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ABSTRACT

SYNTHETIC APERTURE RADAR IMAGING WITH DEEP NEURAL
NETWORKS

MUHAMMED BURAK ALVER

ELECTRONICS ENGINEERING Ph.D DISSERTATION, December 2020

Dissertation Supervisor: Prof. Müjdat Çetin

Dissertation Co-Supervisor: Prof. Selim Balcısoy

Keywords: Synthetic aperture radar, inverse problems, computational imaging,
deep learning, convolutional neural networks, plug-and-play priors, automatic

target recognition.

Synthetic aperture radar (SAR) is a remote sensing imaging modality that has
been in use since the 1960s. Conventional image formation in SAR is based on
2D inverse Fourier transform of the reflectivity field of the scene to be imaged.
This conventional image formation technique is developed for a clean and complete
data collection scenario. However, in reality, the collected data are only a reduced
representation of the underlying scene due to hardware limitations and uncertainties
in the data collection geometry, and hence suffer from reduction and phase errors.
Therefore, many SAR image formation frameworks using regularization have been
proposed over the years, in order to account for these limitations.

In this dissertation, we have focused on the SAR imaging problem, particularly im-
age formation, phase error correction, and automatic target recognition (ATR), and
developed three frameworks. The first framework tackles the SAR image formation
problem. In this framework, SAR image formation is formulated as a regularized
optimization problem, and using the plug-and-play (PnP) priors framework, we have
incorporated deep learning-based priors into our formulation. Our second framework
is an extension of the first one, which aims at joint image formation and phase error
correction. Experimental results show the effectiveness of these two frameworks and
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our proposed methods exceed the state-of-the-art image formation and phase error
correction performances in the majority of the scenarios considered. The third pro-
posed framework focuses on the ATR problem, and within this framework two ATR
approaches are presented which perform the ATR task in the data domain rather
than image domain. We have experimentally shown that the ATR task can be suc-
cessfully performed in the data domain, and with further development, it might be
possible to reach state-of-the-art performance.

Overall, we have shown that the performance in various SAR imaging tasks can be
improved significantly using deep learning tools.
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ÖZET

DERİN SİNİR AĞLARI İLE SENTETİK AÇIKLIKLI RADAR GÖRÜNTÜLEME

MUHAMMED BURAK ALVER

ELEKTRONİK MÜHENDİSLİĞİ DOKTORA TEZİ, Aralık 2020

Tez Danışmanı: Prof. Dr. Müjdat Çetin

Tez Eş Danışmanı: Prof. Dr. Selim Balcısoy

Anahtar Kelimeler: Sentetik açıklıklı radar, ters problemler, hesaplamalı
görüntüleme, derin öğrenme, evrişimsel sinir ağları, tak-çalıştır önseller, özdevimli

hedef tanılama.

Sentetik açıklıklı radar (SAR), 1960’lardan beri kullanımda olan bir uzaktan görün-
tüleme yaklaşımıdır. Geleneksel SAR görüntü oluşturma yöntemi, görüntülenecek
sahnenin yansıtma alanının 2B Fourier dönüşümü tabanlıdır. Bu geleneksel görüntü
oluşturma yöntemi, temiz ve tam veri toplama senaryosu için geliştirilmiştir. Ancak,
gerçekte toplanan veri, donanım kısıtları ve veri toplama geometrisindeki belirsiz-
liklerden ötürü, altta yatan sahnenin ancak indirgenmiş bir temsilidir ve bunlar
veri azaltımı ve faz hatalarına sebep olmaktadır. Bundan dolayı, bu kısıtları den-
kleştirme adına yıllar içinde düzenlileştirme kullanan birçok SAR görüntü oluşturma
çerçeveleri önerilmiştir.

Bu tezde, SAR görüntüleme problemine odaklanılmıştır ve görüntü oluşturma, faz
hatası düzeltimi ve özdevimli hedef tanılama (ATR) için üç çerçeve geliştirilmiştir.
İlk çerçeve, SAR görüntüleme problemi odaklıdır. Bu çerçevede SAR görüntüleme,
düzenlileştirmeli bir eniyileme problemi olarak kurgulanmıştır ve tak-çalıştır (PnP)
önseller çerçevesi kullanılarak, derin öğrenme tabanlı önseller kurgulamaya dahil
edilmiştir. İkinci çerçeve, önerilen ilk çerçevenin görüntü oluşturmanın yanında
faz hatalarını da gidermeyi amaçlayan bir uzantısıdır. Deneysel sonuçlar, öner-
ilen iki çerçevenin görüntü oluşturma ve faz hatası gidermede, düşünülen betik-
lerin çoğunluğunda en iyi başarımları elde ettiğini göstermektedir. Önerilen üçüncü
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çerçeve ATR problemine odaklanmaktadır ve bu çerçevede ATR görevini görüntü
uzayı yerine veri uzayında gerçekleştiren iki ATR yaklaşımı sunulmuştur. Deneysel
sonuçlarla, ATR görevinin veri uzayında da başarılı bir şekilde gerçekleştirilebileceği
gösterilmiş ve bu çerçevenin daha fazla geliştirilmesiyle, en iyi başarımlara ulaşıla-
bilmesinin mümkün olduğu vurgulanmıştır.

Sonuç olarak bu tezdeki çalışmalar, farklı SAR görüntüleme görevlerinde, derin
öğrenme teknikleri kullanılarak sonuçların önemli ölçüde iyileştirilebileceğini göster-
mektedir.
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Chapter 1

Introduction

This dissertation presents new approaches to the problems of synthetic aperture
radar (SAR) image reconstruction, phase error correction, and automatic target
recognition (ATR). The purpose of this chapter is to: 1) introduce the problems
addressed in this dissertation; 2) summarize the current state of SAR technology;
3) provide a concise description of the approach taken in this work by pointing out
the main contributions; 4) present the outline of the dissertation.

1.1 Synthetic Aperture Radar (SAR) Imaging

Synthetic aperture radar (SAR) imaging is a remote sensing imaging modality that
has been widely used in a variety of applications since 1960s. Its advantages over
other remote sensing modalities, such as optical imaging, include; day and night
capability, all-weather operation, ability of discriminating among different materials,
penetrating through different covers and vegetation layers. Specifically, SAR is an
active sensor which has its own illumination, i.e., it transmits a chirp signal and
collects the returned signal from the area of interest, and hence can work at day
or night, whereas optical imaging modalities require an external illumination, e.g.,
sunlight, which limits the operational time. Moreover, SAR works in the microwave
regime, which allows its transmitted signals to penetrate through cloud or rain,
as well as light foliage, hence it can work in any weather conditions and detect
underground structures if they are buried shallowly in dry environments [4].

SAR sensors are carried on a platform (aircraft or satellite) which travels along a
path transmitting microwave pulses towards the ground. Figure 1.1 shows an illus-
tration of SAR data collection using an airborne platform. Some of the transmitted
microwave energy is reflected from the ground back to the SAR sensor and received
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Figure 1.1 Simple illustration of SAR data collection. (Image obtained from the web
site of Sandia National Laboratories.)

as a signal. This process is repeated for many aperture positions as the platform
moves. The data used for imaging are obtained after a preprocessing of the received
signal, involving mixing and filtering steps [5]. The SAR image formation problem
is the problem of reconstruction of a spatial reflectivity field of the area of interest
from the preprocessed SAR signals.

1.2 Current State of SAR Technology

The use of radar as an imaging sensor dates back as early as the 1940s. However,
these early imaging radars, which are nowadays usually referred to as real aper-
ture radars, had an important limitation: the poor resolution achievable with the
operating wavelength, as the resolution is inversely proportional to the antenna or
aperture size of the sensor. To overcome this limitation, the idea of synthesizing a
very long antenna by moving a small one along a convenient path, which is gener-
ally attributed to Carl Wiley of Goodyear Aircraft Corporation, is developed in the
1950s [6]. Subsequently, a group of researchers at the University of Illinois carried out
the experimental validation of the SAR concept [7]. The first operational airborne
SAR system is considered to be the one developed at the University of Michigan,
in 1957, which operated at the X-band. Over the following decades, many more
SAR systems were built. JPL developed an L-band SAR sensor for NASA, which is
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Figure 1.2 A TerraSAR-X image.

installed on a rocket in 1962, and on an airplane in 1966. NASA also upgraded the
system developed at the University of Michigan, by adding L-band channel in 1973.
SAR sensors have continued to be used in many more NASA missions, including the
Apollo 17 lunar mission, SEASAT satellite, spaceborne imaging radar (SIR), and
Magellan mission to image the planet Venus [8]. SEASAT is considered to be the
first civilian application of SAR, which was oriented to oceanographic investigations.
Although its operational lifetime was only a few months due to a short circuit in its
power system, obtained results clearly demonstrated how impactful SAR systems
were going to be for the area of remote sensing [6]. 1990s and onwards, many satel-
lites with SAR sensors have been built: ALMAZ-1 (1991) from the Soviet Union (and
later Russia); ERS-1 (1991), ERS-2 (1995), ENVISAT (2002), Sentinel-1A (2014)
and Sentinel-1B (2016) from the European Space Agency (ESA); JERS-1 (1992),
ALOS-1 (2006) and ALOS-2 (2014) from the Japan Aerospace Exploration Agency
(JAXA); RADARSAT-1 (1995) and RADARSAT-2 (2007) from the Canadian Space
Agency (CSA); TerraSAR-X (2007) and TanDEM-X (2010) from the German Space
Agency (DLR). Figure 1.2 shows an image from the TerraSAR-X satellite.

Early developments in SAR research were mostly targeting the hardware-related
issues and limitations, and considerable improvements were achieved. Back then,
this research field was dominated by those working in physics, electromagnetics,
and radar engineering. Only in the 1980s, a signal processing view of SAR has
emerged [9–11]. Over the years, studies are geared towards imperfections of the
collected data, e.g., noisy and/or incomplete data due to the limited observation
time, or the environment not being very structured and cooperating. As a result,
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the collected data would be a reduced representation of the underlying scene [12].

For many years (and still today, to a large extent), the standard approach for SAR
image formation has been through a Fourier transform-based algorithm. This tech-
nique, however, is not designed with the limitations such as noisy or incomplete
data in mind, and hence cannot overcome such limitations. Furthermore, within
this approach, the knowledge about the underlying scene cannot be exploited, and
the imaging cannot be reoriented to address the final objective better. The overall
output quality is limited by the quality of the collected data.

Improvements in SAR imaging systems draw attention from many different research
fields and SAR has started to find use in many applications including reconnais-
sance [13–15], change detection [16–18], oceanography [19–22], glaciology [23, 24],
forestry [25, 26], earthquake monitoring [27–29] and ground moving target indica-
tion (GMTI) [15, 30–32]. Most of these applications, if not all, can benefit from
automated processing techniques in extracting information from a SAR image for
an accurate and efficient interpretation of the scene. Therefore, new processing tech-
niques which are geared towards the final objectives of the mission, and which are
robust to reduced data domains are required for the SAR systems [12].

1.3 Contributions of this Dissertation

The first contribution of this dissertation is the formulation of a SAR image recon-
struction algorithm using the Plug-and-Play (PnP) priors framework [33], namely,
PnP-CNN-SAR. This is the first SAR image formation approach that combines a
physics-based forward model with a learning-based prior in a principled and com-
putationally feasible way within the PnP framework. In this framework, the image
formation problem is solved through minimization of a regularization-based objec-
tive function. In particular, the minimization problem is divided into sub-problems
using the Alternating Direction Method of Multipliers (ADMM) algorithm [34],
resulting in separating the data-fidelity term and the regularization term of the ob-
jective function, to solve sub-problems iteratively. PnP priors framework [33] has
shown that, after this separation, optimization of the regularization term, i.e., the
prior term, is equivalent to a simple denoising of an intermediate solution under
white Gaussian noise. Hence, the regularizer can be replaced with an off-the-shelf
denoiser. In our framework, we have replaced the regularizer with a convolutional
neural network (CNN) denoiser. We have demonstrated the effectiveness of our
framework, i.e., PnP-CNN-SAR, in a variety of scenarios, i.e., for different levels of
data limitations and noise for both synthetic and real SAR scenes.
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The second contribution of this dissertation is the extension of our first contribution
to jointly address phase errors along with image reconstruction, namely, PnP-CNN-
SAR-AF. This framework also utilizes the PnP priors using the ADMM algorithm
and deep priors, however there are two additional steps in each ADMM iteration,
namely, phase error estimation and phase error correction. We have demonstrated
the effectiveness of PnP-CNN-SAR-AF in a variety of scenarios, i.e., for different
phase error levels for real SAR scenes, improving upon the performance of existing
methods.

The third contribution of this dissertation is a new SAR ATR framework that
works in the phase history domain. Within this framework, we have introduced
two methodologies, namely, phase history domain classification (PHDC) and image-
phase removed phase history classification (IPRPHC). PHDC purely works in the
phase history domain, i.e., the classification task is performed without image re-
construction. IPRPHC, on the other hand, involves certain steps, particularly, im-
age reconstruction, image-phase removal, and phase history generation from the
phase-removed image, before the classification task is performed. Two well-known
CNNs, i.e., AlexNet [35] and VGG16 [36], are used for the classification task for
both methodologies. IPRPHC has reached a performance level similar to that of
state-of-the-art SAR ATR methods while the performance of the PHDC was not
competitive enough. Nevertheless, our results suggests that SAR ATR in the phase
history domain can be an important research direction.

Overall, this dissertation proposes several ways to utilize deep neural networks
(DNNs), particularly CNNs, in order to improve the performance of SAR image
reconstruction and automatic target recognition. The ideas proposed here can be
extended to build fully-automated end-to-end SAR image reconstruction and ATR
frameworks utilizing CNNs.

1.4 Organization

This dissertation is organized as follows. Chapter 2 includes the review of the back-
ground knowledge that the ideas proposed here are built upon, i.e., Section 2.1
presents a review of SAR imaging and describes the problems to be addressed in
detail, the deep learning background is provided in Section 2.2 along with a brief
survey of its utilization in the SAR imaging literature, and Section 2.3 is dedicated
to the PnP priors framework. PnP-CNN-SAR is introduced in Chapter 3 and exper-
imental results on both synthetic and real SAR scenes are provided. In Chapter 4,
the framework for joint image reconstruction and phase error correction, i.e., PnP-
CNN-SAR-AF, is described and its experimental results for real SAR scenes are
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presented. Two methodologies proposed for SAR ATR in the phase history domain
and their experimental results are presented in Chapter 5. Chapter 6 includes the
summary of the contributions and obtained results, as well as potential future work
suggestions.
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Chapter 2

Preliminaries

In this chapter, we provide background information on three topics, namely, SAR
imaging, deep learning, and PnP priors. The discussion on SAR imaging includes the
basic principles, mathematical formulation of the data collection and preprocessing
in SAR, the autofocus problem and phase errors in SAR imaging, and a review of
SAR ATR. The deep learning discussion gives the required background knowledge,
and then the use of DNNs for the various SAR tasks is presented. The final part of
this chapter is dedicated to the PnP priors framework, which is utilized in our first
two contributions.

2.1 SAR Background

Radars use a basic principle known as echo ranging. Echo ranging is the concept that
is used to measure the distance of an object by transmitting an echo signal to the
object and listening the reflection of the echo signal. As the echo signal’s reflection
will travel twice the distance of the object, one can easily estimate the distance if
the propagation speed of the echo signal is known. The distance then will be half
of the round trip flight time of the echo signal multiplied by its propagation speed.
This principle is implemented in radar systems by transmitting high-bandwidth
pulses and using pulse compression techniques [5,37]. Hence, radars can distinguish
objects that are at different distances. Imaging radars, however, have to be able to
distinguish objects that are at the same distance but at different directions as well, in
order to produce a 2D visualization of the scene, i.e., having resolving power only in
the range direction is not sufficient. In theory, this can be achieved by transmitting
a narrow beam to illuminate a narrow strip of the ground. However, this is not as
easy as it sounds, since how narrow the transmitted beam can be, or analogously
how small the cross-range resolution can be depends on the antenna aperture size
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through the following equation:
ρ= λwR

w
(2.1)

where λw is the wavelength of the illuminating source, R is the target range, and
w is the width of the antenna aperture. Consider the case where the wavelength of
the source and the distance of the target are 0.03 m and 50 km, respectively. This
is a typical wavelength for an X-band radar. Suppose that we want to reconstruct a
radar image for which the resolution is 1 meter. In order to achieve this resolution
level, we would need a physical antenna with the width of 1500 m, which is of course
impractical to carry on an aircraft or a satellite.

SAR solves this problem by sending multiple pulses from a number of observation
points, and then focusing the received information coherently to obtain a high-
resolution 2-D description of the scene. Hence it synthesizes the effect of a large
antenna, using multiple observations from a small antenna [12].

SAR imaging systems can operate in two modes, namely, stripmap-mode SAR, and
spotlight-mode SAR. In stripmap-mode SAR, the antenna remains fixed with respect
to the radar platform so that the antenna beam sweeps out a strip on the ground.
In spotlight-mode, the antenna is steered to continuously illuminate a single spot
of terrain. This study focuses on the spotlight-mode SAR. Spotlight-mode SAR is
able to provide higher resolution at the expense of spatial coverage, as by steering
the antenna, the same terrain portion can be observed through a wider range of
angles while other areas within a given accessibility swath of the SAR cannot be
illuminated. Figure 2.1 shows the geometry for data collection in a spotlight-mode
SAR.

2.1.1 Spotlight-Mode SAR Observation Model

This section provides the preprocessing of the received signals in the spotlight-mode
SAR, based on the tomographic derivation in [10], and very closely follows the
development in [12]. Let f(x,y) be the complex reflectivity density of the ground
patch, and assume that it is constant over the range of frequencies and the range of
viewing angles θ employed by the radar. Note that this is an approximation, and
there are cases where the dependence of the reflectivity on frequency or aspect angle
is important and must be taken into account [38].

In most SAR applications, the transmitted signal is a linear FM chirp signal, which
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Figure 2.1 Spotlight-mode SAR imaging geometry [1].

has the following form:

s(t) =

e
j(ω0t+αt2), |t| ≤ Tp

2

0, otherwise
(2.2)

where ω0 is the carrier frequency and 2α is the chirp rate. Assume the radar trans-
mits the real part of such a signal, <{s(t)}. The return signal ν(θ,x0,y0)(t) from a
differential area centered on the point (x0,y0) at a distance R0 will be:

ν(θ,x0,y0)(t) = |f(x0,y0)|cos
(
ω0

(
t− 2R0

c

)
+α

(
t− 2R0

c

)2
+∠f(x0,y0)

)
dx dy

(2.3)
where c is the speed of the light, and 2R0/c accounts for the two-way travel time
from radar to target. Here, the effect of propagation attenuation is neglected, as it
can be compensated for later. The complex-valued nature of f(x,y) captures both
amplitude scaling and phase shifting of the transmitted waveform by the scatterers.
The amplitude scaling is due to that only a fraction of the radiated energy is reflected
back to the receiver. The phase shift of the reflected signal, however, could be
the result of various factors, the most prominent being the shift at the air/target
interface due to the difference between the dielectric constants of air and the target
material. The phase shift is also due to the tendency of the RF radiation to creep
around target surfaces and its ability to penetrate soft objects and be reflected from
within [10]. For most SAR scenes the phase of the reflectivity at a certain location
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can be modeled to be random, with a uniform probability density, and uncorrelated
with the phase at other locations [11].

The return signal can be more simply written as

ν(θ,x0,y0)(t) = <
{
f(x0,y0)s

(
t− 2R0

c

)}
dx dy. (2.4)

Now let us consider the return from a continuum of scatterers which are at the same
distance to the radar. The return from such scatterers will be received by the radar
at the same time. Let R be the distance from the radar to the center of the scene,
and L be the radius of the ground region of interest, as shown in Figure 2.1. Points
in the ground patch equidistant from the radar lie on an arc, but for a typical system
R� L, so that this arc is nearly a straight line. This inequality is related to two
conditions that must be satisfied, so that we can assume points at the same range
lie on a line (i.e. so that curvature of the wavefront can be neglected). First, the
range error due to this assumption for any point in the ground patch must be less
than a resolution cell:

L2

2R <
c

2B = ρx, (2.5)

where ρx is the range resolution, and B is the bandwidth of the transmitted wave-
form. Second, the range error due to this assumption at a particular point must not
vary much through the aperture:

L2sin(2θmax)
R

� c

2ω0
, (2.6)

where θmax is the maximum look angle. The derivations of these conditions can be
found in [10]. We will assume that the combined return from such an “equidistant”
set of scatterers is the sum of the returns that would be received from each individual
scatterer. This is a common and reasonable assumption, as discussed in [39]. Let us
take qθ(u) to be such a sum of reflectivities (i.e. a line integral) at distance R+u to
the radar, from observation angle θ. Then, we can write the relationship between
the projection qθ(u) and f(x,y) as [40]:

qθ(u) =
∫∫

x2+y2≤L2

δ(u−xcosθ−y sinθ)f(x,y)dx dy (2.7)

This is the standard Radon transform. With this definition, the return signal from
a differential line of scatterers normal to the u axis at u= u0 is given by

νθ,u0(t) = <
{
qθ(u0)s

(
t− 2(R+u0)

c

)}
du. (2.8)
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This is the contribution to the received signal of all scatterers at range R+u0. Then
the return from the entire ground patch (which is what the sensor actually receives)
at observation angle θ is given by the integral of νθ,u0 over u

νθ(t) = <
{∫ L

−L
qθ(u)s

(
t− 2(R+u0)

c

)
du

}
. (2.9)

Taking into account that s(·) is a chirp pulse, we have

νθ(t) = <


∫ L

−L
qθ(u)exp

j
ω0

(
t− 2(R+u)

c

)
+α

(
t− 2(R+u)

c

)2du
 (2.10)

on the interval
−Tp2 + 2(R+L)

c
≤ t≤ Tp

2 + 2(R−L)
c

. (2.11)

Letting τ0 = 2R/c be the round-trip delay to the center of the ground patch and
mixing with νθ(t) with the reference chirp

exp[−j(ω0(t− τ0) +α(t− τ0)2)] (2.12)

and then low-pass filtering yields the complex signal1

r̄θ(t) =
∫ L

−L
qθ(u)exp

{
j

4αu2

c2

}
· exp

{
−j 2

c
(ω0 + 2α(t− τ0))u

}
du. (2.13)

So r̄θ(t) is the demodulated observation signal at platform position θ, as a function of
time. In practice, the mixing operation described above is carried out by multiplying
νθ(t) with the in phase and quadrature components of the reference chirp signal, i.e.,

sI(t) =cos(ω(t− τ0) +α(t− τ0)2) (2.14)

sQ(t) =− sin(ω(t− τ0) +α(t− τ0)2), (2.15)

separately. Also note, we assume here that τ0 is known. In practice it is only known
imperfectly and this makes it necessary to have a post-processing technique in SARs
known as autofocus or automatic phase-error correction [5]. The autofocus problem
will be discussed in Section 2.1.4.

We will assume that the effect of the quadratic phase term exp{j4αu2/c2} in (2.13)
can be neglected. This is a reasonable approximation for most situations, since
usually it is true that 4αu2� c2. A more detailed analysis of this approximation

1Note that a constant factor of 1/2 is neglected here.
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can be found in [5]. After this approximation, the observed signal is given by:

rθ(t) =
∫ L

−L
qθ(u)exp

{
−j 2

c
(ω0 + 2α(t− τ0))u

}
du

=
∫ L

−L
exp{−jΩ(t)u}du. (2.16)

This signal can be identified as the Fourier transform of the projection qθ(u) where
the spatial frequency variable is Ω(t) = 2

c (ω0 +2α(t− τ0)). Note Ω(t) is limited to a
finite spatial frequency interval, because the observation duration t is limited, and
the chirp rate α is finite (equivalently s(t) is narrow-band). Also Ω(t) is offset from
the origin of the spatial frequency plane due to ω0. In summary, at least within
the time interval considered, the processed return signal rθ(t) carries band-pass
information related to a particular line integral of the reflectivity field.

To derive the relationship between the field f(x,y) and the demodulated observed
signal rθ(t), let us substitute (2.7) in the observation relationship (2.16), to obtain

rθ(t) =
∫
|u|≤L

∫∫
x2+y2≤L2

δ(u−xcosθ−y sinθ)f(x,y)exp{−jΩ(t)}dx dy du

=
∫∫

x2+y2≤L2

f(x,y)exp{−jΩ(t)(xcosθ+y sinθ)}dx dy (2.17)

Hence, rθ(t) is a finite (i.e. band-limited) slice at angle θ from the 2D Fourier
transform of the filed f(x,y). Here Ω(t) serves as the radial spatial frequency. So,
there are two interpretations of rθ(t): a 1D Fourier transform of the projections
(based on (2.16)), and a slice through the 2D Fourier transform of the field (based
on (2.17)). This equivalence is essentially a band-limited version of the projection
slice theorem [40] from computed tomography (CT). The data rθ(t) from all obser-
vation angles are usually called the phase histories and lie on a polar grid in the 2D
frequency domain as shown in Figure 2.2.

Now let us derive the discrete observation model. (2.17) can be compactly written
as rθ(t) = (Hθf(x,y))(t), where Hθ is the continuous observation kernel. In practice,
the observations at the i-th observation angle θi are samples rθi(tj) of the continuous
received signal rθi(t) at sampling times tj . This sampling in the time domain results
in sampling of the spectrum of the underlying reflectivity field. Sampling places a
limit on the maximum allowable scene size that can be imaged without aliasing (in
the spatial domain) [12].

Let rθi be the vector of these observed samples,Hθi be a discretized approximation to
the continuous observation kernel Hθi and f be a complex-valued vector representing
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Figure 2.2 Graphical representation of an annulus segment containing known sam-
ples of the Fourier transform of the reflectivity density.

the unknown sampled reflectivity image. Then, overall, we can write:

rθ1

rθ2
...

rθM


︸ ︷︷ ︸

r

=


Hθ1

Hθ2
...

HθM


︸ ︷︷ ︸

H

f (2.18)

where M is the total number of angular observation points. The data r ∈ CKM×1

are the column-stacked sampled phase histories where K is the number of range
positions. If we consider the presence of measurement noise, the observation model
becomes

y = Hf+n (2.19)

where n stands for measurement noise and y is the noisy observations.

2.1.2 Range and Azimuth Resolution

Now, let us try to find the relationship between the achievable resolution of the
SAR image and the dimensions of the annular region shown in Figure 2.2, which
is specified by system parameters. We can motivate a definition of resolution in
the image domain with the assumption that this annulus can be approximated by
a rectangle of width ∆Ωx and height ∆Ωy. Let us consider a point reflector in the
scene. If we compute the Fourier transform of the scene limited to this rectangular
region, and then compute an inverse Fourier transform, we would obtain a two
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dimensional sinc function. The resolution of the formed image gets better as the
mainlobe of this sinc gets narrower, which can be achieved by a wider the support
of the rectangular region. More precisely, the first zero crossings of the sinc occur
at 2π/∆Ωx and 2π/∆Ωy. Hence, the resolution of two point reflectors having equal
reflectivity requires that the reflectors be separated by more than ρx = 2π/∆Ωx

in the x (range) dimension and ρy = 2π/∆Ωy in the y (cross-range or azimuth)
dimension.

Let us first consider the range resolution. Assume that the width of the rectangle
2π/∆Ωx is equal to the radial width of the annular region, which is essentially the
spatial frequency bandwidth of each return. We can determine the lower and upper
limits of the radial extent by substituting the limits for the observation time t from
(2.11) into the definition of Ω(t) to find the lowest and highest spatial frequencies:

Ωxl = 2
c

(
ω0−αTp+ 4αL

c

)
Ωxh = 2

c

(
ω0 +αTp−

4αL
c

)
. (2.20)

For a typical SAR, we can assume Tp� 4L/c. Hence, we can conclude that

∆Ωx = Ωxh−Ωxl ≈
4αTp
c

= 4πB
c

(2.21)

where we have used the fact that the bandwidth of the transmitted pulse (in Hz) is
given by B = αTp/π.

Now let us consider the cross-range (azimuth) resolution, which will be determined
by ∆Ωy. From Figure 2.2:

sin
(

∆θ
2

)
≈ ∆Ωy/2

Ω0
(2.22)

where, in our case Ω0 = 2ω0/c. Hence, for ∆θ� 1 we have

∆Ωy ≈
2ω0∆θ
c

. (2.23)

Lastly, since the wavelength of the transmitted pulse is given by λ= 2πc/ω0, we can
deduce the following range and cross-range resolution relationships for the system:

ρx ≈
c

2B (2.24)

ρy ≈
πc

ω0∆θ = λ

2∆θ . (2.25)
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In conclusion, the range resolution ρx depends on the bandwidth of the transmitted
pulse, while the cross-range resolution is determined by angular diversity of the
observations and carrier frequency (and therefore equivalently wavelength) of the
transmitted chirp signal.

2.1.3 SAR Image Reconstruction Methods

The problem of SAR image reconstruction is to obtain an estimate of the reflectivity
density f(x,y) based on the observed, pre-processed SAR data. Since the phase his-
tory data constitute a band-limited two dimensional spatial Fourier transform of the
reflectivity density, the standard approach to tackle the SAR image reconstruction
problem has been based on two-dimensional fast Fourier transform (FFT). These 2D
FFT based methods are therefore termed as conventional methods. However, these
2D FFT-based reconstruction methods are ideal only when perfect data are available
throughout the spatial frequency domain, which is not the case in a practical mea-
surement scenario, primarily due to finite bandwidth of the transmitted signal and
the finite range of look angles. Therefore, the problem in (2.19) is ill-posed [41], and
can be considered as ill-conditioned to a certain extent depending on the specifics
of the observation scenario. Consequently, (2.19) can only be solved satisfactorily
by incorporating some sort of regularization into the inversion process. In this sec-
tion, we will describe two well-known conventional methods, namely, polar format
algorithm (PFA) and filtered backprojection (FBP), as well as regularization-based
image reconstruction methods.

2.1.3.1 Conventional Reconstruction Methods

Conventional methods are based on the inverse operator for the case when perfect
data are available throughout the spatial frequency domain. These methods have
no explicit mechanism to counter any imperfection in the data. Although there are
algorithmic differences between the two methods, the reconstructions they produce
are similar.

Polar Format Algorithm In polar format algorithm (PFA), the known data
samples are first interpolated to a Cartesian grid, assuming unknown samples to
be zero. Then, an inverse 2-D FFT is employed and the magnitude of the recon-
structed complex image is displayed for viewing. To reduce sidelobe levels, the data
can be windowed before FFT processing. This is the most common SAR image
reconstruction algorithm.
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Filtered Backprojection Filtered backprojection algorithm (FBP) [10,40,42] is
suggested by the tomographic formulation of SAR [10]. The derivation of FBP is
through the 2D inverse Fourier transform in polar coordinates. The radial slices
in the frequency domain are then recognized as 1-D Fourier transforms of the pro-
jections of the field at the corresponding angle, by virtue of the projection slice
theorem [40]. This way the double Fourier integral is reduced to two sequential
operations: first the data at each observation angle are filtered by a ramp filter, and
then the results are backprojected to obtain a reconstruction. FBP is the algorithm
that is currently used in commercial CT scanners.

2.1.3.2 Regularization-Based Reconstruction Methods

In image reconstruction and restoration problems, the goal is to find an estimate
of a 2D field from its indirect observations. Hence, we can view image reconstruc-
tion and restoration problems as general observation problems which we meet in
most situations of engineering interest. We will concentrate on problems where the
mathematical relationship between the measurements and the field is governed by
a linear integral equation, i.e., as in (2.19). This simple observation model that we
derived for SAR imaging is analogous to those of many other engineering problems.
At first look, it might seem easy to find an estimate f̂ of f with a simple matrix
inversion, however that certainly is not possible in general, e.g., the matrix may not
even be square. There are four main issues that this approach can not handle [43]:

1. Due to the observation noise, there may not exist any f which solves this
equation exactly.

2. There may be more than one f which satisfy these equations, hence the solution
may not be unique.

3. The estimate f̂ is desired to remain stable despite the perturbations in the
observations.

4. It is desirable to include any a priori information about f in the inversion
process, however this approach is only data-driven.

Least-squares solution can overcome the first problem mentioned above. The solu-
tion is the best fit to the observed data in the least-squares sense:

f̂LS = argmin
f
‖y−Hf‖22 (2.26)

where ‖·‖2 denotes the `2 norm. If H has full column rank, the estimate is unique
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and is obtained as
(HHH)̂fLS = HHy. (2.27)

However, when the null-space of H is not empty, the least-squares solution is not
unique. A common approach to address this problem is to choose the field with
minimum norm, among the set of least-squares solutions, as the estimate of the true
field f:

f̂
+ = argmin

fLS

∥∥∥̂fLS
∥∥∥

2
(2.28)

which is called as the generalized solution. Although generalized solution provides,
a simple, reasonable way to deal with the first two issues mentioned in the list above,
it does not directly address the third and fourth issues. Particularly, if the model
matrix H is ill-conditioned, i.e., the ratio of the largest eigenvalue to the smallest is
very large, small changes in the data lead to large changes in the solution.

These issues, which cannot be resolved by the generalized solution, can be addressed
using regularization. Regularization allows us to include any prior information to
stabilize the solution in the presence of noisy data, and allow reasonable estimates.

Tikhonov Regularization One of the most common regularization methods is
Tikhonov regularization [44, 45]. In this method, the prior information on the field
is incorporated by including an additional term to the least-squares cost function:

f̂Tik = argmin
f
‖y−Hf‖22 +λ2 ‖Pf‖22 (2.29)

where P is a matrix, and λ is a scalar. The first term in (2.29) is a data-fidelity term.
The second term, through which the prior information about f is incorporated, is
called the regularizer. The parameter λ determines the weight of the prior knowledge
in the estimation process.

The choice of the matrix P is determined by which information about the field we
want to incorporate and the simplest choice would be an identity matrix. In this
case, large values in the reconstruction would be penalized by the regularizer. If
P is chosen as 2D derivative (gradient) operator, then its effect will be to penalize
roughness on the solution, which essentially enforces the final reconstruction to be
smooth.

By taking the gradient of (2.29) with respect to f and equate it to zero, we reach
the following set of linear equations as the solution for the Tikhonov regularization:

(HHH+λ2PHP)̂fTik = HHy (2.30)

17



When the null spaces of H and P are distinct, there exists a unique, closed-form
solution to (2.30).

Non-Quadratic Regularization The cost function of Tikhonov regularization
(2.29) is a quadratic function of f. Hence, (2.30) leads to a linear function of f,
which in turn corresponds to a linear processing of the data y for image restoration
or reconstruction. Although it is desirable to have such a linear processing as it
ensures computational efficiency, it fails to obtain more powerful results that are only
possible if nonlinear methods are allowed [43], e.g., in many imaging applications the
data are expected to be sparse as themselves, or in a transform domain, and sparsity
cannot be effectively enforced within a linear framework. Thus, let us consider more
general problems of the following form:

f̂NQ = argmin
f
‖y−Hf‖22 +λ2

M∑
i=1

ψ((Pf)i) (2.31)

where M is the length of the vector Pf, and (Pf)i denotes its i-th element. Note
that when ψ(x) = x2, (2.31) reduces to the Tikhonov cost function in (2.29), however
ψ(x) is in general non-quadratic. Many well-known regularization approaches fall
into the category of non-quadratic regularization, e.g., maximum entropy [46], and
the total variation [47,48] methods. Note that unlike Tikhonov regularization, (2.31)
does not lead to a closed-form solution in general, hence numerical methods must
be used to find f̂NQ. Half quadratic splitting (HQS) [49,50] is one such method that
can be used to solve (2.31).

The sparsity-promoting formulation for the case that the field f is expected to be
sparse would be in the form

f̂Sparse = argmin
f
‖y−Hf‖22 +λ2 ‖f‖pp (2.32)

with p ≤ 1 being a common choice. See Figure 2.3 for an illustration for the case
of a scalar, real-valued version of ‖f‖pp, i.e., |f |p for various choices of p. When
we view these plots as penalty functions, we deduce that as the value of p gets
smaller, the relative penalty on large values of f reduces. In the SAR imaging
problem, this effect helps the preservation and enhancement of strong scatterers in
the scene, while still suppressing artifacts. On the other hand, small p values are
more punishing for the smaller values of f , hence enforcing sparsity. However, for
the values of p < 1, the penalty functions become concave, thus minimization of
objective functions containing such terms can be challenging. Therefore the choice
of p= 1 has become quite popular as it can enforce sparsity while also generating a
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Figure 2.3 Behavior of the function |f |p for various choices of p.

convex penalty function.

The formulation for the total variation regularization is given as:

f̂TV = argmin
f
‖y−Hf‖22 +λ2 ‖∇f‖1 (2.33)

where ∇ is the discrete gradient operator. The regularizer in (2.33) preserves strong
edges and produces improved reconstruction quality in piece-wise smooth regions.

Feature-Enhanced SAR Imaging A feature-enhanced SAR image reconstruc-
tion approach based on non-quadratic regularization was proposed in [1, 12]. The
overall SAR image formation in this case is modeled by the following optimization
problem:

f̂FE = argmin
f
‖y−Hf‖22 +λ1 ‖f‖pp+λ2 ‖∇|f|‖pp (2.34)

where ∇ is the 2D discrete gradient operator. |f| denotes the vector of magnitudes
of the complex-valued vector f. The scalar parameters λ1 and λ2 determine the
weights of the corresponding terms in the estimation process. The first term in
(2.34) is the data-fidelity term that ensures the estimate f̂FE is consistent with the
data. The second and third terms in (2.34) incorporate prior information regarding
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both the behavior of the field f, and the nature of the features of interest in the
resulting reconstructions. These terms are aimed at enhancing point-based and
region-based features respectively. The relative magnitudes of the parameters λ1

and λ2 determine the relative emphasis on these two types of features. Note for the
region-based feature enhancement that the smoothness is imposed on the magnitude
of the reflectivity field, as the correlation in a homogeneous region of f in SAR is due
to the similarity of backscatter power, which is better represented in the magnitude
of f than its real and imaginary parts [12].

2.1.4 SAR Autofocus Problem & Phase Errors

In SAR systems, the demodulation time τ0 at every aperture position2, which is the
time required for the signal transmitted by the SAR sensor to propagate from the
SAR platform to the field and return, is required to be known precisely, in order to
obtain the data used for imaging from the returned signals. The inexact knowledge
of the demodulation time causes phase errors in the SAR data which result in
defocusing of the reconstructed images [5]. The inexact measurement of the distance
between the SAR platform and the scene due to SAR platform position uncertainties,
or random delays in the signal due to propagation in atmospheric turbulence are
among the most common causes of demodulation time errors. As these errors cause
defocusing in the reconstructed image, this problem is known as SAR autofocus
problem, and phase error correction methods are also called autofocus methods. In
addition to the uncertainties related to the SAR platform, moving targets on the
ground can also cause phase errors. However, this kind of phase errors would affect
the reconstructed image locally, i.e., only around the moving target, hence these
phase errors cause space-variant defocusing.

In current SAR systems, inertial measurement units (IMUs) are used to measure
the distance R between the SAR platform and the patch center. However, even
with high quality IMUs, the measurement of R might not be within the maximum
tolerated error margin. Inexact measurements of R cause demodulation time errors,
which in turn results in phase errors in the SAR data obtained after the prepro-
cessing of the returned signal. Conventional approaches to tackle this problem have
been to increase the accuracy of IMUs and postprocessing the reconstructed SAR
image to remove phase errors. These postprocessing methods are generally termed
as autofocusing techniques, and they have advantages over improving IMUs’ accu-
racy. Improving accuracy of the IMU systems can only help reducing the effects
of demodulation time errors caused by platform position uncertainties, however it

2Recall that in Section 2.1.1, the demodulation time was defined as τ0 = 2R/c where R is the distance from
the SAR platform to the patch center.

20



would be of no help against phase errors caused by atmospheric turbulence. Autofo-
cusing techniques can remove the effects of demodulation errors independent of the
error source, while also eliminating the significant hardware costs associated with
ultra-high-accuracy navigation systems [5].

In Section 2.1.1, we have derived the SAR observation model without considering
demodulation time errors, i.e., with the assumption that the demodulation time at
each aperture position is known exactly. Demodulation time errors can be mod-
eled as constant phase errors on each range compressed pulse. Hence, if we let ε
denote the demodulation time error, during preprocessing, the received signals are
multiplied with

sI(t) =cos(ω(t− τ0 + ε) +α(t− τ0 + ε)2) (2.35)

sQ(t) =− sin(ω(t− τ0 + ε) +α(t− τ0 + ε)2), (2.36)

instead of the expressions in (2.14) and (2.15)3. Then, the output of the preprocess-
ing step becomes

Zε(Ω(t)) = rθε(t) = exp{(−jε2α)(j εc2 Ω(t))}
∫
|u|≤L

qθ(u)exp{−jΩ(t)u}du. (2.37)

Thus, the corrupted and error-free phase history expressions are related as

Zε(Ω(t)) = exp{(−jε2α)(j εc2 Ω(t))}Z(Ω(t)). (2.38)

ε2α� 1, and hence we can assume exp{−jε2α} ≈ 1. Then (2.38) becomes

Zε(Ω(t)) = exp{j εc2 Ω(t)}Z(Ω(t)). (2.39)

Hence, Zε(Ω(t)) is simply Z(Ω(t)) altered by a linear phase term. Substituting
Ω(t) = 2

c (ω0 + 2α(t− τ0)) into (2.39), we get

Zε(Ω(t)) = exp{(jεω0)(jε(2α(t− τ0)))}Z(Ω(t)). (2.40)

The value of the term 2α(t− τ0) is in general much smaller compared to the value
of ω0, and hence can be neglected. Thus we would obtain

Zε(Ω(t)) = exp{jφ}Z(Ω(t)) (2.41)

where φ= εω0 is the phase error. Note that φ is different at every aperture position,

3Note that the development in this section closely follows the one in [51].
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therefore its effect on the reconstructed image is along the cross-range. The impli-
cation of such an error in the image domain is the convolution of each range line of
the image with a 1D blurring kernel in the cross-range direction. Hence, such phase
errors cause defocusing of the image in the cross-range direction [52].

Although most phase errors encountered are 1D cross-range varying functions, it
is also possible to encounter both range and cross-range varying 2D phase errors.
For example, low frequency UWB SAR systems may suffer from severe propaga-
tion effects that can appear through the ionosphere, including Faraday rotation,
dispersion, and scintillation. Dispersion imposes an unknown phase error on the
transmitted chirp. On a single pulse basis, dispersion would cause the ideal impulse
response function to defocus in the range direction. Furthermore, pulse-to-pulse
variations in the dispersion and propagation delay lead to defocus in the cross-range
direction. Because these unknown phase errors change over the synthetic aperture,
the 2D phase history becomes corrupted by a fully coupled 2D phase error [53]. In
principle, 2D phase errors can be handled in two sub-categories, namely, separable
and non-separable errors, nevertheless 2D separable phase errors are not common
in practice.

2.1.4.1 2D Non-separable Phase Errors

In the presence of 2D non-separable phase errors, all sample points of the phase
history data are perturbed with different and potentially independent phase errors.
Let R ∈ CK×M denote the sampled phase history data4, and Φ2D−ns be a 2D non-
separable phase error function. The relationship between the phase-corrupted and
error-free phase histories are as follows:

Rε(k,m) = ejΦ2D−ns(k,m)R(k,m) (2.42)

where Rε denotes the phase-corrupted phase history data, and k ∈ 1,2, . . . ,K and
m ∈ 1,2, . . . ,M denote range and cross-range sample positions, respectively. To
express this relationship in terms of the observation model, first we define the vector
φ2D−ns as

φ2D−ns = [φ2D−ns(1),φ2D−ns(2), . . . ,φ2D−ns(KM)]T (2.43)

which is created by concatenating the columns of the phase error matrix Φ2D−ns

under each other. Using the corresponding vector forms, the relationship in (2.42)

4Recall that the column-stacked vector version of sampled phase histories were denoted by r ∈ CKM×1, in
Section 2.1.1.
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becomes
rε = D2D−nsr (2.44)

where D2D−ns ∈ CKM×KM is a diagonal matrix in the form:

D2D−ns = diag{eφ2D−ns} (2.45)

In terms of observation model matrices, the relationship in (2.44) is as follows:

H(φ2D−ns)f = D2D−nsHf (2.46)

where H is the initially assumed model matrix by the imaging system, and
H(φ2D−ns) is the model matrix that takes the phase errors into account.

2.1.4.2 2D Separable Phase Errors

A 2D separable phase error function is composed of range varying and cross-range
varying 1D phase error functions as follows:

Φ2D−s(k,m) = ξ(k) + γ(m). (2.47)

Here, ξ ∈CK×1 represents the range varying phase error, and γ ∈CM×1 represents
the cross-range varying phase error. The vector φ2D−s ∈ CKM×1 for 2D separable
phase errors is obtained by concatenating the columns of Φ2D−s as follows:

φ2D−s =

ξ(1) + γ(1)︸ ︷︷ ︸
φ2D−s(1)

, . . . ,ξ(K) + γ(1)︸ ︷︷ ︸
φ2D−s(K)

,ξ(2) + γ(1)︸ ︷︷ ︸
φ2D−s(K+1)

, . . . ,

ξ(1) + γ(M)︸ ︷︷ ︸
φ2D−s((M−1)K+1)

, . . . ,ξ(K) + γ(M)︸ ︷︷ ︸
φ2D−s(KM)


T

(2.48)

A 2D separable phase error function affects the observation model matrix in the as
follows:

H(φ2D−s)f = D2D−sHf (2.49)

where D2D−s is given as

φ2D−s = [φ2D−s(1),φ2D−s(2), . . . ,φ2D−s(KM)]T . (2.50)
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2.1.4.3 1D Phase Errors

In the case of 1D phase errors, for a particular cross-range position the phase error
is the same at all range positions. Let φ1D ∈ CM be a vector whose elements are
cross-range varying phase errors for every aperture position m= 1,2, . . . ,M :

φ1D = [φ1D(1),φ1D(2), . . . ,φ1D(M)]T . (2.51)

Then, the relationship between the error-free and the phase-corrupted data can be
expressed as:

H(φ1D)f = D1DHf (2.52)

where D1D is given as

D1D = diag


ejφ1D(1), . . . , ejφ1D(1)︸ ︷︷ ︸

K

, ejφ1D(2), . . . , ejφ1D(2)︸ ︷︷ ︸
K

, . . . ,

ejφ1D(M), . . . , ejφ1D(M)︸ ︷︷ ︸
K


 . (2.53)

Note that, in the case of 1D phase errors, there are M unknowns, while in 2D
separable and non-separable phase error cases, there areM+K andMK unknowns,
respectively. Hence, 2D non-separable phase error correction is a more challenging
task compared to the others.

