
C(f,α) such that the number of irreducible factors over K of fn(x) − α is at most
C(f,α) for all n ≥ 1. In particular, we say that f is eventually stable over K if
(f,0) is eventually stable.

In fact, not all polynomials in Q[x] are eventually stable; consider the following
family.

Example 1.16. [22] The polynomial fk(x) = x2 + kx − (k + 1) ∈ Z[x] is not even-
tually stable because f2

k (x) = x(x + k)(x2 + kx − k − 2). Thus, x divides f2n
k for all

n ≥ 1 and the number of irreducible factors is unbounded. The preceding condition
can be rephrased as 0 being periodic under f , i.e., 0 ∈ {fn

k (0) : n ≥ 1}.

The previous example motivates the following conjecture.

7



Conjecture 1.17. [22, Conjecture 4.9] If f ∈ Z[x] is monic, quadratic and 0 is not
periodic under f , then, f is eventually stable.

A test for eventually stable polynomials like Proposition 1.6 is the following.

Proposition 1.18. [22, Proposition 4.2] Let K be a field and f(x) = ax2 + bx+ c ∈
K[x] with critical point γ. Suppose there is a polynomial g ∈ K[x] such that g ◦fn−1

is irreducible over K for some n ≥ 2. Then, g ◦fn is irreducible over K if g (fn(γ))
is not a square in K.

For polynomials of the form xd + c ∈ Q[x], we mention the following result.

Proposition 1.19. [17, Corollary 1.7] Let f(x) = xd + c ∈ Q[x] such that c is non-
zero and not the reciprocal of an integer. Then, f is eventually stable over Q.

A thorough discussion of the quadratic case of Proposition 1.19 can be found in
[13].
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Chapter 2

p-Type and Eventually p-Type Polynomials

In this chapter, we introduce some properties of p-type and eventually p-type poly-
nomials. These properties will be used frequently throughout the thesis.

Definition 2.1. Let a ∈ Z and p be a rational prime. The p-adic valuation of a

is the function νp : Z → Z≥0 ∪{∞} such that

νp(a) :=

r if pr|a but pr+1 ∤ a for a ̸= 0

∞ a = 0

The p-adic valuation can be extend to rational numbers by defining νp :Q→Z∪{∞}
such that νp(a

b ) = νp(a)−νp(b)

The previous definition can be extended further to the following.

Definition 2.2. [5, Introduction] Let f(x) = adxd + . . .+a0 ∈Q[x] and p be a prime.
The Gaussian valuation of f with respect to p is defined as.

νp(f) := min
0≤i≤d

νp(ai).

We shall use νp to denote both the p-adic and Gaussian valuation as an element in
Q can be considered as a constant polynomial in Q[x].

Definition 2.3. A polynomial f(x) = adxd + . . . + a0 ∈ Q[x] is said to be p-type if
νp(ad) = 0 and f(x) ≡ adxd (mod p). In other words, νp(a0), . . . ,νp(ad−1) ≥ 1.

Proposition 2.4. If f is p-type, then, for some a ∈Q with νp(a) = 0, the polynomial
f(axd) is p-type. Moreover, fn is p-type for all iterations n ≥ 1.

Proof. The statement follows from Definition 2.3.

9



Example 2.5. The polynomial

f(x) = x7 + 3
5x+ 18

7

is 3-type because ν3(1) = 0, ν3
(

3
5

)
= 1 and ν3

(
18
7

)
= 2.

Furthermore, one can find a polynomial f which is not p-type for some prime p, yet,
one of its iterates is p-type; consider the following example.

Example 2.6. The polynomial

f(x) = x3 +3x2 + 9
2x+ 11

2

is not 3-type because ν3
(

11
2

)
= 0 and the second iterate

f2(x) = x9 +9x8 + 81x7

2 + 255x6

2 + 1197x5

4 + 2133x4

4 + 5967x3

8 + 6237x2

8 + 4617x

8 + 2299
8

is again not 3-type because ν3
(

2299
8

)
= 0, yet, the third iterate

f3(x) = x27 +27x26 + 729x25

2 + 6597x24

2 +22545x23 +124011x22 +570510x21 +2251476x20

+ 62057097x19

8 + 189021339x18

8 + 1027333125x17

16 + 2507352489x16

16 + 2761048809x15

8

+ 5504594355x14

8 + 19905289839x13

16 + 32659896843x12

16 + 777625553637x11

256

+ 1047643321527x10

256 + 2547482271141x9

512 + 2781671553585x8

512 + 1354537004751x7

256

+ 1165197294621x6

256 + 218300122899x5

64 + 279385323201x4

128 + 74036338389x3

64

+ 30889750545x2

64 + 73718914131x

512 + 12278651451
512

is 3-type as f3(x) ≡ x27 (mod 3).

The previous example motivates the following definition.

Definition 2.7. Let f ∈ Q[x] and p be a prime. We say f is eventually p-type if
an iterate fn is p-type for some n ≥ 1.

Trivially, a p-type polynomial is also eventually p-type. However, for a polynomial
that is not p-type but eventually p-type, it is valid to ask the following question.

Question 2.8. If a polynomial f is not p-type, yet, it is eventually p-type. Is there
any restriction on the degree of f? Is there an exhaustive classification of such

10



polynomials?

Indeed, this question is answered in Theorem 2.10, yet, a lemma is needed.

Lemma 2.9. Suppose f and g are polynomials in Q[x] such that f ◦ g is p-type.
Then, f(x+g(0)) and g(x)−g(0) are p-type.

Proof. Assume f and g are polynomials in Q[x] such that f ◦ g is p-type for some
prime p. Define the following polynomials:

F (x) := f(x+g(0)) = axe +ae−1xe−1 + . . .+a0

G(x) := g(x)−g(0) = bxf + bf−1xf−1 + . . .+ b1x

First, note that F ◦G = f ◦g and νp(a) = νp(b) = 0. Second, observe that G divides
the polynomial F ◦G−F (0). As, νp (F ◦G−F (0)) = 0, then,

νp(G)+νp

(
F ◦G−F (0)

G

)
= 0

Given νp(b) = 0, thus, νp(G) = 0. Otherwise, νp(G) < 0 and νp

(
F ◦G−F (0)

G

)
> 0.

Nonetheless, this assumption shall yield the contradiction:

0 < νp

(
F ◦G−F (0)

G

)
= νp

(
aGe−1 + . . .+a1

)
≤ νp

(
abe−1x(e−1)f

)
= 0

Hence, G(x) = g(x) − g(0) ≡ bxf (mod p) and it is p-type. Finally, F (G(x)) ≡
F
(
bxf

)
(mod p), so, F (x) = f (x+g(0)) is p-type too.

We are now ready to prove the characterization theorem of eventually p-type poly-
nomials.

Theorem 2.10. If f ∈Q[x] is not p-type but eventually p-type, then, f(x) ≡ axpm +b

(mod p) for some a,b ∈ Q such that νp(a) = νp(b) = 0.

Proof. Assume f(x) = adxd + . . .+a0 so that fn is p-type for some n > 1. Consider-
ing Lemma 2.9, the polynomials f(x) − f(0) and f(x + fn−1(0)) are p-type, hence,
νp(ad) = 0. Moreover, νp (f(0)) ≤ 0 else f is p-type. In fact, we should show that
νp (f(0)) = 0. To achieve this, we shall use an argument analogous to that in the
proof of Lemma 2.9. The polynomial fn −fn(0) is p-type and if νp(f(0)) < 0, then,
νp(f) < 0. Given f divides fn −fn(0) and νp

(
fn−fn(0)

f

)
≤ 0 as the p-adic valuation

11



of its leading coefficient is 0, we shall reach the following contradiction:

0 = νp (fn −fn(0)) = νp(f)+νp

(
fn −fn(0)

f

)
< 0

Then, for f(x) = adxd + . . .+a0, one concludes that νp(ad) = 0, νp(ad−1), . . . ,νp(a1) ≥
1 and νp(a0) = 0

In other words, f(x) ≡ adxd +a0 (mod p). Note that the same conclusion applies to
fn−1 by interchanging f and fn−1 in the previous proof; in particular, νp(fn−1(0)) =
0. Next, from Lemma 2.9, we know f(x + fn−1(0)) is p-type, so, f

(
x+fn−1(0)

)
≡

ad

(
x+fn−1(0)

)d
+a0 ≡ adxd (mod p). Finally, we must have

νp

((
d

k

))
≥ 1 for all 0 < k < d.

It follows from Kummer theorem [8, Definition 1.2] that d = pm for some m ≥ 1. In
conclusion, if f is not p-type but eventually p-type, then, f(x) ≡ axpm + b (mod p)
such that νp(a) = νp(b) = 0 as desired.

