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Abstract. We show that the second power of the cover ideal of a path graph has linear
quotients. To prove our result we construct a recursively defined order on the generators
of the ideal which yields linear quotients. Our construction has a natural generalization
to the larger class of chordal graphs. This generalization allows us to raise some questions
that are related to some open problems about powers of cover ideals of chordal graphs.
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1 Introduction

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a field K. We say
that a monomial ideal I has linear quotients if there exists an order u1, . . . , ur of its
minimal monomial generators such that for each i = 2, . . . , r there exists a subset
of {x1, . . . , xn} which generates the colon ideal (u1, . . . , ui−1) : (ui).

Ideals with linear quotients were introduced in [20]. Many interesting classes of
ideals are known to have linear quotients. For example, stable ideals, squarefree
stable ideals and (weakly) polymatroidal ideals all have linear quotients. More-
over, in the squarefree case, having linear quotients translates into the concept of
shellability in combinatorial topology. Indeed, if I is the Stanley–Reisner ideal of a
simplicial complex ∆, then I has linear quotients if and only if the Alexander dual
of ∆ is shellable.

If an ideal I has linear quotients, then I is componentwise linear, i.e., for each
d, the ideal generated by all degree d elements of I has a linear resolution. In
particular, if I is generated in single degree and has linear quotients, then it has a
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linear resolution. Herzog, Hibi and Zheng [18] proved that when I is a monomial
ideal generated in degree 2, the ideal I has a linear resolution if and only if it has
linear quotients. Moreover, they proved that if I has a linear resolution, then so
does every power of I.

Given a finite simple graph G with vertices x1, . . . , xn, the edge ideal of G,
denoted by I(G), is generated by the monomials xixj such that xi and xj are
adjacent vertices. Edge ideals are extensively studied in the literature; see, for
example, the survey papers [12, 24]. Since every edge ideal is generated in degree
2, having a linear resolution and having linear quotients are equivalent concepts for
such ideals. In addition, according to a result of Fröberg [10], it is known that the
edge ideal I(G) of a graph G has a linear resolution if and only if the complement
graph of G is chordal.

The Alexander dual of I(G) is known as the (vertex) cover ideal of G, and it is
denoted by J(G). Note that J(G) is defined by

J(G) = (xi1 · · ·xik : {xi1 , . . . , xik} is a minimal vertex cover of G).

By a result of Herzog and Hibi [14], it is known that the Stanley–Reisner ide-
al arising from a simplicial complex ∆ is (componentwise) linear if and only if
the Alexander dual of ∆ is (sequentially) Cohen–Macaulay. This implies that for
any graph, being (sequentially) Cohen–Macaulay is equivalent to having a (com-
ponentwise) linear cover ideal. Unlike the edge ideals, there is no combinatorial
characterization of cover ideals with linear resolutions. In fact, the authors of [8]
described an example of a graph in [8, Example 4.4] whose cover ideal has a lin-
ear resolution if and only if the characteristic of the ground field is not two. The
problem of classifying all Cohen–Macaulay or sequentially Cohen–Macaulay graphs
is considered to be intractable, and thus this problem is studied for special classes
of graphs; for examples, see [7–9, 15, 19, 28, 30].

Powers of edge ideals were studied by many authors recently; see, for example,
the survey article [2]. A main motivation to study powers is to understand the
behavior of (Castelnuovo–Mumford) regularity in terms of graph properties. It is
well known that if I is a homogeneous ideal, then reg(Is), the regularity of Is, is a
linear function in s for sufficiently large s (see [4, 21]). Powers of cover ideals were
relatively less explored than edge ideals in the literature. In [13], for a unimodular
hypergraphH (bipartite graph in particular) the regularity of J(H)s was determined
for s big enough. However, the regularity of J(H)s is unknown for small values of
s. The reader can refer to [3, 6, 13, 23, 25–27] for some recent articles where powers
of cover ideals were studied.

Van Tuyl and Villarreal [28] showed that the cover ideal of a chordal graph has
linear quotients, extending the results in [9], where it was shown that such ideals
are componentwise linear. In fact, Woodroofe [29] showed that the independence
complex of a graph with no chordless cycles of length other than 3 or 5 is vertex
decomposable and hence shellable. In [17] the authors studied powers of component-
wise linear ideals and they showed that all powers of a Cohen–Macaulay chordal
graph have linear resolutions. Their proof was based on the method of x-condition,
which, when satisfied, guarantees that all powers of the ideal have linear resolutions.
More generally, they proposed the following conjecture:
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Conjecture 1.1. [17, Conjecture 2.5] All powers of the vertex cover ideal of a
chordal graph are componentwise linear.

The x-condition method requires that the ideal be generated by monomials of
the same degree, which is indeed the case for the cover ideal of a Cohen–Macaulay
chordal graph. However, generators of the cover ideal of an arbitrary chordal graph
can have different degrees. Therefore, the x-condition method cannot be applied in
the general case. There has not been any progress on Conjecture 1.1 except a few
classes of graphs. In addition to Cohen–Macaulay chordal graphs it is known that
the conjecture holds for generalized star graphs [22]. Moreover, powers of cover
ideals of Cohen–Macaulay chordal graphs are known to have linear quotients [22].

It is unknown whether Conjecture 1.1 is true for the second power of the cover
ideal of a chordal graph. The following question arises naturally:

Question 1.2. Let G be a chordal graph.
(1) Does J(G)2 have linear quotients?

(2) Does J(G)s have linear quotients for all s?

In this paper we address Question 1.2(1) for a path graph Pn. Our main re-
sult Theorem 5.1 states that the second power of cover ideal of a path has linear
quotients. We construct a recursively defined order, which we call a rooted order,
on the minimal generators of J(Pn)2 which produces linear quotients. Our method
is purely combinatorial and it is completely different from the x-condition method,
which involves the study of Gröbner bases of defining ideals of Rees algebras.

We summarize the contents of this paper. In Section 2 we introduce the neces-
sary definitions and notations. Section 3 is devoted to some technical results about
the rooted lists as well as minimal generators of J(Pn) and J(Pn)2, which will be
needed in the next section. In Section 4 we analyze some cases where the product
of two generators of the cover ideal may not produce a minimal generator for the
second power of the ideal. Note that if a monomial ideal I is generated in the
same degree, and u and v are two minimal generators, then the 2-fold product uv is
necessarily a minimal generator of I2. Since the cover ideal of a path is generated
in different degrees, describing generators of the second power of the cover ideal is
not trivial as in the case of equigenerated ideals. The goal of Section 5 is to prove
the main result that J(Pn)2 has linear quotients. We also extend the concept of
rooted order to chordal graphs and discuss Question 1.2.

