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Abstract

PHYSICS BASED MODELING OF LITHIUM-ION BATTERIES FOR
ELECTRIFIED VEHICLE SIMULATIONS

Ece Kurt

Mechatronics Engineering, Master’s Thesis, July 2022

Thesis Supervisor: Assist. Prof. Tuğçe Yüksel

Keywords: Lithium-ion battery; Electrochemical modeling; Single Particle Model
(SPM); Capacity degradation; Electric vehicle.

Lithium-ion (Li-ion) batteries are one of the most promising energy storage devices
because they are portable, lightweight, and have high power density and energy
capacity. Hence, modeling such energy storage systems has been an essential and
attractive research topic. An electrochemical model can be derived to describe not
only the electrical phenomena but also significant micro-scale interactions affecting
the characteristics of the battery. Such a model can represent the system behavior
with high precision but has a high computational cost as it requires solving tightly-
coupled partial differential equations. To mitigate the computational complexity
without compromising the fidelity, a simplified electrochemical and thermal model
of Li-ion batteries is extensively studied to dissect the battery characteristics.

The salient feature of this study is building an electric vehicle simulation frame-
work which can simulate battery performance and life under user defined driving
conditions. The framework enables investigating Li-Ion battery performance using
physics-based models (PBMs) which are a single particle model (SPM) and SPM
with electrolyte dynamics (SPMe) coupled with a capacity degradation mechanism.
In addition, a conventional second-order equivalent circuit model (ECM) is built
in order to compare its performance with the PBMs.The numerical performance of
the models is analyzed by performing several constant current and driving simu-
lations using the simulation framework. The results show that the physics-based
models predict battery voltage behaviour more accurately compared to ECM. In
addition they provide quantitative information regarding solid electrolyte interface
layer formation and battery states such as state of charge and state of health in a
computationally-efficient manner.
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Özet

ELEKTRİKLİ ARAÇ SİMULASYONLARI İÇİN LİTYUM-İYON PİLLERİN
FİZİK TABANLI MODELLENMESI

Ece Kurt

Mekatronik Mühendisliği ,Yüksek Lisans Tezi, Temmuz 2022

Tez Danışmanı: Assist. Prof. Tuğçe Yüksel

Anahtar Kelimeler: Lityum-iyon pil; Elektrokimyasal modelleme; Tek Parçacık
Modeli (SPM); Kapasite kaybı; Elektrikli araç

Lityum-iyon (Li-iyon) piller, taşınabilir ve hafif olmaları, yüksek güç yoğunluğu ve
enerji kapasitesine sahip olmaları nedeniyle en umut vaad eden enerji depolama ci-
hazlarından biridir. Bu nedenle, bu tür enerji depolama sistemlerinin modellenmesi
önemli ve dikkat çeken bir araştırma konusu olmuştur. Sadece elektriksel olayları
değil, aynı zamanda pilin performansını etkileyen önemli mikro ölçekli etkileşimleri
de tanımlamak için bir elektrokimyasal model yapılabilir. Böyle bir model, sis-
tem davranışını yüksek hassasiyetle temsil edebilir, ancak birbiriyle bağlantılı çok
sayıda kısmi diferansiyel denklemin çözülmesi gerektiği için yüksek bir hesaplama
maliyetine sahiptir. Doğruluktan ödün vermeden hesaplamak, çözüm karmaşıklığını
azaltmak ve pil özelliklerini detaylı incelemek için Li-ion pillerin basitleştirilmiş bir
elektrokimyasal ve termal modeli kapsamlı bir şekilde incelenmiştir.

Bu çalışmanın öne çıkan özelliği, bir elektrikli araç simulasyonu oluşturularak,
batarya performansının ve ömrünün kullanıcının belirlediği bir sürüş profilinde in-
celenmesidir. Bunun için kapasite kaybı modeli ile birleştirilmiş tek parçacık modeli
(SPM) ve elektrolit dinamiği dahil edilmiş tek parçacık modeli (SPMe) fizik tabanlı
modeller olarak kullanılmıştır. Fizik tabanlı modellere ek olarak, geleneksel ikinci
dereceden eşdeğer devre modeli (ECM) oluşturulup performası fizik tabanlı mod-
ellerle karşılaştırılmıştır. Aynı zamanda, Matlab/Simulink’te dizayn edilmiş bir elek-
trikli araç modeli, Matlab üzerinde kurulmuş pil modelleri ile entegre edilerek sabit
akım ve belirli sürüş profili altında modellerin verdikleri cevaplar karşılaştırılmıştır.
Fizik tabanlı modellerin, ikinci dereceden eşdeğer devre modeline göre daha doğru
sonuçlar verdiği incelenmiştir. Ayrıca, fizik tabanlı modellerin, pil ömrü ve perfor-
mansı hakkında daha nicel bilgi verdiği görülmüştür.
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Chapter 1

Introduction

During the past century, an increase in greenhouse gases due to the excessive use
of petroleum-based fuels for transportation has stirred the use of electricity instead
of petroleum for vehicles. Li-ion batteries have been utilized as a power source in
electric vehicles not only for their high energy and power density and long cycle life
but also for their cost, and safety [15]. During their use, it is important to esti-
mate the lithium-ion battery’s state of charge and health. For this purpose, several
different approaches are being investigated. In this chapter, we explain the lithium-
ion batteries, different modeling approaches for batteries, and the degradation of
lithium-ion batteries.

1.1 Lithium-Ion Batteries

Li-ion batteries are the main type of batteries that are being used in electrified
vehicles today. In addition, they are very promising candidates for stationary energy
storage. Due to the relative lightweight and low density of lithium, lithium-ion
batteries have greater specific energies than batteries constructed from other
materials, such as zinc and lead.

Several basic components make up cells. These comprise an electrolyte, a separator,
a positive electrode (cathode), and a negative electrode (anode). Current collectors
unique from the electrodes themselves may also be found in specific types of cells.
A lithium-ion cell is seen schematically in Figure 1.1.
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Figure 1.1: Basic schematic diagram of the LIB with charging/discharging process
[1]

The electrochemical storage processes in charge direction for the LiyFePO4-graphite
system can be described by the equations 1.1 and 1.2 respectively as follows:

LiFePO4
Charge−→ yLi+ +ye− +Li1−yFePO4 (1.1)

xLi+ +xe− +Li1−xC6
Charge−→ LiC6 (1.2)

Where 0 ≤ x ≤ 1, to describe the level of lithiation of a negative electrode and
0 ≤ y ≤ 1 of positive electrode.

During a typical charge, electrons move from the cathode and transfer to the an-
ode through the external circuit. In the meantime, Li+ ions de-intercalate from the
cathode and travel through the electrolyte to the anode. During the discharge, the
whole process is reversed. There have been three important processes during the in-
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tercalation of Lithium ions into the negative electrode: First, Li+ ions are separated
from the positive electrode, and then Li+ ions diffuse through the electrolyte to the
negative electrode, and finally, they are intercalated into the inner layer of negative
electrode by passing the solid electrolyte interface (SEI), and it is common that last
step is known as charge-transfer process[16].

The material used for the negative electrode in the great majority of commercial
lithium-ion batteries today is graphite (C6) in one form or another. Graphite can
contain a maximum of one lithium atom per six carbon atoms, although a minimum
of zero is also possible. Therefore, the notation is LixC6. For usage as negative
electrodes, other materials are being researched. Compared to graphite, Lithium
Titanate (Li4Ti5O12, commonly known as lithium titanate oxide, or LTO) enables
substantially quicker charging without any negative side effects. The materials that
can be utilized as positive electrodes in lithium-ion batteries may be selected in a
considerably wider variety. Lithium cobalt oxide (Liy CoO2, where 0 ≤ y ≤ 1, com-
monly referred to as LCO) batteries are employed in electronic cameras, computers,
and mobile phones. The main issue is that cobalt is poisonous, costly, and rare.
Nickel, Manganese, and Aluminum can be added to the LCO to increase cell perfor-
mance. For example, batteries made of Lithium, Manganese, and Cobalt are referred
to as NMC batteries (LiyNiMnCoO2). Power tools and automobile powertrains use
NMC batteries as their primary power source. Common cathode combination ra-
tios are 60% nickel, 20% manganese, and 20% cobalt. Due to the decreased cobalt
percentage, this mix delivers a special benefit while also lowering the cost of raw
materials. Nickel, Cobalt, and Aluminum are all combined in a lithium nickel cobalt
aluminum oxide (NCA, LiyNiCOAlO2) as a positive electrode. Lithium nickel oxide
has been developed further into NCA, which adds aluminum to make the chemical
more stable. Phosphate was identified as a cathode material for lithium batter-
ies in 1996 by the University of Texas [2]. LFP (LiyFePO4) has a low resistance
and strong electrochemical performance. These batteries are widely used in electric
motorcycles and other devices that need high levels of safety and long lifecycles.
Lithium manganese oxide (LM0,LiyMn2O4 ) was used as the cathode material for
a Li-ion cell that was commercialized by Moli Energy in 1996. The design creates
a three-dimensional spinel structure that enhances ion flow on the electrode, which
lowers internal resistance and increases current management.
The medium that transports ions between electrodes is known as an electrolyte. It
consists of an acid, a base, or a salt that has been dissolved in a solvent. The elec-
trolyte of a lithium-ion cell is made up of nonaqueous organic solvents along with a
lithium salt and functions only as an ionic conducting medium, without taking part
in the chemical process because lithium reacts strongly with water [2].
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A permeable membrane serves as the separator in a lithium-ion cell. It has large
enough pores for lithium ions to flow through unhindered but tiny enough to pre-
vent contact between the particles of the negative and positive electrodes. It also
functions as an electronic insulator[2].