2.1.5 Existing Autofocus Methods

SAR autofocus has been an active area of research over the years [52, 54–104]. In
early studies, researchers have focused on 1D phase errors, and tackling 2D separable
and non-separable phase errors is a relatively recent research area [52,75–77,79,96].
Most of the existing autofocusing algorithms perform postprocessing, i.e., they try
to eliminate the effects of phase errors from conventionally reconstructed images.
Recently, algorithms for joint image reconstruction and phase error correction have
also been proposed [52,75,76,79,81].

2.1.5.1 Conventional Methods

Two methods, namely, inverse filtering and subaperture-based methods, are con-
sidered as conventional methods, as they are the earliest attempts to tackle phase
errors, and have simple formulations with easy implementations.
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Inverse Filtering In inverse filtering, the amount of defocus on a single point
target is used to estimate phase errors. As mentioned before, the effect of 1D phase
errors in the image domain can be viewed as convolution of each range line of the
image with a 1D blurring kernel in the cross-range direction. This effect can be
expressed as

F̃(a,b) = h̃(b)~F(a,b) (2.54)

where
h̃(b) = F−1

m ejφ(m). (2.55)

Here, F̃ denotes the defocused version of the image F5, F−1 denotes inverse Fourier
transform, a and b are range and cross-range image domain indices, respectively,
~ denotes circular convolution operation and, m is the cross-range index in the
frequency domain. In inverse filtering approach, it is assumed that a single point
target can be isolated in the defocused image. This technique estimates phase errors
by finding such an isolated strong point target in the defocused image and then using
the defocus information on that point target.

Subaperture-based Methods In these methods, the data from subapertures are
used to estimate phase errors. The main assumption of these methods is that the
phase error function is a polynomial function of the aperture position. For example,
in case of quadratic phase error, the aperture is divided into two subapertures, then
in each subaperture, the phase error is approximated by a linear function. Since a
linear phase error function only shifts the image proportional to its slope, the two
low-resolution defocused images reconstructed from the two subaperture data are
shifted versions of the original image in reverse directions [51].

2.1.5.2 Phase Gradient Autofocus (PGA)

In phase gradient autofocus (PGA) [57, 61], the phase error function is estimated
by averaging across many range lines, as every target in the image is corrupted
by the same blur function. This averaging operation is performed using maximum
likelihood estimation formulation. Unlike subaperture-based methods, PGA is a
non-parametric algorithm. The algorithm aims to isolate a number of single targets
in the image to estimate phase error from those targets. Single targets are isolated
via center shifting and windowing operations. PGA selects the strongest target on
each range line and circularly shifts it to the scene center, as using the targets with
strong reflectivities provides a much better phase error estimation than using the
targets with weak reflectivities. This shifting operation produces a new image. In

5F is the matrix version of f, i.e., another interpretation is that f is a column-stacked vector generated from
F.
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this new image, all of the targets which will be used in the estimation process, lie
in the center of the cross-range dimension. In the next step, a windowing operation
is performed to preserve the information contained in the blur footprints of the
center-shifted targets and reject information from all other surrounding targets with
weak reflectivities. After center-shifting, the necessary information, contained in
the support of the blur footprint, is extracted through windowing. In this stage,
determining the window width is crucial, as choosing a width smaller than the blur
footstep would prohibit capturing all of the necessary information, while choosing
the width larger than the blur footprint would increase noise levels.

2.1.5.3 Multi-Channel Autofocus (MCA)

Multi-channel autofocus MCA [74] employs a non-iterative algorithm which finds the
focused image using a basis formed from the defocused image, relying on a condition
on the image support to obtain a unique solution. In particular, MCA estimates 1D
phase error functions by directly solving a set of linear equations obtained through
an assumption that there are zero-reflectivity regions in the scene to be imaged.
When this is not precisely satisfied, presence of a low-return region is exploited,
and the phase error is estimated by minimizing the energy of the low-return region.
When the desired conditions are satisfied, MCA performs very well. However, in
scenarios involving low-quality data, e.g., due to low SNR, the performance of MCA
degrades. A number of modifications to MCA have been proposed, including the
incorporation of sharpness metric optimization into the framework [74], and the use
of a semi-definite relaxation based optimization procedure [83] for better phase error
estimation performance [51].

2.1.5.4 Sparsity-driven Autofocus (SDA)

In sparsity-driven autofocus (SDA) [52], phase error correction is performed jointly
with image reconstruction, rather than as a postprocessing step. The overall process
is formulated as a regularized optimization with the cost function

J(f,φ) = ‖y−H(φ)f‖22 +λ‖f‖1 (2.56)

where λ is the regularization parameter, which determines the emphasis on the
sparsity-promoting `1-norm prior, and φ is the correct phase of the phase history
data. Note that, unlike (2.19), in SDA the model matrix H depends on φ, rather
than being constant. This optimization problem is solved through a coordinate
descent based numerical iterative algorithm. This algorithm jointly minimizes the
cost function with respect to f and φ. Particularly in each iteration, there are im-
age formation, phase error estimation, and phase error correction steps. In image
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formation step, φ is kept constant and f is estimated, then in the phase error esti-
mation step, φ is updated using the new estimate of f, and finally in the phase error
correction step, the model matrix H is updated according to the updated φ. These
three steps are performed iteratively until convergence, or stopping criteria are sat-
isfied. Algorithm 1 summarizes the SDA process. The success of SDA is partially
attributed to the use of non-quadratic regularization, as it helps overall algorithm
to exhibit robustness to small perturbations on the observation model matrix [105].
In SDA, separate algorithms have been proposed for the cases of 1D phase errors,
2D separable phase errors, and 2D non-separable phase errors.

Algorithm 1: Sparsity-driven autofocus algorithm.
Require: H(φ(0)), ε, N.
f(0)←H(φ(0))Hy
while ‖f

(n+1)−f(n)‖
‖f(n)‖

≥ ε and n≤N do

f̂
(n+1) = argminfJ(f,φ(n))

φ̂
(n+1) = argminφJ(f(n+1),φ)

Update H(φ(n+1)) using φ(n+1) and H(φ(n)).
n← n+ 1

end while

2.1.6 SAR ATR

Automatic target recognition (ATR) is an important application of SAR imaging.
In ATR, the task is to automatically identify the regions-of-interest (ROIs) that
contain targets and then to determine which classes targets belong to. ATR tasks
are considered as highly challenging, as SAR images are extremely sensitive to target
orientation. Figure 2.4 shows the conventionally reconstructed images of T72 tank
in the MSTAR dataset [2] for different orientations relative to the imaging platform.

SAR ATR has been an active and popular research area for decades [106–126]. The
process of SAR ATR generally includes four steps; detection, discrimination, feature
extraction, and classification [119]. In the detection step, potential ROIs are located,
and then falsely detected ROIs are discarded in the discrimination step. In the fea-
ture extraction step, distinctive features are extracted from the detected ROIs, and
then finally classification task is performed using these extracted features in the last
step. In SAR ATR literature, the emphasis is mostly on last two steps with the
assumption that the ROIs including targets are already detected and discriminated.
In early works, the classification task was done without feature extraction, i.e., by
directly using reconstructed images, with pre-defined classifiers. Later studies first
introduced feature extraction with hand-picked features, and then learned classi-
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Figure 2.4 SAR images of T72 tank in the MSTAR dataset [2] for different orien-
tations relative to the radar platform. From top left to bottom right, each image
corresponds to an orientation angle from 0° to 355°, with 5° increments.

fiers, e.g., using dictionary learning, rather than pre-defined ones. Recent studies
combined these two steps using convolutional neural networks (CNNs). The main
advantage of using a CNN to learn features rather than using hand-picked features
is that the CNN can learn more useful patterns whose existences are not necessarily
apparent in the image.

2.2 Deep Learning Background

This section provides background information on deep learning and presents a brief
review on the use of deep learning tools within SAR imaging and SAR ATR frame-
works.
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2.2.1 Brief History of Deep Learning

Deep learning can be considered as one of the solutions to a variety of artificial
intelligence (AI) problems. Although it has become extremely popular only in the
last decade, deep learning has a long history that dates back to 1940s. However, it
has been called with different names at different time windows, i.e., cybernetics in
1940s-1960s, connectionism in the 1980s to early 1990s, artificial neural networks in
the 1990s-200s, and only recently, the name ‘deep learning’ has become widespread
[127].

The idea of building a machine that can think is at least over two millennia old
and is usually attributed to ancient Greeks [127]. The earliest primitive attempts
to build such machines dates around the medieval times, e.g., polymaths such as
al-Jazari [128] and Leonardo da Vinci [129] designed machines that are regarded as
the ancestors of modern robots.

Although the ideas that evolved into deep learning has emerged around the time that
first computers were built, these ideas did not draw much attention until recently due
to two main reasons: 1) Computers did not have enough computational resources
that would satisfy the needs to train deep neural networks; and 2) deep neural
networks need large amounts of data to train, which has only been available after
the recent digitization of the society [127].

2.2.2 Deep Neural Network Layout Types

In this section, we will describe four common deep neural network layouts, namely,
multilayer perceptron (MLP), autoencoder (AE), convolutional neural network
(CNN), and recurrent neural network (RNN).

2.2.2.1 Multilayer Perceptron (MLP)

The perceptron, which was capable of binary classification, was introduced in 1958
[130]. MLPs are extensions of perceptrons which are designed for more complicated
tasks. An MLP consists of an input layer, one or more hidden layers, and an output
layer. The nodes in the layers of MLPs, apart from the input layer, are made of
perceptrons with nonlinear activation functions, and are often called as neurons.
Figure 2.5 shows an MLP with an input layer with dimension of 3, an output layer
with dimension of 2, and two hidden layers with 4 and 3 neurons, respectively. MLPs
are also called as feedforward neural networks, as information only flows from input
layer to output layer, i.e., there are no feedback connections in which the output
is fed back into the network. MLPs are considered to be main or ‘vanilla’ neural
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Figure 2.5 An illustration of a multilayer perceptron with two hidden layers.

network as other layouts are derived from MLPs.

2.2.2.2 Autoencoder (AE)

Autoencoders (AE)s are neural networks that try to mimic their input at their
output. AEs can be considered as consisting of two parts, i.e., encoder and decoder.
The encoder aims to learn a mapping from the input to a transform domain, which
typically has a lower dimensionality than the input, and the task of the decoder is
to reconstruct the input at the output from the transformed version of the input.
However, AEs are not generally used to copy the input at the output, rather they
are designed to be unable to learn to copy perfectly. They are usually restricted in
ways to ensure that they will only copy approximately, and only copy those inputs
which resembles the training data [127]. These restrictions usually lead AEs to learn
useful properties of the data. Figure 2.6 shows an illustration of an AE with one
hidden layer. AEs can be used in many tasks, e.g., dimensionality reduction, feature
learning, manifold learning, information retrieval, and denoising.

2.2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are a special kind of MLPs which are suitable
for data that has grid-like topology, e.g., images. The earliest CNN-like design was
Neocognitron [131] which was built for shift-invariant pattern recognition in 1980s.
CNNs are neural networks in which at least in one layer, the matrix multiplication
is replaced with the convolution operation. Unlike MLPs, in CNNs, nodes in a layer
are only connected to a subset of nodes from the previous and the next layers, hence
CNNs have sparse connectivity. Also, within convolutional layers, same parameters
are used for each node. Sparse interactions and parameter sharing help with both
efficient memory use and translational and shift-invariance. Figure 2.7 shows a CNN
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Figure 2.6 An illustration of an autoencoder with a single hidden layer.

with the convolutional kernel size of 3 at every layer. Note that each node is only
connected to 3 nodes from the previous layer and 3 nodes from the next layer (except
those at the edges) rather than all nodes.

2.2.2.4 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) [132] are neural networks that are designed for
processing sequential data, e.g., speech signals, videos, stock market values, texts,
DNA sequences etc. Unlike previous layouts, RNNs have feedback connections from
one or more layers to other (same or previous) layer(s). Figure 2.8 shows an illus-
tration of an RNN in which the value of the hidden node is fed back to itself. RNNs
can have finite impulse response (FIR) or infinite impulse response (IIR). FIR RNNs
are in the form of directed acyclic graph while IIR RNNs are in the form of directed
cyclic graphs. Finite impulse RNNs can be unrolled and replaced with a feedforward
neural network [133]. Long short-term memory (LSTM) networks [134] and gated
recurrent units (GRUs) [135] are two common layouts of RNNs, both of which can
be FIR or IIR.

2.2.3 Deep Learning in SAR Literature

After the resurgence of deep learning in 2006 [136], and especially since the suc-
cess of AlexNet [35] in ILSVRC 2012, DNNs have enjoyed a growing amount of
attention coming from many different research areas, most notably, computer vision
and signal processing. DNNs have been used for many image processing tasks in
the last decade, including classification, reconstruction, restoration, denoising, de-
blurring, and super-resolution. Naturally, SAR imaging has also received its share
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Figure 2.7 An illustration of a CNN with the convolutional kernel size of 3. All the
nodes whose values are used to determine the value of the red node in the second
hidden layer are shown in green, while all the nodes whose values are determined
using the value of the red node are shown in blue.
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Figure 2.8 An illustration of an RNN with a single input, a single hidden unit and
a single output.
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from this ever-growing interest. Much like early6 deep learning works were mostly
concentrated on image classification tasks, initial works on SAR imaging using deep
learning tools were on ATR [117,121–123,125,126,137–140] and other classification
or detection applications [141–145]. However, only a few works focused on image
formation [146–149].

2.3 Plug-and-Play (PnP) Priors

As we have discussed before, the discrete observation model given in (2.19), like
many inverse problems in imaging, is ill-posed, and can only be solved satisfactorily
by incorporating regularization into the inversion process. Regularized cost func-
tions typically involve two terms: a data fidelity term to ensure the final image is
consistent with the measured data, and a regularizer (prior) term that promotes so-
lutions with desirable properties [150,151]. Regularization-based image reconstruc-
tion methods can alleviate problems caused by incomplete data or sparse apertures.
Also, they produce images with increased resolution, reduced sidelobes, and reduced
speckle by incorporating prior information about the scene. In the past, many
regularization-based image reconstruction methods have been proposed including
non-quadratic regularization (NQR) based [1, 75], sparsity-driven [87, 152–154] and
dictionary learning (DL) based [3] SAR imaging.

It is not an easy task to minimize a regularized cost function, as the two terms are
usually quite different, and it is unlikely to find a single optimization approach that
will be appropriate for both. Using a proximal algorithm [155] such as iterative
shrinkage thresholding algorithm (ISTA) [156] and alternative direction method of
multipliers (ADMM) [34,157] is the natural choice to tackle this issue, as they convert
the original optimization problem into a series of smaller optimization problems,
hence each term can be minimized separately using an appropriate minimization
method. Proximal methods have also found use in SAR imaging tasks [89, 158–
160]. The key ingredient in these methods is the proximal operator which involves
an optimization problem that is shown to be equivalent to a simple denoising of
intermediate solutions under Gaussian white noise [33,151].

Recently, a new framework, called plug-and-play (PnP) priors has been intro-
duced [33] which replaces the proximal operator by a suitable denoising method.
This framework has gained great attention from the computational imaging commu-
nity [151,161–185] since its emergence. Different denoisers have been adopted within
the PnP framework, such as BM3D [186] (as in [33,151,162–164,167,168,170,179]),

6Early within this last resurgence.
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non-local means (NLM, as in [162, 164, 173, 176, 182]), NCSR [187] (as in [161]),
Gaussian mixture models (GMM, as in [165, 169, 172]), and deep learning based
ones [166, 174, 175, 178, 181, 183, 185]. Along with ADMM, and ISTA, various other
proximal algorithms, including approximate message passing (AMP) [188], half
quadratic splitting (HQS) [49, 50], primal-dual splitting [189], and consensus equi-
librium [171] have been used within PnP. This framework has been applied to many
imaging problems including reconstruction [33, 151, 164, 174, 175, 179, 180, 183, 185],
denoising [166,176], restoration [162,165,167,170,172,173], deblurring [165,166,181],
super-resolution [161,162,173,181,182], phase retrieval [163,185], and hyperspectral
sharpening [169].

PnP priors with a variable splitting algorithm such as ADMM enables the integration
of data fidelity based on a physical observation model with any explicit or implicit
regularizing prior. Next, we will first describe the ADMM algorithm, and then
formulate the PnP framework using ADMM.

2.3.1 Alternating Direction Method of Multipliers
(ADMM)

Consider the unconstrained optimization problem

x̂ = argmin
x

f(x) +λg(x) (2.57)

The idea of ADMM is to convert (2.57) into the following constrained problem by
variable splitting:

{x̂, v̂}= argmin
x,v

f(x) +λg(v) subject to x = v (2.58)

Next, consider the augmented Lagrangian function corresponding to (2.58):

L(x,v,u) = f(x) +λg(v) +uT (x−v) + ρ

2 ‖x−v‖
2
2 (2.59)

where ρ is the penalty parameter of the ADMM.

The minimizer of (2.58) is the saddle point of L, which can be found by solving
a sequence of sub-problems, i.e., the ADMM iterations, which, in scaled form, are
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given by [34]:

x(k+1) = argmin
x∈Rn

f(x) + ρ

2
∥∥∥x− x̃(k)

∥∥∥2
2

(2.60)

v(k+1) = argmin
v∈Rn

λg(v) + ρ

2
∥∥∥v− ṽ(k)

∥∥∥2
2

(2.61)

ū(k+1) = ū(k) + (x(k+1)−v(k+1)) (2.62)

where ū(k) , (1/ρ)u(k) is the scaled Lagrange multiplier, x̃(k) ,v(k)−ū(k) and ṽ(k) ,

x(k+1) + ū(k). Under mild conditions, e.g., when both f and g are closed, proper
and convex, and if a saddle point of L exists, it can be shown that the iterates
(2.60)-(2.62) converge to the solution of (2.58).

2.3.2 PnP ADMM

Note that ADMM iterations (2.60)-(2.62) have a modular structure. (2.60) can be
regarded as an inversion step as it involves the forward imaging model f(x) whereas
(2.61) can be considered as a denoising step as it is an image domain operation
involving the prior g(v). To show that, let us define σ ,

√
λ/ρ, then (2.61) becomes

v(k+1) = argmin
v∈Rn

g(v) + 1
2σ2

∥∥∥v− ṽ(k)
∥∥∥2

2
(2.63)

Treating ṽ(k) as the noisy image, (2.63) minimizes the residue between ṽ(k) and
clean image v using the prior g(v). For example, if g(v) = ‖v‖TV, i.e., the total
variation norm, then (2.63) is the standard total variation denoising problem.

Venkatakrishnan et al. [33] proposed a variant of the ADMM algorithm by suggesting
that one does not need to specify g before running the ADMM. Instead, they replaced
(2.61) by an off-the-shelf image denoising algorithm, denoted by Dσ, to yield

v(k+1) =Dσ(ṽ(k)) (2.64)

which they called Plug-and-Play (PnP) ADMM. The convergence guarantee of the
ADMM does not necessarily hold in general, for the PnP-ADMM. Accordingly,
convergence is a topic of ongoing research [162,177,178,184].
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Chapter 3

PnP-CNN-SAR for Image Recon-
struction

Previously, we have discussed that the discrete observation model given in (2.19) is
ill-posed [41], and can be considered as ill-conditioned to a certain extent depending
on the specifics of the observation scenario. Hence, we have concluded that it can
only be solved satisfactorily using regularization. In this chapter, we introduce the
PnP-CNN-SAR framework for SAR image reconstruction. In this framework, the
problem of SAR image reconstruction is formulated as a regularized optimization
problem, then using the PnP priors framework with ADMM, the objective function
is divided into subproblems and the proximal operator is replaced with a CNN-based
prior. The final portion of this chapter contains experimental results, demonstrating
the effectiveness of the proposed PnP-CNN-SAR framework. This is a joint work
with Ammar Saleem, another Ph.D. student in our group.

3.1 Objective Function

Consider the discrete observation model introduced in (2.19):

y = Hf+n (3.1)

where y ∈ CM×1 is the complex valued column-stacked observation vector from
which we desire to estimate the underlying column-stacked SAR image f ∈ CN×1

where M ≤N1, and H ∈CM×N is the Fourier transform-based forward model. Let

1Note that, in Chapter 2, we have used K andM to denote numbers of sampled observation points in range
and cross-range directions, respectively. However, in this chapter, we only use column-stacked vectors for
both phase histories and underlying SAR image, i.e., y and f, throughout the formulation of the proposed
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R denote the regularization function we impose on the reflectivity field. Then the
regularized objective function becomes

f̂ = argmin
f
‖y−Hf‖22 +λR(|f|) (3.2)

Note that regularization is performed on the magnitude of the reflectivity field f.
For most SAR scenes, reflectivity phase at a certain location can be modeled as a
uniformly distributed random variable uncorrelated with the phase at other locations
[11]. Nevertheless, we need to estimate the complex-valued field f in the process of
ensuring good data fidelity. We can write f = Θfm where Θ is a diagonal matrix
containing the phases of f at each pixel in exponentiated form, i.e., Θ = diag(ejϕ(f))
where ϕ(·) denotes the phase, and fm denotes the magnitude of f. Then, replacing
f with Θfm in (3.2), we get:

{f̂m,Θ̂}= argmin
fm,Θ

||y−HΘfm||22 +λR(fm) (3.3)

It is pertinent to mention that, up to this point, the explicit definition of a regularizer
has not been formulated. The regularization will be explained in Section 3.2 after
we formulate ADMM iterations for (3.3) and decouple the data-fidelity term and
the regularization term. By doing so, we will be able to plug-in any regularizer into
the objective function without affecting the data-fidelity.

3.2 Variable Splitting and ADMM

Rewriting (3.3) in a suitable form by introducing an auxiliary variable with a con-
straint, we have

{f̂m,Θ̂, ĥ}=argmin
fm,Θ,h

||y−HΘfm||22 +λR(h)

s.t. fm−h = 0 (3.4)

The augmented Lagrangian for (3.4) is given by

L
(
f̂m,Θ̂, ĥ, û

)
= ||y−HΘfm||22 +λR(h) + ρ

2 ||fm−h+u||22 + ρ

2 ||u||
2
2 (3.5)

Let f̃(k) = h(k)−u(k) and h̃(k) = f(k+1)
m +u(k). Also, let us introduce a vector θ ∈

CN×1 that contains the diagonal elements of the phase matrix Θ, and the matrix
B whose diagonal elements are the reflectivity magnitudes fm. Finally, let us invoke

method. Hence, for notational simplicity, we use M and N to denote sizes of y and f, respectively.
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the constraint that the magnitudes of the elements of θ denoted as |θi| should be
1, simply because they contain phases of f at each pixel in exponentiated vector
form ejϕ(f). Then, each iteration of the ADMM algorithm will perform the following
steps:

θ(k+1) = argmin
θ
||y−HB(k)θ||22 +λθ

N∑
i=1

(|θi|−1)2 (3.6)

f(k+1)
m = argmin

fm
||y−HΘ(k)fm||22 + ρ

2 ||fm− f̃
(k)||22 (3.7)

h(k+1) = argmin
h

λR(h) + ρ

2 ||h̃
(k)−h||22 (3.8)

u(k+1) = u(k) + f(k+1)
m −h(k+1) (3.9)

where λθ and ρ are hyper-parameters.

The first two steps only depend on the choice of the forward model while the third
step only depends on the choice of the regularizer. Therefore, using this plug-and-
play framework, we can now write the minimization as two independent modules.
Thus, this framework can be used to mix and match different prior models with
forward models.

Sub-problem (3.6) is solved through a fixed point algorithm, which can also be shown
to be equivalent to a particular quasi-Newton iterative minimization algorithm:

Gθ(n+1) = (HB)Hy+λθe
jϕ(θ(n)) (3.10)

where
G = (HB)H(HB) +λθI (3.11)

Each iteration in (3.10) involves solving a set of linear equations. This is an in-
dication that the approach here solves the non-quadratic optimization problem in
(3.6) by turning it into a series of quadratic problems. This linear set of equations
can efficiently be solved by the conjugate gradient algorithm with the convergence

criterion

∥∥∥θ(n+1)−θ(n)
∥∥∥∥∥∥θ(n)

∥∥∥ < 10−14. For this sub-problem, it is possible that one can

come up with a more efficient algorithm than ours.

Sub-problem (3.7) has a closed form solution, i.e., taking the derivative with respect
to fm and equating it to zero results in the following:

(ρ2I+ ΘHHHHΘ)̂fm = ΘHHHy+ ρ

2 f̃ (3.12)
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We solve this complex-valued linear system using the conjugate gradient algorithm.
This produces a complex solution. Therefore, we address it by considering its real
part only and equating any negative value to zero, as in practice the imaginary part
of this solution has values close to zero which can easily be ignored, and the real
part usually has only a small number of negative values at most (which are also very
close to zero). Note that within each iteration of ADMM, sub-problems (3.6) and
(3.7) are solved iteratively until the convergence criterion is satisfied, before moving
to the sub-problem (3.8). This process is called the model update.

Sub-problem (3.8) can be rewritten as

h(k+1) = argmin
h

1
2(
√
λ/ρ)2

||h̃(k)−h||22 +R(h) (3.13)

which is equivalent to denoising the image h̃(k) with a Gaussian denoiser with a noise
level

√
λ/ρ [190]. Hence, any Gaussian denoiser can act as a modular component

of the overall algorithm to solve (3.8). In the work we present here, denoising is
achieved through a trained CNN. Note that the parameter λ is not explicitly defined
as it depends on ρ and the network settings. The details about the architecture and
training will be discussed in Section 3.3.1.

Note that (3.9) is not an optimization problem, rather it is a direct update on the
Lagrange multiplier u. Algorithm 2 shows the summary of the PnP-CNN-SAR.
Note that f[t]m stands for the outputs of the inner loop, i.e., the model update, while
f(k)
m stands for the outputs of the outer loop, i.e., the overall ADMM algorithm.
Typical values for K and T are 20 and 100, respectively.

3.3 Experimental Results

In this section, we demonstrate the effectiveness of PnP-CNN-SAR on synthetic and
real SAR scenes. We also tabulate results for various scenarios and compare them
with FFT-based, NQR-based [1], and DL-based [3] SAR image reconstructions as
well as a PnP framework with BM3D [186] regularizer. Finally, we give an analysis
on the effect of training different networks for different scenarios, in case of synthetic
scene experiments.

3.3.1 Setup

The experiments are conducted with variation in two major aspects, first is the type
of observation SAR scene, second is the parameters of SAR observation phenomenon.
The observation SAR scenes are further bifurcated to synthetic and real scenes. The
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Algorithm 2: PnP-CNN-SAR for image reconstruction.
Require: y, H, ε, Dσ(x), K, T .
f(0)←HHy {Conventional reconstruction}
B(0)← diag{f(0)

m }
θ(0)← ∠f(0)

h(0)← f(0)
m

u(0)← 0
k← 0
n← 0

while

∥∥∥u(k+1)−u(k)
∥∥∥

‖u(k)‖ ≥ ε and k ≤K do

f̃(k)← h(k)−u(k)

f[0]
m ← f(k)

m

while

∥∥∥f[t+1]
m −f[t]

m

∥∥∥∥∥∥f[t]
m

∥∥∥ ≥ 10−4 and t≤ T do

Calculate θ(t) using (3.6) {Phase alignment}
Solve for f(t)m using (3.7) {Magnitude update}
t← t+ 1

end while
f(k+1)
m ← f[t]m
h̃(k)← f(k+1)

m +u(k)

h(k+1)←Dσ(h̃(k)) {Prior update}
u(k+1)← u(k) + f(k+1)

m −h(k+1)

k← k+ 1
end while
return f(k+1)

m

details of the real scenes are given in Section 3.3.3. It is pertinent to mention that,
SAR scenes are complex valued but the synthetic scenes are real-valued and we only
have access to the reflectivity magnitudes of the real scenes. Therefore, we add
uniform random phase distributed over [−π,π] to these real-valued (synthetic and
real) SAR scenes to generate/simulate complex valued SAR reflectivities of a SAR
scene.

The secondary segregation of the experiments brings SAR observation phenomenon
into account. It is based on parameters of forward modelH and noise n. The forward
model H consists of band-limited 2D Fourier transform where the band-limitation is
denoted in terms of data availability percentage L. In particular L=Na/Nd where
Na is the number of available phase history samples and Nd is the number of phase
history samples in full band-width data. In case of real SAR scene, full band-width
data is not available, therefore, the existing bandwidth of the reference SAR scene
is assumed to be full or 100%. The phase histories are acquired from the complex
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Figure 3.1 Network architecture for synthetic scene experiments. ACBR stands for
Alternating Convolutional-Batch normalization-ReLU layers.
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Figure 3.2 Network architecture for real scene experiments.

valued SAR reflectivities using the approach described in [12, 191]. For the imple-
mentation of different data availability levels, we crop the appropriate amount of
phase history data with equal band-limitation in the range and azimuth directions.
In the Fourier perspective, its a low-pass square box filter where the box is located
in the center of the 2D Fourier spectrum, essentially eliminating high frequency
complex-valued frequency components. The area of the box is calculated from the
data availability level L. The box filtering effect is essentially limiting the transmit-
ted signal bandwidth and the range of look angles, leading to reductions in nominal
range and cross-range resolution, respectively. Note that in spotlight-mode SAR,
phase history data (after pre-processing steps) consist of samples of the band-limited
spatial Fourier transform of the reflectivity field on a polar grid (see Eq. (2.16) and
Refs. [12, 191]). Conventional polar format imaging interpolates the data to a rect-
angular grid and then performs a 2D FFT. We use a slightly simplified forward
model and generate band-limited data on a rectangular, rather than polar, grid. In
practice, this would correspond to adding one more data preprocessing step, namely
polar to rectangular interpolation, and then posing the image formation problem
based on such interpolated data on the rectangular grid. The other parameter in-
volved in SAR observation process is noise n, which is assumed to be i.i.d. in each
pixel and circularly-symmetric complex Gaussian, whose real and imaginary parts
are normally distributed with zero mean and σn standard deviation.

In both synthetic and real scene experiments, we have considered various scenarios,
i.e., two different noise levels (σn ∈ {0.1,1}×σy, where σy is the standard deviation
of the magnitude of the phase history data) and 6 different data availability levels
in the phase history domain (100%, 90%, 80%, 70%, 50%, and 30%), hence, in total
12 types of experiments are conducted.

Our experimental procedure is composed of two phases, namely, network training
and image reconstruction using the PnP-ADMM algorithm. The network training
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is performed on two different architectures, one each for synthetic and real scene
experiments. The network architecture for the synthetic scene experiments is shown
in Figure 3.1. The architecture used for real scene experiments is inspired from U-Net
[192] and is shown in Figure 3.22. It is worth noting that the network architectures
we used for the synthetic and real scene experiments are different. These selections
were made based on empirical exploration of several architectures for each scenario.
These choices were driven by the types of features and the sizes of the scenes. While
the architectures used here provide good results, we do not claim to have found
the best ones. It would also be of interest to find architectures that perform well
over all scenarios. The architecture we have proposed for our real scene experiments
should be appropriate for generic real SAR imaging tasks. For the synthetic scene
experiments, we have trained 12 different networks of the same architecture, i.e.,
one for each type of experiments considered, while for the real scene experiments,
a single network is trained, which corresponds to the case of 100% data availability
and σn = σy.

In training, we perform conventional reconstruction from the noisy phase histories to
get noisy images. We then extract overlapping patches using the magnitudes of the
conventionally reconstructed images, (16× 16 for the synthetic scene experiments,
and 32×32 for the real scene experiments), and finally augment the patches by ro-
tation, with angles [90°, 180°, 270°]. We train CNNs to learn a mapping from these
noisy patches to their clean counterparts in the case of synthetic scene experiments,
and we perform residual learning for the real scene experiments. Note that as we
do not have ground truth for the real scene experiments, we start our experiments
with high-resolution TerraSAR-X reconstructions, which we call reference images.
In the context of our experiments, these reference images can be viewed as conven-
tionally reconstructed images from ‘full-bandwidth’ noiseless data, i.e., without any
bandwidth reduction we impose, and without any noise we add on the phase history
data. Based on these reference images, we then generate simulated data for various
scenarios by appropriate Fourier transformation, band limitation, and noise addi-
tion operations. The training of the networks for the synthetic scene experiments
took around 3 hours each, while the network for the real scene experiments is trained
roughly in 3 days, on MATLAB R2019b, using NVIDIA TITAN Xp GPU. Networks
used in the synthetic scene experiments are trained with RMSProp [193] solver, 10−3

learning rate, 0.9 learning rate drop factor with the period of one epoch, mini-batch
size of 1500 for 100 epochs, while the network used in the real scene experiments is
trained with RMSProp [193], 10−4 learning rate, 0.9 learning rate drop factor with

2We acknowledge that the architecture we propose is inspired from the U-Net architecture, however it is
not precisely U-Net.
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the period of one epoch, mini-batch size of 500 for 20 epochs.

In image reconstruction, we follow the steps mentioned in Algorithm 2. We initialize
the solution with the conventional FFT-based reconstruction. Then we solve equa-
tions (3.6) and (3.7) iteratively (within each iteration of ADMM), as mentioned in
Section 3.2. Then we solve (3.8) by a denoising procedure using our trained CNN.
The procedure include, first extracting overlapping patches from the input image
(16× 16 patches for the synthetic, and 32× 32 patches for the real scene cases),
and feeding the patches to the CNN to get denoised patches. Then we combine the
overlapping patches to obtain the overall denoised image. These steps are repeated
iteratively until the stopping criteria is satisfied. The stopping criterion is chosen as
‖u(k+1)−u(k)‖

N < ε. Since the data availability and noise levels have a great impact on
the performance, various ε values are employed for different experiments. We ob-
served that as the data availability reduces or the noise increases, i.e., as the problem
at hand gets more challenging, a higher value of ε yields better results, while for the
less challenging cases, a smaller ε is preferred. For synthetic experiments, we used ε
values ranging from 5×10−5 to 5×10−3, while for the real case, the range was from
1×10−3 to 1×10−1. The value of ρ is chosen as 12 throughout the experiments and
the value of λθ is calculated from the data availability level, i.e., λθ = 2

L2 where L
is the data availability level.

We compare our proposed framework with FFT-based, NQR-based [1], DL-based [3]
reconstructions, and a PnP framework with BM3D [186] regularizer (PnP-BM3D)
in terms of signal-to-noise ratio (SNR) and structural similarity (SSIM) index [194]
values of the reconstructed images. The formula of SSIM is given as:

SSIM(x,y) = (2µxµy + c1)(2σxy + c2)
(µ2

x +µ2
y + c1)(σ2

x +σ2
y + c2) (3.14)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and cross-
covariance for images x and y. c1 = (k1l)2 and c2 = (k2l)2 are constants to maintain
formula validity, avoiding the denominator being zero. l represents the dynamic
range of the pixel value. k1 = 0.01 and k2 = 0.03 are default values. A larger SSIM
value indicates a better similarity of the two images.

The problem formulation for the NQR-based [1] reconstruction is given as:

f̂ = argmin
f
‖y−Hf‖22 +λ1 ‖f‖pp+λ2 ‖Dfm‖pp (3.15)

where D is a discrete approximation to the 2D derivative operator (gradient). Here,
the first term is the data-fidelity term while second and third terms are aimed at
enhancing point-based and region-based features respectively. The parameters λ1
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and λ2 are optimized to obtain the highest SNR for each image in each scenario
while p= 0.9 is used for all the considered scenarios.

The problem formulation for the DL-based [3] reconstruction is given as:

{|f̂|,Θ̂,D̂, α̂i}= argmin
fm,Θ,D,αi

λ‖y−HΘfm‖22

+
∑
i

‖Ei|f|−Dαi‖22 +
∑
i

µi ‖αi‖0

s.t. |Θjj |= 1 ∀j (3.16)

where D and αi are the dictionary and the sparse coefficients to be learned, respec-
tively, and Ei are the patch extraction operators. See [3] for details.

For PnP-BM3D experiments, the steps in the Algorithm 2 are followed, and in the
prior update step, the BM3D prior is used instead of the CNN-based prior. The
MATLAB implementation of BM3D is downloaded from the authors’ website3.

3.3.2 Synthetic Scene Experiments

The training and the test images for the synthetic scene experiments are shown in
Figures 3.3a and 3.3b, respectively. Note that training is not performed using the
training images themselves, rather 16× 16 overlapping patches that are extracted
from the training images. Consequently, in every ADMM iteration, during the prior
update step, overlapping patches are extracted, each patch is passed through the
network, and then patches are combined to get the reconstructed image.

Although we have trained a network for each scenario, we have compared the per-
formances of all networks in each scenario. Table 3.1 shows the average SNR and
SSIM values for different experiments using different networks, respectively. Note
that, the network that gives the best result for a particular scenario is not always
the one that is trained for that scenario.

The best results from Table 3.1 are also presented in Table 3.2 for comparison with
other methods. Table 3.2 shows that our framework outperforms other methods in
terms of both SNR and SSIM in 11 out of 12 scenarios. Figure 3.4 shows the effects
of the noise level and data availability on the SNR and SSIM values.

Figures 3.5 and 3.6 show reconstruction results for Image 7 with noise σn = 0.1σy,
and Image 2 with noise σn = σy, respectively, for qualitative analysis. It appears
that our proposed framework is better at preserving the details and more robust to

3http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software
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Table 3.2 Average SNR and SSIM values for different noise and data availability
levels for the synthetic scene experiments. Best results are shown in bold, second
best results are shown in red.

SNR (dB) SSIM
Available Data Method 0.1σy σy 0.1σy σy

FFT-based 25.55 5.84 0.906 0.449
NQR-based [1] 27.31 12.36 0.985 0.631
DL-based [3] 26.31 6.13 0.877 0.343
PnP-BM3D 25.95 5.98 0.869 0.351

100%

PnP-CNN-SAR 37.92 13.99 0.996 0.687

FFT-based 11.29 5.62 0.539 0.366
NQR-based [1] 17.84 11.03 0.845 0.549
DL-based [3] 24.76 4.81 0.869 0.269
PnP-BM3D 17.77 5.88 0.737 0.289

90%

PnP-CNN-SAR 25.33 12.18 0.954 0.591

FFT-based 9.65 5.64 0.474 0.336
NQR-based [1] 15.55 10.02 0.809 0.486
DL-based [3] 22.20 5.42 0.852 0.272
PnP-BM3D 12.14 5.89 0.544 0.254

80%

PnP-CNN-SAR 22.30 11.03 0.921 0.488

FFT-based 7.94 5.47 0.390 0.294
NQR-based [1] 10.83 8.97 0.596 0.431
DL-based [3] 12.22 6.02 0.566 0.254
PnP-BM3D 8.68 5.84 0.409 0.229

70%

PnP-CNN-SAR 17.17 10.37 0.831 0.433

FFT-based 6.00 5.26 0.289 0.227
NQR-based [1] 8.97 8.02 0.432 0.316
DL-based [3] 7.44 6.55 0.344 0.209
PnP-BM3D 7.09 5.44 0.293 0.186

50%

PnP-CNN-SAR 11.23 8.41 0.596 0.335

FFT-based 4.41 4.52 0.191 0.158
NQR-based [1] 7.70 7.32 0.296 0.263
DL-based [3] 5.71 6.31 0.216 0.156
PnP-BM3D 5.36 5.15 0.188 0.131

30%

PnP-CNN-SAR 7.79 6.78 0.390 0.216
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(a) (b)

Figure 3.3 Synthetic SAR scenes used for (a) training the CNN and learning the
dictionary, and (b) performance evaluation.

data limitations, and gives the best visual quality in the majority of scenarios.

3.3.3 Real Scene Experiments

For the real scene experiments, TerraSAR-X [195] images are used and we designed
two types of experimental settings in which we considered the following scenarios: 1)
When the training and testing are performed on non-overlapping windows extracted
from the same scene that are randomly split into training and test data sets, and 2)
when the training is done using non-overlapping windows extracted from one scene,
and testing is performed on non-overlapping windows extracted from a different
scene. These two experimental settings will be called same scene experiments, and
different scene experiments, respectively. For these experiments, two TerraSAR-X
images are used to form the data set. The first image, shown in Figure 3.7, contains
the view of the city of Wonsan in Democratic People’s Republic of Korea and,
the second image, shown in Figure 3.8, contains the view of the Kapıkule Border
Crossing near the Turkey-Bulgaria-Greece border tripoint. These images will be
referred as Wonsan and Kapıkule, respectively. The data collected for the Wonsan
image has the incidence angle of 42.88° while the incidence angle for Kapıkule is
44.77°. After post-processing, both images have the pixel resolution of 1.60 m×
1.60 m.

158 non-overlapping 170×170 windows are extracted from the Wonsan image, and
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Figure 3.4 Average SNR values for synthetic scene experiments for (a) σn = 0.1σy,
and (b) σn = σy. Average SSIM values for synthetic scene experiments for (c)
σn = 0.1σy, and (d) σn = σy.
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(a) SNR: 25.38
SSIM: 0.963.

(b) SNR: 24.58
SSIM: 0.989.

(c) SNR: 26.22
SSIM: 0.954.

(d) SNR: 25.87
SSIM: 0.950.

(e) SNR: 38.30
SSIM: 0.999.

(f) SNR: 11.41
SSIM: 0.668.

(g) SNR: 18.58
SSIM: 0.949.

(h) SNR: 24.56
SSIM: 0.950.

(i) SNR: 15.01
SSIM: 0.798.

(j) SNR: 26.14
SSIM: 0.976.

(k) SNR: 9.82
SSIM: 0.608.

(l) SNR: 13.11
SSIM: 0.769.

(m) SNR: 20.6
SSIM: 0.917.

(n) SNR: 10.75
SSIM: 0.647.

(o) SNR: 24.28
SSIM: 0.968.

(p) SNR: 7.96
SSIM: 0.500.

(q) SNR: 10.74
SSIM: 0.642.

(r) SNR: 11.56
SSIM: 0.697.

(s) SNR: 8.20
SSIM: 0.500.

(t) SNR: 18.75
SSIM: 0.921.

(u) SNR: 6.01
SSIM: 0.371.

(v) SNR: 7.74
SSIM: 0.363.

(w) SNR: 7.38
SSIM: 0.433.

(x) SNR: 6.63
SSIM: 0.339.

(y) SNR: 11.03
SSIM: 0.659.

(z) SNR: 4.40
SSIM: 0.241.

(aa) SNR: 6.56
SSIM: 0.211.

(ab) SNR: 5.52
SSIM: 0.237.

(ac) SNR: 5.20
SSIM: 0.196.

(ad) SNR: 7.63
SSIM: 0.410.

(ae)

Figure 3.5 Reconstruction results for Image 7 of the synthetic scenes with noise
σn = 0.1σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Ground truth.
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(a) SNR: 3.93
SSIM: 0.313.

(b) SNR: 14.45
SSIM: 0.907.

(c) SNR: 4.02
SSIM: 0.275.

(d) SNR: 4.02
SSIM: 0.277.

(e) SNR: 14.34
SSIM: 0.735.

(f) SNR: 3.21
SSIM: 0.285.

(g) SNR: 13.58
SSIM: 0.912.

(h) SNR: 3.10
SSIM: 0.260.

(i) SNR: 3.30
SSIM: 0.253.

(j) SNR: 12.84
SSIM: 0.566.

(k) SNR: 3.38
SSIM: 0.271.

(l) SNR: 9.11
SSIM: 0.846.

(m) SNR: 3.55
SSIM: 0.254.

(n) SNR: 3.18
SSIM: 0.235.

(o) SNR: 11.93
SSIM: 0.420.

(p) SNR: 2.98
SSIM: 0.249.

(q) SNR: 6.54
SSIM: 0.807.

(r) SNR: 3.53
SSIM: 0.239.

(s) SNR: 2.91
SSIM: 0.208.

(t) SNR: 11.17
SSIM: 0.427.

(u) SNR: 2.43
SSIM: 0.209.

(v) SNR: 4.41
SSIM: 0.638.

(w) SNR: 3.07
SSIM: 0.202.

(x) SNR: 2.28
SSIM: 0.169.

(y) SNR: 8.20
SSIM: 0.412.

(z) SNR: 2.16
SSIM: 0.127.

(aa) SNR: 4.10
SSIM: 0.681.

(ab) SNR: 2.08
SSIM: 0.119.

(ac) SNR: 1.77
SSIM: 0.210.

(ad) SNR: 3.83
SSIM: 0.060.

(ae)

Figure 3.6 Reconstruction results for Image 2 of the synthetic scenes with noise
σn = σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Ground truth.
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Figure 3.7 Wonsan image.

110 non-overlapping windows with the same size are extracted from the Kapıkule
image. Randomly selected 127 windows from the Wonsan image are used for train-
ing the network that is to be used for both scenarios. Remaining 31 windows from
the Wonsan image constitute the test set for the same scene experiments, while all
windows from the Kapıkule image are used as the test set for the different scene
experiments. Figures 3.9, 3.10, and 3.11 show the training windows, test windows
for the same scene experiments, and the test windows for the different scene exper-
iments, respectively. Note that the number of training windows are not enough to
train the network and therefore the training is performed using 32×32 overlapping
patches that are extracted from the training windows. Hence, the prior update step
of the ADMM iteration is performed the same way as described in Section 3.3.2.

