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Sabancı University, Istanbul, Türkiye 34956

{mehmetyavuz,berrin}@sabanciuniv.edu

Abstract—We address the problem of web supervised learning,
in particular for face attribute classification. Web data suffers
from image set noise, due to unrelated images that may be
retrieved in response to the query. We propose a semi-supervised
pseudo-labeling approach where the embedding space distribution
is learnt via variational contrastive learning. We use 40 Gaussian
sampling heads for the 40 attributes in the CelebA dataset and
apply supervised contrastive learning over a limited amount of
labelled data, to address the multi-label face attribute classification
problem. Soft pseudo-labeling is then used to label the unlabelled
data at attribute level, followed by two-stage domain adaptation.
We show that the proposed method using noisy web data
brings improvements in accuracy over supervised multi-label
face attribute classification in all experimental settings (over 2%
points for very low-data setting). We suggest that learning the
embedding distribution and the subsequent soft pseudo-labeling
according to the nearest neighbors help in overcoming the noise
in the unlabeled data.

I. INTRODUCTION

Unsupervised and semi-supervised learning paradigms are
expected to have a great potential for progress in machine
learning, as it is possible to collect images, audio or video
from nearly limitless data sources on Internet. For example,
a web search can be used to collect images to be used in
training a visual concept. Unfortunately, the weakly labelled
data found on the web in response to the query, often contains
large amounts of irrelevant or noisy images. In the domain of
face images, a particular Internet search may return images
that are unrelated or that only loosely correspond to the query
(e.g. images of makeup for “rosy cheek”). In this paper, we
propose a semi-supervised learning approach and evaluate its
performance on classifying the 40 face attributes depicted in
the CelebA dataset, using the internet as the source of the
unlabelled data.

Several different approaches are suggested in the literature
to leverage unlabelled data. Among these, we can distinguish
two broad categories. In the first category, we see unsupervised
or self-supervised methods that are used to learn good feature
representations. Among these approaches, one group of algo-
rithms including including SimCLR [8], Context Encoders[47],
Selfaugment [50], Deeppermnet [54], Clusterfit [71], use a
pretext task to learn features using self-supervision [76, 4, 6,
7, 9, 10, 15, 17, 22, 24, 26, 30, 29, 32, 31, 36, 37, 40, 45,
67, 72, 78]. Another group of algorithms, including such as
Deep Cluster [5], Clustergan[39], SCAN [61], aim to learn
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Fig. 1. Proposed pipeline.

good feature representations that lead to good clusters [3, 13,
18, 20, 57, 61, 72, 73].

In the second category, there are semi-supervised approaches,
such as MixMatch [1], FixMatch[56] and FlexMatch[77], and
others [1, 41, 48, 52, 69] that use pseudo-labeling or self-
labeling, where unlabelled data is assigned pseudo-labels.
Generative or teacher-student or ensemble models can also
be listed among the semi-supervised approaches [12, 16, 23,
33, 38, 49, 53, 55, 59, 64, 65].

Among the first category, SimCLR [8] and SimCLRv2 [9] are
the current state-of-the-art self-supervised methods, based on
the contrastive learning approach where learning aims to reduce
the distance between the embedded representations of the two
augmentations by the same image. The effectiveness of these
algorithms have been demonstrated on non-noisy benchmark
datasets such as Imagenet [14], CIFAR10 and CIFAR100
[28]; however their applicability to multi-label data and noisy
web images are yet unaddressed issues. Another successful
algorithm is SCAN [61], which aims to form semantic clusters,
by using a multi-step learning scheme that starts with the



pretext task of SimCLR and continues with novel clustering
loss functions.

Our aim in this paper is to increase the accuracy of the
existing multi-label face recognition systems by using the visual
data collected from the Internet. To this end, we propose a
semi-supervised algorithm called VCL-PL, consisting of (i)
a representation learning step using supervised variational
contrastive learning, inspired by variational auto-encoders [25];
(ii) a pseudo-labeling step based on the nearest neighbor mining
used in [61]; and a domain adaptation step where the general
deep features learned using ImageNet is adapted to the target
domain in two-steps. The algorithm is illustrated in Figure 1.

