
KNOWLEDGE GRAPH REPRESENTATION OF ELECTRONIC
HEALTH RECORDS FOR CLINICAL PREDICTIONS

by
EGE ALPAY

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
June 2022

EGE ALPAY 2022 ©

All Rights Reserved

ABSTRACT

KNOWLEDGE GRAPH REPRESENTATION OF ELECTRONIC HEALTH
RECORDS FOR CLINICAL PREDICTIONS

EGE ALPAY

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, JUNE 2022

Thesis Supervisor: Asst. Prof. Öznur Ta�tan Okan

Keywords: Electronic Health Records, Knowledge Graph Embeddings, MIMIC-III,
Machine Learning

In many countries, key clinical and administrative data of the patients are now sys-
tematically collected, recorded, and stored in digital formats. These patient-specific
medical data are referred to as electronic health records (EHR). EHR data are rich;
they capture patient-health care provider interaction at many encounters over time.
This systematic digital collection of medical data presents a significant opportunity
for developing data-driven technologies for transforming healthcare. Especially for
high-stake situations with high uncertainty, such as in intensive care units (ICUs),
these systems have the potential to reduce medical errors by assisting health care
providers throughout their decision-making process.

While EHRs have the potential to bring solutions to diverse problems in the health-
care ecosystem, their use direct in predictive models is not trivial. Among many
properties that yield technical challenges in machine learning systems, we address
its sparse and heterogeneous nature. In this study, we propose a strategy where
one can unify the heterogeneous data types in a knowledge graph framework and
learn a dense patient representation that encodes meaningful information from pa-
tient EHRs. Our framework employs widely adapted knowledge graph embedding
methods and deploys them in di�erent ICU prediction tasks. These tasks comprise
mortality prediction and binarized length of stay prediction tasks. We augment the
learned patient representation from the knowledge graphs with lab measurements
and vital signs. Compared to a state-of-the-art model, the proposed representation
achieves superior performance in three of the four di�erent classification tasks.

iv

ÖZET

ELEKTRON�K SA�LIK KAYITLARINI TEMEL ALAN B�LGE Ç�ZGE
TEMS�LLER�N�N KL�N�K TAHM�NLERDE KULLANIMI

EGE ALPAY

B�LG�SAYAR B�L�M� VE MÜHEND�SL��� YÜKSEK L�SANS TEZ�, HAZ�RAN
2022

Tez Danı�manı: Dr. Ö�r. Üyesi Öznur Ta�tan Okan

Anahtar Kelimeler: Elektronik Sa�lık Kayıtları, Bilgi Çizge Gösterilimi,
MIMIC-III, Makine Ö�renimi

Birçok ülkede, hastaların temel klinik ve idari verileri artık sistematik olarak
toplanıyor, kaydediliyor ve dijital formatlarda saklanıyor. Hastaya özel bu tıbbi
verilere elektronik sa�lık kayıtları (ESK) adı verilir. ESK’ler birçok farklı veri tip
içerir ve hastanın sa�lık sistemi ile sa�lık hizmeti sa�layıcısı ile kar�ıla�malarındaki
etkile�imi yakalar. Tıbbi verilerin sistematik ve dijital olarak toplanması, sa�lık
hizmetlerini geli�tirmeyi hedefleyen, veriye dayalı teknolojiler için önemli bir fır-
sat sunuyor. Özellikle yo�un bakım üniteleri gibi yüksek belirsizlik ve yüksek risk
içeren durumlarda bu sistemler, sa�lık hizmeti sa�layıcılarına karar verme süreç-
lerinde yardımcı olarak tıbbi hataları azaltma potansiyeline sahiptir.

ESK’ler sa�lık alanındaki çe�itli sorunlara çözüm getirme potansiyeline sahip olsa
da do�rudan tahmin modellerinde kullanılamazlar. Bu tezde, ESKların makine
ö�renim sistemlerinde zorlu�a sebep olan özellikleri arasında, seyrek ve heterojen
yapısı ile ilgili problemi a�maya çalı�tık. Bu çalı�mada, yo�un bakımdaki hastaların
farklı türdeki verilerini bilgi çizgesi olarak temsil edip, çizge üzerinde hastaların
yo�un gösterimlerini ö�renen bir yöntem sunuyoruz. Sundu�umuz yöntem, sıkça
kullanılan bilgi çizge gösterilim ö�renme yöntemlerini kullandık ve ö�renilen göster-
imleri farklı yo�un bakım ünitesinde gerçekle�en tahmin görevlerinde kullandık. Bu
görevler, yo�un bakım ünitelerinde ölüm tahmini ve kalı� süresi tahminini içerdi.
Bilgi çizgelerinden ö�renilen hasta gösterimleri, laboratuvar ölçümleri ve ya�amsal

v

belirtileri gösterir veriler ile entegre ettik. Bu alanda örnek gösterilen bir çalı�ma
ile kar�ıla�tırıldı�ında, önerilen yöntem, dört farklı sınıflandırma görevinin üçünde
üstün performans gösterir.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Öznur Ta�tan Okan for
continuous support and patience during my master’s study. I am very grateful for
her insightful comments and suggestions to improve this thesis.

Also, I would like to thank my family Nurhayat Alpay, O�uz Alpay, Duygu Ece
Demirçelik and Arda Demirçelik, for believing in me during my master’s study.
Without their belief, it would be impossible for me to complete my study.

vii

“There are no hopeless situations.
There are hopeless people.

I have never lost hope.”
Mustafa Kemal ATATÜRK

viii

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATONS . xv

1. INTRODUCTION . 1
1.1. Motivation . 1
1.2. Thesis Scope and Organization . 2

1.2.1. Thesis Organization . 3

2. LITERATURE REVIEW . 4
2.1. Information Extraction . 4
2.2. Patient Representation . 5
2.3. Outcome Prediction . 6

2.3.1. Non Graph Based Approaches . 7
2.3.2. Graph Based Approaches . 8

2.4. Computational Phenotyping . 10

3. BACKGROUND . 12
3.1. Artificial Neural Networks . 12
3.2. Convolutional Neural Networks (CNN) . 14
3.3. Recurrent Neural Networks (RNN) . 16
3.4. Long Short-Term Memory (LSTM) . 17
3.5. Transformer . 19
3.6. Knowledge Graphs . 21

3.6.1. Knowledge Graph Representation Learning . 22
3.6.1.1. TransE. 23
3.6.1.2. RESCAL . 24
3.6.1.3. DistMult . 24
3.6.1.4. ComplEx . 25

ix

4. DATASET DESCRIPTION . 27
4.1. Electronic Health Records . 27
4.2. MIMIC - III. 31

4.2.1. Diagnoses . 34
4.2.2. Procedures . 35
4.2.3. Prescriptions . 35
4.2.4. Lab Events . 36
4.2.5. Input Events . 37

5. METHODOLOGY . 39
5.1. Cohort Selection . 39
5.2. Knowledge Graph Representation of MIMIC-III Dataset 39

5.2.1. Patient Demographic Information. 40
5.2.2. Hospital Stay Related Information . 41
5.2.3. In ICU Related Information. 41

5.3. Target Data . 43
5.4. Handling Class Imbalance . 44
5.5. Evaluation Criteria . 44

5.5.1. Area Under Receiver Operating Characteristic Curve (AUROC) 45
5.5.2. Area Under Precision-Recall Curves (AUPRC) 45

5.6. Environment . 46

6. EXPERIMENTS & RESULTS . 47
6.1. Using Only Knowledge Graph Embeddings. 47
6.2. Integrating Measurements & Vital Signs . 52

6.2.1. Extracting Statistical Features . 54
6.2.2. Separate Network for Measurements & Vital Signs 58
6.2.3. Time Series Implementation . 62

6.3. Comparison with MIMIC-Extract . 65

7. CONCLUSION . 66
7.1. Limitations and Future Work . 67

BIBLIOGRAPHY. 69

APPENDIX A . 75

x

LIST OF TABLES

Table 4.1. Comparison of EHR types in Unites States. (Charles et al., 2013) 29
Table 4.2. Examples for vocabularies used in EHRs for diagnosis, medi-

cations, laboratory results and procedures. (Shickel et al., 2017). 30
Table 4.3. Sample statistics of the MIMIC-III patients who are aged 16

years and above. 31
Table 4.4. Names and short details of the each 26 tables in MIMIC-III

database, sorted alphabetically. (Johnson et al., 2016) 33

Table 5.1. Rate of positive class in prediction tasks. 44

Table 6.1. AUPR scores obtained on the validation dataset for di�erent
learning rates for each method and task are listed. 49

Table 6.2. AUPR scores obtained over the validation set for di�erent em-
bedding sizes for each method and task. 50

Table 6.3. AUPR results on validation dataset for tuning epochs 50
Table 6.4. Following results are AUPR score and obtained by using valida-

tion dataset for di�erent number of negative triples for each method
and task. 51

Table 6.5. Results of each method and task on test dataset. Train and
validation sets were concatenated and used as input for training. 52

Table 6.6. Names and short descriptions of the measurements in Set A. . . . 53
Table 6.7. Results of the concatenation of embedding vectors and statis-

tical features on validation dataset for Set A . 56
Table 6.8. Results of the concatenation of embedding vectors and statis-

tical features on test dataset for Table 6.6 . 56
Table 6.9. Results of the concatenation of embedding vectors and statis-

tical features on validation dataset for Table A . 57
Table 6.10. Results of the concatenation of embedding vectors and statis-

tical features on test dataset for Set B . 58
Table 6.11. Results of feeding embedding vectors and statistical features

into separate networks for 1 layer on validation dataset. 60

xi

Table 6.12. Results of feeding embedding vectors and statistical features
into separate networks for 1 layer on test dataset. 60

Table 6.13. Results of feeding embedding vectors and statistical features
into separate networks for 2 layers on validation dataset. 61

Table 6.14. Results of feeding embedding vectors and statistical features
into separate networks for 2 layers on test dataset. 62

Table 6.15. Hyperparameter tuning for Conv 1D. 63
Table 6.16. Hyperparameter tuning for LSTM.. 63
Table 6.17. Hyperparameter tuning for Transformer.. 64
Table 6.18. Results of feeding embedding vectors and time series measure-

ments into separate networks for 1 layer on test dataset. 64
Table 6.19. Comparison of AUPR scores with MIMIC - Extract 65

xii

LIST OF FIGURES

Figure 3.1. Artificial neural network with n inputs, a single hidden layer
and an output layer with a single neuron. 13

Figure 3.2. A neuron in a neural network. 13
Figure 3.3. Architecture of a basic convolutional neural network. 15
Figure 3.4. Convolution operation for a single filter. 15
Figure 3.5. Pooling operation in convolutional neural networks. 16
Figure 3.6. Three recurrent neural network units. 17
Figure 3.7. Three long short-term memory units. 18
Figure 3.8. Architecture of Transformer . 20
Figure 3.9. Film industry, represented by a knowledge graph. 21
Figure 3.10. Visualization of TransE. 23
Figure 3.11. Visualization of RESCAL. 24
Figure 3.12. Visualization of DistMult. 25

Figure 4.1. Most frequent 50 diagnosis in MIMIC-III dataset. 34
Figure 4.2. The most frequent 50 procedures in the MIMIC-III dataset. . . 35
Figure 4.3. Most frequent 50 drugs in MIMIC-III dataset. 36
Figure 4.4. Most frequent 50 lab events in MIMIC-III dataset. 37
Figure 4.5. Most frequent 50 input events in MIMIC-III dataset. 38

Figure 5.1. Patient nodes. 40
Figure 5.2. Patient and demographic information related nodes. 40
Figure 5.3. Patient, demographic information and hospital stay related

information nodes. 41
Figure 5.4. Patient Knowledge Graph, generated on MIMIC-III dataset. . . 42
Figure 5.5. Observation window and prediction window.. 44

Figure 6.1. The feed-forward neural network architecture with 3 hidden
layers. 48

Figure 6.2. Feedforward neural network architecture with embeddings and
medical measurements . 55

xiii

Figure 6.3. Architecture of using separate networks for embeddings and
medical measurements . 59

xiv

LIST OF ABBREVIATONS

CNN Convolutional Neural Network . ix, 10, 14, 16

CRF Conditional Random Field . 5

EHR Electronic Health Record . iv, xi, 1, 2, 3, 4, 5, 6, 9, 10, 28, 29, 30, 31, 39, 66

GNN Graph Neural Network . 9, 67

GRU Gated Recurrent Unit . 4

ICU Intensive Care Unit iv, x, 1, 2, 5, 9, 11, 16, 31, 32, 33, 37, 39, 41, 43, 44, 49,
50, 51, 52, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 67

IDF Inverse Document Frequency. 7

LSTM Long Short Term Memory . . . ix, xii, 4, 6, 7, 8, 9, 11, 17, 18, 19, 62, 63, 64

RNN Recurrent Neural Network . ix, 4, 5, 11, 16, 17, 19

xv

1. INTRODUCTION

1.1 Motivation

Technological developments have facilitated the digitization of health data. In many
countries, key clinical and administrative data of the patients are systematically
recorded, collected and stored in digital formats (Bonomi, 2016), (McLoughlin et al.,
2017). These patient-specific medical data is referred as EHR. EHR data are rich;
they capture and integrate information collected at several instances of patient-
health care provider interaction over time. EHRs typically contain demographic
information, accounts of hospital visits, the diagnostic tests administered during
these visits, applied procedures, diagnosed diseases and conditions, prescribed med-
ications and detailed laboratory measurements or vital signs monitored at hospital
stays. Depending on the EHRs system these contents may vary.

This systematic digital collection of medical data presents a significant opportunity
for developing data-driven technologies that can transform the healthcare systems
and the clinical practice (Madsen, 2014), (AC06953431, 2008). Optimizing hospi-
tal resources to reduce costs and improve care (Ferrão et al., 2021), (Jensen et al.,
2012), (Hillestad et al., 2005), phenotype classification (Harutyunyan et al., 2019).
Such data can also expedite the development of systems that can assist the health-
care providers at the point-of-care such as treatment and medicine recommendation
systems (Oh et al., 2021). Especially for high-stake situations with high uncertainty
such as at the intensive care units (ICUs), these systems have the potential to curb
medical errors by assisting health care providers in their decision making process.
Sepsis prediction in ICUs (Moor et al., 2021), severity of illness prediction (Ghas-
semi et al., 2015), mortality prediction (Caballero Barajas and Akella, 2015) and,
intensive care unit readmission prediction (Rojas et al., 2018) are such example use
cases.

1

EHRs have the potential to bring solutions to diverse problems in the healthcare
ecosystem. However, the variety of health records brings complexity and challenges
in direct use of raw EHR data in predictive models. This data could be structured
such as e-prescription or medical codes, or unstructured such as clinical notes taken
by the physician. EHR data usually are large scale, contain missing information,
they are noisy because they are not subject to high-quality audits. Also, since the
data are drawn from many di�erent resources, they are heterogeneous (Si et al.,
2021). Moreover, since EHRs usually represent distinct medical events, the data
are high-dimensional and often sparse. To input EHRs into a predictive model
that works with vectors, the patient’s health information should be represented by
numerical values. Many data types in EHR can be high dimensional and sparse, a
common example being the disease types. While there are thousands of diseases;
only a handful of diseases would be had by a typical patient and the rest would
be unobserved. If the disease history of a patient is to be considered as a feature
for a machine learning model, it would be a categorical feature. The most common
representation of the categorical features is vectors with binary entries (one-hot
encoded vectors) where each disease will be represented by such a vector. These
feature vectors shall be mostly populated by zeros with a few entries of ones. This
type of data is called as sparse data. The success of any predictive model inevitably
depends on the quality of the input feature representation. Sparse data sets pose
particular challenges for training predictive models as they increase the time and
space complexity of machine learning models. Additionally, the sparse data may
bring noise to models so it becomes harder to generalize. As a result the models
tend to overfit, and the predictive performance is compromise (Kuss, 2002).