3.3.3.1 Same Scene Experiments

Columns under “Wonsan” in Table 3.3 show the average SNR and SSIM values for
the same scene experiments. Figure 3.12 shows the effects of the noise level and
data availability on the SNR and SSIM values. Results show that our framework
outperforms other methods in 10 scenarios in terms of SNR, and in all scenarios in
terms of SSIM. More detailed results can be found in the supplementary material.

Figures 3.13 and 3.14 show the reconstruction results for Image 26 with noise σn =
0.1σy and Image 12 with noise σn = σy, respectively. It appears that the perceptual
quality of the images produced by PnP-CNN-SAR is better, and our framework
shows its value especially in the case of higher noise, where other methods tend
to produce blurry and/or noisy images. It is worth noting that, as the amount
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Figure 3.8 Kapıkule image.

Figure 3.9 Windows extracted from the Wonsan image that are used for training the
CNN for PnP-CNN-SAR and learning the dictionary for DL-based reconstruction.
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Figure 3.10 Windows extracted from the Wonsan image that are used for perfor-
mance evaluation in the same scene experiments.

Figure 3.11 Windows extracted from the Kapıkule image that are used for perfor-
mance evaluation in the different scene experiments.
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Table 3.3 Average SNR and SSIM values for different noise and data availability
levels for the real scene experiments. Best results are shown in bold, second best
results are shown in red.

Wonsan Kapıkule

SNR (dB) SSIM SNR (dB) SSIM
Available Data Method 0.1σy σy 0.1σy σy 0.1σy σy 0.1σy σy

FFT-based 26.65 6.33 0.973 0.457 26.63 6.62 0.989 0.597
NQR-based [1] 23.56 9.70 0.963 0.535 23.11 10.28 0.964 0.537
DL-based [3] 22.95 16.13 0.976 0.924 24.66 11.08 0.981 0.647
PnP-BM3D 26.65 6.42 0.973 0.462 26.63 6.75 0.979 0.459

100%

PnP-CNN-SAR 40.03 36.82 0.998 0.997 38.52 36.27 0.998 0.997

FFT-based 13.23 6.16 0.802 0.423 13.21 6.49 0.758 0.516
NQR-based [1] 11.64 9.09 0.683 0.486 11.70 9.65 0.705 0.492
DL-based [3] 12.71 8.90 0.783 0.538 14.22 10.21 0.822 0.584
PnP-BM3D 14.89 6.10 0.838 0.418 15.27 6.71 0.844 0.422

90%

PnP-CNN-SAR 16.78 15.85 0.900 0.857 16.87 15.43 0.892 0.851

FFT-based 10.02 6.01 0.704 0.390 10.07 6.39 0.662 0.471
NQR-based [1] 8.83 8.07 0.506 0.409 9.47 8.79 0.518 0.434
DL-based [3] 9.97 8.07 0.671 0.470 11.22 9.50 0.699 0.520
PnP-BM3D 11.65 6.18 0.731 0.400 12.36 6.82 0.729 0.401

80%

PnP-CNN-SAR 13.29 12.55 0.830 0.781 13.60 12.98 0.796 0.749

FFT-based 8.41 5.84 0.632 0.362 8.41 6.28 0.576 0.426
NQR-based [1] 7.49 7.19 0.427 0.355 8.22 8.29 0.439 0.391
DL-based [3] 8.65 7.54 0.587 0.419 9.65 8.94 0.601 0.467
PnP-BM3D 9.53 6.19 0.632 0.379 10.49 7.03 0.608 0.384

70%

PnP-CNN-SAR 10.75 10.34 0.736 0.693 11.20 10.99 0.688 0.649

FFT-based 6.22 5.42 0.510 0.315 6.33 5.86 0.358 0.275
NQR-based [1] 5.86 6.60 0.295 0.301 7.78 7.59 0.393 0.355
DL-based [3] 6.85 6.51 0.450 0.333 7.63 7.70 0.455 0.380
PnP-BM3D 7.68 6.15 0.452 0.334 8.81 7.39 0.419 0.348

50%

PnP-CNN-SAR 8.11 8.09 0.580 0.562 8.62 8.81 0.527 0.516

FFT-based 4.53 4.57 0.394 0.267 4.67 4.94 0.220 0.182
NQR-based [1] 5.71 6.14 0.270 0.284 7.01 6.84 0.346 0.323
DL-based [3] 5.14 5.06 0.334 0.258 5.67 5.89 0.339 0.298
PnP-BM3D 5.98 5.87 0.336 0.277 6.77 7.14 0.330 0.312

30%

PnP-CNN-SAR 5.56 5.89 0.406 0.363 5.98 6.48 0.384 0.339
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Figure 3.12 Average SNR values for same scene experiments for (a) σn = 0.1σy, and
(b) σn = σy. Average SSIM values for same scene experiments for (c) σn = 0.1σy,
and (d) σn = σy.

of available data reduces, the degradation of the reconstruction quality is more
prominent in real case, compared to the synthetic case. This is most likely due
to that in real case, all experiments are performed using the same network, i.e.,
trained with 100% data and σn = σy noise, while in synthetic case, networks trained
for all scenarios considered and results of the network that performed the best in
each scenario are presented. A similar degradation scheme is also visible in case of
different scene experiments, which will be discussed next.

3.3.3.2 Different Scene Experiments

Columns under “Kapıkule” in Table 3.3 show the average SNR and SSIM values
for different scene experiments. Figure 3.15 shows the effects of the noise level and
data availability on the SNR and SSIM values. Note that since FFT-based, NQR-
based [1], and PnP-BM3D methods are not learning-based, the issue of training
and testing on different scenes is only relevant to DL-based [3] and PnP-CNN-SAR.
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(a) SNR: 26.74
SSIM: 0.968.

(b) SNR: 24.26
SSIM: 0.969.

(c) SNR: 21.27
SSIM: 0.975.

(d) SNR: 26.75
SSIM: 0.968.

(e) SNR: 37.94
SSIM: 0.998.

(f) SNR: 13.12
SSIM: 0.781.

(g) SNR: 12.89
SSIM: 0.581.

(h) SNR: 10.03
SSIM: 0.695.

(i) SNR: 15.44
SSIM: 0.830.

(j) SNR: 18.13
SSIM: 0.895.

(k) SNR: 10.07
SSIM: 0.714.

(l) SNR: 9.32
SSIM: 0.527.

(m) SNR: 7.81
SSIM: 0.613.

(n) SNR: 11.75
SSIM: 0.742.

(o) SNR: 14.92
SSIM: 0.857.

(p) SNR: 8.11
SSIM: 0.649.

(q) SNR: 7.03
SSIM: 0.420.

(r) SNR: 6.96
SSIM: 0.568.

(s) SNR: 8.79
SSIM: 0.657.

(t) SNR: 11.83
SSIM: 0.779.

(u) SNR: 5.91
SSIM: 0.530.

(v) SNR: 5.51
SSIM: 0.371.

(w) SNR: 5.51
SSIM: 0.456.

(x) SNR: 6.60
SSIM: 0.505.

(y) SNR: 8.46
SSIM: 0.670.

(z) SNR: 4.24
SSIM: 0.416.

(aa) SNR: 4.11
SSIM: 0.287.

(ab) SNR: 4.22
SSIM: 0.362.

(ac) SNR: 5.19
SSIM: 0.412.

(ad) SNR: 4.92
SSIM: 0.474.

(ae)

Figure 3.13 Reconstruction results for Image 26 of the Wonsan test set with noise
σn = 0.1σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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(a) SNR: 5.42
SSIM: 0.373.

(b) SNR: 9.68
SSIM: 0.540.

(c) SNR: 15.33
SSIM: 0.922.

(d) SNR: 5.60
SSIM: 0.379.

(e) SNR: 39.86
SSIM: 0.995.

(f) SNR: 5.28
SSIM: 0.350.

(g) SNR: 8.87
SSIM: 0.538.

(h) SNR: 7.55
SSIM: 0.432.

(i) SNR: 5.13
SSIM: 0.347.

(j) SNR: 17.12
SSIM: 0.873.

(k) SNR: 5.19
SSIM: 0.325.

(l) SNR: 7.50
SSIM: 0.407.

(m) SNR: 6.75
SSIM: 0.385.

(n) SNR: 5.22
SSIM: 0.330.

(o) SNR: 12.68
SSIM: 0.822.

(p) SNR: 5.01
SSIM: 0.302.

(q) SNR: 6.52
SSIM: 0.464.

(r) SNR: 6.29
SSIM: 0.354.

(s) SNR: 5.08
SSIM: 0.316.

(t) SNR: 10.37
SSIM: 0.745.

(u) SNR: 4.69
SSIM: 0.262.

(v) SNR: 5.99
SSIM: 0.379.

(w) SNR: 5.59
SSIM: 0.310.

(x) SNR: 4.66
SSIM: 0.282.

(y) SNR: 8.11
SSIM: 0.629.

(z) SNR: 4.13
SSIM: 0.238.

(aa) SNR: 5.17
SSIM: 0.389.

(ab) SNR: 4.40
SSIM: 0.265.

(ac) SNR: 4.66
SSIM: 0.248.

(ad) SNR: 4.83
SSIM: 0.374.

(ae)

Figure 3.14 Reconstruction results for Image 12 of the Wonsan test set with noise
σn = σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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Figure 3.15 Average SNR values for different scene experiments for (a) σn = 0.1σy,
and (b) σn = σy. Average SSIM values for different scene experiments for (c) σn =
0.1σy, and (d) σn = σy.

Nevertheless, we show results from all methods. Results show that our framework
outperforms other methods in 9 scenarios in terms of SNR and, in all scenarios in
terms of SSIM. More detailed results can be found in the supplementary material.

Figures 3.16 and 3.17 show the reconstruction results for Image 16 with noise
σn = 0.1σy and Image 78 with noise σn = σy, respectively. Once again, PnP-
CNN-SAR produces visually better reconstructions, and is able to capture/preserve
more features and details compared to other methods. The performance of our ap-
proach on the different scene experiments suggests that it offers good generalization
capability.

3.3.4 Training Different Networks for Different Scenarios

In Table 3.1 we have shown the average SNR and SSIM values that are achieved
using different networks in each scenario. Our first observation is that, the network
that gives the best result for a particular scenario in terms of SNR, is not necessarily
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(a) SNR: 26.16
SSIM: 0.963.

(b) SNR: 25.31
SSIM: 0.937.

(c) SNR: 21.18
SSIM: 0.955.

(d) SNR: 26.22
SSIM: 0.934.

(e) SNR: 39.01
SSIM: 0.993.

(f) SNR: 12.74
SSIM: 0.746.

(g) SNR: 11.59
SSIM: 0.618.

(h) SNR: 8.81
SSIM: 0.635.

(i) SNR: 12.57
SSIM: 0.753.

(j) SNR: 15.42
SSIM: 0.899.

(k) SNR: 9.71
SSIM: 0.704.

(l) SNR: 8.33
SSIM: 0.523.

(m) SNR: 7.49
SSIM: 0.566.

(n) SNR: 9.49
SSIM: 0.663.

(o) SNR: 13.25
SSIM: 0.899.

(p) SNR: 8.12
SSIM: 0.661.

(q) SNR: 6.51
SSIM: 0.650.

(r) SNR: 6.70
SSIM: 0.526.

(s) SNR: 7.87
SSIM: 0.594.

(t) SNR: 10.15
SSIM: 0.833.

(u) SNR: 5.82
SSIM: 0.400.

(v) SNR: 4.95
SSIM: 0.363.

(w) SNR: 5.34
SSIM: 0.450.

(x) SNR: 5.63
SSIM: 0.434.

(y) SNR: 8.04
SSIM: 0.723.

(z) SNR: 4.08
SSIM: 0.281.

(aa) SNR: 2.77
SSIM: 0.179.

(ab) SNR: 4.07
SSIM: 0.377.

(ac) SNR: 4.47
SSIM: 0.360.

(ad) SNR: 5.42
SSIM: 0.562.

(ae)

Figure 3.16 Reconstruction results for Image 16 of the Kapıkule test set with noise
σn = 0.1σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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(a) SNR: 6.76
SSIM: 0.660.

(b) SNR: 9.95
SSIM: 0.517.

(c) SNR: 11.06
SSIM: 0.706.

(d) SNR: 6.82
SSIM: 0.511.

(e) SNR: 36.20
SSIM: 0.999.

(f) SNR: 6.60
SSIM: 0.577.

(g) SNR: 9.86
SSIM: 0.501.

(h) SNR: 10.04
SSIM: 0.634.

(i) SNR: 6.84
SSIM: 0.476.

(j) SNR: 15.21
SSIM: 0.872.

(k) SNR: 6.53
SSIM: 0.533.

(l) SNR: 9.04
SSIM: 0.436.

(m) SNR: 9.22
SSIM: 0.563.

(n) SNR: 6.95
SSIM: 0.451.

(o) SNR: 12.84
SSIM: 0.783.

(p) SNR: 6.34
SSIM: 0.482.

(q) SNR: 4.41
SSIM: 0.274.

(r) SNR: 8.63
SSIM: 0.502.

(s) SNR: 7.01
SSIM: 0.421.

(t) SNR: 10.74
SSIM: 0.681.

(u) SNR: 5.94
SSIM: 0.311.

(v) SNR: 7.14
SSIM: 0.290.

(w) SNR: 7.52
SSIM: 0.412.

(x) SNR: 7.14
SSIM: 0.363.

(y) SNR: 8.46
SSIM: 0.536.

(z) SNR: 4.93
SSIM: 0.207.

(aa) SNR: 7.18
SSIM: 0.336.

(ab) SNR: 5.74
SSIM: 0.309.

(ac) SNR: 6.95
SSIM: 0.310.

(ad) SNR: 6.54
SSIM: 0.357.

(ae)

Figure 3.17 Reconstruction results for Image 78 of the Kapıkule test set with noise
σn = σy. First row, full data, second row, 90% data, third row, 80% data, fourth
row, 70% data, fifth row, 50% data, sixth row, 30% data. First column, FFT-based
reconstruction, second column, NQR-based reconstruction, third column, DL-based
reconstruction, fourth column, PnP-BM3D based reconstruction, fifth column, PnP-
CNN-SAR based reconstruction. (ae) Reference image.
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Table 3.4 Decision process of which network to use in which case.

Data availability is known Data availability is unknown
Noise level is
known

Use a network trained with same
amount of noise and higher data
availability

Use a network trained with the
same noise level and 70-90% data
availability

Noise level is
unknown

Use a network trained with high
noise and higher data availability

Use a network trained with high
noise and 70-90% data availabil-
ity

the one trained for that scenario, rather, in most cases, the one that is trained with
slightly higher data availability and same noise level. Another important observation
is that, in each 6×6 block of the Table 3.1, the SNR values almost always decrease
from left to right, which shows that regardless of for which case the network is
trained, it is always easier for the network to reconstruct images from higher data
availability levels. One last thing to note is that the performance of the networks
trained with higher noise on the scenarios with lower noise is much better than the
performance of the networks trained with lower noise on the scenarios with higher
noise. These observations tell us that, when deciding for what kind of network one
should train and use, a good rule of thumb would be; if both the data availability
and the noise levels are known for the test scenario at hand, use a network trained
with the same amount of noise and a slightly higher data; if only noise level is
known, using a network trained with 70-90% data and same noise level would be
a reasonable approach; if only data availability is known, safest approach would be
to train with slightly higher data and high noise; and if neither is known, training
with 70-90% data availability and high noise would be preferred approach. Table
3.4 shows the summary of the suggested decision process.

Reconstruction results in Figures 3.5 and 3.6 show that SNR and SSIM do not
measure the performance of the methods well, especially in the case of lower data
availability levels, i.e., 50% and 30%. To further elaborate that, in Figure 3.18, we
show the reconstruction results of all 12 networks for Image 7 of the synthetic test
set for the case of 30% data availability and noise σn = 0.1σy. While the network
trained with 50% data availability and noise σn = 0.1σy performs the best in terms
of both SNR and SSIM, it is not entirely clear that this is the best reconstruction
in terms of visual quality. It seem that each network was able capture some fea-
tures from the original scene and missing many others. There also seems to be a
trend that networks trained with lower data availability tend to generate smoother
reconstructions, compared to networks trained with higher data availability levels.
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(a) SNR: 3.96
SSIM: 0.284.

(b) SNR: 4.87
SSIM: 0.321.

(c) SNR: 4.79
SSIM: 0.299.

(d) SNR: 6.89
SSIM: 0.404.

(e) SNR: 7.63
SSIM: 0.410.

(f) SNR: 4.07
SSIM: 0.278.

(g) SNR: 2.94
SSIM: 0.225.

(h) SNR: 3.23
SSIM: 0.234.

(i) SNR: 3.61
SSIM: 0.269.

(j) SNR: 3.71
SSIM: 0.290.

(k) SNR: 5.49
SSIM: 0.330.

(l) SNR: 7.31
SSIM: 0.323.

Figure 3.18 Reconstruction results of Image 7 of the synthetic test set in the case
of 30% data availability and σn = 0.1σy using different networks. First row, results
of the networks trained with noise σn = 0.1σy. Second row, results of the networks
trained with noise σn = σy. Each column represents a data availability level, in a
decreasing order from left to right, i.e., (a) is the result of the network trained with
full data and σn = 0.1σy, (b) is the result of the network trained with 90% data and
σn = 0.1σy etc. Note that (e) has the highest SNR among all reconstructions and
hence, is the one presented in Figure 3.5ad.

3.3.5 Runtime Analysis

Table 3.5 shows the comparison of runtimes across different methods for the same
scene experiments. PnP-CNN-SAR works faster than the NQR-based method in all
scenarios, and PnP-BM3D in two scenarios. It is also worth noting that PnP-CNN-
SAR works considerably slower in lower data availability scenarios, compared to the
scenarios with higher data availability.

Figures 3.19 and 3.20 show the percentage shares of various steps within the overall
algorithm time for the same scene experiments, for PnP-CNN-SAR. These results
show that the prior update step dominates the overall procedure and takes around
60− 90% of the computation time, while the phase alignment step never exceeds
30%. Magnitude update and other steps do not contribute as much to the com-
putational expense, compared to these two steps. Reconstructing the entire image
at once, instead of using a patch-based approach, would likely reduce the compu-
tation time of the prior update step. However this would be at the expense of
increasing the computation time of the phase alignment step, which is observed in
the PnP-BM3D experiments, for which the results are shown in Figures 3.21 and
3.22. Note however that abandoning the patch-based approach would likely result
in performance degradation. For comparison, we also show the percentage shares of
various steps within the overall algorithm time for the same scene experiments, for
DL-based reconstruction [3], in Figures 3.23 and 3.24.
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Table 3.5 Average reconstruction time for one image for the same scene experiments.
FFT-based reconstruction is not shown as it practically works in real time.

Scenario NQR-based [1] DL-based [3] PnP-BM3D PnP-CNN-SAR
Full Data, σn = 0.1σy 206.8 s 12.0 s 13.6 s 16.7 s
90% Data, σn = 0.1σy 223.1 s 15.6 s 19.3 s 23.0 s
80% Data, σn = 0.1σy 229.7 s 17.9 s 31.8 s 22.1 s
70% Data, σn = 0.1σy 232.8 s 19.7 s 27.6 s 24.5 s
50% Data, σn = 0.1σy 236.5 s 22.4 s 34.8 s 102.8 s
30% Data, σn = 0.1σy 232.1 s 27.0 s 25.2 s 91.4 s
Full Data, σn = σy 209.9 s 15.1 s 19.1 s 25.7 s
90% Data, σn = σy 229.4 s 16.9 s 17.6 s 27.4 s
80% Data, σn = σy 235.7 s 17.8 s 10.9 s 27.1 s
70% Data, σn = σy 230.2 s 21.6 s 11.3 s 26.5 s
50% Data, σn = σy 225.3 s 27.3 s 16.0 s 113.8 s
30% Data, σn = σy 218.5 s 32.0 s 18.6 s 84.8 s

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = 0.1σy

90% Data σn = 0.1σy

80% Data σn = 0.1σy

70% Data σn = 0.1σy

50% Data σn = 0.1σy

30% Data σn = 0.1σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.19 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = 0.1σy, for PnP-CNN-SAR.
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0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = σy

90% Data σn = σy

80% Data σn = σy

70% Data σn = σy

50% Data σn = σy

30% Data σn = σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.20 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = σy, for PnP-CNN-SAR.
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0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = 0.1σy

90% Data σn = 0.1σy

80% Data σn = 0.1σy

70% Data σn = 0.1σy

50% Data σn = 0.1σy

30% Data σn = 0.1σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.21 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = 0.1σy, for PnP-BM3D.

65



0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = σy

90% Data σn = σy

80% Data σn = σy

70% Data σn = σy

50% Data σn = σy

30% Data σn = σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.22 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = σy, for PnP-BM3D.
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0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = 0.1σy

90% Data σn = 0.1σy

80% Data σn = 0.1σy

70% Data σn = 0.1σy

50% Data σn = 0.1σy

30% Data σn = 0.1σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.23 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = 0.1σy, for DL-based reconstruction
[3].
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0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Full Data σn = σy

90% Data σn = σy

80% Data σn = σy

70% Data σn = σy

50% Data σn = σy

30% Data σn = σy

Prior Update

Phase Alignment

Magnitude Update

Other Functions

Figure 3.24 Percentage shares of various steps within the overall algorithm time for
the same scene experiment scenarios with σn = σy, for DL-based reconstruction [3].
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3.4 Summary

The results in this chapter show that performing regularization using deep priors
with the help of PnP priors framework can produce better reconstructions in terms
of visual quality compared to conventional as well as state-of-the-art SAR image
reconstruction methods, especially in the more challenging, lower data availability
and higher noise scenarios, and even when the performance metrics fail to fully
reflect the performance of our proposed framework. Overall, these results suggest
that deep learning methods may have the potential to learn complicated spatial
patterns and enable their incorporation as priors into computational radar imaging.

In this chapter, we have only focused on image reconstruction, and did not account
for possible phase errors. In Chapter 4, we extend the PnP-CNN-SAR framework
to jointly address image reconstruction and phase error correction.
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Chapter 4

PnP-CNN-SAR-AF for Joint Im-
age Reconstruction and Phase Er-
ror Correction

In Chapter 3, we have introduced the PnP-CNN-SAR framework for SAR image
reconstruction and demonstrated its effectiveness in various scenarios. However,
in this framework, we did not account for phase errors. Although PnP-CNN-SAR
can be combined with a postprocessing autofocus algorithm to eliminate phase er-
rors, previous studies have shown that joint image reconstruction and phase er-
ror correction can produce better results than performing these two tasks sequen-
tially [52,75,78,79,84,92,93]. Hence, in this chapter, we extend the PnP-CNN-SAR
framework to address phase errors along with image reconstruction and introduce
the PnP-CNN-SAR-AF framework (where AF stands for autofocus). This chapter
includes the formulation and preliminary results of PnP-CNN-SAR-AF for 1D phase
errors, and the formulation and implementation for 2D separable and non-separable
phase errors are left for future work.

4.1 Objective Function

Consider the modified discrete observation model:

y = H(φ)f+n (4.1)

where φ stands for the 1D phase error. Note that the observation model matrixH is
no longer constant, rather it is a function of φ. Now let us introduce the regularized

70



objective function to solve (4.1):

f̂, φ̂ = argmin
f,φ

‖y−H(φ)f‖22 +λR(fm) (4.2)

where fm = |f|. As we have already discussed in Chapter 3, for most SAR scenes,
reflectivity phase at a certain location can be modeled as a uniformly distributed
random variable uncorrelated with the phase at other locations [11]. Nevertheless,
we need to estimate the complex-valued field f in the process of ensuring good data
fidelity. Again, we can write f = Θfm where Θ is a diagonal matrix containing the
phases of f at each pixel in exponentiated form, i.e., Θ = diag(ejϕ(f)) where ϕ(·)
denotes the phase. Then we get:

f̂m, θ̂, φ̂ = argmin
fm,θ,φ

‖y−H(φ)Θfm‖22 +λR(fm). (4.3)

Once again, we do not explicitly define the regularizer until we formulate ADMM
iterations for (4.3), and decouple the data-fidelity term and the regularization term.

4.2 Variable Splitting and ADMM

Rewriting (4.3) in a suitable form by introducing an auxiliary variable with a con-
straint, we have

f̂m, θ̂, φ̂, ĥ = argmin
fm,θ,φ,h

‖y−H(φ)Θfm‖22 +λR(h) s.t. fm−h = 0. (4.4)

The augmented Lagrangian for (4.4) is given by

L(̂fm, θ̂, φ̂, ĥ, û) = ‖y−H(φ)Θfm‖22 +λR(h) + ρ

2 ‖fm−h+u‖22 + ρ

2 ‖u‖
2
2 . (4.5)

Let f̃(k) = h(k)−u(k), h̃(k) = f(k+1)
m +u(k). Also, let us introduce a vector θ ∈ CN×1

that contains the diagonal elements of the phase matrix Θ, and the matrix B whose
diagonal elements are the reflectivity magnitudes fm. Finally, let us invoke the
constraint that the magnitudes of the elements of θ denoted as |θi| should be 1,
simply because they contain phases of f at each pixel in exponentiated vector form
ejϕ(f). Then, each iteration of the ADMM algorithm will perform model update,
phase error estimation and correction, prior update, and Lagrange multiplier update
steps.
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Model update:

θ(k+1) = argmin
θ

∥∥∥y−H(φ(k))(k)B(k)θ
∥∥∥2

2
+λθ

N∑
i=1

(|θi|−1)2 (4.6)

f(k+1)
m = argmin

fm

∥∥∥y−H(φ(k))(k)Θ(k)fm
∥∥∥2

2
+ ρ

2

∥∥∥∥fm− f̃(k)
∥∥∥∥2

2
. (4.7)

Phase error estimation and correction:

For every cross-range position p= 1 . . .P

∆φ(k+1)
p =−arctan(− I

R
) (4.8)

where
R = <{(f(k+1))HHp(φ(k)

p )Hyp} (4.9)

and
I = ={(f(k+1))HHp(φ(k)

p )Hyp} (4.10)

φ(k+1)
p = φ(k)

p + ∆φ(k+1)
p (4.11)

Hp(φ(k+1)
p ) = exp{j∆φ(k+1)

p }Hp(φ(k)
p ). (4.12)

Prior update:

h(k+1) = argmin
h

λR(h) + ρ

2

∥∥∥∥h̃(k)−h
∥∥∥∥2

2
. (4.13)

Lagrange multiplier update:

u(k+1) = u(k) + f(k+1)
m −h(k+1). (4.14)

λθ and ρ are hyper-parameters.

The model update and phase error estimation and correction steps only depend on
the forward model, while the prior update step only depends on the regularizer.
ADMM first iteratively solves for θ and fm using (4.6) and (4.7) until the phase is
aligned. Then for each cross-range position p, corresponding phase error is estimated
using (4.8), and the model matrix is updated using (4.11) and (4.12). Note that
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(4.6), (4.7), and (4.13) are optimization problems, while (4.8)-(4.12) and (4.14) are
direct updates on the corresponding variables.

As is done in Chapter 3, sub-problems (4.6) and (4.7) are solved with conjugate
gradient algorithm using (3.10) and (3.12), respectively. Sub-problem (4.13) is once
again replaced with a CNN. However, in contrast to PnP-CNN-SAR, in PnP-CNN-
SAR-AF, we investigate training the CNN using images corrupted only with noise,
as well as using noisy and phase error-corrupted images. Algorithm 3 summarizes
the PnP-CNN-SAR-AF framework. Note that f[t]m stands for the outputs of the inner
loop, i.e., the model update, while f(k)

m stands for the outputs of the outer loop, i.e.,
the overall ADMM algorithm. Typical value for T is 100, while the value of K
depends on the amount of phase error in the data, and can be as low as 20, and as
high as 1000.

4.3 Experimental Results

In this section, we demonstrate the effectiveness of PnP-CNN-SAR-AF on real SAR
scenes. We also tabulate results for various scenarios, and compare them with FFT-
based image reconstruction and sparsity driven autofocus (SDA) [52].

4.3.1 Setup

In both synthetic and real scene experiments, we have considered various scenarios,
i.e., a single data availability level (100%) and 7 different 1D phase error levels (0;
[−π/6,π/6]; [−π/4,π/4]; [−π/3,π/3]; [−3π/8,3π/8]; [−π/2,π/2]; [−2π/3,2π/3]) in
the phase history domain, and a single noise level (σn = 0.1σy, where σy is the
standard deviation of the magnitude of the phase history data), hence a total of 7
different scenarios. Note that the case of 0 phase error is equivalent to the scenario
considered in Chapter 3.

The experimental procedure is the same as the procedure described in Chapter 3, i.e.,
same network architecture, same patch-based approach, same data augmentation
procedure, etc., except that we trained a new network with the setting of 100% data
availability, σn = 0.1σy noise, and [−π/6,π/6] phase error, and also, the algorithm
has additional steps for phase error estimation and correction, as well as model
matrix update, as described in the previous section. We have only performed same
scene experiments, using the training and test windows from the Wonsan image.
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Algorithm 3: PnP-CNN-SAR-AF for joint image reconstruction and 1D phase
error correction.
Require: y, H(φ(0)), ε, Dσ(x), K, T .
f(0)←H(φ(0))Hy {Conventional reconstruction}
B(0)← diag{f(0)

m }
θ(0)← ∠f(0)

h(0)← f(0)
m

u(0)← 0
k← 0
n← 0

while

∥∥∥u(k+1)−u(k)
∥∥∥

‖u(k)‖ ≥ ε and k ≤K do

f̃(k)← h(k)−u(k)

f[0]
m ← f(k)

m

while

∥∥∥f[t+1]
m −f[t]

m

∥∥∥∥∥∥f[t]
m

∥∥∥ ≥ 10−4 and t≤ T do

Calculate θ(t) using (4.6) {Phase alignment}
Solve for f(t)m using (4.7) {Magnitude update}
t← t+ 1

end while
for Every cross-range position p= 1 . . .P do

Calculate ∆φ(k+1)
p using (4.8) {Phase error estimation}

Calculate φ(k+1)
p using (4.11) {Phase error correction}

Calculate Hp(φ(k+1)
p ) using (4.13) {Model matrix update}

end for
f(k+1)
m ← f[t]m
h̃(k)← f(k+1)

m +u(k)

h(k+1)←Dσ(h̃(k)) {Prior update}
u(k+1)← u(k) + f(k+1)

m −h(k+1) {Lagrange multiplier update}
k← k+ 1

end while
return f(k+1)

m
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Table 4.1 Experimental settings.

PnP-CNN-SAR Algorithm PnP-CNN-SAR-AF Algorithm
Network trained without phase error PnP PnP-AF
Network trained with phase error PnP-pe PnP-pe-AF

Table 4.2 Average SNR and SSIM values for different phase error levels and for PnP,
PnP-pe, PnP-AF, and PnP-pe-AF.

Phase Error PnP PnP-pe PnP-AF PnP-pe-AF
SNR (dB) SSIM SNR (dB) SSIM SNR (dB) SSIM SNR (dB) SSIM

0 40.03 0.998 26.83 0.977 26.66 0.978 26.85 0.977
[−π/6,π/6] 14.77 0.801 14.05 0.776 19.96 0.904 23.59 0.959
[−π/4,π/4] 11.39 0.671 10.59 0.642 19.88 0.901 24.09 0.963
[−π/3,π/3] 8.87 0.549 8.23 0.525 19.88 0.902 24.09 0.964

[−3π/8,3π/8] 7.96 0.499 7.29 0.472 19.86 0.900 24.02 0.963
[−π/2,π/2] 5.66 0.346 5.07 0.325 19.86 0.901 24.22 0.964

[−2π/3,2π/3] 3.73 0.190 3.26 0.176 19.74 0.840 24.04 0.977

4.3.2 Results

To show the effectiveness of the additional phase error estimation and correction
steps as well as training the network with data containing phase errors, we first
present results of four different experimental settings, namely, PnP, PnP-pe, PnP-
AF, and PnP-pe-AF. In PnP and PnP-pe, the experimental procedure follows the
steps in Algorithm 2, i.e., no phase error estimation and correction steps, and in
PnP-AF and PnP-pe-AF, the steps given in Algorithm 3 are followed. Also, in PnP
and PnP-AF, the network used is the same as the one that is used for the real scene
experiments in Chapter 3, and hence trained without phase errors, while in PnP-
pe and PnP-pe-AF, the network trained with data containing phase errors is used.
Table 4.1 summarizes these four settings. Figures 4.1−4.7 show the reconstruction
results of these settings for various scenarios for Image 26 from the Wonsan test
set, and Table 4.2 shows the average SNR and SSIM values obtained with different
settings. These results suggest that the additional steps for phase error estimation
and correction improve the performance significantly. Another observation is that
the network trained with data containing phase errors only help if it is used within
the PnP-CNN-SAR-AF framework.

Figures 4.8−4.14 and 4.15−4.21 show the reconstruction results of FFT-based re-
construction, SDA, and PnP-pe-AF, for various scenarios for Image 26 and Image
28 from the Wonsan test set, respectively. Table 4.3 show the quantitative compari-
son between these methods. These results show that PnP-pe-AF outperforms other
methods in terms of both visual quality and performance metrics. It is also worth
noting that SDA performs quite well in all scenarios for sparse scenes however its
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(a) PnP: SNR: 37.94
SSIM: 0.998.

(b) PnP-pe: SNR: 27.35
SSIM: 0.958.

(c) PnP-AF: SNR: 26.46
SSIM: 0.954.

(d) PnP-pe-AF: SNR: 27.30
SSIM: 0.958.

(e) Reference image.

Figure 4.1 Reconstruction results for Image 26 of the Wonsan test set with no phase
error.

(a) PnP: SNR: 15.29
SSIM: 0.722.

(b) PnP-pe: SNR: 13.32
SSIM: 0.651.

(c) PnP-AF: SNR: 20.72
SSIM: 0.862.

(d) PnP-pe-AF: SNR: 24.78
SSIM: 0.934.

(e) Reference image.

Figure 4.2 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−π/6,π/6].
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(a) PnP: SNR: 11.84
SSIM: 0.602.

(b) PnP-pe: SNR: 10.25
SSIM: 0.526.

(c) PnP-AF: SNR: 20.73
SSIM: 0.864.

(d) PnP-pe-AF: SNR: 24.62
SSIM: 0.932.

(e) Reference image.

Figure 4.3 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−π/4,π/4].

(a) PnP: SNR: 7.89
SSIM: 0.442.

(b) PnP-pe: SNR: 7.87
SSIM: 0.435.

(c) PnP-AF: SNR: 20.66
SSIM: 0.863.

(d) PnP-pe-AF: SNR: 24.71
SSIM: 0.933.

(e) Reference image.

Figure 4.4 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−π/3,π/3].
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(a) PnP: SNR: 7.18
SSIM: 0.414.

(b) PnP-pe: SNR: 6.52
SSIM: 0.377.

(c) PnP-AF: SNR: 20.76
SSIM: 0.865.

(d) PnP-pe-AF: SNR: 24.70
SSIM: 0.932.

(e) Reference image.

Figure 4.5 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−3π/8,3π/8].

(a) PnP: SNR: 5.18
SSIM: 0.317.

(b) PnP-pe: SNR: 3.79
SSIM: 0.248.

(c) PnP-AF: SNR: 20.63
SSIM: 0.862.

(d) PnP-pe-AF: SNR: 24.66
SSIM: 0.933.

(e) Reference image.

Figure 4.6 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−π/2,π/2].
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(a) PnP: SNR: 2.71
SSIM: 0.184.

(b) PnP-pe: SNR: 2.24
SSIM: 0.160.

(c) PnP-AF: SNR: 20.51
SSIM: 0.857.

(d) PnP-pe-AF: SNR: 24.69
SSIM: 0.934.

(e) Reference image.

Figure 4.7 Reconstruction results for Image 26 of the Wonsan test set with phase
error in the range [−2π/3,2π/3].

(a) FFT: SNR: 26.70
SSIM: 0.968.

(b) SDA: SNR: 26.88
SSIM: 0.969.

(c) PnP-pe-AF: SNR: 27.30
SSIM: 0.958.

(d) Reference image.

Figure 4.8 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with no phase error.

performance degrades rapidly as the amount of phase error increases for non-sparse
scenes. Performing these experiments for lower data availability scenarios would
give more insight on the behaviors of the competing methods.

4.3.3 Summary

The preliminary results in this chapter show that joint image reconstruction and 1D
phase error correction is indeed achievable with the PnP-CNN-SAR-AF algorithm.
Our results suggest that both the phase error estimation and correction steps in the
PnP-CNN-SAR-AF algorithm and training the network with phase errors improve
the performance significantly. We have also observed that using a network trained
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(a) FFT: SNR: 13.60
SSIM: 0.721.

(b) SDA: SNR: 25.00
SSIM: 0.960.

(c) PnP-pe-AF: SNR: 24.78
SSIM: 0.934.

(d) Reference image.

Figure 4.9 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−π/6,π/6].

(a) FFT: SNR: 10.23
SSIM: 0.599.

(b) SDA: SNR: 23.39
SSIM: 0.957.

(c) PnP-pe-AF: SNR: 24.62
SSIM: 0.932.

(d) Reference image.

Figure 4.10 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−π/4,π/4].

(a) FFT: SNR: 7.90
SSIM: 0.499.

(b) SDA: SNR: 20.85
SSIM: 0.952.

(c) PnP-pe-AF: SNR: 24.71
SSIM: 0.933.

(d) Reference image.

Figure 4.11 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−π/3,π/3].

(a) FFT: SNR: 6.63
SSIM: 0.445.

(b) SDA: SNR: 20.70
SSIM: 0.944.

(c) PnP-pe-AF: SNR: 24.70
SSIM: 0.932.

(d) Reference image.

Figure 4.12 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−3π/8,3π/8].
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(a) FFT: SNR: 3.95
SSIM: 0.302.

(b) SDA: SNR: 18.27
SSIM: 0.937.

(c) PnP-pe-AF: SNR: 24.66
SSIM: 0.933.

(d) Reference image.

Figure 4.13 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−π/2,π/2].

(a) FFT: SNR: 1.99
SSIM: 0.165.

(b) SDA: SNR: 22.54
SSIM: 0.958.

(c) PnP-pe-AF: SNR: 24.69
SSIM: 0.934.

(d) Reference image.

Figure 4.14 Visual comparison of reconstructions for Image 26 of the Wonsan test
set with phase error in the range [−2π/3,2π/3].

(a) FFT: SNR: 26.10
SSIM: 0.901.

(b) SDA: SNR: 26.43
SSIM: 0.911.

(c) PnP-pe-AF: SNR: 26.93
SSIM: 0.925.

(d) Reference image.

Figure 4.15 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with no phase error.

(a) FFT: SNR: 11.85
SSIM: 0.572.

(b) SDA: SNR: 24.82
SSIM: 0.947.

(c) PnP-pe-AF: SNR: 24.89
SSIM: 0.894.

(d) Reference image.

Figure 4.16 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−π/6,π/6].
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(a) FFT: SNR: 8.05
SSIM: 0.472.

(b) SDA: SNR: 22.15
SSIM: 0.945.

(c) PnP-pe-AF: SNR: 25.02
SSIM: 0.906.

(d) Reference image.

Figure 4.17 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−π/4,π/4].

(a) FFT: SNR: 6.62
SSIM: 0.426.

(b) SDA: SNR: 20.68
SSIM: 0.944.

(c) PnP-pe-AF: SNR: 24.96
SSIM: 0.894.

(d) Reference image.

Figure 4.18 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−π/3,π/3].

(a) FFT: SNR: 4.51
SSIM: 0.366.

(b) SDA: SNR: 21.81
SSIM: 0.931.

(c) PnP-pe-AF: SNR: 24.69
SSIM: 0.889.

(d) Reference image.

Figure 4.19 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−3π/8,3π/8].

(a) FFT: SNR: 2.27
SSIM: 0.295.

(b) SDA: SNR: 18.84
SSIM: 0.933.

(c) PnP-pe-AF: SNR: 24.77
SSIM: 0.906.

(d) Reference image.

Figure 4.20 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−π/2,π/2].
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(a) FFT: SNR: 0.54
SSIM: 0.225.

(b) SDA: SNR: 23.25
SSIM: 0.951.

(c) PnP-pe-AF: SNR: 25.17
SSIM: 0.914.

(d) Reference image.

Figure 4.21 Visual comparison of reconstructions for Image 28 of the Wonsan test
set with phase error in the range [−2π/3,2π/3].

Table 4.3 Average SNR and SSIM values for different phase error levels and for
FFT-based, SDA, and PnP-pe-AF methods.

Phase Error FFT SDA PnP-pe-AF
SNR (dB) SSIM SNR (dB) SSIM SNR (dB) SSIM

0 26.64 0.973 26.71 0.974 26.85 0.977
[−π/6,π/6] 13.26 0.750 19.89 0.875 23.59 0.959
[−π/4,π/4] 9.99 0.618 18.62 0.851 24.09 0.963
[−π/3,π/3] 7.76 0.502 16.90 0.803 24.09 0.964

[−3π/8,3π/8] 6.74 0.445 16.10 0.803 24.02 0.963
[−π/2,π/2] 4.75 0.314 14.52 0.764 24.22 0.964

[−2π/3,2π/3] 3.04 0.171 12.05 0.676 24.04 0.977

with phase error within the PnP-CNN-SAR framework does not generate good re-
sults, and the benefit of training the network with phase error can only be observed
if it is used within the PnP-CNN-SAR-AF framework.
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Chapter 5

SAR ATR in the Phase History Do-
main

In the previous two chapters, we have focused on the problems of image reconstruc-
tion and phase error correction in SAR imaging. In this chapter, we shift our focus
towards another important SAR imaging problem, i.e., automatic target recognition
(ATR), and we investigate the idea of performing the ATR task in the phase history
domain. This is a joint work with Sara Atito, another Ph.D. student in our group.

5.1 Phase History Domain ATR Methodologies

In this section, we present two frameworks for SAR ATR that work in the phase
history domain and utilize CNNs for learning and classification.

5.1.1 Phase History Domain Classification (PHDC)

Since the conventional reconstruction for SAR is performed using noisy measure-
ments, and because SAR is a coherent imaging modality, formed images suffer from
speckle which also affects the ATR performance. Note that only the magnitudes
of the formed images are used in ATR since the phase does not contain much in-
formation about the spatial structure of the 2D projection of the scene produced
by conventional SAR imaging. Moreover, we know from an information theoretic
perspective that, image formation does not provide us any additional information
about the scene, it is merely a visualization. Since ATR is performed by computers,
in principle it does not really matter if we feed the ATR system with formed im-
ages or phase history data. In either case, the system would learn the dependency
patterns in the data. Since the information contained in the formed images cannot
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be more than the information in the phase histories, we predicted that, in an ideal
scenario, using the phase history data instead of formed images may result in equal
or better ATR performance. This is something we explore in this study. Hence,
our first proposed framework uses phase history data as an input to the ATR sys-
tem. To evaluate our framework, we used the MSTAR data set and two well-known
CNN architectures, AlexNet and VGG16. AlexNet and VGG16 are both originally
designed for image classification tasks and they require 3-channel real input data.
However, the phase history data we have is complex. Therefore, we needed a way
to feed the data to the networks, and using the magnitudes, real parts, and imagi-
nary parts of the phase histories as the three channel inputs gave us the best result.
Specifically, we assign the magnitudes, real parts, and imaginary parts of the phase
histories of the images in the MSTAR data set as the red, green, and blue channels,
respectively, and form an RGB image for each data point in the data set.

5.1.2 Image-Phase Removed Phase History Classification
(IPRPHC)

Since the phase of the reconstructed image does not really contain any information
about the observed scene, as it is highly dominated by speckle, it is usually discarded
in image analysis. Motivated by this, our second framework performs the following
steps: image formation, image-phase removal, and phase history data generation.
We evaluate our framework in the same way described in Section 5.1.1.

5.2 Experimental Results

5.2.1 Setup

We now evaluate the performance of the ATR methodologies discussed in Section
5.1 using the MSTAR data set. The data set consists of 10 classes, i.e., tanks
(T62, T72), armored vehicles (BRDM2, BMP2, BTR60, BTR70), a rocket launcher
(2S1), an air defense unit (ZSU234), a military truck (ZIL131), and a bulldozer
(D7). The MSTAR data set only provides formed images. Therefore, in order to
obtain the phase histories, we undo the final steps of the MSTAR image formation
using the method described in Refs. [1, 191]. Also, we resize the generated images
to 227× 227 for AlexNet and to 224× 224 for VGG16 to match their respective
input sizes. Figure 5.1 shows sample data of each class for PHDC experiments and
Figure 5.2 shows sample data from the same chips for IPRPHC experiments. In
our experiments, we use the images at 17◦ depression angle for training and images
at 15◦ depression angle for testing. Since CNNs require large number of images
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(a) BMP2 (b) BTR70 (c) T72 (d) 2S1 (e) BRDM2

(f) BTR60 (g) D7 (h) T62 (i) ZIL131 (j) ZSU23/4

Figure 5.1 Sample data of each class for PHDC experiments.

(a) BMP2 (b) BTR70 (c) T72 (d) 2S1 (e) BRDM2

(f) BTR60 (g) D7 (h) T62 (i) ZIL131 (j) ZSU23/4

Figure 5.2 Sample data of each class for IPRPHC experiments.

for training, we augment our training set by rotating each image by [2◦, 4◦, 6◦, 8◦,
10◦] clockwise and counter-clockwise. Table 5.1 shows the numbers of each type of
target images in each of these sets before augmentation. All of the experiments are
performed on MATLAB R2018a using NVIDIA TITAN Xp GPU.

In the following subsections, we present the results of phase history domain classifica-
tion and image-phase removed phase history classification experiments and conclude
this section with comparison of the results of other methods and a summary.

