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ABSTRACT

SYNTHETIC APERTURE RADAR IMAGING WITH DEEP NEURAL
NETWORKS

MUHAMMED BURAK ALVER
ELECTRONICS ENGINEERING Ph.D DISSERTATION, December 2020

Dissertation Supervisor: Prof. Mijdat Cetin

Dissertation Co-Supervisor: Prof. Selim Balcisoy

Keywords: Synthetic aperture radar, inverse problems, computational imaging,
deep learning, convolutional neural networks, plug-and-play priors, automatic

target recognition.

Synthetic aperture radar (SAR) is a remote sensing imaging modality that has
been in use since the 1960s. Conventional image formation in SAR is based on
2D inverse Fourier transform of the reflectivity field of the scene to be imaged.
This conventional image formation technique is developed for a clean and complete
data collection scenario. However, in reality, the collected data are only a reduced
representation of the underlying scene due to hardware limitations and uncertainties
in the data collection geometry, and hence suffer from reduction and phase errors.
Therefore, many SAR image formation frameworks using regularization have been
proposed over the years, in order to account for these limitations.

In this dissertation, we have focused on the SAR imaging problem, particularly im-
age formation, phase error correction, and automatic target recognition (ATR), and
developed three frameworks. The first framework tackles the SAR image formation
problem. In this framework, SAR image formation is formulated as a regularized
optimization problem, and using the plug-and-play (PnP) priors framework, we have
incorporated deep learning-based priors into our formulation. Our second framework
is an extension of the first one, which aims at joint image formation and phase error
correction. Experimental results show the effectiveness of these two frameworks and
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our proposed methods exceed the state-of-the-art image formation and phase error
correction performances in the majority of the scenarios considered. The third pro-
posed framework focuses on the ATR problem, and within this framework two ATR
approaches are presented which perform the ATR task in the data domain rather
than image domain. We have experimentally shown that the ATR task can be suc-
cessfully performed in the data domain, and with further development, it might be
possible to reach state-of-the-art performance.

Overall, we have shown that the performance in various SAR imaging tasks can be
improved significantly using deep learning tools.
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OZET

DERIN SINIR AGLARI iLE SENTETIK ACIKLIKLI RADAR GORUNTULEME

MUHAMMED BURAK ALVER
ELEKTRONIK MUHENDISLIGI DOKTORA TEZI, Aralik 2020

Tez Danigmani: Prof. Dr. Miijdat Cetin

Tez Eg Danigmani: Prof. Dr. Selim Balcisoy

Anahtar Kelimeler: Sentetik agiklikli radar, ters problemler, hesaplamali
gortintiileme, derin 6grenme, evrigsimsel sinir aglari, tak-caligtir 6nseller, 6zdevimli

hedef tanmilama.

Sentetik aciklikl radar (SAR), 1960’lardan beri kullanimda olan bir uzaktan gortin-
tileme yaklagimidir. Geleneksel SAR goriintii olugsturma yontemi, goruntilenecek
sahnenin yansitma alaninin 2B Fourier dontisiimii tabanlidir. Bu geleneksel goriinti
olugturma yontemi, temiz ve tam veri toplama senaryosu i¢in gelistirilmigtir. Ancak,
gercekte toplanan veri, donamim kisitlar1 ve veri toplama geometrisindeki belirsiz-
liklerden ottrii, altta yatan sahnenin ancak indirgenmis bir temsilidir ve bunlar
veri azaltimi ve faz hatalarina sebep olmaktadir. Bundan dolayi, bu kisitlar1 den-
klegtirme adina yillar i¢ginde diizenlilegtirme kullanan bircok SAR goriintii olugturma
cerceveleri Onerilmistir.

Bu tezde, SAR goriintiileme problemine odaklanilmigtir ve goriintii olugturma, faz
hatasi diizeltimi ve 6zdevimli hedef tanilama (ATR) i¢in ii¢ gergeve geligtirilmigtir.
Ik cerceve, SAR goriintiileme problemi odakhidir. Bu cercevede SAR gériintiileme,
diizenlilegtirmeli bir eniyileme problemi olarak kurgulanmigtir ve tak-galigtir (PnP)
onseller cercevesi kullanilarak, derin 6grenme tabanli ¢nseller kurgulamaya dahil
edilmistir. Ikinci cerceve, onerilen ilk cercevenin gériintii olusturmanin yaninda
faz hatalarimi da gidermeyi amaglayan bir uzantisidir. Deneysel sonuclar, 6ner-
ilen iki cergevenin goriintii olusturma ve faz hatasi gidermede, diigtiniilen betik-
lerin cogunlugunda en iyi basarimlar elde ettigini gostermektedir. Onerilen ticiinci
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cerceve ATR problemine odaklanmaktadir ve bu cercevede ATR gorevini gortintii
uzay1 yerine veri uzayinda gerceklestiren iki ATR yaklagimi sunulmugtur. Deneysel
sonugclarla, ATR gorevinin veri uzayinda da basarili bir sekilde gergeklestirilebilecegi
gosterilmis ve bu cercevenin daha fazla gelistirilmesiyle, en iyi basarimlara ulasila-
bilmesinin miimkiin oldugu vurgulanmistir.

Sonug olarak bu tezdeki calismalar, farkli SAR goriintilleme gorevlerinde, derin
ogrenme teknikleri kullanilarak sonuclarin énemli 6l¢iide iyilegtirilebilecegini goster-
mektedir.
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Chapter 1

Introduction

This dissertation presents new approaches to the problems of synthetic aperture
radar (SAR) image reconstruction, phase error correction, and automatic target
recognition (ATR). The purpose of this chapter is to: 1) introduce the problems
addressed in this dissertation; 2) summarize the current state of SAR technology;
3) provide a concise description of the approach taken in this work by pointing out

the main contributions; 4) present the outline of the dissertation.

1.1 Synthetic Aperture Radar (SAR) Imaging

Synthetic aperture radar (SAR) imaging is a remote sensing imaging modality that
has been widely used in a variety of applications since 1960s. Its advantages over
other remote sensing modalities, such as optical imaging, include; day and night
capability, all-weather operation, ability of discriminating among different materials,
penetrating through different covers and vegetation layers. Specifically, SAR is an
active sensor which has its own illumination, i.e., it transmits a chirp signal and
collects the returned signal from the area of interest, and hence can work at day
or night, whereas optical imaging modalities require an external illumination, e.g.,
sunlight, which limits the operational time. Moreover, SAR works in the microwave
regime, which allows its transmitted signals to penetrate through cloud or rain,
as well as light foliage, hence it can work in any weather conditions and detect

underground structures if they are buried shallowly in dry environments [4].

SAR sensors are carried on a platform (aircraft or satellite) which travels along a
path transmitting microwave pulses towards the ground. Figure 1.1 shows an illus-
tration of SAR data collection using an airborne platform. Some of the transmitted

microwave energy is reflected from the ground back to the SAR sensor and received
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Figure 1.1 Simple illustration of SAR data collection. (Image obtained from the web
site of Sandia National Laboratories.)

as a signal. This process is repeated for many aperture positions as the platform
moves. The data used for imaging are obtained after a preprocessing of the received
signal, involving mixing and filtering steps [5]. The SAR image formation problem
is the problem of reconstruction of a spatial reflectivity field of the area of interest

from the preprocessed SAR signals.

1.2 Current State of SAR Technology

The use of radar as an imaging sensor dates back as early as the 1940s. However,
these early imaging radars, which are nowadays usually referred to as real aper-
ture radars, had an important limitation: the poor resolution achievable with the
operating wavelength, as the resolution is inversely proportional to the antenna or
aperture size of the sensor. To overcome this limitation, the idea of synthesizing a
very long antenna by moving a small one along a convenient path, which is gener-
ally attributed to Carl Wiley of Goodyear Aircraft Corporation, is developed in the
1950s [6]. Subsequently, a group of researchers at the University of Illinois carried out
the experimental validation of the SAR concept [7]. The first operational airborne
SAR system is considered to be the one developed at the University of Michigan,
in 1957, which operated at the X-band. Over the following decades, many more
SAR systems were built. JPL developed an L-band SAR sensor for NASA, which is
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Figure 1.2 A TerraSAR-X image.

installed on a rocket in 1962, and on an airplane in 1966. NASA also upgraded the
system developed at the University of Michigan, by adding L-band channel in 1973.
SAR sensors have continued to be used in many more NASA missions, including the
Apollo 17 lunar mission, SEASAT satellite, spaceborne imaging radar (SIR), and
Magellan mission to image the planet Venus [8]. SEASAT is considered to be the
first civilian application of SAR, which was oriented to oceanographic investigations.
Although its operational lifetime was only a few months due to a short circuit in its
power system, obtained results clearly demonstrated how impactful SAR systems
were going to be for the area of remote sensing [6]. 1990s and onwards, many satel-
lites with SAR sensors have been built: ALMAZ-1 (1991) from the Soviet Union (and
later Russia); ERS-1 (1991), ERS-2 (1995), ENVISAT (2002), Sentinel-1A (2014)
and Sentinel-1B (2016) from the European Space Agency (ESA); JERS-1 (1992),
ALOS-1 (2006) and ALOS-2 (2014) from the Japan Aerospace Exploration Agency
(JAXA); RADARSAT-1 (1995) and RADARSAT-2 (2007) from the Canadian Space
Agency (CSA); TerraSAR-X (2007) and TanDEM-X (2010) from the German Space
Agency (DLR). Figure 1.2 shows an image from the TerraSAR-X satellite.

Early developments in SAR research were mostly targeting the hardware-related
issues and limitations, and considerable improvements were achieved. Back then,
this research field was dominated by those working in physics, electromagnetics,
and radar engineering. Only in the 1980s, a signal processing view of SAR has
emerged [9-11]. Over the years, studies are geared towards imperfections of the
collected data, e.g., noisy and/or incomplete data due to the limited observation

time, or the environment not being very structured and cooperating. As a result,



the collected data would be a reduced representation of the underlying scene [12].

For many years (and still today, to a large extent), the standard approach for SAR
image formation has been through a Fourier transform-based algorithm. This tech-
nique, however, is not designed with the limitations such as noisy or incomplete
data in mind, and hence cannot overcome such limitations. Furthermore, within
this approach, the knowledge about the underlying scene cannot be exploited, and
the imaging cannot be reoriented to address the final objective better. The overall

output quality is limited by the quality of the collected data.

Improvements in SAR imaging systems draw attention from many different research
fields and SAR has started to find use in many applications including reconnais-
sance [13-15], change detection [16-18], oceanography [19-22], glaciology [23,24],
forestry [25,26], earthquake monitoring [27-29] and ground moving target indica-
tion (GMTI) [15,30-32]. Most of these applications, if not all, can benefit from
automated processing techniques in extracting information from a SAR image for
an accurate and efficient interpretation of the scene. Therefore, new processing tech-
niques which are geared towards the final objectives of the mission, and which are

robust to reduced data domains are required for the SAR systems [12].

1.3 Contributions of this Dissertation

The first contribution of this dissertation is the formulation of a SAR image recon-
struction algorithm using the Plug-and-Play (PnP) priors framework [33], namely,
PnP-CNN-SAR. This is the first SAR image formation approach that combines a
physics-based forward model with a learning-based prior in a principled and com-
putationally feasible way within the PnP framework. In this framework, the image
formation problem is solved through minimization of a regularization-based objec-
tive function. In particular, the minimization problem is divided into sub-problems
using the Alternating Direction Method of Multipliers (ADMM) algorithm [34],
resulting in separating the data-fidelity term and the regularization term of the ob-
jective function, to solve sub-problems iteratively. PnP priors framework [33] has
shown that, after this separation, optimization of the regularization term, i.e., the
prior term, is equivalent to a simple denoising of an intermediate solution under
white Gaussian noise. Hence, the regularizer can be replaced with an off-the-shelf
denoiser. In our framework, we have replaced the regularizer with a convolutional
neural network (CNN) denoiser. We have demonstrated the effectiveness of our
framework, i.e., PnP-CNN-SAR, in a variety of scenarios, i.e., for different levels of

data limitations and noise for both synthetic and real SAR scenes.



The second contribution of this dissertation is the extension of our first contribution
to jointly address phase errors along with image reconstruction, namely, PnP-CNN-
SAR-AF. This framework also utilizes the PnP priors using the ADMM algorithm
and deep priors, however there are two additional steps in each ADMM iteration,
namely, phase error estimation and phase error correction. We have demonstrated
the effectiveness of PnP-CNN-SAR-AF in a variety of scenarios, i.e., for different
phase error levels for real SAR scenes, improving upon the performance of existing
methods.

The third contribution of this dissertation is a new SAR ATR framework that
works in the phase history domain. Within this framework, we have introduced
two methodologies, namely, phase history domain classification (PHDC) and image-
phase removed phase history classification (IPRPHC). PHDC purely works in the
phase history domain, i.e., the classification task is performed without image re-
construction. IPRPHC, on the other hand, involves certain steps, particularly, im-
age reconstruction, image-phase removal, and phase history generation from the
phase-removed image, before the classification task is performed. Two well-known
CNNs, i.e., AlexNet [35] and VGG16 [36], are used for the classification task for
both methodologies. IPRPHC has reached a performance level similar to that of
state-of-the-art SAR ATR methods while the performance of the PHDC was not
competitive enough. Nevertheless, our results suggests that SAR ATR in the phase

history domain can be an important research direction.

Overall, this dissertation proposes several ways to utilize deep neural networks
(DNNs), particularly CNNs, in order to improve the performance of SAR image
reconstruction and automatic target recognition. The ideas proposed here can be
extended to build fully-automated end-to-end SAR image reconstruction and ATR

frameworks utilizing CNNs.

1.4 Organization

This dissertation is organized as follows. Chapter 2 includes the review of the back-
ground knowledge that the ideas proposed here are built upon, i.e., Section 2.1
presents a review of SAR imaging and describes the problems to be addressed in
detail, the deep learning background is provided in Section 2.2 along with a brief
survey of its utilization in the SAR imaging literature, and Section 2.3 is dedicated
to the PnP priors framework. PnP-CNN-SAR is introduced in Chapter 3 and exper-
imental results on both synthetic and real SAR scenes are provided. In Chapter 4,
the framework for joint image reconstruction and phase error correction, i.e., PnP-
CNN-SAR-AF, is described and its experimental results for real SAR scenes are
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presented. Two methodologies proposed for SAR ATR in the phase history domain
and their experimental results are presented in Chapter 5. Chapter 6 includes the
summary of the contributions and obtained results, as well as potential future work

suggestions.



Chapter 2

Preliminaries

In this chapter, we provide background information on three topics, namely, SAR
imaging, deep learning, and PnP priors. The discussion on SAR imaging includes the
basic principles, mathematical formulation of the data collection and preprocessing
in SAR, the autofocus problem and phase errors in SAR imaging, and a review of
SAR ATR. The deep learning discussion gives the required background knowledge,
and then the use of DNNs for the various SAR tasks is presented. The final part of
this chapter is dedicated to the PnP priors framework, which is utilized in our first

two contributions.

2.1 SAR Background

Radars use a basic principle known as echo ranging. Echo ranging is the concept that
is used to measure the distance of an object by transmitting an echo signal to the
object and listening the reflection of the echo signal. As the echo signal’s reflection
will travel twice the distance of the object, one can easily estimate the distance if
the propagation speed of the echo signal is known. The distance then will be half
of the round trip flight time of the echo signal multiplied by its propagation speed.
This principle is implemented in radar systems by transmitting high-bandwidth
pulses and using pulse compression techniques [5,37]. Hence, radars can distinguish
objects that are at different distances. Imaging radars, however, have to be able to
distinguish objects that are at the same distance but at different directions as well, in
order to produce a 2D visualization of the scene, i.e., having resolving power only in
the range direction is not sufficient. In theory, this can be achieved by transmitting
a narrow beam to illuminate a narrow strip of the ground. However, this is not as
easy as it sounds, since how narrow the transmitted beam can be, or analogously

how small the cross-range resolution can be depends on the antenna aperture size
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through the following equation: R
w

P="0 (2.1)
where )\, is the wavelength of the illuminating source, R is the target range, and
w is the width of the antenna aperture. Consider the case where the wavelength of
the source and the distance of the target are 0.03 m and 50 km, respectively. This
is a typical wavelength for an X-band radar. Suppose that we want to reconstruct a
radar image for which the resolution is 1 meter. In order to achieve this resolution
level, we would need a physical antenna with the width of 1500 m, which is of course

impractical to carry on an aircraft or a satellite.

SAR solves this problem by sending multiple pulses from a number of observation
points, and then focusing the received information coherently to obtain a high-
resolution 2-D description of the scene. Hence it synthesizes the effect of a large

antenna, using multiple observations from a small antenna [12].

SAR imaging systems can operate in two modes, namely, stripmap-mode SAR, and
spotlight-mode SAR. In stripmap-mode SAR, the antenna remains fixed with respect
to the radar platform so that the antenna beam sweeps out a strip on the ground.
In spotlight-mode, the antenna is steered to continuously illuminate a single spot
of terrain. This study focuses on the spotlight-mode SAR. Spotlight-mode SAR is
able to provide higher resolution at the expense of spatial coverage, as by steering
the antenna, the same terrain portion can be observed through a wider range of
angles while other areas within a given accessibility swath of the SAR cannot be

illuminated. Figure 2.1 shows the geometry for data collection in a spotlight-mode
SAR.

2.1.1 Spotlight-Mode SAR Observation Model

This section provides the preprocessing of the received signals in the spotlight-mode
SAR, based on the tomographic derivation in [10], and very closely follows the
development in [12]. Let f(z,y) be the complex reflectivity density of the ground
patch, and assume that it is constant over the range of frequencies and the range of
viewing angles # employed by the radar. Note that this is an approximation, and
there are cases where the dependence of the reflectivity on frequency or aspect angle

is important and must be taken into account [38].

In most SAR applications, the transmitted signal is a linear FM chirp signal, which



Figure 2.1 Spotlight-mode SAR imaging geometry [1].

has the following form:

. 2 T
ej(wot+at )7 |t| < 717

s(t) = (2.2)

0, otherwise

where wy is the carrier frequency and 2« is the chirp rate. Assume the radar trans-
mits the real part of such a signal, %{s(¢)}. The return signal v ;) (t) from a

differential area centered on the point (zg,yo) at a distance Ry will be:

2Ry 2Rp\?
V(9,wo,yo)(t) =|f(z0,y0)|cos (wo (t — c) + (t— c) + Af(xo,y0)> dx dy

(2.3)
where ¢ is the speed of the light, and 2Ry/c accounts for the two-way travel time
from radar to target. Here, the effect of propagation attenuation is neglected, as it
can be compensated for later. The complex-valued nature of f(z,y) captures both
amplitude scaling and phase shifting of the transmitted waveform by the scatterers.
The amplitude scaling is due to that only a fraction of the radiated energy is reflected
back to the receiver. The phase shift of the reflected signal, however, could be
the result of various factors, the most prominent being the shift at the air/target
interface due to the difference between the dielectric constants of air and the target
material. The phase shift is also due to the tendency of the RF radiation to creep
around target surfaces and its ability to penetrate soft objects and be reflected from

within [10]. For most SAR scenes the phase of the reflectivity at a certain location



can be modeled to be random, with a uniform probability density, and uncorrelated

with the phase at other locations [11].

