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ABSTRACT

ENTROPIC UNCERTAINTIES IN QUANTUM MEASUREMENTS

BİLAL CANTÜRK

PHYSICS Ph.D. DISSERTATION, DECEMBER 2021

Dissertation Supervisor: Prof. Mehmet Zafer Gedik

Keywords: Quantum measurement, Uncertainty principle, Entropic uncertainties,
Time reversal, Information energy

We have studied entropic uncertainty relation for two types of quantum measure-
ments in quantum information theory. One of them is the projective measurements
that are constructed from the mutually unbiased bases and the other one is the
symmetric informationally complete positive operator-valued measure. We present
an optimal upper bound of entropic uncertainty relation for these two types of mea-
surements. We have obtained a criterion for the extendibility of mutually unbiased
bases in terms of Shannon entropy by means of the optimal upper bound of en-
tropic uncertainty relation. We study time reversal operation for the latter type of
measurement. We reveal that the notions of time reversal in quantum mechanics
and in quantum operation formalism are not compatible with each other. We pro-
pose a harmonization of the notions, according to which symmetric informationally
complete positive operator-valued measure is time reversal invariant. We also study
on the algebraic relation between the two measurements; we provide an algebraic
relation by which an analytical search of the existence of mutually unbiased bases
could be studied in six-dimensional Hilbert space. Finally, a physical ground of the
use of information energy in quantum information theory has been provided with
recourse to Stokes parameters.

iv



ÖZET

KUANTUM ÖLÇÜMLERİNDE ENTROPİSEL BELİRSİZLİKLER

BİLAL CANTÜRK

FİZİK DOKTORA TEZİ, ARALIK 2021

Tez Danışmanı: Prof. Dr. Mehmet Zafer Gedik

Anahtar Kelimeler: Kuantum Ölçümü, Belirsizlik ilkesi, Entropisel belirsizlikler,
Zaman tersinirliği, Enformasyon enerjisi

Bu tez kapsamında, iki tür kuantum ölçümü olan karşılıklı adil tabanlardan oluş-
turulan izdüşümsel ölçümler ve simetrik tam enformasyonlu pozitif operatör değerli
ölçümler için entropisel belirsizlikler çalışılmıştır. Bu iki tür ölçüm için entropisel
belirsizliğin en küçük üst sınırı elde edilmiş; bu üst sınır kullanılarak karşılıklı adil
tabanların sayısının genişletilebilirliği için Shannon entropisi cinsinden bir ölçüt or-
taya koyulmuştur. Buna ek olarak, simetrik tam enformasyonlu pozitif operatör
değerli ölçümler üzerinden kuantum mekaniğindeki ve kuantum enformasyon teori-
sindeki zaman tersinirliği kavramı çalışılmış; kavramın bu iki alandaki kullanımının
uyumlu olmadığı tespit edilmiştir. Bunun sonucu olarak, zaman tersinirliğinin bu iki
alandaki kullanımını örtüştüren bir öneri sunulmuştur. Bu öneriye göre, adı geçen
ölçümün, zaman tersinirliği altında değişmez olduğu gösterilmiştir. Ayrıca, söz ko-
nusu iki ölçüm türü arasındaki cebirsel ilişkiler çalışılmış; çalışmalar sonucunda, altı
boyutlu Hilbert uzayında karşılıklı adil tabanların varlığını analitik olarak çalışılma-
sını sağlayacak cebirsel bir ilişki bulunmuştur. Son olarak, enformasyon enerjisinin
kuantum enformasyon teorisindeki kullanımına, Stokes parametreleri vasıtasıyla fi-
ziksel bir içerik sağlanmıştır.
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1. INTRODUCTION

Heisenberg uncertainty principle is considered as one of the cornerstones of quantum
mechanics. At the beginning, It was proposed by Heisenberg as the physical content
of the commutation relation between position and momentum variables. Position
X and momentum P are considered two observables whose commutation relation
is [X,P ] = ih̄I, that is, position and momentum do not commute, similar to two
matrices not commuting. In matrix formalism, two non-commutative matrices do
not have common eigenvectors. Heisenberg interpreted this fact physically as the
impossibility of the simultaneous determination of the observables. For Heisenberg,
determining a physical observable means to have, at least in principle, an experimen-
tal setup by which we can perform the measurement of the observable. Therefore,
for Heisenberg, it is impossible to set up an experiment by which measurements of
non-commutative observable is performed with a desired accuracy. Heisenberg him-
self expressed uncertainty principle for position and momentum in terms of their
deviation as ∆(X)∆(P ) ∼ h, where h is the Planck constant (Heisenberg, 1927).
Later, Robertson formulated it mathematically for any two observables A and B

as ∆(A)∆(B) ≥ 1
2 | ⟨ψ|[A,B]|ψ⟩| for the quantum state |ψ⟩ of the system of inquiry

