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Abstract: This paper presents the integration of connected micromobility infrastructure into the existing 

public transport system. The integration purpose is to help organize the public space in the urban 

environment, lower operation costs for micromobility operators, and create a better Mobility-as-a-

Service (MaaS) experience for citizens with the connected and universal micromobility charging 

infrastructure solution. Our goal is to efficiently consolidate electric-powered shared micromobility 

vehicles such as e-scooters and e-bikes into hubs to manage their charging and maintenance operations 

efficiently. Therefore, determining the locations of these e-hubs and the required charging infrastructure 

is paramount for satisfying the commuters' needs. We address this problem using an optimization 

approach and develop a model for siting and sizing micromobility e-hubs within an urban context. We 

formulate the problem as a mixed-integer linear programming (MILP) and develop a Variable 

Neighbourhood Search (VNS) metaheuristic algorithm to solve the problem. The evaluation of the 

performance of the solution methodology is applied using real data from Ankara Metropolitan 

Municipality (AMM). 

Keywords: Micromobility vehicles, e-hub, electric-powered shared micromobility vehicles, charging, 

urban mobility, e-scooters, e-bikes, variable neighborhood search 

 

Bağlantılı Mikromobilite Altyapısını Mevcut Toplu Taşıma Sistemine 

Entegrasyonu 

Özet:  Bu çalışma, bağlantılı mikromobilite altyapısının mevcut toplu taşıma sistemine entegrasyonunu 

ele almaktadır. Entegrasyonun amacı, kentsel ortamda kamusal alanın düzenlenmesine yardımcı olmak, 

mikromobilite operatörleri için işletme maliyetlerini düşürmek, bağlantılı ve evrensel mikromobilite şarj 

altyapısı çözümüyle vatandaşlar için daha iyi bir Hizmet Olarak Mobilite (MaaS) deneyimi sağlamaktır. 

Amacımız, şarj ve bakım işlemlerini verimli bir şekilde yönetmek için elektrikli skuter ve elektrikli 

bisiklet gibi elektrikle çalışan paylaşılan mikromobilite araçlarını istasyonlarda verimli bir şekilde 

birleştirilmesidir. Bu bağlamda, istasyonların konumlarının ve gerekli şarj altyapısının belirlenmesi, 

vatandaşların yolculuk ihtiyaçlarının karşılanması açısından büyük önem taşımaktadır. Çalışmada bu 

problemi eniyileme yaklaşımı kullanarak ele alıyoruz ve kent içindeki mikromobilite istasyonlarının 

konumlarının ve gereken şarj altyapısının belirlenmesi için bir karma tamsayılı doğrusal programlama 

modeli sunuyoruz. Daha sonra, problemin etkin çözümü için bir Değişken Komşuluk Araması yöntemi 

geliştiriyoruz. Geliştirilen yöntemi Ankara’ya ait veriler üzerinde uygulayarak performansını sınıyor ve 

elde edilen sonuçları sunuyoruz.   

Anahtar Kelimeler: Paylaşımlı mikromobilite, kentsel mobilite, elektrikli skuter, elektrikli bisiklet, 

şarj istasyonu, değişken komşuluk araması.  
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1. Introduction 

Using road-based (diesel) vehicles that produce CO2 emissions have caused severe environmental 

pollution and, consequently, is harmful to human health. Nowadays, many people use internal 

combustion engine vehicles (ICEVs) in their transportation. However, increasing concerns about climate 

change have forced many countries to impose stricter emission reduction targets and tighter 

environmental regulations to restrict the use of ICEVs (Pan et al, 2021). These motivations have 

accelerated the change toward low-emission and battery electric bikes (e-bikes) and electric scooters (e-

scooter) in the mobility transport sector (Figure 1). E-bikes/ e-scooters are fully powered with 

rechargeable batteries. The E-bikes/ e-scooters with zero tailpipe emissions are classified as clean 

passenger transportation modes (Jaller et al, 2018). In addition, their maintenance cost is low as they 

have fewer parts, and they do not need oil changes or air-filter replacements. On the contrary, long 

recharging times, limited driving range, and limited recharging facility infrastructure restrain their 

broader adoption in the sector (Giordano et al, 2017).  