The feature learning component of the proposed method
resembles SimCLR [8], but differs from it by the variational
approach that aims to learn the underlying distribution of the
latent space. Furthermore, unlike SimCLR, we apply contrastive
learning to a fraction of the labelled data and construct a
separate embedding space for each attribute in order to address
the multi-attribute classification, which would not have been
possible with unlabelled data. The pseudo-labeling component
is inspired by the SCAN [61] and SPICE [42] algorithms that
use neighborhood mining in the embedding space, but we use
a distance weighting and obtain soft pseudo-labels.

For repeatable experiments, we use the YFCC100M dataset
as the data collected from the Internet and the YFCC-CelebA
subset obtained by filtering YFCC100M with keywords related
to the 40 facial attributes present in CelebA [74]. Note that
YFCC100M is an uncurated dataset with only weak labels and
is used without labels in this work.

We demonstrate the effectiveness of the proposed algorithm
by using varying amounts of labelled data from the CelebA
dataset (%1,%10, or %100) and the YFCC-CelebA dataset as
the unlabeled dataset. Our main contributions are learning the
embedding space distribution using a variational approach and
extending the contrastive learning framework to multi-label
problems by using 40 Gaussian heads and a limited amount
of labelled data. Our system also benefits from a weighted
nearest neighbor pseudo-labelling, as well as a two-step domain
adaptation.

The paper is structured as follows. In Subsection II-A and
II-B, we discuss the backbone network and the Gaussian
sampling heads and the supervised metric learning with the
variational approach. In Section II-C and II-D, the pseudo-
labeling algorithm and the two-stage domain adaptation are
presented, respectively. Last two sections are the Experimental
Evaluation and the Conclusion sections.

II. METHODOLOGY

The proposed algorithm has three consecutive stages and is
illustrated in Figure 1.

i Supervised Contrastive Metric learning (Section II-A and
II-B). We use the available labelled data (%1 or %10 or
%100 of CelebA) and apply contrastive metric learning in
a supervised fashion, to learn each of the 40 embedding
spaces.
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Fig. 2. Learning embeddings: AlexNet is used as the backbone with 40
Gaussian heads for sampling.

ii Nearest neighborhood based weighted pseudo-labeling of
the noisy web data (Section II-C).

iii Domain adaptation of the backbone network in two stages.
We fine-tune the Imagenet pretrained Alexnet network using
the pseudo-labeled YFCC-CelebA and then apply a second
domain adaptation with the avaliable labelled CelebA subset
(Section II-D).

The supervised metric learning and weighted pseudo-labeling
is accomplished in the multi-label domain of face attributes
(each image has 40 face attribute labels) with Gaussian
embeddings.

A. Feature Extraction and Gaussian Sampling

In this step of the proposed method, we use the labelled set to
learn useful embedding distributions, separately for each binary
attribute label. The backbone feature extractor is a standard
convolutional network, which is followed by sampling heads,
as shown in Figure 2.

An input x is applied a stochastic transformation (t) and
is fed to the feature extractor network that extracts the
embedding representation fθ. The feature extractor is followed
by Gaussian sample heads (gW ) that outputs the parameters of
the distribution of the learned embedding space. The process
is explained in Eq. 1:

(µ, logσ2) = gW (fθ(t(x))) (1)

We then sample from this distribution using the parametriza-
tion trick as used in variational autoencoders [25]:

z = µ+ σ2 ⊙ ξ (2)



where ξ ∼ N (0, I) and ⊙ is the element-wise multiplication.
The parametrization trick makes it possible to use backpropa-
gation despite the sampling process.