The return signal can be more simply written as

) =R 7z, 0)s (1= 220) Y dy (2.4

Now let us consider the return from a continuum of scatterers which are at the same
distance to the radar. The return from such scatterers will be received by the radar
at the same time. Let R be the distance from the radar to the center of the scene,
and L be the radius of the ground region of interest, as shown in Figure 2.1. Points
in the ground patch equidistant from the radar lie on an arc, but for a typical system
R > L, so that this arc is nearly a straight line. This inequality is related to two
conditions that must be satisfied, so that we can assume points at the same range
lie on a line (i.e. so that curvature of the wavefront can be neglected). First, the
range error due to this assumption for any point in the ground patch must be less
than a resolution cell:

L? c

R < o~ Pe (2.5)
where p, is the range resolution, and B is the bandwidth of the transmitted wave-
form. Second, the range error due to this assumption at a particular point must not
vary much through the aperture:

L%5in(20maz) c

2.6
R < 200 (2.6)

where 6,4, is the maximum look angle. The derivations of these conditions can be
found in [10]. We will assume that the combined return from such an “equidistant”
set of scatterers is the sum of the returns that would be received from each individual
scatterer. This is a common and reasonable assumption, as discussed in [39]. Let us
take ggp(u) to be such a sum of reflectivities (i.e. a line integral) at distance R+wu to
the radar, from observation angle #. Then, we can write the relationship between

the projection gp(u) and f(z,y) as [40]:

qo(u) = // d(u—xcosl —ysinb) f(z,y)dx dy (2.7)
22 4y2<L2

This is the standard Radon transform. With this definition, the return signal from

a differential line of scatterers normal to the u axis at u = ug is given by

Voo (1) = R {qg(uo)s (t - 2<R+“0>> } du. (2.8)

c
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This is the contribution to the received signal of all scatterers at range R+ ug. Then
the return from the entire ground patch (which is what the sensor actually receives)

at observation angle ¢ is given by the integral of vy ,,, over u

Vo) :@R{/LLqe(u)s (t—Q(RjW) du}. (2.9)

Taking into account that s(-) is a chirp pulse, we have

va(t) = 9%{/_LLqe(u)eXp {j [wo <t— Q(Rj“)) ta (t— Q(Rj”)ﬂ }du} (2.10)

on the interval T 9(R+L T R—1
——p+7( i )gtg—eri( -1 (2.11)
2 c 2 c
Letting 79 = 2R/c be the round-trip delay to the center of the ground patch and

mixing with vy(t) with the reference chirp
exp [—j(wo(t —70) + ot — 70)%)] (2.12)

and then low-pass filtering yields the complex signal®

ro(t) = /LL qp(u) exp {‘742[52 } -exp {—ji(wo + 20t —To))u}du. (2.13)

So 7y(t) is the demodulated observation signal at platform position 6, as a function of
time. In practice, the mixing operation described above is carried out by multiplying

vp(t) with the in phase and quadrature components of the reference chirp signal, i.e.,

s7(t) =cos(w(t —10) + a(t —10)?) (2.14)
sq(t) = —sin(w(t —10) + a(t —79)?), (2.15)

separately. Also note, we assume here that 7y is known. In practice it is only known
imperfectly and this makes it necessary to have a post-processing technique in SARs
known as autofocus or automatic phase-error correction [5]. The autofocus problem

will be discussed in Section 2.1.4.

We will assume that the effect of the quadratic phase term exp {j4au?/c?} in (2.13)
can be neglected. This is a reasonable approximation for most situations, since

usually it is true that 4au? < ¢2. A more detailed analysis of this approximation

INote that a constant factor of 1/2 is neglected here.
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can be found in [5]. After this approximation, the observed signal is given by:

ro(t) = / LLqe(U)eXP{—ji(wo+2a(t—m))u}du

= /LLeXp{—jQ(t)u}du. (2.16)

This signal can be identified as the Fourier transform of the projection gg(u) where
the spatial frequency variable is Q(t) = 2(wo +2a(t —79)). Note Q(t) is limited to a
finite spatial frequency interval, because the observation duration ¢ is limited, and
the chirp rate « is finite (equivalently s(t) is narrow-band). Also () is offset from
the origin of the spatial frequency plane due to wgp. In summary, at least within
the time interval considered, the processed return signal r4(f) carries band-pass

information related to a particular line integral of the reflectivity field.

To derive the relationship between the field f(x,y) and the demodulated observed
signal 7¢(t), let us substitute (2.7) in the observation relationship (2.16), to obtain

ro(t) = / // d(u—xcosl —ysind) f(z,y)exp{—7jQt)}dx dy du
|u|<L x2492<L2

= // f(z,y)exp{—7jQ(t)(xcosf +ysinb) }dz dy (2.17)

a2 4y2<L2

Hence, ry(t) is a finite (i.e. band-limited) slice at angle 6 from the 2D Fourier
transform of the filed f(z,y). Here €(¢) serves as the radial spatial frequency. So,
there are two interpretations of ry(t): a 1D Fourier transform of the projections
(based on (2.16)), and a slice through the 2D Fourier transform of the field (based
on (2.17)). This equivalence is essentially a band-limited version of the projection
slice theorem [40] from computed tomography (CT). The data ry(t) from all obser-
vation angles are usually called the phase histories and lie on a polar grid in the 2D

frequency domain as shown in Figure 2.2.

Now let us derive the discrete observation model. (2.17) can be compactly written
as rg(t) = (Hof(z,y))(t), where Hy is the continuous observation kernel. In practice,
the observations at the i-th observation angle 6; are samples ry, (t;) of the continuous
received signal 7, (t) at sampling times ¢;. This sampling in the time domain results
in sampling of the spectrum of the underlying reflectivity field. Sampling places a
limit on the maximum allowable scene size that can be imaged without aliasing (in

the spatial domain) [12].

Let rg, be the vector of these observed samples, Hy, be a discretized approximation to

the continuous observation kernel Hy, and f be a complex-valued vector representing

12



Figure 2.2 Graphical representation of an annulus segment containing known sam-
ples of the Fourier transform of the reflectivity density.

the unknown sampled reflectivity image. Then, overall, we can write:

I'gl Hgl
rg Hy
= |f (2.18)
o, H@]\,{
N—— N—_——
r H
where M is the total number of angular observation points. The data r € CKMx1

are the column-stacked sampled phase histories where K is the number of range
positions. If we consider the presence of measurement noise, the observation model
becomes

y =Hf+n (2.19)

where n stands for measurement noise and y is the noisy observations.

2.1.2 Range and Azimuth Resolution

Now, let us try to find the relationship between the achievable resolution of the
SAR image and the dimensions of the annular region shown in Figure 2.2, which
is specified by system parameters. We can motivate a definition of resolution in
the image domain with the assumption that this annulus can be approximated by
a rectangle of width A2, and height AQ,. Let us consider a point reflector in the
scene. If we compute the Fourier transform of the scene limited to this rectangular

region, and then compute an inverse Fourier transform, we would obtain a two
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dimensional sinc function. The resolution of the formed image gets better as the
mainlobe of this sinc gets narrower, which can be achieved by a wider the support
of the rectangular region. More precisely, the first zero crossings of the sinc occur
at 2m/AQ, and 27 /AQ,. Hence, the resolution of two point reflectors having equal
reflectivity requires that the reflectors be separated by more than p, = 27/AQ,
in the x (range) dimension and p, = 27/AQ, in the y (cross-range or azimuth)

dimension.

Let us first consider the range resolution. Assume that the width of the rectangle
27/ AS), is equal to the radial width of the annular region, which is essentially the
spatial frequency bandwidth of each return. We can determine the lower and upper
limits of the radial extent by substituting the limits for the observation time ¢ from
(2.11) into the definition of £(¢) to find the lowest and highest spatial frequencies:

2 4ol
Q) = = <w0—@Tp+O‘>

C C
2 4ol
Qxh = E <w0 +OéTP — C> . (220)

For a typical SAR, we can assume 7}, > 4L/c. Hence, we can conclude that

4aT, 47B
Cc N C

AQ, = Qyy — Q& (2.21)

h

where we have used the fact that the bandwidth of the transmitted pulse (in Hz) is
given by B = aT),/7.

Now let us consider the cross-range (azimuth) resolution, which will be determined
by A€,. From Figure 2.2:

. (Af AQ, /2
sm<2>~ Q% (2.22)

where, in our case Qp = 2wp/c. Hence, for A < 1 we have

AQ, ~ 2040 (2.23)

C

Lastly, since the wavelength of the transmitted pulse is given by A = 2w¢/wp, we can

deduce the following range and cross-range resolution relationships for the system:

Py —— (2.24)

S (2.25)



In conclusion, the range resolution p, depends on the bandwidth of the transmitted
pulse, while the cross-range resolution is determined by angular diversity of the
observations and carrier frequency (and therefore equivalently wavelength) of the

transmitted chirp signal.

2.1.3 SAR Image Reconstruction Methods

The problem of SAR image reconstruction is to obtain an estimate of the reflectivity
density f(x,y) based on the observed, pre-processed SAR data. Since the phase his-
tory data constitute a band-limited two dimensional spatial Fourier transform of the
reflectivity density, the standard approach to tackle the SAR image reconstruction
problem has been based on two-dimensional fast Fourier transform (FFT). These 2D
FFT based methods are therefore termed as conventional methods. However, these
2D FF'T-based reconstruction methods are ideal only when perfect data are available
throughout the spatial frequency domain, which is not the case in a practical mea-
surement scenario, primarily due to finite bandwidth of the transmitted signal and
the finite range of look angles. Therefore, the problem in (2.19) is ill-posed [41], and
can be considered as ill-conditioned to a certain extent depending on the specifics
of the observation scenario. Consequently, (2.19) can only be solved satisfactorily
by incorporating some sort of regularization into the inversion process. In this sec-
tion, we will describe two well-known conventional methods, namely, polar format
algorithm (PFA) and filtered backprojection (FBP), as well as regularization-based

image reconstruction methods.

2.1.3.1 Conventional Reconstruction Methods

Conventional methods are based on the inverse operator for the case when perfect
data are available throughout the spatial frequency domain. These methods have
no explicit mechanism to counter any imperfection in the data. Although there are
algorithmic differences between the two methods, the reconstructions they produce

are similar.

Polar Format Algorithm In polar format algorithm (PFA), the known data
samples are first interpolated to a Cartesian grid, assuming unknown samples to
be zero. Then, an inverse 2-D FFT is employed and the magnitude of the recon-
structed complex image is displayed for viewing. To reduce sidelobe levels, the data
can be windowed before FFT processing. This is the most common SAR image

reconstruction algorithm.
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Filtered Backprojection Filtered backprojection algorithm (FBP) [10,40,42] is
suggested by the tomographic formulation of SAR [10]. The derivation of FBP is
through the 2D inverse Fourier transform in polar coordinates. The radial slices
in the frequency domain are then recognized as 1-D Fourier transforms of the pro-
jections of the field at the corresponding angle, by virtue of the projection slice
theorem [40]. This way the double Fourier integral is reduced to two sequential
operations: first the data at each observation angle are filtered by a ramp filter, and
then the results are backprojected to obtain a reconstruction. FBP is the algorithm

that is currently used in commercial C'T scanners.

2.1.3.2 Regularization-Based Reconstruction Methods

In image reconstruction and restoration problems, the goal is to find an estimate
of a 2D field from its indirect observations. Hence, we can view image reconstruc-
tion and restoration problems as general observation problems which we meet in
most situations of engineering interest. We will concentrate on problems where the
mathematical relationship between the measurements and the field is governed by
a linear integral equation, i.e., as in (2.19). This simple observation model that we
derived for SAR imaging is analogous to those of many other engineering problems.
At first look, it might seem easy to find an estimate f of £ with a simple matrix
inversion, however that certainly is not possible in general, e.g., the matrix may not

even be square. There are four main issues that this approach can not handle [43]:

1. Due to the observation noise, there may not exist any f which solves this

equation exactly.

2. There may be more than one f which satisfy these equations, hence the solution

may not be unique.

3. The estimate f is desired to remain stable despite the perturbations in the

observations.

4. It is desirable to include any a priori information about f in the inversion

process, however this approach is only data-driven.

Least-squares solution can overcome the first problem mentioned above. The solu-

tion is the best fit to the observed data in the least-squares sense:
fis = argmiDHY—Hng (2.26)
f

where |[|-||, denotes the {5 norm. If H has full column rank, the estimate is unique
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and is obtained as
(HTH)fs =H"y. (2.27)

However, when the null-space of H is not empty, the least-squares solution is not
unique. A common approach to address this problem is to choose the field with

minimum norm, among the set of least-squares solutions, as the estimate of the true
field f:

~+ .
f =argmin
fis

%LSHZ (2.28)

which is called as the generalized solution. Although generalized solution provides,
a simple, reasonable way to deal with the first two issues mentioned in the list above,
it does not directly address the third and fourth issues. Particularly, if the model
matrix H is ill-conditioned, i.e., the ratio of the largest eigenvalue to the smallest is

very large, small changes in the data lead to large changes in the solution.

These issues, which cannot be resolved by the generalized solution, can be addressed
using regularization. Regularization allows us to include any prior information to

stabilize the solution in the presence of noisy data, and allow reasonable estimates.

Tikhonov Regularization One of the most common regularization methods is
Tikhonov regularization [44,45]. In this method, the prior information on the field

is incorporated by including an additional term to the least-squares cost function:
2 . 2 2
frik :arg;ﬂmHy—HszJrAz||PfH2 (2.29)

where P is a matrix, and A is a scalar. The first term in (2.29) is a data-fidelity term.
The second term, through which the prior information about f is incorporated, is
called the regularizer. The parameter \ determines the weight of the prior knowledge

in the estimation process.

The choice of the matrix P is determined by which information about the field we
want to incorporate and the simplest choice would be an identity matrix. In this
case, large values in the reconstruction would be penalized by the regularizer. If
P is chosen as 2D derivative (gradient) operator, then its effect will be to penalize
roughness on the solution, which essentially enforces the final reconstruction to be

smooth.

By taking the gradient of (2.29) with respect to f and equate it to zero, we reach

the following set of linear equations as the solution for the Tikhonov regularization:
(HTH 4+ \?P7P)tr = Hy (2.30)
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When the null spaces of H and P are distinct, there exists a unique, closed-form
solution to (2.30).

Non-Quadratic Regularization The cost function of Tikhonov regularization
(2.29) is a quadratic function of f. Hence, (2.30) leads to a linear function of f,
which in turn corresponds to a linear processing of the data y for image restoration
or reconstruction. Although it is desirable to have such a linear processing as it
ensures computational efficiency, it fails to obtain more powerful results that are only
possible if nonlinear methods are allowed [43], e.g., in many imaging applications the
data are expected to be sparse as themselves, or in a transform domain, and sparsity
cannot be effectively enforced within a linear framework. Thus, let us consider more

general problems of the following form:

M
fivq = argmin ly — H; + X3 v((P)) (2.31)
i=
where M is the length of the vector Pf, and (Pf); denotes its i-th element. Note
that when v(z) = 22, (2.31) reduces to the Tikhonov cost function in (2.29), however
Y(zx) is in general non-quadratic. Many well-known regularization approaches fall
into the category of non-quadratic regularization, e.g., maximum entropy [46], and
the total variation [47,48] methods. Note that unlike Tikhonov regularization, (2.31)
does not lead to a closed-form solution in general, hence numerical methods must
be used to find f'NQ. Half quadratic splitting (HQS) [49,50] is one such method that

can be used to solve (2.31).

The sparsity-promoting formulation for the case that the field f is expected to be

sparse would be in the form
fsparse = argmin [y — HLE[;+ X7 ]} (2:32)

with p <1 being a common choice. See Figure 2.3 for an illustration for the case
of a scalar, real-valued version of ||f||g, i.e., |f|P for various choices of p. When
we view these plots as penalty functions, we deduce that as the value of p gets
smaller, the relative penalty on large values of f reduces. In the SAR imaging
problem, this effect helps the preservation and enhancement of strong scatterers in
the scene, while still suppressing artifacts. On the other hand, small p values are
more punishing for the smaller values of f, hence enforcing sparsity. However, for
the values of p < 1, the penalty functions become concave, thus minimization of
objective functions containing such terms can be challenging. Therefore the choice

of p =1 has become quite popular as it can enforce sparsity while also generating a
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Figure 2.3 Behavior of the function |f[P for various choices of p.
convex penalty function.
The formulation for the total variation regularization is given as:
A . 2
frv :arg?ln|‘Y—Hf|\2+A2HVfH1 (2.33)

where V is the discrete gradient operator. The regularizer in (2.33) preserves strong

edges and produces improved reconstruction quality in piece-wise smooth regions.

Feature-Enhanced SAR Imaging A feature-enhanced SAR image reconstruc-
tion approach based on non-quadratic regularization was proposed in [1,12]. The
overall SAR image formation in this case is modeled by the following optimization
problem:

fre = argmin |y — HAJS -1 ]3| 719 (2.34)

where V is the 2D discrete gradient operator. |f| denotes the vector of magnitudes
of the complex-valued vector f. The scalar parameters A\; and Ao determine the
weights of the corresponding terms in the estimation process. The first term in
(2.34) is the data-fidelity term that ensures the estimate frg is consistent with the

data. The second and third terms in (2.34) incorporate prior information regarding
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both the behavior of the field f, and the nature of the features of interest in the
resulting reconstructions. These terms are aimed at enhancing point-based and
region-based features respectively. The relative magnitudes of the parameters \;
and A9 determine the relative emphasis on these two types of features. Note for the
region-based feature enhancement that the smoothness is imposed on the magnitude
of the reflectivity field, as the correlation in a homogeneous region of fin SAR is due
to the similarity of backscatter power, which is better represented in the magnitude

of f than its real and imaginary parts [12].

2.1.4 SAR Autofocus Problem & Phase Errors

In SAR systems, the demodulation time 7y at every aperture position?, which is the
time required for the signal transmitted by the SAR sensor to propagate from the
SAR platform to the field and return, is required to be known precisely, in order to
obtain the data used for imaging from the returned signals. The inexact knowledge
of the demodulation time causes phase errors in the SAR data which result in
defocusing of the reconstructed images [5]. The inexact measurement of the distance
between the SAR platform and the scene due to SAR platform position uncertainties,
or random delays in the signal due to propagation in atmospheric turbulence are
among the most common causes of demodulation time errors. As these errors cause
defocusing in the reconstructed image, this problem is known as SAR autofocus
problem, and phase error correction methods are also called autofocus methods. In
addition to the uncertainties related to the SAR platform, moving targets on the
ground can also cause phase errors. However, this kind of phase errors would affect
the reconstructed image locally, i.e., only around the moving target, hence these

phase errors cause space-variant defocusing.

In current SAR systems, inertial measurement units (IMUs) are used to measure
the distance R between the SAR platform and the patch center. However, even
with high quality IMUs, the measurement of R might not be within the maximum
tolerated error margin. Inexact measurements of R cause demodulation time errors,
which in turn results in phase errors in the SAR data obtained after the prepro-
cessing of the returned signal. Conventional approaches to tackle this problem have
been to increase the accuracy of IMUs and postprocessing the reconstructed SAR
image to remove phase errors. These postprocessing methods are generally termed
as autofocusing techniques, and they have advantages over improving IMUs’ accu-
racy. Improving accuracy of the IMU systems can only help reducing the effects

of demodulation time errors caused by platform position uncertainties, however it

2Recall that in Section 2.1.1, the demodulation time was defined as 79 = 2R/c where R is the distance from
the SAR platform to the patch center.
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would be of no help against phase errors caused by atmospheric turbulence. Autofo-
cusing techniques can remove the effects of demodulation errors independent of the
error source, while also eliminating the significant hardware costs associated with

ultra-high-accuracy navigation systems [5].

In Section 2.1.1, we have derived the SAR observation model without considering
demodulation time errors, i.e., with the assumption that the demodulation time at
each aperture position is known exactly. Demodulation time errors can be mod-
eled as constant phase errors on each range compressed pulse. Hence, if we let €
denote the demodulation time error, during preprocessing, the received signals are

multiplied with

s7(t) =cos(w(t — 1o+ €) +alt — 19 +¢)?) (2.35)
sq(t) = —sin(w(t — 10 +€) +a(t — 10 +€)?), (2.36)

instead of the expressions in (2.14) and (2.15)3. Then, the output of the preprocess-

ing step becomes

2Q(1) = o, (1) = exp{(—=j )5} [ aolu)exp{—jQt)uldu.  (2.37)
lu[<L

Thus, the corrupted and error-free phase history expressions are related as

LEC

Z(Q1) = exp{(—je* ) (15 A} Z(Q(1)). (2.38)
e?a0 < 1, and hence we can assume exp {—je2a} == 1. Then (2.38) becomes
Ze(U(1)) = exp {j%Q(t)}Z(Q(t))- (2.39)

Hence, Zc(02(t)) is simply Z(€2(t)) altered by a linear phase term. Substituting
Q(t) = 2(wo+2a(t — 1)) into (2.39), we get

Ze(Qt)) = exp{(jewo)(je(2a(t —10))) }Z(2(2)). (2.40)

The value of the term 2a(t — 7p) is in general much smaller compared to the value

of wp, and hence can be neglected. Thus we would obtain

Zc(Q(t)) = exp{jo}Z(Q(1)) (2.41)

where ¢ = ewy is the phase error. Note that ¢ is different at every aperture position,

3Note that the development in this section closely follows the one in [51].
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therefore its effect on the reconstructed image is along the cross-range. The impli-
cation of such an error in the image domain is the convolution of each range line of
the image with a 1D blurring kernel in the cross-range direction. Hence, such phase

errors cause defocusing of the image in the cross-range direction [52].