1.2 Thesis Scope and Organization

This work investigates patient representation learning from EHRs. Among many
technical challenges associated with EHRs representation, we address with its sparse
and heterogeneous nature. We propose a strategy where one can unify the het-
erogeneous data types in a knowledge graph framework and learn a dense patient
representation that encodes meaningful information from EHRs. We compare our
strategy against widely used knowledge graph embedding methods in di�erent pre-
diction task at ICU. These tasks comprise mortality prediction and binarized length
of stay prediction tasks.

2

1.2.1 Thesis Organization

This thesis is organized in 7 chapters. Chapter 2 gives an overview of the literature
and Chapter 3 provides background knowledge on neural networks and knowledge
graph embedding methods. Chapter 4 describes EHRs and the dataset used in
this thesis. Chapter 5 details the cohort selection procedure and the steps to build
knowledge graph and evaluation criteria. In Chapter 6, we present experimental
set ups and discuss the results, and Chapter 7 is the conclusion section where we
highlight our major findings, discuss the limitations of the current work and point
out future directions and possible follow-up work.

3

2. LITERATURE REVIEW

There were many di�erent types of applications, built based on EHR datasets. In
the early stages, statistical models were developed since computational power was
inadequate. Over the years, storage areas and computational resources developed,
which brought attention to machine learning and deep learning algorithms to use
over datasets. These two techniques were applied on EHR datasets to predict dis-
eases in the early stages (Gupta et al., 2019), finding similarities between patients
(Brown, 2016), and extracting information (Lee et al., 2020).

2.1 Information Extraction

Clinical notes are more complex than organized elements of EHR data that are often
utilized for billing and administrative purposes, and are largely used by healthcare
practitioners for extensive recording. Each patient visit is accompanied by a variety
of clinical documents, including admission notes, discharge summaries, and transfer
orders. Extracting information from clinical notes is di�cult since the unstructured
nature. Previously, these solutions required a significant amount of feature extrac-
tion and ontology mapping, which is one reason for their limited acceptance. As
a result, some recent research have focused on applying deep learning to extract
meaningful clinical information from clinical notes.

Jagannatha and Yu (2016a) treats the concept extraction problem as a sequence
labeling problem in which each word in a clinical note is assigned one of nine clinically
related tags. They categorize tags into pharmaceutical and illness categories, with
each category containing relevant tags such as medication name, dose, medication
method, adverse medication event, indication, and disease severity. They work with
a variety of RNN-based deep architectures like LSTMs and GRUs, bidirectional
LSTMs (Bi-LSTM), and certain combinations of LSTMs with classic conditional

4

random fields (CRF). In their setup, they compare to baseline CRFs, which were
previously thought to be the most advanced approach for extracting clinical ideas
from text. As a result, they discovered that RNN based methods outperformed the
CRF baselines, particularly in recognizing more subtle features like drug duration
and frequency, and illness severity. Such sophisticated information is critical for
clinical informatics but is not easily accessible through the billing-oriented clinical
code system.

Fries (2016) focuses on detecting text spans of time and event mentions, as well as
predicting relationships between clinical concepts and clinical note creation time.
This work uses a deep-learning method for sequence labeling based on a vanilla
recurrent neural network (RNN). Word embeddings were generated by Word2Vec
(Mikolov et al., 2013) method. In addition, Fries also uses Stanford’s DeepDive
(Shin et al., 2015). As a result, their DeepDive implementation outperforms vanilla
based RNN implementation.

Liu et al. (2018b) investigate the challenge of expanding abbreviations in clinical
notes. In order to prevent misunderstanding and make the clinical notes more ac-
cessible to a broader audience, their objective is to standardize all abbreviations in
intensive care unit (ICU) notes. To accurately capture the semantics of an abbrevi-
ation in its context, they use Word2Vec (Mikolov et al., 2013) method to generate
word embeddings by using clinical notes recorded in ICU, Wikipedia and medical
articles. As a result, 82.27% accuracy was obtained by integrating the embeddings
with domain-specific information, which surpasses baselines and is comparable to
human performance.

2.2 Patient Representation

EHR systems are loaded with a huge number of distinct medical codes that repre-
sents the health status of patient. These codes were originally designed for internal
administrative and billing activities, however they also provide useful information
for secondary activities. In order to project distinct discrete codes into vector space
for more detailed analysis, several deep learning techniques have been used. These
vector spaces can be used to represent patients.

Miotto et al. (2016) describes a unique unsupervised deep feature learning technique
for generating a general-purpose patient representation from EHR data enhance the

5

performance of clinical prediction models. From the Mount Sinai data warehouse of
about 700,000 patients, hierarchical regularities and dependencies in EHRs was cap-
tured by using three-layer stack of denoising autoencoders. Their results surpassed
those obtained using raw EHR data representations and other feature learning al-
gorithms. Prediction accuracy for severe diabetes, schizophrenia, and numerous
malignancies was among the best.

Pham et al. (2016) an LSTM based deep learning framework called DeepCare, which
predicts the upcoming medical outcomes of patients. It models patient health status
trajectories with explicit illness memory at the data level. In addition, it provides
time parameterizations to accommodate unpredictable timing by regulating forget-
ting and consolidating illness memory. It generates and concatenate two indepen-
dent vectors for a patient’s temporal diagnostic and intervention codes to construct
a patient representation vector, demonstrating that the resulting patient timeline
vectors had more predictive value than classifiers trained on raw categorical data.

Time sequence based health records contain information on patients’ visits, applied
procedures, used medications, and test results, which show how their health status
has changed over time. Such data are especially useful in describing illness develop-
ment and early diagnosis. Mehrabi et al. (2015) proposes a RBM based architecture
for detecting temporal patterns in Rochester Epidemiology Project data. Each pa-
tient’s records were represented as a temporal clinical event matrix, with ICD9 and
HCUP CSS diagnostic codes as rows and years of diagnosis as columns. Patients
who were 18 or younger at the time of diagnosis were chosen. A deep three layer
Boltzmann machine network was built, using the diagnostic matrix values of each
patient as visible nodes.

2.3 Outcome Prediction

Ultimate purpose of many works in EHR domain is to predict patient outcomes.
We distinguish two types of outcome prediction methods: (1) non-graph based tech-
niques (which use feature engineering to extract features from data) and (2) graph
based approaches (features are extracted automatically by representing data as a
graph).

6

2.3.1 Non Graph Based Approaches

Gupta et al. (2019) applied machine learning and deep learning to predict child-
hood obesity in the early stage. Each patient has a plenty of visits where each
visit contains diagnosis, prescribed medication, applied procedures, and lab results.
Diagnoses in a visit were represented by a binary vector of length D where D is
the total number of unique diagnoses in the whole dataset. A similar representation
method was also used for medications and procedures. For lab results, the real value
of the corresponding lab result was placed in the vector. The concatenation of these
four vectors were represented a single visit where the length of the concatenated
vector is V. If a patient had T many visits, then that patient would be represented
by a matrix with a dimension of TxV. For the baseline models, Linear Regression
and Random Forest were used. Instead of using a matrix of TxV dimensions as an
input, data aggregation was used so each patient was represented by a vector of
length V. For diagnosis, medications and procedures sum of the occurrences were
used. For lab results, the average of each lab result was calculated. In addition, de-
mographic features such as sex, ethnicity, and race were used as categorical features
and appended to the patient’s vector. Moreover, a more complex model was built
which uses 2 layer LSTM.

Liu et al. (2018a) used doctor notes to predict chronic diseases of a patient. For
the baseline model, 1-gram, 2-gram and 3-gram -IDF scores of the most frequent
20.000 words were generated from doctor notes. Demographic features such as
age, sex, and race were used as categorical features and appended to the -IDF
vector of the patient. Also, the average of the laboratory results was appended. To
enhance the performance, word embeddings were used instead. At first, pre-trained
word embedding on PubMed was used. Then, word embeddings were generated on
their own data, by using StarSpace Wu et al. (2018). For deep learning models,
Convolutional Neural Networks and Bi-LSTM were used.

Esteban et al. (2015) predicted the sequence of medical events of patients by using
personalized temporal latent embedding. Dataset was consist of patients with kidney
failure and kidney transplants which also includes used medications and laboratory
results. Each visit of the patient was represented by a binary vector, then a latent
representation of that vector was generated. Markov Models were used to choose
the last k many last visits to use as input. These generated representations were
feed into a shallow neural network. The output of the neural network was the
probability of the next event. To enhance performance, a personalized Markov
Model was proposed. In addition to k many last visits, demographic information

7

of the patient, and aggregated history of the patient’s medical events were used as
input.

Gentimis et al. (2017) uses MIMIC-III dataset to predict if a patient stay in intensive
care unit longer or shorter than 5 days. Patients with length of stay over 20 days
were considered as outliers and removed from the dataset. Patient demographic in-
formation, ICD codes for procedures and diagnoses were used as input. For machine
learning methods, random forest and neural networks were preferred.

The nature of the electronic health record dataset is rich, however it is too raw
for a direct usage in prediction tasks. Wang et al. (2020) uses MIMIC-III dataset
to provide a pipeline for transforming raw electronic health record dataset into
data structures, which can be used in patient clinical prediction tasks. The pro-
vided pipeline includes unit conversion, outlier detection, missing value imputation,
hourly aggregation of time varying features and semantic grouping of duplicate vital
signs. At the end of the pipeline, patient demographics, time varying vital signs and
laboratory measurement features were generated to perform mortality and length of
stay prediction tasks. Logistic regression, random forest and gated recurrent unit
with delay were used.

While machine learning research for health care has been steadily increasing, nu-
merous roadblocks have hampered progress in leveraging digital health data. The
fundamental di�culty is the lack of universally acknowledged benchmarks for com-
paring di�erent models. Harutyunyan et al. (2019) uses MIMIC-III dataset to create
benchmarks in following tasks: in-hospital mortality prediction, decomposition pre-
diction, length of stay prediction and phenotyping. More than 42,000 intensive care
unit stays were selected as cohort, 15% of them were used as test data. From that
cohort, 17 clinical variables were extracted as time series and fed into channel-wise
LSTM which uses multitask learning.

2.3.2 Graph Based Approaches

Wu et al. (2019) have created a knowledge graph of patients to find similarities
between patients. Conducted medical services and patient’s doctor information
was used. First of all, service embeddings were generated. Each medical services
were a node, and the weight of the edge between two nodes is the co-occurrence fre-
quency of these two medical services. Adjacency matrix was created, then Word2Vec
(Mikolov et al., 2013) algorithm was applied to generate service embeddings. Sec-

8

ondly, doctor embeddings were created by predicting the doctor’s primary specialty
from conducted medical services, by using Graph Attention Networks (Veli�koviÊ
et al., 2017). Lastly, similarities between patients were calculated by shared doctors
& medical services. This similarity was represented by a bipartite multigraph.

Zhang et al. (2016) aimed to create a unified representation of patients in EHRs.
This representation was made by a graph where each node is a medical event, includ-
ing disease, medication and laboratory result. Each edge represents the closeness of
these medical events. Closeness is high if these events occurred at the same time. In
addition, if two medical events were the same type, then closeness is also high. Since
there were many medical events, each of them was mapped to a higher granularity
by using Chinese Pharmacopoeia. Generated representations were used to predict
medical risk.

Rocheteau et al. (2021) proposes a hybrid LSTM-GNN model for patient outcome
prediction tasks. LSTM was used to extract temporal features from measurements
& vitals signs, on the other hand GNN was used to extract patient neighbourhood
information. It uses eICU Collaborative Research Database (Pollard et al., 2018) as
data source, which is an electronic health record dataset based on patients in ICU.
Each patient was represented as a node and existence of edges between each patient
node depends on the shared diagnoses. Temporal features, which was created by
LSTM, were used as node features. Patient embeddings were trained with GNN,
concatanated with temporal features and patient demographic features to perform
length of stay and mortality prediction tasks.

Lee et al. (2020) proposes dynamic multi-modal graph model, which uses both di-
agnosis codes and clinical notes. It uses dynamic graph approach since patients’
medical condition varies from one visit to another. Graph convolutional networks
(Kipf and Welling, 2016) was applied to perform subsequent diagnosis code and visit
severity level prediction tasks.

Zhu and Razavian (2021) proposes a variationally regularized encoder - decoder
GNN architecture to represent patients as embedding vectors by using short term
ICU information and long term health information. In the encoder part, for each
patient, all observed codes in EHR was represented by a node and fully connected
graph was generated. Multiple graph layers were used to learn the graph structure
and update representations. In the decoder part, additional nodes were added for
each prediction task and fully connected to output nodes of the encoder graph.
Mortality prediction and Alzheimer disease prediction were the main task of this
paper.

9

2.4 Computational Phenotyping

As the quantity and accessibility of electronic health records have increased in recent
years, there is a significant potential for reviewing and revising broad disease and
diagnostic definitions. Traditionally, diseases are described by a collection of manual
clinical descriptions; however, computational phenotyping tries to create better,
data-driven definitions of disorders. It is feasible to uncover natural clusters of
clinical descriptors that lend themselves to a more fine-grained illness description
by utilizing machine learning and data mining techniques. Detailed phenotyping is
a significant step toward the ultimate aim of individualized and precision medicine.

Patient visit to healthcare professionals result in electronic health record entries
(EHRs). Mining these information allows for the extraction of electronic phenotypes,
however it contains several challenges. High-quality phenotyping is expensive and
requires evaluation from healthcare professionals, most of the fields in electronic
health records are missing, disease definition changes over time. Beaulieu-Jones et al.
(2016) proposes a semi-supervised learning technique for EHR phenotype extraction
which uses denoising autoencoders. Denoising autoencoders reduce dimensionality,
allowing visualization and grouping for the discovery of novel disease subgroups.
They discovered that classification performance improves across several simulation
models and enhanced survival prediction in ALS clinical trial data by integrating
denoising autoencoders with random forests. This architecture is a potential tool
for detecting disease subgroups and enhancing phenotype association studies using
EHRs.

Working directly with EHR has several obstacles, such as temporality, sparsity, nois-
iness, and so forth. As a result, successful feature extraction or phenotyping from
patient EHRs is a must for any downstream task. Cheng et al. (2016) present con-
volutional neural network based architecture for phenotyping using patient EHRs.
They represent each patient’s EHR as a matrix with time and event dimensions.
On top of that matrix, a four layer CNN is used to extract phenotypes where the
first layer is made up of EHR matrices. The second layer is a one-sided convolution
layer which is capable of extracting phenotypes from the first. The third layer is a
max pooling layer that introduces sparsity on the identified phenotypes, retaining
only those that are important. The fourth layer is a softmax prediction layer that
is fully connected.

Richness of electronic health records makes mining operations more di�cult. Lipton
et al. (2015) proposes a sequence based model to predict phenotypes of the patient

10

in ICU by treating phenotyping task as a mutli label classification problem. They
use RNN and LSTM to detect phenotypes in multivariate time series of clinical
measurements, consist of selected 13 variables. This implementation outperforms
logistic regression and MLP baselines.

11

3. BACKGROUND

This chapter provides background information on the methods that we employ
throughout the thesis.