 

Figure 1. e-bike and e-scooter (Source: https://elektriklimotor.com.tr) 

Electric-powered shared micromobility vehicles have offered a favorable resolution to diminish the 

greenhouse gas effect of a territory’s passenger transportation design. It was anticipated that using e-

bikes could decrease the usage of ICEV from 84.7% to 74.8%. Similarly, carbon dioxide (CO2) 

emissions could decrease by 12%. An individual e-bike could lessen 225 kg of CO2 per year on average. 

These analyses reveal that e-bikes have the prospect of aiding municipalities and areas to acquire their 

environmental objectives. E-bikes/ e-scooters are newly instructed methods rapidly earning attention 

throughout the U.S. E-bikes can propose a more affordable option instead of using a car for journeys 

(Popovich et al, 2014). Furthermore, e-bike can give users a satisfactory level of physical exercise 

intensity required to improve health (Fishman & Cherry, 2016). Using an e-bike/e-scooters is rewarding 

and entertaining for numerous users, is released for users with limited ability and mobility, and can 

direct to a car-free household (Popovich et al, 2014).  

This paper aims to efficiently consolidate electric-powered shared micromobility vehicles such as e-

bikes and e-scooters into hubs to manage their charging and maintenance operations. Therefore, 

determining the locations of these e-hubs and the required charging infrastructure is of paramount 

importance for satisfying the needs of the commuters. Using an optimization approach, we address this 

problem as an e-Hub Location Problem (eHLP) and develop a model for siting and sizing micromobility 

e-hubs within an urban context. In this problem, we find the optimal sites to build the e-hubs and 

determine the quantity of charging units at each site to maximize the utilization of the fleet. We first 

define the notation employed in the optimization model, present the formulation and describe it. Then, 

we develop Variable Neighborhood Search (VNS) as an alternative solution methodology. Finally, we 

implement the model and VNS to determine e-hub locations using the commuter data provided by the 

Ankara Metropolitan Municipality (AMM) transport authorities. The data includes the home and work 

locations of 120 citizens selected for the pilot implementation.  

An optimization solver was employed to solve the formulated mathematical model based on the criteria 

and parameters set by the AMM authorities. According to the optimal solution obtained, six metro 

stations were selected as e-hub locations, and 58 chargers were distributed optimally to these e-hubs 

https://elektriklimotor.com.tr/
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according to the expected demand of potential e-bike users. In addition, two chargers were installed at 

the “Bicycle Campus” of AMM for testing a non-metro station e-hub. Ride data was collected for two 

weeks to investigate the commuter behavior and effectiveness of the selected locations. Despite the 

unfavorable winter conditions, the results were promising and supported the e-hub location decisions; 

however, the collected data reveals that some charging units may be repositioned to enhance service 

levels. 

2. Problem description and formulation 

The mathematical notation employed in the formulation of the eHLP is as follows: 

Sets: 

𝑉 Set of all commuters 

𝑆 Set of metro stations 

 

Parameters: 

𝑑𝑖𝑗 Distance between commuter 𝑖 ∈ 𝑉 and commuter 𝑗 ∈ 𝑉 

𝐷𝑚𝑎𝑥 Maximum distance between a commuter and hub 

𝑎𝑖𝑗 Binary (0-1) coverage parameter (i.e. 𝑎𝑖𝑗 = 1 if 𝑑𝑖𝑗 ≤ 𝐷𝑚𝑎𝑥) 

𝑏𝑠𝑗 Binary (0-1) parameter represents that the metro station 𝑠 ∈ 𝑆 is the nearest station to the 

commuter hub 𝑗 ∈ 𝑉 

𝑃ℎ Maximum number of hubs in districts 

𝑃𝑒 Maximum number of e-hubs in metro stations 

𝑃𝑠 Maximum number of chargers in an e-hub 

𝐾 Number of total commuters per charger installed 

𝑄 Maximum number of total available chargers  

𝜀 A sufficiently small constant 

 

Decision variables: 