Although most phase errors encountered are 1D cross-range varying functions, it
is also possible to encounter both range and cross-range varying 2D phase errors.
For example, low frequency UWB SAR systems may suffer from severe propaga-
tion effects that can appear through the ionosphere, including Faraday rotation,
dispersion, and scintillation. Dispersion imposes an unknown phase error on the
transmitted chirp. On a single pulse basis, dispersion would cause the ideal impulse
response function to defocus in the range direction. Furthermore, pulse-to-pulse
variations in the dispersion and propagation delay lead to defocus in the cross-range
direction. Because these unknown phase errors change over the synthetic aperture,
the 2D phase history becomes corrupted by a fully coupled 2D phase error [53]. In
principle, 2D phase errors can be handled in two sub-categories, namely, separable
and non-separable errors, nevertheless 2D separable phase errors are not common

in practice.

2.1.4.1 2D Non-separable Phase Errors

In the presence of 2D non-separable phase errors, all sample points of the phase
history data are perturbed with different and potentially independent phase errors.
Let R € CE*M denote the sampled phase history data*, and ®9p_,,s be a 2D non-
separable phase error function. The relationship between the phase-corrupted and

error-free phase histories are as follows:
Re(k,m) = e/ ®20-ns EMIR (} ) (2.42)

where R¢ denotes the phase-corrupted phase history data, and k € 1,2,..., K and
m € 1,2,...,M denote range and cross-range sample positions, respectively. To

express this relationship in terms of the observation model, first we define the vector

¢2D—ns as

¢2D—ns = [¢2D—ns<1)7 ¢2D—ns(2)7 A ¢2D—ns<KM)]T (2'43)

which is created by concatenating the columns of the phase error matrix ®op_

under each other. Using the corresponding vector forms, the relationship in (2.42)

4Recall that the column-stacked vector version of sampled phase histories were denoted by r € ckM X1 i
Section 2.1.1.
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becomes
re = DQD_nSr (244)

CKMXKM

where Dop_ s € is a diagonal matrix in the form:

Dop_ns = diag{ed)QD_ns} (245>
In terms of observation model matrices, the relationship in (2.44) is as follows:
H(¢2D—ns)f: Dop_nsHE (246)

where H is the initially assumed model matrix by the imaging system, and

H(¢sp_,,) is the model matrix that takes the phase errors into account.

2.1.4.2 2D Separable Phase Errors

A 2D separable phase error function is composed of range varying and cross-range

varying 1D phase error functions as follows:

®op—s(k,m) = &(k) +~(m). (2.47)

Here, & € CE*1 represents the range varying phase error, and v € CMx1

represents
the cross-range varying phase error. The vector ¢yp_, € CEM*1 for 2D separable

phase errors is obtained by concatenating the columns of ®5p_ as follows:

Gap—s = |§(1)+v(1),.... LK) +~(1),€(2) +~(1),...,

Pap—s(1) bop_s(K)  ¢ap_s(K+1)
T
EQ)+~(M) ..., E(K)+~(M) (2.48)
[ — —_—
bop_s(M-1)K+1) bap_s(KM)

A 2D separable phase error function affects the observation model matrix in the as
follows:
H(¢2Dfs)f: Dop-sHf (2'49)

where Dop_ ¢ is given as

¢2D—s = [¢2D—5(1)7 ¢2D—s(2)7 R ¢2D—S(KM)]T' (250)
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2.1.4.3 1D Phase Errors

In the case of 1D phase errors, for a particular cross-range position the phase error
is the same at all range positions. Let ¢p € CM De a vector whose elements are

cross-range varying phase errors for every aperture position m =1,2,..., M:

b1p = 6151 1p(2),....,P1p(M)]". (2.51)

Then, the relationship between the error-free and the phase-corrupted data can be

expressed as:
H(¢,p)f=DipHf (2.52)

where Dqp is given as

Dip = diag 6j¢1D(1)’ o 7€j¢1D(1)’€j¢1D(2), o 7ej¢1D(2)7 B

°

K K

ejd)lD(M)"_.’ej'ﬁlD(M) . (2.53)

K

Note that, in the case of 1D phase errors, there are M unknowns, while in 2D
separable and non-separable phase error cases, there are M + K and M K unknowns,
respectively. Hence, 2D non-separable phase error correction is a more challenging

task compared to the others.

2.1.5 Existing Autofocus Methods

SAR autofocus has been an active area of research over the years [52,54-104]. In
early studies, researchers have focused on 1D phase errors, and tackling 2D separable
and non-separable phase errors is a relatively recent research area [52,75-77,79,96].
Most of the existing autofocusing algorithms perform postprocessing, i.e., they try
to eliminate the effects of phase errors from conventionally reconstructed images.
Recently, algorithms for joint image reconstruction and phase error correction have
also been proposed [52,75,76,79,81].

2.1.5.1 Conventional Methods

Two methods, namely, inverse filtering and subaperture-based methods, are con-
sidered as conventional methods, as they are the earliest attempts to tackle phase

errors, and have simple formulations with easy implementations.
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Inverse Filtering In inverse filtering, the amount of defocus on a single point
target is used to estimate phase errors. As mentioned before, the effect of 1D phase
errors in the image domain can be viewed as convolution of each range line of the
image with a 1D blurring kernel in the cross-range direction. This effect can be
expressed as

F(a,b) = h(b) ® F(a,b) (2.54)

where

h(b) = lel ™). (2.55)

Here, F denotes the defocused version of the image F°, § 1 denotes inverse Fourier
transform, a and b are range and cross-range image domain indices, respectively,
® denotes circular convolution operation and, m is the cross-range index in the
frequency domain. In inverse filtering approach, it is assumed that a single point
target can be isolated in the defocused image. This technique estimates phase errors
by finding such an isolated strong point target in the defocused image and then using

the defocus information on that point target.

Subaperture-based Methods In these methods, the data from subapertures are
used to estimate phase errors. The main assumption of these methods is that the
phase error function is a polynomial function of the aperture position. For example,
in case of quadratic phase error, the aperture is divided into two subapertures, then
in each subaperture, the phase error is approximated by a linear function. Since a
linear phase error function only shifts the image proportional to its slope, the two
low-resolution defocused images reconstructed from the two subaperture data are

shifted versions of the original image in reverse directions [51].

2.1.5.2 Phase Gradient Autofocus (PGA)

In phase gradient autofocus (PGA) [57,61], the phase error function is estimated
by averaging across many range lines, as every target in the image is corrupted
by the same blur function. This averaging operation is performed using maximum
likelihood estimation formulation. Unlike subaperture-based methods, PGA is a
non-parametric algorithm. The algorithm aims to isolate a number of single targets
in the image to estimate phase error from those targets. Single targets are isolated
via center shifting and windowing operations. PGA selects the strongest target on
each range line and circularly shifts it to the scene center, as using the targets with
strong reflectivities provides a much better phase error estimation than using the

targets with weak reflectivities. This shifting operation produces a new image. In

5F is the matrix version of f, i.e., another interpretation is that f is a column-stacked vector generated from
F.
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this new image, all of the targets which will be used in the estimation process, lie
in the center of the cross-range dimension. In the next step, a windowing operation
is performed to preserve the information contained in the blur footprints of the
center-shifted targets and reject information from all other surrounding targets with
weak reflectivities. After center-shifting, the necessary information, contained in
the support of the blur footprint, is extracted through windowing. In this stage,
determining the window width is crucial, as choosing a width smaller than the blur
footstep would prohibit capturing all of the necessary information, while choosing

the width larger than the blur footprint would increase noise levels.

2.1.5.3 Multi-Channel Autofocus (MCA)

Multi-channel autofocus MCA [74] employs a non-iterative algorithm which finds the
focused image using a basis formed from the defocused image, relying on a condition
on the image support to obtain a unique solution. In particular, MCA estimates 1D
phase error functions by directly solving a set of linear equations obtained through
an assumption that there are zero-reflectivity regions in the scene to be imaged.
When this is not precisely satisfied, presence of a low-return region is exploited,
and the phase error is estimated by minimizing the energy of the low-return region.
When the desired conditions are satisfied, MCA performs very well. However, in
scenarios involving low-quality data, e.g., due to low SNR, the performance of MCA
degrades. A number of modifications to MCA have been proposed, including the
incorporation of sharpness metric optimization into the framework [74], and the use
of a semi-definite relaxation based optimization procedure [83] for better phase error

estimation performance [51].

2.1.5.4 Sparsity-driven Autofocus (SDA)

In sparsity-driven autofocus (SDA) [52], phase error correction is performed jointly
with image reconstruction, rather than as a postprocessing step. The overall process

is formulated as a regularized optimization with the cost function
2
J(£,¢) = |y —H(o)fll3 + AIfll, (2.56)

where A is the regularization parameter, which determines the emphasis on the
sparsity-promoting ¢1-norm prior, and ¢ is the correct phase of the phase history
data. Note that, unlike (2.19), in SDA the model matrix H depends on ¢, rather
than being constant. This optimization problem is solved through a coordinate
descent based numerical iterative algorithm. This algorithm jointly minimizes the
cost function with respect to f and ¢. Particularly in each iteration, there are im-

age formation, phase error estimation, and phase error correction steps. In image
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formation step, ¢ is kept constant and f is estimated, then in the phase error esti-
mation step, ¢ is updated using the new estimate of f, and finally in the phase error
correction step, the model matrix H is updated according to the updated ¢. These
three steps are performed iteratively until convergence, or stopping criteria are sat-
isfied. Algorithm 1 summarizes the SDA process. The success of SDA is partially
attributed to the use of non-quadratic regularization, as it helps overall algorithm
to exhibit robustness to small perturbations on the observation model matrix [105].
In SDA, separate algorithms have been proposed for the cases of 1D phase errors,

2D separable phase errors, and 2D non-separable phase errors.

Algorithm 1: Sparsity-driven autofocus algorithm.
Require: H(qb(o)), e, N.

i« H(¢")Hy
D )|

while WZeandnSNdo
) argming J (£, (™)
(Q)(n—H) = argming J(f<”+1),¢)
Update H(¢(n+1)) using ") and H(¢(n)).
n<n+1
end while

2.1.6 SAR ATR

Automatic target recognition (ATR) is an important application of SAR imaging.
In ATR, the task is to automatically identify the regions-of-interest (ROIs) that
contain targets and then to determine which classes targets belong to. ATR tasks
are considered as highly challenging, as SAR images are extremely sensitive to target
orientation. Figure 2.4 shows the conventionally reconstructed images of T72 tank

in the MSTAR dataset [2] for different orientations relative to the imaging platform.

SAR ATR has been an active and popular research area for decades [106-126]. The
process of SAR ATR generally includes four steps; detection, discrimination, feature
extraction, and classification [119]. In the detection step, potential ROIs are located,
and then falsely detected ROIs are discarded in the discrimination step. In the fea-
ture extraction step, distinctive features are extracted from the detected ROIs, and
then finally classification task is performed using these extracted features in the last
step. In SAR ATR literature, the emphasis is mostly on last two steps with the
assumption that the ROIs including targets are already detected and discriminated.
In early works, the classification task was done without feature extraction, i.e., by
directly using reconstructed images, with pre-defined classifiers. Later studies first

introduced feature extraction with hand-picked features, and then learned classi-
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Figure 2.4 SAR images of T72 tank in the MSTAR dataset [2] for different orien-
tations relative to the radar platform. From top left to bottom right, each image
corresponds to an orientation angle from 0° to 355°, with 5° increments.

fiers, e.g., using dictionary learning, rather than pre-defined ones. Recent studies
combined these two steps using convolutional neural networks (CNNs). The main
advantage of using a CNN to learn features rather than using hand-picked features
is that the CNN can learn more useful patterns whose existences are not necessarily

apparent in the image.

2.2 Deep Learning Background

This section provides background information on deep learning and presents a brief
review on the use of deep learning tools within SAR imaging and SAR ATR frame-

works.
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2.2.1 Brief History of Deep Learning

Deep learning can be considered as one of the solutions to a variety of artificial
intelligence (AI) problems. Although it has become extremely popular only in the
last decade, deep learning has a long history that dates back to 1940s. However, it
has been called with different names at different time windows, i.e., cybernetics in
1940s-1960s, connectionism in the 1980s to early 1990s, artificial neural networks in
the 1990s-200s, and only recently, the name ‘deep learning’ has become widespread
[127].

The idea of building a machine that can think is at least over two millennia old
and is usually attributed to ancient Greeks [127]. The earliest primitive attempts
to build such machines dates around the medieval times, e.g., polymaths such as
al-Jazari [128] and Leonardo da Vinci [129] designed machines that are regarded as

the ancestors of modern robots.

Although the ideas that evolved into deep learning has emerged around the time that
first computers were built, these ideas did not draw much attention until recently due
to two main reasons: 1) Computers did not have enough computational resources
that would satisfy the needs to train deep neural networks; and 2) deep neural
networks need large amounts of data to train, which has only been available after

the recent digitization of the society [127].

2.2.2 Deep Neural Network Layout Types

In this section, we will describe four common deep neural network layouts, namely,
multilayer perceptron (MLP), autoencoder (AE), convolutional neural network
(CNN), and recurrent neural network (RNN).

2.2.2.1 Multilayer Perceptron (MLP)

The perceptron, which was capable of binary classification, was introduced in 1958
[130]. MLPs are extensions of perceptrons which are designed for more complicated
tasks. An MLP consists of an input layer, one or more hidden layers, and an output
layer. The nodes in the layers of MLPs, apart from the input layer, are made of
perceptrons with nonlinear activation functions, and are often called as neurons.
Figure 2.5 shows an MLP with an input layer with dimension of 3, an output layer
with dimension of 2, and two hidden layers with 4 and 3 neurons, respectively. MLPs
are also called as feedforward neural networks, as information only flows from input
layer to output layer, i.e., there are no feedback connections in which the output

is fed back into the network. MLPs are considered to be main or ‘vanilla’ neural
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Figure 2.5 An illustration of a multilayer perceptron with two hidden layers.

network as other layouts are derived from MLPs.

2.2.2.2 Autoencoder (AE)

Autoencoders (AE)s are neural networks that try to mimic their input at their
output. AEs can be considered as consisting of two parts, i.e., encoder and decoder.
The encoder aims to learn a mapping from the input to a transform domain, which
typically has a lower dimensionality than the input, and the task of the decoder is
to reconstruct the input at the output from the transformed version of the input.
However, AEs are not generally used to copy the input at the output, rather they
are designed to be unable to learn to copy perfectly. They are usually restricted in
ways to ensure that they will only copy approximately, and only copy those inputs
which resembles the training data [127]. These restrictions usually lead AEs to learn
useful properties of the data. Figure 2.6 shows an illustration of an AE with one
hidden layer. AEs can be used in many tasks, e.g., dimensionality reduction, feature

learning, manifold learning, information retrieval, and denoising.

2.2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are a special kind of MLPs which are suitable
for data that has grid-like topology, e.g., images. The earliest CNN-like design was
Neocognitron [131] which was built for shift-invariant pattern recognition in 1980s.
CNNs are neural networks in which at least in one layer, the matrix multiplication
is replaced with the convolution operation. Unlike MLPs, in CNNs, nodes in a layer
are only connected to a subset of nodes from the previous and the next layers, hence
CNNs have sparse connectivity. Also, within convolutional layers, same parameters
are used for each node. Sparse interactions and parameter sharing help with both

efficient memory use and translational and shift-invariance. Figure 2.7 shows a CNN
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Figure 2.6 An illustration of an autoencoder with a single hidden layer.

with the convolutional kernel size of 3 at every layer. Note that each node is only
connected to 3 nodes from the previous layer and 3 nodes from the next layer (except

those at the edges) rather than all nodes.

2.2.2.4 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) [132] are neural networks that are designed for
processing sequential data, e.g., speech signals, videos, stock market values, texts,
DNA sequences etc. Unlike previous layouts, RNNs have feedback connections from
one or more layers to other (same or previous) layer(s). Figure 2.8 shows an illus-
tration of an RNN in which the value of the hidden node is fed back to itself. RNNs
can have finite impulse response (FIR) or infinite impulse response (IIR). FIR RNNs
are in the form of directed acyclic graph while IIR RNNs are in the form of directed
cyclic graphs. Finite impulse RNNs can be unrolled and replaced with a feedforward
neural network [133]. Long short-term memory (LSTM) networks [134] and gated
recurrent units (GRUs) [135] are two common layouts of RNNs, both of which can
be FIR or IIR.

2.2.3 Deep Learning in SAR Literature

After the resurgence of deep learning in 2006 [136], and especially since the suc-
cess of AlexNet [35] in ILSVRC 2012, DNNs have enjoyed a growing amount of
attention coming from many different research areas, most notably, computer vision
and signal processing. DNNs have been used for many image processing tasks in
the last decade, including classification, reconstruction, restoration, denoising, de-

blurring, and super-resolution. Naturally, SAR imaging has also received its share
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Input Layer Layer Hidden Hidden Output Layer

Figure 2.7 An illustration of a CNN with the convolutional kernel size of 3. All the
nodes whose values are used to determine the value of the red node in the second
hidden layer are shown in green, while all the nodes whose values are determined
using the value of the red node are shown in blue.
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Figure 2.8 An illustration of an RNN with a single input, a single hidden unit and
a single output.
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from this ever-growing interest. Much like early® deep learning works were mostly
concentrated on image classification tasks, initial works on SAR imaging using deep
learning tools were on ATR [117,121-123,125,126,137-140] and other classification
or detection applications [141-145]. However, only a few works focused on image
formation [146-149].

2.3 Plug-and-Play (PnP) Priors

As we have discussed before, the discrete observation model given in (2.19), like
many inverse problems in imaging, is ill-posed, and can only be solved satisfactorily
by incorporating regularization into the inversion process. Regularized cost func-
tions typically involve two terms: a data fidelity term to ensure the final image is
consistent with the measured data, and a regularizer (prior) term that promotes so-
lutions with desirable properties [150,151]. Regularization-based image reconstruc-
tion methods can alleviate problems caused by incomplete data or sparse apertures.
Also, they produce images with increased resolution, reduced sidelobes, and reduced
speckle by incorporating prior information about the scene. In the past, many
regularization-based image reconstruction methods have been proposed including
non-quadratic regularization (NQR) based [1,75], sparsity-driven [87,152-154] and
dictionary learning (DL) based [3] SAR imaging.

It is not an easy task to minimize a regularized cost function, as the two terms are
usually quite different, and it is unlikely to find a single optimization approach that
will be appropriate for both. Using a proximal algorithm [155] such as iterative
shrinkage thresholding algorithm (ISTA) [156] and alternative direction method of
multipliers (ADMM) [34,157] is the natural choice to tackle this issue, as they convert
the original optimization problem into a series of smaller optimization problems,
hence each term can be minimized separately using an appropriate minimization
method. Proximal methods have also found use in SAR imaging tasks [89, 158—
160]. The key ingredient in these methods is the proximal operator which involves
an optimization problem that is shown to be equivalent to a simple denoising of

intermediate solutions under Gaussian white noise [33,151].

Recently, a new framework, called plug-and-play (PnP) priors has been intro-
duced [33] which replaces the proximal operator by a suitable denoising method.
This framework has gained great attention from the computational imaging commu-
nity [151,161-185] since its emergence. Different denoisers have been adopted within
the PnP framework, such as BM3D [186] (as in [33,151,162-164,167,168,170,179]),

6Early within this last resurgence.
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non-local means (NLM, as in [162, 164,173,176, 182]), NCSR [187] (as in [161]),
Gaussian mixture models (GMM, as in [165, 169, 172]), and deep learning based
ones [166,174,175,178,181,183,185]. Along with ADMM, and ISTA, various other
proximal algorithms, including approximate message passing (AMP) [188], half
quadratic splitting (HQS) [49, 50], primal-dual splitting [189], and consensus equi-
librium [171] have been used within PnP. This framework has been applied to many
imaging problems including reconstruction [33,151,164, 174,175,179, 180, 183, 185],
denoising [166,176], restoration [162,165,167,170,172,173], deblurring [165,166,181],
super-resolution [161,162,173,181,182], phase retrieval [163,185], and hyperspectral
sharpening [169].

PnP priors with a variable splitting algorithm such as ADMM enables the integration
of data fidelity based on a physical observation model with any explicit or implicit
regularizing prior. Next, we will first describe the ADMM algorithm, and then
formulate the PnP framework using ADMM.