3.1 Artificial Neural Networks

The neural network structure contains layers of nodes where each node is a neuron.
All nodes take a set of inputs to perform computation and pass the result to nodes
in the following layer. The first layer in this structure is called input layer. The
input layer is followed by a set of layers, called hidden layers. At the end there is an
output layer. The nodes in the network are called neurons and the whole structure is
called artificial neural network. Figure 3.1 is a simple representation of an artificial
neural network (Haykin, 2009).

12

.

.

.
.
.
.

Input 1

Input 2

Input n

Output

Input
Layer

Hidden
Layer

Output
Layer

Figure 3.1 Artificial neural network with n inputs, a single hidden layer and an
output layer with a single neuron.

All neurons in a fully-connected neural network operate the same way. All nodes
take a set of inputs and apply computation to produce an output. The output will
be an input for all the nodes in the following layer. A neuron can be visualized as
in Figure 3.2.

Σ

W0

W1

Wn-1

Wn

Weights

Weighted
Sum

Activation

1

X1

Xn-1

Xn

Constant

Inputs

Figure 3.2 A neuron in a neural network. It takes n many inputs and one constant
input. It multiplies each input with weight and calculates the sum. In the end, it
passes the result to an activation function to produce an output.

Each node has a set of weights, which quantifies the importance of inputs. All the
inputs from X1 to Xn are multiplied with their corresponding weights from W1 to
Wn. This procedure is also applied to the constant term. All the multiplied values
are added together to produce a weighted sum. This operation can be expressed
mathematically as follows:

13

z = 1úW0 +X1 úW1úX2 úW2 ú ...úXn úWn

This weighted sum is used as an input to an activation function. There exist di�erent
activation functions, but the most common alternatives are Sigmoid and ReLU.
Sigmoid activation function is commonly used in the output layer for the binary
classification task and it is based on the following formula to rearrange the input
values between 0 and 1:

‡(z) = 1
1+ e≠z

Due to the vanishing gradient problem, Sigmoid is not an appropriate choice in
hidden layers. Instead, ReLU activation function is used in hidden layers. If the
input value is 0 or more, the ReLU function returns the value as-is. If the input is
less than zero, the ReLU function returns 0. It can be formalized as follows:

ReLU(z) = max{0, z}

The output of the activation function is what a neuron outputs. It is computed for
each neuron, and except the output layer, it is passed into all neurons in the following
layer. In the output layer, the computed value and the true label are passed into a
loss function. Loss function can be a simple function like mean squared error, or a
complex function like cross-entropy. The output of the loss function indicates the
performance of the neural network. These steps describe the forward propagation
of the network. Neural network will reduce the loss by repeatedly adjusting the
weights of each neuron. If the level of adjustment is decided by the gradients of loss
function, this procedure is called as back propagation.

3.2 Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) is a special type of neural network that
focuses on processing 2-dimensional data, such as images. With minor pre-processing
on images, CNN can be used directly to extract features from images. A typical
CNN architecture contains 3 layers: a convolution layer, a pooling layer and a fully

14

connected layer. This architecture can be visualized in Figure 3.3.

Input

Convolution Pooling

.

.

.

Fully Connected
Output

Feature Extraction Prediction

Figure 3.3 Architecture of a basic convolutional neural network. Contains a single
convolution layer with 5 filters and single pooling layer for each filter. Output of the
pooling layer is flattened and fed to the fully connected layer to perform prediction.

In the convolution layer, features are extracted by using filters. Each filter is also
2-dimensional and slides across the image from top left to bottom right. At each
step, a value is calculated by using element-wise multiplication on the current slice
of the input and filter values. This operation is called as convolution. This operation
is visualized in the Figure 3.4.

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

Input Image

1 0 1
0 1 0
1 0 1

Filter

4

Feature Map

Figure 3.4 Convolution operation for a single filter. The filter slides across the image
from the top left. Filters’ current position on the input image is indicated with bold
characters. The convolution operation is applied for a slice on the input image and
filter values. Output is placed in the feature map.

The pooling layer is conceptually similar to the convolution layer. Like a filter,
a fixed 2-dimensional object without any parameters slides across the image from
top left to bottom right. In the max pooling variant, the maximum value for the
current slice of the input data is selected as output. With this approach, the size

15

of the outputs of the convolution layer is reduced while preserving the important
features. This operation is visualized in Figure 3.5.

1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

6 7 8
6 7 8
3 3 4

Max pool with 2x2 filter

Figure 3.5 A 4x4 input data is fed into pooling layer. Max pooling approach is
applied with a 2x2 filter element. Output of this layer is a 3x3 array.

CNN can also be used with 1-dimensional data. For instance, patients in ICU
generates vital sign over time which is a 1-dimensional sequential data. In that case,
1-dimensional filter slides on the data to extract features by applying a convolution
operation. In addition, the pooling operation is also applied by a 1-dimensional
filter object. This implementation is called 1 Dimensional CNN.

3.3 Recurrent Neural Networks (RNN)

The recurrent neural network (Hopfield, 1982) is a special type of neural network
in which the previous step’s output is fed as input to the current step. It is mainly
used for sequence classification (Wang and Tian, 2016), sequence labeling (Jagan-
natha and Yu, 2016b) and sequence generation (Duöek and Jur�í�ek, 2016). It can
capture information from sequence (time series) data by passing the message from
the previous unit to its’ successor. The inner architecture of three RNN units is
visualized in Figure 3.6.

16

ht-1

Xt-1

tanh

ht

Xt

tanh

ht+1

Xt+1

tanh

Figure 3.6 Three recurrent neural network units. Each unit gets two inputs: Xt

(input data for the current step) and ht≠1 (generated message from the previous
unit). Inputs are fed into tanh activation function to produce ht, which will be the
output of the unit. ht will also be passed to the next unit and this is how recurrent
neural networks can capture information from sequence data.

RNNs can handle short time series very well; however, if the time series is very long,
then it will fail to pass information from the distant past. This problem is known
as the vanishing gradient problem.

3.4 Long Short-Term Memory (LSTM)

Long short-term memory (Hochreiter and Schmidhuber, 1997) is a special type of
recurrent neural network which can capture long-term dependencies and thus work
well on long time series. Like RNN, each unit in LSTM also passes information to
its’ successor. Di�erent from RNN, units in LSTM have more complex architec-
ture. Instead of having single tanh activation function, each unit contains multiple
activation functions. The inner architecture of three LSTM units is visualized in
Figure 3.7.

17

ht-1

Xt-1

tanh

x

x

tanh
+

σσσ

x

ht

Xt

tanh

x

x

tanh
+

σσσ

x

ht+1

Xt+1

tanh

x

x

tanh
+

σσσ

x

ht-2

Ct-2

ft-1
it-1

Ct-1
ot-1

ht-1

Figure 3.7 Three long short-term memory units. Each unit gets three inputs: Xt

(input data for the current step), ht≠1 (generated message from the previous unit)
and ct≠1 (cell state of the previous unit). Cell state was introduced with LSTM to
capture long-term dependencies. Each unit has two outputs: ct (cell state for the
current unit) and ht (hidden state of the current unit). In each unit, ‡ represents
sigmoid activation function.

In the first step, forget gate layer is used. Based on the current input and previous
cells’ messages, it will either forget the cell state or keep it. This step can be
formulated mathematically as:

ft = ‡(Wf ú [ht≠1,xt]+ bf)

If the value of ft is 1, then cell state will keep its value.

In the second step, it will decide if new information will be stored in the cell state.
In the first part of this step, input gate layer is used to decide the parts of the input
to be stored.

it = ‡(Wi ú [ht≠1,xt]+ bi)

Then, candidate values will be created as a vector which can be added to state.

ÂCt = tanh(WC ú [ht≠1,xt]+ bC)

Lastly, based on the output of the first step, current state will be updated with the
candidate values.

Ct = ft úCt≠1 + it ú ÂCt

In the last step, based on the cell state, the output of the cell will be computed.
The sigmoid layer is used to filter certain parts of the cell state. Then, filtered parts
are fed into the tanh layer and multiplied with the output of the sigmoid layer as
follows:

ot = ‡(Wo ú [ht≠1,xt]+ bo)

ht = ot ú tanh(Ct)

18

With the incorporation of cell state, LSTM can handle long-term dependencies bet-
ter than RNN. However, its complex architecture makes LSTM train slower and
requires more memory.

3.5 Transformer

Vaswani et al. (2017) proposed Transformer architecture, which takes sequential data
as input and produces a new sequence as output. The inner architecture contains
encoder and decoder layers. Each encoder block contains a self-attention layer that
calculates the relationship between di�erent timestamps in the sequential data, and
a feed forward layer follows it. Similarly, each decoder block contains self-attention
and a feed-forward layer. However, in the decoder block, an encoder-decoder atten-
tion layer is placed between self-attention and feed-forward. Transformer is visual-
ized in Figure 3.8:

19

Add & Norm

Feed
Forward

Add & Norm

Multi - Head
Attention

Input
Embedding

Inputs

+Positional
Encoding

Add & Norm

Multi - Head
Attention

Add & Norm

Masked
Multi - Head

Attention

Output
Embedding

Outputs

+ Positional
Encoding

Add & Norm

Feed
Forward

Linear

Softmax

Output Probabilities

Figure 3.8 Transformer (Vaswani et al., 2017). The encoder layer is placed on the
left, and the decoder layer is placed on the right. In the figure, both encoder and
decoder layers contain a single block. Di�erent implementations can use multiple
blocks in both encoder and decoder layers.

Attention is the backbone of the Transformer architecture. Whenever the model is
processes the current timestamp, attention allows the model to focus on the consec-
utive timestamps. With the usage of attention in Transformer, every timestamp’s
relationship with all others is calculated.

Transformer is mainly used in sequence to sequence tasks, such as machine trans-
lation (Wang et al., 2019), text summarization (Liu and Lapata, 2019) and speech
recognition (Gulati et al., 2020). Since the prediction task in this thesis is classifi-
cation, it is not possible to use the proposed architecture in Figure 3.8 directly. In
a classification task, a decoder block is not needed. Thus, in this study, a simpler
implementation which only has an encoder block is used.

20

3.6 Knowledge Graphs

A knowledge graph is a multi-relational graph consisting of nodes (entities) and
edges (relations) to represent data. It is built by set of triples (head, relation, tail)
where head and tail are two di�erent nodes, and relation is an edge that connect
two nodes. Freebase (Bollacker et al., 2008), DBpedia (Lehmann et al., 2015),
YAGO (Suchanek et al., 2007) and NELL (Carlson et al., 2010) are some of the
commonly known examples for knowledge graphs which are used in many di�erent
domains, such as network security (Noel et al., 2016), management systems (Aliyu
et al., 2020), recommendation systems (Cao et al., 2019) and many more. For
example, the knowledge graph encodes film industry information would contain
nodes to represent characters, actors, movies, and genres; with nodes connected by
starred-in, played, character-in, and genre edges. Visualization of this knowledge
graph is shown in Figure 3.9.

Science Fiction

genre genre

12 Monkeys

starredIn

Bruce Willis

James Cole

played characterIn

Interstellar

starredIn

playedcharacterIn

Cooper

Matthew McConaughey

Figure 3.9 Film industry, represented by a knowledge graph. Constructed graph
contains characters, actors, movies, and genres as entity types. In addition, starred-
in, played, character-in, and genre are shown as the relation types on this graph.

Knowledge graphs follow the open-world assumption, which means that the absence
of a relation does not automatically imply that the relation is false. It is simply
accepted as unknown. As an example in Figure 3.9, there is no relation between
Bruce Willis and Interstellar. In this case, the relation between Bruce Willis and
Interstellar is accepted as unknown. There are four types of relation patterns that are
very important in knowledge graphs. These patterns are symmetry, antisymmetry,
inversion, and composition. Formal definitions for these patterns are as follows
(Hamilton, 2020):

Definition 1. A relation is symmetric if ’(x,y)
21

r(x,y) ∆ r(y,x)

Definition 2. A relation is antisymmetric if ’(x,y)

r(x,y) ∆ ¬r(y,x)

Definition 3. A relation r1 is inverse to relation r2 if ’(x,y)

r2(x,y) ∆ r1(y,x)

Definition 4. A relation r1 is composed of relation r2 and relation r3 if ’(x,y,z)

r2(x,y)· r3(y,z) ∆ r1(x,z)

In all definitions, ri represents relation and x,y,z represents nodes.

3.6.1 Knowledge Graph Representation Learning

Knowledge graphs are known to be high dimensional and sparse. Nodes and edges
can be represented using an adjacency matrix. However, this matrix would be
sparse. Several methods have been proposed to generate meaningful dense vectors,
called as knowledge graph embeddings, to represent nodes and edges. There exist
certain techniques (Bordes et al., 2013), (Yang et al., 2014), (Trouillon et al., 2016)
to extract embedding vector from knowledge graphs and both contains three major
steps:

• Step 1: Initially, nodes and edges are mapped randomly to low dimensional
continuous vector spaces by maintaining the structure of the knowledge graph.

• Step 2: For each triple in the graph, a set of negative triples are generated
synthetically to improve the quality of the embedding vectors by preventing
overfitting (Zhang et al., 2019). Then, a scoring function f(h,r, t) is applied
to each true and negative triples. The output of this function is the likelihood
of a triple to exist in knowledge graph. A higher score typically indicates that
the triple exists in the graph. Scores for the negative triples are expected to
be low.

• Step 3: Use a lossfunction to calculate to total loss. Then, solve an opti-
mization problem to maximize the likelihood of observed triples by updating
embeddings of the nodes and edges.

There exist certain methods to generate embeddings from knowledge graphs.

22

3.6.1.1 TransE

TransE (Bordes et al., 2013) is a translational distance model which uses a distance
based scoring function. In this method, nodes and edges are represented in the
same dimensional space, R

d. Assume that there are two nodes h (stands for head),
t (stands for tail) which are connected with an edge r (stands for relation). The
triple (h,r, t) indicates that node h and node t are connected by an edge r with low
error, i.e. h+ r ¥ t. It can be visualized in Figure 3.10.

h

t

r

Entity and Relation Space

Figure 3.10 Visualization of TransE where h and t indicates two di�erent entities
and r represents a relation. For visualization, entites and relations are shown in 2
dimensional space.

The scoring function is defined as the negative distance between h+ r and t.

f(h,t) = ≠||h+ r ≠ t||

If the triple (h,r, t) exists, then the score should be high. On the other, if this triple
does not exist in the graph structure, i.e. negative sample, the score should be low.

Relations in TransE satisfy antisymmetry, inversion and compostion pattern require-
ments. However it does not support symmetric relations since f(h,t) ”= f(t,h).

TransE is very simple and it is commonly used as a strong baseline. However, it has
weakness in representing 1 to N , N to 1 and N to N relations. The weakness in 1
to N can be explained by an example. Assume that (h,r, ti) exists for i = 1,2, ...,p.
In this case, this method will force h + r ¥ ti for all values of i. Weakness in N

to 1 and N to N relations can be explained by a similar way. This disadvantage
has overcome by introducing relation-specific hyperplanes in TransH (Wang et al.,

23

2014).

3.6.1.2 RESCAL

Unlike TransE, RESCAL (Nickel et al., 2011) is not a translational distance model,
it is a semantic matching model. Its’ scoring function is not distance based, but
instead it is similarity based. It is the first method that uses semantic matching.
RESCAL represents nodes by a vector in R

d, and relations as a matrix in R
dxd to

model pairwise interaction between nodes. This idea is visualized in Figure 3.11.

h t

Mr

fr(h,t)

Figure 3.11 Visualization of RESCAL. For visualization purposes, d is selected as
3. h and t indicates entities in 3 dimensional space and Mr represents a relation
matrix with 3 rows and 3 columns.