𝑥𝑗 1 if a commuter hub is located at commuter 𝑗 ∈ 𝑉; 0 otherwise 

𝑧𝑖 1 if commuter 𝑖 ∈ 𝑉 is covered; 0 otherwise 

𝑤𝑠 1 if an e-hub is located in metro station 𝑠 ∈ 𝑆; 0 otherwise  

𝑞𝑠 Number of chargers in metro station 𝑠 ∈ 𝑆 

𝑦𝑖𝑗 1 if commuter 𝑖 ∈ 𝑉 is assigned to hub 𝑗 ∈ 𝑉; 0 otherwise 

𝑇 Maximum walking distance between a commuter and a hub 

The mathematical programming (mixed-integer linear programming) model can be formulated as 

follows: 

max  ∑ 𝑧𝑖𝑖∈𝑉 − 𝜀 ∑ 𝑞𝑠  𝑠∈𝑉    (1) 

subject to:   

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝑉 ≥ 𝑧𝑖  𝑖 ∈ 𝑉 (1) 

∑ 𝑦𝑖𝑗𝑗∈𝑉 ≤ 𝑧𝑖  𝑖 ∈ 𝑉 (2) 

𝑦𝑖𝑗 ≤ 𝑥𝑗  𝑖, 𝑗 ∈ 𝑉  (3) 

𝑤𝑠 ≥ 𝑏𝑠𝑗𝑥𝑗  𝑗 ∈ 𝑉 , 𝑠 ∈ 𝑆 (4) 

𝑇 ≥ ∑ 𝑑𝑖𝑗𝑦𝑖𝑗𝑗∈𝑉   𝑖 ∈ 𝑉 (5) 

∑ 𝑥𝑗𝑗∈𝑉 ≤ 𝑃ℎ   (6) 

∑ 𝑤𝑠𝑠 ≤ 𝑃𝑒   (7) 
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∑ 𝑏𝑠𝑗𝑦𝑖𝑗𝑖∈𝑉,𝑗∈𝑉 ≤ 𝐾 × 𝑞𝑠  𝑠 ∈ 𝑆 (8) 

𝑤𝑠 ≤ 𝑞𝑠 ≤ 𝑃𝑠 𝑠 ∈ 𝑆 (9) 

∑ 𝑞𝑠𝑠∈𝑆 ≤ 𝑄   (10) 

𝑥𝑖, 𝑧𝑖 ∈ {0,1} 𝑖 ∈ 𝑉 (12) 

𝑦𝑖𝑗 ∈ {0,1} 𝑖, 𝑗 ∈ 𝑉 (13) 

The objective function (1) maximizes the total number of covered commuters. Constraints (2) is a 

covering constraint that makes sure the commuter 𝑖 will be covered by commuter 𝑗 if 𝑎𝑖𝑗 = 1. 

Constraints (3) guarantee that if commuter 𝑖 is assigned to commuter 𝑗, then the commuter 𝑖 must be 

covered. Constraints (4) make sure that if commuter 𝑖 is assigned to commuter 𝑗, then commuter 𝑗 will 

be a commuter hub. Constraints (5) show that if a commuter hub is located at commuter 𝑗 ∈ 𝑉, then an 

eHub must be located in commuter 𝑗 ∈ 𝑉  nearest metro station 𝑠 ∈ 𝑆. Constraints (6) satisfy the 

maximum walking distance between a commuter and a hub. Constraints (7) and (8) control the 

maximum number of hubs in districts and the maximum number of e-hubs in metro stations, 

respectively. Constraints (9) guarantee that if commuter 𝑖 ∈ 𝑉 is assigned to hub 𝑗 ∈ 𝑉, then at most 𝐾 

chargers can be installed in metro station 𝑠 ∈ 𝑆. Constraints (10) show that if an e-hub is located in a 

metro station 𝑠 ∈ 𝑆, at least one charger must be installed in the associated metro station. Constraints 

(11) provide the upper bound on a maximum number of available chargers. Finally, constraints (12)-

(13) define the domain of the binary decision variables. 