5.2.2 PHDC Results

We now present the recognition performance of the phase history domain classifica-
tion using AlexNet and VGG16 architectures. Tables 5.2 and 5.3 show the results for
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Table 5.1 Composition of the MSTAR data set.

Training set Test set
Target Depression No. of images Depression No. of images
BMP2 17◦ 233 15◦ 195
BTR70 17◦ 233 15◦ 196
T72 17◦ 232 15◦ 196
2S1 17◦ 299 15◦ 274

BRDM2 17◦ 298 15◦ 274
BTR60 17◦ 256 15◦ 195
D7 17◦ 299 15◦ 274
T62 17◦ 299 15◦ 273

ZIL131 17◦ 299 15◦ 274
ZSU23/4 17◦ 299 15◦ 274

Table 5.2 Confusion matrix for PHDC results with the AlexNet architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 103 8 35 3 0 29 2 3 10 2 52,82%
BTR70 29 118 1 6 0 29 0 1 12 0 60,20%
T72 7 0 162 1 0 8 3 14 0 1 82,65%
2S1 0 0 0 272 0 0 0 1 0 1 99,27%

BRDM2 3 0 7 0 257 3 0 0 0 4 93,80%
BTR60 11 19 37 3 0 109 1 6 9 0 55,90%
D7 0 0 0 0 0 0 257 4 1 12 93,80%
T62 0 0 0 0 0 0 37 224 3 9 82,05%

ZIL131 0 0 0 0 0 0 3 0 271 0 98,91%
ZSU23/4 1 0 0 0 0 0 0 0 0 273 99,64%

Overall Accuracy 84,37%

AlexNet and VGG16, respectively. The results show that tanks and armored vehi-
cles are harder to distinguish. The overall performance is worse than the competing
methods for both architectures.

5.2.3 IPRPHC Results

We now present the recognition performance of the image-phase removed phase
history classification using AlexNet and VGG16 architectures. Tables 5.4 and 5.5
show the results for AlexNet and VGG16, respectively. The results show that this
methodology works well and the performance is at the same level with the state-of-
the-art techniques. Note that, with AlexNet, 7 of the classes, and with VGG16, 5
of the classes reached 100% accuracy.
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Table 5.3 Confusion matrix for PHDC results with the VGG16 architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 93 18 22 3 4 42 2 6 3 2 47,69%
BTR70 20 137 0 5 6 17 0 1 10 0 69,90%
T72 12 1 140 0 3 22 0 15 0 3 71,43%
2S1 0 0 0 272 0 0 0 0 0 2 99,27%

BRDM2 7 3 3 0 255 6 0 0 0 0 93,07%
BTR60 23 29 30 2 3 92 0 8 8 0 47,18%
D7 0 0 0 0 0 0 247 16 2 9 90,15%
T62 0 0 0 1 0 0 19 241 1 11 88,28%

ZIL131 0 0 0 0 0 0 4 2 268 0 97,81%
ZSU23/4 0 0 0 0 1 0 1 0 0 272 99,27%

Overall Accuracy 83,18%

Table 5.4 Confusion matrix for IPRPHC results with the AlexNet architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 185 1 7 0 0 2 0 0 0 0 94,87%
BTR70 4 189 0 0 0 3 0 0 0 0 96,43%
T72 0 0 196 0 0 0 0 0 0 0 100,00%
2S1 0 0 0 274 0 0 0 0 0 0 100,00%

BRDM2 0 0 0 0 274 0 0 0 0 0 100,00%
BTR60 1 1 0 0 0 189 4 0 0 0 96,92%
D7 0 0 0 0 0 0 274 0 0 0 100,00%
T62 0 0 0 0 0 0 0 273 0 0 100,00%

ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%

Overall Accuracy 99,05%

Table 5.5 Confusion matrix for IPRPHC results with the VGG16 architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 182 2 7 0 0 4 0 0 0 0 93,33%
BTR70 6 188 0 0 0 2 0 0 0 0 95,92%
T72 0 0 195 0 0 1 0 0 0 0 99,49%
2S1 3 0 0 271 0 0 0 0 0 0 98,91%

BRDM2 0 0 0 0 274 0 0 0 0 0 100,00%
BTR60 0 1 0 0 0 194 0 0 0 0 99,49%
D7 0 0 0 0 0 0 274 0 0 0 100,00%
T62 0 0 0 0 0 0 0 273 0 0 100,00%

ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%

Overall Accuracy 98,93%
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Table 5.6 Confusion matrix for conventional reconstruction results with the AlexNet
architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 191 0 2 0 1 1 0 0 0 0 97,95%
BTR70 0 195 0 0 1 0 0 0 0 0 99,49%
T72 0 0 196 0 0 0 0 0 0 0 100,00%
2S1 0 0 0 273 1 0 0 0 0 0 99,64%

BRDM2 4 1 0 0 268 1 0 0 0 0 97,81%
BTR60 1 1 1 0 2 188 0 0 2 0 96,41%
D7 0 0 0 2 0 0 271 0 0 1 98,91%
T62 1 0 0 0 0 0 0 265 0 7 97,07%

ZIL131 0 0 0 0 0 0 2 0 272 0 99,27%
ZSU23/4 0 0 0 0 0 0 0 0 0 274 100,00%

Overall Accuracy 98,68%

Table 5.7 Confusion matrix for conventional reconstruction results with the VGG16
architecture.

Predicted Class Class
AccuracyBMP2 BTR70 T72 2S1 BRDM2 BTR60 D7 T62 ZIL131 ZSU23/4

Tr
ue

C
la
ss

BMP2 186 1 5 0 1 2 0 0 0 0 95,38%
BTR70 0 196 0 0 0 0 0 0 0 0 100,00%
T72 2 0 194 0 0 0 0 0 0 0 98,98%
2S1 5 0 1 264 3 0 0 0 0 1 96,35%

BRDM2 0 0 0 0 274 0 0 0 0 0 100,00%
BTR60 0 1 1 0 4 189 0 0 0 0 96,92%
D7 0 0 0 0 0 0 271 1 2 0 98,91%
T62 0 0 0 0 0 0 0 265 1 7 97,07%

ZIL131 0 0 0 0 0 0 0 0 274 0 100,00%
ZSU23/4 1 0 0 0 0 0 0 0 0 273 99,64%

Overall Accuracy 98,39%

5.2.4 Comparison & Summary

We now compare our results with existing ATR methodologies. First, we train
AlexNet and VGG16 with the magnitude of the original MSTAR chips. For this,
we feed the magnitude of the chips to all 3 channels of the input layers of both
architectures. Tables 5.6 and 5.7 show the results for these networks, respectively.

We also compare our results with the methods in Refs. [117, 119, 120, 123, 125, 126].
Note that, in the MSTAR dataset, there are additional images of different variations
of two of the vehicles, namely, T72 and BMP2, in addition to the ones mentioned
in Table 5.1, and [119,120,123] use these variants in the test set while [126] uses the
variants in both training and test sets. Hence, it should be noted that the results
of different methods compared here are not based on exactly the same training and
test sets. Table 5.8 shows the comparison of the proposed methodologies with the
existing methods.
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Table 5.8 Comparison of the proposed frameworks with existing methods.

Method Accuracy
Image Domain (AlexNet) 98,68%
Image Domain (VGG16) 98,39%
PHDC (AlexNet) 84,37%
PHDC (VGG16) 83,18%
IPRPHC (AlexNet) 99,05%
IPRPHC (VGG16) 98,93%
Song et. al. [119] 96,24%
Sun et. al. [120] 91,48%
Chen and Wang [117] 84,7%
Chen et. al. [123] 99,42%
El Housseini et. al. [125] 92,63%
Wagner et. al. [126] 98,47%

We observe that our first framework performed poorly compared to existing work
while our second framework performed well, only surpassed by the method in
Ref. 123. For our second framework, it seems like it was a reasonable judgment
to remove the phase of the MSTAR chips before returning back to the phase history
domain.

Another observation is that we reached slightly better results with AlexNet archi-
tecture compared to VGG16 for all types of experiments. The reason for this might
be that VGG16 is a larger network which needs more data to train.
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Chapter 6

Conclusions & Future Directions

6.1 Summary & Conclusions

In this dissertation, we have contributed to the SAR imaging literature. We have
developed three frameworks that enhance the performance of various SAR imaging
tasks. In particular, we have developed a SAR image formation framework that
utilizes deep learning-based priors using the plug-and-play (PnP) priors [33] frame-
work. We have also extended our framework to address phase errors along with
image formation. Finally, we have proposed a SAR ATR framework that works in
the data domain.

In Chapter 3, our image formation framework, namely PnP-CNN-SAR, was es-
tablished. In this framework, the forward model and the prior model are decoupled
using the PnP priors [33] framework. Within our framework, we have used a Fourier
transform-based forward model and a CNN-based prior model. We conducted ex-
periments with different settings to evaluate our proposed framework, i.e., we tested
our framework in the presence of different levels of noise and data availability. We
compared the results with three existing reconstruction methods, namely, FFT-
based, NQR-based [1], and DL-based [3] reconstruction, and a PnP framework-based
method with BM3D regularizer, using signal-to-noise ratio (SNR) and structural
similarity (SSIM) index metrics. We have shown that PnP-CNN-SAR outperforms
other methods in terms of visual quality. Overall, this study suggests that deep
learning methods may have the potential to learn complicated spatial patterns and
enable their incorporation as priors into computational radar imaging.

In Chapter 4, the extension of PnP-CNN-SAR, namely PnP-CNN-SAR-AF, to
jointly address image formation and phase error correction, is presented. We have
tested our framework in the presence of different levels of phase errors and data
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availability. We have first shown the effectiveness of the additional phase error es-
timation and correction steps as well as training the network with phase errors, by
designing four different experimental settings, namely, PnP, PnP-pe, PnP-AF, and
PnP-pe-AF. In PnP and PnP-AF, the network trained without phase error is used
while in PnP-pe and PnP-pe-AF, the network trained with phase error is used. Also,
in PnP and PnP-pe, the PnP-CNN-SAR algorithm is used while in PnP-AF and
PnP-pe-AF, the PnP-CNN-SAR-AF algorithm is used which has additional phase
error estimation and correction steps. The results obtained in these settings have
shown that the additional phase error estimation and correction steps and training
the network with phase errors improve the performance significantly. These results
have also shown that training the network with phase error is not enough by itself
and this network should be used within the PnP-CNN-SAR-AF algorithm. Later,
we compared the results of PnP-pe-AF with two existing methods, namely, FFT-
based image reconstruction and SDA [52], using SNR and SSIM. We have shown
that PnP-CNN-SAR-AF outperforms other methods in all scenarios in terms of both
visual quality and the performance metrics.

In Chapter 5, we have introduced a SAR ATR framework that performs the recog-
nition task in the phase history domain. We have designed two ATR modalities,
namely, PHDC and IPRPHC. PHDC performs the ATR task using the collected
phase history data directly while in IPRPHC, image formation, image phase re-
moval, and phase history generation steps are performed before the ATR task.
Within this framework, we have used two well-known CNNs, AlexNet [35] and
VGG16 [36], which are designed for classification tasks. While the performance
with the PHDC was subpar, we have reached near state-of-the-art performance lev-
els with the IPRPHC modality. Nevertheless, presented results suggest that SAR
ATR without image formation or in the phase histories domain can be an important
research direction.

Overall, this dissertation brought a new point-of-view to SAR imaging problems,
and has shown that deep neural networks can be effectively used in improving
the performance of SAR imaging tasks. Although SAR ATR and other classifica-
tion/detection/segmentation applications have already started benefiting from the
deep learning tools, most of these works are essentially either postprocessing conven-
tionally reconstructed images or feature extraction from those. The works presented
in this dissertation show that deep neural networks can have a much broader role
than just postprocessing within SAR imaging tasks, and can improve the overall
performance significantly.
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6.2 Topics for Future Research

All three frameworks presented in this dissertation can benefit from further analysis
and extensions. In the following subsections, we will focus each of them individually,
and present our suggestions.

6.2.1 Further Analysis and Extensions on PnP-CNN-SAR
for Image Reconstruction

The PnP-CNN-SAR framework presented in Chapter 3 is open to further extensions
and developments in many ways. First of all, in synthetic scene experiments, we
have observed that a network trained for a specific scenario might not be the one
that performs the best for that particular scenario, rather a network trained with
a slightly higher data availability tends to perform better. A deeper analysis to
understand the underlying reasons and an extension to the real scene case would
be quite helpful. We have also observed that quantitative analyses based on SNR
and SSIM do not necessarily harmonize well with qualitative assessments, especially
in lower data availability scenarios, i.e., a reconstructed image might have a better
perceptual quality compared to another one, while having a worse score in terms of
the metrics used. (See, for example, last two rows of Figures 3.5, 3.6, 3.13, 3.14,
3.16, 3.17. In many of these cases, the NQR-based [1] reconstruction achieves the
best performance in terms of SNR, while producing least useful reconstructions.)
It is clear that new metrics that are more consistent with the visual quality of
the reconstructed images are required. Lastly, we observed that the most time
consuming process in our algorithm is the phase alignment step in the model update
which can take up to 75% of the overall computation time. A more efficient algorithm
for the phase alignment step would be useful for time-critical reconstruction tasks.

6.2.2 Further Analysis and Extensions on PnP-CNN-SAR-
AF for Joint Image Reconstruction and 1D Phase Er-
ror Correction

In Chapter 4, we have used the PnP-CNN-SAR-AF framework to jointly address
image reconstruction and 1D phase errors. This framework can easily be extended
to address 2D separable and non-separable phase errors as well. Also, in this work,
we have only investigated the effects of the amount of phase error in the case of
full data availability and relatively low noise. The performance of the proposed
framework can be evaluated in more challenging scenarios, i.e., in cases of lower
data availability and higher noise levels. Finally, in this work, we have trained the
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network with data generated with a particular scenario in mind. A network trained
with data generated with various scenarios, i.e., different combinations of different
phase error, data availability, and noise levels, would likely have more generalization
power, and could give good results in a variety of scenarios.

6.2.3 Further Analysis and Extensions on SAR ATR in the
Phase History Domain

The work presented in Chapter 5 can be improved in several ways. We have used an
approximation to the phase histories in our experiments for the PHDC. Using the
actual phase history data would potentially give better and more realistic results.
Also, the CNN architectures we have used in the experiments are relatively old and
smaller compared to the recent networks. We can benefit from using a deeper and/or
task specific network. Note however that using a deeper network might require a
larger training set and longer time to train. Also, the effect of the way the data are
used in the CNN can be investigated. Since AlexNet and VGG16 are both designed
for image classification, they require 3-channel real input data. However, the phase
history data we have is complex. Therefore, we decided to use real and imaginary
parts and the magnitude of the phase histories to feed to the 3 channels since this
gave us the best result among other methods (using only one part for all channels
or another combination like real, imaginary, and phase). But we are still not sure
if this is the best way to use the data and that is open for further investigation.
One can also use a CNN that is designed to work with complex data like the one
proposed by Gao et. al. [196]. In addition, using different augmentation techniques
and generating larger training sets might improve the results. Finally, in this work,
we only considered the standard operation conditions where the depression angles
for the training and test sets are fairly similar (17° vs. 15°). The performance of the
proposed modalities can also be investigated for the extended operation conditions,
i.e., where depression angles differ by a large margin (Training 17° - Test 30° and
Training 17° - Test 45°).
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Appendix A

Additional Results from PnP-
CNN-SAR for Image Reconstruc-
tion

This appendix provides additional results and information in support of Chapter
3. The rest of this supplement is structured as follows. Sections A.1, A.2, and A.3
provide detailed quantitative and qualitative analyses for the synthetic scene exper-
iments, same scene experiments, and different scene experiments, respectively. The
results presented in this supplement show that PnP-CNN-SAR outperforms other
methods in both quantitative metrics and reconstruction quality, in the majority of
the scenarios considered.

A.1 Synthetic Scene Experiments

A.1.1 Experiment 1: 100% Data Availability and σn = 0.1σy

Table A.1 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for all 9 images, and best SSIM for 7 images. Fig. A.1 shows the
reconstruction results from all methods for this experiment. NQR-based and PnP-
CNN-SAR results in near perfect reconstructions. Other methods also produce good
reconstructions.

A.1.2 Experiment 2: 90% Data Availability and σn = 0.1σy

Table A.2 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 4 images, and best SSIM for 3 images. Fig. A.2 shows the
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Table A.1 SNR and SSIM values for synthetic SAR scenes for the case of 100% data availability
and σn = 0.1σy. Best results are shown in bold, second best results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 26.25 25.44 27.12 28.08 36.88 0.930 0.978 0.901 0.924 0.998
Image 2 23.72 31.15 24.09 24.69 36.02 0.691 0.999 0.596 0.599 0.989
Image 3 25.76 31.99 26.54 27.37 37.61 0.928 0.989 0.894 0.927 0.998
Image 4 26.01 24.66 27.06 28.37 34.29 0.956 0.976 0.940 0.959 0.996
Image 5 26.56 25.51 27.30 28.68 39.64 0.954 0.959 0.936 0.952 0.999
Image 6 25.04 24.94 25.68 25.88 38.79 0.957 0.989 0.945 0.945 0.997
Image 7 25.38 24.58 26.22 26.29 38.30 0.963 0.989 0.954 0.957 0.999
Image 8 25.53 24.91 25.98 26.55 38.97 0.966 0.988 0.954 0.962 0.999
Image 9 25.72 32.61 26.85 28.74 40.79 0.808 0.996 0.770 0.827 0.992

Average 25.55 27.31 26.31 27.18 37.92 0.906 0.985 0.877 0.895 0.996

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.1 Reconstruction results for the synthetic scenes for the case of 100% data
availability and σn = 0.1σy.

reconstruction results from all methods for this experiment. DL-based and PnP-
CNN-SAR generally produces better reconstructions compared to other methods.

Table A.2 SNR and SSIM values for synthetic SAR scenes for the case of 90% data availability
and σn = 0.1σy. Best results are shown in bold, second best results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 11.84 17.85 27.05 26.57 23.26 0.457 0.867 0.910 0.942 0.922
Image 2 10.12 18.78 20.98 19.78 20.83 0.377 0.991 0.540 0.520 0.967
Image 3 11.62 27.05 25.23 25.17 23.94 0.494 0.950 0.894 0.940 0.917
Image 4 11.38 9.27 25.08 27.07 23.32 0.627 0.533 0.934 0.968 0.960
Image 5 11.70 13.72 26.90 27.31 24.63 0.519 0.627 0.941 0.955 0.938
Image 6 10.61 18.10 23.20 17.39 28.38 0.683 0.944 0.934 0.880 0.985
Image 7 11.41 18.58 24.56 20.18 26.14 0.668 0.949 0.950 0.934 0.976
Image 8 11.18 13.25 24.11 21.05 28.88 0.694 0.810 0.950 0.946 0.987
Image 9 11.71 23.94 25.73 28.43 28.56 0.333 0.934 0.766 0.870 0.932

Average 11.29 17.84 24.76 23.66 25.33 0.539 0.845 0.869 0.884 0.954
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.2 Reconstruction results for the synthetic scenes for the case of 90% data
availability and σn = 0.1σy.

A.1.3 Experiment 3: 80% Data Availability and σn = 0.1σy

Table A.3 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 4 images, and best SSIM for 5 images. Fig. A.3 shows the
reconstruction results from all methods for this experiment. DL-based and PnP-
CNN-SAR generally produces better reconstructions compared to other methods.

Table A.3 SNR and SSIM values for synthetic SAR scenes for the case of 80% data availability
and σn = 0.1σy. Best results are shown in bold, second best results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 10.38 15.29 21.97 21.86 20.31 0.373 0.748 0.859 0.847 0.863
Image 2 7.97 8.85 20.65 8.02 21.09 0.360 0.927 0.561 0.406 0.972
Image 3 9.67 22.48 26.13 16.43 21.32 0.422 0.913 0.910 0.771 0.845
Image 4 9.77 10.43 23.14 20.75 19.11 0.552 0.525 0.925 0.884 0.913
Image 5 10.39 12.87 22.09 19.22 20.13 0.430 0.652 0.895 0.837 0.853
Image 6 9.17 16.47 20.65 11.30 24.14 0.628 0.913 0.918 0.738 0.970
Image 7 9.82 13.11 20.62 13.03 24.28 0.608 0.769 0.917 0.766 0.968
Image 8 9.47 13.84 21.42 13.58 24.08 0.613 0.850 0.936 0.817 0.980
Image 9 10.25 26.61 23.16 21.43 26.29 0.278 0.978 0.743 0.664 0.921

Average 9.65 15.55 22.20 16.18 22.30 0.474 0.809 0.852 0.748 0.921

A.1.4 Experiment 4: 70% Data Availability and σn = 0.1σy

Table A.4 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 8 images, and best SSIM for 8 images. Fig. A.4 shows
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.3 Reconstruction results for the synthetic scenes for the case of 80% data
availability and σn = 0.1σy.

the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.

Table A.4 SNR and SSIM values for synthetic SAR scenes for the case of 70% data
availability and σn = 0.1σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 8.44 11.92 11.90 13.98 14.82 0.284 0.487 0.482 0.560 0.659
Image 2 6.52 7.67 17.84 2.90 15.27 0.322 0.896 0.536 0.208 0.963
Image 3 8.16 12.29 11.12 11.24 16.47 0.355 0.602 0.485 0.492 0.731
Image 4 8.32 9.21 11.76 13.32 17.44 0.434 0.377 0.613 0.688 0.860
Image 5 8.49 10.76 11.50 13.70 17.79 0.324 0.429 0.526 0.576 0.743
Image 6 7.58 8.72 11.22 6.73 18.21 0.529 0.570 0.714 0.421 0.926
Image 7 7.96 10.74 11.56 8.78 18.75 0.500 0.642 0.697 0.506 0.921
Image 8 7.84 8.87 10.81 8.95 18.42 0.529 0.571 0.675 0.572 0.935
Image 9 8.11 17.27 12.24 15.69 17.38 0.233 0.789 0.360 0.510 0.739

Average 7.94 10.83 12.22 10.59 17.17 0.390 0.596 0.566 0.504 0.831

A.1.5 Experiment 5: 50% Data Availability and σn = 0.1σy

Table A.5 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for all 9 images, and best SSIM for 8 images. Fig. A.5 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.4 Reconstruction results for the synthetic scenes for the case of 70% data
availability and σn = 0.1σy.

Table A.5 SNR and SSIM values for synthetic SAR scenes for the case of 50% data
availability and σn = 0.1σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.44 10.83 8.14 10.60 11.68 0.222 0.268 0.277 0.302 0.400
Image 2 4.39 6.03 6.08 2.49 8.49 0.280 0.839 0.346 0.141 0.887
Image 3 6.29 9.64 7.60 8.54 11.79 0.244 0.414 0.287 0.230 0.550
Image 4 6.26 8.22 7.40 8.76 9.83 0.297 0.265 0.344 0.398 0.472
Image 5 6.50 10.76 8.09 10.74 11.82 0.248 0.348 0.291 0.319 0.388
Image 6 5.53 6.97 6.69 5.97 10.86 0.364 0.414 0.429 0.267 0.714
Image 7 6.01 7.74 7.38 7.52 11.03 0.371 0.363 0.433 0.342 0.659
Image 8 6.11 7.05 7.19 7.26 10.64 0.394 0.318 0.460 0.369 0.689
Image 9 6.49 13.49 8.35 11.04 14.95 0.177 0.657 0.229 0.347 0.607

Average 6.00 8.97 7.44 8.10 11.23 0.289 0.432 0.344 0.302 0.596

A.1.6 Experiment 6: 30% Data Availability and σn = 0.1σy

Table A.6 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 6 images. Fig. A.6 shows the
reconstruction results from all methods for this experiment. None of the methods
are able to produce acceptable reconstructions for most of the images.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.5 Reconstruction results for the synthetic scenes for the case of 50% data
availability and σn = 0.1σy.

Table A.6 SNR and SSIM values for synthetic SAR scenes for the case of 30% data
availability and σn = 0.1σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.84 10.06 6.95 6.92 9.54 0.156 0.223 0.167 0.203 0.237
Image 2 3.14 4.08 3.17 2.60 5.21 0.215 0.704 0.200 0.122 0.766
Image 3 4.72 7.87 6.21 6.30 8.81 0.171 0.247 0.171 0.201 0.372
Image 4 4.61 7.74 5.94 6.02 5.97 0.182 0.219 0.224 0.215 0.160
Image 5 4.67 10.68 6.98 6.96 8.93 0.135 0.213 0.246 0.182 0.171
Image 6 4.09 5.38 4.88 5.01 7.22 0.237 0.189 0.229 0.187 0.526
Image 7 4.40 6.56 5.52 5.41 7.63 0.241 0.211 0.237 0.176 0.410
Image 8 4.38 5.97 5.38 5.30 7.12 0.258 0.172 0.270 0.168 0.455
Image 9 4.83 10.93 6.36 7.15 9.71 0.130 0.489 0.201 0.342 0.416

Average 4.41 7.70 5.71 5.74 7.79 0.191 0.296 0.216 0.200 0.390

A.1.7 Experiment 7: 100% Data Availability and σn = σy

Table A.7 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 8 images, and best SSIM for 6 images. Fig. A.7 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.6 Reconstruction results for the synthetic scenes for the case of 30% data
availability and σn = 0.1σy.

Table A.7 SNR and SSIM values for synthetic SAR scenes for the case of 100% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.76 13.26 6.97 10.62 13.69 0.364 0.560 0.252 0.336 0.568
Image 2 3.93 14.45 4.02 3.75 14.34 0.313 0.907 0.275 0.244 0.735
Image 3 6.19 13.96 6.36 9.03 14.23 0.403 0.678 0.291 0.360 0.669
Image 4 6.31 10.04 6.77 9.60 12.79 0.507 0.447 0.387 0.501 0.668
Image 5 6.69 12.79 7.16 11.06 13.45 0.393 0.453 0.288 0.431 0.529
Image 6 5.21 9.94 5.60 6.63 14.23 0.622 0.651 0.486 0.520 0.832
Image 7 5.66 10.50 6.07 7.75 13.90 0.593 0.644 0.447 0.526 0.789
Image 8 5.54 10.19 5.91 7.66 13.15 0.591 0.655 0.462 0.558 0.802
Image 9 6.23 16.11 6.31 9.91 16.18 0.256 0.684 0.195 0.322 0.594

Average 5.84 12.36 6.13 8.45 13.99 0.449 0.631 0.343 0.422 0.687

A.1.8 Experiment 8: 90% Data Availability and σn = σy

Table A.8 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 6 images. Fig. A.8 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.

101



(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.7 Reconstruction results for the synthetic scenes for the case of 100% data
availability and σn = σy.

Table A.8 SNR and SSIM values for synthetic SAR scenes for the case of 90% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.54 12.25 6.04 10.74 10.96 0.270 0.427 0.191 0.312 0.415
Image 2 3.21 13.58 3.10 2.98 12.84 0.285 0.912 0.260 0.225 0.566
Image 3 5.80 10.11 4.98 8.35 10.56 0.311 0.488 0.202 0.290 0.507
Image 4 6.41 9.82 5.39 9.03 11.03 0.426 0.432 0.312 0.431 0.621
Image 5 6.75 11.80 5.88 10.78 11.69 0.314 0.423 0.219 0.357 0.436
Image 6 4.99 7.81 3.78 6.08 12.80 0.518 0.468 0.393 0.447 0.793
Image 7 5.52 8.95 4.56 7.05 12.01 0.483 0.507 0.359 0.431 0.725
Image 8 5.47 9.06 4.01 6.84 12.59 0.483 0.551 0.329 0.444 0.767
Image 9 5.93 15.86 5.59 9.13 15.14 0.206 0.737 0.159 0.258 0.488

Average 5.62 11.03 4.81 7.89 12.18 0.366 0.549 0.269 0.355 0.591

A.1.9 Experiment 9: 80% Data Availability and σn = σy

Table A.9 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 6 images, and best SSIM for 5 images. Fig. A.9 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.8 Reconstruction results for the synthetic scenes for the case of 90% data
availability and σn = σy.

Table A.9 SNR and SSIM values for synthetic SAR scenes for the case of 80% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.70 11.19 6.99 11.00 10.65 0.246 0.328 0.206 0.241 0.352
Image 2 3.38 9.11 3.55 2.07 11.93 0.271 0.846 0.254 0.176 0.420
Image 3 5.95 10.60 5.81 8.60 11.07 0.295 0.511 0.214 0.248 0.460
Image 4 6.36 9.16 5.71 8.60 9.94 0.375 0.357 0.295 0.343 0.498
Image 5 6.84 12.24 6.66 10.86 11.42 0.292 0.431 0.235 0.261 0.387
Image 6 4.89 8.69 4.26 5.24 11.11 0.468 0.578 0.362 0.279 0.707
Image 7 5.36 7.75 5.12 6.67 9.83 0.456 0.350 0.366 0.297 0.572
Image 8 5.29 6.50 4.72 6.29 10.36 0.437 0.273 0.360 0.322 0.635
Image 9 5.95 14.90 5.92 9.47 12.99 0.185 0.702 0.153 0.283 0.363

Average 5.64 10.02 5.42 7.64 11.03 0.336 0.486 0.272 0.272 0.488

A.1.10 Experiment 10: 70% Data Availability and σn = σy

Table A.10 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 8 images, and best SSIM for 6 images. Fig. A.10 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.9 Reconstruction results for the synthetic scenes for the case of 80% data
availability and σn = 0.1σy.

Table A.10 SNR and SSIM values for synthetic SAR scenes for the case of 70% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.64 10.51 7.44 10.13 10.65 0.223 0.264 0.185 0.211 0.297
Image 2 2.98 6.54 3.53 2.54 11.17 0.249 0.807 0.239 0.175 0.427
Image 3 5.81 9.29 6.31 8.38 9.38 0.242 0.392 0.192 0.212 0.307
Image 4 6.21 8.93 6.51 8.38 10.02 0.314 0.327 0.291 0.290 0.475
Image 5 6.56 10.09 7.69 10.29 10.95 0.250 0.304 0.231 0.257 0.339
Image 6 4.61 7.33 4.73 5.59 9.36 0.412 0.480 0.330 0.301 0.606
Image 7 5.41 7.57 5.48 6.93 9.97 0.383 0.306 0.322 0.320 0.565
Image 8 5.15 7.01 5.48 6.64 9.10 0.402 0.348 0.340 0.331 0.548
Image 9 5.87 13.45 7.00 8.94 12.71 0.170 0.654 0.159 0.196 0.338

Average 5.47 8.97 6.02 7.54 10.37 0.294 0.431 0.254 0.255 0.433

A.1.11 Experiment 11: 50% Data Availability and σn = σy

Table A.11 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 6 images. Fig. A.11 shows
the reconstruction results from all methods for this experiment. PnP-CNN-SAR
produces better reconstructions compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.10 Reconstruction results for the synthetic scenes for the case of 70% data
availability and σn = σy.

Table A.11 SNR and SSIM values for synthetic SAR scenes for the case of 50% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.43 9.21 8.77 9.63 9.72 0.162 0.213 0.173 0.209 0.248
Image 2 2.43 4.41 3.07 1.58 8.20 0.209 0.638 0.202 0.098 0.412
Image 3 5.71 8.79 7.00 7.83 8.70 0.188 0.302 0.154 0.223 0.316
Image 4 5.78 8.35 7.23 7.67 7.72 0.233 0.258 0.227 0.191 0.260
Image 5 6.50 10.90 8.57 9.84 10.19 0.185 0.259 0.208 0.201 0.220
Image 6 4.49 5.83 4.95 5.02 7.30 0.317 0.245 0.248 0.134 0.466
Image 7 5.15 6.65 6.14 6.08 7.49 0.296 0.218 0.253 0.143 0.371
Image 8 5.00 6.47 5.71 5.87 7.18 0.314 0.227 0.269 0.170 0.433
Image 9 5.84 11.60 7.56 8.73 9.22 0.141 0.480 0.150 0.374 0.288

Average 5.26 8.02 6.55 6.92 8.41 0.227 0.316 0.209 0.194 0.335

A.1.12 Experiment 12: 30% Data Availability and σn = σy

Table A.12 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 3 images, and best SSIM for 3 images. Fig. A.12 shows the
reconstruction results from all methods for this experiment. None of the methods
are able to produce acceptable reconstructions for most of the images.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.11 Reconstruction results for the synthetic scenes for the case of 50% data
availability and σn = σy.

Table A.12 SNR and SSIM values for synthetic SAR scenes for the case of 30% data
availability and σn = σy. Best results are shown in bold, second best results are
shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 5.40 10.16 9.30 7.77 8.65 0.120 0.219 0.192 0.134 0.154
Image 2 2.16 4.10 2.08 1.68 3.83 0.149 0.681 0.119 0.085 0.285
Image 3 4.89 6.38 6.89 6.76 7.00 0.136 0.196 0.149 0.171 0.201
Image 4 4.71 7.62 7.06 6.53 6.90 0.145 0.186 0.192 0.163 0.167
Image 5 5.48 10.36 9.04 7.96 9.02 0.154 0.184 0.183 0.165 0.158
Image 6 3.99 5.12 4.17 4.62 5.07 0.209 0.174 0.067 0.116 0.204
Image 7 4.56 6.12 5.70 5.69 6.35 0.205 0.138 0.112 0.155 0.261
Image 8 4.40 5.68 5.14 5.39 5.90 0.201 0.129 0.091 0.152 0.208
Image 9 5.09 10.34 7.41 7.22 8.31 0.106 0.460 0.303 0.243 0.309

Average 4.52 7.32 6.31 5.96 6.78 0.158 0.263 0.156 0.154 0.216

A.2 Same Scene Experiments

A.2.1 Experiment 1: 100% Data Availability and σn = 0.1σy

Table A.13 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and SSIM for all 31 images. Fig. A.13 shows the reconstruction
results for a selection of images from the Wonsan test set from all methods for this
experiment. All methods produce good reconstructions.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.12 Reconstruction results for the synthetic scenes for the case of 30% data
availability and σn = σy.

Table A.13 SNR and SSIM values for images from the Wonsan Test Set for the case
of 100% data availability and σn = 0.1σy. Best results are shown in bold, second
best results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 26.31 24.60 22.58 26.28 40.91 0.900 0.906 0.937 0.899 0.992
Image 2 26.74 24.59 22.61 26.79 43.99 0.986 0.985 0.982 0.986 1.000
Image 3 26.67 12.02 26.13 26.62 35.68 0.983 0.856 0.981 0.983 0.998
Image 4 26.75 25.65 21.41 26.82 39.38 0.989 0.989 0.984 0.989 0.999
Image 5 26.76 25.14 21.77 26.70 42.66 0.990 0.989 0.984 0.990 1.000
Image 6 26.36 25.10 21.73 26.35 40.02 0.938 0.941 0.957 0.939 0.994
Image 7 26.67 25.22 21.36 26.66 40.81 0.987 0.987 0.983 0.987 0.999
Image 8 26.75 25.45 21.88 26.73 41.24 0.984 0.984 0.981 0.984 0.999
Image 9 26.64 24.53 21.74 26.73 42.06 0.979 0.979 0.978 0.979 0.999
Image 10 26.63 25.84 21.99 26.75 38.59 0.978 0.979 0.980 0.979 0.999
Image 11 26.72 24.93 22.83 26.72 41.32 0.986 0.985 0.982 0.986 1.000
Image 12 26.29 24.93 22.24 26.36 41.16 0.927 0.931 0.953 0.928 0.994
Image 13 26.71 17.00 26.46 26.67 37.39 0.979 0.935 0.979 0.979 0.998
Image 14 26.65 24.58 21.25 26.68 41.48 0.980 0.980 0.978 0.980 0.999
Image 15 26.65 26.01 23.08 26.70 41.33 0.988 0.987 0.984 0.988 1.000
Image 16 26.69 24.71 21.94 26.73 41.57 0.987 0.986 0.982 0.987 0.999
Image 17 26.95 24.98 25.77 26.75 34.66 0.957 0.960 0.973 0.955 0.992
Image 18 26.73 25.46 22.94 26.69 43.06 0.985 0.985 0.982 0.985 1.000
Image 19 26.61 24.81 21.33 26.83 41.72 0.985 0.985 0.982 0.986 1.000
Image 20 26.74 25.58 23.12 26.69 39.18 0.987 0.987 0.984 0.987 0.999
Image 21 26.64 24.80 24.05 26.75 41.17 0.984 0.984 0.982 0.985 1.000
Image 22 26.73 24.76 21.51 26.78 40.01 0.985 0.984 0.982 0.985 0.999
Image 23 26.75 25.02 24.29 26.72 40.95 0.986 0.985 0.983 0.986 1.000
Image 24 26.78 24.63 23.35 26.73 41.59 0.981 0.981 0.981 0.981 0.999
Image 25 26.79 12.07 26.64 26.67 35.27 0.981 0.851 0.978 0.980 0.997
Image 26 26.74 24.26 21.27 26.75 37.94 0.968 0.969 0.975 0.968 0.998
Image 27 26.65 24.10 22.77 26.70 41.25 0.985 0.984 0.983 0.985 0.999
Image 28 25.97 25.25 22.20 25.97 37.01 0.898 0.904 0.942 0.898 0.985
Image 29 26.74 26.48 25.03 26.70 41.78 0.985 0.985 0.983 0.985 0.999
Image 30 26.52 24.40 21.48 26.52 40.51 0.947 0.950 0.959 0.949 0.996
Image 31 26.71 13.35 24.67 26.72 35.22 0.989 0.956 0.985 0.989 0.998

Average 26.65 23.56 22.95 26.65 40.03 0.973 0.963 0.976 0.973 0.998
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.13 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.

A.2.2 Experiment 2: 90% Data Availability and σn = 0.1σy

Table A.14 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 27 images, and best SSIM for 29 images. Fig. A.14 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. All methods produce good reconstructions.

A.2.3 Experiment 3: 80% Data Availability and σn = 0.1σy

Table A.15 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 27 images, and best SSIM for 29 images. Fig. A.15 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-BM3D and PnP-CNN-SAR produce better
reconstructions compared to other methods.

A.2.4 Experiment 4: 70% Data Availability and σn = 0.1σy

Table A.16 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 29 images, and best SSIM for 28 images. Fig. A.16 shows
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Table A.14 SNR and SSIM values for images from the Wonsan Test Set for the case
of 90% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 13.19 13.25 12.32 15.55 18.06 0.706 0.608 0.698 0.783 0.925
Image 2 13.47 11.48 12.14 14.43 17.16 0.832 0.667 0.790 0.858 0.926
Image 3 13.55 9.82 16.45 17.73 17.00 0.762 0.601 0.829 0.872 0.843
Image 4 13.37 10.67 11.56 13.01 15.24 0.862 0.831 0.802 0.846 0.901
Image 5 13.31 11.57 11.73 13.25 15.71 0.859 0.839 0.809 0.851 0.913
Image 6 12.84 11.43 10.70 13.49 17.11 0.751 0.765 0.679 0.770 0.937
Image 7 13.21 11.90 11.15 13.01 16.40 0.850 0.842 0.781 0.841 0.934
Image 8 13.26 10.81 11.68 13.57 14.79 0.837 0.647 0.783 0.846 0.875
Image 9 13.16 11.92 11.14 13.96 15.49 0.822 0.676 0.748 0.846 0.888
Image 10 13.21 10.18 11.60 15.12 16.59 0.802 0.526 0.787 0.838 0.901
Image 11 13.36 11.64 13.08 14.22 16.07 0.830 0.816 0.822 0.853 0.892
Image 12 12.99 11.28 11.69 14.41 17.01 0.733 0.587 0.691 0.788 0.925
Image 13 13.28 12.60 16.45 17.48 17.66 0.729 0.710 0.814 0.848 0.849
Image 14 13.11 11.44 10.43 13.54 15.74 0.830 0.681 0.733 0.842 0.902
Image 15 13.36 12.47 13.34 14.39 16.34 0.835 0.829 0.831 0.850 0.902
Image 16 13.23 10.96 11.76 13.44 15.42 0.847 0.663 0.791 0.851 0.899
Image 17 13.10 12.23 15.62 18.22 17.89 0.818 0.689 0.854 0.784 0.907
Image 18 13.25 11.61 12.67 15.29 17.45 0.801 0.792 0.790 0.859 0.909
Image 19 13.32 11.35 10.77 13.31 16.94 0.846 0.829 0.780 0.854 0.925
Image 20 13.41 11.34 13.64 13.96 15.59 0.842 0.824 0.846 0.836 0.896
Image 21 13.40 12.66 14.31 15.31 16.48 0.813 0.811 0.831 0.855 0.890
Image 22 13.29 11.05 11.20 13.52 16.73 0.849 0.667 0.770 0.846 0.921
Image 23 13.29 11.62 14.52 15.80 16.59 0.797 0.505 0.827 0.862 0.878
Image 24 13.13 12.14 13.38 15.12 17.37 0.806 0.616 0.816 0.853 0.908
Image 25 13.40 10.13 16.74 18.21 17.95 0.711 0.559 0.806 0.860 0.835
Image 26 13.12 12.89 10.03 15.44 18.13 0.781 0.581 0.695 0.830 0.895
Image 27 13.29 9.57 13.08 14.52 16.29 0.827 0.450 0.827 0.856 0.897
Image 28 12.65 14.40 10.59 17.01 19.23 0.698 0.545 0.668 0.769 0.934
Image 29 13.32 12.99 15.14 16.81 16.54 0.786 0.787 0.843 0.871 0.881
Image 30 12.97 12.92 10.33 14.79 19.01 0.754 0.677 0.671 0.830 0.919
Image 31 13.40 10.54 14.89 13.75 16.18 0.835 0.557 0.858 0.816 0.884

Average 13.23 11.64 12.71 14.89 16.78 0.802 0.683 0.783 0.838 0.900

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.14 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.
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Table A.15 SNR and SSIM values for images from the Wonsan Test Set for the case
of 80% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 9.77 8.98 9.69 11.73 13.41 0.653 0.485 0.632 0.697 0.867
Image 2 9.96 7.23 9.65 11.33 13.30 0.722 0.334 0.671 0.757 0.854
Image 3 10.15 8.55 13.04 14.50 13.69 0.597 0.566 0.681 0.747 0.715
Image 4 10.12 5.36 8.76 10.00 12.84 0.775 0.338 0.681 0.735 0.872
Image 5 10.20 8.90 9.16 10.55 12.57 0.763 0.732 0.681 0.747 0.848
Image 6 9.83 8.80 8.61 10.21 11.97 0.702 0.500 0.613 0.678 0.873
Image 7 9.99 9.35 8.56 10.06 12.84 0.765 0.754 0.659 0.737 0.873
Image 8 9.96 8.19 8.96 10.52 12.93 0.750 0.714 0.666 0.746 0.867
Image 9 9.99 7.64 8.87 10.90 13.60 0.742 0.483 0.650 0.752 0.868
Image 10 10.09 7.23 9.10 11.32 13.18 0.720 0.443 0.692 0.732 0.825
Image 11 10.07 7.48 10.12 11.28 13.07 0.712 0.306 0.686 0.734 0.813
Image 12 9.78 6.76 9.23 10.86 12.47 0.667 0.363 0.631 0.684 0.867
Image 13 10.10 11.59 13.12 14.07 14.40 0.571 0.511 0.668 0.712 0.724
Image 14 9.82 7.99 8.16 10.25 13.29 0.748 0.530 0.631 0.749 0.888
Image 15 10.10 9.27 10.37 11.45 12.85 0.721 0.487 0.697 0.741 0.817
Image 16 10.23 8.60 9.25 10.71 13.10 0.753 0.715 0.673 0.755 0.845
Image 17 9.86 12.48 12.43 14.19 13.84 0.780 0.655 0.803 0.719 0.850
Image 18 10.10 9.73 9.84 11.94 13.70 0.685 0.521 0.658 0.744 0.828
Image 19 9.85 8.77 8.32 10.24 13.38 0.752 0.574 0.663 0.755 0.871
Image 20 10.07 9.79 10.45 11.24 12.73 0.728 0.725 0.720 0.717 0.815
Image 21 10.19 9.16 11.28 12.14 13.08 0.685 0.335 0.698 0.732 0.785
Image 22 9.95 8.12 8.66 10.39 13.32 0.761 0.522 0.659 0.740 0.876
Image 23 10.28 9.75 11.52 12.42 13.13 0.663 0.345 0.691 0.736 0.772
Image 24 10.07 8.27 10.56 11.74 13.57 0.696 0.358 0.695 0.742 0.820
Image 25 10.19 10.45 13.21 15.28 14.44 0.543 0.502 0.631 0.731 0.684
Image 26 10.07 9.32 7.81 11.75 14.92 0.714 0.527 0.613 0.742 0.857
Image 27 10.17 7.71 10.09 11.47 13.00 0.710 0.353 0.695 0.739 0.814
Image 28 9.67 10.31 8.45 13.10 12.61 0.685 0.529 0.646 0.703 0.884
Image 29 10.12 8.71 11.99 13.41 13.60 0.645 0.386 0.707 0.754 0.788
Image 30 9.65 9.55 8.13 10.98 13.86 0.689 0.573 0.585 0.732 0.883
Image 31 10.11 9.66 11.67 11.05 13.43 0.713 0.522 0.735 0.680 0.788

Average 10.02 8.83 9.97 11.65 13.29 0.704 0.506 0.671 0.731 0.830

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.15 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.
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the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.