2.3.1 Alternating Direction Method of Multipliers
(ADMM)

Consider the unconstrained optimization problem
x = argmin f(x) + \g(x) (2.57)
X

The idea of ADMM is to convert (2.57) into the following constrained problem by
variable splitting:

{X,V} = argmin f(x) + \g(v) subject to x=v (2.58)
X,V
Next, consider the augmented Lagrangian function corresponding to (2.58):
L0x,v,u) = £() +Ag(v) +u” (x =) + £ [x— v (2.59)

where p is the penalty parameter of the ADMM.

The minimizer of (2.58) is the saddle point of £, which can be found by solving

a sequence of sub-problems, i.e., the ADMM iterations, which, in scaled form, are
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given by [34]:

2
x 1) = argmin f(x) + P HX _x®) H (2.60)
x€R" 2
2
v+l — argmin \g(v HV v )H (2.61)
veR™ 2
a1 — gk 4 (X(k+1) — vkl (2.62)
where a®) £ (1/p)ul® is the scaled Lagrange multiplier, x(¥) £ v(#) —gq(*) and v(¥) £

x®+D) 4 a®) - Under mild conditions, e.g., when both f and g are closed, proper
and convex, and if a saddle point of L exists, it can be shown that the iterates
(2.60)-(2.62) converge to the solution of (2.58).

2.3.2 PnP ADMM

Note that ADMM iterations (2.60)-(2.62) have a modular structure. (2.60) can be
regarded as an inversion step as it involves the forward imaging model f(x) whereas

(2.61) can be considered as a denoising step as it is an image domain operation
involving the prior g(v). To show that, let us define o = \/\/p, then (2.61) becomes

2

v = argmin g(v) 2 — HV v )H2 (2.63)

veR™
Treating v(¥) as the noisy image, (2.63) minimizes the residue between v(¥) and
clean image v using the prior g(v). For example, if g(v) = ||v|lty, i-e., the total

variation norm, then (2.63) is the standard total variation denoising problem.

Venkatakrishnan et al. [33] proposed a variant of the ADMM algorithm by suggesting
that one does not need to specify g before running the ADMM. Instead, they replaced
(2.61) by an off-the-shelf image denoising algorithm, denoted by D,, to yield

v = (w(R) (2.64)

which they called Plug-and-Play (PnP) ADMM. The convergence guarantee of the
ADMM does not necessarily hold in general, for the PnP-ADMM. Accordingly,
convergence is a topic of ongoing research [162,177,178,184].
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Chapter 3

PnP-CNN-SAR for Image Recon-

struction

Previously, we have discussed that the discrete observation model given in (2.19) is
ill-posed [41], and can be considered as ill-conditioned to a certain extent depending
on the specifics of the observation scenario. Hence, we have concluded that it can
only be solved satisfactorily using regularization. In this chapter, we introduce the
PnP-CNN-SAR framework for SAR image reconstruction. In this framework, the
problem of SAR image reconstruction is formulated as a regularized optimization
problem, then using the PnP priors framework with ADMM, the objective function
is divided into subproblems and the proximal operator is replaced with a CNN-based
prior. The final portion of this chapter contains experimental results, demonstrating
the effectiveness of the proposed PnP-CNN-SAR framework. This is a joint work

with Ammar Saleem, another Ph.D. student in our group.

3.1 Objective Function

Consider the discrete observation model introduced in (2.19):

y=Hf+n (3.1)

(CMXl

where y € is the complex valued column-stacked observation vector from

which we desire to estimate the underlying column-stacked SAR image f e CNV*!

where M < N! and H € CM*V ig the Fourier transform-based forward model. Let

INote that, in Chapter 2, we have used K and M to denote numbers of sampled observation points in range
and cross-range directions, respectively. However, in this chapter, we only use column-stacked vectors for
both phase histories and underlying SAR image, i.e., y and f, throughout the formulation of the proposed
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R denote the regularization function we impose on the reflectivity field. Then the

regularized objective function becomes
f = argmin [ly — Hf||5 + AR(|f]) (3.2)
f

Note that regularization is performed on the magnitude of the reflectivity field f.
For most SAR scenes, reflectivity phase at a certain location can be modeled as a
uniformly distributed random variable uncorrelated with the phase at other locations
[11]. Nevertheless, we need to estimate the complex-valued field f in the process of
ensuring good data fidelity. We can write f = ©f,,, where © is a diagonal matrix
containing the phases of f at each pixel in exponentiated form, i.e., ® = diag(e’ ‘P(f))
where ¢(-) denotes the phase, and f,;, denotes the magnitude of f. Then, replacing
f with ©f,, in (3.2), we get:

{£,,,©} = argmin ||y — HOf,,||2 + AR (f,,,) (3.3)
It is pertinent to mention that, up to this point, the explicit definition of a regularizer
has not been formulated. The regularization will be explained in Section 3.2 after
we formulate ADMM iterations for (3.3) and decouple the data-fidelity term and
the regularization term. By doing so, we will be able to plug-in any regularizer into

the objective function without affecting the data-fidelity.

3.2 Variable Splitting and ADMM

Rewriting (3.3) in a suitable form by introducing an auxiliary variable with a con-

straint, we have

{f,,,0,h} =argmin ||y — HOf,,||2 + AR (h)

st. £, —h=0 (3.4)

The augmented Lagrangian for (3.4) is given by

£ (£,0.0,0) = |ly — HOE, |5+ \R(h) + LI —h+ul3+ S} (35)

Let £ = h® — u® and B* = f(n]fﬂ) +u®). Also, let us introduce a vector 8 €
CN*1 that contains the diagonal elements of the phase matrix ®, and the matrix

B whose diagonal elements are the reflectivity magnitudes f,,,. Finally, let us invoke

method. Hence, for notational simplicity, we use M and N to denote sizes of y and f, respectively.
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the constraint that the magnitudes of the elements of 8 denoted as |#;| should be
1, simply because they contain phases of f at each pixel in exponentiated vector

form e/¢(®), Then, each iteration of the ADMM algorithm will perform the following

steps:
g+ = arg;nin ly — HB®0| |2+ g %(|91| —1)? (3.6)
i=1
fF) = argmin ||y — HOWf,,|[3 + g”fm - 13 (3.7)
h*+1) — argmin AR (h) + §||ﬁ(k) _h2 (3.8)
ak+h) — u(k:l)lJr f<"l§+1) _h+D) (3.9)

where \g and p are hyper-parameters.

The first two steps only depend on the choice of the forward model while the third
step only depends on the choice of the regularizer. Therefore, using this plug-and-
play framework, we can now write the minimization as two independent modules.
Thus, this framework can be used to mix and match different prior models with

forward models.

Sub-problem (3.6) is solved through a fixed point algorithm, which can also be shown

to be equivalent to a particular quasi-Newton iterative minimization algorithm:
GO = (HB)Hy 4 \ged#0"™) (3.10)

where

G = (HB)? (HB) + M\l (3.11)

Each iteration in (3.10) involves solving a set of linear equations. This is an in-
dication that the approach here solves the non-quadratic optimization problem in
(3.6) by turning it into a series of quadratic problems. This linear set of equations

can efficiently be solved by the conjugate gradient algorithm with the convergence

g(n+1) _g(n)

criterion "TH— < 107!, For this sub-problem, it is possible that one can
9 n

come up with a more efficient algorithm than ours.

Sub-problem (3.7) has a closed form solution, i.e., taking the derivative with respect

to f,, and equating it to zero results in the following:

(%1 +efH"Het, = e H y + gi-' (3.12)

38



We solve this complex-valued linear system using the conjugate gradient algorithm.
This produces a complex solution. Therefore, we address it by considering its real
part only and equating any negative value to zero, as in practice the imaginary part
of this solution has values close to zero which can easily be ignored, and the real
part usually has only a small number of negative values at most (which are also very
close to zero). Note that within each iteration of ADMM, sub-problems (3.6) and
(3.7) are solved iteratively until the convergence criterion is satisfied, before moving

to the sub-problem (3.8). This process is called the model update.

Sub-problem (3.8) can be rewritten as

h(*+) = argmin 2 1EY —n|2+R(n) (3.13)

1
b 2(,/M/p)

which is equivalent to denoising the image fl(k) with a Gaussian denoiser with a noise
level \/m [190]. Hence, any Gaussian denoiser can act as a modular component
of the overall algorithm to solve (3.8). In the work we present here, denoising is
achieved through a trained CNN. Note that the parameter X is not explicitly defined
as it depends on p and the network settings. The details about the architecture and

training will be discussed in Section 3.3.1.

Note that (3.9) is not an optimization problem, rather it is a direct update on the
Lagrange multiplier u. Algorithm 2 shows the summary of the PnP-CNN-SAR.
Note that f{%] stands for the outputs of the inner loop, i.e., the model update, while
ffn]f) stands for the outputs of the outer loop, i.e., the overall ADMM algorithm.
Typical values for K and T are 20 and 100, respectively.

3.3 Experimental Results

In this section, we demonstrate the effectiveness of PnP-CNN-SAR on synthetic and
real SAR scenes. We also tabulate results for various scenarios and compare them
with FFT-based, NQR-based [1], and DL-based [3] SAR image reconstructions as
well as a PnP framework with BM3D [186] regularizer. Finally, we give an analysis
on the effect of training different networks for different scenarios, in case of synthetic

scene experiments.

3.3.1 Setup

The experiments are conducted with variation in two major aspects, first is the type

of observation SAR scene, second is the parameters of SAR observation phenomenon.

The observation SAR scenes are further bifurcated to synthetic and real scenes. The
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Algorithm 2: PnP-CNN-SAR for image reconstruction.
Require: y, H, ¢, D,(z), K, T.

0 Hfy {Conventional reconstruction}

B « diag{fiO

60 « ££0)

h() « £0)

u® 0

kE<+0

n<0

w1 (k)
while ] >cand k< K do

f( ) n® _y®)
0] o k)
-

while W >10"%and t < T do

Calculate 8 using (3.6) {Phase alignment}
Solve for £{!) using (3.7) {Magnitude update}
tt+1

end while

£+ ]

RO fE+D) 4y (®)

h+D D (fl( )) {Prior update}
a1 k) 4 fhED) _p (k)

k< k+ 1

end while
return f(nliﬂ)

details of the real scenes are given in Section 3.3.3. It is pertinent to mention that,
SAR scenes are complex valued but the synthetic scenes are real-valued and we only
have access to the reflectivity magnitudes of the real scenes. Therefore, we add
uniform random phase distributed over [—m, 7| to these real-valued (synthetic and
real) SAR scenes to generate/simulate complex valued SAR reflectivities of a SAR

scene.

The secondary segregation of the experiments brings SAR observation phenomenon
into account. It is based on parameters of forward model H and noise n. The forward
model H consists of band-limited 2D Fourier transform where the band-limitation is
denoted in terms of data availability percentage L. In particular L = N,/N; where
N, is the number of available phase history samples and Ny is the number of phase
history samples in full band-width data. In case of real SAR scene, full band-width
data is not available, therefore, the existing bandwidth of the reference SAR scene

is assumed to be full or 100%. The phase histories are acquired from the complex
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Figure 3.1 Network architecture for synthetic scene experiments. ACBR stands for
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Figure 3.2 Network architecture for real scene experiments.

valued SAR reflectivities using the approach described in [12,191]. For the imple-
mentation of different data availability levels, we crop the appropriate amount of
phase history data with equal band-limitation in the range and azimuth directions.
In the Fourier perspective, its a low-pass square box filter where the box is located
in the center of the 2D Fourier spectrum, essentially eliminating high frequency
complex-valued frequency components. The area of the box is calculated from the
data availability level L. The box filtering effect is essentially limiting the transmit-
ted signal bandwidth and the range of look angles, leading to reductions in nominal
range and cross-range resolution, respectively. Note that in spotlight-mode SAR,
phase history data (after pre-processing steps) consist of samples of the band-limited
spatial Fourier transform of the reflectivity field on a polar grid (see Eq. (2.16) and
Refs. [12,191]). Conventional polar format imaging interpolates the data to a rect-
angular grid and then performs a 2D FFT. We use a slightly simplified forward
model and generate band-limited data on a rectangular, rather than polar, grid. In
practice, this would correspond to adding one more data preprocessing step, namely
polar to rectangular interpolation, and then posing the image formation problem
based on such interpolated data on the rectangular grid. The other parameter in-
volved in SAR observation process is noise n, which is assumed to be i.i.d. in each
pixel and circularly-symmetric complex Gaussian, whose real and imaginary parts

are normally distributed with zero mean and oy, standard deviation.

In both synthetic and real scene experiments, we have considered various scenarios,
i.e., two different noise levels (on € {0.1,1} X oy, where oy is the standard deviation
of the magnitude of the phase history data) and 6 different data availability levels
in the phase history domain (100%, 90%, 80%, 70%, 50%, and 30%), hence, in total

12 types of experiments are conducted.

Our experimental procedure is composed of two phases, namely, network training

and image reconstruction using the PnP-ADMM algorithm. The network training
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is performed on two different architectures, one each for synthetic and real scene
experiments. The network architecture for the synthetic scene experiments is shown
in Figure 3.1. The architecture used for real scene experiments is inspired from U-Net
[192] and is shown in Figure 3.22. Tt is worth noting that the network architectures
we used for the synthetic and real scene experiments are different. These selections
were made based on empirical exploration of several architectures for each scenario.
These choices were driven by the types of features and the sizes of the scenes. While
the architectures used here provide good results, we do not claim to have found
the best ones. It would also be of interest to find architectures that perform well
over all scenarios. The architecture we have proposed for our real scene experiments
should be appropriate for generic real SAR imaging tasks. For the synthetic scene
experiments, we have trained 12 different networks of the same architecture, i.e.,
one for each type of experiments considered, while for the real scene experiments,
a single network is trained, which corresponds to the case of 100% data availability

and oy = oy.

In training, we perform conventional reconstruction from the noisy phase histories to
get noisy images. We then extract overlapping patches using the magnitudes of the
conventionally reconstructed images, (16 x 16 for the synthetic scene experiments,
and 32 x 32 for the real scene experiments), and finally augment the patches by ro-
tation, with angles [90°, 180°, 270°]. We train CNNs to learn a mapping from these
noisy patches to their clean counterparts in the case of synthetic scene experiments,
and we perform residual learning for the real scene experiments. Note that as we
do not have ground truth for the real scene experiments, we start our experiments
with high-resolution TerraSAR-X reconstructions, which we call reference images.
In the context of our experiments, these reference images can be viewed as conven-
tionally reconstructed images from ‘full-bandwidth’ noiseless data, i.e., without any
bandwidth reduction we impose, and without any noise we add on the phase history
data. Based on these reference images, we then generate simulated data for various
scenarios by appropriate Fourier transformation, band limitation, and noise addi-
tion operations. The training of the networks for the synthetic scene experiments
took around 3 hours each, while the network for the real scene experiments is trained
roughly in 3 days, on MATLAB R2019b, using NVIDIA TITAN Xp GPU. Networks
used in the synthetic scene experiments are trained with RMSProp [193] solver, 1073
learning rate, 0.9 learning rate drop factor with the period of one epoch, mini-batch
size of 1500 for 100 epochs, while the network used in the real scene experiments is

trained with RMSProp [193], 10~% learning rate, 0.9 learning rate drop factor with

2We acknowledge that the architecture we propose is inspired from the U-Net architecture, however it is
not precisely U-Net.
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the period of one epoch, mini-batch size of 500 for 20 epochs.

In image reconstruction, we follow the steps mentioned in Algorithm 2. We initialize
the solution with the conventional FFT-based reconstruction. Then we solve equa-
tions (3.6) and (3.7) iteratively (within each iteration of ADMM), as mentioned in
Section 3.2. Then we solve (3.8) by a denoising procedure using our trained CNN.
The procedure include, first extracting overlapping patches from the input image
(16 x 16 patches for the synthetic, and 32 x 32 patches for the real scene cases),
and feeding the patches to the CNN to get denoised patches. Then we combine the
overlapping patches to obtain the overall denoised image. These steps are repeated
iteratively until the stopping criteria is satisfied. The stopping criterion is chosen as
M < €. Since the data availability and noise levels have a great impact on
the performance, various € values are employed for different experiments. We ob-
served that as the data availability reduces or the noise increases, i.e., as the problem
at hand gets more challenging, a higher value of € yields better results, while for the
less challenging cases, a smaller € is preferred. For synthetic experiments, we used e
values ranging from 5 x 107> to 5 x 1073, while for the real case, the range was from
1x1073 to 1 x 101, The value of p is chosen as 12 throughout the experiments and
the value of \g is calculated from the data availability level, i.e., A\g = % where L

is the data availability level.

We compare our proposed framework with FFT-based, NQR-based [1], DL-based [3]
reconstructions, and a PnP framework with BM3D [186] regularizer (PnP-BM3D)
in terms of signal-to-noise ratio (SNR) and structural similarity (SSIM) index [194]

values of the reconstructed images. The formula of SSIM is given as:

(2px iy + 1) (20xy + C2)

SSIM(x,y) =
() (M + 15 +c1) (0% + 05 +c2)

(3.14)

where fix, pty, 0x, 0y, and oxy are the local means, standard deviations, and cross-
covariance for images x and y. c; = (k11)? and ¢y = (k2l)? are constants to maintain
formula validity, avoiding the denominator being zero. [ represents the dynamic
range of the pixel value. k; = 0.01 and ko = 0.03 are default values. A larger SSIM

value indicates a better similarity of the two images.

The problem formulation for the NQR-based [1] reconstruction is given as:

f= argmin [y - HI][3 + Ay [[£]12+ Ao [| Dy |12 (3.15)

where D is a discrete approximation to the 2D derivative operator (gradient). Here,

the first term is the data-fidelity term while second and third terms are aimed at

enhancing point-based and region-based features respectively. The parameters \q
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and Ao are optimized to obtain the highest SNR for each image in each scenario

while p = 0.9 is used for all the considered scenarios.

The problem formulation for the DL-based [3] reconstruction is given as:

{|f,6,D,d;} = argmin A||y —HOf,,||3

my ’ YO

2
+ D IEalfl = Dally + > piflevillg
(3 7

s.t. |®jj’ =1 \V/] (316)

where D and «; are the dictionary and the sparse coefficients to be learned, respec-

tively, and E; are the patch extraction operators. See [3] for details.

For PnP-BM3D experiments, the steps in the Algorithm 2 are followed, and in the
prior update step, the BM3D prior is used instead of the CNN-based prior. The
MATLAB implementation of BM3D is downloaded from the authors’ website>.

3.3.2 Synthetic Scene Experiments

The training and the test images for the synthetic scene experiments are shown in
Figures 3.3a and 3.3b, respectively. Note that training is not performed using the
training images themselves, rather 16 x 16 overlapping patches that are extracted
from the training images. Consequently, in every ADMM iteration, during the prior
update step, overlapping patches are extracted, each patch is passed through the

network, and then patches are combined to get the reconstructed image.

Although we have trained a network for each scenario, we have compared the per-
formances of all networks in each scenario. Table 3.1 shows the average SNR and
SSIM values for different experiments using different networks, respectively. Note
that, the network that gives the best result for a particular scenario is not always

the one that is trained for that scenario.

The best results from Table 3.1 are also presented in Table 3.2 for comparison with
other methods. Table 3.2 shows that our framework outperforms other methods in
terms of both SNR and SSIM in 11 out of 12 scenarios. Figure 3.4 shows the effects
of the noise level and data availability on the SNR and SSIM values.

Figures 3.5 and 3.6 show reconstruction results for Image 7 with noise o, = 0.10y,
and Image 2 with noise oy = oy, respectively, for qualitative analysis. It appears

that our proposed framework is better at preserving the details and more robust to

3http://www.cs.tut.fi/~foi/GCF-BM3D /index.html#ref _software
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Table 3.2 Average SNR and SSIM values for different noise and data availability
levels for the synthetic scene experiments. Best results are shown in bold, second
best results are shown in red.