Score is calculated for every triple by the following scoring function:

f(h,t) = h
T

úMR ú t =
d≠1ÿ

i=0

d≠1ÿ

j=0
[Mr]ij ú [h]i ú [t]i

where nodes h,t œ R
d and relation r œ R

dxd.

RESCAL can handle symmetric, antisymmetric, inversion and composition patterns.
But due to matrix usage, RESCAL requires O(d2) parameters per relation.

3.6.1.3 DistMult

Similar to RESCAL, DistMult (Yang et al., 2014) also uses semantic matching
model. In DistMult, nodes h and t are still represented as a vector, however re-

24

lation r is represented by a diagonal matrix Mr, where the diagonal entries describe
the relation r. This approach reduces the number of parameters from O(d2) to O(d).
This idea is visualized in Figure 3.12.

h t

r

fr(h,t)

Figure 3.12 Visualization of DistMult. For visualization purposes, d is selected as
3. Similar to RESCAL, h and t indicates entities in 3 dimensional space and r

represents a diagonal relation matrix with 3 rows and 3 columns.

TransE uses additive interaction whereas DistMult uses multiplicative interaction
in its scoring function:

f(h,t) = h
T

údiag(r)ú t =
d≠1ÿ

i=0
[h]i ú [r]i ú [t]i

Using a diagonal matrix reduces the complexity. However, it introduces a disad-
vantage. The disadvantage of DistMult is that although it can model symmetric
relations, it cannot handle asymmetric relations since f(h,t) = f(t,h). Because of
that, it is not applicable in general knowledge graphs. Relations in DistMult only
satisfy the symmetry pattern.

3.6.1.4 ComplEx

ComplEx (Trouillon et al., 2016) can be interpreted as an extension DistMult. Dist-
Mult uses real space whereas ComplEx uses complex space to handle asymmetric
relations which cannot be handled by DistMult. Nodes h and t and edge r are lie
in a complex space C

d. Similar to DistMult, diagonal matrix is used to capture the
symmetric relations where the asymmetric relations are handled by the imaginary
part. Scoring function is defined as

25

f(h,t) = Re(hT
údiag(r)ú t̂) = Re(

d≠1ÿ

i=0
[h]i ú [r]i ú [t̂]i)

Re stands for the real part of the complex value and t̂ is the conjugate of t. Relations
in ComplEx satisfy symmetry, antisymmetry and inversion patterns but not the
composition pattern.

26

4. DATASET DESCRIPTION

In this chapter, we share the evolution of electronic health records. In addition, we
explain the publicly available electronic health record dataset that we used in the
experiments, called MIMIC-III.

4.1 Electronic Health Records

The systematic collection of human health data started in the late 1800sto track in-
fectious diseases such as cholera, smallpox, and tuberculosis (Birkhead et al., 2015).
This information was used to quarantine patients to prevent the further spread of
diseases. Over the years, the domain and purposes of recording health informa-
tion changed. By 1930s, the recording of sexually transmitted diseases (Daskalakis,
2017), vaccine-preventable diseases, and chronic diseases (Klompas et al., 2017) had
been widely adopted. With the advancement of technology in healthcare systems,
laboratory results and medical images became part of medical records, kept by
healthcare providers.

Until the mid-1990s, most of the health information of patients was stored in paper
(Evans, 2016). Using paper record to store a patient’s health information have
some inherent disadvantages. Locating and retrieving information is much slower
and paper records entail large physical space for storage. Further disadvantages
include vulnerability against unauthorized access and accidental data loss, physical
deterioration of the documents and the complications in data back-up. Finally,
paper record keeping greatly limits information sharing among di�erent healthcare
providers. When paper records are shared among di�erent institutions di�erent
encoding systems would complicate the interpretation of the records.

With the development of technology, patients’ health information is now stored

27

electronically. This electronic storage of a patient’s health information is called an
Electronic Health Record. In the United States, only 9.4% of hospitals were using
basic EHR in 2008. With the support of HITECH, the adoption of at least basic
EHR has risen to 83.8% by 2015 (Charles et al., 2013). Hospitals in the United
States adopt one of the 3 versions of EHRs systems: Basic EHR, Basic EHR with
Clinical Notes, and Comprehensive EHR . A comparison of these di�erent versions
can be found in Table 4.1.

28

Table 4.1 Comparison of EHR types in Unites States. (Charles et al., 2013)

Required EHR
Functions

Basic
EHR

Basic EHR with
Clinical Notes

Comprehensive
EHR

Electronic Clinical
Information

Patient demographics * * *

Physician notes * *

Nursing assessments * *

Problem lists * * *

Medication lists * * *

Discharge summaries * * *

Advance directives *

Computerized Provider
Order Entry

Lab reports *

Radiology tests *

Medications * * *

Consultation requests *

Nursing orders *

Results Management

View lab reports * * *

View radiology reports * * *

View radiology images *
View diagnostic

test results
* * *

View diagnostic
test images

*

View consultant report *

Demographic information, previous and current diagnoses, procedures, laboratory

29

results, previously used medications, medical images, physician and therapy notes
are stored in databases. In order to manage di�erent types of medical information,
a common terminology is used for di�erent medical events. For instance, RxNorm
vocabulary is mostly used for medications, Logical Observation Identifiers Names
and Codes (LOINC) for laboratory test, Current Procedural Terminology (CPT)
for procedures, and International Statistical Classification of Diseases and Related
Health Problems (ICD) for diagnoses (Shickel et al., 2017). Example codes for these
vocabularies can be found in Table 4.2.

Table 4.2 Examples for vocabularies used in EHRs for diagnosis, medications, lab-
oratory results and procedures. (Shickel et al., 2017)

Vocabulary Examples

ICD R19.1: Abnormal bowel sounds
J12.0: Adenoviral pneumonia

CPT 78075: Adrenal imaging, cortex and/or medulla
1004494: Tenodesis at wrist

LOINC 78803-4: Barbital [Mass/mass] in Hair
2579-1: Lutropin [Moles/volume] in Serum or Plasma

RxNorm 1370581: 2-sulfolaurate
1729527: 5 ML torsemide 10 MG/ML Injection

Not all healthcare providers use the same vocabulary for the same medical event. To
overcome this problem, the United Medical Language System (UMLS) and System-
ized Nomenclature of Medicine - Clinical Terms (SNOMED CT) provide a mapping
for di�erent vocabularies. These mappings enabled data sharing across healthcare
providers.

One challenge with EHR data is that it contains heterogeneous data. For exam-
ple, laboratory results are represented as numerical values; date objects represent
admission dates; diagnoses and procedures are represented as codes which makes
them categorical data, and doctor notes are represented by free-text form. In addi-
tion, each record is ordered chronologically, which makes it di�cult to apply certain
techniques to analyze data and develop models.

The increasing volume of health-related data has fueled the development of machine
learning applications in the healthcare ecosystem. Some of these applications are
used directly by healthcare providers. To support researchers in developing appli-
cations for the healthcare ecosystem, some of the EHR datasets have been made
publicly available. In the next section, we will detail the MIMIC- III database,
which that is used in this work.

30

4.2 MIMIC - III

In this study, we use the Medical Information Mart for Intensive Care (MIMIC-III)
EHR database (Johnson et al., 2016). It is the successor of the MIMIC-II database
(Saeed et al., 2011), created by the Laboratory of Computational Physiology of The
Massachusetts Institute for Technology (MIT). The aim of this database is to provide
access to well-curated clinical information for data analysis. This dataset contains
information on more than 46,000 patients in the ICU at Beth Israel Deaconess
Medical Center Boston. Moreover, it holds the records of 56,000 ICU admissions
since some patients would be admitted to ICU multiple times. The date of records
begins in June 2001 and ends in October 2012. This database can be loaded into
MySQL, Oracle, and PostgreSQL.

MIMIC-III Database contains demographic information, laboratory results, medica-
tion usage information, observations, diagnosis, procedures, lengths of stay, survival
information, doctor notes, etc. In order to protect patient privacy, date entries were
randomly shifted with varying o�sets. Two critical care information systems were in
use during data recording: Philips CareVue Clinical Information System and iMD-
soft MetaVision ICU. Table 4.3 lists sample statistics of the patients who are 16
years old or above.

Table 4.3 Sample statistics of the MIMIC-III patients who are aged 16 years and
above. CCU stands for Coronary Care Unit; CSRU stands for Cardiac Surgery
Recovery Unit; MICU stands for Medical Intensive Care Unit; SICU stands for
Surgical Intensive Care Unit; TSICU stands for Trauma Surgical Intensive Care
Unit. (Johnson et al., 2016)

Critical Care Unit CCU CSRU MICU SICU TSICU Total

Unique patients 5,674 (14.7%) 8,091 (20.9%) 13,649 (35.4%) 6,372 (16.5%) 4,811 (12.5%) 38,597 (100%)

Unique Hospital admis-
sions

7,258 (14.6%) 9,156 (18.4%) 19,770 (39.7%) 8,110 (16.3%) 5,491 (11.0%) 49,785 (100%)

Unique ICU stays 7,726 (14.5%) 9,854 (18.4%) 21,087 (39.5%) 8,891 (16.6%) 5,865 (11.0%) 53,423 (100%)

Median age 70.1 67.6 64.9 63.6 59.9 65.8

Gender, male 4,203 (57.9%) 6,000 (65.5%) 10,193 (51.6%) 4,251 (52.4%) 3,336 (60.7%) 27,983 (55.9%)

Median ICU length of
stay

2.2 2.2 2.1 2.3 2.1 2.1

Median hospital length
of stay

5.8 7.4 6.4 7.9 7.4 6.9

In ICU mortality 685 (8.9%) 353 (3.6%) 2,222 (10.5%) 813 (9.1%) 492 (8.4%) 4,565 (8.5%)

In hospital mortality 817 (11.3%) 424 (4.6%) 2,859 (14.5%) 1,020 (12.6%) 628 (11.4%) 5,748 (11.5%)

In total, MIMIC-III contains 26 tables in a relational database. Columns which
31

have the ’ID’ su�x are treated as identifiers and used to link di�erent tables. As
an example, SUBJECT_ID represents a unique patient, HADM_ID represents a
unique hospital admission and ICUSTAY_ID represents a unique intensive care
unit stay. There are some tables which have the prefix ’D_’. These tables are
treated as dictionary tables and provide definitions for the identifiers. For instance,
DIAGNOSES_ICD contains ICD-9 codes of the diagnosis for the patients. De-
scriptions for all ICD-9 codes that are used in DIAGNOSES_ICD can be found in
D_ICD_DIAGNOSES table.

Names of the each 26 tables and a single sentence explanation is shared in Table 4.4.

32

Table 4.4 Names and short details of the each 26 tables in MIMIC-III database,
sorted alphabetically. (Johnson et al., 2016)

Table Detail

ADMISSIONS Contains unique hospital admissions, identified by HADM_ID.

CALLOUT Details about discharging from ICU.

CAREGIVERS Details about each caregiver.

CHARTEVENTS All electronic chart related data is stored.

CPTEVENTS CPT codes for applied procedures, used for billing.

D_CPT Describes CPT codes.

D_ICD_DIAGNOSES Describes ICD-9 codes which are used for diagnosis.

D_ICD_PROCEDURES Describes ICD-9 codes which are used for applied procedures.

D_ITEMS Describes local codes which are used to record vital signs.

D_LABITEMS Describes local codes which are used in lab events.

DATETIMEEVENTS Contains all events which are based on date and time.

DIAGNOSES_ICD Diagnosis each patients, recorded by using ICD-9 codes.

DRGCODES Contains diagnosis related groups (DRG) codes for patients.

ICUSTAYS Contains unique ICU stays, identified by ICUSTAY_ID.

INPUTEVENTS_CV Intake events of the patients, recorded by CareVue system.

INPUTEVENTS_MV Intake events of the patients, recorded by MetaVision system.

OUTPUTEVENTS Output events of the patients.

LABEVENTS Resulst of the lab measurements.

MICROBIOLOGYEVENTS Contains microbiology information.

NOTEEVENTS Caregiver notes about the patient.

PATIENTS Details about unique patients, identified by SUBJECT_ID.

PRESCRIPTIONS Medication usage information during ICU stay.

PROCEDUREEVENTS_MV Details about applied procedures, available in MetaVision system.

PROCEDURES_ICD All applied procedures for each patient, recorded by using ICD-9 codes.

SERVICES Set of services which a patient is transferred to.

TRANSFERS Details about transfers from one service to another.

In the each following subsection, you can find information about the important
tables in MIMIC-III.

33

4.2.1 Diagnoses

Diagnoses for each patient are stored in DIAGNOSES_ICD table. Diagnoses
are represented by International Classification of Diseases Version 9 (ICD-9) codes.
Descriptions of ICD-9 codes can be found in D_ICD_DIAGNOSES table. Since
a patient can have multiple diagnoses, each diagnoses was ordered by priority where
the order have an impact on treatment. In total, table contains 651.047 diagnoses
with 6.984 of which are unique entries. On average, a patient has approximately 14
diagnoses.

ICD-9 codes for diagnoses are used for billing purposes and recorded at the end of
the hospital stay. There have been previous studies which have used this table as an
input in predictive tasks, but we opted not to since it can easily leak information.
Counts of the most frequent 50 diagnoses were shared in Figure 4.1.

Figure 4.1 Most frequent 50 diagnosis in MIMIC-III dataset. Most common three
diagnosis are hypertension, chronic heart failure, atrial fibrillation.

34

4.2.2 Procedures

Applied procedures for each patient are stored in PROCEDURES_ICD table.
Like diagnoses, procedures are represented by ICD-9 codes. Descriptions of ICD-
9 codes for procedures can be found in D_ICD_PROCEDURES table. Since
multiple procedures can be applied to a single patient, each procedure are ordered
by priority where the order have an impact on treatment. In total, the table contains
247.846 applied procedures, 2.009 of which are unique entries. On average, a patient
had undergone approximately 6 applied procedures.

Counts of the most frequent 50 procedures are shared in Figure 4.2.

Figure 4.2 The most frequent 50 procedures in the MIMIC-III dataset. The most
common three procedures are placing catheter into a large vein, inserting endotra-
cheal tube and applying enteral nutrition.

4.2.3 Prescriptions

All the medication related information for a given patient is stored in
PRESCRIPTIONS table. Name and type of the each prescribed drug is stored

35

in this table. In total, this table contains 4.156.450 prescribed drugs, 4.525 of which
are unique entries. On average, 105 drugs had been prescribed to a patient.

Counts of the most frequent 50 drugs are shown in Figure 4.3.

Figure 4.3 Most frequent 50 drugs in MIMIC-III dataset. Most common three drugs
are potassium chloride, insulin, Dextrose 5%.

4.2.4 Lab Events

All the laboratory measurements for a given patient is stored in LABEV ENTS

table. The following is the procedure for obtaining a lab measurement: initially, a
caregiver obtains a fluid from the patient’s body (e.g. blood from an arterial line,
urine from a catheter, etc). The fluid is then bar coded to link it to the patient
and timestamped to keep track of when it was obtained. Within 4-12 hours, the
lab analyzes the data and gives a result. In total, the table contains 27.854.055 lab
events, 575 of which are unique. On average, 602 lab events pertains to a patient.

Counts of the most frequent 50 lab events are shared in Figure 4.4.

36

Figure 4.4 Most frequent 50 lab events in MIMIC-III dataset. The most common
three lab events are glucose measurement, hematocrit measurement, and potassium
measurement.