Table A.16 SNR and SSIM values for images from the Wonsan Test Set for the case
of 70% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 8.32 7.53 8.47 9.30 10.56 0.605 0.432 0.579 0.626 0.793
Image 2 8.49 6.97 8.47 9.20 10.94 0.650 0.279 0.587 0.655 0.768
Image 3 8.52 8.24 11.01 12.12 11.59 0.503 0.427 0.550 0.597 0.572
Image 4 8.45 6.64 7.65 8.47 10.18 0.705 0.634 0.594 0.648 0.793
Image 5 8.43 7.18 7.86 8.71 10.09 0.678 0.631 0.583 0.646 0.752
Image 6 8.18 6.47 7.52 8.58 10.25 0.652 0.430 0.562 0.612 0.820
Image 7 8.35 7.30 7.46 8.43 10.21 0.696 0.664 0.585 0.652 0.800
Image 8 8.29 6.62 7.89 8.66 10.31 0.681 0.368 0.592 0.653 0.792
Image 9 8.30 6.53 7.62 8.92 10.85 0.669 0.372 0.563 0.665 0.799
Image 10 8.36 6.24 7.89 9.01 10.30 0.648 0.398 0.620 0.646 0.741
Image 11 8.42 6.16 8.74 9.62 10.49 0.619 0.296 0.584 0.633 0.697
Image 12 8.32 7.48 8.14 9.11 10.35 0.635 0.441 0.582 0.618 0.807
Image 13 8.53 10.62 11.17 11.39 11.81 0.481 0.466 0.538 0.560 0.554
Image 14 8.13 6.74 7.17 8.48 10.47 0.687 0.438 0.558 0.668 0.819
Image 15 8.64 6.78 9.09 9.56 10.62 0.641 0.270 0.599 0.620 0.708
Image 16 8.36 7.00 7.94 8.99 10.38 0.669 0.621 0.563 0.656 0.753
Image 17 8.57 10.52 10.38 10.26 10.90 0.748 0.620 0.757 0.685 0.796
Image 18 8.48 7.83 8.68 9.70 10.83 0.606 0.340 0.564 0.629 0.724
Image 19 8.29 6.86 7.29 8.62 10.51 0.687 0.635 0.580 0.664 0.795
Image 20 8.44 7.11 9.20 9.57 10.19 0.635 0.299 0.634 0.605 0.710
Image 21 8.56 8.73 9.70 10.12 10.87 0.598 0.330 0.586 0.618 0.668
Image 22 8.37 4.66 7.53 8.64 10.73 0.690 0.253 0.577 0.659 0.801
Image 23 8.63 8.26 9.89 10.21 10.92 0.569 0.284 0.572 0.605 0.645
Image 24 8.67 7.49 9.13 9.67 11.12 0.626 0.316 0.596 0.636 0.720
Image 25 8.56 9.20 11.21 12.22 11.97 0.445 0.425 0.500 0.555 0.500
Image 26 8.11 7.03 6.96 8.79 11.83 0.649 0.420 0.568 0.657 0.779
Image 27 8.31 6.83 8.82 9.49 10.54 0.616 0.252 0.588 0.625 0.710
Image 28 8.32 8.96 7.75 9.72 10.03 0.684 0.512 0.651 0.651 0.842
Image 29 8.55 8.23 10.35 11.10 11.33 0.556 0.317 0.606 0.616 0.681
Image 30 8.13 8.38 7.11 8.90 10.80 0.640 0.528 0.525 0.652 0.812
Image 31 8.56 7.71 10.13 9.97 11.23 0.633 0.531 0.639 0.570 0.677

Average 8.41 7.49 8.65 9.53 10.75 0.632 0.427 0.587 0.632 0.736

A.2.5 Experiment 5: 50% Data Availability and σn = 0.1σy

Table A.17 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 23 images, and best SSIM for 29 images. Fig. A.17 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.

A.2.6 Experiment 6: 30% Data Availability and σn = 0.1σy

Table A.18 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 5 images, and best SSIM for 23 images. Fig. A.18 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.16 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.

Table A.17 SNR and SSIM values for images from the Wonsan Test Set for the case
of 50% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.10 7.06 6.68 7.26 8.20 0.541 0.410 0.505 0.487 0.656
Image 2 6.26 4.80 6.78 7.44 7.97 0.513 0.190 0.437 0.461 0.595
Image 3 6.61 7.93 8.68 10.63 8.81 0.384 0.418 0.374 0.404 0.393
Image 4 6.10 5.76 5.99 6.41 7.40 0.555 0.343 0.441 0.444 0.620
Image 5 6.17 6.03 6.33 6.77 7.52 0.527 0.266 0.419 0.421 0.580
Image 6 6.09 3.54 6.19 6.54 7.56 0.579 0.200 0.488 0.468 0.651
Image 7 6.13 6.09 6.02 6.25 7.46 0.563 0.561 0.444 0.435 0.631
Image 8 6.03 3.42 6.28 6.84 7.64 0.546 0.175 0.451 0.469 0.625
Image 9 6.10 4.06 6.11 6.82 7.70 0.548 0.187 0.438 0.484 0.657
Image 10 6.21 5.12 6.31 7.22 7.74 0.533 0.357 0.505 0.492 0.618
Image 11 6.29 5.51 7.03 7.80 7.93 0.478 0.207 0.419 0.424 0.539
Image 12 6.15 6.76 6.49 7.00 7.95 0.558 0.407 0.502 0.474 0.642
Image 13 6.49 11.04 8.67 9.97 9.22 0.348 0.354 0.364 0.362 0.386
Image 14 6.04 3.13 5.75 6.38 7.62 0.563 0.150 0.429 0.478 0.674
Image 15 6.32 7.33 7.05 7.90 8.08 0.486 0.282 0.429 0.416 0.539
Image 16 6.19 4.40 6.36 6.94 7.70 0.519 0.151 0.408 0.426 0.589
Image 17 6.35 8.81 7.98 8.33 8.26 0.680 0.588 0.694 0.648 0.719
Image 18 6.31 5.13 6.84 7.78 8.31 0.472 0.184 0.413 0.414 0.557
Image 19 6.06 2.99 5.87 6.57 7.73 0.550 0.177 0.437 0.476 0.642
Image 20 6.31 5.50 7.24 7.83 8.00 0.500 0.263 0.464 0.401 0.543
Image 21 6.40 6.44 7.73 8.57 8.34 0.447 0.200 0.420 0.414 0.492
Image 22 6.16 3.40 6.08 6.61 7.71 0.553 0.175 0.439 0.465 0.639
Image 23 6.30 6.29 7.80 8.70 8.45 0.410 0.196 0.393 0.392 0.469
Image 24 6.28 5.72 7.25 7.93 8.24 0.475 0.230 0.446 0.455 0.562
Image 25 6.51 9.99 8.75 10.75 9.25 0.326 0.336 0.330 0.346 0.328
Image 26 5.91 5.51 5.51 6.60 8.46 0.530 0.371 0.456 0.505 0.670
Image 27 6.25 5.63 6.94 7.69 7.86 0.480 0.198 0.428 0.419 0.531
Image 28 5.88 6.72 6.02 7.11 8.23 0.668 0.482 0.629 0.591 0.710
Image 29 6.45 5.49 8.11 9.66 8.79 0.430 0.251 0.455 0.401 0.505
Image 30 6.05 5.70 5.65 6.55 8.25 0.540 0.373 0.411 0.473 0.687
Image 31 6.41 6.26 8.05 9.22 8.95 0.511 0.472 0.495 0.475 0.537

Average 6.22 5.86 6.85 7.68 8.11 0.510 0.295 0.450 0.452 0.580
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.17 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.

Table A.18 SNR and SSIM values for images from the Wonsan Test Set for the case
of 30% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.58 5.75 5.05 5.78 5.75 0.489 0.372 0.440 0.431 0.490
Image 2 4.60 5.39 5.09 5.76 5.40 0.371 0.174 0.296 0.302 0.405
Image 3 4.86 6.55 6.37 7.94 5.95 0.291 0.327 0.253 0.335 0.268
Image 4 4.46 3.37 4.57 5.10 5.08 0.416 0.180 0.313 0.289 0.410
Image 5 4.41 4.13 4.81 5.33 5.14 0.366 0.166 0.272 0.247 0.381
Image 6 4.36 5.60 4.60 5.16 5.71 0.501 0.379 0.414 0.384 0.502
Image 7 4.39 5.50 4.52 4.92 5.25 0.416 0.349 0.313 0.279 0.428
Image 8 4.39 5.61 4.75 5.33 5.24 0.410 0.288 0.320 0.311 0.401
Image 9 4.27 4.16 4.76 5.19 5.15 0.400 0.173 0.314 0.328 0.437
Image 10 4.43 4.98 4.73 5.81 5.34 0.415 0.354 0.401 0.416 0.467
Image 11 4.61 6.07 5.25 6.03 5.49 0.338 0.199 0.278 0.270 0.356
Image 12 4.38 4.73 4.90 5.59 6.18 0.481 0.238 0.419 0.413 0.512
Image 13 4.87 10.37 6.43 7.64 6.15 0.257 0.312 0.242 0.264 0.257
Image 14 4.30 3.52 4.41 4.92 4.97 0.419 0.149 0.306 0.325 0.443
Image 15 4.56 6.82 5.34 6.18 5.66 0.345 0.273 0.285 0.265 0.369
Image 16 4.50 4.90 4.78 5.43 5.37 0.372 0.137 0.263 0.254 0.372
Image 17 4.91 8.67 5.75 6.89 5.88 0.607 0.605 0.637 0.649 0.585
Image 18 4.55 5.37 5.18 5.92 5.48 0.339 0.183 0.285 0.279 0.371
Image 19 4.44 3.51 4.44 5.14 5.11 0.404 0.183 0.304 0.310 0.419
Image 20 4.67 6.17 5.45 6.29 5.62 0.373 0.265 0.341 0.305 0.388
Image 21 4.68 6.90 5.77 6.52 5.67 0.324 0.166 0.281 0.241 0.327
Image 22 4.45 4.02 4.59 5.22 5.13 0.406 0.172 0.304 0.313 0.420
Image 23 4.67 7.72 5.87 6.64 5.80 0.284 0.181 0.252 0.234 0.321
Image 24 4.59 5.95 5.34 6.26 5.53 0.359 0.232 0.304 0.309 0.387
Image 25 4.90 8.26 6.44 8.02 6.13 0.246 0.294 0.211 0.285 0.222
Image 26 4.24 4.11 4.22 5.19 4.92 0.416 0.287 0.362 0.412 0.474
Image 27 4.61 5.82 5.19 6.05 5.37 0.349 0.208 0.290 0.274 0.356
Image 28 4.09 5.08 4.57 5.50 6.50 0.666 0.466 0.631 0.605 0.576
Image 29 4.76 7.77 5.99 7.10 6.17 0.322 0.265 0.321 0.297 0.359
Image 30 4.30 4.68 4.31 5.16 5.34 0.427 0.314 0.318 0.362 0.495
Image 31 4.69 5.60 5.94 7.44 5.91 0.408 0.462 0.385 0.443 0.403

Average 4.53 5.71 5.14 5.98 5.56 0.394 0.270 0.334 0.336 0.406

113



(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.18 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = 0.1σy.

A.2.7 Experiment 7: 100% Data Availability and σn = σy

Table A.19 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 31 images. Fig. A.19 shows the recon-
struction results for a selection of images from the Wonsan test set from all methods
for this experiment. DL-based and PnP-CNN-SAR produce better reconstructions
compared to other methods.

A.2.8 Experiment 8: 90% Data Availability and σn = σy

Table A.20 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 31 images. Fig. A.20 shows the recon-
struction results for a selection of images from the Wonsan test set from all methods
for this experiment. PnP-CNN-SAR produce better reconstructions compared to
other methods.
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Table A.19 SNR and SSIM values for images from the Wonsan Test Set for the case
of 100% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 5.41 10.06 15.71 5.46 39.11 0.345 0.479 0.924 0.343 0.997
Image 2 6.48 9.31 15.65 6.59 40.53 0.500 0.535 0.925 0.504 1.000
Image 3 6.97 10.14 20.18 7.21 33.66 0.408 0.481 0.921 0.420 0.997
Image 4 6.49 8.61 14.28 6.61 36.84 0.578 0.582 0.924 0.582 0.999
Image 5 6.52 9.06 14.69 6.63 37.93 0.557 0.544 0.922 0.563 0.999
Image 6 5.37 9.12 14.76 5.49 39.21 0.395 0.552 0.917 0.401 0.995
Image 7 6.21 9.00 14.24 6.28 38.49 0.548 0.582 0.923 0.555 0.999
Image 8 6.26 7.45 14.82 6.33 37.92 0.522 0.459 0.925 0.526 0.999
Image 9 6.17 8.73 14.67 6.18 35.93 0.511 0.561 0.922 0.508 0.997
Image 10 6.54 10.86 14.85 6.68 37.82 0.415 0.556 0.931 0.420 0.998
Image 11 6.71 9.20 15.93 6.80 36.95 0.504 0.470 0.923 0.511 0.999
Image 12 5.42 9.68 15.33 5.60 39.86 0.373 0.540 0.922 0.379 0.995
Image 13 6.93 12.16 20.66 6.97 32.68 0.372 0.486 0.921 0.370 0.995
Image 14 5.98 8.57 14.14 6.03 35.48 0.526 0.577 0.921 0.530 0.997
Image 15 6.64 10.21 16.19 6.78 38.05 0.505 0.535 0.925 0.511 0.999
Image 16 6.46 9.00 14.89 6.54 34.12 0.558 0.563 0.920 0.565 0.998
Image 17 5.51 13.30 19.52 5.57 35.60 0.193 0.601 0.949 0.199 0.994
Image 18 6.61 9.11 16.00 6.63 39.79 0.486 0.456 0.924 0.485 0.999
Image 19 6.28 8.77 14.17 6.45 37.46 0.548 0.580 0.924 0.555 0.999
Image 20 6.70 10.09 16.26 6.89 37.06 0.495 0.524 0.928 0.508 0.999
Image 21 6.76 10.11 17.34 6.81 36.62 0.466 0.497 0.924 0.475 0.999
Image 22 6.42 8.68 14.40 6.43 36.85 0.537 0.556 0.923 0.540 0.999
Image 23 6.88 10.35 17.66 7.03 33.88 0.472 0.454 0.922 0.476 0.998
Image 24 6.54 10.14 16.53 6.63 37.66 0.458 0.539 0.928 0.464 0.999
Image 25 7.01 8.08 21.07 7.10 31.47 0.367 0.402 0.917 0.367 0.993
Image 26 6.04 9.95 14.06 6.15 37.39 0.418 0.569 0.926 0.417 0.998
Image 27 6.67 9.66 15.82 6.70 37.46 0.491 0.511 0.924 0.494 0.999
Image 28 4.74 11.68 15.28 4.67 37.08 0.206 0.721 0.922 0.208 0.987
Image 29 6.90 11.57 18.58 7.00 38.68 0.444 0.535 0.929 0.454 0.999
Image 30 5.68 8.23 14.40 5.74 36.19 0.464 0.526 0.916 0.464 0.992
Image 31 6.86 9.81 18.07 7.16 33.57 0.513 0.599 0.930 0.522 0.997

Average 6.33 9.70 16.13 6.42 36.82 0.457 0.535 0.924 0.462 0.997

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.19 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 100% data availability and σn = σy.
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Table A.20 SNR and SSIM values for images from the Wonsan Test Set for the case
of 90% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 5.23 9.27 7.59 4.97 17.27 0.317 0.486 0.387 0.309 0.854
Image 2 6.19 6.88 8.78 6.12 15.93 0.457 0.319 0.572 0.447 0.891
Image 3 7.03 7.55 12.23 7.65 15.43 0.377 0.452 0.556 0.391 0.798
Image 4 6.21 8.20 7.97 6.25 14.06 0.535 0.530 0.600 0.537 0.872
Image 5 6.40 8.00 8.42 6.31 15.24 0.524 0.454 0.600 0.512 0.901
Image 6 5.18 8.47 7.25 5.02 17.84 0.372 0.543 0.445 0.363 0.882
Image 7 6.15 7.77 7.71 5.99 13.95 0.519 0.496 0.578 0.511 0.869
Image 8 6.01 8.26 8.03 5.96 14.08 0.483 0.512 0.563 0.478 0.859
Image 9 5.85 7.93 7.76 5.49 14.29 0.472 0.499 0.542 0.449 0.861
Image 10 6.30 9.66 8.28 6.27 16.88 0.385 0.518 0.546 0.391 0.874
Image 11 6.48 8.93 9.34 6.55 15.39 0.459 0.458 0.587 0.461 0.870
Image 12 5.28 8.87 7.55 5.13 17.12 0.350 0.538 0.432 0.347 0.873
Image 13 6.82 11.91 11.90 7.16 16.32 0.327 0.383 0.524 0.337 0.806
Image 14 5.78 7.74 7.34 5.40 15.13 0.500 0.515 0.545 0.472 0.887
Image 15 6.61 8.75 9.51 6.67 15.66 0.468 0.432 0.595 0.469 0.879
Image 16 6.30 7.90 8.46 6.18 14.74 0.520 0.467 0.591 0.509 0.881
Image 17 5.40 12.87 9.17 5.07 14.39 0.187 0.610 0.405 0.193 0.705
Image 18 6.41 7.50 8.91 6.25 16.31 0.443 0.333 0.563 0.429 0.873
Image 19 6.07 7.94 7.57 5.97 15.34 0.515 0.515 0.574 0.501 0.892
Image 20 6.58 9.62 9.73 6.73 15.13 0.460 0.484 0.615 0.463 0.875
Image 21 6.60 10.11 10.22 6.77 15.60 0.424 0.461 0.577 0.423 0.860
Image 22 6.05 7.42 7.80 5.83 15.01 0.497 0.469 0.565 0.483 0.883
Image 23 6.81 10.21 10.71 6.94 15.60 0.425 0.443 0.587 0.427 0.854
Image 24 6.42 9.56 9.46 6.28 16.15 0.424 0.485 0.557 0.412 0.872
Image 25 6.98 11.86 12.35 7.51 16.31 0.329 0.368 0.505 0.336 0.787
Image 26 5.82 9.50 7.13 4.75 17.03 0.393 0.552 0.481 0.360 0.850
Image 27 6.48 8.87 9.30 6.49 15.67 0.450 0.442 0.579 0.444 0.873
Image 28 4.38 11.17 6.34 4.13 21.56 0.191 0.721 0.275 0.196 0.836
Image 29 6.80 10.91 11.16 7.16 16.27 0.405 0.481 0.607 0.414 0.860
Image 30 5.42 8.69 7.01 4.93 16.03 0.434 0.605 0.482 0.412 0.851
Image 31 6.83 9.40 10.87 7.04 15.50 0.476 0.507 0.636 0.483 0.848

Average 6.16 9.09 8.90 6.10 15.85 0.423 0.486 0.538 0.418 0.857

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.20 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 90% data availability and σn = σy.
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A.2.9 Experiment 9: 80% Data Availability and σn = σy

Table A.21 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 31 images. Fig. A.21 shows the recon-
struction results for a selection of images from the Wonsan test set from all methods
for this experiment. PnP-CNN-SAR produce better reconstructions compared to
other methods.

Table A.21 SNR and SSIM values for images from the Wonsan Test Set for the case
of 80% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 5.07 7.78 6.94 4.99 12.73 0.290 0.522 0.351 0.293 0.789
Image 2 6.08 8.01 7.86 6.31 12.85 0.425 0.406 0.493 0.433 0.826
Image 3 7.04 9.29 11.76 7.83 12.45 0.343 0.430 0.486 0.375 0.653
Image 4 5.95 6.84 6.92 6.07 12.10 0.491 0.426 0.510 0.501 0.842
Image 5 6.13 6.79 7.42 6.29 12.41 0.476 0.356 0.510 0.491 0.834
Image 6 5.04 6.23 6.32 5.04 12.49 0.343 0.460 0.389 0.348 0.825
Image 7 5.80 7.17 6.80 5.89 12.44 0.472 0.441 0.496 0.481 0.855
Image 8 5.93 7.22 7.14 5.92 12.19 0.450 0.434 0.491 0.455 0.830
Image 9 5.71 6.57 6.82 5.68 12.77 0.436 0.404 0.465 0.437 0.828
Image 10 6.10 7.76 7.35 6.37 12.29 0.369 0.430 0.510 0.389 0.782
Image 11 6.48 7.98 8.44 6.58 12.41 0.425 0.380 0.505 0.433 0.784
Image 12 5.19 7.50 6.75 5.22 12.68 0.325 0.407 0.385 0.330 0.822
Image 13 6.93 11.67 11.48 7.14 13.01 0.300 0.358 0.461 0.304 0.655
Image 14 5.48 6.75 6.21 5.54 12.40 0.456 0.435 0.454 0.457 0.829
Image 15 6.37 8.37 8.60 6.58 12.22 0.427 0.381 0.514 0.437 0.787
Image 16 6.18 7.44 7.45 6.18 12.35 0.481 0.406 0.494 0.478 0.822
Image 17 5.19 10.91 8.61 5.28 12.78 0.192 0.337 0.414 0.206 0.716
Image 18 6.20 7.25 8.21 6.47 12.50 0.402 0.285 0.493 0.415 0.781
Image 19 5.81 7.21 6.59 5.90 12.76 0.468 0.451 0.491 0.476 0.836
Image 20 6.42 8.56 8.78 6.70 11.93 0.424 0.418 0.535 0.437 0.782
Image 21 6.47 8.16 9.51 6.72 12.61 0.381 0.245 0.498 0.392 0.760
Image 22 5.91 6.26 6.74 5.90 12.79 0.466 0.390 0.480 0.464 0.844
Image 23 6.75 8.16 9.90 6.97 12.44 0.382 0.252 0.500 0.397 0.735
Image 24 6.26 8.43 8.67 6.47 12.75 0.387 0.406 0.491 0.396 0.776
Image 25 6.98 10.92 11.97 7.53 12.48 0.296 0.382 0.433 0.310 0.593
Image 26 5.56 7.12 6.03 5.29 11.99 0.371 0.451 0.429 0.362 0.766
Image 27 6.36 7.92 8.43 6.57 12.48 0.415 0.372 0.500 0.423 0.779
Image 28 4.21 9.47 5.78 4.24 13.29 0.185 0.667 0.270 0.197 0.790
Image 29 6.79 9.80 10.41 7.18 12.60 0.376 0.393 0.529 0.392 0.733
Image 30 5.16 7.57 6.13 5.21 13.27 0.397 0.435 0.419 0.403 0.813
Image 31 6.71 8.89 10.21 7.39 12.56 0.443 0.511 0.574 0.476 0.750

Average 6.01 8.07 8.07 6.18 12.55 0.390 0.409 0.470 0.400 0.781

A.2.10 Experiment 10: 70% Data Availability and σn = σy

Table A.22 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 28 images, and best SSIM for all 31 images. Fig. A.22 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.

A.2.11 Experiment 11: 50% Data Availability and σn = σy

Table A.23 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 24 images, and best SSIM for 27 images. Fig. A.23 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.21 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 80% data availability and σn = σy.

Table A.22 SNR and SSIM values for images from the Wonsan Test Set for the case
of 70% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.93 7.48 6.44 4.97 9.93 0.272 0.521 0.320 0.280 0.707
Image 2 5.96 6.73 7.30 6.23 10.47 0.397 0.251 0.435 0.411 0.740
Image 3 6.94 8.58 11.12 8.35 10.72 0.317 0.414 0.419 0.358 0.530
Image 4 5.77 6.29 6.41 5.93 9.96 0.463 0.380 0.449 0.465 0.764
Image 5 5.96 6.44 6.83 6.19 10.21 0.439 0.317 0.433 0.454 0.745
Image 6 4.79 6.24 5.91 4.84 9.83 0.317 0.389 0.357 0.328 0.756
Image 7 5.63 6.10 6.35 5.75 9.79 0.445 0.370 0.444 0.453 0.764
Image 8 5.66 6.02 6.66 5.81 9.96 0.416 0.358 0.433 0.424 0.746
Image 9 5.50 6.22 6.31 5.67 10.20 0.405 0.322 0.413 0.412 0.744
Image 10 5.86 6.74 6.66 5.99 10.38 0.345 0.407 0.473 0.388 0.716
Image 11 6.31 5.08 7.85 6.72 10.39 0.399 0.233 0.437 0.408 0.684
Image 12 5.01 6.52 6.29 5.08 10.37 0.302 0.464 0.354 0.316 0.745
Image 13 6.68 11.45 11.00 7.49 11.16 0.262 0.281 0.395 0.285 0.522
Image 14 5.31 5.68 5.80 5.45 10.16 0.425 0.353 0.403 0.426 0.762
Image 15 6.20 7.65 7.95 6.74 10.13 0.393 0.330 0.442 0.416 0.690
Image 16 5.89 6.38 6.94 6.19 10.11 0.433 0.290 0.424 0.451 0.727
Image 17 4.90 10.18 8.29 5.06 10.58 0.188 0.345 0.447 0.232 0.647
Image 18 6.12 4.89 7.61 6.48 10.46 0.378 0.224 0.437 0.392 0.687
Image 19 5.64 6.29 6.11 5.73 10.25 0.437 0.387 0.429 0.441 0.761
Image 20 6.27 7.19 8.20 6.80 10.20 0.392 0.298 0.478 0.418 0.693
Image 21 6.37 8.08 8.90 6.84 10.61 0.348 0.229 0.426 0.366 0.651
Image 22 5.62 5.51 6.25 5.77 10.03 0.429 0.332 0.424 0.432 0.767
Image 23 6.65 7.04 9.31 7.15 10.45 0.350 0.209 0.426 0.366 0.617
Image 24 6.16 7.32 8.04 6.45 10.80 0.357 0.260 0.432 0.368 0.684
Image 25 6.89 10.50 11.50 8.19 10.99 0.267 0.370 0.376 0.300 0.469
Image 26 5.29 6.12 5.59 5.40 9.84 0.346 0.414 0.398 0.359 0.703
Image 27 6.23 7.80 7.74 6.59 10.36 0.385 0.341 0.434 0.395 0.675
Image 28 4.15 7.92 5.30 3.95 10.36 0.180 0.651 0.276 0.201 0.731
Image 29 6.70 9.97 9.85 7.57 10.81 0.343 0.374 0.478 0.374 0.640
Image 30 5.04 6.19 5.69 5.13 10.14 0.371 0.395 0.375 0.380 0.754
Image 31 6.59 8.21 9.70 7.53 10.76 0.423 0.508 0.526 0.457 0.653

Average 5.84 7.19 7.54 6.19 10.34 0.362 0.355 0.419 0.379 0.693
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.22 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 70% data availability and σn = σy.

Table A.23 SNR and SSIM values for images from the Wonsan Test Set for the case
of 50% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.59 6.24 5.57 4.71 8.08 0.232 0.287 0.276 0.255 0.606
Image 2 5.53 5.14 6.32 6.00 8.26 0.339 0.201 0.333 0.346 0.606
Image 3 6.50 8.83 9.39 9.51 9.28 0.274 0.380 0.309 0.338 0.375
Image 4 5.29 5.68 5.57 5.49 7.74 0.395 0.333 0.344 0.383 0.642
Image 5 5.48 4.09 5.86 5.89 7.85 0.379 0.188 0.315 0.359 0.598
Image 6 4.59 5.29 5.10 4.37 7.67 0.288 0.268 0.300 0.283 0.648
Image 7 5.14 5.82 5.41 5.17 7.75 0.378 0.346 0.333 0.356 0.647
Image 8 5.19 5.98 5.74 5.39 7.88 0.358 0.333 0.335 0.345 0.637
Image 9 5.06 5.20 5.42 5.35 8.02 0.349 0.245 0.317 0.354 0.659
Image 10 5.36 5.83 5.76 5.73 8.13 0.334 0.386 0.425 0.380 0.611
Image 11 5.69 6.13 6.78 6.67 8.26 0.329 0.236 0.321 0.348 0.543
Image 12 4.69 5.99 5.59 4.66 8.11 0.262 0.379 0.310 0.282 0.629
Image 13 6.37 11.19 9.27 8.44 9.70 0.224 0.275 0.293 0.264 0.378
Image 14 4.89 5.34 5.00 4.99 7.85 0.356 0.318 0.302 0.354 0.680
Image 15 5.85 6.66 6.88 6.73 8.41 0.343 0.243 0.332 0.340 0.553
Image 16 5.45 5.65 5.97 5.92 7.92 0.366 0.192 0.299 0.360 0.599
Image 17 4.72 9.07 7.27 4.59 8.66 0.228 0.335 0.490 0.297 0.704
Image 18 5.66 6.50 6.62 6.52 8.47 0.318 0.226 0.328 0.329 0.551
Image 19 5.17 4.82 5.25 5.42 7.91 0.368 0.239 0.323 0.369 0.650
Image 20 5.77 7.42 7.07 6.83 8.10 0.344 0.351 0.390 0.364 0.556
Image 21 5.97 7.00 7.74 7.19 8.71 0.301 0.249 0.319 0.321 0.504
Image 22 5.19 5.87 5.38 5.40 7.90 0.374 0.328 0.317 0.363 0.656
Image 23 6.17 8.53 7.97 7.72 8.60 0.288 0.243 0.305 0.328 0.463
Image 24 5.67 6.20 7.01 6.53 8.42 0.302 0.214 0.339 0.340 0.561
Image 25 6.54 9.95 9.72 9.56 9.54 0.233 0.320 0.266 0.280 0.317
Image 26 4.81 5.16 4.90 4.93 2.99 0.309 0.350 0.355 0.343 0.254
Image 27 5.73 6.53 6.75 6.62 8.28 0.318 0.224 0.332 0.339 0.529
Image 28 3.98 6.94 4.77 3.48 6.68 0.178 0.647 0.294 0.215 0.604
Image 29 6.12 7.93 8.38 8.27 8.87 0.288 0.261 0.381 0.346 0.504
Image 30 4.66 4.71 4.92 4.77 7.85 0.318 0.235 0.288 0.324 0.650
Image 31 6.21 9.07 8.30 7.85 9.03 0.390 0.493 0.440 0.448 0.518

Average 5.42 6.60 6.51 6.15 8.09 0.315 0.301 0.333 0.334 0.562
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(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.23 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 50% data availability and σn = σy.

A.2.12 Experiment 12: 30% Data Availability and σn = σy

Table A.24 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 14 images, and best SSIM for 25 images. Fig. A.24 shows
the reconstruction results for a selection of images from the Wonsan test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.

A.3 Different Scene Experiments

A.3.1 Experiment 1: 100% Data Availability and σn = 0.1σy

Table A.25 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 110 images. Fig. A.25 shows the re-
construction results for a selection of images from the Kapıkule test set from all
methods for this experiment. All methods produce good reconstructions.
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Table A.24 SNR and SSIM values for images from the Wonsan Test Set for the case
of 30% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.04 5.32 4.55 4.70 5.61 0.203 0.307 0.245 0.232 0.410
Image 2 4.60 5.73 4.94 5.66 5.94 0.269 0.199 0.231 0.264 0.368
Image 3 5.51 7.28 6.99 9.30 7.12 0.249 0.313 0.230 0.338 0.261
Image 4 4.32 5.32 4.36 4.98 5.34 0.311 0.295 0.249 0.261 0.373
Image 5 4.49 4.31 4.67 5.35 5.60 0.291 0.144 0.208 0.239 0.359
Image 6 3.86 5.27 4.21 4.28 4.32 0.248 0.334 0.261 0.241 0.374
Image 7 4.30 5.08 4.31 4.81 5.10 0.307 0.291 0.246 0.252 0.352
Image 8 4.32 5.33 4.57 5.09 5.34 0.287 0.291 0.249 0.267 0.359
Image 9 4.30 4.61 4.38 4.87 5.43 0.281 0.273 0.233 0.255 0.382
Image 10 4.47 5.69 4.54 5.56 5.57 0.310 0.379 0.368 0.379 0.451
Image 11 4.85 6.82 5.29 6.23 6.19 0.269 0.275 0.226 0.259 0.334
Image 12 4.13 5.17 4.40 4.66 4.83 0.238 0.389 0.265 0.248 0.374
Image 13 5.33 9.98 7.02 8.30 7.22 0.187 0.237 0.210 0.252 0.246
Image 14 4.08 4.93 4.04 4.56 5.17 0.284 0.281 0.216 0.259 0.391
Image 15 4.83 6.47 5.29 6.33 6.10 0.274 0.207 0.233 0.257 0.328
Image 16 4.48 5.31 4.75 5.40 5.67 0.277 0.175 0.200 0.232 0.336
Image 17 4.24 8.94 5.62 5.21 6.86 0.297 0.360 0.538 0.419 0.580
Image 18 4.74 5.42 5.13 6.02 5.93 0.259 0.162 0.230 0.256 0.322
Image 19 4.33 5.00 4.23 5.00 5.29 0.295 0.280 0.228 0.265 0.374
Image 20 4.83 6.70 5.48 6.53 6.38 0.292 0.292 0.298 0.296 0.368
Image 21 4.99 7.33 5.85 6.71 6.32 0.232 0.187 0.216 0.235 0.304
Image 22 4.31 5.09 4.26 4.98 5.22 0.295 0.278 0.227 0.269 0.377
Image 23 5.21 6.84 6.07 7.15 6.72 0.236 0.162 0.203 0.229 0.292
Image 24 4.87 6.58 5.31 6.15 6.01 0.252 0.225 0.249 0.267 0.355
Image 25 5.56 7.85 7.17 9.15 7.25 0.201 0.263 0.188 0.281 0.194
Image 26 4.09 4.61 3.91 4.63 5.17 0.276 0.323 0.304 0.327 0.431
Image 27 4.84 6.32 5.31 6.25 6.03 0.267 0.211 0.236 0.256 0.341
Image 28 3.47 5.64 3.76 3.72 5.76 0.211 0.608 0.326 0.246 0.519
Image 29 5.27 8.93 6.38 7.84 7.29 0.248 0.321 0.292 0.298 0.335
Image 30 4.00 4.53 3.97 4.54 5.07 0.264 0.286 0.225 0.264 0.370
Image 31 5.09 7.87 6.28 8.12 6.65 0.352 0.462 0.369 0.440 0.389

Average 4.57 6.14 5.06 5.87 5.89 0.267 0.284 0.258 0.277 0.363

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.24 Reconstruction results for Images 3, 4, 10, 17, 18, 19, 25, 28, and 30
from the Wonsan test set for the case of 30% data availability and σn = σy.

Table A.25 SNR and SSIM values for images from the Kapıkule Test Set for the case
of 100% data availability and σn = 0.1σy. Best results are shown in bold, second
best results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR
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Table A.25 continued from previous page

SNR (dB) SSIM

Image 1 26.72 10.46 25.45 26.56 38.87 0.991 0.823 0.982 0.984 0.999
Image 2 26.46 26.22 24.76 26.61 36.84 0.987 0.973 0.978 0.974 0.996
Image 3 26.69 14.24 25.84 26.69 34.78 0.993 0.917 0.985 0.987 0.998
Image 4 26.69 26.34 24.16 26.72 37.22 0.992 0.985 0.984 0.985 0.999
Image 5 26.62 23.93 22.61 26.58 39.61 0.987 0.974 0.977 0.973 0.998
Image 6 26.68 18.46 26.26 26.67 39.05 0.991 0.941 0.983 0.983 0.999
Image 7 26.81 25.18 24.43 26.71 37.30 0.989 0.979 0.982 0.979 0.999
Image 8 26.63 25.45 23.84 26.73 39.35 0.991 0.982 0.984 0.983 0.999
Image 9 26.68 25.23 22.91 26.65 39.87 0.987 0.976 0.977 0.975 0.997
Image 10 26.69 26.61 25.08 26.65 41.54 0.986 0.974 0.979 0.973 0.997
Image 11 26.67 26.44 25.91 26.66 39.57 0.990 0.981 0.982 0.981 0.999
Image 12 26.68 24.97 21.11 26.75 38.48 0.989 0.979 0.978 0.979 0.998
Image 13 26.47 26.49 24.30 26.45 39.95 0.983 0.967 0.975 0.967 0.996
Image 14 26.77 25.98 24.93 26.65 37.79 0.991 0.982 0.983 0.982 0.999
Image 15 26.68 25.99 25.27 26.69 36.78 0.993 0.987 0.986 0.987 0.999
Image 16 26.16 25.31 21.18 26.22 39.01 0.963 0.937 0.955 0.934 0.993
Image 17 26.78 12.41 26.30 26.64 36.99 0.991 0.902 0.983 0.985 0.998
Image 18 26.71 26.53 25.33 26.70 36.79 0.993 0.986 0.985 0.986 0.999
Image 19 26.66 25.79 23.87 26.72 39.39 0.994 0.988 0.986 0.989 0.999
Image 20 26.61 25.67 22.84 26.68 37.68 0.991 0.982 0.983 0.982 0.998
Image 21 26.47 18.22 24.73 26.47 38.78 0.983 0.956 0.974 0.971 0.997
Image 22 26.43 26.16 24.45 26.46 39.77 0.978 0.960 0.970 0.959 0.996
Image 23 26.58 23.45 25.47 26.65 41.90 0.989 0.977 0.981 0.981 0.999
Image 24 26.69 26.70 24.78 26.75 36.22 0.993 0.987 0.986 0.987 0.999
Image 25 26.75 12.56 27.02 26.66 34.80 0.990 0.900 0.981 0.982 0.997
Image 26 26.70 26.68 24.69 26.71 40.17 0.992 0.986 0.985 0.985 0.999
Image 27 26.64 20.15 25.80 26.68 35.81 0.993 0.980 0.985 0.987 0.998
Image 28 26.63 23.47 26.15 26.70 36.99 0.991 0.981 0.983 0.983 0.998
Image 29 26.69 26.58 24.69 26.59 44.13 0.992 0.985 0.983 0.984 1.000
Image 30 26.72 17.05 25.39 26.71 39.42 0.992 0.969 0.983 0.985 0.999
Image 31 26.65 26.64 25.12 26.73 40.05 0.995 0.989 0.986 0.989 0.999
Image 32 26.70 12.57 25.34 26.68 36.69 0.993 0.901 0.984 0.988 0.999
Image 33 26.51 16.85 25.40 26.55 36.82 0.985 0.954 0.976 0.974 0.996
Image 34 26.31 26.28 24.28 26.34 40.94 0.972 0.949 0.964 0.948 0.996
Image 35 26.69 20.67 25.32 26.62 43.21 0.993 0.980 0.985 0.987 1.000
Image 36 26.53 26.52 25.02 26.53 39.51 0.985 0.971 0.976 0.972 0.998
Image 37 26.77 13.17 25.57 26.70 37.05 0.993 0.912 0.984 0.987 0.999
Image 38 26.62 13.18 26.04 26.66 36.24 0.991 0.911 0.982 0.984 0.998
Image 39 26.70 10.07 25.61 26.76 36.33 0.992 0.877 0.983 0.987 0.998
Image 40 26.64 25.20 23.78 26.67 37.94 0.989 0.978 0.981 0.979 0.999
Image 41 26.61 26.39 25.53 26.68 36.59 0.992 0.984 0.985 0.984 0.998
Image 42 26.82 16.63 25.59 26.73 38.63 0.992 0.938 0.984 0.986 0.999
Image 43 26.40 23.49 24.88 26.39 40.50 0.976 0.951 0.969 0.956 0.996
Image 44 26.73 26.45 24.96 26.68 36.94 0.994 0.988 0.986 0.988 0.999
Image 45 26.61 25.75 22.87 26.72 39.01 0.992 0.983 0.983 0.984 0.999
Image 46 26.54 24.37 20.98 26.53 39.67 0.983 0.970 0.973 0.967 0.996
Image 47 26.75 26.47 24.68 26.68 37.42 0.994 0.988 0.986 0.988 0.999
Image 48 26.60 26.60 24.44 26.64 40.76 0.989 0.978 0.980 0.978 0.998
Image 49 26.72 19.72 26.93 26.65 35.35 0.991 0.974 0.983 0.982 0.998
Image 50 26.49 26.08 24.26 26.46 39.68 0.982 0.965 0.973 0.964 0.996
Image 51 26.69 26.11 23.78 26.65 38.92 0.993 0.986 0.985 0.986 0.999
Image 52 26.53 26.42 25.85 26.68 35.85 0.988 0.975 0.979 0.976 0.995
Image 53 26.67 25.86 22.79 26.73 38.64 0.991 0.982 0.983 0.982 0.999
Image 54 26.63 26.65 25.45 26.55 37.02 0.988 0.977 0.980 0.977 0.997
Image 55 26.61 26.63 26.06 26.64 40.94 0.989 0.980 0.982 0.979 0.999
Image 56 26.63 26.37 24.77 26.70 39.96 0.992 0.985 0.984 0.985 0.999
Image 57 26.70 26.26 23.52 26.68 38.81 0.993 0.986 0.985 0.986 0.999
Image 58 26.51 25.16 25.15 26.55 40.82 0.985 0.969 0.977 0.971 0.998
Image 59 26.35 26.32 24.56 26.32 37.70 0.976 0.955 0.968 0.955 0.996
Image 60 26.70 26.16 24.74 26.74 38.12 0.993 0.985 0.985 0.985 0.999
Image 61 26.57 25.61 23.44 26.58 38.34 0.990 0.980 0.982 0.980 0.998
Image 62 26.59 18.74 25.54 26.68 39.29 0.993 0.948 0.984 0.986 0.999
Image 63 26.69 14.67 25.83 26.67 35.83 0.992 0.907 0.985 0.986 0.998
Image 64 26.65 26.10 24.36 26.71 37.95 0.991 0.983 0.983 0.983 0.999
Image 65 26.74 25.08 24.06 26.75 37.34 0.990 0.980 0.982 0.981 0.998
Image 66 26.68 25.22 23.09 26.73 39.78 0.991 0.982 0.983 0.982 0.999
Image 67 26.33 25.40 24.34 26.32 42.47 0.972 0.953 0.965 0.951 0.997
Image 68 26.64 26.47 24.96 26.72 37.17 0.993 0.986 0.985 0.987 0.999
Image 69 26.68 20.18 25.97 26.70 39.28 0.992 0.977 0.984 0.984 0.999
Image 70 26.65 16.99 25.81 26.71 37.20 0.993 0.938 0.984 0.986 0.999
Image 71 26.45 25.50 24.83 26.54 38.15 0.986 0.972 0.977 0.972 0.997
Image 72 26.70 24.93 23.19 26.74 37.06 0.988 0.977 0.981 0.977 0.999
Image 73 26.65 26.12 22.46 26.65 37.47 0.994 0.989 0.986 0.989 0.999
Image 74 26.68 26.69 25.88 26.66 37.41 0.991 0.982 0.982 0.982 0.998
Image 75 26.67 14.79 26.05 26.70 36.54 0.992 0.913 0.983 0.985 0.998
Image 76 26.71 26.46 24.83 26.65 37.76 0.993 0.987 0.985 0.986 0.999
Image 77 26.71 17.65 26.04 26.63 37.92 0.991 0.940 0.983 0.984 0.999
Image 78 26.68 26.44 23.97 26.64 38.64 0.994 0.988 0.985 0.988 0.999
Image 79 26.52 26.50 25.00 26.50 37.56 0.984 0.969 0.975 0.969 0.996
Image 80 26.64 26.33 24.63 26.63 40.29 0.993 0.985 0.984 0.985 0.999
Image 81 26.66 25.53 25.46 26.74 36.28 0.989 0.978 0.981 0.978 0.998
Image 82 26.64 25.31 21.54 26.61 38.75 0.986 0.974 0.975 0.973 0.997
Image 83 26.75 14.14 25.12 26.67 37.40 0.993 0.911 0.984 0.987 0.999
Image 84 26.62 26.62 24.67 26.62 38.59 0.988 0.977 0.981 0.977 0.997
Image 85 26.68 25.72 22.47 26.70 38.35 0.992 0.984 0.983 0.984 0.998
Image 86 26.58 25.23 22.01 26.69 41.08 0.991 0.982 0.981 0.982 0.998
Image 87 26.50 24.99 22.62 26.48 41.37 0.987 0.975 0.977 0.974 0.998
Image 88 26.72 22.94 25.82 26.74 36.90 0.992 0.982 0.984 0.985 0.998
Image 89 26.66 26.60 25.02 26.46 43.24 0.992 0.985 0.984 0.984 0.999
Image 90 26.64 14.80 25.46 26.77 36.87 0.993 0.961 0.985 0.986 0.999
Image 91 26.72 25.26 23.65 26.66 38.79 0.990 0.981 0.983 0.981 0.999
Image 92 26.63 26.21 25.20 26.62 37.44 0.993 0.985 0.985 0.985 0.999
Image 93 26.67 25.33 22.82 26.75 38.17 0.992 0.984 0.983 0.984 0.999
Image 94 26.72 26.46 24.95 26.69 39.76 0.993 0.986 0.985 0.986 0.999
Image 95 26.64 26.57 25.50 26.72 37.54 0.993 0.986 0.985 0.986 0.999
Image 96 26.57 25.38 24.01 26.56 43.27 0.989 0.980 0.981 0.980 0.999
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Table A.25 continued from previous page

SNR (dB) SSIM

Image 97 26.46 24.06 24.62 26.39 39.21 0.980 0.960 0.972 0.964 0.996
Image 98 26.69 26.64 26.12 26.70 37.58 0.992 0.985 0.985 0.985 0.999
Image 99 26.73 19.28 25.60 26.70 39.34 0.993 0.977 0.984 0.986 0.999
Image 100 26.27 24.80 20.57 26.27 38.81 0.966 0.941 0.955 0.938 0.994
Image 101 26.65 17.38 25.37 26.67 38.56 0.992 0.970 0.984 0.985 0.999
Image 102 26.73 16.12 25.52 26.72 39.18 0.992 0.904 0.984 0.985 0.999
Image 103 26.70 17.41 27.39 26.71 35.63 0.988 0.937 0.979 0.978 0.997
Image 104 26.76 10.18 25.18 26.70 37.55 0.994 0.796 0.985 0.989 0.999
Image 105 26.39 26.41 24.22 26.31 40.49 0.971 0.950 0.963 0.948 0.995
Image 106 26.74 26.38 24.07 26.75 39.32 0.991 0.983 0.984 0.983 0.999
Image 107 26.68 26.67 24.56 26.61 42.85 0.993 0.987 0.984 0.986 1.000
Image 108 26.67 26.63 25.01 26.66 37.19 0.993 0.986 0.985 0.986 0.999
Image 109 26.78 26.31 23.43 26.67 37.54 0.992 0.984 0.984 0.984 0.999
Image 110 26.68 17.05 27.11 26.73 36.13 0.989 0.931 0.980 0.981 0.998

Average 26.63 23.11 24.66 26.63 38.52 0.989 0.964 0.981 0.979 0.998

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.25 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 100% data availability and σn = 0.1σy.