SNR (dB) SSIM
Available Data Method
0.1oy Oy 0.1oy Oy
FFT-based 25.55 5.84 0.906 0.449
NQR-based [1] 27.31 1236 0.985  0.631
100% DL-based [3] 26.31 6.13 0.877 0.343
PnP-BM3D 25.95 5.98 0.869 0.351
PnP-CNN-SAR 37.92 13.99 0.996 0.687
FFT-based 11.29 5.62  0.539 0.366
NQR-based [1] 17.84 11.03  0.845  0.549
90% DL-based [3] 24.76 4.81 0.869  0.269
PnP-BM3D 17.77 5.88  0.737  0.289
PnP-CNN-SAR 25.33 12.18 0.954 0.591
FFT-based 9.65 5.64 0.474 0.336
NQR-based [1] 15.55  10.02  0.809 0.486
80% DL-based [3] 22.20 542 0.852  0.272
PnP-BM3D 12.14 5.89 0.544 0.254
PnP-CNN-SAR 22.30 11.03 0.921 0.488
FFT-based 7.94 5.47 0.390 0.294
NQR-based [1] 10.83 8.97 0.596  0.431
70% DL-based [3] 12.22 6.02 0.566 0.254
PnP-BM3D 8.68 5.84 0.409 0.229
PnP-CNN-SAR 17.17 10.37 0.831 0.433
FFT-based 6.00 5.26  0.289  0.227
NQR-based [1] 8.97 8.02 0.432 0.316
50% DL-based [3] 7.44 6.55 0.344  0.209
PnP-BM3D 7.09 5.44  0.293 0.186
PnP-CNN-SAR 11.23 8.41 0.596 0.335
FFT-based 4.41 4.52  0.191 0.158
NQR-based [1] 7.70 7.32 0.296 0.263
30% DL-based [3] 5.71 6.31 0.216 0.156
PnP-BM3D 5.36 5.15 0.188  0.131

PnP-CNN-SAR 7.79 6.78 0.390 0.216
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Figure 3.3 Synthetic SAR scenes used for (a) training the CNN and learning the
dictionary, and (b) performance evaluation.

data limitations, and gives the best visual quality in the majority of scenarios.

3.3.3 Real Scene Experiments

For the real scene experiments, TerraSAR-X [195] images are used and we designed
two types of experimental settings in which we considered the following scenarios: 1)
When the training and testing are performed on non-overlapping windows extracted
from the same scene that are randomly split into training and test data sets, and 2)
when the training is done using non-overlapping windows extracted from one scene,
and testing is performed on non-overlapping windows extracted from a different
scene. These two experimental settings will be called same scene experiments, and
different scene experiments, respectively. For these experiments, two TerraSAR-X
images are used to form the data set. The first image, shown in Figure 3.7, contains
the view of the city of Wonsan in Democratic People’s Republic of Korea and,
the second image, shown in Figure 3.8, contains the view of the Kapikule Border
Crossing near the Turkey-Bulgaria-Greece border tripoint. These images will be
referred as Wonsan and Kapikule, respectively. The data collected for the Wonsan
image has the incidence angle of 42.88° while the incidence angle for Kapikule is
44.77°. After post-processing, both images have the pixel resolution of 1.60 m X
1.60 m.

158 non-overlapping 170 x 170 windows are extracted from the Wonsan image, and
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Figure 3.4 Average SNR values for synthetic scene experiments for (a) on =0.10y,
and (b) on = oy. Average SSIM values for synthetic scene experiments for (c)
on=0.10y, and (d) on = oy.
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(c) SNR: 26.22 (d) SNR: 25.87 (e
SSIM: 0.954.

) SNR: 38.30
SSIM: 0.950. SSIM: 0.999.

(f) SNR: 11.41 (g) SNR: 18.58
SSIM: 0.668.  SSIM: 0.949.

(i) SNR: 15.01 (j) SNR: 26.14
SSIM: 0.7

(1) SNR: 13.11 (m) SNR: 20.6
SSIM: 0.769.  SSIM: 0.917.
o BEEAE 3 = it

(p) SNR: 7.96 (q) SNR: 10.74 (r) SNR: 11.56 (s) SNR: 8.20 (t) SNR: 18.75
SSIM: SSIM: 0.642.  SSIM: 0.697.  SSIM: 0.500.

L

(u) SNR: 6.01 (v) SNR: 7.74 (w) SNR: 7.38 (x) SNR: 6.63 (y) SNR: 11.03
SSIM: 0.371. SSIM: 0.363. SSIM: 0.433. SSIM: 0.339. SSIM: 0.659.

(z) SNR: 4.40 (aa) SNR: 6.56 (ab) SNR: 5.52 (ac) SNR: 5.20 (ad) SNR: 7.63
SSIM: 0.241. SSIM: 0.211. SSIM: 0.237. SSIM: 0.196. SSIM: 0.410.

Figure 3.5 Reconstruction results for Image 7 of the synthetic scenes with noise
on = 0.10y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-

CNN-SAR based reconstruction. (ae) Ground truth.
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(a) SNR: 3.93 (b) SNR: 14.45 (c) SNR: 4.02 (d) SNR: 4.02 (e) SNR: 14.34
SSIM: 0.313.  SSIM: 0.907.  SSIM: 0.275.  SSIM: 0.277.  SSIM: 0.735.

(f) SNR: 3.21 (g) SNR: 13.58 (h) SNR: 3.10 (i) SNR: 3.30  (j) SNR: 12.84
SSIM: 0.285.  SSIM: 0.912.  SSIM: 0.260.  SSIM: 0.253.  SSIM: 0.566.

(k) SNR: 3.38 (1) SNR: 9.11  (m) SNR: 3.55 (n) SNR: 3.18 (o) SNR: 11.93
SSIM: 0.271.  SSIM: 0.846.  SSIM: 0.254.  SSIM: 0.235.  SSIM: 0.420.

(p) SNR: 2.98 (q) SNR: 6.54 (r) SNR: 3.53 (s) SNR: 2.91  (t) SNR: 11.17
SSIM: 0.249.  SSIM: 0.807.  SSIM: 0.239.  SSIM: 0.208.  SSIM: 0.427.

(u) SNR: 2.43 (v) SNR:4.41 (w) SNR: 3.07 (x) SNR:2.28 (y) SNR: 8.20
SSIM: 0.209. SSIM: 0.638. SSIM: 0.202. SSIM: 0.169. SSIM: 0.412.

(z) SNR: 2.16  (aa) SNR: 4.10 (ab) SNR: 2.08 (ac) SNR: 1.77 (ad) SNR: 3.83
SSIM: 0.127.  SSIM: 0.681.  SSIM: 0.119.  SSIM: 0.210.  SSIM: 0.060.

(ae)

Figure 3.6 Reconstruction results for Image 2 of the synthetic scenes with noise
on = 0y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Ground truth.
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Figure 3.7 Wonsan image.

110 non-overlapping windows with the same size are extracted from the Kapikule
image. Randomly selected 127 windows from the Wonsan image are used for train-
ing the network that is to be used for both scenarios. Remaining 31 windows from
the Wonsan image constitute the test set for the same scene experiments, while all
windows from the Kapikule image are used as the test set for the different scene
experiments. Figures 3.9, 3.10, and 3.11 show the training windows, test windows
for the same scene experiments, and the test windows for the different scene exper-
iments, respectively. Note that the number of training windows are not enough to
train the network and therefore the training is performed using 32 x 32 overlapping
patches that are extracted from the training windows. Hence, the prior update step

of the ADMM iteration is performed the same way as described in Section 3.3.2.

3.3.3.1 Same Scene Experiments

Columns under “Wonsan” in Table 3.3 show the average SNR and SSIM values for
the same scene experiments. Figure 3.12 shows the effects of the noise level and
data availability on the SNR and SSIM values. Results show that our framework
outperforms other methods in 10 scenarios in terms of SNR, and in all scenarios in

terms of SSIM. More detailed results can be found in the supplementary material.

Figures 3.13 and 3.14 show the reconstruction results for Image 26 with noise oy =
0.10y and Image 12 with noise oy, = oy, respectively. It appears that the perceptual
quality of the images produced by PnP-CNN-SAR is better, and our framework
shows its value especially in the case of higher noise, where other methods tend

to produce blurry and/or noisy images. It is worth noting that, as the amount
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Figure 3.8 Kapikule image.

Figure 3.9 Windows extracted from the Wonsan image that are used for training the
CNN for PnP-CNN-SAR and learning the dictionary for DL-based reconstruction.
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Figure 3.10 Windows extracted from the Wonsan image that are used for perfor-
mance evaluation in the same scene experiments.

Figure 3.11 Windows extracted from the Kapikule image that are used for perfor-
mance evaluation in the different scene experiments.

23



Table 3.3 Average SNR and SSIM values for different noise and data availability
levels for the real scene experiments. Best results are shown in bold, second best
results are shown in red.

Wonsan ‘ Kapikule
SNR. (dB) SSIM | SNR (dB) SSIM
Available Data Method 0.10y Oy 0.1oy Oy ‘ 0.1oy Oy 0.1oy Oy
FFT-based 26.65 6.33 0973 0457 | 26.63 6.62 0.989  0.597
NQR-based [1] 23.56 9.70 0963 0.535 | 23.11 10.28 0.964 0.537
100% DL-based [3] 2295 16.13 0.976 0.924 | 24.66 11.08 0.981 0.647
PnP-BM3D 26.65 6.42 0973 0.462 | 26.63 6.75 0.979  0.459
PnP-CNN-SAR 40.03 36.82 0.998 0.997 | 38.52 36.27 0.998 0.997
FFT-based 13.23 6.16 0.802 0.423 | 13.21 6.49 0.758  0.516
NQR-based [1] 11.64 9.09 0.683 0.486 | 11.70 9.65 0.705  0.492
90% DL-based [3] 12.71 8.90 0.783 0.538 | 14.22 10.21 0.822 0.584
PnP-BM3D 14.89 6.10 0.838 0418 | 15.27 6.71  0.844  0.422
PnP-CNN-SAR 16.78 15.85 0.900 0.857 | 16.87 15.43 0.892 0.851
FFT-based 10.02 6.01 0.704 0.390 | 10.07 6.39 0.662 0.471
NQR-based [1] 8.83 8.07 0.506  0.409 9.47 8.79 0.518 0.434
80% DL-based [3] 9.97 8.07 0.671 0.470 | 11.22 9.50  0.699  0.520
PnP-BM3D 11.65 6.18 0.731 0400 | 12.36 6.82 0.729  0.401
PnP-CNN-SAR 13.29 12.55 0.830 0.781 | 13.60 12.98 0.796 0.749
FFT-based 8.41 5.84 0.632 0.362 8.41 6.28 0.576  0.426
NQR-based [1] 7.49 7.19 0427  0.355 8.22 829 0439 0.391
70% DL-based [3] 8.65 7.54  0.587  0.419 9.65 8.94 0.601  0.467
PnP-BM3D 9.53 6.19 0.632 0.379 | 10.49 7.03 0.608 0.384
PnP-CNN-SAR 10.75 10.34 0.736 0.693 | 11.20 10.99 0.688 0.649
FFT-based 6.22 5.42 0.510  0.315 6.33 5.86 0.358  0.275
NQR-based [1] 5.86 6.60  0.295  0.301 7.78 7.59 0393  0.355
50% DL-based [3] 6.85 6.51 0.450 0.333 7.63 7.70  0.455  0.380
PnP-BM3D 7.68 6.15 0.452 0.334 8.81 739 0419 0.348
PnP-CNN-SAR 8.11 8.09 0.580 0.562 8.62 8.81 0.527 0.516
FFT-based 4.53 4.57 0.394  0.267 4.67 4.94 0.220 0.182
NQR-based [1] 5.71 6.14 0.270 0.284 7.01 6.84 0.346  0.323
30% DL-based [3] 5.14 5.06 0.334 0.258 5.67 5.89 0.339 0.298
PnP-BM3D 5.98 5.87 0336  0.277 6.77 7.14 0.330 0.312
PnP-CNN-SAR 5.56 5.89 0.406 0.363 5.98 6.48 0.384 0.339
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Figure 3.12 Average SNR values for same scene experiments for (a) o =0.10y, and
(b) on = oy. Average SSIM values for same scene experiments for (c) on =0.10y,

and (d) on = oy.

of available data reduces, the degradation of the reconstruction quality is more
prominent in real case, compared to the synthetic case. This is most likely due
to that in real case, all experiments are performed using the same network, i.e.,
trained with 100% data and oy, = oy noise, while in synthetic case, networks trained
for all scenarios considered and results of the network that performed the best in
each scenario are presented. A similar degradation scheme is also visible in case of

different scene experiments, which will be discussed next.

3.3.3.2 Different Scene Experiments

Columns under “Kapikule” in Table 3.3 show the average SNR and SSIM values
for different scene experiments. Figure 3.15 shows the effects of the noise level and
data availability on the SNR and SSIM values. Note that since FFT-based, NQR-
based [1], and PnP-BM3D methods are not learning-based, the issue of training
and testing on different scenes is only relevant to DL-based [3] and PnP-CNN-SAR.
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(a) SNR: 26.74 (b) SNR: 24.26 (c) SNR: 21.27 (e) SNR: 37.94

SSIM: 0.998.

SSIM: 0.975.

SSIM: 0.968. SSIM: 0.969.

(3 T

(f) SNR: 13.12 (g) SNR: 12.89 (h) SNR: 10.03 (i) SNR: 15.44 (j) SNR: 18.13
SSIM: 0.781.  SSIM: 0.581.  SSIM: 0.695.  SSIM: 0.830.  SSIM: 0.895.

\ \as
4 3! a

(k) SNR: 10.07 (1) SNR: 9.32  (m) SNR: 7.81 (n) SNR: 11.75 (o) SNR: 14.92
SSIM: 0.714.  SSIM: 0.527.  SSIM: 0.613.  SSIM: 0.742.  SSIM: 0.857.

1

(p) SNR: 8.11 (q) SNR: 7.03 (r) SNR: 6.96 (s) SNR: 8.79 () SNR: 11.83
SSIM: 0.649.  SSIM: 0.420.  SSIM: 0.568.  SSIM: 0.657.  SSIM: 0.779.

(u) SNR: 5.91 (v) SNR: 5.51 (w) SNR: 5.51 (x) SNR: 6.60 (y) SNR: 8.46
SSIM: 0.530.  SSIM: 0.371.  SSIM: 0.456.  SSIM: 0.505.  SSIM: 0.670.

(z) SNR: 4.24 (aa) SNR: 4.11 (ab) SNR: 4.22 (ac) SNR: 5.19 (ad) SNR: 4.92
SSIM: 0.416. SSIM: 0.287. SSIM: 0.362. SSIM: 0.412. SSIM: 0.474.

Figure 3.13 Reconstruction results for Image 26 of the Wonsan test set with noise
on =0.10y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-

CNN-SAR based reconstruction. (ae) Reference image.
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(a) SNR: 5.42 (b) SNR: 9.68 (c) SNR: 15.33 (d) SNR: 5.60 (e) SNR: 39.86
SSIM: 0.373.  SSIM: 0.540.  SSIM: 0.922.  SSIM: 0.379.  SSIM: 0.995.

(f) SNR: 5.28  (g) SNR: 8.87 (h) SNR: 7.55 (i) SNR: 5.13  (j) SNR: 17.12
SSIM: 0.350.  SSIM: 0.538.  SSIM: 0.432.  SSIM: 0.347.  SSIM: 0.873.

(k) SNR: 5.19 (1) SNR: 7.50  (m) SNR: 6.75 (n) SNR: 5.22 (o) SNR: 12.68
SSIM: 0.325.  SSIM: 0.407.  SSIM: 0.385.  SSIM: 0.330.  SSIM: 0.822.

(p) SNR: 5.01 (q) SNR: 6.52 (r) SNR:6.29 (s) SNR: 5.08 (t) SNR: 10.37
SSIM: 0.302. SSIM: 0.464. SSIM: 0.354. SSIM: 0.316. SSIM: 0.745.

(u) SNR: 4.69 (v) SNR: 5.99 (w) SNR: 5.59 (x) SNR: 4.66 (y) SNR: 8.11
SSIM: 0.262. SSIM: 0.379. SSIM: 0.310. SSIM: 0.282. SSIM: 0.629.

'S

(z) SNR: 4.13 (aa) SNR: 5.17 (ab) SNR: 4.40 (ac) SNR: 4.66 (ad) SNR: 4.83
SSIM: 0.238. SSIM: 0.389. SSIM: 0.265. SSIM: 0.248. SSIM: 0.374.

(ac)

Figure 3.14 Reconstruction results for Image 12 of the Wonsan test set with noise
on = 0y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-

CNN-SAR based reconstruction. (ae) Reference image.
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Figure 3.15 Average SNR values for different scene experiments for (a) on = 0.10y,
and (b) on = oy. Average SSIM values for different scene experiments for (c) on =
0.10y, and (d) on = oy.

Nevertheless, we show results from all methods. Results show that our framework
outperforms other methods in 9 scenarios in terms of SNR and, in all scenarios in

terms of SSIM. More detailed results can be found in the supplementary material.

Figures 3.16 and 3.17 show the reconstruction results for Image 16 with noise
on = 0.10y and Image 78 with noise on = o0y, respectively. Once again, PnP-
CNN-SAR produces visually better reconstructions, and is able to capture/preserve
more features and details compared to other methods. The performance of our ap-
proach on the different scene experiments suggests that it offers good generalization

capability.

3.3.4 Training Different Networks for Different Scenarios

In Table 3.1 we have shown the average SNR and SSIM values that are achieved

using different networks in each scenario. Our first observation is that, the network

that gives the best result for a particular scenario in terms of SNR, is not necessarily
58



(a) SNR: 26.16 (b) SNR: 25.31 (c¢) SNR: 21.18 (d) SNR: 26.22 (e) SNR: 39.01

SSIM: 0.963. SSIM: 0.937. SSIM: 0.955. SSIM: 0.934.

Tl

SSIM: 0.993.

(f) SNR: 12.74 (g) SNR: 11.59 (h) SNR: 8.81 (i) SNR: 12.57 (j) SNR: 15.42
SSIM: 0.746.  SSIM: 0.618.  SSIM: 0.635.  SSIM: 0.753.  SSIM: 0.899.

b

(k) SNR: 9.71 (1) SNR: 8.33  (m) SNR: 7.49 (n) SNR: 9.49 (o) SNR: 13.25
SSIM: 0.704.  SSIM: 0.523.  SSIM: 0.566.  SSIM: 0.663.  SSIM: 0.899.

(p) SNR: 8.12 (q) SNR: 6.51 (r) SNR: 6.70 (s) SNR: 7.87  (t) SNR: 10.15
SSIM: 0.661.  SSIM: 0.650.  SSIM: 0.526.  SSIM: 0.594.  SSIM: 0.833.

(u) SNR: 5.82 (v) SNR: 4.95 (w) SNR: 5.34 (x) SNR: 5.63 (y) SNR: 8.04
SSIM: 0.400. SSIM: 0.363. SSIM: 0.450. SSIM: 0.434. SSIM: 0.723.

(z) SNR: 4.08 (aa) SNR: 2.77 (ab) SNR: 4.07 (ac) SNR: 4.47 (ad) SNR: 5.42
SSIM: 0.281. SSIM: 0.179. SSIM: 0.377. SSIM: 0.360. SSIM: 0.562.

(ac)

Figure 3.16 Reconstruction results for Image 16 of the Kapikule test set with noise
on =0.10y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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(a) SNR: 6.76  (b) SNR: 9.95 (c) SNR: 11.06 (d) SNR: 6.82 (e) SNR: 36.20
SSIM: 0.660.  SSIM: 0.517.  SSIM: 0.706.  SSIM: 0.511.  SSIM: 0.999.

(f) SNR: 6.60 (g) SNR: 9.86 (h) SNR: 10.04 (i) SNR: 6.84  (j) SNR: 15.21
SSIM: 0.577.  SSIM: 0.501.  SSIM: 0.634.  SSIM: 0.476.  SSIM: 0.872.

(k) SNR: 6.53 (I) SNR: 9.04 (m) SNR: 9.22 (n) SNR: 6.95 (o) SNR: 12.84
SSIM: 0.533.  SSIM: 0.436.  SSIM: 0.563.  SSIM: 0.451.  SSIM: 0.783.

(p) SNR: 6.34 (q) SNR: 4.41 (r) SNR: 8.63 (s) SNR: 7.01  (t) SNR: 10.74
SSIM: 0.482.  SSIM: 0.274.  SSIM: 0.502.  SSIM: 0.421.  SSIM: 0.681.

(u) SNR: 5.94 (v) SNR: 7.14 (w) SNR: 7.52 (x) SNR: 7.14 (y) SNR: 8.46
SSIM: 0.311. SSIM: 0.290. SSIM: 0.412. SSIM: 0.363. SSIM: 0.536.

(z) SNR: 4.93 (aa) SNR: 7.18 (ab) SNR: 5.74 (ac) SNR: 6.95 (ad) SNR: 6.54
SSIM: 0.207.  SSIM: 0.336.  SSIM: 0.309.  SSIM: 0.310.  SSIM: 0.357.