2 Definitions and Notations

Let K be a field and S = K[x1, x2, . . . , xn] the polynomial ring over K in n inde-
terminates. Let G be a finite simple graph with vertex set V (G) = {x1, x2, . . . , xn}
and edge set E(G). Then the edge ideal I(G) ⊂ S of G is generated by all quadratic
monomials xixj such that {xi, xj} ∈ E(G). A vertex cover C of G is a subset of
V (G) such that C ∩ e 6= ∅ for all e ∈ E(G). A vertex cover of G is called minimal if
it does not strictly contain any other vertex cover of G. LetM(G) be the set of all
minimal vertex covers of G. Then the (vertex) cover ideal of G, denoted by J(G), is
generated by xi1xi2 · · ·xik such that {xi1 , xi2 , . . . , xik} ∈ M(G). It is a well known
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fact that J(G) is the Alexander dual of I(G). Throughout this paper we will use a
set of vertices C interchangeably with its corresponding monomial

∏
xi∈C xi.

A graph is called chordal if it has no induced cycles except triangles. Every
chordal graph contains a simplicial vertex, i.e., a vertex whose neighbors form a
complete graph. The graph G is called a path on {x1, x2, . . . , xn} if

E(G) = {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}.

We denote a path on n vertices by Pn. Note that every path is a chordal graph.
Our main goal is to prove that J(Pn)2 has linear quotients. If I is a monomial
ideal, we denote by G(I) the set of the minimal monomial generators of I. Recall
that a monomial ideal I is said to have linear quotients if there exists a suitable
order of the minimal generators u1, u2, . . . , um such that for all 2 ≤ i ≤ m the ideal
(u1, . . . , ui−1) : (ui) is generated by variables. Given two monomials u and v, we
will use the notation u : v for the monomial u/gcd(u, v).

In order to simplify the notation in the following text, we set uA = {ua : a ∈ A},
where u is a monomial in S and A is a subset of S. Similarly, if A = a1, . . . , an
is a list of elements of S, then uA is a new list defined by uA := ua1, . . . , uan.
Note that we use a non-standard way to represent a list. Normally, one would
write A = (a1, . . . , an) but we will drop the parentheses to avoid possible confusion
between lists and ideals. The following lemma gives the relation among M(Pn),
M(Pn−2) andM(Pn−3), or equivalently, the minimal generators of J(Pn), J(Pn−2)
and J(Pn−3).

Lemma 2.1. For all n ≥ 5, G(J(Pn)) = xn−1G(J(Pn−2)) t xnxn−2G(J(Pn−3)).
Moreover, if u1, . . . , up and v1, . . . , vq are the minimal generators of J(Pn−2) and
J(Pn−3), respectively, written in linear quotients order, then J(Pn) has linear quo-
tients with respect to the order xn−1u1, . . . , xn−1up, xnxn−2v1, . . . , xnxn−2vq.

Proof. Since Pn is a chordal graph and xn is a simplicial vertex, the result follows
from [5, Theorem 3.1]. �

According to Lemma 2.1, we define a recursive order on the generators of J(Pn).

Definition 2.2. (Rooted list, rooted order) Let Pn be the path with edge ideal
I(Pn) = (x1x2, x2x3, . . . , xn−1xn). We recursively define the rooted list, denoted
by R(Pn), of minimal generators of J(Pn) as follows:

• R(P2) = x1, x2;

• R(P3) = x2, x1x3;

• R(P4) = x1x3, x2x3, x2x4;

• for n ≥ 5, if R(Pn−2) = u1, . . . , ur and R(Pn−3) = v1, . . . , vs, then we define
R(Pn) = xn−1u1, . . . , xn−1ur, xnxn−2v1, . . . , xnxn−2vs.

We setR(P1) as an empty list. Moreover, we define a total order >R, which we call a
rooted order of the minimal generators of J(Pn), as follows: if R(Pn) = w1, . . . , wt,
then wi >R wj for i < j.
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R(Pn)

xn−1R(Pn−2) xnxn−2R(Pn−3)

A = xn−1xn−3R(Pn−4)

B = xn−1xn−2xn−4R(Pn−5)
C=xnxn−2xn−4R(Pn−5)

D = xnxn−2xn−3xn−5R(Pn−6)

Figure 1 Branching of R(Pn)

Remark 2.3. Let R(Pn) = u1, . . . , uq for n ≥ 2. Then Lemma 2.1 together with the
definition of rooted list implies that J(Pn) has linear quotients with respect to the
order u1, . . . , uq.

Let a = (a1, . . . , an), b = (b1, . . . , bn) be two elements in Zn. Then we say that
a >lex b if the first non-zero entry in a − b is positive. In the following definition
we adopt the same terminology used in [1, Discussion 4.1].

Definition 2.4. (2-fold product, maximal expression) Let I = (u1, . . . , uq). We
say that M = ua11 · · ·u

aq
q is a 2-fold product of minimal generators of I if ai ≥ 0 and

a1+· · ·+aq = 2. We write ua11 · · ·u
aq
q >lex u

b1
1 · · ·u

bq
q if (a1, . . . , aq) >lex (b1, . . . , bq).

We say that M = ua11 · · ·u
aq
q is a maximal expression if (a1, . . . , aq) >lex (b1, . . . , bq)

for any other 2-fold product M = ub11 · · ·u
bq
q .

Notation 2.5. For a monomial ideal I, we set F (I2) = {uv : u, v ∈ G(I)}.

Note that for an arbitrary monomial ideal I, while G(I2) ⊆ F (I2), not every
2-fold product is a minimal generator of I2. However, if I is generated by monomials
of the same degree, in particular if I is an edge ideal, then G(I2) = F (I2).

Definition 2.6. (Rooted order on the second power) Let R(Pn) = u1, . . . , uq for
n ≥ 2. We define a total order >R on F (J(Pn)2), which we call rooted order, as
follows. For M,N ∈ F (J(Pn)2) with maximal expressions M = ua11 · · ·u

aq
q and

N = ub11 · · ·u
bq
q , we set M >R N if (a1, . . . , aq) >lex (b1, . . . , bq).

Let G(J(Pn)2) = {U1, U2, . . . , Us}. Then we say that U1, U2, . . . , Us is a rooted
list of generators of J(Pn)2 if U1 >R U2 >R · · · >R Us. In this case, we denote the
rooted list of generators by R(J(Pn)2) = U1, U2, . . . , Us.

The following table shows the rooted list R(Pn) for 2 ≤ n ≤ 7.

Table 1

n R(Pn)

2 u1 = x1, u2 = x2

3 u1 = x2, u2 = x1x3

4 u1 = x1x3, u2 = x2x3, u3 = x2x4

5 u1 = x2x4, u2 = x1x3x4, u3 = x1x3x5, u4 = x2x3x5

6 u1 = x1x3x5, u2 = x2x3x5, u3 = x2x4x5, u4 = x2x4x6, u5 = x1x3x4x6

7
u1 = x2x4x6, u2 = x1x3x4x6, u3 = x1x3x5x6, u4 = x2x3x5x6,
u5 = x1x3x5x7, u6 = x2x3x5x7, u7 = x2x4x5x7
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Given the above labeling of elements of R(Pn) for 2 ≤ n ≤ 7, Table 2 shows
the rooted list of the minimal generators of J(Pn)2, and the 2-fold products in
F (J(Pn)2)\G(J(Pn)2).