3. Solution methodology 

As a solution methodology for solving the eHLP, we use the Variable Neighborhood Search (VNS) of 

Mladenović and Hansen, 1997. The VNS is used for solving many combinatorial optimization problems 

(Rincon-Garcia et al, 2017; Affi et al, 2018; Özger, 2022; Sadati et al, 2021; Sadati et al, 2022). The 

algorithm starts with an initial solution 𝑆0. Initially, the current solution 𝑆′ and the incumbent solution 

𝑆∗ are set to 𝑆′ = 𝑆∗ = 𝑆0. Then, the shaking phase is started using a set of neighborhood structures 

𝑁𝑘  (𝑘 = 1, . . . , 𝑘𝑚𝑎𝑥). In this phase, a random solution 𝑆 is generated by implementing the first 

neighborhood 𝑁1 of  𝑆′. Next, the local search phase is applied to obtain a new solution 𝑆′. If 𝑆′ is 

feasible and improves the incumbent solution 𝑆∗, then 𝑆∗ is replaced with 𝑆′ and the neighborhood 

counter 𝑘 is reset to 1 (i.e., we return to the first shaking neighborhood structure). Otherwise, 𝑘 is 

increased by 1 (𝑘 = 𝑘 + 1) and the algorithm continues by applying another shaking move on 𝑆′. If all 

neighborhood structures are explored (𝑘 = 𝑘𝑚𝑎𝑥), the algorithm restarts from the best solution found so 

far 𝑆∗ and neighborhood structure index 𝑘 is re-initialized to 1. This procedure is repeated until a 

termination condition is satisfied. 

3.1. Initial solution construction 

We represent the solution with a matrix of different row lengths. In this matrix, the first column shows 

the ID of the selected hub, and the following columns will show the assigned commuters to the hub. 

The number of the row will be set to 𝑃ℎ (i.e., the maximum number of hubs in districts) Moreover, 

depending on those commuters assigned to the associated hub, each row will have a different length. 

To construct an initial feasible solution 𝑆0, we initially created a list of assigned commuters for each 

hub. To do this, we generate another similar matrix 𝑀𝑐𝑜𝑣𝑒𝑟 with |𝑉| (number of commuters) rows (the 

first column shows the ID of commuters), and for each row, the ID of other commuters that can be 

covered is inserted. Note that the ID of inserted commuters at each row will be determined using the 

coverage parameter 𝑎𝑖𝑗  (𝑖, 𝑗 ∈ 𝑉). Then we sort the 𝑀𝑐𝑜𝑣𝑒𝑟 in descending order of rows length (i.e., in 

the sorted 𝑀𝑐𝑜𝑣𝑒𝑟 The first row has the highest number of assigned commuters). From the sorted 𝑀𝑐𝑜𝑣𝑒𝑟 

matrix, we select the first 𝑃ℎ rows and insert them into 𝑆0 (since our objective is to maximize the 

number of coverage commuters). Two or more hubs can cover some commuters, and if such conditions 

hold, we remove the same ID from 𝑆0. Note that it is possible that by removing the same ID, the number 

of rows in 𝑆0 can be decreased due to the empty ID in some hubs. After generating the initial solution, 

we can extract the opened stations and the number of installed charges using the 𝑏𝑠𝑗 (𝑠∈𝑆,𝑗∈𝑉). 
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Table 1. coordinates of 47 metro stations in AMM 