We shall use eventually p-type polynomials to mean the particular family f(x) ≡
axpm + b (mod p) with νp(a) = νp(b) = 0. Next, if f is an eventually p-type poly-
nomial, can we identify the smallest iteration n > 1 such that fn is p-type? This
question is addressed in Theorem 2.11

Theorem 2.11. Suppose f(x) ≡ axpm + b (mod p) is an eventually p-type polyno-
mial with νp(a) = νp(b) = 0 and k = ordp(a). Then, the least integer n > 1 such that
fn is p-type is:

(a) n = p if a ≡ 1 (mod p)

(b) n = k otherwise.

We need the following Lemma to prove Theorem 2.11.

Lemma 2.12. Suppose f(x) ≡ axpm +b (mod p) is an eventually p-type polynomial.
Then, the iterate fn(x) ≡ anxpnm +∑n−1

i=0 aib (mod p) for any n ≥ 2. In particular,
fn(0) ≡∑n−1

i=0 aib (mod p)

Proof. Assume f(x) ≡ axpm + b (mod p) with νp(a) = νp(b) = 0 for some prime p.

12



We have:

fn+1(x) = f (fn(x)) = a

anxpnm

+
n−1∑
i=0

aib

pm

+b ≡ an+1xp(n+1)m

+
n∑

i=0
aib (mod p)

So, in particular, fn(0) ≡∑n−1
i=0 aib (mod p)

We are now ready to prove Theorem 2.11.

Proof of Theorem 2.11. By Lemma 2.12, if a ≡ 1 (mod p), then,

fp(0) ≡
p−1∑
i=0

b ≡ pb ≡ 0 (mod p);

otherwise, fk(0) ≡
k−1∑
i=0

aib ≡ b

(
ak −1
a−1

)
≡ 0 (mod p)

Example 2.13. Consider
f(x) = 2x5 + 5x

3 +7

Note that ord5(2) = 4, so, we expect f4 to be first 5-type iterate. Indeed, we get:

f(x) ≡2x5 +2 (mod 5)

f2(x) ≡4x25 +1 (mod 5)

f3(x) ≡3x125 +4 (mod 5)

f4(x) ≡x625 (mod 5)

13



Chapter 3

Eventually Eisenstein Polynomials

An interesting example of p-type polynomials is p-Eisenstein polynomials. In gen-
eral, p-type polynomials are not necessarily dynamically irreducible. In this chapter,
our goal is to prove that the family of eventually p-Eisenstein polynomials are dy-
namically irreducible. To motivate the aforementioned goal, we discuss eventually
2-Eisenstein polynomials in the first section.

3.1 Eventually 2-Eisenstein Polynomials

Recall the definition of a p-Eisenstein polynomial.

Definition 3.1. [16, p.310] Let f(x) = adxd + . . . + a0 ∈ Q[x]. Suppose there exists
a rational prime p such that:

(a) νp(ad) = 0

(b) νp(ai) ≥ 1 for all i ∈ {1, . . . ,d−1}

(c) νp(a0) = 1

then, f is irreducible over Q and is called p-Eisenstein.

Odoni [28] showed that p-Eisenstein polynomials are not only irreducible but also
dynamically irreducible over Q. Moreover, he also presented the following simple
test.

Proposition 3.2. [28, Lemma 1.2] Let f(x) ∈ Q[x]. If there exists a positive inte-
ger n such that fn(x) is dynamically irreducible over Q, then, f(x) is dynamically
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irreducible over Q

Consider the following example:

Example 3.3. Let
f(x) = x4 +2x3 +2x2 +2x+3.

we know f(x) is not p-Eisenstein for any prime p. Nevertheless,

f2(x) = x16 +8x14 +16x13 +36x12 +96x11 +200x10 +336x9 +600x8 +960x7

+1280x6 +1536x5 +1756x4 +1664x3 +1144x2 +496x+114

is 2-Eisenstein and hence dynamically irreducible. By Proposition 3.2, f is also
dynamically irreducible over Q.

In light of the previous example, we introduce the following definition:

Definition 3.4. A polynomial f ∈ Q[x] is eventually 2-Eisenstein if fn is 2-
Eisenstein for some n ≥ 1.

Corollary 3.5. Eventually 2-Eisenstein polynomials are dynamically irreducible
over Q

Proof. The result follows immediately from Proposition 3.2 and the dynamical irre-
ducibility of p-Eisenstein polynomials.

A 2-Eisenstein polynomial is also eventually 2-Eisesntein. Yet, we are more inter-
ested in polynomials that are not 2-Eisenstein but eventually 2-Eisenstein. Defini-
tion 3.4 and Example 3.3 motivate the following question:

Question 3.6. Is there a complete characterization of eventually 2-Eisenstein poly-
nomials? Can we determine the smallest n > 1 for the nth iterate to be 2-Eisenstein?

The following theorem answers this question.

Theorem 3.7. Let f(x) = adxd + . . .+a0 ∈ Q[x] such that f is not 2-Eisenstein.

Some iterate fn is 2-Eisenstein if and only if the following conditions hold

(a) d = 2m for some m ≥ 1

(b) f(x) ≡ x2m +1 (mod 2)

(c) f(x+ c) is 2-Eisenstein for some c ∈ Q

Moreover, the least integer n such that fn is 2-Eisenstein is exactly n = 2

15



Before proving the theorem, we need the following Lemma

Lemma 3.8. Let p be a prime. Suppose f ∈ Q[x] is a p-Eisenstein polynomial of
degree d > 1 and c ∈ Q. If νp(c) ≥ 1, then, νp(f(c)) = 1

Proof. Assume f(x) = adxd + . . .+a0 is p-Eisenstein polynomial of degree d > 1 and
c is a rational number with νp(c) ≥ 1. Then,

f(c) = adcd +
∑

i̸=0,d

aic
i +a0

By Definition 3.1, νp(ad) = 0, νp(ai) ≥ 1 for i = 1, . . . ,d−1 and νp(a0) = 1. It follows
that νp(aic

i) > 1 for all i ̸= 0 and so νp(f(c)) = νp(a0) = 1

Next, we prove the theorem.

Proof of Theorem 3.7. Assume f(x) ≡ adxd + . . . + a0 is not 2-Eisenstein, yet, fn is
2-Eisenstein for some minimal n > 1. By Definition 2.7, Since ad ≡ 1 (mod 2), then,
f2 is 2-type. Also, as f is eventually 2-type, then, d = 2m for some m ≥ 1 and
f(x) ≡ x2m + 1 (mod 2). For simplicity, let c = f(0). We just need to show that
g(x) = f(x + c) is 2-Eisenstein. Observe that g(x) = f(x + c) ≡ (x+ c)2m

+ 1 ≡ x2m

(mod 2) and ν2(g(0)) = ν2(f2(0)) = 1 as f2 is 2-Eisenstein. For the other direction,
if f(x) ≡ x2m + 1 (mod 2) and g(x) = f(x + c) is 2-Eisenstein for some c, then f2

is 2-Eisenstein. First, note that ν2(c) = 0 else g will not be 2-Eisenstein. Second,
we observe that f(f(x)) is 2-type by Theorem 2.11, so, we just need to show that
ν2(f2(0)) = 1. since, f(f(0)) = g(f(0)−c) and ν2(f(0)−c) ≥ 1, then, by Lemma 3.8
and given g is 2-Eisenstein, ν2(f2(0)) = 1 and f2 is 2-Eisenstein.

Based on the previous theorem, we can conclude the following corollary.

Corollary 3.9. Let f be a 2-Eisenstein polynomial of degree 2m. The polynomial
f(x+ c) is dynamically irreducible over Q for all c ∈ Q with ν2(c) ≥ 0

Proof. Assume f is 2-Eisenstein. By Lemma 3.8, if ν2(c) ≥ 1, f(x+c) is 2-Eisenstein.
Moreover, if ν2(c) = 0, then, f(x+c) is eventually 2-Eisenstein by Theorem 3.7.

Since shifts over Q were mentioned, it is valid to ask the following question:

Question 3.10. Let f ∈ Z[x] and c ∈ Z. If f is dynamically irreducible over Q, is
f(x+ c) always dynamically irreducible too?

The answer is No. Consider the following example.
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Example 3.11. The polynomial

f(x) = x2 +5x+5

is 5-Eisenstein and thus dynamically irreducible over Q. But, g(x) = f(x − 3) =
x2 −x−1 is 3-newly reducible as discussed in Example 1.12

However, the following property is a consequence of Theorem 3.7 .

Corollary 3.12. If f ∈ Z[x] is 2-Eisenstein of degree 2m, then, f(x+ c) is dynam-
ically irreducible for all c ∈ Z

Next, we can conclude two dynamical irreducibility criteria for polynomials of the
form x2m +1 (mod 2).