The network that learns the embeddings consists of two
blocks, shown in Figure 2. The backbone is the feature extractor
network and its the output vector is shared between 40 Gaussian
heads. In our implementation the backbone network is Alexnet
architecture [27] with the dropped FC and softmax layers. The
activation vectors obtained from the last layer of Alexnet are
4096 dimensional (for 224x224 pixels input) and shared by 40
Gaussian sampling heads which corresponds to 40 attributes
of CelebA.

Each embedding space is modelled by a 128-dimensional
multi-variate Gaussian distribution with diagonal covariance
matrix and sampled with a Gaussian sampling head that
has a non-linear layer followed by a linear layer to get the
deterministic values of mean and variance. The output of
mean and variance embeddings are the inputs for Gaussian
reparametrization. This view corresponds to one branch of
contrastive network shown in Figure 3.

B. The Supervised Variational Contrastive Learning

A simple contrastive learning algorithm, based on reducing
the distance between augmentations of the same image, is
run in each 40 embedding spaces independently, with an
objective function consisting of three terms, explained below.
The algorithm for the variational contrastive learning is given
in Alg. 1 and illustrated in Fig. 3.

Large Margin Cosine Loss. The first loss terms is the
Large Margin Cosine Loss (LMCL) [62] whose effectiveness
has been demonstrated in comparison to softmax [11], center
loss [66], large margin softmax loss [35], and angular loss
[63] in face recognition domain. Given an input xi with binary
label yi, LMCL is derived starting from the cross-entropy loss,
requiring the weights and input to have unit norm and using
the large margin formulation. Specifically, given input xi and
the corresponding ground-truth, yi:

Lxent =
1

N

N∑
i=1

− log pyi =

N∑
i=1

− log
efi,yi∑K
j=1 e

fi,j
(3)

where N is the number of training samples, pyi
is the posterior

probability of the correct class and fi,j is the output of the
jth class for the i-th input sample. Denoting the weight vector
of the j-th output node as Wj , we have:

fi,j = WT
j xi = ||Wj ||||xi|| cos θij (4)

Then, using normalized weight and input vectors, the cosine
loss is derived first. Finally, LMCL is obtained with the large
margin formulation:

LLMC =
1

N

N∑
i=1

− log
e{s(cos θij−m)}

e{s(cos θiyi−m)} +
∑

j ̸=yi
e{s(cos θij)}

(5)
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Fig. 3. Variational Contrastive Learning. Two random augmentations of an
image x are input to the network to obtain the backbone representations,
followed by the 40-Gaussian sampling heads. The two samples are then
compared to reduce the total loss (Eq. 8).Figure inspired by SimCLR [8].

where θij is the angle between Wj and xi; s is a constant and
m is the margin parameter.

Distribution Similarity Loss. The second loss term encour-
ages the augmentations of the same image (xi, xj) being drawn
from similar distributions q and p respectively, by penalizing
the divergence between the two using the Kullback-Leibler
divergence [46].

LS = − 1

N

N∑
i=1

DKL(q1(zi|xi)||q2(z̃i|x̃i))

= − 1

N

N∑
i=1

log

(
σq1,i

σq2,i

)
−

σ2
q1,i

+ (µq1,i − µq2,i)
2

2σ2
q2,i

+
1

2

(6)

Distribution Normalizing Loss. This loss encourages the
learned distributions to have zero mean and unit variance, as
per [46].

LD = − 1

N

N∑
i=1

DKL(qθ(zi|xi)||N (0, 1))

= − 1

N

N∑
i=1

1

2

[
1 + log(σ2

q i)− σ2
q i − µ2

qi

]
(7)

Total Loss.The embedding representations are learned for
each binary face attribute, using a portion of the labelled dataset.
The optimization is done based on the total loss:

Ltotal =
1

40

40∑
att=1

{LLMC + LS + LD}att (8)