A.3.2 Experiment 2: 90% Data Availability and σn = 0.1σy

Table A.26 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 106 images, and best SSIM for 105 images. Fig. A.26 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. All methods except the NQR-based produce good
reconstructions for all images.
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Table A.26 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 90% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 13.29 8.16 15.29 15.57 16.67 0.756 0.627 0.837 0.853 0.871
Image 2 13.22 11.45 14.22 14.48 16.90 0.762 0.528 0.815 0.814 0.901
Image 3 13.10 10.33 15.79 15.48 16.60 0.767 0.755 0.860 0.839 0.862
Image 4 13.10 12.48 14.01 14.62 16.56 0.766 0.790 0.843 0.845 0.894
Image 5 13.11 11.20 11.78 14.62 15.48 0.780 0.585 0.755 0.840 0.853
Image 6 13.17 11.77 15.93 17.16 17.52 0.711 0.575 0.834 0.867 0.877
Image 7 13.39 12.08 14.42 15.74 17.36 0.744 0.779 0.835 0.855 0.889
Image 8 13.37 9.71 13.46 15.39 16.64 0.767 0.435 0.830 0.857 0.886
Image 9 12.85 8.43 11.68 15.08 17.59 0.760 0.444 0.776 0.851 0.910
Image 10 13.18 12.56 14.51 15.68 16.73 0.780 0.628 0.818 0.843 0.913
Image 11 13.29 12.23 15.72 16.45 17.24 0.751 0.758 0.840 0.854 0.897
Image 12 12.99 10.86 9.75 12.74 17.42 0.813 0.808 0.740 0.838 0.928
Image 13 13.11 13.03 13.51 14.22 17.00 0.756 0.768 0.778 0.810 0.915
Image 14 13.43 11.75 15.07 16.48 16.79 0.739 0.768 0.839 0.867 0.879
Image 15 13.24 13.04 15.08 15.71 16.76 0.767 0.801 0.863 0.859 0.889
Image 16 12.74 11.59 9.81 12.57 17.48 0.746 0.618 0.635 0.753 0.944
Image 17 13.35 8.53 16.07 16.75 17.33 0.727 0.583 0.838 0.861 0.855
Image 18 13.33 12.49 15.34 16.30 16.65 0.758 0.790 0.862 0.862 0.881
Image 19 13.40 13.29 13.54 14.74 16.22 0.811 0.834 0.845 0.857 0.902
Image 20 13.27 9.96 12.07 14.64 17.28 0.775 0.525 0.811 0.855 0.908
Image 21 13.10 11.41 14.19 14.46 17.27 0.749 0.750 0.801 0.814 0.906
Image 22 13.10 13.12 13.87 14.29 16.96 0.753 0.772 0.790 0.808 0.918
Image 23 13.23 12.13 15.05 15.98 16.79 0.761 0.687 0.831 0.859 0.886
Image 24 13.38 12.21 14.32 14.71 16.59 0.772 0.807 0.858 0.839 0.889
Image 25 13.38 10.15 16.89 17.79 17.42 0.679 0.527 0.829 0.860 0.838
Image 26 13.38 13.39 14.02 14.77 16.52 0.788 0.821 0.847 0.849 0.901
Image 27 13.27 11.72 15.91 15.37 16.83 0.764 0.766 0.862 0.837 0.882
Image 28 13.25 11.87 15.96 16.84 17.02 0.720 0.528 0.841 0.861 0.871
Image 29 13.26 13.28 14.30 14.97 16.04 0.791 0.816 0.836 0.858 0.908
Image 30 13.35 12.03 14.86 15.70 16.88 0.759 0.772 0.836 0.854 0.887
Image 31 13.27 13.30 15.03 14.92 15.79 0.789 0.819 0.862 0.853 0.888
Image 32 13.27 9.92 15.13 14.62 16.33 0.778 0.598 0.849 0.835 0.874
Image 33 13.33 12.99 14.89 15.05 17.29 0.727 0.760 0.812 0.823 0.893
Image 34 13.26 12.88 13.62 13.81 16.76 0.747 0.755 0.780 0.790 0.922
Image 35 13.41 12.45 14.96 15.63 16.56 0.779 0.795 0.847 0.864 0.901
Image 36 13.14 12.19 14.05 15.12 17.49 0.739 0.765 0.801 0.826 0.906
Image 37 13.24 9.68 15.40 15.33 16.49 0.741 0.611 0.837 0.848 0.860
Image 38 13.41 9.07 15.98 16.49 16.99 0.732 0.542 0.841 0.850 0.853
Image 39 13.27 8.19 15.66 15.38 16.69 0.743 0.594 0.843 0.847 0.856
Image 40 13.19 10.75 13.91 15.19 16.58 0.772 0.509 0.826 0.852 0.894
Image 41 13.20 10.21 15.11 16.13 16.88 0.748 0.457 0.849 0.858 0.880
Image 42 13.51 11.32 15.46 16.00 16.67 0.746 0.626 0.845 0.861 0.870
Image 43 13.19 12.83 14.46 14.74 16.86 0.744 0.755 0.797 0.806 0.913
Image 44 13.29 13.11 14.81 14.28 15.96 0.808 0.821 0.868 0.827 0.890
Image 45 13.39 10.41 12.06 14.48 16.46 0.786 0.796 0.800 0.845 0.901
Image 46 12.76 9.80 9.30 13.56 18.52 0.776 0.605 0.694 0.829 0.928
Image 47 13.27 12.12 14.65 15.20 16.48 0.779 0.807 0.859 0.858 0.892
Image 48 13.14 13.18 13.88 14.27 16.17 0.794 0.809 0.837 0.831 0.905
Image 49 13.15 11.61 16.77 17.83 17.80 0.700 0.503 0.842 0.862 0.872
Image 50 12.92 12.10 13.45 14.17 17.06 0.762 0.776 0.780 0.794 0.919
Image 51 13.28 12.98 13.42 13.69 16.55 0.775 0.809 0.841 0.846 0.906
Image 52 13.15 12.92 15.56 16.45 17.85 0.713 0.723 0.823 0.848 0.889
Image 53 13.26 12.00 11.91 14.40 16.61 0.774 0.798 0.812 0.850 0.896
Image 54 13.06 13.10 14.90 15.83 17.50 0.721 0.743 0.817 0.839 0.893
Image 55 13.28 13.30 15.73 16.49 17.35 0.750 0.776 0.837 0.853 0.899
Image 56 13.10 12.91 14.54 15.46 16.45 0.774 0.794 0.849 0.863 0.895
Image 57 13.30 11.80 13.12 14.86 16.60 0.780 0.803 0.833 0.853 0.899
Image 58 13.06 12.47 14.75 15.45 17.18 0.747 0.621 0.817 0.835 0.905
Image 59 12.92 12.44 13.85 14.63 17.23 0.738 0.734 0.777 0.805 0.915
Image 60 13.31 11.98 14.26 15.46 16.24 0.758 0.786 0.847 0.862 0.885
Image 61 13.34 11.26 13.38 14.87 16.20 0.783 0.795 0.816 0.850 0.892
Image 62 13.22 11.40 15.25 15.72 16.63 0.760 0.665 0.841 0.856 0.873
Image 63 13.30 9.25 15.57 15.64 16.81 0.748 0.727 0.850 0.848 0.875
Image 64 13.25 13.08 13.92 15.04 17.02 0.761 0.792 0.828 0.837 0.896
Image 65 13.44 10.17 13.71 15.02 17.27 0.734 0.461 0.820 0.849 0.889
Image 66 13.06 8.90 12.51 15.12 16.84 0.790 0.446 0.821 0.862 0.901
Image 67 12.90 12.92 13.54 14.43 16.99 0.759 0.761 0.775 0.811 0.929
Image 68 13.32 13.30 14.71 15.02 15.85 0.788 0.814 0.863 0.854 0.883
Image 69 13.38 11.23 15.60 16.60 17.03 0.741 0.575 0.843 0.866 0.885
Image 70 13.36 9.79 15.65 15.89 17.13 0.731 0.611 0.842 0.856 0.875
Image 71 13.00 12.62 13.99 15.47 17.54 0.731 0.739 0.793 0.833 0.909
Image 72 13.31 11.56 12.98 14.88 16.06 0.756 0.772 0.818 0.858 0.885
Image 73 13.30 12.14 12.05 13.05 16.52 0.832 0.845 0.823 0.823 0.921
Image 74 13.33 13.31 15.57 16.99 17.69 0.720 0.743 0.835 0.863 0.885
Image 75 13.28 9.83 15.84 16.13 16.72 0.747 0.737 0.850 0.854 0.861
Image 76 13.37 12.92 14.42 15.21 16.59 0.768 0.802 0.851 0.846 0.890
Image 77 13.28 11.45 15.84 16.90 17.30 0.714 0.590 0.836 0.869 0.867
Image 78 13.22 13.22 13.74 14.61 16.08 0.794 0.820 0.839 0.852 0.897
Image 79 13.00 12.56 14.28 15.46 17.25 0.733 0.743 0.800 0.835 0.897
Image 80 13.16 12.52 14.25 15.12 16.39 0.777 0.801 0.837 0.848 0.890
Image 81 13.17 12.02 14.65 16.99 18.53 0.685 0.438 0.831 0.860 0.875
Image 82 12.95 10.76 9.96 13.34 17.25 0.793 0.543 0.735 0.823 0.922
Image 83 13.34 10.77 14.83 14.89 16.30 0.777 0.781 0.849 0.839 0.868
Image 84 13.35 13.39 14.00 15.05 16.84 0.773 0.794 0.820 0.823 0.903
Image 85 13.07 11.23 11.27 14.35 16.85 0.785 0.793 0.788 0.846 0.899
Image 86 12.97 10.80 10.80 13.50 16.81 0.798 0.618 0.760 0.835 0.922
Image 87 13.00 10.54 11.75 14.32 16.74 0.779 0.599 0.763 0.833 0.920
Image 88 13.31 11.49 15.77 16.24 17.20 0.732 0.538 0.846 0.859 0.880
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Table A.26 continued from previous page

SNR (dB) SSIM

Image 89 13.22 12.74 14.43 15.36 16.58 0.781 0.798 0.830 0.858 0.908
Image 90 13.23 10.00 15.28 15.35 16.60 0.754 0.582 0.849 0.847 0.879
Image 91 13.31 11.34 13.22 15.59 16.80 0.765 0.779 0.822 0.857 0.888
Image 92 13.18 12.36 15.33 15.73 17.13 0.764 0.784 0.862 0.852 0.889
Image 93 13.08 10.28 12.31 14.03 16.40 0.801 0.796 0.811 0.845 0.898
Image 94 13.36 12.14 14.71 15.64 16.58 0.763 0.797 0.847 0.863 0.892
Image 95 13.18 13.22 15.42 15.54 16.70 0.766 0.791 0.865 0.856 0.890
Image 96 13.02 11.83 13.49 14.93 17.13 0.778 0.793 0.814 0.858 0.919
Image 97 12.97 12.56 14.02 14.58 16.95 0.745 0.756 0.796 0.807 0.908
Image 98 13.21 12.84 15.93 16.73 17.00 0.729 0.749 0.850 0.862 0.877
Image 99 13.28 12.60 15.28 15.85 16.79 0.766 0.783 0.846 0.857 0.889
Image 100 12.90 11.15 8.69 12.00 17.50 0.746 0.664 0.627 0.769 0.941
Image 101 13.26 12.11 15.04 15.24 16.47 0.771 0.779 0.842 0.839 0.877
Image 102 13.29 10.68 15.20 15.57 16.86 0.762 0.752 0.843 0.847 0.882
Image 103 13.32 13.54 17.09 18.47 18.44 0.624 0.546 0.808 0.852 0.839
Image 104 13.10 8.49 14.85 14.85 16.12 0.783 0.655 0.846 0.852 0.873
Image 105 12.82 12.60 13.51 14.72 17.13 0.734 0.747 0.758 0.802 0.921
Image 106 13.29 12.38 14.04 15.40 16.47 0.766 0.791 0.846 0.858 0.890
Image 107 13.20 13.11 14.17 14.97 16.31 0.802 0.818 0.841 0.865 0.905
Image 108 13.30 13.15 15.32 15.36 16.40 0.782 0.811 0.864 0.847 0.888
Image 109 13.17 12.10 13.02 15.01 16.77 0.786 0.803 0.837 0.858 0.896
Image 110 13.33 11.39 17.05 18.41 18.32 0.657 0.524 0.828 0.867 0.852

Average 13.21 11.70 14.22 15.27 16.87 0.758 0.705 0.822 0.844 0.892

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.26 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 90% data availability and σn = 0.1σy.

A.3.3 Experiment 3: 80% Data Availability and σn = 0.1σy

Table A.27 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 105 images, and best SSIM for 105 images. Fig. A.27 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-BM3D and PnP-CNN-SAR produce better
reconstructions compared to other methods.
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Table A.27 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 80% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 10.24 8.48 12.11 13.02 13.96 0.649 0.610 0.705 0.746 0.775
Image 2 10.01 10.67 11.35 11.85 13.84 0.659 0.499 0.703 0.687 0.815
Image 3 10.16 10.55 12.42 12.99 13.66 0.655 0.489 0.720 0.716 0.744
Image 4 10.13 9.35 11.02 11.87 13.33 0.672 0.660 0.721 0.736 0.800
Image 5 10.08 8.48 9.05 11.04 9.39 0.707 0.457 0.642 0.732 0.704
Image 6 10.12 9.91 12.67 14.21 14.39 0.596 0.537 0.698 0.756 0.764
Image 7 10.10 8.91 11.30 12.27 13.67 0.646 0.385 0.704 0.736 0.780
Image 8 10.13 7.91 10.53 12.27 13.37 0.672 0.379 0.703 0.747 0.790
Image 9 9.90 7.17 9.22 11.39 14.26 0.674 0.384 0.663 0.737 0.834
Image 10 10.10 11.44 11.57 12.73 13.47 0.691 0.583 0.719 0.746 0.838
Image 11 10.23 11.78 12.38 13.43 14.18 0.653 0.502 0.709 0.738 0.794
Image 12 9.85 8.13 7.60 9.81 13.46 0.733 0.527 0.632 0.736 0.859
Image 13 9.85 9.79 10.77 11.77 13.42 0.688 0.548 0.682 0.720 0.849
Image 14 10.24 9.70 11.74 13.35 13.57 0.626 0.368 0.700 0.751 0.769
Image 15 10.25 8.60 12.02 12.84 13.42 0.664 0.435 0.741 0.737 0.784
Image 16 9.71 8.33 7.49 9.49 13.25 0.704 0.523 0.566 0.663 0.899
Image 17 10.08 9.77 12.70 13.97 14.16 0.600 0.540 0.699 0.746 0.732
Image 18 10.17 8.91 11.94 13.20 13.68 0.650 0.419 0.731 0.742 0.775
Image 19 9.97 9.39 10.58 11.76 13.30 0.717 0.701 0.721 0.739 0.824
Image 20 9.97 6.71 9.45 11.36 14.00 0.681 0.402 0.694 0.744 0.823
Image 21 10.01 10.77 11.13 11.88 13.72 0.663 0.602 0.687 0.692 0.820
Image 22 10.13 10.63 11.12 11.76 13.57 0.689 0.563 0.694 0.695 0.847
Image 23 10.03 11.02 11.97 13.01 13.78 0.649 0.619 0.704 0.744 0.780
Image 24 10.17 10.31 11.43 12.10 13.56 0.677 0.668 0.744 0.720 0.793
Image 25 10.15 10.52 13.34 15.16 14.32 0.554 0.467 0.670 0.744 0.690
Image 26 10.04 10.41 11.11 12.14 13.23 0.703 0.580 0.731 0.739 0.816
Image 27 10.27 10.67 12.45 12.81 13.82 0.659 0.486 0.724 0.715 0.776
Image 28 10.10 10.76 12.48 13.87 14.17 0.606 0.498 0.697 0.737 0.757
Image 29 10.11 9.94 11.22 12.20 13.04 0.701 0.534 0.710 0.752 0.828
Image 30 9.99 10.41 11.89 12.86 13.82 0.659 0.571 0.706 0.739 0.785
Image 31 10.11 9.68 11.88 12.33 12.81 0.692 0.521 0.733 0.730 0.783
Image 32 10.09 10.24 11.90 12.27 13.53 0.671 0.544 0.711 0.717 0.776
Image 33 10.07 11.40 11.98 12.39 13.98 0.632 0.543 0.694 0.693 0.796
Image 34 10.09 10.66 10.85 11.43 13.42 0.691 0.615 0.685 0.690 0.857
Image 35 10.17 11.28 11.83 12.89 13.64 0.681 0.562 0.721 0.760 0.805
Image 36 9.93 11.34 11.33 12.56 13.74 0.645 0.561 0.691 0.720 0.815
Image 37 10.11 9.14 12.14 12.77 13.48 0.627 0.574 0.693 0.724 0.739
Image 38 9.98 7.78 12.40 13.65 14.03 0.619 0.531 0.689 0.726 0.735
Image 39 10.12 7.86 12.34 12.74 13.72 0.631 0.554 0.704 0.725 0.744
Image 40 10.21 8.36 10.95 11.88 13.23 0.681 0.350 0.703 0.735 0.799
Image 41 10.15 8.50 11.99 13.28 13.78 0.633 0.422 0.722 0.733 0.773
Image 42 10.15 10.36 12.07 13.16 13.66 0.633 0.584 0.697 0.744 0.754
Image 43 10.20 10.75 11.62 12.23 13.47 0.670 0.608 0.703 0.703 0.837
Image 44 10.16 9.60 11.66 11.71 12.94 0.713 0.708 0.755 0.699 0.800
Image 45 10.13 6.56 9.37 11.24 12.82 0.704 0.320 0.683 0.738 0.818
Image 46 9.66 7.56 7.19 9.98 14.40 0.718 0.513 0.593 0.732 0.877
Image 47 10.19 10.11 11.52 12.22 13.43 0.681 0.679 0.733 0.733 0.792
Image 48 9.91 9.72 11.05 11.67 13.16 0.704 0.681 0.724 0.720 0.822
Image 49 10.32 10.17 13.28 15.08 14.85 0.583 0.452 0.701 0.747 0.751
Image 50 10.11 9.62 10.61 11.52 13.39 0.696 0.541 0.689 0.692 0.851
Image 51 9.93 9.16 10.43 10.96 13.25 0.677 0.668 0.714 0.726 0.818
Image 52 10.05 11.89 12.38 13.64 14.70 0.605 0.513 0.697 0.727 0.787
Image 53 10.09 6.37 9.21 11.14 12.98 0.683 0.352 0.694 0.739 0.812
Image 54 10.10 7.82 11.80 13.19 14.10 0.618 0.383 0.687 0.728 0.790
Image 55 9.93 11.84 12.50 13.56 14.36 0.656 0.543 0.717 0.739 0.800
Image 56 10.15 10.71 11.39 12.33 13.34 0.674 0.540 0.726 0.739 0.796
Image 57 10.11 9.03 9.99 11.93 12.95 0.689 0.683 0.704 0.742 0.808
Image 58 9.95 11.49 11.71 12.58 13.77 0.652 0.574 0.703 0.721 0.814
Image 59 9.91 10.11 10.98 11.77 13.52 0.662 0.571 0.675 0.675 0.834
Image 60 10.14 7.25 11.43 12.35 13.60 0.651 0.405 0.720 0.742 0.798
Image 61 10.07 7.31 10.37 11.42 13.10 0.697 0.324 0.692 0.733 0.806
Image 62 10.11 10.85 12.04 12.96 13.45 0.649 0.598 0.699 0.734 0.752
Image 63 10.14 10.70 12.48 13.19 13.92 0.639 0.531 0.722 0.735 0.775
Image 64 10.08 10.03 11.00 12.30 13.52 0.669 0.660 0.703 0.730 0.794
Image 65 10.23 8.13 10.65 12.08 13.74 0.627 0.369 0.682 0.744 0.772
Image 66 10.14 6.83 9.68 11.70 13.96 0.705 0.352 0.703 0.760 0.830
Image 67 10.13 10.95 10.82 11.87 13.37 0.688 0.645 0.675 0.713 0.863
Image 68 10.11 10.14 11.81 12.19 13.10 0.684 0.671 0.745 0.734 0.787
Image 69 10.12 10.75 12.35 13.63 14.12 0.625 0.541 0.707 0.751 0.776
Image 70 10.20 9.37 12.39 13.30 13.84 0.608 0.576 0.696 0.737 0.750
Image 71 9.98 11.34 11.35 12.42 13.79 0.655 0.561 0.694 0.717 0.820
Image 72 10.15 7.57 10.05 11.50 12.68 0.662 0.355 0.686 0.745 0.784
Image 73 10.00 8.42 9.25 10.29 13.04 0.753 0.722 0.712 0.712 0.852
Image 74 10.10 12.13 12.23 13.85 14.40 0.599 0.493 0.691 0.742 0.775
Image 75 10.18 8.17 12.60 13.41 13.94 0.634 0.536 0.715 0.735 0.750
Image 76 10.05 9.81 11.61 12.25 13.65 0.668 0.669 0.737 0.723 0.799
Image 77 10.15 11.30 12.44 14.00 14.20 0.599 0.500 0.683 0.748 0.749
Image 78 10.04 9.94 11.01 11.70 13.20 0.703 0.697 0.727 0.731 0.814
Image 79 10.08 11.01 11.52 12.59 13.57 0.646 0.517 0.684 0.716 0.795
Image 80 10.13 7.87 11.17 12.31 13.45 0.677 0.315 0.704 0.727 0.796
Image 81 10.15 10.60 11.65 13.50 14.48 0.576 0.404 0.693 0.736 0.757
Image 82 9.89 7.69 7.70 10.03 13.42 0.730 0.692 0.635 0.720 0.855
Image 83 10.08 9.10 11.66 12.38 13.24 0.675 0.550 0.713 0.729 0.763
Image 84 9.97 9.91 11.30 12.43 13.67 0.699 0.542 0.728 0.727 0.830
Image 85 9.71 5.84 8.93 10.90 13.28 0.698 0.281 0.675 0.722 0.807
Image 86 9.88 7.81 8.47 10.28 13.27 0.721 0.483 0.649 0.725 0.856
Image 87 10.01 6.15 9.20 11.24 13.26 0.699 0.284 0.648 0.732 0.851
Image 88 10.17 11.58 12.38 13.41 13.91 0.622 0.456 0.700 0.735 0.759
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Table A.27 continued from previous page

SNR (dB) SSIM

Image 89 9.92 10.11 11.40 12.40 13.49 0.695 0.648 0.708 0.748 0.829
Image 90 10.13 9.40 12.25 12.64 13.30 0.641 0.554 0.724 0.724 0.765
Image 91 10.06 7.94 10.47 12.07 13.62 0.672 0.355 0.701 0.741 0.794
Image 92 10.03 8.78 11.92 13.03 13.66 0.655 0.419 0.733 0.745 0.787
Image 93 10.07 6.67 9.55 10.79 12.89 0.722 0.318 0.697 0.730 0.790
Image 94 10.06 8.02 11.62 12.74 13.44 0.660 0.371 0.718 0.746 0.799
Image 95 10.11 10.30 12.33 12.94 13.58 0.661 0.500 0.746 0.741 0.792
Image 96 10.02 9.71 10.47 11.90 13.72 0.688 0.557 0.689 0.749 0.839
Image 97 9.84 10.22 11.15 11.89 13.45 0.677 0.614 0.697 0.686 0.827
Image 98 10.19 10.97 12.65 13.79 13.91 0.621 0.466 0.718 0.739 0.766
Image 99 10.10 10.51 12.08 12.84 13.89 0.668 0.542 0.713 0.734 0.786
Image 100 9.49 6.96 6.64 8.94 13.44 0.700 0.508 0.550 0.667 0.896
Image 101 10.13 9.36 11.92 12.57 13.52 0.661 0.558 0.720 0.724 0.777
Image 102 10.09 10.11 12.06 12.82 13.81 0.654 0.653 0.715 0.734 0.780
Image 103 10.12 12.03 13.41 15.08 14.97 0.500 0.497 0.632 0.703 0.688
Image 104 10.14 8.72 11.98 12.24 13.19 0.678 0.566 0.722 0.733 0.766
Image 105 9.85 11.31 10.72 12.00 13.85 0.672 0.651 0.667 0.704 0.862
Image 106 10.03 7.97 10.74 12.08 13.48 0.662 0.401 0.717 0.748 0.800
Image 107 10.05 9.62 11.31 11.84 13.22 0.696 0.513 0.722 0.746 0.813
Image 108 10.22 8.88 11.77 12.56 13.09 0.690 0.433 0.743 0.716 0.789
Image 109 10.04 7.50 10.27 11.64 13.77 0.688 0.404 0.721 0.744 0.807
Image 110 10.17 9.76 13.27 15.35 14.82 0.532 0.515 0.663 0.737 0.707

Average 10.07 9.47 11.22 12.36 13.60 0.662 0.518 0.699 0.729 0.796

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.27 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 80% data availability and σn = 0.1σy.

A.3.4 Experiment 4: 70% Data Availability and σn = 0.1σy

Table A.28 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 104 images, and best SSIM for 106 images. Fig. A.28 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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Table A.28 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 70% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 8.44 10.29 10.42 11.16 11.34 0.554 0.507 0.589 0.621 0.641
Image 2 8.33 9.90 9.67 10.50 11.24 0.587 0.462 0.604 0.574 0.701
Image 3 8.50 10.23 10.63 11.23 11.39 0.550 0.468 0.616 0.574 0.625
Image 4 8.52 5.90 9.48 10.11 10.91 0.582 0.370 0.621 0.601 0.682
Image 5 8.20 6.89 7.93 8.84 11.08 0.646 0.348 0.557 0.633 0.739
Image 6 8.52 11.59 10.78 11.84 12.03 0.506 0.482 0.579 0.606 0.624
Image 7 8.56 8.13 9.67 10.40 11.17 0.560 0.355 0.603 0.611 0.655
Image 8 8.63 7.32 8.98 10.20 10.75 0.581 0.324 0.606 0.628 0.691
Image 9 8.28 7.50 8.14 9.38 11.06 0.592 0.391 0.572 0.638 0.735
Image 10 8.54 6.92 9.96 10.45 11.17 0.614 0.321 0.635 0.648 0.752
Image 11 8.51 10.06 10.68 11.35 11.58 0.567 0.480 0.611 0.614 0.679
Image 12 7.98 6.32 6.50 8.01 10.07 0.666 0.606 0.547 0.638 0.773
Image 13 8.18 9.41 9.38 9.98 10.87 0.620 0.588 0.614 0.620 0.759
Image 14 8.53 8.45 10.13 10.94 11.24 0.536 0.337 0.593 0.606 0.633
Image 15 8.54 9.65 10.44 11.10 11.27 0.568 0.439 0.646 0.607 0.675
Image 16 8.12 6.51 6.70 7.87 10.15 0.661 0.650 0.526 0.594 0.833
Image 17 8.54 7.51 10.84 11.97 11.95 0.498 0.529 0.578 0.602 0.597
Image 18 8.42 9.51 10.33 11.24 11.48 0.561 0.414 0.633 0.605 0.664
Image 19 8.38 5.92 9.10 10.02 10.93 0.628 0.292 0.624 0.630 0.723
Image 20 8.38 5.21 8.17 9.48 11.07 0.600 0.316 0.603 0.630 0.719
Image 21 8.44 9.97 9.54 10.39 11.18 0.589 0.545 0.595 0.596 0.726
Image 22 8.35 8.39 9.57 10.16 11.22 0.621 0.471 0.615 0.606 0.767
Image 23 8.53 10.87 10.38 10.91 11.37 0.562 0.488 0.603 0.617 0.660
Image 24 8.46 8.41 9.73 10.48 11.42 0.587 0.463 0.647 0.591 0.686
Image 25 8.57 7.05 11.42 12.37 11.94 0.450 0.360 0.551 0.570 0.547
Image 26 8.40 8.64 9.68 10.24 10.95 0.613 0.612 0.638 0.616 0.713
Image 27 8.39 10.39 10.64 11.37 11.54 0.566 0.436 0.621 0.585 0.651
Image 28 8.56 11.34 10.73 11.85 11.95 0.510 0.438 0.582 0.587 0.622
Image 29 8.40 9.99 9.68 10.16 10.77 0.611 0.527 0.612 0.631 0.729
Image 30 8.52 10.37 10.21 11.00 11.52 0.566 0.514 0.602 0.620 0.670
Image 31 8.50 8.63 10.17 10.66 10.97 0.593 0.312 0.621 0.594 0.682
Image 32 8.60 7.26 10.35 10.69 11.32 0.575 0.551 0.608 0.586 0.647
Image 33 8.35 10.80 10.44 10.86 11.42 0.552 0.516 0.608 0.564 0.677
Image 34 8.34 7.44 9.48 10.02 10.94 0.621 0.495 0.617 0.616 0.774
Image 35 8.31 10.48 10.18 10.79 11.64 0.590 0.534 0.616 0.632 0.701
Image 36 8.41 9.31 9.74 10.71 11.35 0.561 0.458 0.599 0.600 0.707
Image 37 8.51 7.50 10.43 10.94 11.44 0.530 0.539 0.575 0.577 0.606
Image 38 8.56 7.78 10.87 11.54 11.45 0.527 0.472 0.582 0.592 0.594
Image 39 8.48 7.98 10.60 11.10 11.43 0.539 0.491 0.587 0.598 0.606
Image 40 8.40 7.52 9.35 10.05 10.68 0.600 0.304 0.605 0.626 0.686
Image 41 8.59 8.89 10.23 11.46 11.62 0.540 0.390 0.613 0.583 0.660
Image 42 8.49 7.20 10.42 11.01 11.29 0.544 0.443 0.585 0.596 0.626
Image 43 8.34 9.27 9.86 10.52 11.13 0.606 0.565 0.615 0.608 0.750
Image 44 8.58 8.86 9.92 10.28 10.87 0.630 0.626 0.660 0.593 0.702
Image 45 8.32 6.82 8.14 9.22 10.24 0.628 0.295 0.596 0.627 0.709
Image 46 7.98 5.93 6.25 8.04 10.36 0.652 0.439 0.522 0.639 0.801
Image 47 8.57 9.05 9.83 10.41 11.16 0.588 0.403 0.633 0.600 0.683
Image 48 8.44 8.69 9.62 10.12 10.69 0.618 0.617 0.636 0.618 0.726
Image 49 8.51 9.52 11.14 12.70 12.11 0.490 0.461 0.583 0.598 0.610
Image 50 8.22 5.81 9.43 9.88 10.86 0.633 0.311 0.628 0.618 0.770
Image 51 8.22 8.45 8.93 9.72 10.73 0.584 0.586 0.616 0.607 0.706
Image 52 8.56 10.67 10.63 11.73 12.11 0.508 0.414 0.595 0.582 0.659
Image 53 8.32 5.41 8.09 9.36 10.62 0.601 0.312 0.604 0.625 0.715
Image 54 8.38 9.96 10.12 11.18 11.58 0.526 0.419 0.586 0.593 0.669
Image 55 8.44 11.05 10.72 11.04 11.89 0.563 0.505 0.619 0.608 0.682
Image 56 8.46 8.72 9.80 10.57 11.06 0.580 0.415 0.623 0.623 0.694
Image 57 8.39 6.41 8.66 9.59 10.89 0.602 0.298 0.607 0.616 0.703
Image 58 8.51 10.63 9.98 10.99 11.33 0.572 0.526 0.605 0.612 0.715
Image 59 8.31 9.57 9.55 10.20 11.19 0.591 0.478 0.597 0.575 0.745
Image 60 8.46 5.64 9.88 10.61 11.12 0.570 0.368 0.622 0.614 0.682
Image 61 8.49 6.45 8.91 9.63 10.57 0.617 0.264 0.592 0.622 0.704
Image 62 8.45 10.00 10.37 10.88 11.34 0.549 0.523 0.583 0.600 0.632
Image 63 8.35 8.93 10.59 11.43 11.72 0.543 0.512 0.610 0.596 0.649
Image 64 8.48 5.23 9.38 10.55 11.23 0.580 0.352 0.612 0.603 0.687
Image 65 8.44 6.44 9.29 10.17 11.19 0.542 0.335 0.580 0.606 0.649
Image 66 8.25 5.99 8.42 9.35 10.71 0.617 0.330 0.611 0.657 0.734
Image 67 8.39 9.63 9.32 10.11 10.95 0.609 0.551 0.599 0.621 0.784
Image 68 8.48 5.29 9.99 10.55 11.01 0.589 0.375 0.635 0.607 0.681
Image 69 8.57 10.80 10.59 11.41 11.81 0.533 0.501 0.608 0.616 0.646
Image 70 8.41 10.69 10.55 11.43 11.77 0.517 0.453 0.577 0.590 0.618
Image 71 8.38 9.24 9.67 10.74 11.45 0.577 0.430 0.599 0.614 0.719
Image 72 8.41 6.13 8.66 9.52 10.57 0.568 0.287 0.584 0.623 0.675
Image 73 8.27 4.53 8.07 8.71 10.31 0.675 0.275 0.630 0.615 0.765
Image 74 8.58 11.62 10.45 11.62 11.76 0.510 0.469 0.580 0.586 0.641
Image 75 8.52 7.40 10.69 11.58 11.83 0.537 0.402 0.600 0.611 0.614
Image 76 8.56 6.33 9.90 10.60 11.32 0.581 0.396 0.635 0.598 0.690
Image 77 8.54 10.52 10.66 11.71 11.80 0.502 0.512 0.570 0.592 0.609
Image 78 8.38 8.33 9.32 10.10 10.95 0.622 0.390 0.624 0.615 0.715
Image 79 8.41 8.88 9.97 10.64 11.23 0.562 0.493 0.589 0.572 0.687
Image 80 8.37 6.45 9.68 10.32 10.96 0.581 0.235 0.604 0.598 0.680
Image 81 8.46 8.62 10.08 11.20 12.52 0.483 0.376 0.585 0.597 0.623
Image 82 7.98 6.07 6.73 8.38 10.37 0.654 0.368 0.561 0.631 0.789
Image 83 8.44 7.54 9.96 10.55 11.05 0.580 0.519 0.604 0.597 0.648
Image 84 8.51 9.41 9.65 10.67 10.80 0.626 0.524 0.646 0.628 0.732
Image 85 8.26 5.31 7.81 9.14 10.50 0.610 0.267 0.585 0.608 0.717
Image 86 8.20 5.79 7.36 8.69 10.46 0.646 0.281 0.567 0.634 0.771
Image 87 8.25 7.16 7.89 9.19 10.60 0.621 0.359 0.564 0.627 0.761
Image 88 8.46 8.49 10.62 11.51 11.72 0.517 0.457 0.588 0.596 0.621
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Table A.28 continued from previous page

SNR (dB) SSIM

Image 89 8.50 9.31 9.94 10.47 11.07 0.611 0.586 0.613 0.638 0.730
Image 90 8.44 6.95 10.51 11.08 11.52 0.556 0.524 0.625 0.603 0.659
Image 91 8.52 6.62 8.98 10.06 10.99 0.573 0.321 0.599 0.622 0.685
Image 92 8.46 7.64 10.23 11.16 11.40 0.564 0.397 0.633 0.607 0.669
Image 93 8.17 6.68 8.18 9.02 10.78 0.640 0.306 0.602 0.621 0.724
Image 94 8.47 6.97 9.88 10.84 11.16 0.572 0.320 0.616 0.620 0.690
Image 95 8.58 6.72 10.34 11.12 11.41 0.577 0.402 0.639 0.609 0.683
Image 96 8.36 5.95 9.12 9.79 11.18 0.601 0.260 0.592 0.639 0.735
Image 97 8.27 9.30 9.68 10.29 11.07 0.599 0.577 0.619 0.596 0.740
Image 98 8.51 10.71 10.82 11.78 11.60 0.528 0.476 0.616 0.593 0.644
Image 99 8.42 10.63 10.52 11.16 11.59 0.566 0.485 0.611 0.621 0.667
Image 100 7.82 6.28 5.80 7.54 10.11 0.651 0.621 0.491 0.588 0.822
Image 101 8.54 9.69 10.28 10.77 11.38 0.577 0.504 0.620 0.606 0.666
Image 102 8.50 8.82 10.21 10.84 11.35 0.560 0.472 0.603 0.606 0.656
Image 103 8.49 9.87 11.48 12.17 12.38 0.392 0.445 0.510 0.532 0.509
Image 104 8.48 7.83 10.16 10.60 11.17 0.584 0.523 0.602 0.606 0.650
Image 105 8.21 10.32 9.31 10.09 10.91 0.602 0.604 0.592 0.611 0.775
Image 106 8.31 6.48 9.38 10.24 10.97 0.578 0.371 0.622 0.623 0.686
Image 107 8.44 9.70 9.74 10.13 10.92 0.607 0.495 0.615 0.639 0.705
Image 108 8.54 3.78 10.23 10.84 11.18 0.603 0.388 0.647 0.599 0.690
Image 109 8.42 6.11 8.76 9.92 10.94 0.605 0.374 0.624 0.633 0.711
Image 110 8.55 10.65 11.47 12.85 12.56 0.430 0.471 0.542 0.576 0.562

Average 8.41 8.22 9.65 10.49 11.20 0.576 0.439 0.601 0.608 0.688

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.28 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 70% data availability and σn = 0.1σy.

A.3.5 Experiment 5: 50% Data Availability and σn = 0.1σy

Table A.29 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 37 images, and best SSIM for 101 images. Fig. A.29 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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Table A.29 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 50% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.45 8.67 8.25 9.51 8.72 0.379 0.463 0.422 0.411 0.480
Image 2 6.29 9.11 7.65 8.93 8.90 0.346 0.440 0.468 0.402 0.529
Image 3 6.46 7.29 8.24 10.13 8.81 0.311 0.452 0.442 0.420 0.461
Image 4 6.42 5.98 7.52 8.47 8.41 0.339 0.355 0.475 0.421 0.523
Image 5 6.05 6.29 6.42 6.92 7.88 0.459 0.333 0.432 0.452 0.621
Image 6 6.45 10.90 8.51 10.40 8.96 0.300 0.420 0.422 0.405 0.445
Image 7 6.36 7.99 7.67 8.66 8.39 0.341 0.329 0.457 0.417 0.503
Image 8 6.28 6.79 7.20 8.08 7.92 0.361 0.296 0.464 0.439 0.533
Image 9 6.06 6.18 6.52 7.46 8.28 0.416 0.278 0.427 0.444 0.550
Image 10 6.40 8.07 7.89 8.70 8.83 0.399 0.382 0.502 0.464 0.594
Image 11 6.47 8.64 8.29 9.82 9.22 0.355 0.434 0.458 0.402 0.508
Image 12 5.88 5.08 5.27 5.91 7.52 0.466 0.497 0.412 0.442 0.635
Image 13 6.25 8.79 7.32 8.15 8.58 0.399 0.517 0.483 0.437 0.615
Image 14 6.42 8.58 7.96 9.18 8.62 0.318 0.319 0.436 0.404 0.471
Image 15 6.34 9.23 8.13 9.68 8.77 0.307 0.427 0.504 0.446 0.524
Image 16 5.82 4.95 5.34 5.63 8.04 0.400 0.363 0.450 0.434 0.723
Image 17 6.51 6.91 8.37 10.59 8.98 0.293 0.447 0.405 0.424 0.418
Image 18 6.49 5.70 8.04 9.76 8.63 0.302 0.372 0.484 0.426 0.498
Image 19 6.32 6.15 7.28 8.15 8.24 0.412 0.280 0.473 0.435 0.540
Image 20 6.16 5.72 6.60 7.36 8.03 0.369 0.333 0.476 0.449 0.576
Image 21 6.33 7.98 7.63 8.60 8.92 0.370 0.449 0.466 0.419 0.567
Image 22 6.31 8.13 7.56 8.37 8.81 0.380 0.435 0.486 0.411 0.601
Image 23 6.43 8.36 8.13 9.25 8.84 0.376 0.314 0.434 0.388 0.502
Image 24 6.36 7.35 7.76 9.17 8.95 0.312 0.448 0.504 0.457 0.536
Image 25 6.52 8.94 8.77 11.55 9.16 0.250 0.387 0.371 0.399 0.365
Image 26 6.33 8.61 7.53 8.60 8.49 0.387 0.459 0.485 0.441 0.560
Image 27 6.51 6.08 8.40 10.21 9.05 0.327 0.401 0.472 0.410 0.486
Image 28 6.54 9.91 8.37 10.26 9.18 0.291 0.416 0.431 0.394 0.452
Image 29 6.37 7.85 7.66 8.52 8.45 0.427 0.328 0.461 0.417 0.545
Image 30 6.44 9.14 8.07 9.32 8.73 0.354 0.462 0.445 0.410 0.498
Image 31 6.45 8.99 8.00 9.04 8.58 0.370 0.374 0.455 0.363 0.501
Image 32 6.38 5.45 8.11 9.24 8.72 0.375 0.457 0.430 0.392 0.471
Image 33 6.40 9.43 8.06 9.64 9.22 0.322 0.496 0.456 0.414 0.512
Image 34 6.44 8.73 7.42 8.13 8.69 0.368 0.530 0.488 0.429 0.611
Image 35 6.51 9.60 8.01 9.14 8.73 0.389 0.461 0.454 0.422 0.521
Image 36 6.32 7.58 7.73 9.06 9.12 0.356 0.429 0.465 0.416 0.556
Image 37 6.43 6.72 8.21 9.65 8.67 0.319 0.437 0.407 0.392 0.425
Image 38 6.55 8.99 8.41 10.19 9.04 0.330 0.433 0.404 0.402 0.430
Image 39 6.48 4.61 8.27 9.89 8.80 0.329 0.447 0.411 0.440 0.437
Image 40 6.25 7.11 7.42 8.10 8.17 0.387 0.284 0.446 0.426 0.534
Image 41 6.47 9.68 8.08 10.01 9.08 0.290 0.414 0.474 0.422 0.503
Image 42 6.48 5.65 8.09 9.48 8.75 0.334 0.433 0.408 0.392 0.450
Image 43 6.35 8.47 7.85 8.86 8.93 0.367 0.504 0.496 0.440 0.589
Image 44 6.50 8.10 7.86 9.07 8.56 0.366 0.457 0.528 0.462 0.559
Image 45 5.99 5.59 6.60 7.09 8.01 0.411 0.262 0.456 0.417 0.573
Image 46 5.81 4.37 5.08 5.76 7.67 0.459 0.466 0.409 0.448 0.670
Image 47 6.35 8.66 7.85 8.91 8.63 0.355 0.388 0.488 0.410 0.525
Image 48 6.34 8.23 7.44 8.31 8.43 0.392 0.488 0.481 0.427 0.564
Image 49 6.53 11.43 8.82 11.25 9.25 0.258 0.441 0.443 0.420 0.440
Image 50 6.17 5.68 7.32 8.09 8.72 0.392 0.311 0.507 0.450 0.636
Image 51 6.30 7.28 7.23 7.83 8.00 0.369 0.371 0.473 0.420 0.527
Image 52 6.41 10.60 8.31 10.31 9.43 0.286 0.453 0.452 0.402 0.494
Image 53 6.03 4.67 6.57 7.17 8.16 0.390 0.319 0.467 0.434 0.576
Image 54 6.38 9.28 8.15 9.54 9.15 0.311 0.362 0.458 0.394 0.506
Image 55 6.34 9.95 8.37 9.70 9.13 0.374 0.440 0.464 0.416 0.519
Image 56 6.47 7.99 7.66 8.79 8.61 0.366 0.397 0.473 0.419 0.527
Image 57 6.31 5.46 7.04 7.93 8.54 0.393 0.306 0.476 0.429 0.547
Image 58 6.35 9.16 7.90 9.29 9.11 0.356 0.492 0.471 0.428 0.560
Image 59 6.30 8.63 7.58 8.73 8.85 0.343 0.486 0.479 0.410 0.584
Image 60 6.38 8.79 7.70 8.85 8.55 0.337 0.398 0.475 0.420 0.522
Image 61 6.21 6.25 7.18 7.83 8.08 0.402 0.252 0.449 0.423 0.553
Image 62 6.42 9.93 8.20 9.25 8.73 0.365 0.387 0.415 0.362 0.466
Image 63 6.50 7.92 8.32 10.09 9.01 0.313 0.482 0.455 0.429 0.482
Image 64 6.37 6.12 7.59 8.73 8.61 0.355 0.327 0.467 0.418 0.522
Image 65 6.25 7.05 7.30 8.44 8.43 0.326 0.306 0.436 0.418 0.499
Image 66 6.07 5.51 6.59 7.31 8.05 0.399 0.285 0.469 0.466 0.576
Image 67 6.25 7.87 7.36 8.22 8.66 0.397 0.413 0.472 0.430 0.628
Image 68 6.43 8.97 7.84 8.95 8.51 0.337 0.453 0.489 0.404 0.527
Image 69 6.47 10.25 8.34 9.83 9.02 0.330 0.444 0.449 0.408 0.479
Image 70 6.43 9.25 8.21 9.91 8.72 0.320 0.387 0.402 0.382 0.432
Image 71 6.38 9.01 7.65 8.98 9.04 0.348 0.455 0.469 0.428 0.567
Image 72 6.26 6.39 6.98 7.46 7.82 0.354 0.301 0.429 0.413 0.511
Image 73 6.08 4.84 6.48 6.79 7.76 0.454 0.269 0.495 0.434 0.611
Image 74 6.49 9.83 8.27 10.13 9.07 0.305 0.438 0.431 0.400 0.470
Image 75 6.55 6.72 8.40 10.27 8.78 0.300 0.383 0.444 0.444 0.451
Image 76 6.37 8.66 7.68 9.05 8.62 0.322 0.412 0.489 0.429 0.528
Image 77 6.49 10.69 8.41 10.29 8.82 0.305 0.418 0.404 0.392 0.420
Image 78 6.31 7.78 7.34 8.17 8.28 0.386 0.356 0.469 0.403 0.541
Image 79 6.33 9.29 7.79 9.07 9.01 0.341 0.436 0.444 0.373 0.512
Image 80 6.36 7.37 7.65 8.71 8.55 0.375 0.247 0.444 0.372 0.493
Image 81 6.43 8.81 7.95 9.44 8.58 0.259 0.371 0.449 0.408 0.465
Image 82 5.87 4.01 5.59 6.24 7.87 0.454 0.247 0.444 0.458 0.657
Image 83 6.42 8.01 7.96 8.95 8.46 0.361 0.408 0.449 0.411 0.491
Image 84 6.27 8.08 7.62 8.65 8.75 0.376 0.456 0.526 0.475 0.598
Image 85 6.07 5.27 6.32 7.01 7.82 0.416 0.261 0.441 0.402 0.556
Image 86 5.97 4.37 6.01 6.43 7.80 0.465 0.207 0.426 0.424 0.618
Image 87 6.11 6.58 6.50 6.85 8.18 0.438 0.327 0.435 0.408 0.600
Image 88 6.51 9.88 8.38 9.90 9.01 0.317 0.395 0.428 0.376 0.456
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Table A.29 continued from previous page

SNR (dB) SSIM

Image 89 6.36 9.08 7.83 8.71 8.63 0.420 0.481 0.463 0.424 0.550
Image 90 6.39 9.36 8.25 9.71 8.69 0.319 0.473 0.470 0.446 0.494
Image 91 6.30 6.87 7.12 7.91 8.05 0.365 0.311 0.460 0.424 0.531
Image 92 6.37 8.55 8.07 9.69 8.78 0.306 0.388 0.492 0.433 0.514
Image 93 6.12 5.46 6.66 7.33 7.67 0.418 0.268 0.454 0.436 0.565
Image 94 6.41 8.33 7.87 8.93 8.67 0.361 0.376 0.469 0.410 0.516
Image 95 6.42 7.67 8.25 9.80 8.86 0.318 0.401 0.504 0.437 0.528
Image 96 6.27 7.48 7.27 8.01 8.50 0.427 0.366 0.446 0.429 0.565
Image 97 6.26 8.53 7.74 8.54 8.88 0.356 0.495 0.504 0.433 0.593
Image 98 6.49 7.22 8.50 10.56 9.11 0.292 0.407 0.466 0.403 0.482
Image 99 6.37 9.89 8.19 9.51 8.81 0.360 0.438 0.446 0.398 0.497
Image 100 5.71 4.72 4.79 5.13 7.91 0.413 0.375 0.407 0.402 0.702
Image 101 6.34 8.86 8.10 9.27 8.67 0.364 0.406 0.462 0.417 0.503
Image 102 6.34 9.19 8.08 9.44 8.68 0.349 0.419 0.449 0.424 0.491
Image 103 6.51 10.74 8.90 10.71 9.51 0.230 0.336 0.326 0.319 0.323
Image 104 6.37 6.33 8.03 9.03 8.44 0.392 0.379 0.430 0.407 0.479
Image 105 6.29 8.87 7.30 8.16 8.72 0.377 0.555 0.479 0.435 0.638
Image 106 6.22 6.04 7.31 8.42 8.41 0.340 0.356 0.475 0.437 0.536
Image 107 6.30 8.79 7.58 8.49 8.29 0.438 0.422 0.438 0.423 0.526
Image 108 6.38 8.49 8.06 9.37 8.89 0.345 0.377 0.505 0.432 0.541
Image 109 6.26 6.03 7.05 7.92 8.33 0.361 0.354 0.489 0.459 0.567
Image 110 6.54 10.21 8.87 11.64 9.53 0.247 0.394 0.371 0.368 0.368

Average 6.33 7.78 7.63 8.81 8.62 0.358 0.393 0.455 0.419 0.527

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.29 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 50% data availability and σn = 0.1σy.