Corollary 3.13. Let f(x) ≡ x2m +1 (mod 2) be a polynomial in Q[x]. If ν2(f(1)) =
1, then, f is dynamically irreducible over Q

Proof. If ν2(f(1)) = 1, then, by Theorem 3.7, f(x + 1) and f2 are 2-Eisenstein. It
follows from Proposition 3.2 that f is dynamically irreducible over Q

Corollary 3.14. Let f(x) = a2mx2m + . . . + a0 ∈ Q[x] such that f(x) ≡ x2m + 1
(mod 2). Define

δ(f) := #{i : ν2(ai) = 1}

Then, f is dynamically irreducible over Q if one of the following conditions hold:

(a) δ(f) is even and a2m +a0 ≡ 2 (mod 4)

(b) δ(f) is odd and a2m +a0 ≡ 0 (mod 4)

Proof. Let f(x) ≡ a2mx2m + . . . + a0 ∈ Q[x] such that f(x) ≡ a2mx2m + g(x) + a0

(mod 4) where g(x) represents the coefficients of f with 2-adic valuation equal to 1.
If δ(f) is even and a2m +a0 ≡ 2 (mod 4). Then, ν2 (g(1)) ≥ 2 and f(1) ≡ a2m +a0 ≡ 2
(mod 4). Thus, ν2 (f(1)) = 1 and by Corollary 3.13, f is dynamically irreducible.
On the other hand, if δ(f) is odd and a2m + a0 ≡ 0 (mod 4), then, ν2 (g(1)) = 1
and f(1) ≡ a2m + 2 + a0 ≡ 2 (mod 4). So, again ν2 (f(1)) = 1 and f is dynamically
irreducible.

Finally, we end this section with some examples.

Example 3.15. Consider the polynomial

f(x) = x8 −8x7 +28x6 −56x5 +70x4 −56x3 +28x2 −8x+7
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Since gcd(−8,7) = 1, we can’t use the Eisenstein criterion for any prime. As
ν2(f(1)) = ν2(6) = 1, therefore, we expect f(x + 1) and f2 to be 2-Eisenstein. As
a check,

f(x+1) = x8 +6

f2(x) ≡ x64 +2 mod 4

As f2 is 2-Eisenstein then f is dynamically irreducible over Q by Corollary 3.13.
Using Corollary 3.14, we notice that

f(x) ≡ x8 +2x4 +3 mod 4

which means that δ(f) = 1 and 1 + 3 ≡ 0 (mod 4), so, dynamical irreducibility still
holds.

Example 3.16. Consider the polynomial

f(x) = (x+a)2m

+ b such that ν2(a) ≥ 0 and ν2(b) = 1

If ν2(a) ≥ 1, then, f is 2-Eisenstein, else, f(x − a) is 2-Eisenstein and thus f is
dynamically irreducible by Theorem 3.7.

Example 3.17. Consider the polynomial

f(x) = x4

7 + 12x3

7 + 54x2

7 + 582x

35 + 1943
105

Note that gcd(12,1943) = 1, so, we can not use the Eisesntein Criterion for any
prime. Nevertheless,

f2(x) = x16

16807 + 48x15

16807 + 1080x14

16807 + 10824x13

12005 + 6512x12

735 + 779568x11

12005 + 22153752x10

60025

+ 140178768x9

84035 + 307086776x8

50421 + 38054968352x7

2100875 + 13193004576x6

300125

+ 530372576x5

6125 + 5532951143206x4

40516875 + 2268156195544x3

13505625 + 1611936869204x2

10504375
+ 8935631095012x

94539375 + 26020147948246
850854375

is 2-Eisenstein because

f2(x) ≡ 3x16 +2x4 +2 (mod 4)
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Indeed, f2 is 2-Eisenstein because

f(x+1) = x4

7 + 16x3

7 + 96x2

7 + 1322x

35 + 4694
105 ≡ 3x4 +2x+2 (mod 4)

is 2-Eisenstein too. Thus, f is dynamically irreducible over Q by Theorem 3.7.

Example 3.18. Consider the polynomial

f(x) = a(x+ c)2m

+ b(x+ c)+d ∈ Q[x]

such that ν2(a) = 0, ν2(b) ≥ 1, ν2(d) = 1 and ν2(c) ≥ 0 for some m ≥ 1. Note
that f(x − c) is 2-Eisenstein and by Corollary 3.9, the polynomial f is dynamically
irreducible over Q.

3.2 Eventually p-Eisenstein Polynomials

In this section, we shall extend the results of the previous section for all primes.
Throughout the section, we assume p is a rational prime and d = pm for some
m ≥ 1. First, we generalize Definition 3.4.

Definition 3.19. A polynomial f ∈ Q[x] is eventually p-Eisenstein if fn is p-
Eisenstein for some n ≥ 1.

Corollary 3.20. Eventually p-Eisenstein polynomials are dynamically irreducible
over Q.

Proof. The result follows immediately from Proposition 3.2 and the dynamical irre-
ducibility of p-Eisenstein polynomials.

Consider the following example.

Example 3.21. Let
f(x) = x3 +3x2 +3x+4

Note that f is not p-Eisenstein for any prime p. Moreover, f2 is not p-Eisenstein
as gcd (9,128) = 1 as seen below.

f2(x) = x9 +9x8 +36x7 +96x6 +198x5 +306x4 +372x3 +360x2 +225x+128
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Yet, f3 is 3-Eisenstein because

f3(x) ≡ x27 +3 (mod 9)

By Corollary 3.20, f is dynamically irreducible over Q

Unlike eventually 2-Eisenstein, if a polynomial is eventually p-Eisenstein, the second
iterate f2 is not always p-Eisenstein. Yet, we can determine the smallest such iterate
using Theorem 2.11 as an eventually p-Eisenstein is also eventually p-type. Next,
we introduce the second major theorem in this thesis.

Theorem 3.22. Let f(x) = adxd + . . .+a0 ∈ Q[x] such that f is not p-Eisenstein.

Then, some iterate fn is p-Eisenstein if and only if the all following hold:

(a) d = pm for some prime p and m ∈ Z+,

(b) f(x) ≡ adxd +a0 (mod p) such that νp(ad) = νp(a0) = 0,

(c) f(x+ c) is p-Eisenstein for some c ∈ Q.

Moreover, the least integer n such that fn is p-Eisenstein is determined by Theorem
2.11.

Proof. Assume that f(x) = adxd + . . . + a0 is not p-Eisenstein but some iterate fn

is p-Eisenstein for some minimal n > 1. Note that f is eventually p-type and by
Theorem 2.10, we can conclude that d = pm, f(x) ≡ adxd +a0 (mod p) with νp(ad) =
νp(a0) = 0 and also g(x) = f(x + fn−1(0)) is p-type. In fact, we should prove that
g(x) is p-Eisenstein also. Observe that νp(g(0)) = νp(fn(0)) = 1. Moreover, by
Theorem 2.11, we know that n = ordp(ad) and using Lemma 2.12, νp(fn−1(0)) = 0
as n − 1 <ordp(ad). Therefore, g is indeed p-Eisenstein. For the other direction,
assume f(x) ≡ adxd + a0 (mod p) for some a,b ∈ Q such that νp(a) = νp(b) = 0,
d = pm and there exists a c ∈ Q such that g(x) = f(x + c) is p-Eisenstein. We need
to show that fn is p-Eisenstein for some iteration n. Again, we know that n = ordp(a)
is the minimal iteration. Let c ≡ −ad

−1a0 (mod p); using Lemma 2.12, we get

fn(x) ≡ g
(
fn−1(x)− c

)
≡ g

ad
n−1xdn−1

+
n−2∑
i=0

ad
ia0 +ad

−1a0

 (mod p)

≡ g
(

ad
n−1xdn−1

+a0ad
−1(1+ad + . . .+ad

n−1)
)

(mod p)
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If ad ≡ 1 (mod p), then, n = p and

fp(x) ≡ g
(

ad
p−1xdp−1

+a0p
)

≡ g
(

ad
p−1xdp−1

)
(mod p)

Otherwise, ad ̸≡ 1 (mod p) and n = ordp(ad). In this case, again,

fn(x) ≡ g
(

ad
n−1xdn−1

+a0ad
−1(1+ad + . . .+ad

n−1)
)

(mod p)

≡ g

(
ad

n−1xdn−1
+a0ad

−1(an
d −1

ad −1 )
)

(mod p)

≡ g
(

ad
n−1xdn−1

)
(mod p)

Since g is p-type, then, fn is p-type too. As νp(fn(0)) = 1, we conclude that fn is
p-Eisenstein.

An extension of Corollary 3.9 is the following corollary.