Table 2

n R(J(Pn)2) F (J(Pn)2)\G(J(Pn)2)

2 u2
1, u1u2, u

2
2

3 u2
1, u1u2, u

2
2

4 u2
1, u1u2, u1u3, u

2
2, u2u3, u

2
3

5 u2
1, u1u2, u1u3, u1u4, u

2
2, u2u3, u

2
3, u3u4, u

2
4 u2u4 (divisible by u1u3)

6
u2
1, u1u2, u1u3, u1u4, u1u5, u

2
2, u2u3, u2u4,

u2
3, u3u4, u

2
4, u4u5, u

2
5

u2u5, u3u5 (divisible by u1u4)

7
u2
1, u1u2, u1u3, u1u4, u1u5, u1u6, u1u7,

u2
2, u2u3, u2u5, u

2
3, u3u4, u3u5, u3u6=u4u5,

u2
4, u4u6, u

2
5, u5u6, u5u7, u

2
6, u6u7, u

2
7

u2u4 (divisible by u1u3),
u2u6, u2u7, u3u7 (divisible by u1u5),
u4u7 (divisible by u1u6)

3 Some Properties of G(J(Pn)), G(J(Pn)2) and Rooted Lists

In this section, we will prove some technical results about properties of rooted lists.
We will write u ≥R v if either u = v or u >R v. We start with some observations.

Remark 3.1. Let n ≥ 4 and let R(Pn−2) = u1, . . . , um. Observe that by the
definition of rooted order, for any k, ` ∈ {1, . . . ,m} we have

uk >R u` in R(Pn−2)⇐⇒ xn−1uk >R xn−1u` in R(Pn).

Therefore, for any i ≤ j, the expression uiuj is maximal if and only if the expression
(xn−1ui)(xn−1uj) is maximal with xn−1ui ≥R xn−1uj .

Remark 3.2. Let n ≥ 5 and let R(Pn−3) = u1, . . . , um. Observe that by the
definition of rooted order, for any k, ` ∈ {1, . . . ,m} we have

uk >R u` in R(Pn−3)⇐⇒ xnxn−2uk >R xnxn−2u` in R(Pn).

Therefore, for any i ≤ j, the expression uiuj is maximal if and only if the expression
(xnxn−2ui)(xnxn−2uj) is maximal with xnxn−2ui ≥R xnxn−2uj .

Lemma 3.3. Let n ≥ 4. Then U, V are in F (J(Pn−2)2) if and only if x2n−1U, x
2
n−1V

are in F (J(Pn)2). Moreover, in this case U >R V if and only if x2n−1U >R x2n−1V .

Proof. The first statement is clear by Lemma 2.1. Let R(Pn−2) = u1, . . . , um.
Suppose that U = uiuj and V = usut are maximal expressions, where i ≤ j
and s ≤ t. Then by Remark 3.1 it follows that x2n−1U = (xn−1ui)(xn−1uj) and
x2n−1V = (xn−1us)(xn−1ut) are maximal expressions, where xn−1ui ≥R xn−1uj
and xn−1us ≥R xn−1ut. Keeping Remark 3.1 in mind, we observe that

U >R V ⇐⇒ either ui >R us or ui = us and uj >R ut

⇐⇒ either xn−1ui >R xn−1us or xn−1ui = xn−1us

and xn−1uj >R xn−1ut

⇐⇒ x2n−1U >R x2n−1V. �
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Lemma 3.4. Let n ≥ 5. Then U, V ∈ F (J(Pn−3)2) if and only if both x2nx
2
n−2U

and x2nx
2
n−2V belong to F (J(Pn)2). Moreover, in this case U >R V if and only if

x2nx
2
n−2U >R x2nx

2
n−2V .

Proof. The proof is almost identical to that of the previous lemma if one uses
Remark 3.2 instead of Remark 3.1. �

Lemma 3.5. Let n ≥ 4 and let u ∈ G(J(Pn)) such that xn|u. Then there exists
v ∈ G(J(Pn−2)) such that v divides u/xn.

Proof. If xn|u, then u is not divisible by xn−1 because u is a minimal vertex cover
of Pn. Then u/xn contains a minimal vertex cover of Pn−2, which verifies the
statement. �

Lemma 3.6. Let u1, . . . , ur be the rooted list of Pn. Let k be the smallest index
such that xn−1 - uk. Then (u1, . . . , uk−1) : (uk) = (xn−1). Moreover, if i > k, then
(u1, . . . , ui−1) : (ui) = (xn−1) + (uk, . . . , ui−1) : (ui).

Proof. The statement is clear when n = 2 or n = 3. Otherwise, it follows from
Lemma 3.5. �

Lemma 3.7. Let R(Pn) = u1, . . . , um.

(1) If xn|ui for some i, then xn|uj for all j ≥ i.
(2) If xn−2|ui for some i, then xn−2|uj for all j ≥ i.
(3) If R(Pn−2) = v1, . . . , vk and R(Pn−1) = w1, . . . , w`, then

R(Pn) = xn−1v1, . . . , xn−1vk, xnw1, . . . , xnwα for some α < `.

Proof. (1) follows from the definition of rooted list.
(2) can be confirmed by applying (1) to Pn−2 in the recursive definition ofR(Pn).
To see (3), we will just compare the recursively defined lists of Pn−1 and Pn.

For n ≤ 5, one can refer to Table 1 to confirm that the statement holds. Assume
that n ≥ 6. Let R(Pn−4) = y1, . . . , ys and let R(Pn−3) = z1, . . . , zt. Then by the
recursive definition of rooted list we have

R(Pn) = xn−1v1, . . . , xn−1vk, xnxn−2z1, . . . , xnxn−2zt,

R(Pn−1) = xn−2z1, . . . , xn−2zt, xn−1xn−3y1, . . . , xn−1xn−3ys.

Therefore, w1 = xn−2z1, . . . , wt = xn−2zt and α = t, as desired. �

Lemma 3.8. Let n ≥ 4. Then x2n−1U ∈G(J(Pn)2) if and only if U ∈G(J(Pn−2)2).

Proof. (⇒) Suppose that x2n−1U ∈ G(J(Pn)2). Then x2n−1U = (xn−1u1)(xn−1u2)
for some u1, u2 ∈ G(J(Pn−2)) by Lemma 2.1. Let V = v1v2 for some v1, v2 in
G(J(Pn−2)) such that V |U . Then we have W = (xn−1v1)(xn−1v2) ∈ F (J(Pn)2) by
Lemma 3.3. Since W |x2n−1U and x2n−1U is a minimal generator, we get W = x2n−1U .
Therefore, V = U and U is a minimal generator of J(Pn−2)2.

(⇐) Let U ∈ G(J(Pn−2)2). Then U = u1u2 for some u1, u2 ∈ G(J(Pn−2)).
Thus, by Lemma 3.3, x2n−1U = (xn−1u1)(xn−1u2) ∈ F (J(Pn)2). Let V ∈ G(J(Pn)2)
such that V |x2n−1U . By Lemma 2.1 one can write V = (xn−1v1)(xn−1v2) for some
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v1, v2 ∈ G(J(Pn−2)). Hence, we get v1v2|u1u2. Since U is a minimal generator,
v1v2 = u1u2. Therefore, V = x2n−1U ∈ G(J(Pn)2), as desired. �

Lemma 3.9. Let n ≥ 5. Then we have x2nx
2
n−2U ∈ G(J(Pn)2) if and only if

U ∈ G(J(Pn−3)2).