A.3.6 Experiment 6: 30% Data Availability and σn = 0.1σy

Table A.30 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 7 images, and best SSIM for 63 images. Fig. A.30 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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Table A.30 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 30% data availability and σn = 0.1σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 4.77 9.07 6.04 7.15 5.83 0.232 0.392 0.281 0.303 0.313
Image 2 4.65 8.15 5.79 6.79 6.51 0.211 0.364 0.367 0.323 0.410
Image 3 4.76 6.62 6.15 7.74 6.05 0.176 0.370 0.332 0.377 0.338
Image 4 4.77 5.67 5.63 6.67 5.78 0.204 0.330 0.370 0.347 0.394
Image 5 4.33 4.66 4.84 5.37 5.19 0.295 0.197 0.315 0.319 0.422
Image 6 4.75 9.71 6.07 7.59 6.13 0.196 0.374 0.291 0.308 0.317
Image 7 4.66 7.51 5.70 6.75 5.62 0.193 0.316 0.335 0.333 0.359
Image 8 4.68 5.94 5.42 6.39 5.53 0.208 0.285 0.345 0.342 0.389
Image 9 4.41 4.34 4.91 5.62 5.61 0.268 0.198 0.300 0.294 0.408
Image 10 4.71 7.57 5.75 6.84 6.64 0.253 0.348 0.381 0.354 0.439
Image 11 4.78 9.28 6.25 7.44 6.30 0.230 0.367 0.350 0.310 0.364
Image 12 4.23 4.70 4.06 4.68 4.83 0.292 0.425 0.298 0.314 0.431
Image 13 4.63 7.55 5.47 6.26 6.73 0.265 0.397 0.378 0.342 0.456
Image 14 4.82 6.28 5.95 7.11 5.97 0.186 0.298 0.324 0.301 0.341
Image 15 4.75 7.88 6.01 7.45 6.04 0.177 0.390 0.400 0.390 0.407
Image 16 4.08 2.77 4.07 4.47 5.42 0.281 0.179 0.377 0.360 0.562
Image 17 4.82 8.29 6.24 7.84 6.10 0.165 0.423 0.292 0.375 0.295
Image 18 4.74 8.74 6.08 7.45 5.87 0.176 0.419 0.377 0.365 0.387
Image 19 4.58 6.82 5.39 6.42 5.82 0.254 0.338 0.344 0.323 0.394
Image 20 4.44 5.05 5.05 5.71 5.54 0.234 0.298 0.367 0.355 0.426
Image 21 4.65 8.11 5.58 6.60 6.42 0.233 0.465 0.343 0.339 0.434
Image 22 4.68 4.53 5.51 6.48 6.61 0.255 0.217 0.381 0.334 0.461
Image 23 4.77 8.95 5.90 7.10 6.07 0.238 0.345 0.287 0.251 0.337
Image 24 4.77 7.62 5.93 7.16 5.95 0.188 0.420 0.412 0.404 0.420
Image 25 4.86 7.10 6.49 8.38 6.12 0.136 0.295 0.263 0.357 0.259
Image 26 4.63 7.30 5.66 6.61 5.95 0.247 0.351 0.366 0.335 0.403
Image 27 4.79 5.18 6.18 7.66 6.16 0.180 0.258 0.357 0.357 0.368
Image 28 4.79 9.95 6.32 7.75 6.22 0.173 0.374 0.327 0.318 0.328
Image 29 4.79 8.05 5.76 6.51 6.01 0.278 0.393 0.324 0.269 0.360
Image 30 4.74 8.25 5.98 7.07 6.05 0.215 0.341 0.320 0.308 0.345
Image 31 4.71 7.20 5.94 7.11 5.95 0.228 0.334 0.325 0.269 0.355
Image 32 4.74 6.81 5.94 7.32 6.03 0.226 0.373 0.293 0.327 0.328
Image 33 4.65 7.39 5.98 7.38 6.83 0.193 0.428 0.356 0.362 0.381
Image 34 4.76 7.54 5.47 6.31 6.59 0.243 0.478 0.386 0.339 0.483
Image 35 4.69 8.23 5.93 6.95 6.03 0.258 0.391 0.314 0.285 0.349
Image 36 4.63 7.85 5.73 6.98 6.44 0.223 0.418 0.351 0.335 0.395
Image 37 4.86 6.56 6.08 7.45 6.01 0.185 0.382 0.273 0.327 0.298
Image 38 4.82 7.27 6.20 7.76 6.01 0.178 0.319 0.281 0.330 0.300
Image 39 4.76 8.86 6.13 7.52 6.00 0.192 0.436 0.289 0.375 0.304
Image 40 4.71 5.98 5.48 6.29 5.57 0.246 0.256 0.319 0.302 0.379
Image 41 4.76 8.48 6.06 7.44 6.10 0.169 0.363 0.380 0.367 0.381
Image 42 4.78 7.33 5.99 7.28 6.01 0.216 0.354 0.286 0.292 0.322
Image 43 4.78 6.91 5.85 6.84 6.75 0.237 0.454 0.393 0.359 0.453
Image 44 4.75 7.35 5.85 6.99 5.85 0.205 0.460 0.411 0.392 0.433
Image 45 4.38 5.12 5.00 5.56 5.24 0.263 0.223 0.338 0.303 0.410
Image 46 4.11 2.86 3.94 4.42 4.78 0.302 0.180 0.297 0.314 0.440
Image 47 4.63 7.16 5.69 7.05 5.93 0.207 0.381 0.362 0.348 0.385
Image 48 4.67 6.98 5.55 6.43 6.07 0.235 0.332 0.360 0.318 0.424
Image 49 4.79 3.76 6.51 8.30 6.18 0.142 0.183 0.345 0.371 0.331
Image 50 4.72 7.26 5.41 6.37 6.51 0.254 0.408 0.411 0.381 0.493
Image 51 4.55 6.53 5.37 6.28 5.65 0.232 0.440 0.360 0.331 0.389
Image 52 4.72 9.89 6.13 7.61 6.47 0.172 0.393 0.357 0.345 0.395
Image 53 4.43 4.57 4.97 5.60 5.45 0.235 0.290 0.356 0.343 0.411
Image 54 4.72 8.95 5.92 7.24 6.44 0.184 0.370 0.349 0.334 0.382
Image 55 4.80 9.44 6.10 7.39 6.27 0.234 0.378 0.341 0.306 0.375
Image 56 4.74 7.67 5.79 6.82 5.90 0.223 0.358 0.357 0.334 0.390
Image 57 4.66 5.75 5.21 6.23 5.60 0.233 0.274 0.350 0.325 0.397
Image 58 4.76 8.50 5.78 6.94 6.51 0.221 0.423 0.359 0.323 0.410
Image 59 4.60 7.72 5.69 6.70 6.89 0.225 0.367 0.380 0.328 0.469
Image 60 4.74 7.83 5.73 6.96 5.80 0.205 0.344 0.367 0.346 0.386
Image 61 4.56 4.91 5.36 6.20 5.44 0.246 0.226 0.319 0.306 0.394
Image 62 4.81 7.13 6.07 7.13 6.01 0.215 0.326 0.277 0.252 0.302
Image 63 4.75 7.46 6.04 7.51 6.11 0.174 0.439 0.343 0.379 0.351
Image 64 4.62 7.40 5.68 6.62 6.08 0.216 0.376 0.353 0.325 0.389
Image 65 4.64 5.90 5.50 6.44 5.74 0.196 0.293 0.332 0.325 0.368
Image 66 4.50 5.19 4.94 5.86 5.28 0.250 0.268 0.348 0.352 0.412
Image 67 4.68 7.44 5.50 6.30 6.40 0.267 0.423 0.359 0.308 0.458
Image 68 4.69 8.36 5.89 7.11 5.77 0.187 0.420 0.377 0.351 0.398
Image 69 4.84 8.25 6.11 7.44 6.10 0.208 0.370 0.327 0.315 0.342
Image 70 4.79 6.46 6.12 7.56 6.07 0.181 0.354 0.286 0.309 0.303
Image 71 4.67 7.39 5.70 6.79 6.51 0.227 0.396 0.368 0.340 0.437
Image 72 4.59 5.98 5.28 5.97 5.39 0.214 0.258 0.313 0.309 0.358
Image 73 4.42 3.11 4.85 5.43 5.37 0.281 0.243 0.371 0.336 0.454
Image 74 4.77 9.30 6.10 7.44 6.23 0.186 0.374 0.323 0.313 0.342
Image 75 4.82 7.82 6.28 7.75 6.05 0.175 0.418 0.327 0.390 0.336
Image 76 4.68 8.39 5.84 7.06 5.93 0.195 0.439 0.385 0.366 0.406
Image 77 4.80 9.23 6.15 7.63 6.15 0.189 0.368 0.281 0.312 0.292
Image 78 4.59 7.51 5.62 6.58 5.81 0.236 0.342 0.352 0.317 0.397
Image 79 4.74 7.79 5.86 6.96 6.51 0.208 0.320 0.335 0.297 0.386
Image 80 4.73 7.95 5.77 6.80 6.00 0.227 0.290 0.310 0.265 0.343
Image 81 4.86 7.58 5.98 7.07 5.86 0.146 0.365 0.350 0.356 0.354
Image 82 4.27 3.08 4.21 4.88 5.10 0.288 0.218 0.330 0.328 0.473
Image 83 4.77 7.72 5.91 6.96 5.92 0.209 0.433 0.315 0.344 0.345
Image 84 4.73 7.39 5.61 6.68 6.77 0.229 0.412 0.417 0.404 0.468
Image 85 4.35 4.57 4.69 5.59 5.39 0.256 0.228 0.316 0.306 0.407
Image 86 4.33 3.85 4.58 5.10 5.17 0.303 0.165 0.298 0.292 0.428
Image 87 4.43 4.77 4.85 5.56 5.46 0.281 0.174 0.308 0.293 0.419
Image 88 4.88 9.21 6.15 7.52 6.10 0.185 0.362 0.309 0.286 0.315
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Table A.30 continued from previous page

SNR (dB) SSIM

Image 89 4.77 8.49 5.85 6.73 6.12 0.274 0.416 0.329 0.286 0.375
Image 90 4.75 7.85 6.01 7.45 6.10 0.182 0.460 0.357 0.395 0.370
Image 91 4.72 6.38 5.40 6.13 5.56 0.220 0.280 0.342 0.323 0.398
Image 92 4.79 5.81 5.99 7.30 6.09 0.178 0.368 0.391 0.380 0.397
Image 93 4.48 5.26 4.91 5.72 5.38 0.265 0.226 0.328 0.307 0.398
Image 94 4.76 8.58 5.80 6.98 5.92 0.221 0.414 0.351 0.313 0.368
Image 95 4.77 5.60 5.99 7.44 6.01 0.190 0.417 0.390 0.375 0.403
Image 96 4.64 7.31 5.48 6.27 5.97 0.282 0.308 0.310 0.278 0.376
Image 97 4.62 7.63 5.59 6.54 6.47 0.225 0.428 0.391 0.360 0.476
Image 98 4.85 6.06 6.18 7.80 6.20 0.175 0.336 0.355 0.338 0.359
Image 99 4.72 9.11 5.98 7.24 6.09 0.231 0.379 0.310 0.293 0.341
Image 100 4.04 4.09 3.79 4.19 5.20 0.276 0.444 0.332 0.321 0.533
Image 101 4.82 7.55 5.88 7.17 6.03 0.218 0.382 0.335 0.342 0.357
Image 102 4.71 8.49 5.98 7.21 6.12 0.216 0.365 0.329 0.336 0.348
Image 103 4.90 8.14 6.57 7.88 6.29 0.128 0.274 0.227 0.241 0.224
Image 104 4.85 7.89 5.84 7.12 5.97 0.242 0.385 0.286 0.317 0.326
Image 105 4.59 7.33 5.56 6.28 6.79 0.261 0.409 0.385 0.346 0.473
Image 106 4.62 5.14 5.53 6.50 5.69 0.209 0.329 0.370 0.348 0.401
Image 107 4.73 7.40 5.58 6.49 5.84 0.281 0.249 0.291 0.250 0.357
Image 108 4.68 7.07 5.93 7.32 5.98 0.197 0.353 0.391 0.373 0.401
Image 109 4.55 5.88 5.26 6.30 5.52 0.219 0.328 0.378 0.378 0.420
Image 110 4.85 7.77 6.51 8.27 6.25 0.138 0.298 0.263 0.322 0.263

Average 4.67 7.01 5.67 6.77 5.98 0.220 0.346 0.339 0.330 0.384

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.30 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 30% data availability and σn = 0.1σy.

A.3.7 Experiment 7: 100% Data Availability and σn = σy

Table A.31 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 110 images. Fig. A.31 shows the re-
construction results for a selection of images from the Kapıkule test set from all
methods for this experiment. PnP-CNN-SAR produce better reconstructions com-
pared to other methods.
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Table A.31 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 100% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.68 8.88 11.36 6.76 35.90 0.603 0.593 0.651 0.472 0.998
Image 2 6.45 11.09 10.68 6.57 35.52 0.591 0.606 0.638 0.461 0.996
Image 3 6.93 10.64 12.18 7.20 33.40 0.607 0.534 0.678 0.473 0.997
Image 4 6.84 10.35 11.29 6.97 35.02 0.611 0.507 0.673 0.467 0.998
Image 5 6.07 8.51 9.66 6.14 34.62 0.583 0.500 0.606 0.454 0.994
Image 6 6.90 11.60 12.05 6.99 36.60 0.571 0.552 0.642 0.423 0.998
Image 7 6.82 11.02 11.44 6.97 35.33 0.554 0.513 0.617 0.415 0.998
Image 8 6.78 10.38 11.07 6.97 36.49 0.579 0.489 0.634 0.433 0.999
Image 9 6.34 9.40 9.99 6.48 37.86 0.606 0.520 0.632 0.475 0.996
Image 10 6.24 10.61 10.46 6.32 39.05 0.584 0.625 0.620 0.453 0.997
Image 11 6.57 11.45 11.28 6.65 37.21 0.585 0.580 0.639 0.435 0.998
Image 12 6.09 8.73 9.01 6.28 36.49 0.628 0.560 0.632 0.510 0.997
Image 13 5.82 11.00 9.80 5.96 37.81 0.586 0.644 0.609 0.460 0.994
Image 14 7.03 10.88 11.89 7.11 35.42 0.575 0.447 0.641 0.422 0.998
Image 15 7.02 10.30 11.96 7.20 34.91 0.627 0.442 0.697 0.475 0.998
Image 16 5.20 8.97 7.98 5.29 37.46 0.505 0.592 0.495 0.412 0.993
Image 17 6.91 8.14 12.17 7.05 34.63 0.563 0.523 0.636 0.436 0.997
Image 18 7.04 11.26 12.02 7.23 34.95 0.611 0.492 0.683 0.458 0.998
Image 19 6.52 9.76 10.80 6.80 36.63 0.657 0.520 0.695 0.517 0.999
Image 20 6.62 9.41 10.46 6.82 36.07 0.589 0.516 0.638 0.448 0.998
Image 21 6.36 11.04 10.65 6.39 36.49 0.587 0.640 0.633 0.462 0.996
Image 22 5.86 10.37 10.01 6.11 37.56 0.576 0.637 0.609 0.455 0.996
Image 23 6.59 10.27 11.44 6.80 37.62 0.638 0.586 0.678 0.481 0.998
Image 24 6.86 10.72 11.72 7.11 34.39 0.619 0.514 0.704 0.477 0.998
Image 25 7.05 7.40 12.52 7.16 33.36 0.511 0.450 0.588 0.392 0.996
Image 26 6.61 10.46 11.15 6.81 37.78 0.628 0.569 0.682 0.487 0.999
Image 27 6.92 11.09 12.00 6.99 34.22 0.621 0.555 0.687 0.472 0.998
Image 28 6.94 10.86 12.15 7.12 35.45 0.575 0.473 0.647 0.423 0.998
Image 29 6.48 10.70 10.87 6.49 40.56 0.654 0.630 0.692 0.503 0.999
Image 30 6.89 11.22 11.52 6.97 36.75 0.607 0.591 0.654 0.462 0.998
Image 31 6.88 9.68 11.74 7.08 37.49 0.667 0.447 0.718 0.519 0.999
Image 32 6.74 8.41 11.43 6.95 34.52 0.637 0.573 0.676 0.504 0.998
Image 33 6.43 11.20 11.15 6.71 35.15 0.582 0.618 0.640 0.457 0.995
Image 34 5.93 9.75 9.80 5.96 38.83 0.568 0.522 0.596 0.454 0.995
Image 35 6.65 10.37 11.24 6.69 39.07 0.641 0.616 0.684 0.484 0.999
Image 36 6.35 10.39 10.80 6.59 37.27 0.582 0.516 0.639 0.447 0.996
Image 37 6.84 8.94 11.98 7.10 34.54 0.608 0.544 0.662 0.483 0.998
Image 38 6.85 9.11 12.06 7.03 34.71 0.560 0.512 0.629 0.433 0.998
Image 39 7.01 7.94 11.90 7.19 34.41 0.598 0.529 0.649 0.486 0.997
Image 40 6.73 9.91 10.92 6.79 35.18 0.577 0.508 0.623 0.444 0.998
Image 41 6.92 11.37 11.82 7.08 34.80 0.588 0.492 0.659 0.435 0.997
Image 42 6.92 10.99 11.82 7.12 35.80 0.606 0.582 0.659 0.469 0.998
Image 43 5.96 11.08 10.11 6.13 37.74 0.562 0.629 0.589 0.434 0.996
Image 44 6.95 10.62 11.54 7.05 35.12 0.658 0.537 0.708 0.503 0.998
Image 45 6.50 10.12 10.22 6.66 37.77 0.614 0.490 0.651 0.476 0.999
Image 46 5.86 7.57 8.70 5.94 35.22 0.597 0.532 0.600 0.486 0.991
Image 47 6.92 11.11 11.65 7.06 35.09 0.642 0.527 0.702 0.494 0.998
Image 48 6.55 10.48 10.80 6.71 38.28 0.624 0.563 0.669 0.491 0.997
Image 49 6.94 11.83 12.41 7.04 34.06 0.539 0.442 0.625 0.386 0.997
Image 50 5.90 10.04 9.89 6.02 38.03 0.564 0.533 0.595 0.442 0.995
Image 51 6.67 10.13 10.94 6.80 36.65 0.629 0.527 0.684 0.490 0.998
Image 52 6.60 11.71 11.59 6.89 34.36 0.560 0.560 0.634 0.421 0.994
Image 53 6.61 10.59 10.51 6.82 36.89 0.599 0.532 0.653 0.457 0.998
Image 54 6.63 11.01 11.32 6.69 35.48 0.567 0.556 0.628 0.417 0.996
Image 55 6.49 11.38 11.23 6.60 37.56 0.581 0.570 0.635 0.429 0.998
Image 56 6.90 10.80 11.46 7.04 37.47 0.618 0.532 0.673 0.474 0.999
Image 57 6.71 9.12 10.73 6.87 36.95 0.624 0.441 0.670 0.486 0.998
Image 58 6.38 10.50 10.79 6.53 38.13 0.591 0.522 0.636 0.457 0.998
Image 59 6.02 10.93 9.95 6.03 36.17 0.550 0.642 0.581 0.430 0.995
Image 60 6.92 10.53 11.45 7.03 36.02 0.611 0.509 0.669 0.465 0.998
Image 61 6.48 9.13 10.50 6.54 35.48 0.599 0.490 0.634 0.457 0.998
Image 62 6.77 10.71 11.68 6.88 35.98 0.625 0.572 0.673 0.471 0.998
Image 63 6.89 10.66 11.90 7.12 34.41 0.595 0.571 0.666 0.465 0.997
Image 64 6.77 11.20 11.12 6.93 35.94 0.607 0.533 0.661 0.464 0.998
Image 65 6.86 10.13 11.14 6.98 35.57 0.561 0.464 0.626 0.423 0.998
Image 66 6.59 10.66 10.47 6.78 37.58 0.584 0.539 0.631 0.444 0.999
Image 67 5.86 9.95 9.81 5.92 39.72 0.593 0.643 0.613 0.473 0.997
Image 68 7.02 10.88 11.82 7.18 35.15 0.636 0.522 0.697 0.489 0.998
Image 69 6.88 9.65 11.79 7.02 36.79 0.585 0.551 0.648 0.449 0.998
Image 70 6.96 9.04 11.92 7.08 35.09 0.590 0.540 0.655 0.460 0.998
Image 71 6.24 10.55 10.62 6.43 36.60 0.579 0.511 0.621 0.438 0.996
Image 72 6.81 8.93 10.89 6.94 34.45 0.552 0.445 0.605 0.425 0.998
Image 73 6.40 9.01 10.12 6.55 35.99 0.673 0.514 0.705 0.531 0.999
Image 74 6.95 11.72 11.88 6.98 35.78 0.571 0.541 0.641 0.418 0.997
Image 75 6.98 7.91 12.04 7.18 34.43 0.574 0.501 0.640 0.448 0.997
Image 76 6.89 10.47 11.61 7.01 35.91 0.625 0.505 0.689 0.467 0.998
Image 77 6.91 11.36 12.06 7.06 35.28 0.571 0.511 0.640 0.433 0.998
Image 78 6.76 9.95 11.06 6.82 36.20 0.660 0.517 0.706 0.511 0.999
Image 79 6.35 10.50 10.79 6.51 35.97 0.584 0.485 0.629 0.450 0.995
Image 80 6.68 10.56 11.32 6.83 37.44 0.642 0.494 0.685 0.484 0.998
Image 81 7.07 12.19 11.96 7.24 35.30 0.507 0.417 0.598 0.358 0.997
Image 82 6.02 9.57 9.09 6.10 37.10 0.576 0.542 0.599 0.452 0.996
Image 83 6.81 10.66 11.46 6.96 35.13 0.620 0.588 0.665 0.490 0.998
Image 84 6.35 10.85 10.59 6.52 36.69 0.579 0.565 0.631 0.450 0.996
Image 85 6.52 10.09 10.12 6.62 36.55 0.618 0.503 0.646 0.471 0.998
Image 86 6.14 8.13 9.42 6.31 38.38 0.635 0.497 0.644 0.505 0.998
Image 87 6.17 8.90 9.71 6.22 38.73 0.624 0.496 0.641 0.487 0.998
Image 88 6.93 11.56 12.05 7.16 35.55 0.596 0.480 0.660 0.448 0.998
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Table A.31 continued from previous page

SNR (dB) SSIM

Image 89 6.40 10.43 10.85 6.31 39.57 0.637 0.601 0.675 0.480 0.999
Image 90 6.93 10.84 11.85 7.19 34.87 0.610 0.577 0.670 0.474 0.998
Image 91 6.76 10.63 10.89 6.88 36.79 0.578 0.488 0.629 0.433 0.998
Image 92 6.92 10.68 11.77 6.99 35.59 0.599 0.494 0.674 0.438 0.998
Image 93 6.49 9.83 10.25 6.69 36.24 0.625 0.518 0.649 0.481 0.999
Image 94 6.83 11.17 11.56 6.98 37.23 0.620 0.540 0.685 0.476 0.999
Image 95 6.99 11.57 11.97 7.14 35.51 0.613 0.539 0.688 0.468 0.998
Image 96 6.39 9.69 10.45 6.38 39.15 0.644 0.531 0.672 0.494 0.998
Image 97 6.19 10.98 10.29 6.23 37.06 0.564 0.654 0.611 0.441 0.995
Image 98 7.01 11.30 12.13 7.12 35.58 0.594 0.541 0.668 0.446 0.998
Image 99 6.71 11.07 11.56 6.94 36.77 0.622 0.571 0.668 0.474 0.999
Image 100 5.37 8.29 7.97 5.45 37.08 0.557 0.537 0.542 0.460 0.994
Image 101 6.69 10.95 11.47 6.87 35.76 0.597 0.579 0.651 0.463 0.998
Image 102 6.77 10.67 11.54 6.96 36.06 0.592 0.542 0.648 0.463 0.998
Image 103 6.98 12.59 12.67 7.08 34.44 0.483 0.384 0.569 0.335 0.996
Image 104 6.86 7.93 11.50 6.91 35.06 0.649 0.582 0.687 0.519 0.998
Image 105 5.79 10.85 9.70 5.91 38.33 0.557 0.673 0.586 0.446 0.994
Image 106 6.92 10.65 11.34 7.06 36.97 0.587 0.534 0.663 0.448 0.998
Image 107 6.65 10.53 11.04 6.64 38.98 0.678 0.621 0.707 0.521 0.999
Image 108 6.85 11.01 11.64 6.97 35.39 0.616 0.522 0.685 0.467 0.998
Image 109 6.89 10.29 10.98 6.89 35.42 0.596 0.514 0.657 0.448 0.998
Image 110 7.03 9.26 12.54 7.26 34.55 0.514 0.453 0.590 0.376 0.997

Average 6.62 10.28 11.08 6.75 36.27 0.597 0.537 0.647 0.459 0.997

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.31 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 100% data availability and σn = σy.

A.3.8 Experiment 8: 90% Data Availability and σn = σy

Table A.32 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 110 images. Fig. A.32 shows the re-
construction results for a selection of images from the Kapıkule test set from all
methods for this experiment. PnP-CNN-SAR produce better reconstructions com-
pared to other methods.
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Table A.32 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 90% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.61 9.37 10.88 6.77 15.49 0.514 0.555 0.589 0.427 0.846
Image 2 6.28 9.82 9.94 6.51 15.49 0.508 0.447 0.584 0.421 0.854
Image 3 6.89 10.07 11.61 7.43 15.09 0.523 0.509 0.613 0.440 0.823
Image 4 6.71 9.55 10.32 7.06 15.48 0.531 0.470 0.614 0.441 0.851
Image 5 5.89 7.93 8.20 5.17 16.19 0.519 0.453 0.531 0.392 0.870
Image 6 6.89 11.16 11.62 7.19 16.07 0.474 0.446 0.583 0.385 0.839
Image 7 6.78 10.59 10.48 6.90 15.26 0.484 0.476 0.567 0.381 0.829
Image 8 6.69 9.74 9.70 6.87 15.22 0.510 0.449 0.576 0.397 0.838
Image 9 6.14 8.20 8.54 6.06 15.54 0.532 0.446 0.558 0.428 0.870
Image 10 6.01 9.56 9.79 6.12 15.51 0.506 0.474 0.563 0.406 0.865
Image 11 6.40 10.84 10.82 6.74 15.79 0.493 0.531 0.583 0.399 0.854
Image 12 5.83 7.85 7.18 5.66 15.66 0.570 0.498 0.548 0.464 0.897
Image 13 5.70 9.33 8.95 5.76 15.96 0.510 0.615 0.552 0.420 0.882
Image 14 6.98 11.12 11.13 7.33 14.65 0.492 0.456 0.580 0.394 0.800
Image 15 6.93 10.87 11.26 7.35 14.91 0.543 0.489 0.642 0.439 0.835
Image 16 5.00 8.15 6.51 4.68 16.47 0.457 0.477 0.433 0.377 0.900
Image 17 6.90 8.10 11.78 7.43 15.24 0.472 0.482 0.575 0.413 0.800
Image 18 6.93 10.77 11.44 7.44 15.01 0.526 0.460 0.632 0.433 0.834
Image 19 6.42 9.37 9.75 6.63 15.23 0.582 0.478 0.629 0.473 0.875
Image 20 6.45 9.00 8.90 6.52 15.78 0.518 0.484 0.573 0.415 0.858
Image 21 6.19 9.55 9.71 6.32 15.56 0.511 0.469 0.571 0.426 0.862
Image 22 5.81 9.20 9.18 5.88 15.82 0.506 0.447 0.547 0.410 0.888
Image 23 6.51 10.42 10.80 6.73 15.29 0.535 0.522 0.606 0.428 0.856
Image 24 6.77 10.89 10.60 7.14 15.41 0.542 0.501 0.637 0.446 0.853
Image 25 6.93 6.32 12.51 7.63 15.02 0.415 0.386 0.542 0.369 0.775
Image 26 6.47 9.93 10.08 6.69 15.24 0.550 0.517 0.617 0.449 0.864
Image 27 6.84 10.60 11.56 7.22 15.50 0.528 0.515 0.632 0.436 0.847
Image 28 6.91 10.85 11.72 7.25 15.28 0.481 0.504 0.588 0.388 0.813
Image 29 6.30 9.29 9.97 6.48 15.26 0.569 0.561 0.610 0.457 0.885
Image 30 6.70 10.37 10.86 6.95 15.07 0.512 0.538 0.594 0.420 0.840
Image 31 6.90 10.26 11.07 7.14 14.48 0.578 0.548 0.648 0.471 0.846
Image 32 6.66 6.50 10.90 7.01 15.03 0.543 0.530 0.607 0.466 0.848
Image 33 6.40 9.98 10.50 6.67 16.01 0.495 0.465 0.584 0.421 0.861
Image 34 5.75 9.96 8.95 5.74 15.91 0.500 0.650 0.535 0.409 0.888
Image 35 6.60 10.24 10.63 6.79 15.19 0.548 0.576 0.616 0.442 0.864
Image 36 6.23 10.07 9.93 6.50 16.31 0.497 0.464 0.581 0.408 0.873
Image 37 6.91 10.22 11.33 7.16 14.89 0.517 0.540 0.591 0.432 0.821
Image 38 6.74 9.40 11.47 7.20 15.33 0.466 0.454 0.559 0.397 0.814
Image 39 6.82 7.07 11.40 7.38 15.04 0.513 0.490 0.585 0.458 0.816
Image 40 6.60 8.68 9.93 6.60 14.93 0.509 0.364 0.560 0.403 0.849
Image 41 6.86 11.29 11.17 7.46 15.45 0.505 0.471 0.610 0.417 0.833
Image 42 6.94 10.46 11.18 7.27 15.04 0.514 0.542 0.586 0.431 0.825
Image 43 5.86 9.46 9.52 6.00 15.60 0.483 0.450 0.536 0.400 0.872
Image 44 6.74 10.11 10.83 6.98 14.91 0.571 0.509 0.658 0.465 0.859
Image 45 6.26 9.34 8.81 6.24 15.61 0.540 0.442 0.578 0.427 0.865
Image 46 5.58 6.81 6.74 5.07 16.40 0.544 0.480 0.505 0.435 0.898
Image 47 6.86 10.45 10.81 7.17 14.98 0.560 0.483 0.640 0.458 0.848
Image 48 6.37 9.30 9.79 6.47 15.14 0.548 0.530 0.601 0.446 0.872
Image 49 6.99 11.51 12.31 7.52 16.00 0.450 0.486 0.576 0.370 0.817
Image 50 5.67 9.42 8.87 5.74 16.16 0.494 0.503 0.537 0.405 0.878
Image 51 6.55 9.63 9.65 6.75 15.29 0.553 0.496 0.617 0.451 0.861
Image 52 6.60 11.01 11.00 7.05 16.05 0.476 0.534 0.577 0.392 0.838
Image 53 6.47 9.54 8.83 6.56 15.47 0.529 0.487 0.580 0.427 0.857
Image 54 6.42 10.64 10.58 6.78 15.77 0.474 0.456 0.569 0.382 0.840
Image 55 6.42 10.49 10.79 6.64 15.55 0.495 0.455 0.581 0.389 0.848
Image 56 6.73 9.06 10.61 7.06 15.17 0.537 0.458 0.616 0.438 0.852
Image 57 6.53 9.30 9.47 6.84 15.27 0.544 0.458 0.604 0.448 0.853
Image 58 6.19 10.08 10.03 6.49 15.86 0.505 0.580 0.572 0.415 0.867
Image 59 5.81 9.99 9.15 5.94 15.94 0.477 0.609 0.527 0.393 0.877
Image 60 6.79 10.35 10.65 7.09 14.90 0.525 0.482 0.614 0.428 0.829
Image 61 6.31 7.38 9.52 6.45 14.93 0.527 0.336 0.573 0.423 0.857
Image 62 6.65 10.16 11.10 7.06 14.96 0.524 0.459 0.599 0.425 0.838
Image 63 6.79 10.46 11.34 7.31 15.61 0.501 0.526 0.605 0.433 0.840
Image 64 6.69 9.64 10.15 6.93 15.35 0.528 0.460 0.598 0.430 0.849
Image 65 6.72 9.85 10.11 6.87 15.23 0.493 0.459 0.567 0.383 0.821
Image 66 6.39 9.60 8.97 6.46 15.63 0.521 0.484 0.565 0.411 0.864
Image 67 5.68 9.81 8.98 5.81 16.04 0.518 0.609 0.548 0.430 0.900
Image 68 6.91 10.17 11.09 7.21 14.53 0.559 0.478 0.643 0.455 0.838
Image 69 6.75 10.40 11.34 7.08 15.61 0.502 0.534 0.593 0.403 0.842
Image 70 6.86 8.88 11.44 7.25 15.27 0.494 0.458 0.586 0.415 0.824
Image 71 6.13 9.69 9.75 6.33 16.04 0.498 0.476 0.559 0.400 0.866
Image 72 6.66 8.79 9.55 6.72 14.93 0.482 0.450 0.540 0.390 0.828
Image 73 6.28 8.62 8.59 6.27 15.09 0.604 0.482 0.623 0.492 0.892
Image 74 6.78 11.06 11.40 7.27 15.47 0.485 0.503 0.586 0.390 0.825
Image 75 6.93 7.72 11.68 7.36 15.01 0.486 0.529 0.592 0.425 0.813
Image 76 6.80 10.57 10.68 7.18 15.24 0.537 0.491 0.625 0.439 0.849
Image 77 6.88 10.87 11.71 7.34 15.41 0.477 0.508 0.583 0.404 0.816
Image 78 6.60 9.86 10.04 6.84 15.21 0.577 0.501 0.634 0.476 0.872
Image 79 6.26 10.59 10.07 6.61 15.74 0.501 0.530 0.573 0.415 0.855
Image 80 6.62 9.77 10.32 6.83 15.04 0.554 0.420 0.607 0.436 0.851
Image 81 6.94 11.55 11.12 7.29 15.65 0.431 0.404 0.551 0.339 0.786
Image 82 5.72 8.10 7.24 5.43 15.91 0.521 0.477 0.520 0.413 0.890
Image 83 6.64 9.69 10.77 6.95 14.79 0.533 0.565 0.605 0.449 0.839
Image 84 6.15 9.67 9.69 6.28 15.56 0.509 0.527 0.583 0.416 0.865
Image 85 6.38 8.93 8.41 6.33 15.28 0.548 0.444 0.572 0.431 0.864
Image 86 5.97 7.78 7.85 5.72 15.64 0.564 0.450 0.561 0.447 0.894
Image 87 6.01 8.81 8.27 5.90 15.57 0.552 0.462 0.558 0.445 0.886
Image 88 6.92 10.89 11.56 7.28 15.35 0.495 0.514 0.597 0.405 0.830
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Table A.32 continued from previous page

SNR (dB) SSIM

Image 89 6.19 9.60 10.04 6.33 15.56 0.548 0.552 0.605 0.438 0.881
Image 90 6.77 10.32 11.28 7.33 15.04 0.518 0.552 0.613 0.439 0.827
Image 91 6.65 10.06 9.66 6.69 15.17 0.507 0.447 0.565 0.394 0.835
Image 92 6.85 10.92 11.01 7.21 15.38 0.517 0.483 0.623 0.420 0.837
Image 93 6.34 8.58 8.88 6.47 15.33 0.556 0.450 0.580 0.447 0.874
Image 94 6.69 9.42 10.67 7.01 15.40 0.541 0.443 0.617 0.439 0.855
Image 95 6.81 10.83 11.36 7.30 15.37 0.529 0.511 0.636 0.439 0.851
Image 96 6.16 8.13 9.36 6.24 15.73 0.558 0.426 0.592 0.448 0.892
Image 97 6.01 10.24 9.50 6.00 15.92 0.498 0.632 0.559 0.404 0.873
Image 98 6.89 11.01 11.72 7.43 15.42 0.501 0.523 0.615 0.407 0.829
Image 99 6.61 9.97 10.99 6.94 15.28 0.528 0.469 0.607 0.426 0.847
Image 100 5.05 7.22 6.10 4.91 16.42 0.504 0.461 0.454 0.422 0.903
Image 101 6.66 10.20 10.88 6.88 14.93 0.517 0.539 0.598 0.426 0.834
Image 102 6.58 10.68 10.89 6.95 15.42 0.509 0.561 0.589 0.419 0.849
Image 103 7.06 9.61 12.62 7.37 16.16 0.388 0.380 0.510 0.305 0.776
Image 104 6.69 7.37 10.90 6.90 14.84 0.564 0.526 0.622 0.475 0.850
Image 105 5.65 9.27 8.73 5.68 16.13 0.490 0.487 0.524 0.401 0.888
Image 106 6.72 9.85 10.18 7.00 15.14 0.513 0.494 0.596 0.421 0.837
Image 107 6.52 9.88 9.99 6.69 14.86 0.583 0.570 0.618 0.476 0.875
Image 108 6.77 10.41 10.96 7.10 15.13 0.539 0.491 0.628 0.439 0.849
Image 109 6.65 9.41 9.72 7.01 15.24 0.526 0.478 0.603 0.433 0.849
Image 110 7.06 10.08 12.41 7.53 15.86 0.410 0.413 0.531 0.340 0.789

Average 6.49 9.65 10.21 6.71 15.43 0.516 0.492 0.584 0.422 0.851

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.32 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 90% data availability and σn = σy.