Corollary 3.23. Let f be a p-Eisenstein polynomial of degree pm. The polynomial
f(x+ c) is dynamically irreducible over Q for all c ∈ Q with νp(c) ≥ 0

Proof. Assume f is p-Eisenstein. By Lemma 3.8, if νp(c) ≥ 1, f(x+c) is p-Eisenstein.
Moreover, if νp(c) = 0, then, f(x+c) is eventually p-Eisenstein by Theorem 3.22

Next, we also extend Corollary 3.12 to the following corollary.

Corollary 3.24. If f ∈ Z[x] is p-Eisenstein of degree pm for some positive integer
m, then, f(x+ c) is dynamically irreducible for all c ∈ Z.

Finally, we extend the criterion in Corollary 3.13 to the following.

Corollary 3.25. Let f(x) ≡ axpm + b (mod p) such that νp(a) = νp(b) = 0 and c ≡
−a−1b (mod p). If νp(f(c)) = 1, then, f(x) is dynamically irreducible over Q.

Proof. Suppose f(x) ≡ axpm +b (mod p) such that νp(a) = νp(b) = 0. If c = a
b ∈ Q is

in the simplest form and νp(c) = 0, then, c ≡ −a−1b (mod p). Whenever νp(f(c)) = 1,
then, f(x+c) is p-Eisenstein and, by Corollary 3.23, the polynomial f is dynamically
irreducible over Q.

Finally, we conclude this section with some examples.

Example 3.26. Consider any polynomial f in Z[x] such that

f(x) ≡ 2x25 +10x3 +3 (mod 25)
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Using Corollary 3.23, we have c ≡ −2−1 × 3 ≡ 1 (mod 5) and ν5(f(1)) = ν5(15) =
1. Note that ord5(2) = 4. Thus, we expect f4(x) to be 5-Eisenstein. As a check,
f2(0) ≡ 9 (mod 25), f3(0) ≡ 16 (mod 25) and f4(0) ≡ 15 (mod 25). So, f4(x) is
indeed 5-Eisenstein and f is dynamically irreducible over Q.

Example 3.27. Consider the following trinomial in Z[x] :

f(x) = xpm

+px+1 where p is an odd prime and m ≥ 1.

Observe that c ≡ −(1)−1 ·1 ≡ −1 (mod p) and νp(f(c)) = 1 because f(c) = f(−1) ≡
−1 − p + 1 ≡ −p (mod p2). So, f(x − 1) and fp(x) are p-Eisenstein. By Corollary
3.23, f is dynamically irreducible over Q.

Example 3.28. Consider the polynomial

f(x) = x11

2 + 11x10

2 + 55x9

2 + 165x8

2 +165x7 +231x6 +231x5 +165x4

+ 165x3

2 + 55x2

2 + 297x

10 + 851
30 ≡ 6x11 +6 (mod 11).

Note that c ≡ −(2−1)−1(851
30 ) ≡ −851

15 ≡ −851(15)−1 ≡ −1 (mod 11). So, we expect
f(x−1) to be 11-Eisenstein. Indeed,

f(x−1) = x11

2 + 121x

5 + 11
3

is 11-Eisenstein. Next, ord11(1
2) = ord11(2) = 10. Thus, we expect f10 to be the least

11-Eisenstein iterate. To check, we calculate the following.

f2(0) ≡ 64 (mod 121)

f3(0) ≡ 104 (mod 121)

f4(0) ≡ 91 (mod 121)

f5(0) ≡ 24 (mod 121)

f6(0) ≡ 106 (mod 121)

f7(0) ≡ 103 (mod 121)

f8(0) ≡ 118 (mod 121)

f9(0) ≡ 109 (mod 121)

f10(0) ≡ 44 ≡ 4 ·11 (mod 121)

From the previous list, f10 is 11-Eisenstein and f is dynamically irreducible over Q.
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Example 3.29. Consider the following polynomial in Q[x] :

f(x) = a(x+ c)pm

+ b where p is a prime, m ≥ 1, νp(a) = 0, νp(b) = 1 and νp(c) ≥ 0

Note that f(x−c) is p-Eisenstein and, by Corollary 3.23, f is dynamically irreducible
over Q.
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Chapter 4

Pure Polynomials

4.1 Pure Polynomials

Throughout this Chapter, we use p to denote a rational prime. In general, a p-
Eisenstein polynomial is an example of a pr-pure polynomial. In this chapter, we
study the dynamical behavior of pr-pure polynomials. To do so, we first introduce
the concept of Newton polygons.

Definition 4.1. [12, Section 1.1] A subset S of a plane is called convex if and only if
for any points P,Q ∈ S, the line segment PQ is totally contained in S. The convex
hull of a set S is the smallest convex set that contains S. In other words, it is the
intersection of all convex sets containing S.

Assuming a 2-dimensional space, we can partition the convex hull to an upper and
lower convex hulls defined as follows:

Definition 4.2. [12, p.6] Let P1 = (x1,y1), . . . ,Pk = (xk,yk) be the convex hull of
some set S such that x1 ≤ . . . ≤ xk. Extend a line from P1 and rotate it counterclock-
wise (clockwise) until it passes through another point in the convex hull. Call this
second point Pi2. Repeat the same process with Pi2 until you reach Pk. The subset
of the convex hull P1,Pi2 , . . . ,Pij = Pk is the lower (upper) convex hull of S.
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Figure 4.1 The upper and lower convex hull [12, p.6]

Definition 4.3. [30, Section 2.2.1] Let f(x) = adxd + . . .+a0 ∈ Q[x] with ada0 ̸= 0.
For a prime p, suppose αi = νp(ai). The Newton Polygon of f with respect to
p is constructed as follows:

(a) Define S := {(0,αd), . . . ,(d− i,αi), . . . ,(d,α0)}.

(b) Consider the lower convex hull of S to be P0 = (0,αd), . . . ,Pr = (d,α0).

(c) Construct a set of broken lines P0P1, . . . ,Pr−1Pr.

(d) Mark the lattice points (points with integer coordinates) on the broken lines
P0 = Q0, . . . ,Pr = Qr+s. They are called the vertices of the Newton polygon.

(e) The broken lines joining the vertices Q0Q1, . . . ,Qr+s−1Qr+s are the sides of
the Newton polygon.

Consider the following example:

Example 4.4. Let

f(x) = x5 +6x4 +2x3 −4x2 +40x+32

If we consider the Newton polygon of f with respect to 2, we should write the 2-adic
valuations of the coefficients. Thus, we write f as

f(x) = 20x5 +213x4 +21x3 −22x2 +23 ·5x+25
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First, we should construct the set S from the coefficients of f

S = {(0,0),(1,1),(1,2),(2,3),(3,4),(5,5)}

Finally, we should plot the set S and sketch the Newton polygon of f
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Figure 4.2 Newton Polygon of f(x)

Notice that f is reducible as

x5 +6x4 +2x3 −4x2 +40x+32 = (x2 +6x+4)(x3 −2x+8)

Call g(x) = x2 +6x+4 and h(x) = x3 −2x+8. If we consider the Newton polygons
of g and h with respect to 2 and mark the sides, we notice the sides of the Newton
polygon of f are composed of the sides of g and h ordered ascendingly by slope.
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g(x) = x2 +6x+4 h(x) = x3 −2x+8 f(x) = g(x)h(x)

Figure 4.3 Newton polygons of g(x) and h(x) compared to g(x)h(x)
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In fact, the previous example is an application of Dumas theorem [15] which is
presented below.

Proposition 4.5. [14] Let f,g and h be polynomials in Z[x] such that f = g × h

and g(0)h(0) ̸= 0. The Newton polygon of f is composed of the polygons of g and h

in such way that the sides are ordered according to increasing slopes.

Proof. Refer to [30, Theorem 2.2.1].

Similar to the case of the polynomial g in Example 4.4, we shall focus on polynomials
whose Newton polygon is one line.

Definition 4.6. Let f(x) = adxd + ad−1xd−1 + . . . + a0 ∈ Q[x]. Suppose there exists
a prime p and a positive integer r such that:

(a) νp(ad) = 0

(b) νp(a0) = r

(c) the Newton polygon of f with respect to p is exactly one line joining (0,0) and
(d,r)

Then, f is said to be pr-pure.

Let f(x) = adxd + . . . + a0 be a pr-pure polynomial of degree d. By the previous
Definition, the Newton polygon of f is precisely the line ℓ joining (0,0) and (d,r).
Now, consider a point P = (d− i,νp(ai)) for some 0 < i < d. If P lies on ℓ, then,
νp(ai)
d−i = r

d . By Definition 4.3, if P is not on ℓ, then, it has to be above it else ℓ does
not include the lower convex hull of the set S in Definition 4.3. Geometrically, if we
choose a point Q = (d− i,y0) on the line ℓ, then, νp(ai) ≥ y0 which implies

νp(ai)
d− i

≥ y0
d− i

= r

d

In fact, the previous inequality is an alternative to condition (c) in Definition 4.6.