Proof. One can mimic the arguments in the proof of the previous lemma by using
Lemma 3.4 instead of Lemma 3.3. �

Lemma 3.10. Let n ≥ 7 and uv, u′v′ ∈ F (J(Pn)2) with u >R v and u′ >R v′.
Suppose that u′v′ divides uv. In the notation of Figure 1, the following statements
hold:

(1) If u ∈ A and v ∈ C, then u′ ∈ A and v′ ∈ C.
(2) If u ∈ B and v ∈ C, then u′ ∈ B and v′ ∈ C.

Proof. (1) First note that if u ∈ A and v ∈ C, then u ∈ xn−1R(Pn−2) and
v ∈ xnxn−2R(Pn−3). Since u′v′|uv and u′ >R v′, it shows that u′ ∈ xn−1R(Pn−2)
and v′ ∈ xnxn−2R(Pn−3).

Now we show that u′ ∈ A and v′ ∈ C. Indeed, if u′ ∈ B, then x2n−2|u′v′ but
x2n−2 -uv. Therefore, u′ ∈ A. Furthermore, if v′ ∈ D then x2n−3|u′v′ because u′ ∈ A.
But, again x2n−3 - uv. Hence, v′ ∈ C, as required.

(2) First note that if u ∈ B and v ∈ C, then we obtain u ∈ xn−1R(Pn−2) and
v ∈ xnxn−2R(Pn−3). Since u′v′|uv and u′ >R v′, it follows that u′ ∈ xn−1R(Pn−2)
and v′ ∈ xnxn−2R(Pn−3). Accordingly, to show u′ ∈ B and v′ ∈ C, note that if
u′ ∈ A or v′ ∈ D, then xn−3|u′v′ but xn−3 -uv. �

Remark 3.11. Let R(Pn−2) = u1, . . . , um. Furthermore, let ui, uj be monomials
such that xn−1ui ∈ A and xnuj ∈ C, where A, C are as in Figure 1. Let uiuj be a
maximal expression in F (J(Pn−2)2) with i ≤ j. Then (xn−1ui)(xnuj) is a maximal
expression in F (J(Pn)2). Indeed, otherwise, from Lemma 3.10 we see that the
maximal expression of xn−1xnuiuj is of the form (xn−1up)(xnuq) with xn−1up ∈ A
and xnuq ∈ C. From xn−1xnuiuj = xn−1xnupuq we see that uiuj = upuq. Also,
we have xn−1up >R xn−1ui or xn−1up = xn−1ui and xnuq >R xnuj in R(Pn).
This shows that up >R ui or up = ui and uq >R uj in R(Pn−2), which gives a
contradiction of the fact that the expression uiuj is maximal in F (J(Pn−2)2).

Lemma 3.12. Let u and v be monomials such that xn−1u ∈ A and xnv ∈ C, where
A, C are as in Figure 1. If uv ∈ G(J(Pn−2)2), then xn−1xnuv ∈ G(J(Pn)2).

Proof. Let uv ∈ G(J(Pn−2)2). Assume on the contrary that xn−1xnuv /∈G(J(Pn)2).
Then there exists some U ∈ G(J(Pn)2) such that U strictly divides xn−1xnuv.
Thus, from Lemma 3.10 we see that U = (xn−1u

′)(xnv
′) for some xn−1u

′ ∈ A and
xnv

′ ∈ C. Consequently, u′v′ ∈ F (J(Pn−2)2) and u′v′ strictly divides uv, which
contradicts the hypothesis that uv ∈ G(J(Pn−2)2). �

Lemma 3.13. Let u, u′, v, v′ be monomials such that xn−1u, xn−1u
′ ∈ A and

xnv, xnv
′ ∈ C, where A, C are as in Figure 1. If uv >R u′v′ in F (J(Pn−2)2), then

xn−1xnuv >R xn−1xnu
′v′ in F (J(Pn)2).
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Proof. The branching of R(Pn) in Figure 1 shows that if xn−1u, xn−1u
′ ∈ A and

xnv, xnv
′ ∈ C, then u, u′ ∈ xn−3R(Pn−4) and v, v′ ∈ xn−2xn−4R(Pn−5). Hence, by

the definition of >R it follows that u >R v and u′ >R v′ in R(Pn−2).
Note that because of Lemma 3.10(1) we may assume that uv and u′v′ are max-

imal expressions in F (J(Pn−2)2). Then Remark 3.11 implies that the expressions
(xn−1u)(xnv) and (xn−1u

′)(xnv
′) are maximal in F (J(Pn)2).

Let uv >R u′v′ in F (J(Pn−2)2). Then by the definition of >R, we have either
u >R u′ or u = u′ and v >R v′ in R(Pn−2). If u >R u′, then by Remark 3.1
xn−1u >R xn−1u

′ in R(Pn). If v >R v′ in R(Pn−2), then xn−1v appears before
xn−1v

′ in the sublist B. This implies that xnv appears before xnv
′ in the sublist C,

and thus xnv >R xnv
′, as desired. �

Lemma 3.14. Let u, v ∈ G(J(Pn−5)). If uv ∈ G(J(Pn−5)2), then

(xn−1xn−2xn−4u)(xnxn−2xn−4v) ∈ G(J(Pn)2).

Proof. A similar argument to that in Lemma 3.12 gives the desired result. �

Remark 3.15. Let R(Pn−5) = u1 >R · · · >R up. If uiuj is a maximal expression
with i ≤ j in F (J(Pn−5)2), then together with Lemma 3.10 and a similar expla-
nation to that in Remark 3.11, we see that (xn−1xn−2xn−4ui)(xnxn−2xn−4uj) is a
maximal expression in F (J(Pn)2).

Lemma 3.16. Let R(Pn−5) = u1 >R · · · >R up. If uiuk >R ujul in F (J(Pn−5)2)
for some i, j, k and l, then we have xnxn−1x

2
n−2x

2
n−4uiuk >R xnxn−1x

2
n−2x

2
n−4ujul

in F (J(Pn)2).

Proof. We may assume that uiuk and ujul are maximal expressions with i ≤ k and
j ≤ l. By Remark 3.15, the expressions (xn−1xn−2xn−4ui)(xnxn−2xn−4uk) and
(xn−1xn−2xn−4uj)(xnxn−2xn−4ul) are both maximal in F (J(Pn)2). Given that
uiuk >R ujul in F (J(Pn−5)2), we have either i < j or i = j and k < l.

If i < j, then xn−1xn−2xn−4ui appears before xn−1xn−2xn−4uj in the sublist
B. Therefore, we get xn−1xn−2xn−4ui >R xn−1xn−2xn−4uj in R(Pn).