4.2.5 Input Events

Any fluids that have been given to the patient, such as oral or tube feedings, or
intravenous solutions carrying drugs, are considered as inputs. Since MIMIC-III
dataset uses Philips CareVue and iMDSoft Metavision as ICU information system,
all the input events are stored in two di�erent tables, INPUTEV ENTS_CV and
INPUTEV ENTS_MV . Since the observations are not duplicated across tables,
the results from two tables can be merged. In total, 21.146.926 input events are
recorded, 3.160 of which are unique. On average, 490 input events had been recorded
for a patient.

Counts of the most frequent 50 input events are displayed in Figure 4.5.

37

Figure 4.5 Most frequent 50 input events in MIMIC-III dataset. Most common three
input events are Dextrose 5%, sodium chloride injection and propofol.

38

5. METHODOLOGY

In this chapter, we present the details of the experimental setups, and the represen-
tation of the patient data in the prediction models.

5.1 Cohort Selection

We use the same cohort selection criteria as in MIMIC-Extract (Wang et al., 2020).
The selection criteria to include in the cohort are as follows:

• We select patients older than 15 years old.(This is needed due to substantial
di�erences between adult and pediatric physiology)

• The ICU stay of the patients should be at least 30 hours.

• If a patient has multiple ICU admissions, we use only the first visit.

Applying the criteria to MIMIC-III datasets results in a set of 23,944 patients. To be
able to compare the performance results fairly with Wang et al. (2020), we generate
the same training, validation and test folds by running the data split code with the
same random seed. 70% of the patients are used in training, 10% for validation and
20% for testing.

5.2 Knowledge Graph Representation of MIMIC-III Dataset

To represent the rich medical information in EHRs, we use a knowledge graph. The
graph contains patient nodes and nodes that represent the di�erent entities in the

39

medical records. In Section 5.2.1 we describe the information that goes into the
graph centered on a single patient.

Figure 5.1 Patient nodes.

5.2.1 Patient Demographic Information

The demographic information is included in the knowledge graph as follows:

• Gender represents the genotypical sex of the patient. It can take Male and
Female as value. If the patient is male, his patient node is connected with the
Male node, with an edge type GENDER_IS. Otherwise, it is connected to the
Node that represent Female.

• To represent the Age of the patient, we use the following age buckets: Under
30, Over 30 and Under 50, Over 50 and Under 70 and Over 70. The Patient
node is linked to the corresponding age node with the edge type AGE_IS.

• Ethnicity attribute in MIMIC-III take values Black, White, Asian, Hispanic
and Other. The Patient node is connected with the corresponding Ethnicity
type with the edge ETHNICITY_IS.

Figure 5.2 Patient and demographic information related nodes.

40

5.2.2 Hospital Stay Related Information

The patient hospital stay related information include the following:

• First Care Unit is the section of the ICU where the patient was first cared for.
It can take the following possible value: MICU (Medical Intensive Care Unit),
CSRU (Cardiac Surgery Recovery Unit), SICU (Surgical Intensive Care Unit),
CCU (Coronary Care Unit), TSICU (Trauma Surgical Intensive Care Unit).
Each Patient node and First Care Unit node is connected with by edge with
the type of FIRSTCARE_UNIT_IS.

• Admission Type describes the type of the admission. Emergency and Urgent
describes unplanned medical care. Elective describes a previously planned
hospital admission. We connect the Patient node with its corresponding Ad-
mission Type with the ADMISSION_TYPE_IS.

• Insurance Type describes the type of the insurance of the patient during ad-
mission. Possible values for this information are Medicare, Private, Medicaid,
Government and Self Pay. Each Patient node and Insurance Type node is
connected by INSURANCE_IS type.

Figure 5.3 Patient, demographic information and hospital stay related information
nodes.

5.2.3 In ICU Related Information

This type of information is recorded during ICU stay. We use only the information
recorded in the first 24 hours of the ICU stay.

41

Input Event describes any fluids which have been administered to the patient. For
instance, tube or oral feedings or intravenous solutions which contain medications.
In total, there are 854 Input Event nodes. Each Patient node and Input Event node
is connected by an edge with TAKES_INPUT type.

Lab Event describes information respecting laboratory based measurements. Each
event of the laboratory measurement is flagged if the observed result was abnormal.
This work only considers the events which have abnormal results. Some examples
are Hemoglobin and Hematocrit. In total, there are 215 Lab Event nodes. Each
Patient node and Lab Event node is connected by an edge of the IS_ABNORMAL
type.

Prescription includes the prescribed medicines. Some examples are Clindamycin
and Simvastatin. In total, there are 1970 Prescription nodes. Each Patient node
and Prescription node is connected by PRESCRIBED_WITH edge type.

Procedure describes the administered procedures for the patient. Some examples
are Chest X-Ray and EKG. In total, there are 112 Procedure nodes. Each Patient
node and Procedure node is connected by an edge of the RECEIVES_PROCEDURE
type.

Figure 5.4 Patient Knowledge Graph, generated on MIMIC-III dataset. For visual-
ization, knowledge graph was limited to two patients.

Figure 5.4 contains the visualization of the graph for two patients. In total, the
knowledge graph contains 27.119 nodes and 1.161.686 edges. Number of node types

42

in the knowledge graph is 11 and Number of edge types in the knowledge graph is
10.

5.3 Target Data

Target data represents the target label which we would like to predict using the
patient embedding vectors. In this thesis, we focus on the following binary classifi-
cation tasks:

• In - ICU Mortality: Predicts whether the patient will die in the intensive care
unit.

• In - Hospital Mortality: Predicts whether the patient will die in the hospital
ward after discharge from the intensive care unit.

• Length of Stay Over 3 Days: Predicts whether the patient will stay in the
intensive care unit longer than three days.

• Length of Stay Over 7 Days: Predicts whether the patient will stay in the
intensive care unit longer than seven days.

After a patient is admitted to ICU, only the data generated in the first 24 hour of the
ICU stay will be used. This time period is called the observation window. Predictions
are not made immediately at the end of the observation window. If a patient dies
in the 25th hour of the ICU stay, this means that the patient’s vital signs got worse
before the observation window has ended. This situation may cause information
leakage in the prediction models. In order to prevent this type of leakage, we use
a 6 hour gap at the end of the observation window. We make predictions only
after the 30th hour. We call this window the prediction window as in Wang et al.
(2020) . The prediction windows ends when the patient dies or is discharged from the
hospital. We make predictions at the beginning of the prediction window. Figure 5.5
illustrates the observation and prediction windows.

43

0th Hour
(Admitted to ICU) 24th Hour 30th Hour Prediction Tasks

Observation Window Prediction Window

Figure 5.5 Observation window and prediction window.

5.4 Handling Class Imbalance

In the majority of the prediction tasks, the output labels were not distributed equally.
In Table 5.1 presents the positive class ratios for each task.

Prediction Task Positive Class Ratio (%)

In - ICU Mortality 7
In - Hospital Mortality 10
Length of Stay Over 3 Days 43
Length of Stay Over 7 Days 8

Table 5.1 Rate of positive class in prediction tasks.

Since there are few examples in the minority class, learning minority class examples
will be challenging for naive application of a predictive model. In order to solve
this challenge, we resort to cost sensitive learning (Elkan, 2001). We assign higher
weight to samples with minority class label.

5.5 Evaluation Criteria

Due to data imbalance in the majority of the prediction tasks, accuracy score is
not the right choice to evaluate the performance. In this thesis, we used AUROC
(Bradley, 1997) and AUPRC (Davis and Goadrich, 2006) scores.

44

5.5.1 Area Under Receiver Operating Characteristic Curve (AUROC)

ROC (receiver operating characteristic curve) evaluates the performance of the bi-
nary classification on the positive (minority) class. X axis represents the false pos-
itive rate (ratio of the number of false positives divided by the sum of the false
positives and the true negatives) and the Y axis represents the true positive rate
(ratio of the number of true positives divided by the sum of the true positives and
false negatives). In the best possible model, the value of the true positive rate is
close to 1 and the value of the false positive rate is close to 0.

ROC uses the predicted class probabilities. After predicting class probabilities, a
threshold value is used to classify samples to negative or positive class. By default,
if the predicted positive class probability for a sample is greater than 0.5, than that
sample will be labeled as positive. Then, the true positive and false positive rates are
calculated for that threshold value. This approach will be done for many di�erent
threshold values. At the end, all the calculated true positive rates and false positive
rates are plotted as a curve. This curve is called as ROC and AUROC is the area
under the ROC.

5.5.2 Area Under Precision-Recall Curves (AUPRC)

PR curve (precision - recall curve) evaluates the performance of the binary classi-
fication on the positive (minority) class. X axis represents the recall (ratio of the
number of true positives divided by the sum of the true positives and the false neg-
atives) and the Y axis represents the precision (ratio of the number of true positives
divided by the sum of the true positives and false positives). In the best possible
model, both the value of the recall and the precision is close to 1.

The procedure for plotting PR curve is very similar to plotting a ROC curve. Instead
of the true positive rate and the false positive rate, the precision and recall values
will be plotted for every threshold value. While evaluating a binary classifier on
imbalance dataset (Saito and Rehmsmeier, 2015), PR curve is more informative
than ROC curve. To represent performance of each classifier with a value, the area
under PR curve is used, which is called the AUPRC score.

45

5.6 Environment

In this thesis, Python 3.6 was used to carry out computations on Ubuntu 16.04.4 as
the operating system with a Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, GeForce
GTX 1080 Ti GPU and 256GB RAM. The CPU contains 10 cores and 20 threads
where size of the L1 cache is 32KB, L2 cache is 256KB and L3 cache is 25MB.

46

6. EXPERIMENTS & RESULTS

The process of building the knowledge graph and learning node embeddings is ex-
plained in the previous section. This section presents the experiments conducted
and the obtained results with these methods. There are several experimental setups.
In all setups, embedding vectors were trained with the following knowledge graph
embedding methods: TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), and
ComplEx (Trouillon et al., 2016). After training the knowledge graph embeddings,
the embedding vectors that correspond to the patient nodes are retrieved, and in the
ensuing step, patients’ embedding vectors are fed into a feed-forward neural network
with three hidden layers.

6.1 Using Only Knowledge Graph Embeddings

We first aim to find out which knowledge graph embedding method works the best.
To this end, in this experiment, we evaluate the success of the knowledge graph
embeddings obtained with the methods TransE, DistMult, and ComplEx. Figure 6.1
visualizes this experimental setup.

47

Knowledge Graph

Training
Knowledge Graph
Embedding

Hidden Layers
Output
Layer

Input
Layer

Figure 6.1 The feed-forward neural network architecture with 3 hidden layers. Only
knowledge graph embeddings of the patients are used as input to the neural network.

We set the number of neurons in each hidden layer as half of the number of neurons
in the previous layer. For instance, if the size of the embedding vector is 200, then
the first hidden layer contains 100 neurons, the second hidden layer contains 50
neurons, and the last hidden layer contains 25 neurons. In each hidden layer, ReLU
activation function is used. Output layer contains a single neuron with Sigmoid
activation function. Since each task is a binary classification problem, we use the
binary cross entropy loss. The feed-forward neural network is then trained for 4000
epochs with an early stopping approach.

We tune the hyperparameters on the validation dataset. The following hyperparam-
eters were tuned:

• Learning rate: The amount that updates weight in feed-forward neural net-
work.

• Embedding size: The size of the generated embedding vector.

• Number of epochs: The number of iterations in the training loop to generate
embedding vectors.

• Number of negative triples: The number of negative triples to generate
for each true triple.

We first tune the learning rate of the feed-forward neural network. The following
values are tried: 0.01, 0.001, 0.0001 and 0.00001. In this tuning step, we set the
embedding size to 200, the number of epochs during the training phase of embedding
vectors to 250, and the number of negative samples for each true triple to 2.

48

Table 6.1 AUPR scores obtained on the validation dataset for di�erent learning rates
for each method and task are listed.

Method
Learning

Rate
Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 0.01 6.50% ±1.30 11.10% ±4.73% 45.33 ±4.59 7.58% ±0.26

0.001 10.50% ±5.14 17.39% ±5.31 48.32% ±5.62 9.35% ±3.58

0.0001 9.95% ±6.44 15.15% ±8.52% 48.74% ±6.32 8.95% ±2.86

0.00001 7.49% ±1.15 10.34% ±0.91% 45.06 ±0.79 7.79% ±0.55

ComplEx 0.01 34.32% ±5.26 34.85% ±3.84 56.60 ±2.26 14.81% ±2.27

0.001 36.95% ±2.97 35.62% ±3.81 57.14% ±1.10 14.31% ±1.76

0.0001 36.07% ±3.99 37.15% ±3.97 57.95% ±1.25 15.77% ±2.66

0.00001 35.83% ±3.54 36.63% ±3.70 63.38% ±1.44 20.84% ±2.07

DistMult 0.01 33.21% ±2.74 31.83% ±2.61 55.65% ±2.47 14.41% ±1.96

0.001 36.50% ±4.99 34.40% ±2.76 57.16% ±1.39 14.57% ±2.40

0.0001 39.62% ±4.96 37.03% ±2.99 58.33% ±1.33 16.01% ±2.51

0.00001 39.54% ±6.87 39.57% ±3.74 62.07% ±2.03 19.64% ±1.63

Table 6.1 lists the learning rate that achieves the highest AUPR score for each
method and task. In general, the lower learning rates achieve higher performance.

In the second step of hyperparameter tuning, we tune the embedding size. For each
method and task, we evaluated the following embedding sizes: 100, 200, and 400.
The optimal learning rate, which was found in Table 6.1, will be used in the rest of
the hyperparameter tuning for each method and task.

49

Table 6.2 AUPR scores obtained over the validation set for di�erent embedding sizes
for each method and task.

Method Size Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 100 9.99% ±3.49 15.40% ±0.33 46.54% ±2.66 7.67% ±0.44

200 11.18% ±3.52 17.07% ±0.98 49.53% ±6.57 8.77% ±3.03

400 17.16% ±1.09 22.92% ±1.76 48.41% ±1.18 10.34% ±4.03

ComplEx 100 31.09% ±3.56 39.01% ±3.28 53.99% ±19.42 13.84% ±10.3

200 36.16% ±2.90 36.04% ±3.64 63.02% ±0.89 20.62% ±2.32

400 38.88% ±3.81 38.69% ±5.09 61.84% ±2.94 19.09% ±3.90

DistMult 100 39.48% ±1.49 26.13% ±17.66 53.52% ±17.64 13.11% ±11.15

200 39.95% ±4.07 37.89% ±4.59 63.42% ±1.38 19.59% ±1.34

400 39.55% ±4.86 43.97% ±2.69 62.53% ±2.22 18.97% ±3.1

In Table 6.2, you can find the embedding size that achieves the highest AUPR score
for each method and task. In general, 200 and 400 embedding size achieves higher
performance.

In the third step of hyperparameter tuning, the number of epochs will be tuned.
For each method and task, the following number of epochs will be used: 100, 250,
and 500. Optimal learning rate and embedding size, which were found in Table 6.1
and Table 6.2, will be used for each method and task.

Table 6.3 Results are AUPR score and obtained by using validation dataset for
di�erent number of epochs for each method and task.