(ac)

Figure 3.17 Reconstruction results for Image 78 of the Kapikule test set with noise
on = 0y. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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Table 3.4 Decision process of which network to use in which case.

Data availability is known

Data availability is unknown

Noise level is
known

Use a network trained with same
amount of noise and higher data
availability

Use a network trained with the
same noise level and 70-90% data
availability

Noise level is

Use a network trained with high

Use a network trained with high

unknown noise and higher data availability | noise and 70-90% data availabil-

ity

the one trained for that scenario, rather, in most cases, the one that is trained with
slightly higher data availability and same noise level. Another important observation
is that, in each 6 x 6 block of the Table 3.1, the SNR values almost always decrease
from left to right, which shows that regardless of for which case the network is
trained, it is always easier for the network to reconstruct images from higher data
availability levels. One last thing to note is that the performance of the networks
trained with higher noise on the scenarios with lower noise is much better than the
performance of the networks trained with lower noise on the scenarios with higher
noise. These observations tell us that, when deciding for what kind of network one
should train and use, a good rule of thumb would be; if both the data availability
and the noise levels are known for the test scenario at hand, use a network trained
with the same amount of noise and a slightly higher data; if only noise level is
known, using a network trained with 70-90% data and same noise level would be
a reasonable approach; if only data availability is known, safest approach would be
to train with slightly higher data and high noise; and if neither is known, training
with 70-90% data availability and high noise would be preferred approach. Table

3.4 shows the summary of the suggested decision process.

Reconstruction results in Figures 3.5 and 3.6 show that SNR and SSIM do not
measure the performance of the methods well, especially in the case of lower data
availability levels, i.e., 50% and 30%. To further elaborate that, in Figure 3.18, we
show the reconstruction results of all 12 networks for Image 7 of the synthetic test
set for the case of 30% data availability and noise oy = 0.10,. While the network
trained with 50% data availability and noise on = 0.1y performs the best in terms
of both SNR and SSIM, it is not entirely clear that this is the best reconstruction
in terms of visual quality. It seem that each network was able capture some fea-
tures from the original scene and missing many others. There also seems to be a
trend that networks trained with lower data availability tend to generate smoother

reconstructions, compared to networks trained with higher data availability levels.
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(a) SNR: 3.96  (b) SNR:4.87  (c) SNR: 4.79  (d) SNR: 6.89  (e) SNR: 7.63  (f) SNR: 4.07
SSIM: 0.284. SSIM: 0.321. SSIM: 0.299. SSIM: 0.404. SSIM: 0.410. SSIM: 0.278.
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(g) SNR: 294  (h) SNR:3.23 (i) SNR: 3.61  (j) SNR:3.71 (k) SNR: 5.49 (1) SNR: 7.31
SSIM: 0.225. SSIM: 0.234. SSIM: 0.269. SSIM: 0.290. SSIM: 0.330. SSIM: 0.323.

Figure 3.18 Reconstruction results of Image 7 of the synthetic test set in the case
of 30% data availability and oy = 0.10y using different networks. First row, results
of the networks trained with noise o, = 0.10y. Second row, results of the networks
trained with noise oy = oy. Each column represents a data availability level, in a
decreasing order from left to right, i.e., (a) is the result of the network trained with
full data and o, =0.10y, (b) is the result of the network trained with 90% data and
on =0.1oy etc. Note that (e) has the highest SNR among all reconstructions and
hence, is the one presented in Figure 3.5ad.

3.3.5 Runtime Analysis

Table 3.5 shows the comparison of runtimes across different methods for the same
scene experiments. PnP-CNN-SAR works faster than the NQR-based method in all
scenarios, and PnP-BM3D in two scenarios. It is also worth noting that PnP-CNN-
SAR works considerably slower in lower data availability scenarios, compared to the

scenarios with higher data availability.

Figures 3.19 and 3.20 show the percentage shares of various steps within the overall
algorithm time for the same scene experiments, for PnP-CNN-SAR. These results
show that the prior update step dominates the overall procedure and takes around
60 —90% of the computation time, while the phase alignment step never exceeds
30%. Magnitude update and other steps do not contribute as much to the com-
putational expense, compared to these two steps. Reconstructing the entire image
at once, instead of using a patch-based approach, would likely reduce the compu-
tation time of the prior update step. However this would be at the expense of
increasing the computation time of the phase alignment step, which is observed in
the PnP-BM3D experiments, for which the results are shown in Figures 3.21 and
3.22. Note however that abandoning the patch-based approach would likely result
in performance degradation. For comparison, we also show the percentage shares of
various steps within the overall algorithm time for the same scene experiments, for
DL-based reconstruction [3], in Figures 3.23 and 3.24.
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Table 3.5 Average reconstruction time for one image for the same scene experiments.
FFT-based reconstruction is not shown as it practically works in real time.

Scenario NQR-based [1] | DL-based [3] | PuP-BM3D | PnP-CNN-SAR
Full Data, o = 0.10y 206.8 s 12.0 s 13.6 s 16.7 s
90% Data, oy, = 0.10y, 223.1s 15.6 s 19.3 s 23.0 s
80% Data, o = 0.10y, 229.7 s 179 s 31.8 s 22.1s
70% Data, oy, = 0.10y, 232.8 s 19.7 s 27.6 s 24.5 s
50% Data, on = 0.10y, 236.5 s 224 s 34.8 s 102.8 s
30% Data, oy, = 0.10y 232.1s 27.0 s 25.2's 914 s
Full Data, o, = oy 209.9 s 15.1s 19.1 s 25.7 s
90% Data, o = Oy 2294 s 16.9 s 17.6 s 274 s
80% Data, o = Oy 235.7 s 17.8 s 109 s 27.1s
70% Data, o = Oy 230.2 s 216 s 11.3 s 26.5 s
50% Data, on = oy 225.3 s 27.3 s 16.0 s 113.8 s
30% Data, on = Oy 2185 s 32.0s 18.6 s 84.8 s

Prior Update

ogogo

Phase Alignment
— Magnitude Update

Full Data oy, = 0.10y

Other Functions
I

90% Data oy =0.10y

80% Data on = 0.10y

70% Data oy = 0.10y

50% Data on =0.10y |

30% Data 0n =0.10y |

J'J'1‘1fr

| | | | | | | | |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3.19 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with oy = 0.10y, for PnP-CNN-SAR.
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Full Data op =& = Magnitude Update | |
n y = .
mm Other Functions

90% Data on = oy | B

80% Data on = 0y | B

70% Data on = oy | B

50% Data on = 0y I B

30% Data oy = 0y | B

| | | | | | | | |
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Figure 3.20 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with oy, = oy, for PnP-CNN-SAR.
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Figure 3.21 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with oy, = 0.10y, for PnP-BM3D.
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Figure 3.22 Percentage shares of various steps within the overall algorithm time for
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the same scene experiment scenarios with oy, = oy, for PnP-BM3D.
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Figure 3.23 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with oy = 0.10y, for DL-based reconstruction
[3].
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Figure 3.24 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with o = oy, for DL-based reconstruction [3].
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3.4 Summary

The results in this chapter show that performing regularization using deep priors
with the help of PnP priors framework can produce better reconstructions in terms
of visual quality compared to conventional as well as state-of-the-art SAR image
reconstruction methods, especially in the more challenging, lower data availability
and higher noise scenarios, and even when the performance metrics fail to fully
reflect the performance of our proposed framework. Overall, these results suggest
that deep learning methods may have the potential to learn complicated spatial

patterns and enable their incorporation as priors into computational radar imaging.

In this chapter, we have only focused on image reconstruction, and did not account
for possible phase errors. In Chapter 4, we extend the PnP-CNN-SAR framework

to jointly address image reconstruction and phase error correction.
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Chapter 4

PnP-CNN-SAR-AF for Joint Im-
age Reconstruction and Phase Er-

ror Correction

In Chapter 3, we have introduced the PnP-CNN-SAR framework for SAR image
reconstruction and demonstrated its effectiveness in various scenarios. However,
in this framework, we did not account for phase errors. Although PnP-CNN-SAR
can be combined with a postprocessing autofocus algorithm to eliminate phase er-
rors, previous studies have shown that joint image reconstruction and phase er-
ror correction can produce better results than performing these two tasks sequen-
tially [52,75,78,79,84,92,93]. Hence, in this chapter, we extend the PnP-CNN-SAR
framework to address phase errors along with image reconstruction and introduce
the PnP-CNN-SAR-AF framework (where AF stands for autofocus). This chapter
includes the formulation and preliminary results of PnP-CNN-SAR-AF for 1D phase
errors, and the formulation and implementation for 2D separable and non-separable

phase errors are left for future work.

4.1 Objective Function

Counsider the modified discrete observation model:
y=H(¢)f+n (4.1)

where ¢ stands for the 1D phase error. Note that the observation model matrix H is

no longer constant, rather it is a function of ¢. Now let us introduce the regularized
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objective function to solve (4.1):
£,§ = argminly — H(S)f]; + XR(En) (4.2)

where f,, = |f|. As we have already discussed in Chapter 3, for most SAR scenes,
reflectivity phase at a certain location can be modeled as a uniformly distributed
random variable uncorrelated with the phase at other locations [11]. Nevertheless,
we need to estimate the complex-valued field f in the process of ensuring good data
fidelity. Again, we can write f = ©f,,, where © is a diagonal matrix containing the
phases of f at each pixel in exponentiated form, i.e., ® = diag(e/#®)) where ¢(.)

denotes the phase. Then we get:

f,,,0,¢ = argmin ||y — H(¢)Of,,||5 + AR (£,,). (4.3)

msY,

Once again, we do not explicitly define the regularizer until we formulate ADMM

iterations for (4.3), and decouple the data-fidelity term and the regularization term.

4.2 Variable Splitting and ADMM

Rewriting (4.3) in a suitable form by introducing an auxiliary variable with a con-

straint, we have

A A A

£,,,0,¢,h = argmin ||y — H(¢)Of,, |5+ AR(h) s.t. £, —h =0. (4.4)
fm,0,¢0,h

The augmented Lagrangian for (4.4) is given by

£(En.8.6,5,0) = ly ~ H($)OFu 3+ XR(b) + £ [[f ~htul3+ 5 [Jull3.  (45)

Let £ = n(® — ul®), n* = f<n]§+1) +ul®). Also, let us introduce a vector @ € CN*?
that contains the diagonal elements of the phase matrix ®, and the matrix B whose
diagonal elements are the reflectivity magnitudes f,,,. Finally, let us invoke the
constraint that the magnitudes of the elements of € denoted as |6;| should be 1,
simply because they contain phases of f at each pixel in exponentiated vector form
eI?®) Then, each iteration of the ADMM algorithm will perform model update,
phase error estimation and correction, prior update, and Lagrange multiplier update

steps.
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Model update:

N
2
64+1) — argmin [y — H(¢*) VBV + g Y161 1) (4.6)
i=1

m

Phase error estimation and correction:

For every cross-range position p=1... P

I
k
Agb]g ) — —arctan(—ﬁ)
where
R=R{(f*)H, (") Ty, }
and

I =S{(EF N TH, (6() Ty )

¢g€+1) _ ¢§)k) +A¢1()k+1)

Hp(¢1(7k+1)) = €xp {jA¢]()k+1)}Hp(¢]()k))'

Prior update:

2

h**Y) = argmin AR (h) + g Hfl(k) —h
h

Lagrange multiplier update:

w0 — (k) g1 (k)

Ag and p are hyper-parameters.

2 ~ 2
fle+l) — argfmin Hy — H((/ﬁ(k))(k)@(k)me2 + g Hfm - f(k)H :

) .

(4.7)
2

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

The model update and phase error estimation and correction steps only depend on

the forward model, while the prior update step only depends on the regularizer.
ADMM first iteratively solves for 6 and f,,, using (4.6) and (4.7) until the phase is
aligned. Then for each cross-range position p, corresponding phase error is estimated
using (4.8), and the model matrix is updated using (4.11) and (4.12). Note that
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(4.6), (4.7), and (4.13) are optimization problems, while (4.8)-(4.12) and (4.14) are

direct updates on the corresponding variables.

As is done in Chapter 3, sub-problems (4.6) and (4.7) are solved with conjugate
gradient algorithm using (3.10) and (3.12), respectively. Sub-problem (4.13) is once
again replaced with a CNN. However, in contrast to PnP-CNN-SAR, in PnP-CNN-
SAR-AF, we investigate training the CNN using images corrupted only with noise,
as well as using noisy and phase error-corrupted images. Algorithm 3 summarizes
the PnP-CNN-SAR-AF framework. Note that f{,f,l stands for the outputs of the inner
loop, i.e., the model update, while fgf) stands for the outputs of the outer loop, i.e.,
the overall ADMM algorithm. Typical value for T is 100, while the value of K
depends on the amount of phase error in the data, and can be as low as 20, and as
high as 1000.

4.3 Experimental Results

In this section, we demonstrate the effectiveness of PuP-CNN-SAR-AF on real SAR
scenes. We also tabulate results for various scenarios, and compare them with FFT-

based image reconstruction and sparsity driven autofocus (SDA) [52].

4.3.1 Setup

In both synthetic and real scene experiments, we have considered various scenarios,
i.e., a single data availability level (100%) and 7 different 1D phase error levels (0;
[=7/6,7/6]; [=m/4,7/4]; [=m/3,7/3]; [=3m/8,37/8]; [=m/2,7/2]; [-2m /3,27 /3]) in
the phase history domain, and a single noise level (o = 0.10y, where oy is the
standard deviation of the magnitude of the phase history data), hence a total of 7
different scenarios. Note that the case of 0 phase error is equivalent to the scenario

considered in Chapter 3.

The experimental procedure is the same as the procedure described in Chapter 3, i.e.,
same network architecture, same patch-based approach, same data augmentation
procedure, etc., except that we trained a new network with the setting of 100% data
availability, o, = 0.1y noise, and [—7/6,7/6] phase error, and also, the algorithm
has additional steps for phase error estimation and correction, as well as model
matrix update, as described in the previous section. We have only performed same

scene experiments, using the training and test windows from the Wonsan image.
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Algorithm 3: PnP-CNN-SAR-AF for joint image reconstruction and 1D phase
error correction.

, € Dy(x), K, T.

Require: vy, H(q’)(O))
)"y {Conventional reconstruction}

9« H(p)Hy
B « diag{fO1
0 /£
hO ¢ FO

ul® 0

k<0

n <0

i p® _y®

fﬁ} — f“f

f[t+1] 14

£

Calculate %) using (4.6) {Phase alignment}
Solve for fff%) using (4.7) {Magnitude update}
t<t+1

end while

for Every cross-range position p=1... P do

a1 _y (B ’

>eand k< K do

while >10"%and t < T do

Calculate Agb}(,kﬂ) using (4.8) {Phase error estimation}
Calculate gbékﬂ) using (4.11) {Phase error correction}

Calculate Hp(gbékH)) using (4.13) {Model matrix update}
end for

e+l o git]
fl(k) - f(k+1 Lu®)
nF+) D (fl( ) {Prlor update}
ulbt) ) 4 (0D _pEHD (] agrange multiplier update}
k< k+ 1

end while
return f(nlfﬂ)
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Table 4.1 Experimental settings.

PnP-CNN-SAR Algorithm | PnP-CNN-SAR-AF Algorithm
Network trained without phase error PnP PnP-AF
Network trained with phase error PnP-pe PnP-pe-AF

Table 4.2 Average SNR and SSIM values for different phase error levels and for PnP,
PnP-pe, PnP-AF, and PnP-pe-AF.

PnP PnP-pe PnP-AF PnP-pe-AF

Phase Error
SNR (dB) SSIM ‘ SNR (dB) SSIM ‘ SNR (dB) SSIM ‘ SNR (dB) SSIM
0 40.03  0.998 26.83 0.977 26.66 0.978 26.85  0.977
[—7/6,7/6] 14.77  0.801 14.05 0.776 19.96 0.904 23.59  0.959
[—7m/4,7/4] 11.39 0.671 10.59 0.642 19.88  0.901 24.09  0.963
[—7/3,7/3] 8.87 0.549 8.23 0.525 19.88  0.902 24.09  0.964
[—37/8,37/8] 7.96 0.499 7.29 0.472 19.86  0.900 24.02  0.963
[—7/2,7/2] 5.66 0.346 5.07 0.325 19.86 0.901 24.22  0.964
[—27/3,27/3] 3.73 0.190 3.26 0.176 19.74 0.840 24.04  0.977

4.3.2 Results

To show the effectiveness of the additional phase error estimation and correction
steps as well as training the network with data containing phase errors, we first
present results of four different experimental settings, namely, PnP, PnP-pe, PnP-
AF, and PnP-pe-AF. In PnP and PnP-pe, the experimental procedure follows the
steps in Algorithm 2, i.e., no phase error estimation and correction steps, and in
PnP-AF and PnP-pe-AF, the steps given in Algorithm 3 are followed. Also, in PnP
and PnP-AF, the network used is the same as the one that is used for the real scene
experiments in Chapter 3, and hence trained without phase errors, while in PnP-
pe and PnP-pe-AF, the network trained with data containing phase errors is used.
Table 4.1 summarizes these four settings. Figures 4.1—4.7 show the reconstruction
results of these settings for various scenarios for Image 26 from the Wonsan test
set, and Table 4.2 shows the average SNR and SSIM values obtained with different
settings. These results suggest that the additional steps for phase error estimation
and correction improve the performance significantly. Another observation is that

the network trained with data containing phase errors only help if it is used within
the PnP-CNN-SAR-AF framework.

Figures 4.8—4.14 and 4.15—4.21 show the reconstruction results of FFT-based re-
construction, SDA, and PnP-pe-AF, for various scenarios for Image 26 and Image
28 from the Wonsan test set, respectively. Table 4.3 show the quantitative compari-
son between these methods. These results show that PnP-pe-AF outperforms other
methods in terms of both visual quality and performance metrics. It is also worth

noting that SDA performs quite well in all scenarios for sparse scenes however its
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(a) PnP: SNR: 37.94 (b) PnP-pe: SNR: 27.35 (c) PnP-AF: SNR: 26.46
SSIM: 0.998. SSIM: 0.958. SSIM: 0.954.

(d) PnP-pe-AF: SNR: 27.30 (e) Reference image.
SSIM: 0.958.

Figure 4.1 Reconstruction results for Image 26 of the Wonsan test set with no phase
error.

(a) PnP: SNR: 15.29 (b) PnP-pe: SNR: 13.32 (c) PnP-AF: SNR: 20.72
SSIM: 0.722. SSIM: 0.651. SSIM: 0.862.

(d) PnP-pe-AF: SNR: 24.78 (e) Reference image.
SSIM: 0.934.

Figure 4.2 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—m/6,7/6].
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(a) PnP: SNR: 11.84 (b) PnP-pe: SNR: 10.25 (c) PnP-AF: SNR: 20.73
SSIM: 0.602. SSIM: 0.526. SSIM: 0.864.

(d) PnP-pe-AF: SNR: 24.62 (e) Reference image.
SSIM: 0.932.

Figure 4.3 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—7 /4,7 /4].

(a) PnP: SNR: 7.89 (b) PnP-pe: SNR: 7.87 (c) PnP-AF: SNR: 20.66
SSIM: 0.442. SSIM: 0.435. SSIM: 0.863.

(d) PnP-pe-AF: SNR: 24.71 (e) Reference image.
SSIM: 0.933.

Figure 4.4 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—m/3,7/3].
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(a) PnP: SNR: 7.18 (b) PnP-pe: SNR: 6.52 (c) PnP-AF: SNR: 20.76
SSIM: 0.414. SSIM: 0.377. SSIM: 0.865.

(d) PnP-pe-AF: SNR: 24.70 (e) Reference image.
SSIM: 0.932.

Figure 4.5 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—37/8,37/8].

(a) PnP: SNR: 5.18 (b) PnP-pe: SNR: 3.79 (c) PnP-AF: SNR: 20.63
SSIM: 0.317. SSIM: 0.248. SSIM: 0.862.

(d) PnP-pe-AF: SNR: 24.66 (e) Reference image.
SSIM: 0.933.

Figure 4.6 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—m/2,7/2].
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(a) PnP: SNR: 2.71 (b) PnP-pe: SNR: 2.24 (c) PnP-AF: SNR: 20.51
SSIM: 0.184. SSIM: 0.160. SSIM: 0.857.

(d) PnP-pe-AF: SNR: 24.69 (e) Reference image.
SSIM: 0.934.