If k < l, then xnxn−2xn−4uk appears before xnxn−2xn−4ul in the sublist C.
Therefore, xnxn−2xn−4uk >R xnxn−2xn−4ul in R(Pn). Thus, the result follows by
the definition of rooted order. �

4 2-Fold Products of J(Pn) Versus Minimal Generators of J(Pn)2

In order to prove our main result, we need to filter out those 2-fold products which
are not in G(J(Pn)2). The next lemma gives a sufficient condition for a 2-fold
product to be a non-minimal generator. We advise the reader to keep in mind,
while reading the proof of this lemma, that a minimal vertex cover of a path cannot
contain three consecutive vertices.

Lemma 4.1. Let n ≥ 5. Let u and v be minimal generators of J = J(Pn) such that
xn−1xn−4|u and xnxn−3|v. Then uv is not a minimal generator of J2. Moreover,
there exists a 2-fold product pw ∈ F (J2) such that pw|uv and pw >R uv.
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Proof. Let X = xnxn−1xn−2xn−3xn−4. Since v is a minimal generator, xn−1 - v,
which implies xn−2|v. Then we get xn−4 - v because v is minimal. Thus, we have
gcd(v,X) = xnxn−2xn−3. By the minimality of u we get xn -u. Since xn−4 divides
u, we see that u is divisible by either xn−2 or xn−3, but not both. Therefore, we
obtain gcd(u,X) = xn−1xn−2xn−4 or gcd(u,X) = xn−1xn−3xn−4.

Let u′v′ be a maximal expression of uv for some u′ >R v′. We claim that
gcd(u,X) = gcd(u′, X) and gcd(v,X) = gcd(v′, X). First notice that since u′>R v

′,
the variable xn−1 divides u′ but not v′. This implies that xn divides v′ but not u′

because both u′ and v′ are minimal generators. Consider the following cases.
Case 1. Suppose gcd(u,X) = xn−1xn−2xn−4. Since uv = u′v′, we see that xn−2

divides both u′ and v′. Now by the minimality of u′ we must have xn−3 -u′. This
implies xn−3|v′. The minimality of v′ requires xn−4 - v′. Then xn−4|u′. Hence,
gcd(v′, X) = xnxn−2xn−3 and gcd(u′, X) = xn−1xn−2xn−4, as desired.

Case 2. Suppose gcd(u,X) = xn−1xn−3xn−4. Since x2n−3|uv = u′v′, we see that
xn−3 divides both u′ and v′. By the minimality of u′ we observe that xn−2 -u′. Since
xn−2|uv = u′v′, we get xn−2|v′. Now by the minimality of v′ we get xn−4 - v′, which
implies xn−4|u′. Hence, gcd(v′, X) = xnxn−2xn−3 and gcd(u′, X) = xn−1xn−3xn−4,
which completes the proof of our claim.

Observe that w = (v′xn−1)/(xnxn−2) is a minimal vertex cover of Pn. Again, we
consider two cases: (a) Suppose xn−3|u′. Observe that p = (u′xn−2xn)/(xn−1xn−3)
is a minimal vertex cover of Pn and pwxn−3 = u′v′. (b) Suppose xn−2|u′. Observe
that p = (u′xn)/xn−1 is a minimal vertex cover of Pn and pwxn−2 = u′v′. In either
case, w >R p. Since both w and u′ are in xn−1R(Pn−2), applying Lemma 3.7(2) to
Pn−2, we see that w >R u′. Therefore, pw >R u′v′. �

We will need the next result to detect some of the 2-fold products which yield
non-minimal generators or non-maximal expressions.

Proposition 4.2. Let R(Pn) = u1 >R · · · >R uk, where n ≥ 2. Let 1 < i < j ≤ k.
Suppose that uj contains a variable from (u1, . . . , ui−1) : (ui). Then either uiuj is
not a minimal generator of J(Pn)2 or uiuj is not a maximal 2-fold expression.

Proof. We proceed by induction on n. The statement holds for n ≤ 7; see Table 2
for verification. Assume that n ≥ 8. Observe that if uiuj is divisible by x2n−1, then
the result follows from Lemmas 3.3 and 3.8 and the induction assumption on Pn−2.
If uiuj is divisible by x2n, then the result follows from Lemmas 3.4, 3.6 and 3.9 and
the induction assumption on Pn−3. Therefore, we may assume that xn−1|ui and
xn|uj . Now consider the following rooted lists:

R(Pn−4) : v1 >R · · · >R v`,

R(Pn−5) : w1 >R · · · >R wm,

R(Pn−6) : p1 >R · · · >R pq.

Note that R(Pn) is the join of the lists A,B, C,D in Figure 1 in the given order.
We consider the following cases.

Case 1. Suppose that uj ∈ D. If xn−4|ui, then the result follows from Lemma
4.1. Assume that xn−4 -ui as well. Observe now that ui ∈ A. Note that by Lemma
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3.7(3) we get R(Pn−4) = xn−5p1, . . . , xn−5pq, xn−4w1, . . . , xn−4wα for some α ≤ m.
Therefore, ui = xn−1xn−3xn−5pi and uj = xnxn−2xn−3xn−5pβ for some β ≤ q.
Clearly we have (u1, . . . , ui−1) : (ui) = (p1, . . . , pi−1) : (pi) and β 6= i. Thus, pβ
contains a variable generator of (p1, . . . , pi−1) : (pi).

Subcase 1.1. If β < i, then observe that we can produce a new expression

uiuj = (xn−1xn−3xn−5pβ)︸ ︷︷ ︸
uβ

(xnxn−2xn−3xn−5pi)︸ ︷︷ ︸
uγ

for some γ. Then uβ >R uγ and uβ >R ui, which implies that the expression uiuj
is not maximal.

Subcase 1.2. Let β > i. Then by induction assumption, either pipβ is not a
minimal generator of J(Pn−6)2 or the expression pipβ is not maximal. Any minimal
generator of J(Pn−6)2 which divides pipβ or any 2-fold expression which is greater
than pipβ can be multiplied by the appropriate variables to obtain the desired
conclusion for uiuj .

Case 2. Suppose uj ∈ C so that uj = xnxn−2xn−4ws for some s ≥ 1.
Subcase 2.1. Suppose ui ∈ B so that ui = xn−1xn−2xn−4wt for some t. Observe

that since ui ∈ B, we have i ≥ ` + 1. We claim that i > ` + 1. Assume for a
contradiction that i = ` + 1. Then by Lemma 3.6, (u1, . . . , ui−1) : (ui) = (xn−3),
which implies xn−3|uj , a contradiction. Hence, i > `+ 1 indeed. Applying Lemma
3.6, we obtain (u1, . . . , ui−1) : (ui) = (u`+1, . . . , ui−1) : (ui) + (xn−3).

Now since (u`+1, . . . , ui−1) : (ui) = (w1, . . . , wt−1) : (wt), there exists a variable
generator of this ideal dividing uj and thus dividing ws. Clearly s 6= t. If s > t, then
by induction assumption on Pn−5, either wtws is a non-minimal generator or wtws
is not a maximal expression, and the result follows as in Case 1. Lastly, suppose
that s < t. Then we obtain a different expression for uiuj as follows:

uiuj = (xn−1xn−2xn−4wt)(xnxn−2xn−4ws)

= (xn−1xn−2xn−4ws)(xnxn−2xn−4wt)

= us+|A|ut+|A|+|B| (by Figure 1) = us+`ut+`+m.