Algorithm 1: Contrastive learning design for supervised
metric learning, as in [8].
input: batch size N, networks f, g and augmentation

function distribution T
for each sampled minibatch {xk}Nk=1 do

for each image k ∈ 1, ..., N do
Draw two augmentation functions t ∼ T , t′ ∼ T
x̃2k−1 = t(xk) # first augmentation
h2k−1 = f(x̃2k−1) # its representation
for c ∈ 1, ..., 40 do

z2k−1,c = g(h2k−1,c) # first sample
end for
x̃2k = t′(xk) # second augmentation
h2k = f(x̃2k) # its representation
for c ∈ 1, ..., 40 do

z2k,c = g(h2k,c) # second sample
end for

end for
Compute loss for each different head using Eq. 8
Update the network f, g to minimize Ltotal

end for
return: base and sampler networks f(·) and g(·)

C. Weighted Pseudo-labeling

We use the k-nearest neighbor (k-NN) algorithm to pseudo-
label the elements of the unlabeled YFCC-CelebA dataset, by
the labels of their closest neighbor(s) in the CelebA subset.

For an unlabelled image u, we find the k nearest neighbors in
the labelled dataset and obtain the confidence-weighted pseudo-
label, according to the labels and distance of each neighbor:

pseudoLabel(u) =

k∑
i=1

{labeli ∗ e−di}
k

(9)

where di is the distance from u to nearest neighbor i with
label labeli ∈ {−1,+1}.

The pseudo-labels are normalized into the [−1, 1] range
after the pseudo-labelling process. Note that an image can be
confident in some labels and less confident in some others. We
give the algorithm for k = 1 in Alg. 2, as it gave the best
results.

D. Two-Step Domain Adaptation

The domain adaptation is done in two steps. The Imagenet
pretrained network is fine-tuned with the pseudo-labelled
YFCC-CelebA set first; and then to the labelled CelebA set.

We have found doing the adaptation in two steps brings
roughly 1% point in accuracy, compared to a single step
adaptation (either directly to CelebA or with both data sets
combined.

III. EXPERIMENTAL EVALUATION

We evaluate the proposed approach on the problem of
classifying the 40 facial attributes in the CelebA dataset and
compare its performance to : i) standart supervised learning

Algorithm 2: Weighted Pseudo-labeling
Data: DLabeled, DUnlabeled

Init: {W, θ} ← pretrained {W ∗, θ∗}
Obtain the representation foreach xl in DLabeled

foreach sample xu ∈ DUnlabelled do
Sample augmentation function t ∼ T
x̃ = t(xu) # an augmentation
h = f(x̃) # representation
# Gaussian projections in 40 embedding space
for c ∈ 1, ..., 40 do

zc = gc(h)
(distance, label) = mine 1-NN(zc) in DLabeled

pseudoLabel = label ∗ e−distance

end for
Normalize the labels into [-1,1] range.

end foreach
return: YFCC-CelebA with soft pseudo-labels.

where we fine-tune the ImageNet pretrainet network with the
available labelled dataset; ii) DeepCluster [5]; iii) SimCLR
[8]; iv) SCAN [61] v) CL-PL (which is the proposed system,
only lacking the variational component) vi) VCL-PL (proposed
system).

The experiments are run with a portion (%100, %10 or
%1) of the CelebA dataset being used as the labelled dataset
and YFCC-CelebA dataset as the unlabelled dataset. We used
AlexNet [27] in all of the experiments, for simplicity.

Datasets As labelled data, we use the CelebA dataset which
is resized and cropped into 128 by 128 pixels, along with
its ground truth labels. As unlabelled data, we use a subset
of the Yahoo Flickr Creative Commons 100 Million Dataset
(YFCC100M), which is the largest public multimedia collection
that have approximately 99.2 million are photos and 0.8
million are videos. The subset YFCC-CelebA [74] consists of
approximately 1 million photos that are found when searching
in English for the 40 face features that exist in the CelebA
set (“attractive“, “eyeglasses“ etc). In addition to the face
attribute words, the word "face" was added in these searches
(e.g. "chubby face").

CelebA has 40 face attributes, but it is also possible to
express the opposite concept when the attribute is an adjective,
which was determined using ConceptNet [58]). The opposite
concept was then obtained from Wiktionary [75] and used
in enriching the query (e.g. "wide eyes" along with "narrow
eyes"). The search and downloads during this process were
done automatically. When multiple queries returned the same
photo, repetitions were eliminated.