1.2 Modelling approaches for Lithium-Ion Batteries

Models can be helpful tools for designing electrodes, cells, and packs by forecasting
a battery’s key performance parameters, such as capacity and lifetime. Researchers
can use models to investigate the design space for several factors to be used in
determining key design elements of batteries such as electrode structure or thermal
management. Moreover, mathematical modeling of Li-Ion batteries can be useful
for developing battery management systems (BMSs) for both electric vehicles and
grid-connected battery systems. It can be used as a way to determine the operating
limits for certain applications that produce the best lifespan.

There are commonly two modeling methods: physics-based modeling (PBM) and
empirical modeling. The formal derives the simulated behavior from equations
known to describe the real physical behavior involved, the latter requires a gradual
process of applying equations and parameters to get the best match to experimental
data [17]. Figure 1.2 represents the multi-scale modeling approaches present in the
literature.

Figure 1.2: Lithium-Ion battery working schematics [2]

Generally, ECM is used as an empirical model in battery simulations since it is
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computationally efficient and suitable for real-time battery state estimations. A
single particle model as a PBM reveals the underlying mechanisms of Li-Ion batteries
and presents more accurate results. Thus, studies related to battery modeling are
increasing in order to use them in real-time EV simulations.

1.2.1 Equivalent circuit model of Li-ion batteries

Empirical Equivalent-circuit models (ECMs), a subset of empirical models, describe
a battery’s electrical behavior using various circuit components like resistors and
capacitors. The model’s components could not always directly relate to the actual
device but rather replicate its general behavior. Figure 1.3 illustrates the first-order
resistance-capacitor model of the Lithium-Ion battery.

Figure 1.3: Equivalent circuit model of Lithium-Ion battery: a) First order RC
model b) Second order RC model [3]

The cell’s terminal voltage is influenced by dynamic variables related to recent usage
patterns, so a connection between the charge state and the open-circuit voltage is
needed. Here, VOCV represents the cell’s open circuit voltage, which depends on
the SoC. R0 denotes the internal resistance of the cell, and models the electrolyte
resistance. When the terminal voltage of a cell deviates from the open-circuit voltage
as a result of current flowing through the cell, this is referred to as polarization.
Voltage polarization gradually grows over time when the cell is subjected to current
demands and gradually disappears over time when the cell is left to rest. This
slowly varying voltage is referred to as diffusion voltage, and the slow diffusion
processes of li-ions in a cell are the reason of this phenomenon [18] . One or more
parallel resistor-capacitor sub-circuits can be used to replicate this effect roughly.
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R1 denotes the charge-transfer resistance and models the potential difference over
the solid-electrolyte interface (SEI), C1 is the double-layer capacitance. The double
layer is in between the electrode and electrolyte, and electrode voltage determines
how much charge is stored in this layer. The first RC couple is also known as Butler-
Volmer impedance since it models the electrochemical diffusion process inside the
cell. The second RC couple models the mass transport due to the Lithium diffusion
inside the solid electrodes [19].

Equivalent circuit model parameters may be found using a variety of approaches,
including nonlinear least squares curve fitting methods[20] and electro-impedance
spectroscopy (EIS) [21]. The majority of them entail defining factors with regard
to SOC, and it is also demonstrated that the parameters rely on the temperature,
and current direction [22]. Evidently, the single RC pair model cannot match the
relaxation voltage data as well as the higher-order RC models can. Additionally,
when a triple RC model is used, only a little increase in voltage fitting is shown in
comparison to the fitting results using a double RC model, which can be a sign of
over-parameterization. The double RC pair type is the best option [23].

ECM is frequently constrained by the underlying experimental data and cannot of-
fer an in-depth understanding of the electrochemical interactions within the battery.
Therefore, a model created for one case could not be relevant to another. Therefore,
each new application must execute operation-specific battery aging studies in order
to get an accurate model of battery degradation. Additionally, it might be difficult
to accurately fit an ECM to experimental datasets since circuit element configu-
rations can be fitted to produce an impedance curve with a similar shape. As a
result, correct circuit element assignment can only be accomplished when sufficient
knowledge about the underlying electrochemical events is known [24].

1.2.2 Physics-based model of Li-ion batteries

Unlike empirical models, physics-based models consist of coupled partial differential
equations (PDEs) to represent the electrochemical and chemical reactions [17]. The
physics behind the electrochemical cells may be explained at a variety of scales, as
seen in Figure 1.2. The Lithium-Ion flow between the solid and electrolyte phases is
typically included in these models, together with the charge and mass conservations
in both phases. It is necessary to discretize space and time for the physics-based
models to investigate the cell’s performance. Methods of spatial discretization, in-
cluding finite element, finite difference, and finite volume, are used to solve PDEs.
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In order to use such techniques, the electrochemical model must be discretized in
space and time.

An electrochemical model that considers mass transfer, diffusion, migration, and
reaction kinetics was created by Doyle and Newman [25]-[26]-[27]. These models are
also known as the "DFN" model in the literature. Figure 1.4 illustrates the DFN
model. It is the most popular model for modeling the electrochemical operation of
Li-ion batteries and has received substantial experimental validation [4].

Figure 1.4: Doyle-Fuller-Newman (DFN) model of Lithium-Ion batteries [4]

The diffusion PDE in solid particles plays a significant role in a complete electro-
chemical model. It offers information on the amount of lithium that is available
to use and the lithium concentration in the electrodes. The solid-phase diffusion
PDEs yield more equations of states needed to solve than the electrolyte phase dif-
fusion PDEs. This is due to the fact that the solid-phase diffusion varies both along
the electrode’s thickness at macro x-scale and along the particle’s radius at micro
r-scale [4]. Since the solid-phase diffusion requires more computations to solve than
the other PDEs in the electrochemical model, it must be made simpler to provide
real-time capability.

Single Particle Model (SPM) is one of the electrochemical battery models exten-
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sively used for simulation purposes due to its lower complexity compared to other
electrochemical models. Figure 1.5 demonstrates the SPM model’s geometry. Al-
though the geometry is quite similar to that of the DFN model, there is now just
one particle in each electrode, as opposed to DFN.

The SPM was first developed and used for Li-ion battery modeling in [28]. It
approximates both the negative and positive electrodes as two spherical particles
and ignores the concentration of Li+ in the electrolyte phase providing reasonable
accuracy, especially at low current rates, at a desirable computational cost. Since it
neglects the Lithium distribution in the electrolyte phase, SPM is only suitable for
low-current applications [29].

Figure 1.5: SPM representation of Lithium-Ion batteries [5]

Single Particle Model with Electrolyte (SPMe), which considers the effect of elec-
trolyte phase potential on the cell voltage, improves the accuracy of SPM under high
current rates [30]-[31]. For a wide variety of operating circumstances, as demon-
strated in [32]-[33], SPMe may exhibit extremely excellent agreement with the DFN
model, making them highly helpful in many real-world applications [34]. For battery
state estimations, SPMe is used since it has higher prediction accuracy [35].
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1.3 Degradation

Batteries are one of the most significant technologies for energy storage in mobile
applications. According to [36], Li-ion batteries offer the highest volumetric and
gravimetric energy densities of all the currently available secondary battery tech-
nologies, making them an attractive option for future energy storage systems. How-
ever, significant obstacles must be overcome to advance the use of Li-ion batteries
in energy storage technologies, including cost, poor performance in hot and cold
conditions, and limited cycle life. A deeper comprehension of the Li-ion battery’s
deterioration processes is needed to make this development.