Since i = t+ `, we have us+` >R ui and the expression uiuj is not maximal.
Subcase 2.2. Suppose ui ∈ A so that ui = xn−1xn−3vi. Observe that by Lemma

3.7(1) the variable xn−4 is not a generator of the ideal

(u1, . . . , ui−1) : (ui) = (v1, . . . , vi−1) : (vi)

and ws is divisible by a variable generator of (v1, . . . , vi−1) : (vi).
By induction assumption, (xn−3vi)(xn−2xn−4ws) is either a non-minimal gen-

erator of J(Pn−2)2 or a non-maximal expression. If it is not a minimal generator,
then it is divisible by some (xn−3vα)(xn−2xn−4wβ) and vαwβ |viws. In this case,
multiplying vαwβ by the appropriate variables, one can see that uiuj is not a min-
imal generator. Lastly, observe that if (xn−3vi)(xn−2xn−4ws) is a non-maximal
expression, then so is uiuj . �

Lemma 4.3. Let I be a squarefree monomial ideal and let u be a minimal generator
of I. Then us is a minimal generator of Is for all s.
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Proof. Suppose that v = va11 · · · v
aq
q ∈ G(Is), where v1, . . . , vq are some minimal

generators of I, a1 + · · · + aq = s and ai > 0 for all i. Suppose that v divides us.
Then each vi divides u since vi is squarefree. Hence, by the minimality of u we get
u = vi for all i = 1, . . . , q. �

Remark 4.4. Note that in the above lemma the squarefreeness assumption cannot
be omitted. For example, if I = (a2bc, b2, c2), then (a2bc)2 /∈ G(I2).

The following lemma is of crucial importance to prove the main result stated in
Theorem 5.1.

Lemma 4.5. Let U ∈ F (J(Pn)2)\G(J(Pn)2). Then there exists V ∈ G(J(Pn)2)
such that V >R U and V |U .

Proof. We will prove the assertion by applying induction on n. The statement
holds for n ≤ 7; see Table 2 for verification. Assume that n ≥ 8.

Let R(Pn) = u1 >R · · · >R uf . Because of Lemma 4.3, we may assume that
U = uiuj is a maximal expression for some i < j. From Figure 1, which describes
the branching of rooted order of minimal generators of J(Pn), we see that we have
the following three possibilities:

(1) ui, uj ∈ xn−1R(Pn−2);

(2) ui, uj ∈ xnxn−2R(Pn−3);

(3) ui ∈ xn−1R(Pn−2) and uj ∈ xnxn−2R(Pn−3).

Since U /∈ G(J(Pn)2), there exists U ′ ∈ G(J(Pn)2) such that U ′ strictly divides
U . Let U ′ = upuq be a maximal expression for some p ≤ q. Now we discuss
each of the above possibilities separately. Let R(Pn−2) = v1 >R · · · >R vd and
R(Pn−3) = l1 >R · · · >R le.

(1) Let ui, uj ∈ xn−1R(Pn−2). Then up, uq ∈ xn−1R(Pn−2) because U ′|U .
Also, in this case we have U = (xn−1vi′)(xn−1vj′) and U ′ = (xn−1vp′)(xn−1vq′) for
some vi′ , vj′ , vp′ , vq′ ∈ R(Pn−2). Thus, the monomial vp′vq′ strictly divides vi′vj′ .
By the induction hypothesis on Pn−2, there exists vr′vs′ ∈ G(J(Pn−2)2) such that
vr′vs′ |vi′vj′ and vr′vs′ >R vi′vj′ . Let V = (xn−1vr′)(xn−1vs′). By Lemma 3.8,
we see that V ∈ G(J(Pn)2). Note that V |U , and by following Lemma 3.3 we get
V >R U , as required.

(2) Let ui, uj ∈ xnxn−2R(Pn−3). Then up, uq ∈ xnxn−2R(Pn−3) because U ′|U .
Also, in this case U = (xnxn−2li′)(xnxn−2lj′) and U ′ = (xnxn−2lp′)(xnxn−2lq′)
for some li′ , lj′ , lp′ , lq′ ∈ R(Pn−3). Thus, the monomial lp′ lq′ strictly divides li′ lj′ .

By the induction hypothesis on Pn−3, there exists lr′ ls′ ∈ G(J(Pn−3)
2
) such that

lr′ ls′ |li′ lj′ and lr′ ls′ >R li′ lj′ . Let V = (xnxn−2lr′)(xnxn−2ls′). By Lemma 3.9,
we see that V ∈ G(J(Pn)2). Note that V |U , and by following Lemma 3.4 we get
V >R U , as required.

(3) If ui ∈ xn−1R(Pn−2) and uj ∈ xnxn−2R(Pn−3), then again from Figure 1
we see that either ui ∈ A or ui ∈ B, and either uj ∈ C or uj ∈ D. We list these four
cases in the following way:

(3.a) ui ∈ A and uj ∈ C;
(3.b) ui ∈ A and uj ∈ D;

(3.c) ui ∈ B and uj ∈ C;
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(3.d) ui ∈ B and uj ∈ D.
We define the following rooted lists:

R(Pn−4) = a1 >R · · · >R ag,

R(Pn−5) = b1 >R · · · >R bh,

R(Pn−6) = c1 >R · · · >R ck.

Case (3.a). If ui ∈ A and uj ∈ C, then U = (xn−1xn−3ai′)(xnxn−2xn−4bj′) for
some ai′ ∈ R(Pn−4) and bj′ ∈ R(Pn−5). Since U ′|U , by Lemma 3.10 we get up ∈ A
and uq ∈ C. Then U ′ = (xn−1xn−3ap′)(xnxn−2xn−4bq′) for some ap′ ∈ R(Pn−4)
and bq′ ∈ R(Pn−5). Moreover, U ′|U gives ap′bq′ |ai′bj′ .

Note that xn−3ai′ , xn−3ap′ , xn−2xn−4bj′ , xn−2xn−4bq′ ∈ R(Pn−2) and the mono-
mial (xn−3ap′)(xn−2xn−4bq′) strictly divides Y = (xn−3ai′)(xn−2xn−4bj′), which
shows Y ∈ F (J(Pn−2)2)\G(J(Pn−2)2). Then by the induction hypothesis on Pn−2,
we know that there exists Y ′ ∈ G(J(Pn−2)2) such that Y ′|Y and Y ′ >R Y . Observe
that Y ′ = (xn−3ai′′)(xn−2xn−4bj′′) for some ai′′ ∈ R(Pn−4) and bj′′ ∈ R(Pn−5).
Let V = xnxn−1Y

′, and note that from Lemma 3.12 we have V ∈ G(J(Pn)2).
Clearly V divides U . From Lemma 3.13 it follows that V >R U , as desired.

Case (3.b). If ui ∈ A and uj ∈ D, then U = (xn−1xn−3ai′)(xnxn−2xn−3xn−5cj′)
for some ai′ ∈ R(Pn−4) and cj′ ∈ R(Pn−6). Since U ′|U and U ′ = upuq, one can see
that up ∈ A. Also, uq ∈ C or uq ∈ D.