Method Epoch Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 100 14.85% ±1.26 21.47% ±1.66 47.63% ±6.16 10.61% ±3.23

250 17.16% ±1.09 22.92% ±1.76 49.53% ±6.57 10.34% ±4.03

500 13.10% ±1.29 18.13% ±1.11 48.19% ±6.09 11.12% ±3.90

ComplEx 100 39.03% ±2.84 41.24% ±1.58 62.72% ±0.78 19.9% ±1.36

250 38.88% ±3.81 39.01% ±3.28 63.02% ±0.89 20.62% ±2.32

500 38.78% ±4.24 39.35% ±3.49 62.76% ±0.88 18.66% ±7.90

DistMult 100 40.06% ±2.89 45.78% ±2.70 63.11% ±0.83 19.01% ±1.12

250 39.95% ±4.07 43.97% ±2.69 63.42% ±1.38 18.36% ±6.63

500 38.73% ±4.28 42.77% ±3.84 63.26% ±1.26 18.06% ±6.78

50

In Table 6.3, you can find the number of the epoch that achieves the highest AUPR
score for each method and task. In general, 100 and 2500 epoch achieves higher
performance. Embedding vectors which were trained on 500 epochs, tend to overfit
the input graph.

In the last step of hyperparameter tuning, the number of negative triples will be
tuned. For each method and task, the following number of negative triples will be
used: 2, 5, and 10. Optimal learning rate, embedding size and number of epoch,
which were found in Table 6.1, Table 6.2 and Table 6.3, will be used for each method
and task.

Table 6.4 Following results are AUPR score and obtained by using validation dataset
for di�erent number of negative triples for each method and task.

Method
Negative
Triples

Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 2 17.16% ±1.09 22.92% ±1.76 49.53% ±6.57 11.12% ±3.90

5 16.12% ±1.59 21.65% ±2.53 49.07% ±8.99 11.67% ±3.10

10 15.82% ±1.17 19.56% ±1.31 50.06% ±6.31 11.31% ±4.10

ComplEx 2 39.03% ±2.84 41.24% ±1.58 63.02% ±0.89 20.62% ±2.32

5 35.31% ±2.97 39.06% ±1.82 62.82% ±1.26 20.19% ±2.15

10 37.62% ±1.67 38.80% ±2.66 61.95% ±1.06 20.27% ±1.43

DistMult 2 40.06% ±2.89 45.78% ±2.7 63.42% ±1.38 19.01% ±1.12

5 37.08% ±2.59 43.93% ±2.56 62.82% ±1.22 19.57% ±1.05

10 37.96% ±3.13 42.88% ±2.31 62.43% ±1.84 19.64% ±1.68

In Table 6.4, higher performance was achieved when the number of negative triples
was 2. The increasing number of negative triples tends to underfit the input graph.

Lastly, optimal hyperparameters were used to evaluate the performance of the test
dataset. Train and validation datasets were concatenated and used for training.

51

Table 6.5 Results of each method and task on test dataset. Train and validation
sets were concatenated and used as input for training.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 16.62% ±0.92 22.10% ±0.83 53.91% ±0.77 12.33% ±0.75

ComplEx 48.34% ±0.81 46.74% ±1.61 65.04% ±0.32 17.46% ±0.58

DistMult 46.84% ±1.32 49.84% ±0.92 65.25% ±0.26 18.43% ±0.57

In Table 6.5 except In - ICU Mortality task, higher AUPR scores were obtained by
using DistMult as the embedding generation method. Embedding vectors generated
with TransE had poor performance in all tasks.

6.2 Integrating Measurements & Vital Signs

Due to the nature of the knowledge graphs, variables with continuous values cannot
be represented as nodes in the graph. Vital signs and measurements are examples of
this type of variable. They contain precious information about the patients’ health
conditions. There exist several works (Harutyunyan et al., 2019), (Purushotham
et al., 2018), (Hyland et al., 2020), (Wang et al., 2020) that uses measurements and
vitals signs of patients to increase the performance of their predictor models. In this
thesis, two di�erent sets of measurements were used.

Firstly, 16 measurements were selected. These measurements were a subset of the
measurements which were used in Harutyunyan et al. (2019). In the rest of this
thesis, this set of measurements will be called Set A. Measurement names and details
in Set A is shared in Table 6.6.

52

Table 6.6 Names and short descriptions of the measurements in Set A.

Measurement Notes

Diastolic blood pressure Recorded hourly, highly available for all
patients.

Fraction inspired oxygen Recorded in every 1 to 3 hour, not
available for most patient.

Glascow coma scale eye opening Recorded in every 4 hour, not available
for most patient.

Glascow coma scale motor response Recorded in every 4 hour, not available
for most patient.

Glascow coma scale verbal response Recorded in every 4 hour, not available
for most patient.

Glascow coma scale total Recorded in every 4 hour, not available
for most patient.

Glucose Cannot find pattern for recording, but
highly available for most of the patient.

Heart Rate Recorded hourly, highly available for all
patients.

Height Recorded once, not available for most
patients.

Mean blood pressure Recorded hourly, highly available for all
patients.

Oxygen saturation Recorded hourly, highly available for all
patients.

Respiratory rate Recorded hourly, highly available for all
patients.

Systolic blood pressure Recorded hourly, highly available for all
patients.

Temperature Recorded in every 3 to 4 hour, available
for most patients.

Weight Recorded once, available for most pa-
tients.

pH Recorded in every 5 hours, available for
some patients.

Secondly, 102 measurements were selected. The name of these measurements is
shared in Appendix as Table A. These measurements were a subset of the measure-

53

ments which were used in Wang et al. (2020). In the rest of this thesis, this set of
measurements will be called Set B.

6.2.1 Extracting Statistical Features

When a patient stays in ICU, patients’ vital signs and measurements are recorded
in an interval. As a result, these records create time series. However, in MIMIC-III,
most of the vital signs are recorded irregularly. Thus, time series become non-evenly
spaced. There exist certain ways to handle non-evenly spaced time series, and the
first way is to extract statistical features from time series. For each measurement in
Table 6.6 and Table A, following statistical features are generated:

• Minimum

• Maximum

• Median

• Standard Deviation

• Frequency

In the process of statistical feature generation, measurements were scaled with
Robust Scaler. In addition, only the first 24 hours of a patients’ data were used.
In the architecture, generated feature vector was concatenated to the patient
embedding vector. Obtained input vector was fed into a feed-forward neural
network to perform prediction tasks.

54

Hidden Layers
Output
Layer

Knowledge Graph

Training
Knowledge
Graph
Embedding

Training Medical
Measurements
Embedding

Medical
Measurements

Input
Layer

38
.7

Figure 6.2 Feedforward neural network architecture. Knowledge graph embeddings
were concatenated with statistical feature vector and used as input to feed-forward
neural network

Since optimal values for embedding size, number of negative triples and number of
epoch to generate knowledge graph embeddings were found in Section 6.1, hyper-
parameter tuning will be only applied to the learning rate of the feed-forward part.
Similar to Section 6.1, following values will be used: 0.01, 0.001, 0.0001 and 0.00001.

55

Table 6.7 Results of the concatenation of embedding vectors and statistical features
for Set A. Following results are AUPR score and obtained by using validation dataset
for di�erent learning rates for each method and task.

Method
Learning

Rate
Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 0.01 42.84% ±2.96 42.22% ±3.36 58.81% ±2.20 18.18% ±3.03

0.001 36.12% ±2.99 35.66% ±3.87 58.71% ±1.53 14.08% ±1.97

0.0001 39.82% ±4.15 39.89% ±2.57 62.75% ±2.13 14.08% ±1.97

0.00001 38.3% ±2.28 41.40% ±1.35 59.64% ±6.79 15.05% ±1.61

ComplEx 0.01 47.92% ±4.61 42.80% ±3.19 57.53% ±2.70 17.19% ±2.90

0.001 42.72% ±3.28 41.98% ±3.73 60.22% ±1.23 16.44% ±2.34

0.0001 43.95% ±3.65 46.49% ±2.87 61.22% ±1.11 16.15% ±1.74

0.00001 48.27% ±2.55 36.55% ±22.55 63.70% ±1.14 19.96% ±6.14

DistMult 0.01 42.08% ±5.36 44.80% ±6.00 57.03% ±3.24 17.10% ±2.03

0.001 39.56% ±3.82 44.85% ±3.27 59.83% ±2.09 15.85% ±1.13

0.0001 42.99% ±4.73 45.13% ±2.21 61.14% ±1.56 16.62% ±1.76

0.00001 40.89% ±4.69 49.24% ±1.72 63.53% ±1.00 19.34% ±5.62

In Table 6.7, you can find the learning rate that achieves the highest AUPR score for
each method and task. In general, a lower learning rate achieves higher performance
on DistMult and ComplEx. However, in TransE, higher learning rates had higher
AUPR scores. In the next step, optimal learning rate values will be used for each
method and task on the test dataset.

Table 6.8 Results of the concatenation of embedding vectors and statistical features
for Table 6.6. Following results are AUPR score and obtained by using test dataset
by using optimal hyperparameter values for each method and task.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 49.48% ±2.17 51.65% ±2.12 65.61% ±0.60 18.99% ±1.25

ComplEx 58.26% ±1.85 59.77% ±2.39 65.88% ±1.48 19.49% ±0.71

DistMult 57.13% ±3.88 61.81% ±2.88 66.36% ±0.94 19.88% ±1.09

As results are shared in Table 6.8, in comparison to Section 6.1, performance in all
method and task had significant gain. Similar to previous chapter, in each task,

56

TransE had the lowest AUPR score. And, except In - ICU Mortality task, DistMult
outperforms ComplEx.

Similar to measurements in Table 6.6, learning rate will be tuned for the measure-
ments in Table A by trying the same set of values: 0.01, 0.001, 0.0001 and 0.00001.

Table 6.9 Results of the concatenation of embedding vectors and statistical features
for Table A. Following results are AUPR score and obtained by using validation
dataset for di�erent learning rates for each method and task.

Method Size Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 0.01 35.57% ±14.38 35.19 ±20.07 55.25 ±5.37 16.65% ±3.62

0.001 37.55% ±4.04 38.53% ±3.74 57.81% ±2.00 14.33% ±1.44

0.0001 36.16% ±3.07 38.79% ±2.99 59.67% ±1.07 13.66% ±1.66

0.0001 37.56% ±1.89 44.04% ±1.56 63.18% ±0.95 18.01% ±3.15

ComplEx 0.01 33.99% ±21.66 44.39% ±7.35 57.47% ±1.28 16.05% ±6.16

0.001 39.56% ±4.70 40.54% ±3.28 60.39% ±1.53 15.94% ±1.59

0.0001 41.37% ±2.81 41.89% ±2.91 61.85% ±0.85 15.87% ±1.94

0.0001 42.61% ±3.74 42.95% ±4.03 64.04% ±1.56 19.30% ±1.55

DistMult 0.01 40.02% ±8.72 43.74% ±12.41 57.36% ±2.89 16.93% ±5.2

0.001 38.19% ±6.25 43.86% ±2.14 60.15% ±1.69 15.66% ±2.48

0.0001 39.99% ±3.42 44.40% ±2.85 61.02% ±1.17 15.95% ±1.15

0.0001 39.51% ±5.13 48.16% ±2.22 64.31% ±1.29 19.01% ±2.56

In Table 6.9, you can find the learning rate that achieves the highest AUPR score for
each method and task. Unlike the measurements in Table 6.6, smaller learning rates
had higher AUPR score in TransE. Similar to measurements in Table 6.6, smaller
learning rate achieves higher performance on DistMult and ComplEx in general.
In the next step, optimal learning rate values will be used for each method and task
on the test dataset.

57

Table 6.10 Results of the concatenation of embedding vectors and statistical features
for Set B. Following results are AUPR score and obtained by using test dataset by
using optimal hyperparameter values for each method and task.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 47.62% ±1.76 52.48% ±1.71 64.86% ±0.64 19.34% ±0.77

ComplEx 51.72% ±1.42 52.90% ±3.14 65.82% ±0.84 19.70% ±0.83

DistMult 46.38% ±7.75 56.78% ±1.64 66.05% ±0.88 19.66% ±0.77

As results are shared in Table 6.10, in all tasks, using measurements in Table 6.6
achieved higher AUPR score. Since measurements in Table A contain the high
number of measurements, the size of the input vector of the feed-forward part be-
comes large. In neural networks, using more features does not always lead to higher
performance. It may create a complex model that causes to overfit. Thus, using
measurements in Table A a�ected performance negatively.

6.2.2 Separate Network for Measurements & Vital Signs

In Section 6.2.1, the patient embedding vector was concatenated with the statistical
feature vector before feeding into the neural network. In this section, both the
embedding vector and statistical feature vector will be fed into a separate neural
network, and then outputs will be concatenated to be fed into several hidden layers.

In the first experiment of this section, embedding vectors and statistical features will
be fed into a separate network with 1 layer. Outputs of networks will be concatenated
and fed into two more layers. Lastly, outputs will be fed into a single neuron in the
output layer. This architecture can be visualized in Figure 6.3.

58

Hidden Layers
Output
Layer

Input
Layer

Knowledge Graph

Training
Knowledge
Graph
Embedding

Training Medical
Measurements
Embedding

Medical
Measurements

38
.7

Figure 6.3 Feedforward neural network diagram. Embedding vectors and statistical
features are feed into separate layers, then outputs were concatenated and feed into
hidden layers.

Since optimal values for embedding size, the number of epochs, and number of
negative triples were found in the first section of this chapter, and hyperparameter
tuning will only be applied to the learning rate. Similar to the previous section, the
following values will be used: 0.01, 0.001, 0.0001 and 0.00001.

59

Table 6.11 Results of feeding embedding vectors and statistical features into separate
networks for 1 layer. Outputs were concatenated and fed into 2 more layers. Follow-
ing results are AUPR score and obtained by using validation dataset for di�erent
learning rates for each method and task.

Method Size Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 0.01 40.08% ±3.58 47.04% ±3.18 64.18% ±1.34 20.06% ±1.82

0.001 42.14% ±2.29 44.02% ±1.67 63.34% ±0.96 18.85% ±0.90

0.0001 41.03% ±2.87 43.27% ±2.93 62.40% ±0.91 19.06% ±0.90

0.00001 39.31% ±3.53 42.06% ±3.26 61.17% ±1.36 19.08% ±1.2

ComplEx 0.01 49.76% ±3.36 49.48% ±2.15 66.55% ±1.18 22.14% ±2.15

0.001 51.72% ±3.46 49.4% ±2.72 66.14% ±0.80 22.07% ±1.76

0.0001 52.85% ±2.67 47.98% ±2.21 65.22% ±1.09 22.05% ±1.78

0.00001 52.50% ±3.87 46.54% ±1.85 64.46% ±1.30 21.79% ±1.88

DistMult 0.01 47.0% ±3.07 50.61% ±3.17 66.61% ±1.17 21.43% ±1.35

0.001 47.44% ±2.53 51.70% ±1.37 65.92% ±0.78 21.49% ±2.07

0.0001 47.57% ±2.72 51.98% ±2.00 65.32% ±1.02 21.71% ±1.62

0.00001 47.04% ±3.18 51.95% ±2.35 64.46% ±1.11 21.47% ±1.49

In the Table 6.11, you can find the learning rate that achieves the highest AUPR
score for each method and task. In general, a higher learning rate achieves higher
performance on Transe and ComplEx. However, in DistMult, generally, lower
learning rates had higher AUPR scores. In the next step, optimal learning rates will
be used for each method and task on the test dataset.