Temperature, state of charge (SoC), and power demand are the three primary ex-
trinsic factors that users may see impacting degradation. Depending on the material
used in the battery and previous usage, circumstances have a different proportional
value. The effects of various stress variables on the underlying physical degradation
processes have been addressed in works like [7], and models like those discussed in
[37] indicate how specific mechanisms might be characterized. Temperature is often
the most important stress component, and variations from the standard 25℃might
hasten failure. Material characteristics and manufacturing processes are two kinds of
intrinsic variables [38]-[39]. Slight variations in production circumstances are likely
to have had some effects on Lithium-ion battery performance. Moreover, the sen-
sitivity of testing devices that are frequently not controlled nor monitored further
amplifies the rapid failure of Li-Ion batteries. Figure 1.6 demonstrates the causes
and results of the degradation mechanisms.
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Figure 1.6: Degradation processes and related degradation modes’ causes and
effects [6]

Loss of lithium inventory (LLI), loss of active materials (LAM), and loss of electrolyte
are the three primary degradation modes (DMs) that have been identified in the
literature to describe aging mechanisms [6]. Lithium ions are consumed in side
reactions such as Li-plating and SEI layer formation. The cell capacity is decreased
since these lithium ions are no longer usable for the intercalation process, leading to
the capacity fade, but on the other hand, LAM often involves material loss [7]-[40].
The electrolyte is consumed when the lithium that has been deposited on the anode
contact interacts with it, which is another key source of degradation [17]. At the
battery’s end of its life, the electrolyte level may have significantly decreased, which
might cause capacity and power to fade. Figure 1.7 illustrates the major degradation
mechanism.
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Figure 1.7: Lithium-Ion battery degradation modes[7]

According to several researchers, the development of a passivation layer on the
graphite electrode is the most significant factor contributing to lithium-ion battery
degradation [17]. As a result of a process involving lithium ions and electrons from
the electrode, components of the electrolyte solvent are reduced on the graphite
surface. The solid electrolyte interphase (SEI) layer is formed by the reaction
product deposition on the graphite. As the cell ages, the SEI layer’s thickness
thickens (mostly on the graphite NE). Different factors, including as the passage of
solvent molecules through already-existing SEI, newly exposed electrode surfaces
brought on by cracking, and the deposition of side reaction products that combine
with the electrolyte to create SEI, might all contribute to the growth. The square
root of time and the SEI growth rate is roughly correlated [41]. The rate of solvent
molecule diffusion slows down as the SEI thickness rises and eventually causes
loss of lithium. Most electrode materials enlarge upon Li-ion intercalation and
contract during deintercalation. The alternate strains created by these cycles of
volume expansion and contraction lead to fracture development and surface cracks
in the electrodes. The SEI layer can form on a larger surface area when fractures
develop at the electrode’s surface, which causes more cyclable lithium to leak out,
so causes the loss of active material[37]. Lithium-plating is another degradation
mechanism that causes of loss of lithium inventory. Lithium ions transform into
metallic lithium at high C-rate charging at low temperatures, and these ions are
then deposited on the anode during charging. This lithium compound accelerates
aging by partly reacting with the electrolyte [6].
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There are two main approaches in order to investigate the capacity fade in Li-Ion
batteries: empirical and physics-based models. Yet, research is being done on differ-
ent modeling approaches to improve modeling accuracy and early SoH prediction.
Figure 1.8 summarises the modeling approaches for battery SoH prediction.

Figure 1.8: Models for battery state of health (SoH) function [8]

Equivalent-circuit models (ECMs) are one the empirical models and are frequently
utilized in BMS to forecast the SoC and SoH of batteries for vehicle power man-
agement control due to their high computational efficiency in terms of speed and
numerical convergence. According to reference, [42], SoH estimation can be done
using ECM with SoC, temperature, and current states. Furthermore, SoH predic-
tion and the empirical type degradation model may be readily coupled since the
SoH Kalman filter technique is most suitable for ECM [43]. References [44]-[3] are
examples of the battery SoH prediction studies. The first use observers to determine
an ECM’s states, and then they use an empirical aging model to determine potential
capacity changes.
In purely data-driven models, generally, measurements like as current and voltage
are used as direct inputs to a machine learning model, which then learns the usable
remaining capacity as the output. One strategy is to develop a machine learning
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model in which the model determines the amount of capacity fade that takes place
over short time periods depending on the capacity, current, or temperature present
at the time [45]. In order to make use of past knowledge about battery degradation
behavior, this research [46] has shown how the Gaussian process (GP) may be ap-
plied to battery capacity forecasting. They do this by using explicit mean functions
based on battery degradation data.

Feature-based data-driven approaches take features that are extracted from voltage
and current, and then they are used for the machine learning algorithms as in-
puts. For example, this study [47] validates the ability of data-driven prognostics to
forecast early estimation of Li-ion battery lifespan utilizing characteristics from the
capacity difference between charge and discharge curves when the discharge C-rates
and operating temperatures fluctuate.

Several advances in physics-based models of Li-ion battery systems have been re-
leased in the literature. Reference [48] established the equations of the SEI layer
formation mechanisms at the graphite electrode. This is one of the most documented
aging phenomena in conventional Li-ion systems. According to the reference, [41],
SEI formation can be added to the P2D models by including the modeled solvent
migration through the SEI layer, followed by electrochemical reactions guided by
the Tafel equation and considering both kinetic and diffusion limits. They used ex-
perimental data that demonstrated great results to justify their advancements. The
degradation behaviors may be accurately represented by the physics-based models.
Based on the P2D model framework and its reduced forms, it is possible to connect
the SEI degradation mode with other degradation processes, and attempts have been
made to predict the stress and fatigue behavior of both the SEI and the electrode
materials when they are coupled [37]. Reference [49] used a single particle model of
the graphite/LFP cell to explore the various causes of the cells’ capacity loss during
storage and cycling conditions.

It has been proposed that data-driven techniques might be coupled with physics-
based models to improve their ability to forecast the vast variety of potential aging
processes. Reference [50] states that the deep convolutional neural network (DCNN)
method reaches a promising rate of precision in the capacity estimation, demon-
strating the effectiveness of the technique as a tool for online Li-ion battery health
management. According to the reference, [51] in order to address the requirement
for precise and computationally efficient models, physics-based modeling and data-
driven machine learning (ML) may be combined. They developed a hybrid model to
simulate LiB’s aging state, and its ability to make precise predictions under various
SoH situations is experimentally validated.
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1.4 Thesis Objectives and Contributions

The main goal of the thesis is to build a simulation framework for BEVs and their
main energy source batteries, which can estimate battery performance and life under
given driving and usage conditions.

The key contributions of this thesis are concentrated on the following to achieve the
goals:

A. Constructing three different battery modeling approaches: (1) An empirical
model which is known as ECM consist of circuit elements such as resistors and
capacitors (2) SPM is a physics-based model that depends on electrochemical
reactions inside the cell and covers only solid phase dynamics. (3) SPMe is
also a physics-based model that consists of electrolyte dynamics in addition
to the SPM , and comparing ECM and PBMs performances under different
inputs.

B. Integrating of a SEI formation at the negative electrode as battery degradation
mechanism with the PBMs

C. Building a simulation environment for an electric vehicle in Matlab/Simulink
and integrating it with the battery models in Matlab for BEV simulation,
which can take driving profile and ambient temperature as an input and pro-
vides battery states SOC, SOH, etc as an output.

1.5 Thesis Outline

The thesis is outlined as follows:

• In order to compare the models, battery modeling approaches are needed to be
explored. Chapter 2 explains the models used in the thesis. It also clarifies
the thermal modeling method used in both ECM and PBMs. Moreover, the
discretization method for the solution of PBMs and a degradation mechanism
modeling are described in the chapter.

• Based on the models developed in Chapter 2, Chapter 3 demonstrates the
comparison of purposed models’ performances under constant current and a
dynamic current demand. In addition, illustrates the battery capacity fade
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under certain conditions and clarifies the remaining capacity of a battery after
being used in BEV for 15 years.

• Finally, the thesis is concluded in Chapter 4 and recommendations for future
works are provided.
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Chapter 2

Modeling methods of Li-Ion batteries

As mentioned in the Chapter 1, there are various modeling methods for Li-Ion bat-
teries to dissect their performance under various conditions. In this work, conven-
tional equivalent circuit model (ECM) and physics-based models which are the single
particle model (SPM) and SPM with electrolyte dynamics (SPMe) are selected to
model the battery and compare the performance of the models. The following sec-
tions reveal the methodology behind the modeling of ECM, SPM, and SPMe. The
discretization method is explained for physics-based battery models. On top of that,
models coupled with the same thermal model and it is described in the following
sections. Finally, the degradation mechanism is implemented for only physics-based
models and is defined in the last chapter.

2.1 Equivalent Circuit Model of Li-Ion Battery

The 2-RC equivalent circuit model is selected in order to investigate Li-ion bat-
tery dynamics and compare the model performance with the physics based models.
Figure 2.1 illustrates the model circuit diagram used in this work.