(Robertson, 1929). In the course of time, the conceptual and mathematical critics
of these formulation gave rise to many formulations of uncertainty (Deutsch, 1983;
Ozawa, 2003; Bush et al., 2013). One of these formulations is entropic uncertainty
relation. To express it formally, we try to formulate the incompatibility of two ob-
servables A and B by means of an entropy function H. In other words, we seek for
an inequality H(A)+H(B) ≥ C > 0 (Deutsch, 1983). The lower bound C becomes
zero if the observables are compatible, that is, if they do commute.

Entropic uncertainty relation has gained a central position in quantum informa-
tion theory due to their useful role in many issues such as detecting entanglement
(Spengler et al., 2012; Wang & Zheng, 2021) and quantum cryptography (Mafu
et al., 2013). On the other hand, determining an unknown quantum state so-called
quantum state tomography is one of the fundamental tasks in quantum information
theory. The quantification, storage, and communication of information require using
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resources such as devices, energy and limited time. Therefore, when determining the
quantum state, we always need to use the resources minimally and wish to determine
the quantity under quest as best as possible in the sense that the statistical error in
the determination must be minimum. In line with this task, there are two important
measurement types in quantum information theory. First one is a set of d+1 projec-
tive measurements that are constructed from a set of d+1 Mutually Unbiased Bases
(MUBs) (Wootters & Fields, 1989) in d-dimensional Hilbert space. The operators
corresponding to MUBs are the generalization of complementary observables such
as position and momentum in every possible dimension. For example, the eigen-
bases of Pauli operators are such bases in 2-dimensional Hilbert space. The other
type of measurement is the Symmetric Informationally Complete Positive Operator-
Valued Measure (SIC-POVM) in d-dimensional Hilbert space, which consists of d2

measurement elements.

The existence of d+ 1 MUBs is known if the dimension d is a power of a prime
number, while for a composite dimension such as six, their existence is still an open
problem. We also know by construction that there are at least 3 MUBs in every
dimension. Therefore, as the first step to the proof of the existence of (d+1) MUBs,
the existence of fourth MUB is a challenge. On the other hand, the existence of SIC-
POVMs in every dimension was conjectured by Zauner (Zauner, 2011); however,
despite many solutions in many dimensions as high as 844, their existence in every
dimension has not been proven yet (Appleby & Bengtsson, 2019).

These two types of quantum measurements are important not only because of their
use for quantum state tomography but also for their many applications such as in
quantum cryptography (Spengler et al., 2012; Renes, 2005), quantum key distribu-
tion (Cerf et al., 2002; Bouchard et al., 2018), quantum channels and foundations
of quantum theory (Durt et al., 2010; Fuchs et al., 2017).

In the context of this thesis, we have studied entropic uncertainty relations for MUBs
and SIC-POVMs based on Shannon, Rényi and Tsallis entropies.

In Chapter 2, we have first summarized the notion of quantum operation followed
by a presentation of MUBs and SIC-POVMs with some examples. Subsequently, we
have furnished an outlook of aforementioned entropies that are common in literature
together with the requirements that are propounded for the accessibility of any
proposed entropy.

In Chapter 3, we have first presented deviation-based uncertainty relations and
a critics of them based on some concrete examples. Afterwards, in Section 3.2,
we have explored entropic uncertainty relations for continuous observables such as
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position and momentum, and for the observables in finite dimensions such as Pauli
observables.