Table 6.12 Results of feeding embedding vectors and statistical features into separate
networks for 1 layer. Following results are AUPR score and obtained by using test
dataset by using optimal hyperparameter values for each method and task.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 50.00% ±4.67 50.63% ±4.06 59.06% ±1.73 19.01% ±1.26

ComplEx 55.90% ±0.89 59.06% ±1.73 67.42% ±1.80 19.14% ±0.80

DistMult 56.30% ±1.05 58.74% ±1.62 66.96% ±1.23 19.85% ±1.32

As results on test set are shared in Table 6.12, in each task, TransE had the lowest
AUPR score. ComplEx had highest AUPR scores in LoS > 3 Days and In - Hos-

60

pital Mortality tasks. By contrast, DistMult had highest AUPR scores in In - ICU
Mortality and LoS > 7 Days tasks.

In the second experiment of this section, embedding vectors and statistical features
will be fed into separate networks with 2 layers. Outputs of networks will be con-
catenated and fed into 1 more layer. Lastly, outputs will be fed into a single neuron
in the output layer.

Since optimal values for embedding size, the number of epochs and the number of
negative triples was found in Section 6.1, hyperparameter tuning will only be applied
to the learning rate. Similar to previous experiments, the following values will be
used: 0.01, 0.001, 0.0001, and 0.00001.

Table 6.13 Results of feeding embedding vectors and statistical features into separate
networks for 2 layers. Outputs were concatenated and fed into 1 more layer. Follow-
ing results are AUPR score and obtained by using validation dataset for di�erent
learning rates for each method and task.

Method Size Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 0.01 39.21% ±4.32 42.87% ±2.42 63.03% ±1.52 19.60% ±1.00

0.001 39.47% ±3.05 43.82% ±3.29 62.81% ±1.16 19.64% ±1.69

0.0001 37.58% ±2.15 42.56% ±2.38 61.87% ±0.97 19.41% ±1.39

0.00001 37.11% ±2.80 40.50% ±1.79 60.36% ±1.19 17.13% ±5.95

ComplEx 0.01 50.75% ±2.53 48.36% ±4.05 65.42% ±1.06 22.25% ±1.36

0.001 50.34% ±2.91 49.53% ±2.61 65.03% ±0.97 21.53% ±1.49

0.0001 48.63% ±2.46 49.07% ±5.08 64.46% ±1.41 21.08% ±1.62

0.00001 48.57% ±2.17 47.93% ±6.4 64.24% ±1.46 20.80% ±1.90

DistMult 0.01 48.57% ±2.17 50.00% ±2.14 65.9% ±1.19 20.65% ±1.22

0.001 49.00% ±2.15 50.76% ±2.4 65.27% ±0.31 20.70% ±1.72

0.0001 47.56% ±2.13 49.20% ±1.94 64.60% ±0.81 20.84% ±1.57

0.00001 46.80% ±2.67 48.51% ±1.97 64.12% ±0.85 20.59% ±1.70

In Table 6.13, you can find the learning rate that achieves the highest AUPR score
for each method and task. Similarly to previous experiment, higher learning rate
achieves higher performance on TransE and ComplEx. Except LoS > 7 Days task,
DistMult also performed better with higher learning rates. In the next step, optimal
learning rates will be used for each method and task on the test dataset.

61

Table 6.14 Results of feeding embedding vectors and statistical features into separate
networks for 2 layers. Following results are AUPR score and obtained by using test
dataset by using optimal hyperparameter values for each method and task.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE 49.08% ±0.97 50.71% ±2.97 64.76% ±1.63 18.94% ±1.05

ComplEx 55.36% ±3.94 57.02% ±2.70 66.22% ±0.99 18.58% ±1.17

DistMult 53.80% ±2.64 55.85% ±2.86 66.02% ±0.94 18.47% ±0.79

As results are shared in Table 6.14, except LoS > 7 Days task, ComplEx achieved
higher AUPR score. Surprisingly, TransE outperformed ComplEx and DistMult in
LoS > 7 Days task. Consequently, in comparison to using 2 layers as a separate
network, using 1 layer as a separate network had higher AUPR scores in all tasks.

6.2.3 Time Series Implementation

As stated in Section 6.2.1, measurements and vital signs were recorded irregularly.
Thus treating them as time series becomes harder. A possible solution to represent
irregularly recorded data as artificially regular data is dividing data into chunks. In
this experiment, patients’ measurements and vital signs were divided into hourly
chunks. Since only the first 24 hours of a patients’ data was used, data is divided
into 24 chunks. For each measurement and vital sign, each chunk was represented
by the median value of the records in that chunk. If a chunk does not have any
records, then the median value of the rest of the chunks will be used to represent
that chunk.

Since measurements in Table 6.6 is used, each chunk was represented by a vector
with a length of 16. In total, the measurements of each patient was represented
by a two-dimensional array. The length of the first dimension is 24, which is the
number of chunks. The length of the second dimension is 16, which is the number
of measurements in each chunk.

In this subsection, three di�erent setups were used. In all setups, measurements
and embedding vectors were fed into separate networks. Embedding vectors were
fed into a network with 1 layer. Conv 1D, LSTM and Transformer were used in
the separate network for measurements to learn temporal representations. Outputs

62

were concatenated and fed into 2 more layers.

In the first setup, time-series data was fed into Conv 1D. For hyperparameter tuning,
the number of filters, size of each filter and learning rate were tuned by using values
in Table 6.15.

Table 6.15 Hyperparameter tuning for Conv 1D. This process was divided into two
steps. In the first step, for each task and method, filters and kernel_size hyper-
parameters were tuned at the same time by using grid search. During this step,
learning_rate was fixed at 0.001. In the second step, optimal values for filters and
kernel_size were used to tune learning_rate. All the experiments were applied on
validation dataset.

Hyperparameter Search Space Description

filters [1, 3, 5] Number of filters

kernel_size [3, 5, 7] Size of the kernel

learning_rate [0.01, 0.001, 0.0001, 0.00001] Learning rate

In the second setup, time series data was feed into LSTM. For hyperparameter
tuning, number of units and learning rate were tuned by using values in Table 6.16.

Table 6.16 Hyperparameter tuning for LSTM. This process was divided into two
steps. In the first step, for each task and method, units hyperparameter was tuned.
During this step, learning_rate was fixed at 0.001. In the second step, optimal
value for units were used to tune learning_rate. All the experiments were applied
on validation dataset.

Hyperparameter Search Space Description

units [8, 16, 32] Dimension of inner cell

learning_rate [0.01, 0.001, 0.0001, 0.00001] Learning rate

In the third setup, time series data was feed into Transformer. For hyperparameter
tuning, number of multi-attention heads, size of each attention head, number of
encoder blocks and learning rate were tuned by using values in Table 6.17.

63

Table 6.17 Hyperparameter tuning for Transformer. This process was divided into
three steps. In the first step, for each task and method, num_heads and head_size
hyperparameters were tuned at the same time by using grid search. During this
step, num_encoder_blocks was fixed at 2 and learning_rate was fixed at 0.001. In
the second step, optimal values for num_heads and head_size were used to tune
num_encoder_blocks. In the third step, optimal values for num_heads, head_size
and num_encoder_blocks were used to tune learning_rate. All the experiments were
applied on validation dataset.

Hyperparameter Search Space Description

num_heads [2, 4, 6] Number of attention heads

head_size [32, 64, 128] Size of each attention head

num_encoder_blocks [2, 3, 4] Number of encoder blocks

learning_rate [0.01, 0.001, 0.0001, 0.00001] Learning rate

In Table 6.18, you can find results on the test dataset of these three setups for each
method and task pair by using optimal values for each hyperparameter.

Table 6.18 Results of feeding embedding vectors and time series measurements into
separate networks for 1 layer. Performance of using Conv 1D, LSTM and Trans-
former for measurements were compared. Following results are AUPR score and
obtained on test dataset by using optimal hyperparameter values for each method
and task.

Method Implementation Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

TransE Conv 1D 48.54% ±2.21 50.35% ±1.99 63.09% ±0.82 16.17% ±0.46

LSTM 46.54% ±2.00 49.87% ±1.76 63.43% ±1.88 17.09% ±1.03

Transformer 44.14% ±2.17 46.07% ±4.14 61.91% ±0.76 15.90% ±0.91

ComplEx Conv 1D 57.11% ±3.33 56.62% ±2.18 66.32% ±0.82 17.78% ±0.82

LSTM 53.88% ±5.44 58.5% ±2.17 66.57% ±1.04 18.82% ±0.95

Transformer 55.33% ±2.56 55.52% ±2.34 66.30% ±0.84 18.31% ±0.90

DistMult Conv 1D 56.94% ±4.10 60.38% ±3.65 66.15% ±0.79 18.09% ±1.30

LSTM 56.59% ±1.53 59.84% ±1.20 66.50% ±0.75 18.88% ±0.72

Transformer 56.09% ±1.60 59.59% ±1.56 66.32% ±0.28 19.11% ±0.45

Table 6.18 shows that results are similar to previous experiments. TransE had
lowest AUPR scores in all tasks. For In - ICU Mortality and LoS > 3 Days tasks,
ComplEx had higher performance by using Conv 1D and LSTM respectively. On
the other hand, DistMult had better performance on In - Hospital Mortality and
LoS > 7 Days tasks by using Conv 1D and Transformer respectively.

64

6.3 Comparison with MIMIC-Extract

In Section 6.1 and Section 6.2, a certain number of di�erent setups were used.
From all experiments, for each method and task, the highest AUPR score is shared
in Table 6.19. In addition, AUPR scores for all tasks in MIMIC-Extract are also
shared in Table 6.19.

Table 6.19 Comparison of AUPR scores with MIMIC - Extract. For each method
and task, highest AUPR score is shared. Results are generated on test dataset.

Method Tasks

In - ICU Mortality In - Hospital Mortality LoS > 3 Days LoS > 7 Days

MIMIC - Extract 50.90 53.20 68.5 19.50

TransE 50.00 ±4.67 52.48 ±1.71 65.61 ±0.60 19.34 ±0.77

ComplEx 58.26 ±1.85 59.77 ±2.39 67.42 ±1.80 19.70 ±0.83

DistMult 57.13 ±3.88 61.81 ±2.88 66.96 ±1.23 19.88 ±1.09

As shared in Table 6.19, except LoS > 3 Days task, proposed solution achieved
superior performance.

65

7. CONCLUSION

In this work, we explore representing patients with embedding vectors learned in
EHRs knowledge graphs. These learned vectors are non-sparse constructs by design
that encode useful patient medical information. We explore the usefullness of this
representation in downstream prediction tasks at ICU. These tasks include the mor-
tality prediction and length of stay predictions. These tasks have highly imbalanced
class labels. Therefore, to deal with the imbalance we resort to cost sensitive learn-
ing. The data contain features across a time window andwe ensure that features
that can leak information about future are excluded. For example to prevent data
leakage, the information on diagnoses of a particular stay is not included as the
diagnoses codes in the dataset were recorded at the end of the hospital stay.

In our work we employed and compared three di�erent knowledge graph embedding
methods. TransE consistently underperformed in comparison to DistMult and Com-
plEx tools in the ICU prediction tasks. On the other hand, DistMult and ComplEx
performances were similar to each other.

In our models the demographic and categorical features are represented in the knowl-
edge graph, but the patient measurements and vital signs are treated separately.
We derive features that represent signals over a period of time, as explained in Sec-
tion 6.2.1. Extracted feature vectors are either used directly or fed to a feed-forward
neural network to obtain more complex features learned on them (Section 6.2.2).
We also explored treating the measurements data as time series in Section 6.2.3.
Since most of the measurements were recorded irregularly, measurements were ag-
gregated into hourly buckets to have denser representations. Except for the LoS
> 3 Days task, representing these measurements with simple aggregation features
yielded the highest performance. For LoS > 3 Days task, the set-up proposed in
Section 6.2.2 resulted with the highest performance. Treating measurements as time
series in Section 6.2.3 did not turn out to be beneficial and it actually reduced the
model performance. Highest AUPR scores for each method and task were compared
with MIMIC-Extract in Section 6.3. The proposed knowledge based representation
of patients yielded superior performance in three of the four di�erent classification

66

tasks.

Measurements and vital signs contain highly valuable information, thus using these
information have showed a significant change in performance. We observed that
increasing the number of measurements does not always translate to performance
improvement. Incorporating more measurements also prolongs the training times
and increases model complexity. Using separate network for measurements and
embeddings in Section 6.2.2 did not improve the performance either. Treating mea-
surements as time series in Section 6.2.3 did not improve the performance since
measurements were recorded sporadically. In addition, some of the measurements
were recorded sparsely in time.

7.1 Limitations and Future Work

The presented approach has some limitations. Not all the information in the MIMIC-
III data have been used during the generation of knowledge graph. Currently, we
ignore the doctor and nurse notes, which may contain valuable information about
the patient. These notes can be used to extract information, and the information
can be represented as nodes. In addition, caregivers can be represented as nodes in
a graph.

Secondly, due to nature of knowledge graphs, numerical values of the measurements
and vitals signs are not included in knowledge graphs. It is not possible to assign
feature vectors to nodes in a knowledge graph, thus some valuable information have
been inevitably left-out. This situation has posed a similar limitation in representing
the prescribed medicine. The duration and the dosage information for the medicine
could not be represented in the graph. One way to incorporate this information
could be adapting a graph neural network (GNN) approach. Since the graph in this
thesis is a heterogeneous graph and contains di�erent type of nodes, heterogeneous
based GNN’s can be used to extract embedding vectors.

Due to the basic construction of knowledge graphs, if a graph update occurs, (if
nodes are added or removed), the whole graph should be retrained. In our case,
when a new patient arrives to ICU, whole graph should be trained from scratch to
learn the embedding vector of the new patient. In the recent years, methods to learn
embeddings for new nodes without training from scratch have been proposed. Wewer
et al. (2021) uses neighbor information to initialize embeddings for new nodes. By

67

fixing the embeddings for old nodes, only the new node embeddings are optimized.
Such incremental training approaches could be useful to deploy the system in real
life.

Finally, the training steps for node embedding and prediction task are conducted
separately. These parts can be combined in an end-to-end training fashion. The
hyperparameter tuning on an end-to-end architecture may improve the performance
which we leave as possible future work.

68

BIBLIOGRAPHY

AC06953431, A. (2008). Health informatics-Electronic health record communication-
Part 1: Reference model. ISO.

Aliyu, I., Kana, A., and Aliyu, S. (2020). Development of knowledge graph for uni-
versity courses management. International Journal of Education and Management
Engineering, 10(2):1.

Beaulieu-Jones, B. K., Greene, C. S., et al. (2016). Semi-supervised learning of
the electronic health record for phenotype stratification. Journal of biomedical
informatics, 64:168–178.

Birkhead, G. S., Klompas, M., and Shah, N. R. (2015). Uses of electronic health
records for public health surveillance to advance public health. Annual review of
public health, 36:345–359.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase:
a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1247–1250.

Bonomi, S. (2016). The electronic health record: a comparison of some european
countries. In Information and Communication Technologies in Organizations and
Society, pages 33–50. Springer.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013).
Translating embeddings for modeling multi-relational data. In Neural Information
Processing Systems (NIPS), pages 1–9.

Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern recognition, 30(7):1145–1159.

Brown, S.-A. (2016). Patient similarity: emerging concepts in systems and precision
medicine. Frontiers in physiology, 7:561.

Caballero Barajas, K. L. and Akella, R. (2015). Dynamically modeling patient’s
health state from electronic medical records: A time series approach. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 69–78.

Cao, Y., Wang, X., He, X., Hu, Z., and Chua, T.-S. (2019). Unifying knowledge
graph learning and recommendation: Towards a better understanding of user
preferences. In The world wide web conference, pages 151–161.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell,
T. M. (2010). Toward an architecture for never-ending language learning. In
Twenty-Fourth AAAI conference on artificial intelligence.