Here VOCV is the open circuit voltage as a function of the state of charge (SoC)
and V1 and V2 are RC couple potentials that mimic the lithium-ion slow diffusion
process inside the battery. Overall cell voltage can be calculated as:

V = VOCV − I ·ROHM −V1 −V2 (2.1)

Where V1 and V2 can be found by discretizing the following ODEs for each time
step:
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Figure 2.1: 2-RC equivalent circuit model of Li-Ion battery [3]

V̇1 = − 1
R1C1

V1 + 1
C1

I

V̇2 = − 1
R2C2

V2 + 1
C2

I
(2.2)

The resulting discretized voltage drops across the RC couple circuits can be ex-
pressed as:

V1[k +1] = V1[k]e− 1
R1C1

∆t +R1I[k]
(

1− e
− 1

R1C1
∆t
)

(2.3)

V2[k +1] = V2[k]e− 1
R2C2

∆t +R2I[k]
(

1− e
− 1

R2C2
∆t
)

(2.4)

Then overall cell voltage can be found at each time step as follows:

V [k] = VOCV [k]− I[k] ·ROHM −V1[k]−V2[k] (2.5)

EV coupled with the ECM takes power as an input and then calculates the current
and voltage of the cell. Cell power is calculated as follows:

Pcell[k] = V [k]I[k] (2.6)

Here voltage and current are unknown. The overall voltage of the cell is calculated

17



in equation 2.5 and for simplicity new term can be defined as:

Vf [k] = VOCV [k]−V1[k]−V2[k] (2.7)

Then cell voltage becomes as:

V [k] = Vf [k]− I[k]R0[k] (2.8)

New power relation can be made by putting 2.8 into 2.6 and rearranged for clarity:

Pcell[k] =
(
Vf [k]− I[k]R0[k]

)
I[k]

R0[k]I2[k]−Vf [k]I[k]+Pcell[k] = 0
(2.9)

In this way, the quadratic equation can be solved for every time step k to find the
corresponding current.

I[k] =
Vf [k]−

√
v2

f [k]−4R0[k]Pcell[k]
2Ro[k] (2.10)

OCV and R-C elements are a function of SoC and battery temperature. Fitted
equations of R-C elements and OCV data are obtained from reference [22].

The state of charge of the battery can be found at each time step as follows:

SOC[k +1] =
SOC[k]CBattery − I[k]

(
∆t

3600

)
CBattery (2.11)

Where CBattery is the battery capacity in Ah provided by the manufacturer and ∆t

is the time step in second.

2.2 Physics Based Model of Li-Ion Battery

In this work, the single particle model (SPM), which is the simplified version of the
P2D battery model, is used. SPM consists of only two partial differential equation
(PDE) that defines the concentration dynamics inside electrodes. Therefore, it is
easy to implement and gives faster responses compared to the P2D model. Although
it has less computational effort, it cannot capture the full dynamics at high current
rates. Since electrolyte dynamics affect the battery performance substantially, PDEs
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that define the concentration dynamics at the electrolyte are added to investigate
battery performance at high current rates. The following sections explain the model
equations and discretization of the governing PDEs.

2.2.1 Single Particle Model (SPM)

Figure 1 represents the Li-ion battery model consisting of negative-positive elec-
trodes, a separator, and an electrolyte. The dimensions are the spherical dimension
in the solid particles and the dimension along with the thickness. Li-ion transport is
described by the 1D mass and charge conservation laws along with the x-direction
and diffusion process that takes place in the spherical direction of the particles. The
SPM is derived based on two assumptions: Li+ concentration in the electrolyte is
constant, and the distribution of the electrode concentration along the electrode is
negligible [9].

Figure 2.2: Single particle model of Li-ion battery [9]

Diffusion in each electrode is defined by Fick’s law in the spherical direction:
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∂cs,i

∂t
= Ds,i

r2
∂

∂r
(r2 ∂cs,i

∂r
) (2.12)

where cs,i denotes lithium ion concentration at the solid phase, Ds,i is the solid phase
diffusion coefficient, r is the particle radius, and i denotes the positive and negative
electrode. There are two boundary conditions at the surface of the particle and its
core. At the core of the particle, the molar flux of lithium-ions is zero because the
symmetry and boundary condition at the center of the particle is defined as:

∂cs,i

∂r
(0, t) = 0 (2.13)

There is a molar flux at the surface of the particle, and the gradient is different
than 0 due to the intercalation-deintercalation process of lithium ions at the solid-
electrolyte interface. The boundary condition at the surface of the particle is ex-
pressed as:

∂cs,i

∂r
(Rs, t) = Ji (2.14)

Ji = ∓ Ii(t)
Ds,iFaiLi

(2.15)

Ji is molar flux and taken as negative for the positive electrode and positive for
the negative electrode. I(t) [A/m2] is input current density, Ds,i is diffusion rate
constant, F is Faraday constant, Li is thickness of the positive and negative electrode,
and ai is specific interfacial area [52],

as,i = 3εs,i

Ri
(2.16)

Since the electrolyte concentration is uniform through the electrodes, diffusion over-
potential in the electrolyte is ignored and terminal voltage output of the solid phase
is defined by solid-phase open circuit potential and Butler-Volmer kinetics. Hence
Butler-Volmer equation assumes that electrode concentration is equal to the elec-
trolyte concentration; overpotential at the solid electrolyte interface can be expressed
as a function of current density.

Negative and positive phase overpotentials can be expressed as:

ηp =RT

αF
sinh−1

(
I(t)

2a+AL+i+
0

)
ηn = RT

αF
sinh−1

(
I(t)

2a−AL−i−
0

)
(2.17)
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R is gas constant [J/mol-K], T is temperature [K], α is charge transfer coefficient,
and A is the electrode surface area [m2].

i0 is the exchange current density, which is calculated as

ii
0 = ki[ci

ssce(ci
s,max − ci

ss)]α (2.18)

Here, ce [mol/m3] is the fixed electrolyte concentration, cs,max [mol/m3] is the max-
imum concentration of the electrode and k [mol/[m2s(mol/m3)1.5]) is rate constant.
Here, ci

ss is the surface concentration of the spherical particles and taken as:

ci
ss(t) = ci

s

(
Ri

s, t
)

(2.19)

U+
(
θ+
)

and U−
(
θ−
)

are the open circuit potential (OCP) functions of the nor-
malized surface concentration of each electrode and difers from cell to cell.

θ−,+, normalized lithium concentrations at the surface of positive and negative elec-
trodes are calculated as,

θ+ = cs,+
c+

s,max
and θ− = cs,−

c−
s,max

(2.20)

It gives considerable information about available Lithium concentrations during
charging and discharging. State of charge (SoC) of the battery can be determined
as follows, where θ−,b

0% is bulk concentration in the electrodes [52]:

SoC = 100×
(

θ− − θ−
0%

θ−
100% − θb

0%

)
(2.21)

The overall cell potential is represented as follows [53]:

Vspm(t) =RT

αF
sinh−1

(
I(t)

2a+AL+i+
0

)

− RT

αF
sinh−1

(
I(t)

2a−AL−i−
0

)
+U+

(
θ+
)

−U−
(
θ−
)

(2.22)
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2.2.2 Single Particle Model with Electrolyte Dynamics

A single particle model with electrolyte dynamics covers lithium diffusion along with
the length of the electrodes. In addition to SPM, SPMe consists of diffusion equa-
tions for the negative electrolyte, separator, and positive electrolyte and considers
electrolyte polarization and electrolyte conductivity due to overpotential. In this
thesis we follow the approach used in [54] to construct the SPMe.

Diffusion in the electrolyte is represented in the dimension along the thickness:

∂C−
e

∂t
= ∂

∂x

[
D−

e
∂C−

e

∂x

]
+ (1− t0

c)
ϵ−
e FL− I(t) (2.23)

∂Csep
e

∂t
= ∂

∂x

[
Dsep

e
∂Csep

e

∂x

]
(2.24)

∂C+
e

∂t
= ∂

∂x

[
D+

e
∂C+

e

∂x

]
− (1− t0

c)
ϵ+
e FL+ I(t) (2.25)

with the boundary conditions:

∂C−
e

∂t
(0−, t) = ∂C+

e

∂x
(0+, t) = 0 (2.26)

ϵ−
e D−

e
∂C−

e

∂t
(L−, t) = ϵsep

e Dsep
e

∂Csep
e

∂t
(0sep, t) (2.27)

ϵsep
e Dsep

e
∂Csep

e

∂t
(Lsep, t) = ϵ+

e D+
e

∂C+
e

∂t
(L+, t) (2.28)

Ce(L−, t) = Ce(0sep, t) (2.29)

Ce(Lsep, t) = Ce(L+, t) (2.30)

Electrolyte potential is divided into two. One of them is electrolyte overpotentials
due to electrolyte conductivity, and other one is electrolyte polarization [54].
Electrolyte conductivity κ, concentration-dependent and fitted from Dualfoil LiPF6
in EC:DMC, Capiaglia et al. 1999 [54].