The rest of the thesis is an exploration of our work on several subjects that we
studied. In the first place, we studied optimal upper bound of entropic uncertainty
relations for MUBs and SIC-POVMs in terms of Shannon entropy. Accordingly,
Section 3.3 is based on our work (Canturk & Gedik, 2021), in which we have found
an optimal upper bound of entropic uncertainty relation for MUBs and SIC-POVMs.
It enables us to provide a criterion for the existence of MUBs. As the second
subject we studied, Section 3.4 consists of our work on time reversal operation in
quantum operation formalism in the context of SIC-POVM. We revealed that the
notions of time reversal in quantum mechanics and in quantum operation formalism
are not compatible with each other. We have proposed a harmonization of them.
Thirdly, we studied algebraic relation between MUBs and SIC-POVMs; we found
an algebraic relation between them by means of which it is possible to search the
existence of MUBs analytically. We explored our results in Section 3.5. Using
information energy as the measure of the information content of a quantum system
was firstly proposed by Brukner and Zeilinger (Brukner & Zeilinger, 1999). However,
the physical motivation for the use of information energy given by Brukner and
Zeilinger is not satisfactory. Regarding to this problem, in Section 3.6, we studied
information energy, and provided a physical motivation for the use of it in quantum
information theory with recourse to Stokes parameters. Finally, in Conclusion, we
have summarized our results and their possible consequences.

We have used the word "relations" instead of "principle" when expressing entropic
uncertainties for two reasons. First of all, the word "principle" for us deserves a rather
indisputable character for its content and meaning. However, there has not been
any agreement on the content and meaning of "uncertainty principle" since it was
proposed firstly by Heisenberg. Due to this situation, many alternative expressions
of "uncertainty principle" were proposed in the course of time (Schrödinger, 1930;
Ozawa, 2003; Bush et al., 2013). Indeed, if it was a principle that was immune
to any debate about its content and expression, all of these attempts would not
be proposed as the best candidate for the expression of the uncertainty principle.
Secondly, not only one but many entropies are used for expressing uncertainty; that
is why we have used the word "relation" in the plural form throughout the thesis.
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2. QUANTUM MEASUREMENTS AND ENTROPY

In this chapter, we shall give a concise outline of the quantum measurement and
entropy that are two fundamental concepts underpinning the content of the thesis.
In the following section, we first present the quantum measurement concept in the
context of quantum information theory and then, MUBs and SIC-POVMs. After-
wards, we present the concept of entropy from its origin to its current status and
usage. Our goal is not to dive into a discussion of these two concepts, but rather to
draw a clear frame of them, which is going to be helpful to follow the thesis.

2.1 Quantum measurements

In quantum mechanics, we observe physical quantities that are represented math-
ematically by hermitian matrices. Hermitian matrices are also called hermitian
operators in quantum mechanics and quantum information theory. Every physical
quantity that can be observed is called observable in general. Therefore, we shall
use the terms "operators" and "observables" interchangeably throughout the the-
sis. Observation means measuring physical quantities on an ensemble of the system
under consideration. If the state of the system is ρ and the hermitian operators cor-
responding to the physical quantity to be measured is A, the expectation value of
the physical quantity, after performing many measurements on the elements of the
ensemble, is expressed as the trace of the multiplication of A and ρ: ⟨A⟩ = tr(Aρ).
A hermitian operator A in d-dimensional Hilbert space has spectral decomposition
A = ∑

k ai |ai⟩⟨ai| such that {ai}di=1 is the set of eigenvalues of A with the set of
corresponding projection operators {Πi = |ai⟩⟨ai|}di=1. A single measurement on an
element of the ensemble results in an outcome, which is one of the eigenvalues of A,
say ai, with probability pi = p(ai) = tr(Πiρ), which is known as the Born rule for
probabilities. Therefore, putting aside the measured physical quantities, an imme-
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diate implication of this examination is that the measurement phenomenon can be
represented by a set of projections {Πi}ni=1. From the relation ∑i pi = 1 =∑

i tr(Πiρ)
for all ρ, it has to be that ∑iΠi = Id. This is a necessary condition for every measure-
ment that is known as the completeness condition of measurement. A measurement
of projections is called projective measurement, which is also known as von Neumann
measurement. The following properties uniquely define a projective measurement
{Πi}ni=1:

i. They are hermitian, that is, they are self-adjoint: Π†
i = Πi.

ii. They are positive operators: Πi ≥ 0 for all i.

iii. They are orthonormal: ΠiΠj = Πiδij

The first two properties have physical meaning. Projectors are hermitian with real
eigenvalues since they represent physical, or say observable, quantities. They are
positive because their expectation values are probabilities, which have to be non-
negative. However, the third property does not have a convincing physical inter-
pretation if the realistic conditions of performing a measurement are taken into
account.