69

Charles, D., Gabriel, M., and Furukawa, M. F. (2013). Adoption of electronic health
record systems among us non-federal acute care hospitals: 2008-2014. ONC data
brief, 9:1–9.

Cheng, Y., Wang, F., Zhang, P., and Hu, J. (2016). Risk prediction with electronic
health records: A deep learning approach. In Proceedings of the 2016 SIAM
international conference on data mining, pages 432–440. SIAM.

Daskalakis, D. C. (2017). The electronic health record and patient portals in hiv
medicine: pushing the boundaries of current ethics and stigma. Cambridge Quar-
terly of Healthcare Ethics, 26(2):332–336.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233–240.

Duöek, O. and Jur�í�ek, F. (2016). Sequence-to-sequence generation for spoken
dialogue via deep syntax trees and strings. arXiv preprint arXiv:1606.05491.

Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint
conference on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum
Associates Ltd.

Esteban, C., Schmidt, D., Krompaß, D., and Tresp, V. (2015). Predicting sequences
of clinical events by using a personalized temporal latent embedding model. In
2015 International Conference on Healthcare Informatics, pages 130–139. IEEE.

Evans, R. S. (2016). Electronic health records: then, now, and in the future. Year-
book of medical informatics, 25(S 01):S48–S61.

Ferrão, J. C., Oliveira, M. D., Gartner, D., Janela, F., and Martins, H. M. (2021).
Leveraging electronic health record data to inform hospital resource management.
Health Care Management Science, 24(4):716–741.

Fries, J. A. (2016). Brundlefly at semeval-2016 task 12: Recurrent neural networks
vs. joint inference for clinical temporal information extraction. arXiv preprint
arXiv:1606.01433.

Gentimis, T., Ala’J, A., Durante, A., Cook, K., and Steele, R. (2017). Pre-
dicting hospital length of stay using neural networks on mimic iii data. In
2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing,
15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), pages 1194–1201. IEEE.

Ghassemi, M., Pimentel, M., Naumann, T., Brennan, T., Clifton, D., Szolovits, P.,
and Feng, M. (2015). A multivariate timeseries modeling approach to severity of
illness assessment and forecasting in icu with sparse, heterogeneous clinical data.
In Proceedings of the AAAI conference on artificial intelligence, volume 29.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S.,
Zhang, Z., Wu, Y., et al. (2020). Conformer: Convolution-augmented transformer
for speech recognition. arXiv preprint arXiv:2005.08100.

70

Gupta, M., Phan, T.-L. T., Bunnell, T., and Beheshti, R. (2019). Obesity prediction
with ehr data: A deep learning approach with interpretable elements. arXiv
preprint arXiv:1912.02655.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning, 14(3):1–159.

Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., and Galstyan, A.
(2019). Multitask learning and benchmarking with clinical time series data. Sci-
entific data, 6(1):1–18.

Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education
India.

Hillestad, R., Bigelow, J., Bower, A., Girosi, F., Meili, R., Scoville, R., and Taylor,
R. (2005). Can electronic medical record systems transform health care? potential
health benefits, savings, and costs. Health a�airs, 24(5):1103–1117.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural com-
putation, 9(8):1735–1780.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558.

Hyland, S. L., Faltys, M., Hüser, M., Lyu, X., Gumbsch, T., Esteban, C., Bock, C.,
Horn, M., Moor, M., Rieck, B., et al. (2020). Early prediction of circulatory failure
in the intensive care unit using machine learning. Nature medicine, 26(3):364–373.

Jagannatha, A. N. and Yu, H. (2016a). Bidirectional rnn for medical event detection
in electronic health records. In Proceedings of the conference. Association for
Computational Linguistics. North American Chapter. Meeting, volume 2016, page
473. NIH Public Access.

Jagannatha, A. N. and Yu, H. (2016b). Structured prediction models for rnn based
sequence labeling in clinical text. In Proceedings of the conference on empiri-
cal methods in natural language processing. conference on empirical methods in
natural language processing, volume 2016, page 856. NIH Public Access.

Jensen, P. B., Jensen, L. J., and Brunak, S. (2012). Mining electronic health records:
towards better research applications and clinical care. Nature Reviews Genetics,
13(6):395–405.

Johnson, A. E., Pollard, T. J., Shen, L., Li-Wei, H. L., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Celi, L. A., and Mark, R. G. (2016). Mimic-iii, a freely
accessible critical care database. Scientific data, 3(1):1–9.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph con-
volutional networks. arXiv preprint arXiv:1609.02907.

Klompas, M., Cocoros, N. M., Menchaca, J. T., Erani, D., Hafer, E., Herrick,
B., Josephson, M., Lee, M., Payne Weiss, M. D., Zambarano, B., et al. (2017).
State and local chronic disease surveillance using electronic health record systems.
American journal of public health, 107(9):1406–1412.

71

Kuss, O. (2002). Global goodness-of-fit tests in logistic regression with sparse data.
Statistics in medicine, 21(24):3789–3801.

Lee, D., Jiang, X., and Yu, H. (2020). Harmonized representation learning on
dynamic ehr graphs. Journal of biomedical informatics, 106:103426.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al. (2015). Dbpedia–a
large-scale, multilingual knowledge base extracted from wikipedia. Semantic web,
6(2):167–195.

Lipton, Z. C., Kale, D. C., Elkan, C., and Wetzel, R. (2015). Learning to diagnose
with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677.

Liu, J., Zhang, Z., and Razavian, N. (2018a). Deep ehr: Chronic disease prediction
using medical notes. In Machine Learning for Healthcare Conference, pages 440–
464. PMLR.

Liu, Y., Ge, T., Mathews, K. S., Ji, H., and McGuinness, D. L. (2018b). Exploiting
task-oriented resources to learn word embeddings for clinical abbreviation expan-
sion. arXiv preprint arXiv:1804.04225.

Liu, Y. and Lapata, M. (2019). Text summarization with pretrained encoders. arXiv
preprint arXiv:1908.08345.

Madsen, L. B. (2014). Data-driven healthcare: how analytics and BI are transform-
ing the industry. John Wiley & Sons.

McLoughlin, I. P., Garrety, K., and Wilson, R. (2017). The digitalization of health-
care: Electronic records and the disruption of moral orders. Oxford University
Press.

Mehrabi, S., Sohn, S., Li, D., Pankratz, J. J., Therneau, T., Sauver, J. L. S.,
Liu, H., and Palakal, M. (2015). Temporal pattern and association discovery of
diagnosis codes using deep learning. In 2015 International conference on healthcare
informatics, pages 408–416. IEEE.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). E�cient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Miotto, R., Li, L., Kidd, B. A., and Dudley, J. T. (2016). Deep patient: an unsuper-
vised representation to predict the future of patients from the electronic health
records. Scientific reports, 6(1):1–10.

Moor, M., Rieck, B., Horn, M., Jutzeler, C. R., and Borgwardt, K. (2021). Early pre-
diction of sepsis in the icu using machine learning: a systematic review. Frontiers
in medicine, 8:348.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective
learning on multi-relational data. In Icml.

Noel, S., Harley, E., Tam, K. H., Limiero, M., and Share, M. (2016). Cygraph:
graph-based analytics and visualization for cybersecurity. In Handbook of Statis-
tics, volume 35, pages 117–167. Elsevier.

72

Oh, S.-H., Lee, S. J., Noh, J., and Mo, J. (2021). Optimal treatment recommenda-
tions for diabetes patients using the markov decision process along with the south
korean electronic health records. Scientific reports, 11(1):1–10.

Pham, T., Tran, T., Phung, D., and Venkatesh, S. (2016). Deepcare: A deep
dynamic memory model for predictive medicine. In Pacific-Asia conference on
knowledge discovery and data mining, pages 30–41. Springer.

Pollard, T. J., Johnson, A. E., Ra�a, J. D., Celi, L. A., Mark, R. G., and Badawi, O.
(2018). The eicu collaborative research database, a freely available multi-center
database for critical care research. Scientific data, 5(1):1–13.

Purushotham, S., Meng, C., Che, Z., and Liu, Y. (2018). Benchmarking deep
learning models on large healthcare datasets. Journal of biomedical informatics,
83:112–134.

Rocheteau, E., Tong, C., Veli�koviÊ, P., Lane, N., and Liò, P. (2021). Pre-
dicting patient outcomes with graph representation learning. arXiv preprint
arXiv:2101.03940.

Rojas, J. C., Carey, K. A., Edelson, D. P., Venable, L. R., Howell, M. D., and
Churpek, M. M. (2018). Predicting intensive care unit readmission with machine
learning using electronic health record data. Annals of the American Thoracic
Society, 15(7):846–853.

Saeed, M., Villarroel, M., Reisner, A. T., Cli�ord, G., Lehman, L.-W., Moody,
G., Heldt, T., Kyaw, T. H., Moody, B., and Mark, R. G. (2011). Multiparameter
intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive care
unit database. Critical care medicine, 39(5):952.

Saito, T. and Rehmsmeier, M. (2015). The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS
one, 10(3):e0118432.

Shickel, B., Tighe, P. J., Bihorac, A., and Rashidi, P. (2017). Deep ehr: a survey
of recent advances in deep learning techniques for electronic health record (ehr)
analysis. IEEE journal of biomedical and health informatics, 22(5):1589–1604.

Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., and Ré, C. (2015). Incremental
knowledge base construction using deepdive. In Proceedings of the VLDB Endow-
ment International Conference on Very Large Data Bases, volume 8, page 1310.
NIH Public Access.

Si, Y., Du, J., Li, Z., Jiang, X., Miller, T., Wang, F., Zheng, W. J., and Roberts, K.
(2021). Deep representation learning of patient data from electronic health records
(ehr): A systematic review. Journal of Biomedical Informatics, 115:103671.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide
Web, pages 697–706.

73

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G. (2016). Complex
embeddings for simple link prediction. In International Conference on Machine
Learning, pages 2071–2080. PMLR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
£., and Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30.

Veli�koviÊ, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., and Chao, L. S.
(2019). Learning deep transformer models for machine translation. arXiv preprint
arXiv:1906.01787.

Wang, S., McDermott, M. B., Chauhan, G., Ghassemi, M., Hughes, M. C., and
Naumann, T. (2020). Mimic-extract: A data extraction, preprocessing, and repre-
sentation pipeline for mimic-iii. In Proceedings of the ACM Conference on Health,
Inference, and Learning, pages 222–235.

Wang, Y. and Tian, F. (2016). Recurrent residual learning for sequence classification.
In Proceedings of the 2016 conference on empirical methods in natural language
processing, pages 938–943.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28.

Wewer, C., Lemmerich, F., and Cochez, M. (2021). Updating embeddings for dy-
namic knowledge graphs. arXiv preprint arXiv:2109.10896.

Wu, L. Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., and Weston, J. (2018).
Starspace: Embed all the things! In Thirty-Second AAAI Conference on Artificial
Intelligence.

Wu, T., Wang, Y., Wang, Y., Zhao, E., Yuan, Y., and Yang, Z. (2019). Repre-
sentation learning of ehr data via graph-based medical entity embedding. arXiv
preprint arXiv:1910.02574.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2014). Embedding entities and
relations for learning and inference in knowledge bases.

Zhang, S., Liu, L., Li, H., Xiao, Z., and Cui, L. (2016). Mtpgraph: A data-driven
approach to predict medical risk based on temporal profile graph. In 2016 IEEE
Trustcom/BigDataSE/ISPA, pages 1174–1181. IEEE.

Zhang, Y., Yao, Q., Shao, Y., and Chen, L. (2019). Nscaching: simple and ef-
ficient negative sampling for knowledge graph embedding. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 614–625. IEEE.

Zhu, W. and Razavian, N. (2021). Variationally regularized graph-based represen-
tation learning for electronic health records. In Proceedings of the Conference on
Health, Inference, and Learning, pages 1–13.

74

APPENDIX A
Measurement

Alanine aminotransferase
Albumin
Albumin ascites
Albumin pleural
Albumin urine
Alkaline phosphate
Anion gap
Asparate aminotransferase
Basophils
Bicarbonate
Bilirubin
Blood urea nitrogen
Calcium
Calcium ionized
Calcium urine
Cardiac index
Cardiac output fick
Cardiac output thermodilution
Central venous pressure
Chloride
Chloride urine
Cholesterol
Cholesterol hdl
Cholesterol ldl
Co2
Co2 (etco2, pco2, etc.)
Creatinine
Creatinine ascites
Creatinine pleural
Creatinine urine
Diastolic blood pressure
Eosinophils
Fibrinogen
Fraction inspired oxygen
Fraction inspired oxygen set
Glascow coma scale total

75

Glucose
Heart rate
Height
Hematocrit
Hemoglobin
Lactate
Lactate dehydrogenase
Lactate dehydrogenase pleural
Lactic acid
Lymphocytes
Lymphocytes ascites
Lymphocytes atypica
Lymphocytes body fluid
Lymphocytes percent
Lymphocytes pleural
Magnesium
Mean blood pressure
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Mean corpuscular volume
Monocytes
Monocytes csl
Neutrophils
Oxygen saturation
Partial pressure of carbon dioxide
Partial pressure of oxygen
Partial thromboplastin time
Peak inspiratory pressure
Ph
Ph urine
Phosphate
Phosphorous
Plateau pressure
Platelets
Positive end expiratory pressure
Positive end expiratory pressure set
Post void residual

76

Potassium
Potassium serum
Prothrombin time inr
Prothrombin time pt
Pulmonary artery pressure mean
Pulmonary artery pressure systolic
Pulmonary capillary wedge pressure
Red blood cell count
Red blood cell count ascites
Red blood cell count csf
Red blood cell count pleural
Red blood cell count urine
Respiratory rate
Respiratory rate set
Sodium
Systemic vascular resistance
Systolic blood pressure
Temperature
Tidal volume observed
Tidal volume set
Tidal volume spontaneous
Total protein
Total protein urine
Troponin i
Troponin t
Venous pvo2
Weight
White blood cell count
White blood cell count urine

77

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATONS
	INTRODUCTION
	Motivation
	Thesis Scope and Organization
	Thesis Organization

	LITERATURE REVIEW
	Information Extraction
	Patient Representation
	Outcome Prediction
	Non Graph Based Approaches
	Graph Based Approaches

	Computational Phenotyping

	BACKGROUND
	Artificial Neural Networks
	Convolutional Neural Networks (cnn)
	Recurrent Neural Networks (rnn)
	Long Short-Term Memory (lstm)
	Transformer
	Knowledge Graphs
	Knowledge Graph Representation Learning
	TransE
	RESCAL
	DistMult
	ComplEx

	DATASET DESCRIPTION
	Electronic Health Records
	MIMIC - III
	Diagnoses
	Procedures
	Prescriptions
	Lab Events
	Input Events

	METHODOLOGY
	Cohort Selection
	Knowledge Graph Representation of MIMIC-III Dataset
	Patient Demographic Information
	Hospital Stay Related Information
	In icu Related Information

	Target Data
	Handling Class Imbalance
	Evaluation Criteria
	Area Under Receiver Operating Characteristic Curve (AUROC)
	Area Under Precision-Recall Curves (AUPRC)

	Environment

	EXPERIMENTS & RESULTS
	Using Only Knowledge Graph Embeddings
	Integrating Measurements & Vital Signs
	Extracting Statistical Features
	Separate Network for Measurements & Vital Signs
	Time Series Implementation

	Comparison with MIMIC-Extract

	CONCLUSION
	Limitations and Future Work

	BIBLIOGRAPHY
	APPENDIX A -4em