κ = 0.0911+1.9101(ce/1e3)−1.052(ce/1e3)2 +0.1554(ce/1e3)3 (2.31)
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κ can be temperature dependent, but in this study, it is taken as concentration-
dependent. The effective conductivity can be defined as a function of Li concentra-
tion, and volume fractions of each region [[52]]:

κn
eff = κn(1− ϵf,n − ϵn

e )brugg. (2.32)

κs
eff = κs(1− ϵs

e)brugg. (2.33)

κp
eff = κp(1− ϵf,p − ϵp

e)brugg. (2.34)

Since the Electrolyte is in a porous medium, κeff can be determined from the
Bruggman correction. The Bruggman exponent can be used to quantify the impact
of the porous media on electrolyte conductivity and diffusivity. Variation of the
Bruggman constant affects the electrolyte conductivity significantly. The higher
Bruggman constant, the lower the effective conductivity so it directly affects the cell
voltage [55].

Electric overpotential due to the conductivity in the electrolyte can be represented
as a function of current density, the thicknesses of the electrodes and separator, and
the electrolyte effective conductivity of each region [52]. It is represented as Ohmic
resistance, and it can be defined by electrochemical impedance spectroscopy

ηcond = L+ +2Lsep +L−

2κeff
I(t) (2.35)

Electric overpotential due to the diffusion of lithium-ion can be identified as:

ηpol = 2RT

F
(1− t0

c)κi
f

[
lnce(0+, t)− lnce(0−, t)

]
(2.36)

Where electrolyte activity coefficient is determined as follows [[54]]:

κi
f = 1+ d lnc/a

d lnce
(2.37)

d lnc/a

d lnce
= ((0.601−0.24(ce).0.5 +0.982(1−0.0052(T −Tref ))(ce)1.5)./(1− t0

c))−1
(2.38)

Electrolyte effective conductivity and activity coefficient are calculated separately
for each phase.
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Finally, cell potential is calculated as,

Vspme(t) = Vspm(t)+ηcond(t)+ηpol(t) (2.39)

2.2.3 Discretization of Physics-Based Model Equations

The electrochemical model of Lithium-Ion batteries is governed by partial differ-
ential equations (PDEs) that define the diffusion and migration processes inside
the battery. The finite difference method (FDM) is used to discretize the govern-
ing equations and resulting ordinary differential equations (ODEs) are solved using
Matlab.

2.2.3.1 Electrode discretization

Solid electrodes are represented as one spherical particle as the scope of SPM. There-
fore, uniform discretization is applied across the particle. Solid particle radius is Ri,
and it is divided into N-1 number of nodes.

The second-order solid-phase diffusion equation is represented as follows:

∂cs,i

∂t
= Ds,i

r2
∂

∂r
(r2 ∂cs,i

∂r
) (2.40)

Where i represents the negative and positive region and boundary conditions are
defined as:

∂cs,i

∂r
(0, t) = 0 (2.41)

∂cs,i

∂r
(Rs, t) = Ji (2.42)

Ji = Ii(t)
Ds,iFaiLi

(2.43)

(2.40) is rewritten as,
∂cs

∂t
= Ds,i

r2

(
2r

∂cs

∂r
+ r2 ∂2cs

∂r2

)
(2.44)

24



The second order and first order PDEs in (2.44) can be discretized using central
difference approximation:

∂2cs

∂r2 = cn+1 −2cj + cn−1
∆r2 (2.45)

∂cs

∂r
= cn+1 − cn−1

2∆r
(2.46)

By putting (2.45) and (2.46) into (2.44) we can get the general equation for both
electrodes:

∂cs

∂t
= Ds,i

rn∆r2

(
(∆r + rn)cn+1 −2rncn +(rn −∆r)cn−1

)
(2.47)

n=1,2,3 .... N-1.

n = 1,
∂cs,1
∂t

= Ds,i

r1∆r2

(
(∆r + r1)c2 −2r1c1 +(r1 −∆r)c0

)
(2.48)

n = 2,
∂cs,2
∂t

= Ds,i

r2∆r2

(
(∆r + r2)c3 −2r2c2 +(r2 −∆r)c1

)
...

n = N −1,
∂cs,N−1

∂t
= Ds,i

rN−1∆r2

(
(∆r + rN−1)cN −2rN−1cN−1 +(rN−1 −∆r)cN−2

)
(2.49)

Here, ∆r = R/N . R is the solid particle radius, and N is the node number.
Therefore r1, r2...rn is actually 1∆r,2∆r, ...N∆r

At the particle core, the backward difference formula is used to discretize.

∂cs

∂r
(r = 0) = cn − cn−1

∆r
= 0 (2.50)

n start from 1, the concentration at the core is equal to the concentration at the
first node, and it is substituted into equation (2.48)

n = 1 c1 = c0 (2.51)
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At the surface of the particle, the forward difference is applied to the boundary, and
the resulting equality (2.53) is substituted into equation (2.49).

∂cs

∂r
(r = R) = cn+1 − cn

∆r
= −Ji (2.52)

n = N −1 cN = −Ji∆r + cN−1 (2.53)

Discretized boundary conditions (2.51) and (2.53) are added to (2.48) for r = 0 and
to (2.49) for r = R.

n = 1,
∂cs,1
∂t

= Ds,i

r1∆r2

(
(∆r + r1)c2 +(−r1 −∆r)c1

)
(2.54)

n = N −1,
∂cs,N−1

∂t
= Ds,i

rN−1∆r2

(
(∆r − rN−1)cN−1 +(rN−1 −∆r)cN−2

)
+ Ds,i

rN−1∆r2 (−Ji∆r)(∆r + rN−1)
(2.55)

Here it is known from the equation (2.43) that Ji is a molar flux that depends on
current density I(t) (A/m2), diffusion rate constant Ds,i, faraday constant F, specific
interfacial area ai and length of the positive and negative electrode Li. Molar flux
is taken as negative for the positive electrode and positive for the negative electrode.

The final calculation of the solid phase concentration can be calculated like,

ċs,i = Aics,i +BiI(t) (2.56)

A, B matrices for the finite difference method can be constructed from the equations
above.
A matrix is formed by coefficients of differentials (Uj ,Uj+1).

Ai = Ds,i

rn∆r2



−r1 −∆r r1 +∆r 0 . . .

r2 +∆r −2r2 ∆r + r2 0 . . .

0 r3 +∆r −2r3 ∆r + r2 0
... 0 . . . . . . ∆r + rn−1

0 0 0 rN −∆r ∆r − rN
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B matrix is formed by the last part of the equation (2.55).

Bi =


0
0
...

−(∆r+rN−1)
F αiLirN−1∆r



2.2.3.2 Electrolyte discretization

Uniform discretization is applied through the length of both electrodes and the
separator. The length of the electrodes and separator is divided into N elements.
Following equalities are represents the negative, separator, and positive region con-
centration dynamics respectively.

∂ce,i

∂t
= ∂

∂x

[
De,i

∂ce,i

∂x

]
+ (1− t0

c)
ϵe,iFLi

I(t) (2.57)

∂ce,i

∂t
= ∂

∂x

[
De,i

∂ce,i

∂x

]
(2.58)

∂ce,i

∂t
= ∂

∂x

[
De,i

∂ce,i

∂x

]
− (1− t0

c)
ϵe,iFLi

I(t) (2.59)

Here i represent the negative, separator, and positive phases. Boundary conditions of
the negative, separator, and positive electrolyte regions at the electrode-electrolyte
interface can be represented as follows:

∂ce,i

∂x
(0−, t) = ∂ce,i

∂x
(0+, t) = 0 (2.60)

ϵe,iDe,i
∂ce,i

∂x
(L−, t) = ϵe,iDe,i

∂ce,i

∂x
(0sep, t) (2.61)

ϵe,iDe,i
∂ce,i

∂x
(Lsep, t) = ϵe,iDe,i

∂ce,i

∂x
(L+, t) (2.62)

ce(L−, t) = ce(0sep, t) (2.63)
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ce(Lsep, t) = ce(L+, t) (2.64)

The negative electrode concentration (2.57) can be simplified as follows:

∂ce,n

∂t
= Dn,eff

ϵe,n∆x2

[
cn+1 −2cn + cn−1

]
+ (1− t0

c)
ϵe,nFLe,n

I(t) (2.65)

Similarly, positive and separator concentration dynamics can be discretized as:

∂ces

∂t
= Ds,eff

ϵe,s∆x2

[
cn+1 −2cn + cn−1

]
(2.66)

∂cep

∂t
= Dp,eff

ϵe,p∆x2

[
cn+1 −2cn + cn−1

]
− (1− t0

c)
ϵe,pFLe,p

I(t) (2.67)

Here Deff effective diffusion coefficient Deff = De(ϵBrugg. coef.
e ).