If up ∈ A and uq ∈ C, then U ′ = (xn−1xn−3ap′)(xnxn−2xn−4bq′) for some
ap′ ∈ R(Pn−4) and bq′ ∈ R(Pn−5). Thus, U ′|U gives

(xn−1xn−3ap′)(xnxn−2xn−4bq′)|(xn−1xn−3ai′)(xnxn−2xn−3xn−5cj′),

which implies xn−4ap′bq′ |xn−3xn−5ai′cj′ . Therefore, xn−4|ai′ because cj′ ∈R(Pn−6).
This shows that xn−1xn−4|ui. Then by Lemma 4.1 we get the desired result.

If up ∈ A and uq ∈ D, then U ′ = (xn−1xn−3ap′)(xnxn−2xn−3xn−5cq′) for some
ap′ ∈ R(Pn−4) and cq′ ∈ R(Pn−6).

Keeping Figure 2 in mind, one can check that either xn−4 divides ai′ or ai′ is in
xn−5R(Pn−6). If xn−4 divides ai′ , then ui is divisible by xn−1xn−4 and the result
follows from Lemma 4.1.

R(Pn−4)

xn−5R(Pn−6) xn−4xn−6R(Pn−7)

Figure 2 Branching of R(Pn−4)

Therefore, let us assume that ai′ ∈ xn−5R(Pn−6). Then it is not hard to show
ap′ ∈ xn−5R(Pn−6) as well. Thus, a similar argument to that in Case (3.c) shows
that we can find V ∈ G(J(Pn)2) such that V |U and V >R U .

Case (3.c). If ui ∈ B and uj ∈ C, then we have ui = xn−1xn−2xn−4bi′ and
uj = xnxn−2xn−4bj′ for some bi′ , bj′ ∈ R(Pn−5). Since U ′|U , it follows from Lemma
3.10(2) that U ′ = (xn−1xn−2xn−4bp′)(xnxn−2xn−4bq′) for some bp′ , bq′ ∈ R(Pn−5).
Further, bp′bq′ strictly divides bi′bj′ . This shows bi′bj′ ∈ F (J(Pn−5)2)\G(J(Pn−5)2).
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Then by induction hypothesis, we know that there exists Y ∈ G(J(Pn−5)2) such
that Y |bi′bj′ and Y >R bi′bj′ . Accordingly, by Lemma 3.16 we get

xnxn−1x
2
n−2x

2
n−4Y >R xnxn−1x

2
n−2x

2
n−4bi′bj′ in F (J(Pn)2).

Now set V = xnxn−1x
2
n−2x

2
n−4Y , and the line above becomes V >R U in F (J(Pn)2).

Clearly, V |U . Because of Lemma 3.14 we get V ∈ G(J(Pn)2), as desired.
Case (3.d). If ui ∈ B and uj ∈ D, by Lemma 4.1 we get the desired result. �

5 Linear Quotients of the Second Power of J(Pn)

We are now ready to prove our main theorem.

Theorem 5.1. Let G(J(Pn)2) = {U1, . . . , Up}. Then J(Pn)2 has linear quotients
with respect to U1 >R · · · >R Up.

Proof. We will prove the assertion by applying induction on n. The statement
holds for n ≤ 5; see Table 2 for verification. Suppose that n ≥ 5. We need to
show that (U1, . . . , Ur−1) : (Ur) is generated by variables for all 2 ≤ r ≤ p. Let
R(Pn−2) = m1 >R · · · >R ma and R(Pn−3) = l1 >R · · · >R lb.

Case 1. Suppose that x2n divides Ur. Let us assume that Ur has the maximal
expression Ur = (xnxn−2li)(xnxn−2lj) for some li, lj ∈ R(Pn−3) with i ≤ j. First,
we claim that xn−1 is a generator of (U1, . . . , Ur−1) : (Ur).

In fact, by Lemma 3.5 there exits mq ∈ R(Pn−2) such that mq|xn−2li. Let

V = (xn−1mq)(xnxn−2lj).

Notice that V : Ur = xn−1. Moreover, if V ∈ G(J(Pn)2), then V >R Ur. Otherwise,
by Lemma 4.5 there exists Uk with 1 ≤ k ≤ r − 1 such that Uk|V and Uk >R V .
Then Uk : Ur = xn−1, which proves the claim.

Let R(J(Pn−3)2) = L1 >R L2 >R · · · >R Ls and Lt = lilj . Now we will show
that (U1, . . . , Ur−1) : (Ur) = (xn−1) + (L1, L2, . . . , Lt−1) : (Lt). Observe that the
proof will be complete once we prove the equality above because of the induction
assumption on Pn−3. Combining Lemmas 3.4 and 3.9 and the claim that has been
proved, we obtain (xn−1) + (L1, L2, . . . , Lt−1) : (Lt) ⊆ (U1, . . . , Ur−1) : (Ur).

It remains to show that the reverse inclusion holds. Note that for each ` ≤ r−1,
the monomial U` is divisible by either (xn−2xn)2 or xn−1 by the definition of rooted
order. If xn−1|U`, then it is easy to see that in this case U` : Ur ∈ (xn−1). If
(xn−2xn)2|U`, then by Lemma 3.9 we have U`/(xn−2xn)2 = Lk for some k. Clearly
we have U` : Ur = Lk : Lt. Furthermore, since U` >R Ur, by Lemma 3.4 we get
Lk >R Lt, which completes the proof in this case.

Case 2. Suppose that x2n−1 divides Ur. Let Ur = (xn−1mi)(xn−1mj) be the
maximal expression for some mi,mj ∈ R(Pn−2) with i ≤ j. Then the monomial
mimj is also in its maximal expression by Remark 3.1. Thus, Lemma 3.8 implies
mimj ∈ G(J(Pn−2)2). Let R(J(Pn−2)2) = M1 >R · · · >R Ms. Then mimj = Mt

for some 1 < t ≤ s. Note that 1 < t, because if t = 1 then r = 1, which is not
true. By induction hypothesis, (M1, . . . ,Mt−1) : (Mt) is generated by variables.
We claim that (M1, . . . ,Mt−1) : (Mt) = (U1, . . . , Ur−1) : (Ur).
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Indeed, by Remark 3.1 and Lemma 3.8, it is clear that

(M1, . . . ,Mt−1) : (Mt) ⊆ (U1, . . . , Ur−1) : (Ur).

We need to show the reverse inclusion. Observe that for every ` ≤ r − 1, the
monomial U` is divisible by either x2n−1 or xn−1xn by the definition of rooted order.
If x2n−1 divides U`, then again by Lemma 3.8 we get U`/x

2
n−1 = Mk for some k.

Clearly, U` : Ur = Mk : Mt. Therefore, it remains to show k < t. Lemma 3.3
together with U` >R Ur implies Mk >R Mt, as desired.

If xn−1xn divides U`, then we may assume that U` = (xn−1mh)(xnxn−2lq) is the
maximal expression for some mh ∈ R(Pn−2) and lq ∈ R(Pn−3). Then by Lemma
3.5 there exists mv ∈ R(Pn−2) such that mv|xn−2lq.