Metro Station Name X-coordinate Y-coordinate 

Akköprü 39.9515847010483 32.8341795243818 

AKM 39.9443795162620 32.8439087810831 

Anadolu 39.9347858951204 32.8369747514223 

ASKİ 39.9474217591986 32.8502967868702 

AŞTİ 39.9182626438759 32.8143773153182 

Bahçelievler 39.9311253339485 32.8201135202388 

Batı Merkez 39.9677779745099 32.7154040086390 

Batıkent 39.9686637727400 32.7269929199242 

Beşevler 39.9323883009931 32.8286182623825 

Beytepe 39.9063852532501 32.7333680475345 

Bilkent 39.9078366805602 32.7639437564344 

Botanik 39.9809540847158 32.6947608271056 

Çayyolu 39.8967996302740 32.6915482899637 

Demetevler 39.9654526466281 32.7939524664253 

Demirtepe 39.9249069837490 32.8482662806608 

Dikimevi 39.9323772150356 32.8776683230518 

Dutluk 39.9994460923559 32.8706762907213 

Emek 39.9230562325935 32.8148175562953 

Eryaman 1-2 39.9805249449850 32.6479294929466 

Eryaman 5 39.9810459707558 32.6274123399772 

Fatih 39.9840807419541 32.5853408380043 

Harikalar Diyarı 39.9824908586034 32.5982955507296 

Hastane 39.9690627048819 32.7836334840208 

İstanbul Yolu 39.9796510179896 32.6625997900486 

İvedik 39.9572393334365 32.8170395394222 

Kızılay 39.9205573326480 32.8532866498255 

Kolej 39.9237378422280 32.8617998007825 

Koru 39.8875524691288 32.6869668515318 

Kurtuluş 39.9287430485953 32.8696629264171 

Macunköy 39.9719016693441 32.7664946547301 

Maltepe 39.9319618065686 32.8429415289544 

Mecidiye 39.9839457267553 32.8754203880277 

Mesa 39.9718396828269 32.7030747030507 

Meteoroloji 39.9663328568328 32.8639081878403 

Milli Kütüphane 39.9157437767599 32.8270941634899 

MTA 39.9090486996796 32.7962690115671 

Necatibey 39.9152066084294 32.8437950428813 

ODTÜ 39.9080134213928 32.7840959236438 

OSB- Törekent 39.9877471686397 32.5586545550208 

OSTİM 39.9704130087718 32.7449577876105 

Sıhhiye 39.9276909068732 32.8548496799674 

Söğütözü 39.9109593942524 32.8077190051603 

Şehitler 39.9964196335417 32.8612046321450 

Tarım Bakanlığı - Danıştay 39.9072302285182 32.7499858449839 

Ulus 39.9396177180966 32.8509547144680 

Ümitköy 39.9053448044684 32.7086148273902 

Yenimahalle 39.9618983785488 32.8043395557967 
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3.1. Shaking 

In the shaking phase of the proposed algorithm, a random solution is constructed using two types of 

problem-specific neighborhood structures: 𝛾-AddHub and 𝜆-SwapHub.  

The 𝛾-AddHub neighborhood operator is applied when the number of rows in a given solution is less 

than 𝑃ℎ. To this end, we randomly select 𝛾 unused hubs and insert them into the solution by adding their 

covered commuters. We use three types of 𝛾-AddHub moves and refer to them as 1-AddHub, 2-AddHub, 

and 3-AddHub.  

The 𝜆-SwapHub neighborhood operator is applied for swapping the current hubs in the solution with 

unused hubs. To this end, randomly 𝜆 hubs and their associated covered commuters from the solutions 

are swapped by randomly unused 𝜆 hubs and their associated covered customers. We employ 1-

SwapHub, 2-SwapHub, and 3-SwapHub. 

3.2. Local search and detecting infeasible solutions  

The feasibility of a given solution is measured by considering the maximum number of e-hubs in metro 

stations (𝑃𝑒), the maximum number of chargers in an e-hub (𝑃𝑠), and the maximum number of total 

available chargers (𝑄). If a solution is infeasible, we apply the MakingFeasible procedure to make the 

solution feasible concerning infeasibility terms. The MakingFeasible procedure is called local search in 

our implementation. It is possible that by applying shaking operators, the generated solution becomes 

infeasible, and this approach helps to make the solution feasible. 

4. Implementation and Results 

In this section, we implement the model and VNS to determine e-hub locations using the commuter data 

provided by the Ankara Metropolitan Municipality (AMM) transport authorities. The data includes the 

home and work locations of 120 citizens selected for the pilot implementation. An optimization solver 

(CPLEX Optimization Studio 20.1) was employed to solve the formulated mathematical model based 

on the criteria and parameters set by the AMM authorities. All experiments were conducted on a 

computer with Intel Core i7-8700 3.2 GHz CPU and 32 GB RAM. VNS was coded in C# in Microsoft® 

Visual Studio 2019. The geographical locations of the Home and work selected 120 citizen and metro 

stations are illustrated in Figure 2. The coordinates of 47 metro stations are provided in Table 1. 

The parameters set by the AMM authorities are provided in Table 2. 

Table 2. Parameters set by the AMM 

Walking distance threshold to the station 500 m 

Maximum distance between a commuter and hub 500 m 

Maximum number of hubs in districts 10 

Maximum number of e-hubs in metro stations 10 

Number of total commuters per charger installed 10 

Maximum number of total available chargers 30 

 

The field trials were performed for three weeks spanning the end of January and the beginning of 

February 2022, and ride data were collected from seven e-hubs given in Table 3.  