A.3.9 Experiment 9: 80% Data Availability and σn = σy

Table A.33 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR and best SSIM for all 110 images. Fig. A.33 shows the re-
construction results for a selection of images from the Kapıkule test set from all
methods for this experiment. PnP-CNN-SAR produce better reconstructions com-
pared to other methods.
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Table A.33 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 80% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.50 9.56 10.22 6.93 12.93 0.459 0.515 0.512 0.409 0.727
Image 2 6.19 8.46 9.36 6.59 13.31 0.466 0.400 0.525 0.394 0.764
Image 3 6.85 8.11 11.03 7.69 12.74 0.475 0.432 0.552 0.433 0.703
Image 4 6.71 9.41 9.42 7.10 12.64 0.487 0.444 0.546 0.418 0.749
Image 5 5.66 6.32 7.17 5.47 9.11 0.489 0.295 0.459 0.387 0.681
Image 6 6.77 9.85 11.18 7.30 13.32 0.421 0.455 0.520 0.367 0.706
Image 7 6.63 9.25 9.65 6.99 12.84 0.441 0.419 0.506 0.366 0.735
Image 8 6.58 7.05 8.94 6.95 12.71 0.467 0.323 0.523 0.388 0.750
Image 9 5.92 7.14 7.66 6.08 12.99 0.493 0.379 0.490 0.401 0.782
Image 10 5.98 9.04 9.18 6.17 13.17 0.454 0.420 0.503 0.378 0.782
Image 11 6.42 10.02 10.33 6.72 12.97 0.446 0.481 0.519 0.362 0.710
Image 12 5.52 5.66 6.08 5.66 12.84 0.531 0.436 0.466 0.445 0.815
Image 13 5.64 8.64 8.26 5.82 13.37 0.469 0.443 0.491 0.398 0.797
Image 14 6.85 9.05 10.47 7.34 12.72 0.443 0.338 0.521 0.370 0.706
Image 15 6.85 9.65 10.52 7.64 13.03 0.489 0.422 0.589 0.430 0.748
Image 16 4.82 5.71 5.52 4.75 13.80 0.430 0.435 0.369 0.362 0.832
Image 17 6.80 9.50 11.33 7.66 13.26 0.419 0.493 0.511 0.400 0.690
Image 18 6.87 9.91 10.73 7.64 13.06 0.472 0.455 0.574 0.413 0.740
Image 19 6.36 8.75 8.85 6.71 12.88 0.530 0.433 0.556 0.449 0.792
Image 20 6.22 8.87 7.97 6.60 13.27 0.484 0.467 0.525 0.400 0.750
Image 21 6.02 9.65 9.13 6.41 13.17 0.476 0.575 0.513 0.403 0.779
Image 22 5.70 8.83 8.50 6.02 13.08 0.457 0.430 0.482 0.391 0.796
Image 23 6.51 9.85 10.16 6.85 13.09 0.481 0.476 0.527 0.406 0.750
Image 24 6.69 9.99 9.85 7.45 13.36 0.496 0.472 0.584 0.433 0.765
Image 25 6.92 11.47 12.09 7.76 12.75 0.369 0.403 0.476 0.348 0.625
Image 26 6.24 9.08 9.33 6.72 13.04 0.510 0.462 0.554 0.423 0.780
Image 27 6.76 10.30 10.94 7.52 13.28 0.479 0.409 0.563 0.424 0.741
Image 28 6.86 11.01 11.19 7.49 13.47 0.426 0.408 0.529 0.363 0.713
Image 29 6.22 9.34 9.31 6.48 12.71 0.507 0.520 0.536 0.428 0.793
Image 30 6.58 9.89 10.24 7.10 13.17 0.460 0.500 0.528 0.401 0.750
Image 31 6.76 9.13 10.37 7.34 12.52 0.523 0.364 0.570 0.443 0.756
Image 32 6.53 6.46 10.27 7.19 12.78 0.484 0.428 0.531 0.445 0.729
Image 33 6.29 9.09 9.87 6.77 13.26 0.448 0.431 0.518 0.397 0.749
Image 34 5.62 9.35 8.26 5.75 13.19 0.457 0.615 0.476 0.383 0.816
Image 35 6.44 9.71 9.99 6.80 12.99 0.491 0.519 0.541 0.413 0.761
Image 36 6.10 9.36 9.23 6.53 13.49 0.457 0.422 0.516 0.385 0.777
Image 37 6.77 7.12 10.76 7.51 12.86 0.463 0.444 0.516 0.421 0.702
Image 38 6.78 9.06 10.94 7.36 13.22 0.423 0.472 0.491 0.381 0.692
Image 39 6.85 9.01 10.82 7.57 12.87 0.453 0.488 0.516 0.438 0.699
Image 40 6.41 7.58 9.02 6.63 12.54 0.467 0.327 0.494 0.378 0.755
Image 41 6.81 10.82 10.58 7.51 13.56 0.464 0.450 0.552 0.392 0.735
Image 42 6.81 10.10 10.57 7.28 12.88 0.461 0.490 0.516 0.403 0.716
Image 43 5.74 9.19 8.90 5.93 13.22 0.441 0.574 0.477 0.372 0.791
Image 44 6.67 9.93 9.97 7.19 12.72 0.531 0.493 0.596 0.457 0.771
Image 45 6.03 5.82 7.79 6.40 13.15 0.501 0.256 0.506 0.422 0.770
Image 46 5.27 6.05 5.74 5.26 13.76 0.511 0.421 0.442 0.426 0.835
Image 47 6.84 8.63 10.04 7.41 12.88 0.510 0.368 0.576 0.436 0.758
Image 48 6.22 8.80 9.13 6.63 12.74 0.506 0.443 0.544 0.431 0.786
Image 49 6.88 7.72 11.80 7.73 13.61 0.398 0.439 0.517 0.353 0.693
Image 50 5.63 7.84 8.20 5.80 13.31 0.457 0.417 0.491 0.384 0.807
Image 51 6.39 8.93 8.87 6.90 12.96 0.510 0.455 0.548 0.432 0.778
Image 52 6.68 10.23 10.56 7.25 13.87 0.421 0.452 0.521 0.368 0.736
Image 53 6.24 8.00 7.85 6.67 12.97 0.488 0.425 0.527 0.416 0.769
Image 54 6.46 9.92 10.05 6.90 13.62 0.445 0.407 0.519 0.366 0.747
Image 55 6.24 10.13 10.22 6.66 13.27 0.442 0.427 0.512 0.359 0.739
Image 56 6.63 9.04 9.79 7.09 13.04 0.481 0.428 0.552 0.415 0.768
Image 57 6.40 8.43 8.47 6.80 12.77 0.502 0.414 0.536 0.420 0.765
Image 58 6.16 9.92 9.40 6.50 13.37 0.454 0.531 0.506 0.386 0.777
Image 59 5.67 8.45 8.62 5.92 13.33 0.436 0.542 0.473 0.367 0.788
Image 60 6.65 8.37 9.84 7.21 13.10 0.482 0.380 0.557 0.413 0.753
Image 61 6.24 8.05 8.58 6.45 11.92 0.488 0.387 0.507 0.396 0.731
Image 62 6.69 10.07 10.44 7.03 12.81 0.467 0.481 0.516 0.393 0.724
Image 63 6.77 9.80 10.77 7.56 13.47 0.460 0.490 0.547 0.418 0.733
Image 64 6.52 9.40 9.46 7.00 13.35 0.484 0.428 0.540 0.408 0.766
Image 65 6.56 6.45 9.21 6.88 9.90 0.450 0.338 0.507 0.370 0.543
Image 66 6.32 7.46 8.05 6.48 13.13 0.484 0.348 0.520 0.398 0.782
Image 67 5.59 8.24 8.30 5.83 13.22 0.477 0.378 0.479 0.400 0.822
Image 68 6.80 9.83 10.27 7.53 12.54 0.510 0.459 0.579 0.446 0.748
Image 69 6.66 10.14 10.77 7.24 13.46 0.451 0.439 0.531 0.381 0.734
Image 70 6.79 8.15 10.95 7.51 13.06 0.449 0.465 0.523 0.394 0.706
Image 71 6.02 9.14 9.18 6.39 13.56 0.445 0.420 0.505 0.383 0.780
Image 72 6.56 7.71 8.61 6.74 12.31 0.456 0.388 0.481 0.370 0.735
Image 73 6.09 7.32 7.55 6.32 13.02 0.562 0.423 0.552 0.473 0.825
Image 74 6.73 10.65 10.81 7.32 13.64 0.432 0.422 0.526 0.364 0.728
Image 75 6.84 8.27 11.11 7.61 13.15 0.447 0.507 0.531 0.409 0.703
Image 76 6.70 10.04 10.01 7.31 13.32 0.494 0.466 0.574 0.420 0.762
Image 77 6.88 10.01 11.15 7.51 13.31 0.429 0.426 0.513 0.377 0.703
Image 78 6.53 9.04 9.22 6.95 12.84 0.533 0.436 0.563 0.451 0.783
Image 79 6.20 9.88 9.49 6.57 13.11 0.458 0.500 0.503 0.386 0.749
Image 80 6.51 9.16 9.62 6.85 12.94 0.500 0.366 0.533 0.408 0.761
Image 81 6.84 10.84 10.40 7.40 13.85 0.390 0.392 0.507 0.318 0.693
Image 82 5.50 6.68 6.24 5.47 12.66 0.484 0.415 0.458 0.400 0.792
Image 83 6.61 9.05 9.96 7.11 12.81 0.490 0.529 0.531 0.432 0.739
Image 84 6.06 9.15 9.04 6.44 13.10 0.479 0.486 0.540 0.411 0.778
Image 85 6.17 7.36 7.44 6.31 12.73 0.507 0.373 0.503 0.407 0.751
Image 86 5.76 6.59 6.78 5.75 13.09 0.526 0.371 0.481 0.428 0.818
Image 87 5.92 7.83 7.31 5.97 13.24 0.504 0.396 0.485 0.419 0.819
Image 88 6.81 9.51 10.94 7.46 13.11 0.448 0.405 0.526 0.384 0.719

138



Table A.33 continued from previous page

SNR (dB) SSIM

Image 89 6.12 8.76 9.43 6.42 12.85 0.499 0.387 0.530 0.408 0.779
Image 90 6.83 9.61 10.60 7.56 12.98 0.472 0.514 0.557 0.428 0.726
Image 91 6.37 6.86 8.68 6.85 12.74 0.461 0.309 0.509 0.382 0.743
Image 92 6.73 10.04 10.22 7.49 13.41 0.469 0.449 0.565 0.407 0.751
Image 93 6.21 7.80 7.99 6.35 8.33 0.512 0.404 0.515 0.418 0.598
Image 94 6.65 8.49 9.95 7.20 13.27 0.490 0.328 0.555 0.416 0.768
Image 95 6.87 9.72 10.73 7.46 12.98 0.486 0.483 0.581 0.421 0.744
Image 96 6.08 8.17 8.69 6.27 13.24 0.504 0.389 0.523 0.418 0.804
Image 97 5.93 9.24 8.91 6.15 13.16 0.459 0.451 0.504 0.391 0.782
Image 98 6.96 9.36 11.36 7.70 13.18 0.454 0.476 0.561 0.390 0.718
Image 99 6.58 8.61 10.37 6.99 13.17 0.474 0.439 0.533 0.400 0.752
Image 100 4.89 6.51 5.11 4.78 13.97 0.473 0.414 0.386 0.398 0.845
Image 101 6.51 9.08 10.05 7.05 12.89 0.471 0.524 0.528 0.408 0.740
Image 102 6.56 9.55 10.26 7.06 12.97 0.458 0.419 0.526 0.398 0.739
Image 103 7.00 9.27 12.27 7.35 13.16 0.333 0.347 0.443 0.266 0.598
Image 104 6.62 6.62 10.13 7.13 12.66 0.499 0.471 0.535 0.455 0.740
Image 105 5.51 8.68 8.13 5.67 13.67 0.450 0.464 0.469 0.382 0.824
Image 106 6.66 9.55 9.32 7.14 13.26 0.484 0.463 0.541 0.409 0.753
Image 107 6.34 8.50 9.31 6.65 12.46 0.532 0.423 0.532 0.439 0.777
Image 108 6.68 9.98 10.22 7.24 13.01 0.497 0.457 0.572 0.420 0.760
Image 109 6.54 6.15 8.68 6.98 12.79 0.488 0.366 0.544 0.420 0.764
Image 110 7.04 8.50 12.16 7.69 13.37 0.366 0.402 0.475 0.320 0.631

Average 6.39 8.79 9.50 6.82 12.98 0.471 0.434 0.520 0.401 0.749

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.33 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 80% data availability and σn = σy.

A.3.10 Experiment 10: 70% Data Availability and σn = σy

Table A.34 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 107 images, and best SSIM for all 110 images. Fig. A.34 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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Table A.34 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 70% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.41 9.38 9.73 7.33 11.01 0.406 0.475 0.447 0.397 0.600
Image 2 6.12 8.81 8.76 6.76 11.09 0.422 0.389 0.466 0.373 0.656
Image 3 6.81 10.64 10.53 7.96 11.20 0.412 0.437 0.501 0.404 0.585
Image 4 6.54 7.83 8.80 7.38 10.90 0.451 0.365 0.504 0.405 0.656
Image 5 5.48 6.04 6.66 5.63 5.24 0.446 0.270 0.406 0.370 0.512
Image 6 6.77 10.11 10.59 7.85 11.48 0.376 0.357 0.460 0.355 0.586
Image 7 6.56 8.18 9.07 7.16 10.81 0.402 0.355 0.470 0.349 0.628
Image 8 6.44 7.77 8.37 7.01 10.91 0.437 0.332 0.478 0.373 0.652
Image 9 5.80 6.39 7.13 6.06 10.80 0.447 0.271 0.434 0.381 0.694
Image 10 5.80 8.64 8.71 6.14 10.95 0.422 0.376 0.452 0.355 0.695
Image 11 6.30 9.00 9.82 6.98 11.24 0.395 0.361 0.458 0.341 0.615
Image 12 5.36 5.50 5.52 5.46 10.31 0.494 0.362 0.412 0.421 0.747
Image 13 5.43 7.52 7.82 5.78 11.02 0.435 0.527 0.446 0.368 0.711
Image 14 6.76 8.23 9.73 7.77 10.80 0.402 0.324 0.470 0.370 0.593
Image 15 6.80 9.50 9.99 8.05 11.26 0.447 0.443 0.547 0.426 0.646
Image 16 4.53 5.53 5.08 4.46 10.60 0.405 0.363 0.336 0.340 0.773
Image 17 6.79 9.78 10.76 8.18 11.50 0.370 0.470 0.456 0.393 0.553
Image 18 6.81 10.17 10.13 8.11 11.19 0.435 0.424 0.526 0.405 0.627
Image 19 6.22 7.82 8.30 6.78 11.02 0.483 0.380 0.494 0.422 0.701
Image 20 6.20 7.25 7.29 6.65 10.99 0.442 0.417 0.473 0.395 0.672
Image 21 5.95 6.16 8.53 6.48 11.13 0.423 0.409 0.458 0.389 0.683
Image 22 5.66 8.18 7.99 5.92 10.87 0.420 0.369 0.435 0.360 0.708
Image 23 6.41 9.28 9.63 7.07 11.03 0.431 0.331 0.456 0.371 0.636
Image 24 6.52 9.81 9.26 7.63 11.34 0.447 0.466 0.540 0.421 0.659
Image 25 6.91 9.28 11.51 8.49 11.13 0.316 0.412 0.417 0.333 0.501
Image 26 6.29 8.98 8.74 6.96 11.04 0.457 0.512 0.500 0.411 0.693
Image 27 6.68 8.70 10.37 7.87 11.64 0.433 0.374 0.508 0.399 0.629
Image 28 6.79 9.48 10.61 8.05 11.53 0.385 0.372 0.470 0.356 0.582
Image 29 6.16 7.32 8.71 6.68 10.80 0.464 0.247 0.473 0.401 0.704
Image 30 6.46 7.31 9.59 7.36 11.21 0.416 0.368 0.465 0.383 0.637
Image 31 6.64 8.62 9.76 7.67 10.78 0.470 0.318 0.504 0.409 0.651
Image 32 6.53 7.25 9.64 7.43 10.95 0.437 0.440 0.459 0.414 0.616
Image 33 6.21 9.80 9.41 7.16 11.42 0.404 0.447 0.474 0.384 0.645
Image 34 5.52 8.27 7.79 5.87 10.88 0.415 0.431 0.425 0.371 0.733
Image 35 6.29 9.12 9.39 7.02 11.12 0.444 0.467 0.477 0.386 0.668
Image 36 6.02 8.68 8.71 6.79 11.15 0.417 0.400 0.471 0.376 0.673
Image 37 6.71 9.61 10.26 7.89 11.03 0.404 0.462 0.457 0.399 0.580
Image 38 6.63 9.53 10.47 7.59 11.23 0.379 0.437 0.441 0.363 0.563
Image 39 6.76 7.79 10.14 7.90 11.20 0.406 0.489 0.452 0.414 0.583
Image 40 6.33 7.53 8.40 6.73 10.36 0.426 0.296 0.452 0.359 0.651
Image 41 6.71 10.45 10.09 8.01 11.64 0.421 0.438 0.510 0.385 0.623
Image 42 6.68 9.25 9.95 7.75 10.87 0.408 0.459 0.450 0.383 0.586
Image 43 5.75 8.86 8.41 6.07 10.85 0.396 0.411 0.431 0.355 0.690
Image 44 6.58 9.56 9.46 7.29 10.81 0.485 0.478 0.558 0.438 0.677
Image 45 5.92 4.91 7.11 6.26 10.88 0.459 0.243 0.456 0.388 0.672
Image 46 5.01 5.67 5.18 5.04 10.88 0.476 0.384 0.390 0.400 0.761
Image 47 6.58 9.31 9.48 7.69 11.04 0.462 0.415 0.524 0.425 0.658
Image 48 6.06 8.19 8.60 6.54 10.88 0.461 0.403 0.498 0.401 0.701
Image 49 6.89 10.21 11.35 8.30 11.83 0.353 0.390 0.480 0.347 0.568
Image 50 5.53 8.08 7.76 5.68 10.83 0.426 0.500 0.449 0.365 0.725
Image 51 6.28 8.09 8.34 7.18 10.88 0.462 0.413 0.500 0.418 0.684
Image 52 6.55 10.38 9.99 7.68 11.77 0.378 0.453 0.472 0.353 0.614
Image 53 6.02 7.47 7.32 6.60 10.78 0.449 0.409 0.483 0.398 0.677
Image 54 6.32 9.49 9.57 7.34 11.72 0.392 0.381 0.473 0.364 0.636
Image 55 6.26 9.34 9.79 6.88 11.32 0.398 0.380 0.465 0.343 0.635
Image 56 6.50 8.23 9.33 7.36 10.85 0.438 0.394 0.506 0.398 0.652
Image 57 6.26 6.96 7.93 6.73 10.82 0.459 0.323 0.484 0.405 0.652
Image 58 6.18 8.56 8.98 6.75 11.26 0.413 0.407 0.466 0.371 0.672
Image 59 5.67 8.61 8.14 5.97 11.12 0.396 0.536 0.423 0.344 0.693
Image 60 6.62 8.61 9.29 7.62 11.24 0.430 0.369 0.502 0.400 0.652
Image 61 6.11 7.21 8.05 6.45 10.54 0.440 0.281 0.453 0.370 0.673
Image 62 6.55 9.35 9.78 7.38 10.93 0.410 0.352 0.443 0.370 0.598
Image 63 6.67 8.94 10.28 8.04 11.56 0.416 0.458 0.499 0.411 0.612
Image 64 6.42 8.80 8.80 7.32 11.35 0.435 0.398 0.486 0.397 0.658
Image 65 6.47 7.94 8.72 7.02 10.76 0.407 0.326 0.461 0.352 0.597
Image 66 6.00 7.62 7.34 6.39 10.81 0.450 0.398 0.464 0.391 0.701
Image 67 5.47 7.76 7.88 5.79 10.87 0.427 0.357 0.430 0.378 0.736
Image 68 6.70 8.89 9.73 7.79 10.69 0.457 0.412 0.530 0.421 0.642
Image 69 6.64 9.36 10.14 7.60 11.46 0.399 0.405 0.472 0.369 0.611
Image 70 6.73 9.84 10.33 8.07 11.29 0.389 0.444 0.456 0.387 0.580
Image 71 5.96 8.59 8.63 6.63 11.26 0.413 0.402 0.459 0.372 0.678
Image 72 6.38 6.76 7.95 6.72 10.38 0.416 0.304 0.429 0.356 0.638
Image 73 5.93 6.03 7.07 6.11 10.68 0.521 0.447 0.501 0.446 0.748
Image 74 6.72 4.46 10.17 7.90 11.64 0.386 0.298 0.468 0.351 0.595
Image 75 6.77 8.39 10.59 7.96 11.39 0.387 0.477 0.477 0.402 0.581
Image 76 6.67 8.22 9.35 7.56 11.11 0.451 0.394 0.524 0.409 0.647
Image 77 6.73 9.99 10.45 8.04 11.33 0.375 0.423 0.441 0.363 0.572
Image 78 6.34 4.41 8.63 7.01 10.74 0.482 0.274 0.501 0.421 0.681
Image 79 6.09 9.06 8.93 6.84 11.19 0.407 0.350 0.442 0.367 0.639
Image 80 6.49 8.85 9.04 7.26 10.95 0.439 0.335 0.473 0.397 0.652
Image 81 6.77 10.36 9.72 7.83 11.61 0.356 0.384 0.468 0.323 0.572
Image 82 5.30 5.69 5.69 5.31 10.34 0.458 0.332 0.416 0.382 0.722
Image 83 6.44 8.70 9.37 7.35 10.87 0.436 0.476 0.464 0.411 0.619
Image 84 6.01 9.01 8.51 6.48 10.80 0.438 0.471 0.500 0.403 0.691
Image 85 5.84 6.37 6.97 6.35 10.59 0.463 0.281 0.448 0.393 0.680
Image 86 5.48 5.72 6.30 5.79 10.57 0.483 0.255 0.426 0.410 0.740
Image 87 5.67 7.01 6.87 5.88 10.70 0.464 0.347 0.430 0.395 0.729
Image 88 6.73 9.13 10.34 7.93 11.30 0.391 0.367 0.467 0.361 0.586
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Table A.34 continued from previous page

SNR (dB) SSIM

Image 89 6.07 8.07 8.84 6.54 10.89 0.448 0.333 0.463 0.379 0.685
Image 90 6.72 8.65 10.03 7.87 11.30 0.422 0.444 0.501 0.415 0.625
Image 91 6.32 7.47 8.12 6.96 10.57 0.427 0.322 0.462 0.377 0.641
Image 92 6.66 9.25 9.79 7.85 11.27 0.426 0.400 0.524 0.404 0.641
Image 93 6.00 6.83 7.36 6.24 10.35 0.471 0.355 0.461 0.397 0.679
Image 94 6.50 8.02 9.45 7.44 11.13 0.444 0.315 0.501 0.400 0.658
Image 95 6.71 8.80 10.11 7.93 11.37 0.441 0.415 0.537 0.417 0.648
Image 96 6.00 8.03 8.11 6.34 10.95 0.456 0.368 0.452 0.393 0.712
Image 97 5.76 6.76 8.29 6.24 10.90 0.418 0.426 0.457 0.380 0.698
Image 98 6.84 10.41 10.67 8.28 11.62 0.406 0.391 0.498 0.378 0.614
Image 99 6.53 8.16 9.86 7.37 11.16 0.432 0.389 0.479 0.387 0.628
Image 100 4.67 5.53 4.66 4.55 10.54 0.436 0.363 0.341 0.372 0.783
Image 101 6.42 8.43 9.51 7.20 10.92 0.426 0.442 0.479 0.389 0.629
Image 102 6.47 8.75 9.64 7.36 11.20 0.423 0.479 0.465 0.388 0.632
Image 103 6.94 11.92 11.75 7.94 11.76 0.288 0.305 0.378 0.262 0.466
Image 104 6.52 8.99 9.59 7.40 10.74 0.446 0.486 0.469 0.433 0.627
Image 105 5.38 8.75 7.71 5.65 11.21 0.406 0.586 0.426 0.357 0.740
Image 106 6.49 9.11 8.66 7.23 10.98 0.434 0.446 0.497 0.390 0.643
Image 107 6.21 7.97 8.74 6.74 10.52 0.471 0.324 0.463 0.405 0.678
Image 108 6.64 8.96 9.59 7.50 11.26 0.453 0.388 0.525 0.409 0.664
Image 109 6.36 7.44 8.02 6.96 10.84 0.452 0.380 0.503 0.402 0.670
Image 110 6.98 7.60 11.70 8.38 11.77 0.313 0.315 0.420 0.313 0.503

Average 6.28 8.29 8.94 7.03 10.99 0.426 0.391 0.467 0.384 0.649

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.34 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 70% data availability and σn = σy.

A.3.11 Experiment 11: 50% Data Availability and σn = σy

Table A.35 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 95 images, and best SSIM for 108 images. Fig. A.35 shows
the reconstruction results for a selection of images from the Kapıkule test set from
all methods for this experiment. PnP-CNN-SAR produce better reconstructions
compared to other methods.
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Table A.35 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 50% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 6.07 7.88 8.30 7.87 9.00 0.285 0.344 0.326 0.344 0.471
Image 2 5.73 8.23 7.65 7.08 8.96 0.256 0.387 0.380 0.335 0.516
Image 3 6.30 4.38 8.80 8.69 9.11 0.241 0.391 0.404 0.391 0.452
Image 4 6.12 8.17 7.58 7.44 8.62 0.274 0.398 0.417 0.366 0.511
Image 5 5.00 5.83 5.80 5.32 8.15 0.335 0.256 0.326 0.320 0.610
Image 6 6.29 9.60 9.04 8.77 9.38 0.246 0.344 0.358 0.323 0.436
Image 7 6.01 8.14 7.81 7.39 8.73 0.250 0.325 0.392 0.326 0.499
Image 8 5.85 7.23 7.18 6.92 8.14 0.274 0.310 0.395 0.350 0.528
Image 9 5.33 4.68 6.14 6.02 8.11 0.324 0.216 0.339 0.334 0.543
Image 10 5.53 7.77 7.47 6.49 8.51 0.288 0.293 0.365 0.333 0.544
Image 11 6.00 8.92 8.46 7.82 9.45 0.253 0.326 0.365 0.320 0.492
Image 12 4.85 4.20 4.78 4.75 7.68 0.366 0.250 0.321 0.336 0.628
Image 13 5.21 6.19 6.80 5.97 8.41 0.300 0.363 0.359 0.326 0.589
Image 14 6.29 9.07 8.40 8.28 8.95 0.252 0.345 0.385 0.328 0.465
Image 15 6.23 9.29 8.65 8.63 9.07 0.241 0.439 0.471 0.406 0.515
Image 16 4.25 4.57 4.43 3.87 7.73 0.289 0.415 0.281 0.283 0.672
Image 17 6.42 8.71 8.98 9.14 9.39 0.234 0.414 0.348 0.375 0.408
Image 18 6.41 9.76 8.66 8.81 8.91 0.246 0.411 0.442 0.390 0.489
Image 19 5.79 6.83 7.13 6.85 8.43 0.324 0.284 0.398 0.365 0.544
Image 20 5.59 6.30 6.38 6.33 8.17 0.288 0.342 0.410 0.366 0.561
Image 21 5.61 8.37 7.47 6.71 8.99 0.278 0.435 0.378 0.352 0.549
Image 22 5.34 8.01 6.98 6.16 8.77 0.287 0.404 0.353 0.317 0.587
Image 23 6.03 8.25 8.31 7.72 9.10 0.304 0.277 0.343 0.317 0.485
Image 24 6.09 8.05 8.00 8.12 9.11 0.244 0.408 0.469 0.411 0.526
Image 25 6.54 9.55 9.89 9.89 9.62 0.178 0.376 0.326 0.335 0.351
Image 26 5.84 7.60 7.55 7.17 8.71 0.303 0.381 0.419 0.367 0.555
Image 27 6.27 5.08 8.88 8.63 9.34 0.253 0.381 0.420 0.375 0.483
Image 28 6.45 10.25 9.01 8.95 9.46 0.229 0.367 0.386 0.331 0.445
Image 29 5.77 6.98 7.50 7.01 8.60 0.319 0.214 0.356 0.342 0.541
Image 30 6.09 5.97 8.33 7.93 9.00 0.271 0.356 0.378 0.352 0.493
Image 31 6.27 7.73 8.33 8.23 8.79 0.297 0.306 0.391 0.353 0.497
Image 32 6.11 8.05 8.38 7.90 9.00 0.302 0.418 0.355 0.359 0.470
Image 33 5.88 8.39 8.01 7.58 8.95 0.240 0.413 0.375 0.349 0.484
Image 34 5.27 7.45 6.84 6.00 8.68 0.288 0.374 0.350 0.321 0.592
Image 35 6.01 8.36 8.15 7.59 9.03 0.310 0.342 0.369 0.336 0.517
Image 36 5.70 8.28 7.55 7.18 9.06 0.270 0.375 0.390 0.344 0.542
Image 37 6.27 8.21 8.64 8.59 8.96 0.264 0.397 0.340 0.358 0.418
Image 38 6.29 9.03 8.93 8.63 9.39 0.239 0.365 0.342 0.350 0.419
Image 39 6.31 5.67 8.81 8.68 9.09 0.260 0.418 0.354 0.400 0.431
Image 40 5.76 7.16 7.32 6.77 8.42 0.280 0.268 0.366 0.328 0.531
Image 41 6.29 9.27 8.61 8.74 9.35 0.231 0.421 0.439 0.379 0.496
Image 42 6.33 8.54 8.66 8.42 8.98 0.273 0.391 0.348 0.341 0.436
Image 43 5.45 8.39 7.33 6.41 8.97 0.272 0.392 0.356 0.319 0.563
Image 44 6.13 8.17 8.07 7.68 8.76 0.276 0.461 0.477 0.423 0.560
Image 45 5.37 6.25 6.32 6.02 8.30 0.319 0.270 0.369 0.343 0.571
Image 46 4.58 3.99 4.48 4.48 7.72 0.351 0.320 0.303 0.336 0.661
Image 47 6.12 8.88 8.11 7.97 8.87 0.288 0.400 0.434 0.378 0.528
Image 48 5.71 7.53 7.37 6.87 8.53 0.306 0.385 0.408 0.365 0.550
Image 49 6.49 10.47 9.77 9.65 9.63 0.200 0.405 0.406 0.348 0.431
Image 50 5.13 7.14 6.71 5.72 8.50 0.288 0.392 0.385 0.332 0.607
Image 51 5.87 7.28 7.12 7.06 8.28 0.303 0.376 0.411 0.377 0.526
Image 52 6.13 6.58 8.67 8.49 9.47 0.218 0.385 0.401 0.338 0.475
Image 53 5.49 6.87 6.35 6.26 8.44 0.287 0.378 0.406 0.364 0.568
Image 54 5.98 8.48 8.21 7.92 9.26 0.244 0.323 0.387 0.334 0.487
Image 55 5.88 8.61 8.48 7.53 9.34 0.270 0.385 0.368 0.308 0.500
Image 56 6.11 7.54 7.93 7.66 8.80 0.282 0.334 0.415 0.361 0.525
Image 57 5.78 6.84 6.94 6.85 8.78 0.298 0.305 0.403 0.373 0.539
Image 58 5.70 7.84 7.77 7.28 9.26 0.272 0.453 0.381 0.339 0.541
Image 59 5.27 8.27 7.10 6.19 8.72 0.254 0.392 0.342 0.304 0.558
Image 60 6.14 7.91 7.92 7.89 8.85 0.270 0.385 0.426 0.375 0.519
Image 61 5.56 6.60 7.03 6.41 8.24 0.293 0.248 0.364 0.315 0.540
Image 62 6.16 9.09 8.54 8.03 9.08 0.284 0.293 0.334 0.316 0.454
Image 63 6.30 8.29 8.79 8.79 9.32 0.244 0.432 0.410 0.398 0.475
Image 64 5.99 7.87 7.66 7.50 8.81 0.284 0.335 0.407 0.361 0.519
Image 65 5.92 7.40 7.43 7.38 8.86 0.250 0.308 0.381 0.332 0.492
Image 66 5.43 6.30 6.28 6.13 8.33 0.302 0.304 0.393 0.358 0.578
Image 67 5.18 7.50 6.78 5.97 8.62 0.308 0.344 0.332 0.326 0.606
Image 68 6.28 7.93 8.22 8.27 8.74 0.269 0.404 0.444 0.397 0.519
Image 69 6.25 9.76 8.74 8.33 9.35 0.265 0.368 0.385 0.332 0.472
Image 70 6.38 7.75 8.77 8.75 9.10 0.242 0.345 0.348 0.343 0.421
Image 71 5.64 8.25 7.60 6.87 9.12 0.253 0.386 0.387 0.332 0.552
Image 72 5.82 4.89 6.95 6.57 8.09 0.269 0.269 0.361 0.317 0.502
Image 73 5.39 5.44 6.07 5.70 7.89 0.339 0.284 0.409 0.382 0.607
Image 74 6.37 8.52 8.77 8.76 9.34 0.239 0.354 0.384 0.325 0.462
Image 75 6.39 8.33 8.95 8.88 9.17 0.231 0.425 0.387 0.398 0.442
Image 76 6.18 8.34 8.12 8.10 8.85 0.259 0.382 0.453 0.392 0.521
Image 77 6.49 7.42 9.03 8.90 9.13 0.250 0.356 0.347 0.330 0.410
Image 78 5.94 7.14 7.52 7.14 8.46 0.311 0.290 0.412 0.363 0.536
Image 79 5.73 7.82 7.70 7.20 8.98 0.262 0.319 0.349 0.306 0.494
Image 80 5.95 8.27 7.84 7.64 8.77 0.298 0.303 0.366 0.343 0.486
Image 81 6.29 9.54 8.28 8.32 9.09 0.193 0.372 0.408 0.328 0.449
Image 82 4.76 5.58 5.01 4.91 7.85 0.329 0.348 0.349 0.340 0.636
Image 83 6.06 8.81 8.19 7.72 8.70 0.277 0.403 0.381 0.381 0.485
Image 84 5.55 7.96 7.24 6.67 8.60 0.274 0.434 0.433 0.386 0.582
Image 85 5.39 6.02 6.03 5.92 7.96 0.306 0.314 0.362 0.339 0.545
Image 86 5.03 5.04 5.44 5.25 7.91 0.357 0.220 0.332 0.332 0.606
Image 87 5.20 5.59 5.99 5.57 8.26 0.331 0.282 0.338 0.332 0.583
Image 88 6.39 8.39 8.86 8.88 9.31 0.243 0.358 0.365 0.323 0.445
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Table A.35 continued from previous page

SNR (dB) SSIM

Image 89 5.75 7.29 7.69 6.97 8.89 0.322 0.331 0.362 0.323 0.550
Image 90 6.21 8.05 8.52 8.57 8.91 0.249 0.438 0.420 0.412 0.484
Image 91 5.89 7.11 6.97 6.74 8.30 0.272 0.311 0.383 0.343 0.522
Image 92 6.25 8.65 8.37 8.30 9.09 0.238 0.379 0.450 0.390 0.512
Image 93 5.42 5.91 6.39 6.03 7.90 0.323 0.251 0.370 0.339 0.550
Image 94 6.08 7.92 7.98 7.76 8.96 0.279 0.299 0.405 0.356 0.512
Image 95 6.30 9.45 8.70 8.63 9.10 0.240 0.426 0.462 0.399 0.522
Image 96 5.59 7.31 7.03 6.51 8.73 0.333 0.306 0.348 0.340 0.561
Image 97 5.44 7.97 7.27 6.37 8.95 0.265 0.473 0.387 0.351 0.578
Image 98 6.42 7.38 9.11 9.23 9.30 0.235 0.380 0.419 0.353 0.472
Image 99 6.15 5.05 8.42 8.02 9.12 0.289 0.341 0.366 0.334 0.490
Image 100 4.16 4.20 4.05 3.78 7.81 0.312 0.294 0.265 0.283 0.679
Image 101 5.99 7.94 8.20 7.74 8.93 0.266 0.391 0.385 0.355 0.499
Image 102 6.04 8.96 8.38 7.89 8.94 0.268 0.377 0.384 0.362 0.480
Image 103 6.58 9.45 10.02 9.52 10.04 0.175 0.268 0.288 0.242 0.303
Image 104 6.09 6.91 8.14 7.82 8.75 0.309 0.393 0.344 0.374 0.479
Image 105 5.16 7.69 6.69 5.85 8.55 0.289 0.440 0.347 0.318 0.609
Image 106 5.95 7.40 7.52 7.46 8.70 0.262 0.355 0.427 0.370 0.532
Image 107 5.92 7.77 7.53 7.20 8.55 0.339 0.296 0.345 0.348 0.524
Image 108 6.19 8.97 8.23 7.99 9.13 0.262 0.417 0.449 0.389 0.535
Image 109 5.78 6.37 7.00 6.93 8.57 0.281 0.344 0.435 0.382 0.561
Image 110 6.58 10.05 9.92 9.83 9.93 0.184 0.335 0.332 0.290 0.351

Average 5.86 7.59 7.70 7.39 8.81 0.275 0.355 0.380 0.348 0.516

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.35 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 50% data availability and σn = σy.

A.3.12 Experiment 12: 30% Data Availability and σn = σy

Table A.36 shows the SNR and SSIM values for this experiment. PnP-CNN-SAR
gives the best SNR for 13 images, and best SSIM for 59 images. Fig. A.36 shows the
reconstruction results for a selection of images from the Kapıkule test set from all
methods for this experiment. None of the methods are able to produce acceptable
reconstructions for most of the images.
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Table A.36 SNR and SSIM values for images from the KapıkuleTest Set for the case
of 30% data availability and σn = σy. Best results are shown in bold, second best
results are shown in red.

SNR (dB) SSIM

FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR FFT-based NQR-based DL-based PnP-BM3D PnP-CNN-SAR

Image 1 5.07 4.89 6.33 7.61 6.56 0.197 0.304 0.231 0.293 0.279
Image 2 4.90 7.34 5.87 6.94 5.87 0.170 0.363 0.306 0.292 0.302
Image 3 5.30 8.80 6.70 8.77 7.08 0.147 0.397 0.317 0.385 0.336
Image 4 5.03 6.91 5.91 7.19 6.52 0.167 0.338 0.350 0.348 0.375
Image 5 4.25 5.00 4.61 4.92 5.41 0.234 0.207 0.243 0.254 0.369
Image 6 5.39 9.44 6.73 8.46 7.12 0.161 0.323 0.270 0.303 0.273
Image 7 5.10 7.82 5.97 7.11 6.50 0.160 0.312 0.319 0.324 0.349
Image 8 4.89 6.67 5.52 6.72 6.26 0.188 0.288 0.324 0.333 0.366
Image 9 4.55 5.50 4.93 5.57 6.00 0.224 0.217 0.253 0.264 0.356
Image 10 4.73 7.46 5.70 6.51 6.25 0.201 0.306 0.289 0.276 0.313
Image 11 5.11 5.61 6.32 7.76 7.19 0.174 0.278 0.281 0.268 0.309
Image 12 4.12 4.37 3.95 4.41 4.94 0.250 0.276 0.244 0.270 0.375
Image 13 4.52 7.12 5.28 5.81 5.70 0.209 0.390 0.289 0.264 0.319
Image 14 5.21 8.26 6.42 7.80 6.99 0.159 0.279 0.305 0.301 0.315
Image 15 5.33 9.17 6.44 8.43 6.82 0.142 0.423 0.388 0.399 0.409
Image 16 3.63 4.00 3.64 3.67 4.37 0.199 0.261 0.236 0.222 0.437
Image 17 5.32 6.83 6.80 8.79 7.24 0.144 0.338 0.273 0.377 0.268
Image 18 5.26 8.86 6.62 8.46 6.87 0.150 0.365 0.369 0.376 0.379
Image 19 4.85 7.07 5.57 6.58 6.33 0.218 0.329 0.305 0.307 0.350
Image 20 4.58 6.18 5.00 5.80 5.85 0.191 0.369 0.334 0.339 0.390
Image 21 4.86 7.83 5.69 6.60 6.77 0.195 0.368 0.295 0.310 0.356
Image 22 4.58 6.91 5.43 6.07 6.31 0.202 0.306 0.276 0.260 0.369
Image 23 5.04 8.39 6.39 7.47 6.88 0.200 0.248 0.236 0.240 0.296
Image 24 5.25 8.45 6.09 7.77 6.70 0.153 0.427 0.391 0.404 0.412
Image 25 5.50 7.41 7.21 9.76 7.30 0.108 0.359 0.254 0.364 0.232
Image 26 5.01 7.54 5.86 6.93 6.45 0.202 0.372 0.332 0.335 0.375
Image 27 5.22 2.35 6.71 8.48 7.13 0.160 0.179 0.339 0.355 0.337
Image 28 5.32 7.11 6.69 8.73 7.34 0.146 0.331 0.302 0.325 0.306
Image 29 4.92 7.15 5.80 6.71 6.41 0.234 0.277 0.258 0.248 0.326
Image 30 5.09 6.69 6.31 7.68 6.97 0.189 0.324 0.287 0.308 0.316
Image 31 5.23 8.20 6.35 7.82 6.99 0.196 0.294 0.294 0.282 0.341
Image 32 5.08 2.09 6.30 7.84 6.87 0.188 0.303 0.253 0.320 0.302
Image 33 4.93 4.91 6.15 7.56 6.53 0.163 0.339 0.306 0.329 0.298
Image 34 4.42 6.80 5.37 5.86 4.51 0.198 0.307 0.283 0.263 0.314
Image 35 5.14 7.81 6.10 7.43 6.93 0.219 0.295 0.259 0.275 0.319
Image 36 4.84 6.98 5.79 7.03 6.34 0.186 0.348 0.308 0.312 0.335
Image 37 5.29 4.81 6.51 8.40 7.08 0.165 0.339 0.244 0.333 0.282
Image 38 5.28 3.92 6.55 8.41 7.29 0.165 0.176 0.254 0.330 0.279
Image 39 5.28 7.75 6.55 8.45 7.23 0.173 0.404 0.263 0.380 0.280
Image 40 4.83 5.55 5.63 6.46 6.14 0.196 0.223 0.276 0.281 0.337
Image 41 5.35 8.18 6.38 8.44 7.13 0.131 0.356 0.362 0.374 0.380
Image 42 5.26 6.92 6.44 8.02 7.00 0.173 0.316 0.249 0.297 0.282
Image 43 4.72 5.59 5.74 6.36 5.61 0.182 0.320 0.288 0.270 0.307
Image 44 5.04 7.48 6.05 7.57 6.47 0.173 0.430 0.394 0.400 0.430
Image 45 4.59 5.97 4.92 5.55 5.61 0.216 0.260 0.283 0.275 0.361
Image 46 3.76 3.83 3.58 4.01 4.64 0.248 0.220 0.233 0.265 0.373
Image 47 5.19 8.15 6.06 7.71 6.87 0.174 0.380 0.344 0.349 0.376
Image 48 4.88 7.17 5.63 6.53 6.49 0.207 0.352 0.316 0.305 0.388
Image 49 5.45 11.04 7.13 9.45 7.51 0.119 0.390 0.337 0.372 0.329
Image 50 4.56 6.86 5.20 5.77 5.60 0.199 0.368 0.318 0.299 0.341
Image 51 4.88 6.68 5.64 6.74 6.14 0.195 0.368 0.330 0.335 0.361
Image 52 5.21 9.27 6.58 8.26 7.65 0.140 0.377 0.331 0.326 0.369
Image 53 4.57 5.70 5.00 5.78 5.61 0.197 0.337 0.325 0.336 0.372
Image 54 5.06 8.32 6.20 7.68 7.15 0.166 0.309 0.315 0.310 0.345
Image 55 5.07 8.46 6.51 7.49 6.91 0.183 0.259 0.284 0.268 0.307
Image 56 5.18 7.49 6.04 7.42 6.65 0.184 0.314 0.328 0.336 0.365
Image 57 4.95 6.31 5.37 6.49 6.55 0.202 0.286 0.315 0.315 0.378
Image 58 4.88 8.14 6.00 7.01 6.74 0.181 0.374 0.299 0.290 0.341
Image 59 4.62 7.00 5.60 6.23 3.98 0.170 0.335 0.278 0.252 0.267
Image 60 5.21 7.95 6.14 7.57 6.76 0.170 0.348 0.350 0.345 0.376
Image 61 4.56 6.67 5.45 6.18 5.89 0.211 0.283 0.278 0.280 0.351
Image 62 5.14 6.52 6.40 7.83 6.98 0.185 0.257 0.229 0.253 0.291
Image 63 5.25 7.36 6.70 8.40 7.19 0.156 0.401 0.335 0.386 0.330
Image 64 5.04 7.63 5.85 7.08 6.97 0.178 0.358 0.324 0.324 0.375
Image 65 4.91 7.50 5.69 6.85 6.56 0.170 0.339 0.308 0.314 0.346
Image 66 4.69 5.05 4.93 5.91 5.85 0.199 0.257 0.311 0.334 0.386
Image 67 4.48 7.18 5.32 5.90 5.14 0.218 0.323 0.250 0.246 0.279
Image 68 5.11 7.94 6.38 7.96 6.50 0.164 0.374 0.363 0.367 0.398
Image 69 5.19 6.06 6.50 8.10 7.07 0.174 0.299 0.294 0.315 0.308
Image 70 5.30 9.18 6.60 8.57 7.10 0.153 0.339 0.261 0.320 0.272
Image 71 4.74 7.61 5.73 6.75 6.73 0.177 0.336 0.311 0.298 0.364
Image 72 4.90 6.57 5.31 6.25 6.09 0.177 0.276 0.284 0.300 0.344
Image 73 4.64 5.38 4.77 5.30 5.55 0.243 0.281 0.321 0.307 0.407
Image 74 5.21 9.38 6.61 8.30 7.70 0.151 0.331 0.308 0.310 0.331
Image 75 5.31 0.97 6.73 8.67 7.25 0.142 0.336 0.313 0.403 0.325
Image 76 5.21 8.50 6.16 7.85 6.80 0.159 0.408 0.373 0.377 0.391
Image 77 5.37 9.13 6.81 8.73 7.13 0.143 0.333 0.263 0.320 0.267
Image 78 4.93 7.18 5.74 6.95 6.54 0.207 0.336 0.309 0.310 0.357
Image 79 4.81 7.95 5.98 7.10 6.29 0.171 0.332 0.275 0.262 0.280
Image 80 4.98 7.81 6.03 7.26 6.82 0.195 0.283 0.273 0.264 0.312
Image 81 5.38 7.46 6.31 7.89 6.76 0.119 0.356 0.355 0.356 0.334
Image 82 4.01 5.12 3.97 4.49 5.30 0.218 0.323 0.270 0.276 0.423
Image 83 5.07 7.42 6.26 7.51 6.69 0.179 0.378 0.287 0.347 0.324
Image 84 4.75 7.39 5.68 6.55 6.38 0.178 0.410 0.366 0.361 0.401
Image 85 4.49 4.16 4.70 5.45 5.75 0.212 0.215 0.276 0.279 0.349
Image 86 4.21 5.23 4.26 4.85 5.33 0.247 0.269 0.233 0.251 0.363
Image 87 4.32 5.16 4.72 5.33 5.64 0.228 0.193 0.252 0.258 0.346
Image 88 5.41 6.23 6.64 8.48 7.20 0.161 0.286 0.280 0.289 0.288
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Table A.36 continued from previous page

SNR (dB) SSIM

Image 89 4.92 6.55 5.90 6.85 6.42 0.224 0.287 0.262 0.262 0.310
Image 90 5.31 8.27 6.41 8.30 6.97 0.160 0.429 0.344 0.403 0.347
Image 91 4.89 6.44 5.44 6.38 6.18 0.189 0.279 0.309 0.307 0.360
Image 92 5.21 8.28 6.32 8.08 7.06 0.157 0.375 0.385 0.386 0.382
Image 93 4.52 6.19 5.01 5.66 5.76 0.226 0.307 0.283 0.288 0.363
Image 94 5.13 8.03 6.15 7.49 6.86 0.195 0.336 0.317 0.308 0.353
Image 95 5.28 6.83 6.52 8.35 6.89 0.149 0.409 0.380 0.384 0.404
Image 96 4.75 5.31 5.52 6.28 6.34 0.229 0.298 0.249 0.254 0.332
Image 97 4.70 7.15 5.59 6.32 6.09 0.175 0.420 0.316 0.309 0.364
Image 98 5.45 5.31 6.86 8.93 7.38 0.144 0.342 0.341 0.341 0.345
Image 99 5.12 4.93 6.39 7.96 7.01 0.188 0.286 0.275 0.296 0.309
Image 100 3.54 3.51 3.36 3.54 3.82 0.210 0.317 0.205 0.215 0.345
Image 101 5.06 7.45 6.26 7.61 6.92 0.182 0.353 0.305 0.335 0.333
Image 102 5.13 8.04 6.30 7.76 7.12 0.172 0.366 0.295 0.332 0.321
Image 103 5.52 8.87 7.27 9.13 7.45 0.102 0.223 0.201 0.231 0.193
Image 104 5.11 6.08 6.19 7.63 6.78 0.202 0.349 0.245 0.320 0.292
Image 105 4.48 6.84 5.27 5.75 5.31 0.200 0.327 0.276 0.261 0.301
Image 106 4.98 6.72 5.82 7.08 6.76 0.171 0.367 0.348 0.359 0.388
Image 107 4.96 7.23 5.80 6.84 6.54 0.230 0.250 0.235 0.250 0.314
Image 108 5.20 8.72 6.40 7.87 6.78 0.166 0.402 0.378 0.373 0.396
Image 109 4.77 5.00 5.32 6.59 6.24 0.185 0.314 0.353 0.361 0.404
Image 110 5.49 7.94 7.16 9.59 7.54 0.108 0.324 0.254 0.322 0.240

Average 4.94 6.84 5.89 7.14 6.48 0.182 0.323 0.298 0.312 0.339

(a) FFT-based (b) NQR-based (c) DL-based

(d) PnP-BM3D (e) PnP-CNN-SAR (f) Ground Truth

Figure A.36 Reconstruction results for Images 19, 40, 45, 46, 59, 61, 66, 96, and 109
from the Kapıkule test set for the case of 30% data availability and σn = σy.
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