Note that since U` >R Ur, we must have mh >R mi,mj in R(Pn−2) by Lemma
3.3. Now consider

P = (xn−1mh)(xn−1mv).

If P ∈ G(J(Pn)2), then P >R Ur and P : Ur ∈ (M1, . . . ,Mt−1) : (Mt). Since
P : Ur divides U` : Ur, it follows that U` : Ur ∈ (M1, . . . ,Mt−1) : (Mt).

If P /∈ G(J(Pn)2), then by Lemma 4.5 there exists Uα ∈ G(J(Pn)2) such that
Uα|P and Uα >R P . Thus, Uα > Ur and Uα : Ur ∈ (M1, . . . ,Mt−1) : (Mt). Since
Uα : Ur divides P : Ur and P : Ur divides U` : Ur, we see that Uα : Ur divides
U` : Ur and U` : Ur ∈ (M1, . . . ,Mt−1) : (Mt), as desired.

Case 3. Suppose that xnxn−1 divides Ur. Let Ur = (xn−1mi)(xnxn−2lj) be the
maximal expression for some mi ∈ R(Pn−2) and lj ∈ R(Pn−3).

Claim 1: xn−1 ∈ (U1, . . . , Ur−1) : (Ur).

Indeed, by Lemma 3.5 there exists mk ∈ R(Pn−2) such that mk|xn−2lj . Take
M = (xn−1mk)(xn−1mi) ∈ F (J(Pn)2). If M ∈ G(J(Pn)2), then M >R Ur and
M : Ur = xn−1, which proves the claim. If M 6∈ G(J(Pn)2), then by Lemma 4.5
there exists Us ∈ G(J(Pn)2) such that Us|M and Us >R M . Thus, Us >R Ur and
Us : Ur = xn−1, which proves our claim.

Claim 2: If i ≥ 2, we have (m1, . . . ,mi−1) : (mi) ⊆ (U1, . . . , Ur−1) : (Ur).

Indeed, by Remark 2.3 the ideal (m1, . . . ,mi−1) : (mi) is generated by variables.
To prove our claim, let t < i such that mt : mi = xz for some variable xz. Consider
M = (xn−1mt)(xnxn−2lj). If M ∈ G(J(Pn)2), then M >R Ur and M : Ur = xz.
Otherwise, by Lemma 4.5 there is Uk ∈ G(J(Pn)2) such that Uk|M and Uk >R M .
Thus, Uk >R Ur and Uk : Ur = xz, which proves our claim.

Claim 3: If j ≥ 2, then (l1, . . . , lj−1) : lj ⊆ (U1, . . . , Ur−1) : (Ur).

In fact, by Remark 2.3 we know that the ideal (l1, . . . , lj−1) : (lj) is generated
by variables. Let t < j such that lt : lj = xz for some variable xz. Consider
M = (xn−1mi)(xnxn−2lt). If M ∈ G(J(Pn)2), then we obtain M >R Ur and
M : Ur = xz. Otherwise, by Lemma 4.5 there exists Uk ∈ G(J(Pn)2) such that
Uk|M and Uk >RM . Thus, Uk >R Ur and Uk : Ur = xz, which proves our claim.

Let t < r. By Claims 1 and 3, we may assume that Ut = (xn−1mp)(xnxn−2lq)
and p < i. By Remark 2.3 there exists a variable xz ∈ (m1, . . . ,mi−1) : (mi) such
that xz divides mp : mi. Observe that by Lemma 3.7(1) we get xz 6= xn−2. Propo-
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sition 4.2 implies that the monomial lj is not divisible by xz as Ur ∈ G(J(Pn)2)
and the expression Ur = (xn−1mi)(xnxn−2lj) is maximal. Thus, xz divides Ut : Ur,
and the result follows from Claim 2. �

Lemma 5.2. Let an denote the maximum degree of a minimal monomial generator
of J(Pn). For any n ≥ 5 we have an = max{an−2 + 1, an−3 + 2}. For any n ≥ 2,

an =

{
2k if n = 3k + 1 or n = 3k,

2k + 1 if n = 3k + 2.

Proof. The result follows from Lemma 2.1. �

If an ideal has linear quotients, then its regularity is equal to the highest degree
of a generator in a minimal set of generators; see [16, Corollary 8.2.14]. Therefore,
as a consequence of Theorem 5.1, we obtain the following result.

Corollary 5.3. For any n ≥ 2,

reg(J(Pn)2) =

{
4k if n = 3k + 1 or n = 3k,

4k + 2 if n = 3k + 2.

Proof. If u ∈ G(J(Pn)), then u2 ∈ G(J(Pn)2) by Lemma 4.3. The result follows
from Lemma 5.2. �

Concluding remarks. We can generalize the concept of rooted list to chordal
graphs as follows. First, let us introduce some notation. If v is a vertex of G,
then the set of neighbors of v is denoted by N(v). The closed neighborhood of v is
N [v] = N(v) ∪ {v}. If A is a subset of vertices of G, then G\A denotes the graph
which is obtained from G by removing the vertices in A.

LetG be a chordal graph with a simplicial vertex v1 such thatN [v1]={v1, . . . , vr}
for some r ≥ 2. Suppose that for each i = 1, . . . , r, the list R(Hi) is a rooted list of
the subgraph Hi = G\N [vi]. Then we say that

R(H1)N(v1), R(H2)N(v2), . . . , R(Hr)N(vr)

is a rooted list of G. Note that this list indeed consists of the minimal generators
of J(G); see [5, Theorem 3.1].

Observe that a path graph has only two simplicial vertices, namely the vertices at
both ends of the path. However, a chordal graph in general can have many simplicial
vertices. Therefore, one can construct rooted lists of chordal graphs recursively in
different ways. We give below an example of how to construct a rooted list for a
chordal graph.

Example 5.4. Consider the graph in Figure 3. Observe that a is a simplicial vertex
with N(a) = {b, c}. We use the following rooted lists:

R(G\N [a]) = de, ef, df, R(G\N [b]) = ∅, R(G\N [c]) = d, f.
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Figure 3 A chordal graph

Moreover, since we have N(a) = bc, N(b) = acde and N(c) = abe, we can get the
following rooted list for G:

u1, u2, u3, u4, u5, u6 := bcde, bcef, bcdf, acde, abed, abef.

Notice that since J(G) is generated in single degree, every 2-fold product uiuj is a
minimal generator of J(G)2. There is only one minimal generator of J(G)2 which
has multiple expressions, namely

ab2cde2f = u1u6 = u2u5.

Using Macaulay2 [11], we list the minimal generators of J(G)2 in the rooted order
as in Definition 2.6 and we confirm that such an order yields linear quotients.

It would be interesting to know whether the following question has a positive
answer because it would settle the case of second powers for Conjecture 1.1.

Question 5.5. If G is a chordal graph, then does J(G)2 have linear quotients with
respect to a rooted list of minimal generators?

Acknowledgements. The first author’s research was supported by the TÜBİTAK grant
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