A total of 392K non-repetitive images were obtained using 58
query words obtained by the above process and after eliminating
low resolution images. As a last operation, the images were
aligned and scaled similar to CelebA. For this, the photos are
padded from the edges so as to center the faces and then scaled
to obtain 128× 128 images.

Image Transformation For the augmentations needed in
the contrastive metric learning task, we use Resize, Crop,



Horizontal Flip, Grayscale, Color Jitter augmentations and
sample a random transformation as a combination of these aug-
mentations within the allowed parameter range. The stochastic
data augmentation consists of resizing (scale between [0.2, 1.0]),
cropping (128 random crops), grayscale transformation (with
probability 0.2), and color jitter (with probability 0.8, brightness
in [0.6,1.4], contrast in [0.6,1.4], saturation in [0.6,1.4] and
hue in [0.9,1.1]).

Training Details. We use AlexNet for the feature extractor
(backbone) part of the network, where the embedded represen-
tation is 2304 dimensional (for 128x128 pixel input) and the
output z of a sample head is 128-dimensional. For training, the
network weights are updated using SGD, with a learning rate
of 1e-3, momentum coefficient of 0.9 and weight decay of 1e-5.
We run pre-training experiments with 400 epochs with Cosine
Annihilation Scheduler and fine-tuning experiments with 100
epochs with early validation stopping. The batch size is 128
for pre-training and 64 for fine-tuning. The code is available
at https://github.com/verimsu/VCL-PL.

IV. RESULTS

Table I gives the comparison between the proposed VCL-
PL algorithm to other well-known approaches, as well as the
standart supervised training and the CL-PL approach (proposed
system, only without the variational component). Here, super-
vised learning refers to fine-tuning the ImageNet pretrained
AlexNet with the available labelled dataset. DeepCluster [5],
SimCLR [8], and SCAN [61] are well-known, state-of-art
unsupervised algorithms that are implemented with the code
provided in their official repositories.

We see that VCL-PL outperforms state-of-the-art self-
supervised learning schemes and standard supervised learning,
for all settings (100% , 10% , 1% of CelebA), showing the
effectiveness of the proposed method.

The improvements over the best approach from the literature
(SimCLR) are 0.49, 0.93, 0.61% points, respectively for 100%,
10% and 1% settings. Note that the scale of these improvements
is on par with those observed between other state-of-art
methods.

It is also worth noting that VCL-PL and CL-PL are the
only two systems that can outperform supervised training
in 100% CelebA settings. Furthermore, VCL-PL consistently
outperforms CL-PL, showing the benefit of using the variational
approach. The accuracies of four of the methods are plotted
in Figure 4 for clarity.

In Table II, we observe the k-NN from the pseudo-labeling
stage is best for k = 1. In fact, the SCAN algorithm [61] also
uses 1-NN approach in its nearest neighbor pseudo-labelling.
We further observe that that the algorithm benefits from soft
labelling (Eq. 9) as compared to using hard labels.

We also evaluated other well-known algorithms, namely
Semi-supervised Label Propagation [21] and MixMatch [1].
These methods were observed to underperform compared
to supervised learning with the available labelled data. We
presume that the main reason for the degradation is that our
problem deals with the data noise in the unlabelled set.