Figure 4.7 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [—27/3,27/3].

(a) FFT: SNR: 26.70 (b) SDA: SNR: 26.88 (c) PnP-pe-AF: SNR: 27.30 (d) Reference image.
SSIM: 0.968. SSIM: 0.969. SSIM: 0.958.

Figure 4.8 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with no phase error.

performance degrades rapidly as the amount of phase error increases for non-sparse
scenes. Performing these experiments for lower data availability scenarios would

give more insight on the behaviors of the competing methods.

4.3.3 Summary

The preliminary results in this chapter show that joint image reconstruction and 1D
phase error correction is indeed achievable with the PnP-CNN-SAR-AF algorithm.
Our results suggest that both the phase error estimation and correction steps in the
PnP-CNN-SAR-AF algorithm and training the network with phase errors improve

the performance significantly. We have also observed that using a network trained
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(a) FFT: SNR: 13.60 (b) SDA: SNR: 25.00 (c) PnP-pe-AF: SNR: 24.78 (d) Reference image.
SSIM: 0.721. SSIM: 0.960. SSIM: 0.934.

Figure 4.9 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—m/6,7/6].

(a) FFT: SNR: 10.23 (b) SDA: SNR: 23.39 (c) PnP-pe-AF: SNR: 24.62 (d) Reference image.
SSIM: 0.599. SSIM: 0.957. SSIM: 0.932.

Figure 4.10 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—m/4,7/4].

(a) FFT: SNR: 7.90 (b) SDA: SNR: 20.85 (c) PnP-pe-AF: SNR: 24.71 (d) Reference image.
SSIM: 0.499. SSIM: 0.952. SSIM: 0.933.

Figure 4.11 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—m/3,7/3].

(a) FFT: SNR: 6.63 (b) SDA: SNR: 20.70 (c) PnP-pe-AF: SNR: 24.70 (d) Reference image.
SSIM: 0.445. SSIM: 0.944. SSIM: 0.932.

Figure 4.12 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—37/8,37/8].
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(a) FFT: SNR: 3.95 (b) SDA: SNR: 18.27 (c) PnP-pe-AF: SNR: 24.66 (d) Reference image.
SSIM: 0.302. SSIM: 0.937. SSIM: 0.933.

Figure 4.13 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—7/2,7/2].

(a) FFT: SNR: 1.99 (b) SDA: SNR: 22.54 (c) PnP-pe-AF: SNR: 24.69 (d) Reference image.
SSIM: 0.165. SSIM: 0.958. SSIM: 0.934.

Figure 4.14 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [—27/3,27/3].

-l ST e R R g ol
(a) FFT: SNR: 26.10 (b) SDA: SNR: 26.43 (c) PnP-pe-AF: SNR: 26.93 (d) Reference image.
SSIM: 0.901. SSIM: 0.911. SSIM: 0.925.

Figure 4.15 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with no phase error.

: ¢ Rk
(a) FFT: SNR: 11.85 (b) SDA: SNR: 24.82 (c) PnP-pe-AF: SNR: 24.89 (d) Reference image.
SSIM: 0.572. SSIM: 0.947. SSIM: 0.894.

Figure 4.16 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—m/6,7/6].
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(a) FFT: SNR: 8.05 (b) SDA: SNR: 22.15 (c) PnP-pe-AF: SNR: 25.02 (d) Reference image.
SSIM: 0.472. SSIM: 0.945. SSIM: 0.906.

Figure 4.17 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—7/4,7/4].

P _ S - P R
(a) FFT: SNR: 6.62 (b) SDA: SNR: 20.68 (c) PnP-pe-AF: SNR: 24.96 (d) Reference image.
SSIM: 0.426. SSIM: 0.944. SSIM: 0.894.

Figure 4.18 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—m/3,7/3].

Rl A R

(a) FFT: SNR: 4.51 (b) SDA: SNR: 21.81 (c) PnP-pe-AF: SNR: 24.69 (d) Reference image.
SSIM: 0.366. SSIM: 0.931. SSIM: 0.889.

Figure 4.19 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—37/8,37/8].

(a) FFT: SNR: 2.27 (b) SDA: SNR: 18.84 (c) PnP-pe-AF: SNR: 24.77 (d) Reference image.
SSIM: 0.295. SSIM: 0.933. SSIM: 0.906.

Figure 4.20 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—7/2,7/2].
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ot R

: i ; o : 0 L - ; :
(a) FFT: SNR: 0.54 (b) SDA: SNR: 23.25 (c) PnP-pe-AF: SNR: 25.17 (d) Reference image.
SSIM: 0.225. SSIM: 0.951. SSIM: 0.914.

Figure 4.21 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [—27/3,27/3].

Table 4.3 Average SNR and SSIM values for different phase error levels and for
FFT-based, SDA, and PnP-pe-AF methods.

FFT SDA PnP-pe-AF
Phase Error
SNR (dB) SSIM ‘ SNR (dB) SSIM | SNR (dB) SSIM

0 26.64 0.973 26.71 0.974 26.85  0.977
[—7/6,7/6] 13.26  0.750 19.89 0.875 23.59  0.959
[—7/4,7/4] 9.99 0.618 18.62 0.851 24.09  0.963
[—7/3,7/3] 7.76  0.502 16.90 0.803 24.09  0.964
[—37/8,3m/8| 6.74 0.445 16.10 0.803 24.02  0.963
[—7/2,7/2] 4.75 0.314 14.52 0.764 24.22  0.964
[—27/3,27/3] 3.04 0.171 12.05 0.676 24.04  0.977

with phase error within the PnP-CNN-SAR framework does not generate good re-
sults, and the benefit of training the network with phase error can only be observed

if it is used within the PnP-CNN-SAR-AF framework.
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Chapter 5

SAR ATR in the Phase History Do-

main

In the previous two chapters, we have focused on the problems of image reconstruc-
tion and phase error correction in SAR imaging. In this chapter, we shift our focus
towards another important SAR imaging problem, i.e., automatic target recognition
(ATR), and we investigate the idea of performing the ATR task in the phase history

domain. This is a joint work with Sara Atito, another Ph.D. student in our group.

5.1 Phase History Domain ATR Methodologies

In this section, we present two frameworks for SAR ATR that work in the phase

history domain and utilize CNNs for learning and classification.

5.1.1 Phase History Domain Classification (PHDC)

Since the conventional reconstruction for SAR is performed using noisy measure-
ments, and because SAR is a coherent imaging modality, formed images suffer from
speckle which also affects the ATR performance. Note that only the magnitudes
of the formed images are used in ATR since the phase does not contain much in-
formation about the spatial structure of the 2D projection of the scene produced
by conventional SAR imaging. Moreover, we know from an information theoretic
perspective that, image formation does not provide us any additional information
about the scene, it is merely a visualization. Since ATR is performed by computers,
in principle it does not really matter if we feed the ATR system with formed im-
ages or phase history data. In either case, the system would learn the dependency

patterns in the data. Since the information contained in the formed images cannot
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be more than the information in the phase histories, we predicted that, in an ideal
scenario, using the phase history data instead of formed images may result in equal
or better ATR performance. This is something we explore in this study. Hence,
our first proposed framework uses phase history data as an input to the ATR sys-
tem. To evaluate our framework, we used the MSTAR data set and two well-known
CNN architectures, AlexNet and VGG16. AlexNet and VGG16 are both originally
designed for image classification tasks and they require 3-channel real input data.
However, the phase history data we have is complex. Therefore, we needed a way
to feed the data to the networks, and using the magnitudes, real parts, and imagi-
nary parts of the phase histories as the three channel inputs gave us the best result.
Specifically, we assign the magnitudes, real parts, and imaginary parts of the phase
histories of the images in the MSTAR data set as the red, green, and blue channels,

respectively, and form an RGB image for each data point in the data set.

5.1.2 Image-Phase Removed Phase History Classification
(IPRPHC)

Since the phase of the reconstructed image does not really contain any information
about the observed scene, as it is highly dominated by speckle, it is usually discarded
in image analysis. Motivated by this, our second framework performs the following
steps: image formation, image-phase removal, and phase history data generation.

We evaluate our framework in the same way described in Section 5.1.1.

5.2 Experimental Results

5.2.1 Setup

We now evaluate the performance of the ATR methodologies discussed in Section
5.1 using the MSTAR data set. The data set consists of 10 classes, i.e., tanks
(T62, T72), armored vehicles (BRDM2, BMP2, BTR60, BTR70), a rocket launcher
(251), an air defense unit (ZSU234), a military truck (ZIL131), and a bulldozer
(D7). The MSTAR data set only provides formed images. Therefore, in order to
obtain the phase histories, we undo the final steps of the MSTAR image formation
using the method described in Refs. [1,191]. Also, we resize the generated images
to 227 x 227 for AlexNet and to 224 x 224 for VGG16 to match their respective
input sizes. Figure 5.1 shows sample data of each class for PHDC experiments and
Figure 5.2 shows sample data from the same chips for IPRPHC experiments. In
our experiments, we use the images at 17° depression angle for training and images

at 15° depression angle for testing. Since CNNs require large number of images
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(a) BMP2 ) BTR70 ) T72 ) 251 (e) BRDM2

(f) BTR60 ) T62 ) ZIL131 (j) ZSU23/4

Figure 5.1 Sample data of each class for PHDC experiments.

) BMP2 ) BTR70 ) T72 ) 251 ) BRDM2

) BTR60 ) T62 ) Z1L.131 j) ZSU23/4

Figure 5.2 Sample data of each class for IPRPHC experiments.

for training, we augment our training set by rotating each image by [2°, 4°, 6°, 8°,
10°] clockwise and counter-clockwise. Table 5.1 shows the numbers of each type of

target images in each of these sets before augmentation. All of the experiments are
performed on MATLAB R2018a using NVIDIA TITAN Xp GPU.

In the following subsections, we present the results of phase history domain classifica-
tion and image-phase removed phase history classification experiments and conclude

this section with comparison of the results of other methods and a summary.

5.2.2 PHDC Results

We now present the recognition performance of the phase history domain classifica-
tion using AlexNet and VGG16 architectures. Tables 5.2 and 5.3 show the results for
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Table 5.1 Composition of the MSTAR data set.

Training set

Test set

Target  Depression No. of images Depression No. of images
BMP2 17° 233 15° 195
BTR70 17° 233 15° 196
T72 17° 232 15° 196
251 17° 299 15° 274
BRDM?2 17° 298 15° 274
BTR60 17° 256 15° 195
D7 17° 299 15° 274
T62 17° 299 15° 273
Z1L131 17° 299 15° 274
ZSU23/4 17° 299 15° 274

Table 5.2 Confusion matrix for PHDC results with the AlexNet architecture.

Predicted Class Class

BMP2 BTR70 T72 251 BRDM2 BTR60 D7 T62 ZIL131 7SU23/4 Accwracy

BMP2 103 8 35 3 0 29 2 3 10 2 52,82%
BTR70 29 118 1 6 0 29 0 1 12 0 60,20%
T72 7 0 162 1 0 8 3 14 0 1 82,65%

2 281 0 0 0 272 0 0 0 1 0 1 99,27%
& BRDM2 3 0 70 257 3 0 0 0 4 93,80%
¢ BTR60 11 19 37 3 0 109 1 6 9 0 55,90%
& D7 0 0 0 0 0 0 257 4 1 12 93,80%
T62 0 0 0 0 0 0 37 224 3 9 82,05%
ZIL131 0 0 0 0 0 0 30 271 0 98,91%
7ZSU23/4 1 0 0 0 0 0 0 0 0 273 99,64%
Overall Accuracy 84,37%

AlexNet and VGG16, respectively. The results show that tanks and armored vehi-

cles are harder to distinguish. The overall performance is worse than the competing

methods for both architectures.

5.2.3 IPRPHC Results

We now present the recognition performance of the image-phase removed phase
history classification using AlexNet and VGG16 architectures. Tables 5.4 and 5.5
show the results for AlexNet and VGG16, respectively. The results show that this
methodology works well and the performance is at the same level with the state-of-
the-art techniques. Note that, with AlexNet, 7 of the classes, and with VGG16, 5

of the classes reached 100% accuracy.
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Table 5.3 Confusion matrix for PHDC results with the VGG16 architecture.

Predicted Class Class

BMP2 BTR70 T72 251 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4 Accuracy

BMP2 93 18 22 3 4 42 2 6 3 2 47,69%
BTR70 20 137 0 5 6 17 0 1 10 0 69,90%
T72 12 1 140 0 3 22 0 15 0 3 71,43%

g 281 0 0 0 272 0 0 0 0 0 2 99,27%
& BRDM2 7 3 30 255 6 0 0 0 0 93,07%
¢ BTR6O 23 29 30 2 3 92 0o 8 8 0 47,18%
=R i 0 0 0 0 0 0 247 16 2 9 90,15%
T62 0 0 0 1 0 0 19 241 1 11 88,28%
ZIL131 0 0 0 0 0 0 4 2 268 0 97,81%
ZSU23/4 0 0 0 0 1 0 10 0 272 99,27%
Overall Accuracy 83,18%

Table 5.4 Confusion matrix for IPRPHC results with the AlexNet architecture.

Predicted Class Class

BMP2 BTR70 T72 251 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4 Accuracy

BMP2 185 1 70 0 2 0 0 0 0 94,87%
BTR70 4 189 0 0 0 3 0 0 0 0 96,43%
T72 0 0 196 0 0 0 0 0 0 0 100,00%

g 251 0 0 0 274 0 0 0 0 0 0 100,00%
© BRDM?2 0 0 0 0 274 0 0 0 0 0 100,00%
g BTR60 1 1 0 0 0 189 4 0 0 0 96,92%
& D7 0 0 0 0 0 274 0 0 0 100,00%
T62 0 0 0 0 0 0 0 273 0 0 100,00%
ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
7ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%
Overall Accuracy 99,05%

Table 5.5 Confusion matrix for IPRPHC results with the VGG16 architecture.
Predicted Class Class

BMP2 BTR70 T72 281 BRDM2 BTR60 D7 T62 ZIL131 7SU23/4 Accuracy

BMP2 182 2 70 0 4 0 0 0 0 93,33%
BTR70 6 188 0 0 0 2 0 0 0 0 95,92%
T72 0 0 195 0 0 1 0 0 0 0 99,49%

g 251 3 0 0 271 0 0 0 0 0 0 98,91%
© BRDM2 0 0 0 0 274 0 0 0 0 0 100,00%
g BTR60 0 1 0 0 0 194 0 0 0 0 99,49%
& D7 0 0 0 0 0 0 274 0 0 0 100,00%
T62 0 0 0 0 0 0 0 273 0 0 100,00%
ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%
Overall Accuracy 98,93%
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Table 5.6 Confusion matrix for conventional reconstruction results with the AlexNet
architecture.

Predicted Class Class
BMP2 BTR70 T72 251 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4 ‘ccuracy

/ /4
BMP2 191 0 2 0 1 1 0 0 0 0 97,95%
BTR70 0 195 0 0 1 0 0 0 0 0 99,49%
T72 0 0 196 0 0 0 0 0 0 0 100,00%
7 281 0 0 0 273 1 0 0 0 0 0 99,64%
& BRDM2 4 1 0 0 268 1 0 0 0 0 97.81%
& BTRG0 1 1 10 2 188 0 0 2 0 96,41%
= D7 0 0 0 2 0 0 271 0 0 1 98,91%
T62 1 0 0 0 0 0 0 265 0 7 97.07%
7IL131 0 0 0 0 0 0 2 0 272 0 99,27%
ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%
Overall Accuracy 98,68%

Table 5.7 Confusion matrix for conventional reconstruction results with the VGG16
architecture.

Predicted Class Class

BMP2 BTR70 T72 251 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4 Accuracy

BMP2 186 1 5 0 1 2 0 0 0 0 95,38%
BTR70 0 196 0 0 0 0 0 0 0 0 100,00%
T72 2 0 194 0 0 0 0 0 0 0 98,98%

g 281 5 0 1 264 3 0 0 0 0 1 96,35%
& BRDM2 0 0 0 0 274 0 0 0 0 0 100,00%
g BTR60 0 1 10 4 189 0 0 0 96,92%
& D7 0 0 0 0 0 0 271 1 0 98,91%
T62 0 0 0 0 0 0 0 265 1 7 97,07%
ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
7ZsU23/4 1 0 0 0 0 0 0 0 0 273 99,64%
Overall Accuracy 98,39%

5.2.4 Comparison & Summary

We now compare our results with existing ATR methodologies. First, we train
AlexNet and VGG16 with the magnitude of the original MSTAR chips. For this,
we feed the magnitude of the chips to all 3 channels of the input layers of both

architectures. Tables 5.6 and 5.7 show the results for these networks, respectively.

We also compare our results with the methods in Refs. [117,119,120,123,125,126].
Note that, in the MSTAR dataset, there are additional images of different variations
of two of the vehicles, namely, T72 and BMP2, in addition to the ones mentioned
in Table 5.1, and [119,120,123] use these variants in the test set while [126] uses the
variants in both training and test sets. Hence, it should be noted that the results
of different methods compared here are not based on exactly the same training and
test sets. Table 5.8 shows the comparison of the proposed methodologies with the

existing methods.
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Table 5.8 Comparison of the proposed frameworks with existing methods.

Method Accuracy

Image Domain (AlexNet)  98,68%
Image Domain (VGG16)  98,39%

PHDC (AlexNet) 84,37%
PHDC (VGG16) 83,18%
[PRPHC (AlexNet) 99,05%
[PRPHC (VGG16) 98,93%
Song et. al. [119] 96,24%
Sun et. al. [120] 91,48%
Chen and Wang [117] 84,7%
Chen et. al. [123] 99,42%
El Housseini et. al. [125]  92,63%
Wagner et. al. [126] 98,47%

We observe that our first framework performed poorly compared to existing work
while our second framework performed well, only surpassed by the method in
Ref. 123. For our second framework, it seems like it was a reasonable judgment
to remove the phase of the MSTAR chips before returning back to the phase history

domain.

Another observation is that we reached slightly better results with AlexNet archi-
tecture compared to VGG16 for all types of experiments. The reason for this might
be that VGG16 is a larger network which needs more data to train.
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Chapter 6

Conclusions & Future Directions

6.1 Summary & Conclusions

In this dissertation, we have contributed to the SAR imaging literature. We have
developed three frameworks that enhance the performance of various SAR imaging
tasks. In particular, we have developed a SAR image formation framework that
utilizes deep learning-based priors using the plug-and-play (PnP) priors [33] frame-
work. We have also extended our framework to address phase errors along with
image formation. Finally, we have proposed a SAR ATR framework that works in

the data domain.

In Chapter 3, our image formation framework, namely PnP-CNN-SAR, was es-
tablished. In this framework, the forward model and the prior model are decoupled
using the PnP priors [33] framework. Within our framework, we have used a Fourier
transform-based forward model and a CNN-based prior model. We conducted ex-
periments with different settings to evaluate our proposed framework, i.e., we tested
our framework in the presence of different levels of noise and data availability. We
compared the results with three existing reconstruction methods, namely, FFT-
based, NQR-based [1], and DL-based [3] reconstruction, and a PnP framework-based
method with BM3D regularizer, using signal-to-noise ratio (SNR) and structural
similarity (SSIM) index metrics. We have shown that PnP-CNN-SAR outperforms
other methods in terms of visual quality. Overall, this study suggests that deep
learning methods may have the potential to learn complicated spatial patterns and

enable their incorporation as priors into computational radar imaging.

In Chapter 4, the extension of PnP-CNN-SAR, namely PnP-CNN-SAR-AF, to
jointly address image formation and phase error correction, is presented. We have

tested our framework in the presence of different levels of phase errors and data
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availability. We have first shown the effectiveness of the additional phase error es-
timation and correction steps as well as training the network with phase errors, by
designing four different experimental settings, namely, PnP, PnP-pe, PnP-AF, and
PnP-pe-AF. In PnP and PnP-AF, the network trained without phase error is used
while in PnP-pe and PnP-pe-AF, the network trained with phase error is used. Also,
in PnP and PnP-pe, the PnP-CNN-SAR algorithm is used while in PnP-AF and
PnP-pe-AF, the PnP-CNN-SAR-AF algorithm is used which has additional phase
error estimation and correction steps. The results obtained in these settings have
shown that the additional phase error estimation and correction steps and training
the network with phase errors improve the performance significantly. These results
have also shown that training the network with phase error is not enough by itself
and this network should be used within the PnP-CNN-SAR-AF algorithm. Later,
we compared the results of PnP-pe-AF with two existing methods, namely, FFT-
based image reconstruction and SDA [52], using SNR and SSIM. We have shown
that PnP-CNN-SAR-AF outperforms other methods in all scenarios in terms of both

visual quality and the performance metrics.