Definition 4.7. [21] If f(x) = adxd +ad−1xd−1 + . . .+a0 ∈Q[x] is pr-pure for some
prime p and some r > 0, then, it satisfies the following:

(a) νp(ad) = 0

(b) νp(a0) = r

(c) νp(ai)
d−i ≥ r

d for all 1 ≤ i ≤ d−1
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Despite the fact that a p-Eisenstein polynomial is an example of a pure polynomial,
pure polynomials are not necessarily irreducible; consider the following example.

Example 4.8. The polynomial f(x) = x4 +4 = (x2 −2x+2)(x2 +2x+2) is 22-pure
but reducible over Q.
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Figure 4.4 The polynomial f(x) is 22-pure but reducible over Q.

Nevertheless, a pure polynomial in Q[x] satisfying the Dumas criterion is irreducible
over Q.

Definition 4.9. [15] Let f(x) = adxd + ad−1xd−1 + . . . + a0 ∈ Q[x] is called pr-
Dumas if there exists a prime p and a positive integer r such that:

(a) νp(ad) = 0,

(b) νp(a0) = r,

(c) νp(ai)
d−i ≥ r

d for 1 ≤ i ≤ d−1,

(d) gcd(r,d) = 1.

Moreover, f(x) is irreducible over Q.

In some sources, condition (c) in the previous definition is written as a strict inequal-
ity. Nevertheless, if νp(ai)

d−i = r
d for some 1 ≤ i ≤ d − 1, then, gcd(r,d) > 1. Thus, the

equality in the condition is superfluous but it was included to tone with Definition
4.7. Next, observe that the Eisenstein criterion is a special case of the Dumas crite-
rion with r = 1. For p-Eisenstein polynomials, one can notice that all the iterates of
a p-Eisenstein polynomial are p-Eisenstein. In addition, one has following property:

Proposition 4.10. Let g,f ∈ Q[x]. If g is p-Eisenstein for some prime p and f is
p-type, then, g ◦f is p-Eisenstein.

Proof. Let g be a p-Eisenstein and f be a p-type polynomial. Since both f and
g are both p-type polynomials, then, f ◦ g is p-type. It is enought to show that
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νp(f(g(0))) = 1 to conclude that f ◦g is p-Eisenstein. By Lemma 3.8, it follows that
νp(f(g(0))) = 1 and f ◦g is p-Eisenstein.

Next, we generalize these two facts for pr-pure polynomials. Nevertheless, some
preparation is needed. The following Lemma is a generalization of Lemma 3.8.

Lemma 4.11. Suppose f is a pr-pure polynomial of degree d and let c ∈Q such that
νp(c) = s > r

d , then, νp(f(0)) = r.

Proof. Suppose f(x) = adxd + . . .+a0 is a pr-pure polynomial. Assume that νp(c) =
s > r

d . Moreover, f(c) = ad(c)d + . . . + ai(c)i + . . . + a0 for some 0 < i < d. We have
νp(adcd) = ds > d( r

d) = r. Also, νp(aic
i) = νp(ai) + is. Since, f is pr-pure, then,

νp(ai)+ is > (d− i) r
d + i r

d = r. Given, νp(a0) = r, it follows that νp(f(c)) = r

Next, we extend Proposition 4.10 to pr-pure polynomials in the following theorem.

Theorem 4.12. Let f,g ∈ Q[x]. Suppose f is a pr-pure polynomial of degree d > 1
and g(x) ≡ bxe mod ps for some e ≥ 1 such that νp(b) = 0 and s > r

d . Then, f ◦g is
pr-pure.

Proof. Let f(x) = adxd + . . .+aix
i + . . .+a0 be pr-pure and g(x) = bxe +psh(x) such

that νp(h) ≥ 0, it degree is less than e and s r
d . To show f ◦g is pr-pure, we first need

to show that all the monomials in the expansion of ai(bxe +psh(x))i for all 0 ≤ i ≤ d

satisfy Definition 4.9. First, we prove that condition (c) in Definition 4.9 is satisfied;
neglecting the coefficients with zero p-adic valuation, a monomial in the expansion
of ad(bxe +ps(h(x))d is of the form

ad(xe)d−k(psh(x))k = cxe(d−k)+kα = cxde−ek+kα

such that νp(c) ≥ ks > k r
d and 0 ≤ α ≤ e − 1 for some 0 < k ≤ d. If the monomial

doesn’t satisfy the condition then,

s

e−α
= ks

de−de+ ek −kα
≤ νp(c)

de−de+ ek −kα
<

r

de

Given s > r
d , we deduce the following inequality.

r
d

e−α
<

s

e−α
<

r

de

Simplifying, we conclude the following inequality.

1
e−α

<
1
e
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Yet, this implies that α < 0 which is a contradiction. For the second type namely
ai(bxe +psh(x))i for 0 < i < d, a monomial in the expansion is of the form

(bxe)i−k(psh(x))k = aitx
e(i−k)+kα = aitx

ei−ek+kα

such that νp(ait) = νp(ai) + νp(t) ≥ νp(ai) + ks for some 0 ≤ k ≤ i < d and 0 ≤ α ≤
e−1. Again, if the monomial doesn’t satisfy the condition, then,

νp(ai)+νp(t)
de− ei+ ek −kα

<
r

de
.

Since f is pr-pure, i.e., νp(ai)
d−i ≥ r

d and s > r
d , we get the following inequality:

(d− i) r
d +k r

d

de− ei+ ek −kα
<

νp(ai)+ks

de− ei+ ek −kα
≤ νp(ai)+νp(t)

de− ei+ ek −kα
<

r

de

Simplifying, we get
(d− i)+k

de− ei+ ek −kα
<

1
e

Cross multiplication and simplification yield the same contradiction

de− ei+ ek < de− ei+ ek −kα which implies α < 0

Next, it is obvious to see that the leading coefficient of f ◦g has zero p-adic valuation.
Finally, by Lemma 4.11, as νp(g(0)) ≥ s > r

d , then νp(f(g(0)) = r and thus f ◦ g is
pr-pure.

In particular, If d > r in the previous Theorem, we get the following interesting
corollary:

Corollary 4.13. Let f be a pr-pure polynomial of degree d > r, If g is a p-type
polynomial, then, f ◦g is pr-pure.

Proof. This is a special case of Theorem 4.12 with s ≥ 1 > r
d .

In fact, if g in Theorem 4.12 is pr-pure, we conclude the following.

Theorem 4.14. If f,g ∈ Q[x] are pr-pure of positive degrees, then, f ◦g is pr-pure.

Proof. Let f(x) = adxd +ad−1xd−1 + . . .+a0 and g(x) = bex
e +be−1xe−1 + . . .+b0 be

two pr-pure polynomials for some positive integers d,e,r and a prime p. We should
show that

f(g(x)) = ad(bex
e + be−1xe−1 + . . .+ b0)d + . . .+ai(bex

e + be−1xe−1 + . . .+ b0)i + . . .+a0
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is pr-pure, in other words, f ◦g should satisfy Definition 4.7. To check condition (c)
in the Definition, we classify the monomials of f ◦g into two types: monomials from
the expansion of ad(bex

e + be−1xe−1 + . . .+ b0)d and at(bex
e + be−1xe−1 + . . .+ b0)t for

any 0 ≤ t ≤ d. For the first type, suppose

e∏
i=1

(
bix

i
)qi

is a monomial in the expansion of ad

(
bex

e + be−1xe−1 + . . .+ b0
)d

such that: its
degree is d ≤∑

qii < de, the sum of the exponents is ∑qi = d, the p-adic valuation
of the coefficients νp(bi) = αi ≥ r(e−i)

e for every 0 < i < e and the p-adic valuation of
the coefficient of the monomial is νp (∏e

i=1 bi
qi) =∑

qiαi. Note that we are excluding
the exponents of b0 else the p-adic valuation of the monomial will be at least r and
it will trivially satisfy the condition (c) in Definition 4.7. We should show that

∑
qiαi

de−∑
qii

≥ r

de
.

Indeed, consider the following inequality:

∑
qiαi ≥ r

e

∑
qi(e− i) = r

e
(e
∑

qi −
∑

qii) = r

d
(de−

∑
qii) >

r

de
(de−

∑
qii)

For the second type, any monomial in the expansion of at(bex
e + be−1xe−1 + . . .+ b0)t

is of the form
at

e∏
i=1

(bix
i)qi

such that the degree is t ≤∑
qii ≤ et, the sum of the exponents ∑qi = t, the p-adic

valuation of the coefficient is νp(at)+∑qiαi given νp(at) ≥ r
d(d−t) and αi ≥ r

e(e− i).
Again, we need to show that

νp(at)+∑
qiαi

de−∑
qii

≥ r

de
.