Table 3. E-hub locations and numbers of installed chargers 

e-Hub Location Abbr. 

No. 

Charging 

Bahçelievler Metro Station BAH 12 

Batıkent Metro Station BAT 8 

Bilkent Metro Station BIL 14 

Bicycle Campus BIS 2 

Kızılay Metro Station KIZ 8 

Koru Metro Station KOR 8 

National Library Metro Station MIL 8 
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Work Locations 

 

 
Metro Station Locations 

 

Figure 2. The geographical locations of the Home and work and metro stations 



Sadati, İ. (2023)   Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:6 – Sayı:1 

191 

 

An interruption during five consecutive days occurred because of harsh weather conditions and below 

0 ⁰C ambient temperature levels. Therefore, the data belongs to the net two weeks. Forty-five users 

performed a total of 230 rides using the magnetic cards provided. We excluded the rides with more than 

one-minute duration, assuming they do not correspond to actual micromobility trips. The data is 

summarized in Table 4. 

Table 4. Ride data* 

    To:     Unidentified 

From: BAH BAT BIL BIS KIZ KOR MIL Total Attempts 

BAH 19     1 2   10 32 61 

BAT   20   4     1 25 8 

BIL 2   14 1 3 4 1 25 20 

BIS   5   23 3 2 2 35 - 

KIZ 3   1 3 32 2 7 48 114 

KOR     7 1 1 17   26 24 

MIL 8   2 3 10   16 39 44 

Total 32 25 24 36 51 25 37 230 271 

* Excluding trips < 1 min        

Almost 40% of the trips correspond to the Kızılay metro station and Bicycle Campus, whereas only 17% 

(ten out of 60) chargers were installed in those two e-hubs. Although the trials took place with only 25 

e-bikes, the ride data points out a need for repositioning existing chargers and/or installing additional 

chargers at Kızılay metro station, which is located at the heart of Ankara city center and also at Bicycle 

Campus, which is a central attraction point for bike commuters. On the other hand, the data shows that 

the demand at Bahçelievler and Bilkent metro stations was overestimated as 43% of the charging units 

were installed at these two locations while 25% of the rides took place. The last column in 

Table 4 reports the number of attempts to unlock the e-bikes using unidentified magnetic cards and 

AMM public transportation cards. This data shows the interest of the citizens in this new e-bike sharing 

system, with 42% occurring in Kızılay, a significant business and entertainment district. The collected 

ride data is also visualized in Figure 3. In this Figure, the sizes of the circles representing the e-hubs and 

the widths of the connecting arcs are proportional to the number of trips. 

 

Figure 3. Ride volumes 
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The number of installed chargers in metro stations is illustrated in Figure 4.  

 

Figure 4. The number of installed chargers in seven metro stations 

 

5. Conclusion  

This paper presents the integration of connected micromobility infrastructure into the existing public 

transport system. The integration purpose was to help organize the public space in the urban 

environment, lower operation costs for micromobility operators, and create a better Mobility-as-a-

Service (MaaS) experience for citizens with the connected and universal Micormobility charging 

infrastructure solution. Our goal was to efficiently consolidate the electric-powered shared 

micromobility vehicles into hubs to manage their charging and maintenance operations efficiently. 

Therefore, determining the locations of these e-hubs and the required charging infrastructure is of 

paramount importance for satisfying the needs of the commuters. We formulated the problem as a 

mixed-integer linear programming (MILP) and developed a Variable Neighborhood Search (VNS) 

metaheuristic algorithm to solve the problem. The evaluation of the performance of the solution 

methodology was applied using real data from Ankara Metropolitan Municipality (AMM) and 

comparing our solution with the optimal solution. The pilot trials took place in a short time frame and 

under unfavorable weather conditions that adversely affected the utilization of the e-bikes. More 

meaningful and insightful data could have been collected in warm and mild conditions. The collected 

data support the location decisions. Installation of e-hubs near metro stations and at the Bicycle Campus 

provided visibility to both users and citizens. It promoted the utilization of e-bikes as an alternative 

transportation mode to the metro and public road transport. On the other hand, the sizing decisions, i.e., 

determining the number of charging units at each location, may be revised to enhance the employment 

of the bike-sharing system. The performance of ehubs near metro stations and at Bicycle Campus 

facilitated using e-bikes to replace public transportation and metro transport. On the other side, the sizing 

options, i.e., calculating how many charging units are located at each location, may be varied to enhance 

the utilization of the bike-sharing system. 