Boundary conditions at the 0− and 0+ change the negative electrode initial con-
centration and positive part final concentration. At these points, there are zero
gradients. The following equations show these effects.

∂cn,1
∂t

= Dn,eff

ϵe,n∆x2

[
c2 − c1

]
+ (1− t0

c)
ϵe,nFLn

I(t) (2.68)

∂cp,N

∂t
= Dp,eff

ϵe,p∆x2

[
cN + cN−1

]
− (1− t0

c)
ϵe,pFLp

I(t) (2.69)

Because of the boundary conditions(2.63) and (2.64), concentration at the boundary
of the phases must be equal to each other. So, internal boundaries are calculated
as:

cn,N = cs,1 (2.70)

cs,N = cp,1 (2.71)

Electrolyte concentration is calculated as:

ċe = Aece +BeI(t) (2.72)
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Finally, Ae, i matrices can be formed by coefficients of differentials (Uj ,Uj+1).

Ae,n = Dneff

ϵe,n∆x2
n



−1 1 0 . . .

1 −2 1 0 . . .

0 1 −2 1 0
... 0 . . . . . . 1
0 0 1 −2 1



Ae,s = Dseff

ϵe,s∆x2
s



1 −2 1 0 . . .

0 1 −2 1 0 . . .

0 0 1 −2 1 0 . . .
... ... 0 . . . . . . . . . 1
0 0 0 0 1 −2 1



Ae,p = Dpeff

ϵe,p∆x2
p



1 −2 1 0 . . .

0 1 −2 1 0 . . .

0 0 1 −2 1 0 . . .
... ... 0 . . . . . . . . . 1
0 0 0 0 0 1 −1


The general form of the electrolyte matrix becomes as follows:

Ae =


A−

e 0 0
0 Asep

e 0
0 0 A+

e


B matrix is formed by the source part of (2.65) and (2.67).

Be = I(t)



(1−t0
c)

ϵ+
e F L+

0
...
0

− (1−t0
c)

ϵ+
e F L+
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Resulting ODEs in 2.56 and 2.72 are solved through MATLAB-ODE23s function.

2.3 Thermal model

Thermal model coupled physics-based Li-ion battery model is utilized by references
[37, 52, 56–58]. Heat generation inside the cell can be parsed. It can consist of heat
generation because of the overpotentials, ohmic heat generation, and entropic heat
generation due to the chemical reaction inside the cell [37].
Ohmic reaction, entropic heat generation and heat generation due to overpotentials
can be calculated as (2.73), (2.74), (2.75) respectively.

Qohm = −I(V −Vocv) (2.73)

Qent = IT
∂Uocv

∂T
(2.74)

Qrea = I(ηn −ηp) (2.75)

The term ∂Uocv/∂T is called a reversible entropic heat coefficient, and it can be
either positive or negative [58].
Then total heat generation is calculated as

Qgen = Qohm +Qent +Qrea (2.76)

With cooling, heat removed can be calculated

Qremv = hAbatt(T −Tamb) (2.77)

Lumped temperature can be calculated as

ρνcp
∂T

∂t
= Qgen −Qremv (2.78)

In this study, the lumped thermal model is constructed based on reference [37] and
used in the equivalent circuit and physics-based models.

2.4 Degradation Modeling of Li-Ion Batteries
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Figure 2.3 represents major degradation mechanisms and their typical equations for
modeling. Since the dominant degradation mechanism is the growth of SEI layer in
Li-ion on the graphite electrode particularly for LiFePO4/Graphite batteries [59].
In this model, the kinetically-limited SEI degradation model is adopted from the
reference [10] and integrated with the SPM.

Figure 2.3: Lithium-Ion battery degradation modes[10]

The governing SEI side current density is given by

Jsei = J0,sei exp
(

αnF

RT
ηsei

)
(2.79)

where the exchange current density can be calculated as

J0, sei = nFksei (2.80)

The overpotential of SEI side reaction is defined by the negative electrode open-
circuit potential, overpotential, SEI potential, and voltage drop across the SEI layer.
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As given in the equation

ηsei = Uneg +ηneg −Vsei + rseiδI. (2.81)

Here, rsei is the specific resistance of the SEI layer, δ is the thickness of the SEI
layer and I is the current [A].

SEI thickness growth rate which depends on the molecular weight of the SEI layer
M and its density ρ linearly increases with the SEI side current density can be
calculated as follows

∂δ

∂t
= Jsei M

ρnF
(2.82)

In the end, the Li-ion concentration gradient at the surface of negative spherical
particle changes due to the SEI layer growth. Therefore, SEI current density can be
added to the concentration calculation as

∂cs,neg

∂r
(Rs, t) = Jneg +Jsei (2.83)

The charge loss model developed by Prada et al. [60] is utilized to appraise the
capacity fade of the Li-ion battery. According to

d

dt
Qs = SnJsei (2.84)

Charge loss linearly increases with the SEI side current density. Where Sn is the
electroactive surface of the negative electrode and defined as

Sn = 3εs,nLnA/Rs,n (2.85)

Here εs,n is the volume fraction of the negative electrode.

32



Chapter 3

Simulation and Results

Overall system design is demonstrated as a block diagram in Figure 3.2. Electric
vehicle (EV) is modeled in Simulink, and design parameters are represented in Table
3.1. It is assumed that the EV is a typical Nissan Leaf vehicle that has a 40kWh
battery pack which requires about 4000 Li-Ion battery cells are needed, and Nissan
Leaf’s motor-efficiency map is used, which can be seen in figure 3.1.

Overall system input is vehicle speed vs time which is based on drive cycles. The
power, speed, and torque of the motor and wheel are calculated to calculate the
power requirement from the battery.

Wheel (PW) and motor (PM) power are calculated as,

PW = FT V PM = PW

ηt
(3.1)

Here V is vehicle speed in mps, ηt is the transmission efficiency and power in kW.
FT is called tractive effort and defined as the force required for the motion of the
vehicle and can be expressed as;

a = dV

dt
= FT = FR +ameq (3.2)

Where FR is the resistance to the motion of a vehicle and can be expressed as the
sum of rolling resistance, air resistance, and grade resistance.

Total resistance force is calculated as follows;

FR = Fr +Fd +Fg = frmg cosα + 1
2ρAf CdV 2

rel +mg sinα (3.3)

Where Fr,Fd, and Fg are rolling, air, and grade resistance, respectively. Vrel is the
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relative speed with respect to wind speed in m/s, α is the road slope, Af is the
vehicle frontal area, Cd is the drag coefficient, fr is the rolling resistance coefficient,
m is vehicle mass, g is gravitational constant, and ρ is air density.

Figure 3.1: Nissan Leaf motor+inverter efficiency [11]

The power output of the battery can be found in equation 8.

PBAT, out = PW

ηtηm
(3.4)

In case of regenerative braking, power input to the battery can be calculated like,

PBAT, in = ηtηmαPW (3.5)

Here, a is the regenerative breaking fraction. That fraction is only used when the
motor acts like a generator and gives power to the battery.
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Table 3.1: Electric vehicle design variables

Model design variables Symbol Unit Value

Vehicle mass m kg 1591

Wheel radius rw m 0.3033

Drag Coefficient Cd - 0.28

Frontal area Af m2 2.19

Rolling resistance coefficient fr - 0.008

Fixed gear ratio ig - 7.94

Transmission efficiency ηt - 0.95

Electric motor rated power Pr kW 40

PDEs that define the diffusion gradient inside the solid spherical particles and elec-
trolyte phase is discretized using the Finite Difference Method (FDM) and solved
ODE23s function in MATLAB. ECM model is first discretized and solved through
MATLAB. Table 3.2 represents the discretization properties. The Simulink model
of the electric vehicle model is integrated with the battery models in Matlab. Sim-
ulation codes can be found in GitHub/ecekurt.

Table 3.2: Finite-difference discretization resolution

Discretization properties Num. of nodes Value

Solid phase Positive electrode 50

Negative electrode 50

Electrolyte phase Positive electrolyte phase 10

Separator electrolyte phase 5

Negative electrolyte phase 10
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Figure 3.2: A block diagram of the simulation environment.

3.0.1 Model Comparison

SPM, SPMe, and ECM are compared to discuss their performance under dynamic
driving profiles. 26650 2.3Ah 3.5V LiFePO4/Graphite battery is used to model and
corresponding physical parameters, and data fits are represented in the Appendix
section. ECM model parameters and data fit of the same battery are found from
[22], and the same thermal parameters are used for ECM and PBM. Battery pack
design variables for the EV model are represented in Table 3.3.