TABLE I
AVERAGE ACCURACY FOR DIFFERENT ALGORITHMS AND SETTINGS. BOLD

RESULTS INDICATES THE BEST RESULTS WHILE UNDERLINED RESULTS
SHOW THE BEST RESULTS FROM THE LITERATURE

Method Imagenet YFCC CelebA Accuracy
Supervised yes no 100% 90.24%
DeepCluster [5] no yes 100% 89.40%
SimCLR [8] yes yes 100% 89.98%
SCAN [61] yes yes 100% 89.11%
CL-PL yes yes 100% 90.32%
VCL-PL yes yes 100% 90.47%
Supervised yes no 10% 88.65%
DeepCluster [5] no yes 10% 87.53%
SimCLR [8] yes yes 10% 88.75%
SCAN [61] yes yes 10% 88.35%
CL-PL yes yes 10% 89.43%
VCL-PL yes yes 10% 89.68%
Supervised yes no 1% 85.90%
DeepCluster [5] no yes 1% 84.12%
SimCLR [8] yes yes 1% 87.51%
SCAN [61] yes yes 1% 85.85%
CL-PL yes yes 1% 87.69%
VCL-PL yes yes 1% 88.12%

TABLE II
AVERAGE ACCURACY FOR DIFFERENT k VALUES AND USING HARD

LABELS, AT LOW-DATA REGIME

CelebA 1% 1-NN 3-NN 5-NN Hard labels
Accuracy 88.12% 88.07% 88.03% 87.43%

V. CONCLUSION

We study the problem of improving the performance of
existing supervised systems by the use of weakly labelled
data collected from the internet. The specific problem ad-
dressed in this work is face attribute classification, where
we obtained performance improvements over the supervised
learning framework (over 2% points for very low-data setting),
and two existing baselines (DeepCluster and SimCLR), with
the proposed method.

The main contributions are to use a variational approach to
learn the underlying distribution of the embedding space and
extending the contrastive learning framework to multi-label
problems.

Fig. 4. Accuracy values for varying fractions of available labelled data.



TABLE III
DETAILED COMPARISON OF SUPERVISED TRAINING AND OUR PROPOSED SYSTEMS, VCL-PL AND CL-PL.

Attributes Supervised CL-PL VCL-PL Attributes Supervised CL-PL VCL-PL
5 o’Clock Shadow 89.60% 90.56% 91.06% Male 90.40% 93.54% 93.96%
Arched Eyebrows 76.06% 77.87% 78.58% Mouth Slightly Open 69.12% 81.15% 82.62%
Attractive 75.59% 77.49% 77.87% Mustache 96.04% 96.06% 96.07%
Bags Under Eyes 79.13% 81.01% 81.20% Narrow Eyes 84.92% 84.93% 85.16%
Bald 97.91% 97.83% 97.92% No Beard 87.36% 90.09% 91.26%
Bangs 91.69% 94.04% 94.37% Oval Face 70.09% 71.38% 72.12%
Big Lips 67.38% 68.46% 68.93% Pale Skin 95.67% 95.78% 95.79%
Big Nose 79.52% 80.43% 80.83% Pointy Nose 70.07% 71.53% 72.33%
Black Hair 81.90% 84.89% 85.84% Receding Hairline 91.35% 91.56% 91.65%
Blond Hair 93.70% 94.33% 94.53% Rosy Cheeks 92.74% 92.89% 93.19%
Blurry 95.11% 94.99% 94.94% Sideburns 95.13% 95.93% 96.30%
Brown Hair 83.69% 84.95% 85.12% Smiling 76.64% 85.95% 87.46%
Bushy Eyebrows 86.32% 87.27% 87.74% Straight Hair 77.39% 79.56% 79.98%
Chubby 94.13% 94.09% 94.47% Wavy Hair 77.49% 79.69% 80.27%
Double Chin 95.38% 95.28% 95.38% Wearing Earrings 81.26% 83.82% 84.58%
Eyeglasses 95.95% 97.18% 97.31% Wearing Hat 97.43% 97.93% 97.79%
Goatee 94.88% 95.26% 95.64% Wearing Lipstick 87.30% 90.45% 90.64%
Gray Hair 96.80% 97.19% 96.99% Wearing Necklace 85.42% 85.95% 86.30%
Heavy Makeup 84.08% 87.04% 87.66% Wearing Necktie 95.05% 94.78% 95.20%
High Cheekbones 75.69% 81.74% 82.63% Young 80.63% 82.58% 83.30%

Average 85.90% 87.69% 88.12%
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