Researchers’ Contribution Rate Statement 

All research and writing steps belong to the corresponding author. 

 

 



Sadati, İ. (2023)   Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:6 – Sayı:1 

193 

 

Acknowledgment and/or disclaimers, if any 

This paper is extracted from the project entitled "MeHUB: Integrating a Connected Micromobility 

Infrastructure to the Existing Public Transport" supported by EIT Urban Mobility. The author would 

like to thank Prof. Bülent Çatay for the corrections and suggestions that greatly improved the readability 

of this paper. The author is also grateful to project partners DUCKT and Ankara Metropolitan 

Municipality (Ankara Büyükşehir Belediyesi) for providing the data used in this study. The authors also 

thank three anonymous reviewers for their valuable comments and suggestions. 

Conflict of Interest Statement, if any 

There is no conflict of interest with any institution or person within the scope of the study. 

References 

Affi, M., Derbel, H., & Jarboui, B. (2018). Variable neighborhood search algorithm for the green 

vehicle routing problem. International Journal of Industrial Engineering Computations, 9(2), 195-204. 

https://doi.org/10.5267/j.ijiec.2017.6.004 

Fishman, E., Cherry, C. (2016). E-bikes in the Mainstream: Reviewing a Decade of Research. 

Transport Reviews 36, 72–91,1069907. https://doi.org/10.1080/01441647.2015.1069907 

Giordano, A., Fischbeck, P. and Matthews, H.S. (2018). Environmental and economic comparison of 

diesel and battery electric delivery vans to inform city logistics fleet replacement 

strategies. Transportation Research Part D: Transport and Environment, 64, 216–229. 

https://doi.org/10.1016/j.trd.2017.10.003 

Jaller, M., Pineda, L. and Ambrose, H. (2018). Evaluating the use of zero-emission vehicles in last 

mile deliveries. Institute of Transportation Studies, University of California, Davis, Research Report 

UCD-ITS-RR-18-48. https://doi.org/10.7922/G2JM27TW 

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations 

Research, 24(11), 1097–1100. https://doi.org/10.1016/S0305-0548(97)00031-2 

Özger, A. (2022). Multi-depot heterogeneous fleet vehicle routing problem with time windows: Airline 

and roadway integrated routing. International Journal of Industrial Engineering Computations, 13(3), 

435-456. http://dx.doi.org/10.5267/j.ijiec.2022.1.001 

Pan, S., Zhou, W., Piramuthu, S., Giannikas, V. and Chen, C. (2021). Smart city for sustainable 

urban freight logistics. International Journal of Production Research, 59(7), 2079–2089. 

https://doi.org/10.1080/00207543.2021.1893970 

Popovich, N., Gordon, E., Shao, Z., Xing, Y., Wang, Y., Handy, S. (2014). Experiences of electric 

bicycle users in the Sacramento, California area. Travel Behaviour and Society 1, 37–44. 

https://doi.org/10.1016/j.tbs.2013.10.006  

Rincon-Garcia, N., Waterson, B., & Cherrett, T. (2017). A hybrid metaheuristic for the time-

dependent vehicle routing problem with hard time windows. International Journal of Industrial 

Engineering Computations, 8(1), 141-160. http://dx.doi.org/10.5267/j.ijiec.2016.6.002 

Sadati, M.E.H., Çatay, B. and Aksen, D. (2021). An efficient variable neighborhood search with tabu 

shaking for a class of multi-depot vehicle routing problems. Computers & Operations Research, 133, 

p.105269. https://doi.org/10.1016/j.cor.2021.105269 

Sadati, M.E.H., Akbari, V. and Çatay, B. (2022). Electric vehicle routing problem with flexible 

deliveries. International Journal of Production Research, 60(13), pp.4268-4294. 

https://doi.org/10.1080/00207543.2022.2032451 

http://dx.doi.org/10.5267/j.ijiec.2016.6.002