Table 3.3: Battery pack design variables for LFP cell

Battery design variables Symbol Unit Value

Cell capacity Ccell Ah 2.3

Cell nominal voltage Vcell V 3.3

Cell nominal power Pcell W 7.59

Number of cell ncell - 5270

First, a constant current is applied to models, and the resulting cell voltage is
compared with the manufacturer’s battery voltage response under 2.3A and 10A
discharge currents. Figure 3.3 shows the battery voltage response under 1C constant
current discharge, and as seen in the figure, physics-based models give more accurate
results compared to the conventional equivalent circuit model.
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Figure 3.3: 2.3A (1C-rate) constant current (CC) discharge characteristic.

Following figure 3.4 represents the model’s behavior under a high C-rate. 10A
discharge current is applied to the models, and their response is compared to the
manufacturer’s test data. SPMe gives reasonable results under the high C-rate
because of the additional electrolyte dynamics. It is observed that electrolyte phase
diffusion De coefficient is quite sensitive to the concentration dynamics, and it affects
the battery performance significantly.

37



0 0.5 1 1.5 2 2.5

Capacity [Ah]

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

C
e

ll 
V

o
lt
a

g
e

 [
V

]

V
spec

V
spme

V
spm

V
ecm

Figure 3.4: 10A (4.347C-rate) constant current (CC) discharge characteristic.

Figure 3.5 represents the US06 drive cycle selected for electric vehicle input for the
EV simulation.

Figure 3.5: Drive cycle used in EV simulation [12]

Based on this driving profile EV motor power and power output/input to the battery
is calculated based on equations (3.1), (3.4), and (3.5) respectively. Figure 3.6
shows charge and discharge power. Positive power values represent power drawn
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from each cell, and negative ones indicate the power that charges the battery during
regenerative braking. Battery input power is the dame for all battery models.
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Figure 3.6: Power to each cell

Based on the battery input power, the current drawn from each cell is calculated and
represented in Figure 3.7. Current relative to the battery nominal capacity gives
C-rate, which is represented in Figure 3.8. Although current calculation differs ECM
to PBM, there is an inconsiderable difference between current and C-rate profiles.
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Figure 3.7: Battery current
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Figure 3.8: Charge - discharge rates of each cell

Figure 3.9 demonstrates the voltage response of a single cell under the drive cycle.
The voltage profile is obtained from two electrochemical and one electric circuit-
based model are compared. As stated in [30], since the SPM neglects the lithium
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diffusion in the electrolyte phase, its performance and accuracy are lower than SPMe,
but, in this scenario, the difference between the voltage response of SPM and SPMe
is quite small due to the low current rates shown in Figure 3.8. However, there is a
considerable difference between ECM and electrochemical models. The overall trend
of the voltage output of ECM is the same as the physics-based model’s voltage, but
it can’t get the whole characteristic.
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Figure 3.9: Cell voltage characteristic comparison

SoC of a battery cell is illustrated in Figure 3.10. Electrochemical models can define
sudden changes in the SoC better compared to ECM. Electrochemical models have
a high potential to provide accurate SoC estimation since the calculation is based
on the lithium-ion concentration inside the cell.
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Figure 3.10: Cell SoC comparison

Physics-based models provide voltage and state of charge dynamics of the cell and
give detailed information about the cell’s chemical dynamics. In Figures 3.11 and
3.11, normalized Li+ concentration at the negative and positive electrode, which
gives information about the cell’s SoC according to (2.20), are represented.

Li+ are intercalated into the negative electrode during charging, and this increases
the Lithium concentration in the negative phase; at the same time, Li+ are dein-
tercalated from the positive electrode, and that results in Lithium concentration
decrease on the positive side. For the discharging, this process is completely re-
versed. Intercalation- deintercalation process can be observed through SPM and
SPMe by looking at normalized Lithium concentrations. Furthermore, a battery
can be prevented from over-charge and discharging during the cycling simulations
by keeping the normalized lithium concentration within a predetermined range.
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Figure 3.11: Normalized Li+ concentration at the negative electrode.
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Figure 3.12: Normalized Li+ concentration at the positive electrode.
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3.0.2 Battery degradation analysis

SPM is used for the degradation analysis since 1C constant current charge/discharge
cycles are determined as a case study, and if it is considered that the current drawn
from each cell in the electric vehicle is around the 2C rate, it is reasonable to use
SPM for degradation analysis. Under high C-rate charge/discharge cycle scenarios,
SPMe can be preferred.

Kokam 2.7 Ah NMC type Li-ion battery is modeled since its physical and
degradation-related parameters are found in reference [10] and can be found in the
Appendix section. On top of that, the cycling aging test results at 45° can be found
in the literature for the same battery[13]. The following Figure 3.13 represents the
Kokam NMC battery cycling aging in various SoC ranges and at 45℃.

Figure 3.13: Cycling aging of Kokam NMC battery [13]

It is observed that the kinetic rate parameter of SEI ksei in Equation 2.80 is quite
sensitive and affects the battery capacity fade considerably. Therefore, the parame-
ter is arranged such that to obtain the same amount of capacity fade in Figure 3.13
for the 0-100% SoC range under the 1C and 3C- charging rates. Once a ksei param-
eter is found to give the same capacity loss at 1C charge-discharge rate at 45℃in the
full SoC range, the parameter effectiveness is tested for 500 and 1000cycles under
the same conditions, and it is observed that the same parameter gives reasonable
results compared to the Figure 3.13.
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According to the reference, [13], capacity is decreased by approximately 9% after
500 full equivalent cycles. Therefore based on this test data result, ksei parameter is
found as 0.479e − 14 [m/s−1]. Figures 3.17 and 3.15 represents the state of health
of the battery after the 500 and 1000 cycle in full SoC, 1C and 3C charge rates and
at 45℃.
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Figure 3.14: Cycling aging of Kokam NMC battery after 500 full equivalent cycle
at 1C charge/discharge rate and 45℃

As seen in Figure 3.17, the remaining capacity of the cell is reduced to approximately
91%, and if it is compared to test data represented in Figure 3.13 the result is reliable.
Charging the 3C rate at 45℃reduces the battery capacity by about 85% according
to the reference and can be seen in the figure. Using the same kinetic SEI rate for all
cycling scenarios gives a close approximation of capacity fade compared to the real
data, and Figure 3.15 shows the state of health of the battery after the 3C charge
rate and 1C discharge rate.
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Figure 3.15: Cycling aging of Kokam NMC battery after 500 full equivalent cycle
at 3C charge-1C discharge rate and 45℃

As mentioned earlier in this work, capacity degradation mainly occurs in the neg-
ative solid electrolyte interphase, and during the charging as Li+ intercalates the
negative electrode, unintended side reactions occur, and this results in capacity fade
in batteries. Thus charging at high C-rates affect the battery capacity more than
discharging rate. The following figures represent the state of health of the batteries
after the 1000 cycles.
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Figure 3.16: Cycling aging of Kokam NMC battery after 1000 full equivalent cycle
at 1C charge/discharge rate and 45℃
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Figure 3.17: Cycling aging of Kokam NMC battery after 1000 full equivalent cycle
at 3C charge-1C discharge rate and 45℃
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It is assumed that an electric vehicle is driven approximately 31.04 miles- 50 km
in a day of the same driving schedule represented in Figure 3.5. Electric vehicle
design properties are the same. Only battery chemistry is different, which is NMC
type Lithium-Ion cell is used because of the degradation model data availability, and
battery pack design variables for degradation analysis are represented in Table 3.4.

Table 3.4: Battery pack design variables for NMC cell

Battery design variables Symbol Unit Value

Cell capacity Ccell Ah 2.7

Cell nominal voltage Vcell V 3.7

Cell nominal power Pcell W 10

Number of cell ncell - 4000

It is assumed that EV is driven in Phoenix each day of the year for 15 years and
temperature change day by day is the same for all years and adopted from reference
[14]. Figure 3.18 illustrates the daily maximum and minimum temperature average.
In addition, it is considered that the battery initial temperature at the begging of
driving is the same as the ambient temperature of each day throughout the year.
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Figure 3.18: Daily temperature profile of the Phoenix,Arizona [14]
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Figure 3.19 illustrates the charging/discharging rate of the 1 day driving. As seen
from the figure maximum of 2.4C discharging and 0.6C charging rate is applied to
each cell during the driving. After the 50 km driving, EV is charged up to full SoC
and starts the other day with 100%. For the charging phase, 0.54C is selected in
order to prevent the cells from high charging rates.
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Figure 3.19: C-rate of a cell during the 1-day driving.

Physics-based capacity degradation calculation method is compared to an empirical
model constructed for the NMC type batteries obtained from reference [61]. The
resulting comparison is represented in Figure 3.20. An empirical model for NMC-
type batteries over-estimates the capacity loss after 15 years of usage. State of
the health can be observed through Figure 3.21. Based on the driving conditions
mentioned above, the remaining capacity of the cell is approximately 86%.
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Figure 3.20: Capacity loss comparison of empirical and physics-based models.
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Figure 3.21: State of the health of a cell after 15 years of usage.