Which implies that

νp(at)+
∑

qiαi ≥ r

d
(d− t)+ r

e

∑
qi(e− i) = r

d
(d− t)+ r

e
(e
∑

qi −
∑

qii).

If this monomial does not satisfy condition (c), then,

r

d
(d−t)+rt− r

e
(
∑

qii) = r

d
(d−t)+ r

e
(e
∑

qi −
∑

qii) ≤ νp(at)+
∑

qiαi <
r

de
(de−

∑
qii).
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Taking the leftmost and rightmost part of the inequality, we have

r

d
(d− t)+ rt− r

e
(
∑

qii) <
r

de
(de−

∑
qii).

Dividing by r, the inequality becomes

1
d

(d− t)+ t− 1
e

(
∑

qii) <
1
de

(de−
∑

qii).

After expansion, we conclude

1− t

d
+ t− 1

e

∑
qii < 1− 1

de

∑
qii which implies − t

d
+ t < (1

e
− 1

de
)
∑

qii.

Finally, we reach the following contradiction:

t(1− 1
d

) <
1
e

(1− 1
d

)
∑

qii which means that et <
∑

qii.

So, f ◦ g satisfies condition (c). Finally, given g is pr-pure, then, νp(g(0)) = r. By
Lemma 4.11, as r > r

d , then, νp(f(g(0))) = r and the statement follows.

To understand the difference between Theorem 4.12 and Theorem 4.14, consider the
following example.

Example 4.15. The following polynomials:

f(x) = x2 +32,

g(x) = x4 +4x3 +32.

are both 25-Dumas and

f (g(x)) = x8 +8x7 +16x6 +64x4 +256x3 +1056. ≡ x8 +8x7 +16x6 (mod 25)

is 25-Dumas too as ν2(8)
8−7 = 3 > ν2(1056)

8 = 5
8 and ν2(16)

8−6 = 2 > 5
8 . This is a direct

application of Theorem 4.14. However, if we try to apply Theorem 4.12, then, d =
deg(f) = 2, r = 5, so, s ≥ 3 =

⌈
5
2

⌉
. But, g(x) ≡ x4 + 4x3 ̸≡ x4 (mod 23). Thus,

Theorem 4.12 fails to prove f ◦ g is 25-pure in this case. Now, if we introduce the
polynomial

h(x) = x4 +8.

We have h(x) ≡ x4 (mod 23) and, by Theorem 4.12, f ◦ h is 25-Dumas. To check,
we have

f (h(x)) = x4 +16x2 +96
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and ν2 (f(h(0))) = ν2(96) = 5 and ν2(16)
4−2 = 2 > 5

4 . Nevertheless, h is not 25-pure and
Theorem 4.14 can not be applied.

The following corollary follows from Theorem 4.14 by restricting f = g.

Corollary 4.16. If f is a pr-pure polynomial, then, fn is pr-pure for all n ≥ 1.

4.2 Applications of Theorems 4.12 and 4.14

In this section, we will discuss several applications of Theorems 4.12 and 4.14. In
the previous section, we introduced Dumas polynomials as a class of irreducible pure
polynomials. Given Theorem 4.14, we deduce the following fact.

Corollary 4.17. Let f and g be pr-Dumas polynomials in Q[x] for some prime p,
then, f ◦g is pr-Dumas. Moreover, a pr-Dumas polynomial is dynamically irreducible
over Q.

Proof. If f and g are pr-pure, then by Theorem 4.14, f ◦g is pr-pure. Let the degrees
of f and g be d and e respectively. If f and g are pr-Dumas, then, gcd(r,d) =
gcd(r,e) = gcd(r,de) = 1. This implies that f ◦g is pr-Dumas. Inductively, it follows
that fn is pr-Dumas for all n ≥ 1 and hence dynamically irreducible by Definition
4.9

In what follows, we introduce a subclass of Dumas polynomials.

Definition 4.18. [2, Definition 5] Let f(x) = adxd + . . . + a0 ∈ Q[x]. We say f is
pr-Eisenstein if there is a prime p and an integer r ≥ 1 such that

(a) νp(ad) = 0

(b) νp(ai) ≥ r for all 1 ≤ i ≤ d−1

(c) νp(a0) = r

(d) gcd(r,d) = 1

Note that a p-Eisenstein polynomial is a pr-Eisenstein with r = 1. Ali [2, Corollary
1] proved that pr-Eisenstein polynomials are dynamically irreducible over Q. In fact,
Corollary 4.17 is a generalization of this result.
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Example 4.19. Consider the following trinomial in Q[x]

f(x) = xd +axd−1 +p2k

; d is odd, k ≥ 0 and νp(a) >
2k

d

Note that νp(a)
d−(d−1) = νp(a) > 2k

d and gcd(2k,d) = 1. In this case, f is p2k-Dumas and
thus dynamically irreducible over Q.

Corollary 4.20. Let g be a pr-Dumas of degree d and f(x) ≡ axe (mod ps) be a
p-type polynomial for some s > r

d . If gcd(r,e) = 1, then, gn ◦ fm is irreducible for
all n,m ≥ 1. In particular, gn is f -stable for any n ≥ 1.

Proof. By Theorem 4.17, gn is pr-Dumas for any n ≥ 1. Also, fm(x) ≡ bxem

(mod ps) is p-type for some b with νp(b) = 0. Since gcd(r,e) = 1, therefore, fn ◦ gm

is pr-Dumas by Theorem 4.12.

Consider the following example.

Example 4.21. Let

f(x) = x17 +27x12 +27x10 +162x7 +729x5 +4374.

= (x7 +27)(x5 +9)(x5 +18)

Note that g1(x) = x7 +27 is 33-Dumas with r1
d1

= 3
7 < 1, g2(x) = x5 +9 is 32-Dumas

with r2
d2

= 2
5 < 1 and g3(x) = x5 +18 is 32-Dumas with r3

d3
= 2

5 < 1. This implies that
s1, s2, s3 ≥ 1. Since f(x) ≡ x17 (mod 31) and gcd(17,7) = gcd(17,5) = 1. By the
previous Corollary, g1, g2 and g3 are f -stable. In other words, for any n ≥ 1, the
number of irreducible factors of fn is exactly 3.

The previous example motivates the following corollary.

Corollary 4.22. Let f(x) ≡ axe (mod ps) be a p-type polynomial of degree e, s ≥ 1.
Suppose for any n ≥ 1 and some t ≥ 2, the iterate fn(x) = g1(x)g2(x) · . . . · gt(x) of
degrees d1,d2 . . . ,dt ≥ 1. If for all 2 ≤ i ≤ t, the following conditions apply:

(a) gi is pri-Dumas for some ri ≥ 1,

(b) gcd(di, e) = 1,

(c) s > ri
di

.

Then, g1,g2, . . . ,gt are all f -stable. In fact, for any N ≥ n, the number of irreducible
factors of fN is exactly t. Moreover, the irreducible factors of fN are all Dumas
polynomials.
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Proof. Let f(x) ≡ aex
e (mod p) be a p-type polynomial. Assume g = g1 with de-

gree d = d1 is a pr-Dumas polynomial such that it is an irreducible factor of an
iterate fn with gcd(d,e) = 1 and s > r

d . By Corollary 4.17, g ◦ fk is pr-Dumas
for any k ≥ 1. In general, if fn(x) = g1(x) · g2(x) · . . . · · ·gt(x) and every gi for
1 ≤ i ≤ t is pri-Dumas, then, for any N ≥ n, we conclude fN = fn(fN−n) =
g1
(
fN−n

)
· g2

(
fN−n

)
· . . . · gt

(
fN−n

)
. By the previous argument, the polynomials

g1
(
fN−n

)
,g2

(
fN−n

)
, . . . ,gt

(
fN−n

)
are pri-Dumas and the result follows.

If the condition “s > r
d” in Corollary 4.20 is dropped, we deduce a more general

corollary.

Corollary 4.23. Let g be a pr-Dumas polynomial of degree d and f(x) ≡ axe

(mod ps) be a p-type polynomial of degree e such that gcd(r,e) = 1. Then, there
exists an integer n ≥ 1 such that for all N ≥ n it is true that gN ◦ fk is irreducible
for all k ≥ 1. In particular, gn is f -stable for all N ≥ n.

Proof. Let N = min{n : s > r
dn }. For any n ≥ N , gn is pr-Dumas of degree dn by

Corollary 4.17 and s > r
dN ≥ r

dn and also νp(gk(x)−bkxek) ≥ s where bk is the leading
coefficient of gk. So, by Corollary 4.12, gn ◦fm is pr-Dumas for all n ≥ N .