In Chapter 5, we have introduced a SAR ATR framework that performs the recog-
nition task in the phase history domain. We have designed two ATR modalities,
namely, PHDC and IPRPHC. PHDC performs the ATR task using the collected
phase history data directly while in IPRPHC, image formation, image phase re-
moval, and phase history generation steps are performed before the ATR task.
Within this framework, we have used two well-known CNNs, AlexNet [35] and
VGG16 [36], which are designed for classification tasks. While the performance
with the PHDC was subpar, we have reached near state-of-the-art performance lev-
els with the IPRPHC modality. Nevertheless, presented results suggest that SAR
ATR without image formation or in the phase histories domain can be an important

research direction.

Overall, this dissertation brought a new point-of-view to SAR imaging problems,
and has shown that deep neural networks can be effectively used in improving
the performance of SAR imaging tasks. Although SAR ATR and other classifica-
tion/detection/segmentation applications have already started benefiting from the
deep learning tools, most of these works are essentially either postprocessing conven-
tionally reconstructed images or feature extraction from those. The works presented
in this dissertation show that deep neural networks can have a much broader role
than just postprocessing within SAR imaging tasks, and can improve the overall

performance significantly.
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6.2 Topics for Future Research

All three frameworks presented in this dissertation can benefit from further analysis
and extensions. In the following subsections, we will focus each of them individually,

and present our suggestions.

6.2.1 Further Analysis and Extensions on PnP-CNN-SAR

for Image Reconstruction

The PnP-CNN-SAR framework presented in Chapter 3 is open to further extensions
and developments in many ways. First of all, in synthetic scene experiments, we
have observed that a network trained for a specific scenario might not be the one
that performs the best for that particular scenario, rather a network trained with
a slightly higher data availability tends to perform better. A deeper analysis to
understand the underlying reasons and an extension to the real scene case would
be quite helpful. We have also observed that quantitative analyses based on SNR
and SSIM do not necessarily harmonize well with qualitative assessments, especially
in lower data availability scenarios, i.e., a reconstructed image might have a better
perceptual quality compared to another one, while having a worse score in terms of
the metrics used. (See, for example, last two rows of Figures 3.5, 3.6, 3.13, 3.14,
3.16, 3.17. In many of these cases, the NQR-based [1] reconstruction achieves the
best performance in terms of SNR, while producing least useful reconstructions.)
It is clear that new metrics that are more consistent with the visual quality of
the reconstructed images are required. Lastly, we observed that the most time
consuming process in our algorithm is the phase alignment step in the model update
which can take up to 75% of the overall computation time. A more efficient algorithm

for the phase alignment step would be useful for time-critical reconstruction tasks.

6.2.2 Further Analysis and Extensions on PnP-CNN-SAR-
AF for Joint Image Reconstruction and 1D Phase Er-

ror Correction

In Chapter 4, we have used the PnP-CNN-SAR-AF framework to jointly address
image reconstruction and 1D phase errors. This framework can easily be extended
to address 2D separable and non-separable phase errors as well. Also, in this work,
we have only investigated the effects of the amount of phase error in the case of
full data availability and relatively low noise. The performance of the proposed
framework can be evaluated in more challenging scenarios, i.e., in cases of lower

data availability and higher noise levels. Finally, in this work, we have trained the
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network with data generated with a particular scenario in mind. A network trained
with data generated with various scenarios, i.e., different combinations of different
phase error, data availability, and noise levels, would likely have more generalization

power, and could give good results in a variety of scenarios.

6.2.3 Further Analysis and Extensions on SAR ATR in the

Phase History Domain

The work presented in Chapter 5 can be improved in several ways. We have used an
approximation to the phase histories in our experiments for the PHDC. Using the
actual phase history data would potentially give better and more realistic results.
Also, the CNN architectures we have used in the experiments are relatively old and
smaller compared to the recent networks. We can benefit from using a deeper and/or
task specific network. Note however that using a deeper network might require a
larger training set and longer time to train. Also, the effect of the way the data are
used in the CNN can be investigated. Since AlexNet and VGG16 are both designed
for image classification, they require 3-channel real input data. However, the phase
history data we have is complex. Therefore, we decided to use real and imaginary
parts and the magnitude of the phase histories to feed to the 3 channels since this
gave us the best result among other methods (using only one part for all channels
or another combination like real, imaginary, and phase). But we are still not sure
if this is the best way to use the data and that is open for further investigation.
One can also use a CNN that is designed to work with complex data like the one
proposed by Gao et. al. [196]. In addition, using different augmentation techniques
and generating larger training sets might improve the results. Finally, in this work,
we only considered the standard operation conditions where the depression angles
for the training and test sets are fairly similar (17° vs. 15°). The performance of the
proposed modalities can also be investigated for the extended operation conditions,
i.e., where depression angles differ by a large margin (Training 17° - Test 30° and
Training 17° - Test 45°).
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Appendix A

Additional Results from PnP-
CNN-SAR for Image Reconstruc-

tion

This appendix provides additional results and information in support of Chapter
3. The rest of this supplement is structured as follows. Sections A.1, A.2, and A.3
provide detailed quantitative and qualitative analyses for the synthetic scene exper-
iments, same scene experiments, and different scene experiments, respectively. The
results presented in this supplement show that PnP-CNN-SAR outperforms other
methods in both quantitative metrics and reconstruction quality, in the majority of

the scenarios considered.

A.1 Synthetic Scene Experiments

A.1.1 Experiment 1: 100% Data Availability and o, =0.10y

Table A.1 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for all 9 images, and best SSIM for 7 images. Fig. A.1 shows the
reconstruction results from all methods for this experiment. NQR-based and PnP-
CNN-SAR results in near perfect reconstructions. Other methods also produce good

reconstructions.

A.1.2 Experiment 2: 90% Data Availability and ¢, = 0.10y

Table A.2 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 4 images, and best SSIM for 3 images. Fig. A.2 shows the
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Table A.1 SNR and SSIM values for synthetic SAR scenes for the case of 100% data availability
and on = 0.10y. Best results are shown in bold, second best results are shown in red.

SNR (dB) | SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 26.25 25.44 27.12 28.08 36.88 0.930 0.978 0.901 0.924 0.998
Image 2 23.72 31.15 24.09 24.69 36.02 0.691 0.999 0.596 0.599 0.989
Image 3 25.76 31.99 26.54 27.37 37.61 0.928 0.989 0.894 0.927 0.998
Image 4 26.01 24.66 27.06 28.37 34.29 0.956 0.976 0.940 0.959 0.996
Image 5 26.56 25.51 27.30 28.68 39.64 0.954 0.959 0.936 0.952 0.999
Image 6 25.04 24.94 25.68 25.88 38.79 0.957 0.989 0.945 0.945 0.997
Image 7 25.38 24.58 26.22 26.29 38.30 0.963 0.989 0.954 0.957 0.999
Image 8 25.53 24.91 25.98 26.55 38.97 0.966 0.988 0.954 0.962 0.999
Image 9 25.72 32.61 26.85 28.74 40.79 0.808 0.996 0.770 0.827 0.992
Average 25.55 27.31 26.31 27.18 37.92 ‘ 0.906 0.985 0.877 0.895 0.996

(d) PuP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.1 Reconstruction results for the synthetic scenes for the case of 100% data
availability and oy = 0.10y,.

reconstruction results from all methods for this experiment. DL-based and PnP-

CNN-SAR generally produces better reconstructions compared to other methods.

Table A.2 SNR and SSIM values for synthetic SAR scenes for the case of 90% data availability
and on = 0.10y. Best results are shown in bold, second best results are shown in red.

SNR (dB) \ SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 11.84 17.85 27.05 26.57 23.26 0.457 0.867 0.910 0.942 0.922
Image 2 10.12 18.78 20.98 19.78 20.83 0.377 0.991 0.540 0.520 0.967
Image 3 11.62 27.05 25.23 25.17 23.94 0.494 0.950 0.894 0.940 0.917
Image 4 11.38 9.27 25.08 27.07 23.32 0.627 0.533 0.934 0.968 0.960
Image 5 11.70 13.72 26.90 27.31 24.63 0.519 0.627 0.941 0.955 0.938
Image 6 10.61 18.10 23.20 17.39 28.38 0.683 0.944 0.934 0.880 0.985
Image 7 11.41 18.58 24.56 20.18 26.14 0.668 0.949 0.950 0.934 0.976
Image 8 11.18 13.25 24.11 21.05 28.88 0.694 0.810 0.950 0.946 0.987
Image 9 11.71 23.94 25.73 28.43 28.56 0.333 0.934 0.766 0.870 0.932
Average 11.29 17.84 24.76 23.66 25.33 ‘ 0.539 0.845 0.869 0.884 0.954
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(d) PuP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.2 Reconstruction results for the synthetic scenes for the case of 90% data
availability and oy, = 0.10y,.

A.1.3 Experiment 3: 80% Data Availability and o, = 0.10y

Table A.3 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 4 images, and best SSIM for 5 images. Fig. A.3 shows the
reconstruction results from all methods for this experiment. DL-based and PnP-
CNN-SAR generally produces better reconstructions compared to other methods.

Table A.3 SNR and SSIM values for synthetic SAR scenes for the case of 80% data availability
and oy = 0.10y. Best results are shown in bold, second best results are shown in red.

SNR (dB) \ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR | FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 10.38 15.29 21.97 21.86 20.31 0.373 0.748 0.859 0.847 0.863
Image 2 7.97 8.85 20.65 8.02 21.09 0.360 0.927 0.561 0.406 0.972
Image 3 9.67 22.48 26.13 16.43 21.32 0.422 0.913 0.910 0.771 0.845
Image 4 9.77 10.43 23.14 20.75 19.11 0.552 0.525 0.925 0.884 0.913
Image 5 10.39 12.87 22.09 19.22 20.13 0.430 0.652 0.895 0.837 0.853
Image 6 9.17 16.47 20.65 11.30 24.14 0.628 0.913 0.918 0.738 0.970
Image 7 9.82 13.11 20.62 13.03 24.28 0.608 0.769 0.917 0.766 0.968
Image 8 9.47 13.84 21.42 13.58 24.08 0.613 0.850 0.936 0.817 0.980
Image 9 10.25 26.61 23.16 21.43 26.29 0.278 0.978 0.743 0.664 0.921
Average 9.65 15.55 22.20 16.18 22.30 0.474 0.809 0.852 0.748 0.921

A.1.4 Experiment 4: 70% Data Availability and o, = 0.10y

Table A.4 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 8 images, and best SSIM for 8 images. Fig. A.4 shows
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(d) PuP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.3 Reconstruction results for the synthetic scenes for the case of 80% data
availability and oy, = 0.10y,.

the reconstruction results from all methods for this experiment. PnP-CNN-SAR

produces better reconstructions compared to other methods.

Table A.4 SNR and SSIM values for synthetic SAR scenes for the case of 70% data
availability and oy = 0.10y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) | SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 8.44 11.92 11.90 13.98 14.82 0.284 0.487 0.482 0.560 0.659
Image 2 6.52 7.67 17.84 2.90 15.27 0.322 0.896 0.536 0.208 0.963
Image 3 8.16 12.29 11.12 11.24 16.47 0.355 0.602 0.485 0.492 0.731
Image 4 8.32 9.21 11.76 13.32 17.44 0.434 0.377 0.613 0.688 0.860
Image 5 8.49 10.76 11.50 13.70 17.79 0.324 0.429 0.526 0.576 0.743
Image 6 7.58 8.72 11.22 6.73 18.21 0.529 0.570 0.714 0.421 0.926
Image 7 7.96 10.74 11.56 8.78 18.75 0.500 0.642 0.697 0.506 0.921
Image 8 7.84 8.87 10.81 8.95 18.42 0.529 0.571 0.675 0.572 0.935
Image 9 8.11 17.27 12.24 15.69 17.38 0.233 0.789 0.360 0.510 0.739
Average 7.94 10.83 12.22 10.59 17.17 ‘ 0.390 0.596 0.566 0.504 0.831

A.1.5 Experiment 5: 50% Data Availability and o, =0.10y

Table A.5 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for all 9 images, and best SSIM for 8 images. Fig. A.5 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR

produces better reconstructions compared to other methods.
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(d) PnP-BM3D

(e) PnP-CNN-SAR

(f) Ground Truth

Figure A.4 Reconstruction results for the synthetic scenes for the case of 70% data
availability and oy, = 0.10y,.

Table A.5 SNR and SSIM values for synthetic SAR scenes for the case of 50% data
availability and o, = 0.10y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) \ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 6.44 10.83 8.14 10.60 11.68 0.222 0.268 0.277 0.302 0.400
Image 2 4.39 6.03 6.08 2.49 8.49 0.280 0.839 0.346 0.141 0.887
Image 3 6.29 9.64 7.60 8.54 11.79 0.244 0.414 0.287 0.230 0.550
Image 4 6.26 8.22 7.40 8.76 9.83 0.297 0.265 0.344 0.398 0.472
Image 5 6.50 10.76 8.09 10.74 11.82 0.248 0.348 0.291 0.319 0.388
Image 6 5.53 6.97 6.69 5.97 10.86 0.364 0.414 0.429 0.267 0.714
Image 7 6.01 7.74 7.38 7.52 11.03 0.371 0.363 0.433 0.342 0.659
Image 8 6.11 7.05 7.19 7.26 10.64 0.394 0.318 0.460 0.369 0.689
Image 9 6.49 13.49 8.35 11.04 14.95 0.177 0.657 0.229 0.347 0.607
Average 6.00 8.97 7.44 8.10 11.23 ‘ 0.289 0.432 0.344 0.302 0.596

A.1.6 Experiment 6: 30% Data Availability and o, = 0.10y

Table A.6 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 6 images. Fig. A.6 shows the

reconstruction results from all methods for this experiment. None of the methods

are able to produce acceptable reconstructions for most of the images.
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(d) PnP-BM3D

(e) PnP-CNN-SAR

(f) Ground Truth

Figure A.5 Reconstruction results for the synthetic scenes for the case of 50% data
availability and oy, = 0.10y,.

Table A.6 SNR and SSIM values for synthetic SAR scenes for the case of 30% data
availability and o, = 0.10y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) ‘ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 4.84 10.06 6.95 6.92 9.54 0.156 0.223 0.167 0.203 0.237
Image 2 3.14 4.08 3.17 2.60 5.21 0.215 0.704 0.200 0.122 0.766
Image 3 4.72 7.87 6.21 6.30 8.81 0.171 0.247 0.171 0.201 0.372
Image 4 4.61 7.74 5.94 6.02 5.97 0.182 0.219 0.224 0.215 0.160
Image 5 4.67 10.68 6.98 6.96 8.93 0.135 0.213 0.246 0.182 0.171
Image 6 4.09 5.38 4.88 5.01 7.22 0.237 0.189 0.229 0.187 0.526
Image 7 4.40 6.56 5.52 5.41 7.63 0.241 0.211 0.237 0.176 0.410
Image 8 4.38 5.97 5.38 5.30 7.12 0.258 0.172 0.270 0.168 0.455
Image 9 4.83 10.93 6.36 7.15 9.71 0.130 0.489 0.201 0.342 0.416
Average 4.41 7.70 5.71 5.74 7.79 ‘ 0.191 0.296 0.216 0.200 0.390

A.1.7 Experiment 7: 100% Data Availability and o, = oy

Table A.7 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
Fig. A.7 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR

gives the best SNR for 8 images, and best SSIM for 6 images.

produces better reconstructions compared to other methods.

100



(d) PnP-BM3D

(e) PnP-CNN-SAR

(f) Ground Truth

Figure A.6 Reconstruction results for the synthetic scenes for the case of 30% data
availability and oy, = 0.10y,.

Table A.7 SNR and SSIM values for synthetic SAR scenes for the case of 100% data
availability and on = 0y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) ‘ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 6.76 13.26 6.97 10.62 13.69 0.364 0.560 0.252 0.336 0.568
Image 2 3.93 14.45 4.02 3.75 14.34 0.313 0.907 0.275 0.244 0.735
Image 3 6.19 13.96 6.36 9.03 14.23 0.403 0.678 0.291 0.360 0.669
Image 4 6.31 10.04 6.77 9.60 12.79 0.507 0.447 0.387 0.501 0.668
Image 5 6.69 12.79 7.16 11.06 13.45 0.393 0.453 0.288 0.431 0.529
Image 6 5.21 9.94 5.60 6.63 14.23 0.622 0.651 0.486 0.520 0.832
Image 7 5.66 10.50 6.07 7.75 13.90 0.593 0.644 0.447 0.526 0.789
Image 8 5.54 10.19 5.91 7.66 13.15 0.591 0.655 0.462 0.558 0.802
Image 9 6.23 16.11 6.31 9.91 16.18 0.256 0.684 0.195 0.322 0.594
Average 5.84 12.36 6.13 8.45 13.99 ‘ 0.449 0.631 0.343 0.422 0.687

A.1.8 Experiment 8:

90% Data Availability and o, = oy

Table A.8 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 6 images. Fig. A.8 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR

produces better reconstructions compared to other methods.
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(d) PnP-BM3D

(e) PnP-CNN-SAR

(f) Ground Truth

Figure A.7 Reconstruction results for the synthetic scenes for the case of 100% data
availability and oy, = oy.

Table A.8 SNR and SSIM values for synthetic SAR scenes for the case of 90% data
availability and on = 0y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) ‘ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 6.54 12.25 6.04 10.74 10.96 0.270 0.427 0.191 0.312 0.415
Image 2 3.21 13.58 3.10 2.98 12.84 0.285 0.912 0.260 0.225 0.566
Image 3 5.80 10.11 4.98 8.35 10.56 0.311 0.488 0.202 0.290 0.507
Image 4 6.41 9.82 5.39 9.03 11.03 0.426 0.432 0.312 0.431 0.621
Image 5 6.75 11.80 5.88 10.78 11.69 0.314 0.423 0.219 0.357 0.436
Image 6 4.99 7.81 3.78 6.08 12.80 0.518 0.468 0.393 0.447 0.793
Image 7 5.52 8.95 4.56 7.05 12.01 0.483 0.507 0.359 0.431 0.725
Image 8 5.47 9.06 4.01 6.84 12.59 0.483 0.551 0.329 0.444 0.767
Image 9 5.93 15.86 5.59 9.13 15.14 0.206 0.737 0.159 0.258 0.488
Average 5.62 11.03 4.81 7.89 12.18 ‘ 0.366 0.549 0.269 0.355 0.591

A.1.9 Experiment 9: 80% Data Availability and o, = oy

Table A.9 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 6 images, and best SSIM for 5 images. Fig. A.9 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR

produces better reconstructions compared to other methods.
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(f) Ground Truth

Figure A.8 Reconstruction results for the synthetic scenes for the case of 90% data
availability and oy, = oy.

Table A.9 SNR and SSIM values for synthetic SAR scenes for the case of 80% data
availability and on = 0y. Best results are shown in bold, second best results are
shown in red.

SNR (dB) ‘ SSIM
FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR ‘ FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
Image 1 6.70 11.19 6.99 11.00 10.65 0.246 0.328 0.206 0.241 0.352
Image 2 3.38 9.11 3.55 2.07 11.93 0.271 0.846 0.254 0.176 0.420
Image 3 5.95 10.60 5.81 8.60 11.07 0.295 0.511 0.214 0.248 0.460
Image 4 6.36 9.16 5.71 8.60 9.94 0.375 0.357 0.295 0.343 0.498
Image 5 6.84 12.24 6.66 10.86 11.42 0.292 0.431 0.235 0.261 0.387
Image 6 4.89 8.69 4.26 5.24 11.11 0.468 0.578 0.362 0.279 0.707
Image 7 5.36 7.75 5.12 6.67 9.83 0.456 0.350 0.366 0.297 0.572
Image 8 5.29 6.50 4.72 6.29 10.36 0.437 0.273 0.360 0.322 0.635
Image 9 5.95 14.90 5.92 9.47 12.99 0.185 0.702 0.153 0.283 0.363
Average 5.64 10.02 5.42 7.64 11.03 ‘ 0.336 0.486 0.272 0.272 0.488

A.1.10 Experiment 10:

70% Data Availability and oy, = oy

Table A.10 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 8 images, and best SSIM for 6 images. Fig. A.10 shows
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