The thickness of the SEI layer at the 86% SoH is illustrated in Figure 3.22. From
beginning to end, the total SEI layer thickness increased only 10 times.
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Figure 3.22: SEI layer growth during 15 years of usage

Temperature change during the year is shown in 3.18, and since the capacity calcu-
lation and SEI layer growth calculation are temperature dependent, SoH and SEI
thickness are changed based on daily temperature values. This means that if the
temperature changes aggressively throughout the year, the SoH of each cell will
decrease, as in Figure 3.21.
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Chapter 4

Conclusion and Recommendations

The studies presented in this thesis are concluded here along with the recommen-
dations for future work.

4.1 Concluding Remarks

The thesis mainly focused on three main concepts: (1) using three different battery
modeling approaches to investigate their performance under constant current load
and dynamic load (2) substituting a degradation mechanism into the PBMs to
forecast the SoH of the cell (3) Creating a simulation environment for battery electric
vehicle to observe the effect of driving conditions on battery performance after long
term usage.

Due to its empirical character, the ECM offers very limited insights into the bat-
tery’s internal electrochemical and chemical mechanism and is not capable of pro-
ducing extremely precise findings. The electrochemical model, in contrast, models
the physics of the battery using partial differential equations (PDEs), and it can be
used to compute the electrochemical states within a battery and provides precise
data on lithium concentrations and cell potential [4]. As it is presented in this study,
ECM can’t capture the sudden needs of the power demand but the overall trend
of the voltage response is parallel to the PBMs’. The same situation is observed
in the SoC calculation as well. This situation can be improved by integrating SoC
estimation algorithms into the ECM. Moreover, SPM appears to have a very similar
voltage response to the SPMe under dynamic load due to the low currents that are
drawn from the battery while driving.

In this thesis, only SEI layer growth is included as a degradation mechanism since
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it is the dominant factor of aging. The parameter ksei has a sensitivity on growth of
SEI layer thickness as well as capacity loss. To get the same capacity fade value as
the real test data, different parameter values were explored, and the best value was
chosen. The results are pretty close to the test data. Battery SoH was examined
after 15 years usage in an electric vehicle. After driving under specific driving
conditions, it was observed that remaining capacity would be about 86 %. Based
on the parameter fitting to the real data, we concluded that EV model included
degradation mechanism gives reliable results.

The proposed framework would facilitate simulating and analyzing a battery con-
sidering the power characteristics and the lifespan in a computationally-tractable
manner. User can define vehicle specification, drive cycles, climate conditions and
select which model and cell chemistry to use. In addition, user has the option to
add degradation effect to the physics based model. By this way, the simulation
framework enables testing the battery performance after long-term usage in an elec-
tric vehicle. Electric vehicle simulation with a physics-based battery model not only
provides reliable results but also gives detailed information about cell characteristics
such as Li+ concentrations in electrodes and in the electrolyte, heat generation in-
side the cell, SEI layer growth at the negative electrode, and the remaining capacity.

In future work,the electrochemical model with the degradation mechanism can be
validated through hardware experiments. PBMs are highly parameter dependent
models therefore a parameter sensitivity test can be done to determine the most ef-
fective parameters. These detected parameters can be found through experiments.
For parameters that can’t be measured, parameter fitting to fit the real performance
test data can be done using optimization methods instead of an iterative approach .
Since the primary aim of this work is to build a simulation framework, discretatiza-
tion methods was not tested for real time response. Hence, discretization methods
can be improved to give faster and reliable simulation. Further, other degradation
mechanisms mentioned in this thesis, such as lithium-plating and surface cracking,
can be added to the PBMs as a future work. For example, by adding lithium to
the PBMs, the effect of high charging rates at low temperature on battery capacity
can be observed and optimal charging methods can be developed. In addition, how
real-world conditions, such as climate conditions, driving habits, and passenger or
cargo load, influence the battery state of health and life of electric vehicles can be
investigated.
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Appendix A
Simulation Codes

Simulation codes can be found in GitHub/ecekurt.

LFP Parameters

Table 1: LFP cell design parameters, a=adjusted
Parameter Symbol Unit Positive electrode Seperator Negative electrode

Design Specifications Electrode thickness L m 7×10−5 [62] 2.5×10−5 [52] 3.4×10−5 [62]
Particle radius R m 3.65×10−8 [62] 3.5×10−6 [62]
Active material volume fraction,
solid phase

ϵ 0.428 [62] 0.58 [52]

Active material volume fraction,
electrolyte phase

ϵe 0.633 [63] 0.55 [52] 0.503 [63]

Filler volume fraction ϵf 0.0535 [52] 0.0326 [52]
Electrode plate area Area m2 0.1694 [62] 0.1755 [62]

Solid and Electrolyte phase
Li+ concentration

Maximum solid phase
concentration

cs,max mol/m3 22806 [62] 31370 [62]

Stoichiometry at 0% SOC θp,0%, θn,0% 0.76 [62] 0 [62]
Stoichiometry at 100% SOC θp,100%, θn,100% 0.03 [62] 0.8 [62]
Average electrolyte concentration ce mol/m3 1500a

Bruggeman exponent Brugg 1.5 [52] 1.5 [52] 1.5 [52]
Transference number t0

+ 0.5a 0.5a 0.5a

Kinetic and transport properties Charge transfer coefficient α 0.5 [62] 0.5 [62] 0.5 [62]
Solid phase Li diffusion Ds m2/s 1.8×10−18 [62] 2×10−14 [62]
Electrolyte phase Li+ diffusion De m2/s 9×10−15a 10×10−12a 10×10−12a

Rate constant k mol/[m2s(mol/m3)1.5] 1×10−7a 8.19×10−7a

Table 2: Thermal parameters of the cell
Symbol Unit Positive Electrode Seperator Negative Electrode

Thermal properties Solid phase Li diffusion activation energy Eadiff,s J/mol 39000[52] 35000[52]
Solid phase kinetic rate activation energy Eak J/mol 30000 [56] 20000[56]
Electrolyte phase Li diffusion activation energy Eadiff,e J/mol 26600 [52] 26600[52] 26600[52]
Electrolyte phase conductivity activation energy Eacond,e J/mol 11000[52] 11000[52] 11000[52]

Cell thermal parameters
Conduction resistance Rc KW−1 1.83 [64]
Convection resistance Ru KW−1 3.03 [64]
Heat capacity of the core Cc JK−1 67 [64]
Heat capacity of the surface Cs JK−1 4.5 [64]
Heat capacity of the cell Cp Jkg−1K−1 1100 [52]
Cell mass m kg 0.07 [52]
Cell surface Acell m2 6.34×10−3 [52]
Cell volumic mass, density ρ kg/m3 2047 [52]
Convection coefficient hconv Wm−2K−1 5 - 10 for free convection air cooling [52]

10-70 for forced air cooling
>100 for liquid cooling
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Kokam NMC Parameters

Table 1: Kokam NMC cell design parameters[37], a=adjusted
Parameter Symbol Unit Positive electrode Seperator Negative electrode

Design Specifications Electrode thickness L m 8.04×10−5 1.8205×10−4

Particle radius R m 8.5×10−6 12.5×10−6

Active material volume fraction,
solid phase

ϵ 0.5 0.5

Electrode plate area Area m2 0.0982 0.0982
Solid and Electrolyte phase
Li+ concentration

Maximum solid phase
concentration

cs,max mol/m3 51385 30555

Stoichiometry at 0% SOC θp,0%, θn,0% 0.38 0.0286
Stoichiometry at 100% SOC θp,100%, θn,100% 0.8799 0.4
Average electrolyte concentration ce mol/m3 1000a

Kinetic and transport properties Charge transfer coefficient α 0.5 0.5
Solid phase Li diffusion Ds m2/s 8×10−14 7×10−14

Rate constant k mol/[m2s(mol/m3)1.5] 1.7×10−11 5×10−11

Table 2: Thermal parameters of the cell
Symbol Unit Positive Electrode Seperator Negative Electrode

Thermal properties Solid phase Li diffusion activation energy Eadiff,s J/mol 29000 35000
Solid phase kinetic rate activation energy Eak J/mol 58000 20000

Cell thermal parameters
Conduction resistance Rc KW−1 1.83 [64]
Convection resistance Ru KW−1 3.03 [64]
Heat capacity of the core Cc JK−1 62.7
Heat capacity of the surface Cs JK−1 4.5 [64]
Heat capacity of the cell Cp Jkg−1K−1 750
Cell mass m kg 0.015
Cell surface Acell m2 0.0042
Cell volumic mass, density ρ kg/m3 1626
Convection coefficient hconv Wm−2K−1 5 - 10 for free convection air cooling [52]

10-70 for forced air cooling
>100 for liquid cooling
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