In the previous corollary, one can not be sure of the irreducibility of gn ◦f whenever
n < N . Consider the following example:

Example 4.24. Consider the following polynomials

g(x) = x2 +27 is 33-Dumas

f(x) = x2 +3x+3 is 3-type

Based on corollary 4.20, r = 3 and d = 2 thus r
d = 3

2 . Then, s ≥ 2 > 3
2 but f(x) ̸≡ x2

(mod 32). So, we need to use Corollary 4.23 with s = 1 to find N = min{n : 1 >
3

2n } = 2. So, we expect gn ◦f to be 33-Dumas for all n ≥ 2. Indeed,

(g2 ◦f)(x) = x8 +12x7 +66x6 +54x5 +27x4 +27x2 +27

is 27-Dumas and by Corollary 4.17, gn ◦f is 27-Dumas. Yet,

g ◦f =
(
x2 +3

)(
x2 +6x+12

)
is reducible

So far, we have discussed the applications of Theorems 4.12 and 4.14 to Dumas
polynomials. We have already mentioned that pure polynomials are not always
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irreducible, yet, can we find an upper bound for the number of irreducible factors
of a pure polynomial? In fact, the answer is in the following proposition.

Proposition 4.25. [21, Theorem 1.2] Let f be a pr-pure polynomial of degree d in
Q[x]. Then, f has at most gcd(d,r) irreducible factors over Q and each irreducible
factor has degree which is at least d

gcd(d,r)

Dynamically, we can conclude the following about the iterations of a pure polyno-
mial.

Theorem 4.26. Suppose f is a pr-pure. Then, for any n ≥ 1, the iterate fn has
most gcd(dn, r) irreducible factors over Q and each irreducible factor has degree
which is at least dn

gcd(dn,r) . Moreover, f is eventually stable over Q.

Proof. Let f be a pr-pure polynomial of degree d. For some n ≥ 1, consider an iterate
fn of degree dn. By Corollary 4.16, the iterate fn is pr-pure and by Proposition
4.25, has most gcd(dn, r) irreducible factors over Q and each irreducible factor has
degree which is at least dn

gcd(dn,r) . Moreover, let cn = gcd(dn, r) and define kn to be
the number of irreducible factors of fn. Obseve that the set {c1, . . . , cn, . . .} is finite
as there must exist an N ≥ 1 such that for all n ≥ N , it is true that gcd(dn, r) = cn =
cN = gcd(dN , r). In this case, kn ≤ cn ≤ cN for all n ≥ 1 and thus f is eventually
stable.

In [18], Brown and Micheli introduced a set S of irreducible quadratic polynomials
over a finite field. This set S induced another set C composed of arbitrary compo-
sitions of polynomials in S. If all the elements of C are irreducible, then S is said
to be dynamically irreducible. In Q[x], one can deduce the following definition.

Definition 4.27. Let I be a set of polynomials in Q[x] with positive degrees. We
say I is a dynamically irreducible set in Q[x] if any polynomial formed by
composition of polynomials in I is irreducible over Q.

So far, we are focusing on the dynamically irreducible set of the form I(f) =
{f, . . . ,fn, . . .}. The set p-Eisenstein polynomials for a particular prime p is an-
other example of a dynamically irreducible set. In light of our results, we display
the following example.

Example 4.28. Let p be a prime. Define

E(p) := {f ∈ Q[x] : f is p-Eisenstein and p ∤ deg(f)}.
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The set E(p) is dynamically irreducible over Q. Also, define

D(p,q) := {f ∈Q[x] : f is pqk

-Dumas such that deg(f) > qk for a prime q and k ≥ 1}

In fact, D(p,q) is a dynamically irreducible set because if f and g are pqk-Dumas and
pqm-Dumas respectively, Corollary 4.13 ensures that the composition f ◦g (g ◦ f) is
of degree not divisible by q and is pqk(pqm)-Dumas. Moreover, the set E(p)∪D(p,q)
is also dynamically irreducible because if f ∈ D(p,q) (E(p)) and g ∈ E(p) (D(p,q)),
then, f ◦g ∈ D(p,q) (E(p)) by Corollary 4.13 (Proposition 4.10).

4.3 Eventually Pure Polynomials

In this section, we focus on eventually p-type polynomials, In particular, a polyno-
mial which is not p-type but one of its iterates is p-type. In Chapter 3, we discussed
Eventually p-Eisenstein polynomials. In this section, our aim is to extend this dis-
cussion to include pr-pure polynomials. First, Consider the following example.

Example 4.29. The polynomial

f(x) = −x3 − 39x2

7 − 72x

7 − 31
35

is not p-type for any prime p. Yet,

f2(x) = x9 + 54x8

7 + 1287x7

49 + 56607x6

1715 − 53919x5

1715 − 36864x4

245

− 696429x3

8575 + 1465479x2

8575 + 356184x

1715 − 1090557
6125

is 33-pure. As νp

(
1090557

6125

)
= 3 and r

d = 3
9 = 1

3 . To check condition (c) in Definition
4.7, we notice that

f2(x) ≡ x9 +18x7 +3x6 +9x4 +9x3 (mod 33)

In fact, it is enough to check the condition for the coefficients with a 3-adic valuation
less than 3. We have ν3(18)

9−7 = 1 ≥ 1
3 , ν3(3)

9−6 = 1
3 ≥ 1

3 , ν3(9)
9−4 = 2

5 ≥ 1
3 , ν3(9)

9−3 = 1
3 ≥ 1

3 . and
thus f2 is 33-pure.

The previous example motivates the following definition.
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Definition 4.30. Let p be a prime and r be a positive integer. A polynomial f ∈Q[x]
of degree d is said to be eventually pr-pure if fn is pr-pure for some iteration n.
In particular, f is eventually pr-Dumas if fn is pr-Dumas.

Corollary 4.31. An eventually pr-pure polynomial is eventually stable. In particu-
lar, an eventually pr-Dumas polynomial is dynamically irreducible.

Proof. Suppose f is eventually pr-pure for some prime and r ≥ 1. In other words, fn

is pr-pure for some n ≥ 1. If n = 1, the result follows from Theorem 4.26. Whenever
n > 1, the iterates f tn are pr-pure for all t ≥ 1 by Corollary. 4.16. Thus by Theorem
4.26, the number of irreducible factors for the iterates fnt is less than some c ≥ 1
for any t ≥ 1. Thus f is eventually stable. In particular, if fn is pr-Dumas, then,
c = 1 and f is dynamically irreducible over Q.

A pr-pure is also p-type, so, an eventually pr-pure should satisfy Theorem 2.10.
Furthermore, an eventually p-Eisenstein polynomial is exactly eventually p-pure.
As a generalization of Theorem 3.22, one predicts a polynomial f to be eventually
pr-pure whenever its degree is pm and f(x + c) is pr-pure for some c ∈ Q such that
ν2(c) ≥ 1. However, the following example shows that the previous guess is not
always true.

Example 4.32. For a polynomial

f(x) = x2 +10x+17,

its shift,
f(x−1) = x2 +8x+8,

is 23-Dumas, but,
f2(x) = (x2 +8x+14)(x2 +12x+34)

is not 23-Dumas because it is reducible.

In the previous example, the degree of f is d = 2, the prime is p = 2 and r = 3. In
particular, d = pm ≤ r for some m ≥ 1. Nevertheless, we assume d > r for the rest of
this section. Our aim is to provide a complete characterization of eventually pr-pure
polynomials of degree d > r. First, we introduce the following proposition.

Proposition 4.33. Let r be a positive integer and p be a prime. Suppose f,g are
polynomials in Q[x] with degrees d and e respectively. If f ◦g is pr-pure polynomials
for some d < r and g is p-type, then, f (x+g(0)) is pr-pure.