Projective measurements are ideal in the sense that any measurement device detects
the quantum state of the system under observation perfectly and projects it ideally
to the eigenspace of the eigenvalues correspondingly. To express formally, if the prior
quantum state is ρ and the projective measurement M = {Πi}ni=1 is to be performed,
the posterior quantum state in turn is set to be ρ 7→ ρ′ = ΠiρΠi

tr(ΠiρΠi) perfectly and with
certainty, where the numerator ensures the normalization of the new quantum state.
However, to be realistic and consider the measurement phenomenon in general, every
measurement is not a projective measurement. For example, consider a double-slit
experiment with photons. If the experimenter aims to detect which slit a photon
passes through, they simply try to detect the photon such that the observed photon is
absorbed by the detector, and after that, it is meaningless to talk about the posterior
quantum state of the photon. In the case of such measurements, the posterior
quantum state is irrelevant but the outcomes and the probabilities of their occurrence
are the issue at stake. To formalize this fact, one assumes in general a set of positive
operators {Fi}mi=1 with probability expression of the corresponding outcomes as
pi = tr(Fiρ) provided that the quantum state of the considered system is ρ. Fi’s do
not have to satisfy the third property of projective measurements. This is the general
form of measurement, which is called Positive Operator-Valued Measure (POVM).
Secondly, one could not claim that, after measurement, the posterior quantum state
changes to ρ 7→ ρ′ = ΠiρΠi

tr(Πiρ) perfectly and with certainty if the measurement device
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would not be perfectly efficient because of some structural defect. In other words,
an imperfect device sometimes does not detect events even if the events indeed have
been occurred.

The physical world is noisy and many side effects intertwine with our measurements,
which together imply that our conclusions contain uncertainties. To give an exam-
ple, let us assume that we have an imperfect photo-detector detecting an incoming
photon with probability q. Our photo-detector have, in this scenario, limited photon
number resolution. Additionally, we note that the photo-detector might click even
if there is no photon. If the number of incoming photons are m in total, the proba-
bility p(n | m) to detect n of the photons depends certainly on the photo-detector,
which can be estimated as p(n | m) =

(
m
n

)
qn(1 − q)m−n. If pm is the probability

provided that the incoming light has m photons, the overall probability to detect
n photons is equal to p(n) = ∑∞

m=n p(n | m)pm = ∑∞
m=n

(
m
n

)
qn(1 − q)m−npm. Now,

if we wish to write the detection probabilities in the form tr(Πnρ), where ρ is to
be the quantum state of the incoming light, and Πn is the measurement operator
(or element) corresponding to n photon detection, then the measurement elements
{Πn = ∑∞

m=n
(
m
n

)
qn(1 − q)m−n |m⟩⟨m|}∞

n=0 do the job plausibly, which in contrast
to projective measurements are not orthogonal projectors and rank-1 in general. In
addition, they are complete, that is, they sum to the identity matrix.

A source of noise also leads to a non-projective measurement. For instance, let us
assume that we have a device for determining whether a qubit is in the state |0⟩ or
the state |1⟩ such that it detects the state wrongly with probability q due to the noise.
If there were no noise, the device would act ideally and the measurement elements
would be Π0 = |0⟩⟨0| and Π1 = |1⟩⟨1| respectively. Accordingly, if the prior quantum
state is |0⟩, the device detects it correctly with probability 1−q and as if it is |1⟩ with
probability q. For a quantum state ρ, the probabilities for each of two measurement
outcomes are p(0) = (1−q)tr(Π0ρ)+q tr(Π1ρ) and p(1) = (1−q)tr(Π1ρ)+q tr(Πiρ),
from which one can express the measurement elements as π0 = (1− q)Π0 + qΠ1 and
π1 = qΠ0 + (1 − q)Π1 respectively so that p(0) = tr(π0ρ) and p(1) = tr(π1ρ). As
can be seen easily, these measurement elements do not satisfy the third property of
projective measurements, i.e., π0π1 = q(1−q)I. This is another example of POVMs.

We conclude that every projective measurement is a POVM but the converse is not
true, as was just clarified by the given examples. We also note that any POVM
{Fi}N≥d

i=1 in a Hilbert space of d-dimension can be realized as a projective measure-
ment in an extended N -dimensional Hilbert space (Barnett, 2009, pp. 92-97).