Proof. Suppose f ◦ g is pr-pure and g is p-type. Assume that deg(f) = d > r. Let
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h(x) = f(x + g(0)). By Lemma 2.9, h is p-type and νp(h(0)) = νp(f(g(0)) = r. So,
we need to show that h satisfies condition (c) in Definition 4.7. Suppose h(x) =
adxd + . . .+a0 and g(x)−g(0) = bex

e + . . .+ b1x. First, assume that some 0 < k < d

is the maximum positive integer such that ak doesn’t satisfy condition (c), i.e.,
νp(ak)
d−k < r

d . Given

h(g(x)−g(0)) = ad(bex
e + . . .+ b1x)d + . . .+ak(bex

e + . . .+ b1x)k + . . .+a0,

the monomial akxek doesn’t satisfy condition (c) as νp(ak)
de−ek < r

de . Yet, when added
with monomials of the same degree, the sum should satisfy the condition as f ◦g is
pr-pure. Thus, there has to be other monomials in the expansion of h(g(x) − g(0))
of degree ek whose coefficients have p-adic valuation less than (d−k)r

d . For some
0 < j < k, the monomials in the expansion of aj(bex

e + . . .+ b1x)j have degree strictly
less than ek. If k < j < d, then, aj satisfies the condition (c). By Corollary 4.13 and
since g(x)−g(0) is p-type, all the monomials in the expansion of aj(bex

e + . . .+ b1x)j

should satisfy condition (c). Finally, for j = d and given νp(ad) = 0, the monomials
in the expansion of ad(bex

e + . . .+ b1x)d satisfy the condition as outlined in the proof
of Theorem 4.12 and stated in Corollary 4.13, so, f(x+g(0)) is pr-pure.

We are now ready to state and prove the main theorem of this section.

Theorem 4.34. Let r be a positive integer and p be a prime. Suppose f(x) =
adxd + . . . + a0 ∈ Q[x] is not pr-pure and d > r. Then, f(x) is eventually pr-pure if
and only if the following conditions hold.

(a) d = pm for some m ≥ 1,

(b) f(x) ≡ adxd +a0 (mod p) such that νp(ad) = νp(a0) = 0,

(c) f(x+ c) is pr-pure for some c ∈ Q.

Moreover, the least integer n > 1 such that fn is pr-pure is determined by Theorem
2.10.

Proof. Suppose f(x) = adxd + . . .+a0 is not pr-pure but fn is pr-pure for some n > 1
and d > r. Then f satisfies Theorem 2.10, in other words, d = pm for some m ≥ 1 and
f(x) ≡ adxd +a0 (mod p) such that νp(ad) = νp(a0) = 0. Since fn(x) = f

(
fn−1(x)

)
is pr-pure, therefore by Proposition 4.33, f

(
x+fn−1(0)

)
is pr-pure. Conversely,

suppose f satisfies conditions (a),(b) and (c) in the previous Theorem. Let g(x) =
f(x + c) be pr-pure for some c ∈ Q. By Theorem 2.10, there exists an iteration
n > 1 such that fn is p-type. Moreover, fn(x) = f

(
fn−1(x)

)
= g

(
fn−1(x)− c

)
,

so, fn−1(x) − c must be p-type as g
(
fn−1(x)− c

)
is p-type. By Proposition 4.13
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as d > r, then, fn(x) = g
(
fn−1(x)− c

)
is pr-pure, in other words, f is eventually

pr-pure.

Consider the following examples.

Example 4.35. The polynomial

f(x) = x8 +8x7 +28x6 +56x5 +70x4 +56x3 +28x2 +8x+5.

=
(
x4 +4x3 +4x2 +1

)(
x4 +4x3 +8x2 +8x+5

)
.

is reducible but not pr-pure for any prime p as gcd(5,8) = 1. However,

f2(x) ≡ x64 +4 (mod 8)

Indeed, f2 is 22-pure because

f(x−1) = x8 +4

is 22-pure too by Theorem 4.34. Moreover, as gcd(8,ν2(4)) = 2, the factors of f ,
namely g(x) = x4 + 4x3 + 4x2 + 1 and h(x) = x4 + 4x3 + 8x2 + 8x + 5 are f -stable by
Theorem 4.26.

Example 4.36. The family of polynomials

f(x) = (x+a)pm

+ b ∈ Q[x]; νp(a) ≥ 0 and 1 ≤ νp(b) ≤ pm for some prime p.

is eventually stable over Q. If gcd(pm,νp(b)) = 1, then, f is dynamically irre-
ducible. Otherwise, the number of irreducible factors of any iterate is at most
max{gcd(pnm,νp(b)) : n ≥ 1}.

We extend Question 3.24 to the following.

Question 4.37. If f ∈ Z[x] is eventually stable polynomial, then, is f(x + c) even-
tually stable for all c ∈ Z?

The answer is No. Consider the following example.

Example 4.38. The polynomial

f(x) = x2 +8x+12

is 22-pure as ν2(12) = 2 and ν2(8)
2−1 = 3 > 1. By Proposition 4.25, If the number of

irreducible factors of fn is kn, then, kn ≤ 2 for all n ≥ 1. Thus, f is eventually
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stable over Q. However,
f(x−3) = x2 +2x−3

is not eventually stable by Example 1.16.

In the previous example, the degree d of f is equal to the 2-adic valuation of its
constant coefficient, r. However, if d > r, we conclude the following corollary.

Corollary 4.39. Let f ∈Z[x] be a pr-pure polynomial of degree pm. The polynomial
f(x + c) is eventually stable for all c ∈ Z. In particular, if f is pr-Dumas, then,
f(x+ c) is dynamically irreducible.

Proof. The proof follows from Theorem 4.30.

The previous corollary is an extension of Corollary 3.24. In addition, an extension
of Corollary 3.23 is the following.

Corollary 4.40. Let f ∈Q[x] be a pr-pure polynomial of degree pm. The polynomial
f(x+c) is dynamically irreducible for all c ∈ Q with νp(c) ≥ 0. In particular, if f is
pr-Dumas, then, f(x+ c) is dynamically irreducible given νp(c) ≥ 0.

Proof. The proof follows from Theorem 4.34.

Next, An application of Theorem 4.30 and Corollary 4.17 is the following.

Corollary 4.41. Let p be a prime. Suppose f,g are monic polynomials in Q[x] such
that g is the reduction of g modulo p and deg(g) = deg(g) = e. If f is eventually
pr-Dumas for some iteration n ≥ 1, g is irreducible in Fp[x] and gcd(e,r) = 1, then,
fkn ◦g is irreducible in Q[x] for all k ≥ 1. In addition, if g is dynamically irreducible
in Fp[x], then, fkn ◦gm is irreducible in Q[x] for all k,m ≥ 1 and fkn is g-stable for
all k ≥ 1 in Q[x].

The proof of the previous Corollary depends on a special case of the generalized
Schönemann polynomial discussed in [5]. We present this special case as a lemma.

Lemma 4.42. Let A and g be polynomials in Q[x]. Assume that the g-expansion of
the polynomial A in Q[x] is given by

A = adgd + . . .+a1g +a0.

for some a0, . . . ,ad ∈ Q[x]. Suppose there exists a prime p such that:

(a) The reduction of g modulo p is irreducible over Fp,
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(b) ad(x) = 1,

(c) νp(ai)
d−i ≥ νp(a0)

d > 0 for all 1 ≤ i ≤ d−1,

(d) gcd(νp(a0),d) = 1.

Then, A is irreducible in Q[x].

We remark that if we force a0, . . . ,ad to be constant polynomials and g(x) = x, we
deduce the monic case of Definition 4.9

Proof of Corollary 4.41. Let f be a polynomial in Q[x] such that fn(x) = xd + . . .+
a0 is pr-Dumas for some prime p and some iteration n ≥ 1. Suppose g is a polynomial
in Q[x] of degree e such that g is irreducible in Fp[x]. If gcd(e,r) = 1, then

A(x) = fn (g(x)) = adgd + . . .+a0.

By assumption, the polynomial fn ◦ g satisfies the conditions in Lemma 4.42 and
thus irreducible in Q[x].

Another lemma that combines irreducibility over a finite field, number field and the
Rational field is the following.

Corollary 4.43. let f,g ∈Q[x] and p be a rational prime such that g is the reduction
of g modulo p. Assume that f is a pr-Dumas polynomial for some r ≥ 1 and α is a
root of f . If g is irreducible over Fp, then, g(x) − α is irreducible over the number
field Q(α).

Proof. Assume f,g ∈ Q[x] satisfy the conditions in the Lemma for some rational
prime p. By Lemma 4.42, f ◦ g is irreducible over Q. By Proposition 1.3, if α is a
root of f , the polynomial g(x)−α must be irreducible over Q(α).

We end this section with the following example.

Example 4.44. Consider the polynomial

g(x) = x2 +1 ∈ Q[x].

If we consider g in F3[x] and using the condition in Proposition 1.6, we get γ = 0,
−ag(γ) = 2 = agn(γ) for all n ≥ 2. Since 2 is a nonsquare in F3, so, g is dynamically
irreducible over F3. If f ∈ Q[x] is a monic 3r-Dumas polynomial for some r ≥
1, then, fn ◦ gm ∈ Q[x] is irreducible for all n,m ≥ 1 by the previous corollary.
Moreover, if f is eventually 3r-Dumas, then, by Theorem 2.10, the iterates fkp
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are 3r-Dumas for all k ≥ 1. It follows by the previous corollary that fkp ◦ gm is
irreducible over Q.
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