Given two Hilbert spaces Hd1 and Hd2 of d1 and d2 dimensions, we take L(Hd1 ,Hd2)
as the set of all linear transformations of the form A : Hd1 → Hd2 throughout the
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thesis. If d1 = d2 = d, we simply write L(Hd) instead of L(Hd,Hd). The set of all
quantum states, D(Hd), on Hilbert space Hd is a subset of L(Hd), and is a convex
set. This implies that quantum theory can be regarded purely as a statistical theory
from a mathematical perspective. Furthermore, a useful fact is that the space of
linear operators L(Hd) on d-dimensional Hilbert space Hd can be spanned by a
set of quantum states. An immediate implication of this fact is that every linear
transformation having the form T : L(Hd) → C can be characterized uniquely by its
action on the elements of a basis of quantum states. For example, trace operation
is such a linear transformation. A general quantum state ρ in a d-dimensional
Hilbert space consists of d2 real parameters if the normalization condition is ignored.
This fact enables one to write a basis of d2 elements for the set of all quantum
states, which is also a basis for the vector space of hermitian operators on the real
numbers. For any two Hilbert spaces Hd1 and Hd2 and for each choice of symbols
i ∈ Γ = {1,2, . . . ,d1} and j ∈ Λ = {1,2, . . . ,d2}, the operator Ei,j ∈ L(Hd1 ,Hd2) is
defined as Ei,j = |i⟩⟨j|, where |i⟩ = (0,0, . . . ,1,0, . . . ,0) is the standard basis vector
having number 1 in the ith position for its entries. The collection {Ei,j : i∈ Γ, j ∈ Λ}
forms a basis for L(Hd1 ,Hd2), which is known as the standard basis. A basis for the
set of hermitian operators, Herm(Hd) ⊂ L(Hd), then can be constructed from a set
of quantum states, which are to be expressed in terms of the elements of standard
basis as

(2.1) σij =



|i⟩⟨i| if i= j

1
2(|i⟩+ |j⟩)(⟨i|+ ⟨j|) if i < j

1
2(|i⟩+i |j⟩)(⟨i|− i⟨j|) if i > j.

Any quantum state can be expressed as a linear combination of such a basis on
real numbers R, that is, a quantum state ρ is written as ρ = ∑

i,j λijσij with all
λij being real numbers. The coefficients λij are strictly connected with the prob-
abilities, pij = tr(σijρ), if σij ’s can be regarded as measurement elements of some
measurement. This fact inspires us the following question: Can a quantum state be
reconstructed by performing a measurement of some basis or a set of measurements
that are known as informationally complete measurements? We will see later that
symmetrical informationally complete positive operator-valued measure and a set
of d+ 1 projective measurements that are constructed from a set of d+ 1 mutually
unbiased bases are two types of such measurement.

In the scope of quantum information theory, the measurement phenomenon is just
a special case of quantum operations. Let us present some useful definitions as a
preliminary for stating the formal definition of a quantum operation. We consider
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a linear map Φ : L(Hd1) → L(Hd2). The map Φ is positive if it transforms every
positive semi-definite operator to another positive semi-definite operator. To express
it formally, let us assume that Pos(Hd) = {P ∈ L(Hd) : P ≥ 0} be the set of all
positive semi-definite operators, then Φ is a positive map if Φ(P ) ∈ Pos(Hd2) for all
P ∈ Pos(Hd1). The map Φ is completely positive if the tensor product Φ ⊗ IL(Hm)
is also positive, where IL(Hm) is the identity transformation on L(Hm). The map
Φ is trace-preserving if tr(Φ(A)) = tr(A) for all A ∈ L(Hd1). A quantum operation
then is a linear map Φ : L(Hd1) → L(Hd2) satisfying the following properties:

i. Φ is completely positive.

ii. Φ is trace-preserving.

If d1 ̸= d2, the system that undergoes the quantum operation changes to another
system whose Hilbert space is different in general. For example, let Hd1 and Hd2 be
two Hilbert spaces, and σ ∈ L(Hd2) be a fixed quantum state, and let us consider
the map Φ : L(Hd1) → L(Hd2) that is defined as Φ(X) = tr(X)σ for all X ∈ Hd1 .
Accordingly, Φ is a quantum operation which is called replacement channel: It
effectively discards its inputs and replace them with the fixed quantum state σ. If
we take σ equal to identity matrix I, Φ becomes completely depolarizing channel:
It takes every quantum state into a completely mixed state in L(Hd2). In this
example, we lose information about the initial state. In the cases d1 ̸= d2, we either
lose information or combine some information in general.

Complete positivity guarantees the positivity of the resultant quantum state be-
cause, for instance, the transpose operation that is positive could yield a state which
is not positive if the initial quantum state of the system would be entangled with
the state of the environment (Nielsen & Chuang, 2010, p. 369). Any quantum op-
eration Φ : L(Hd1) → L(Hd2) can be expressed in terms of a collection of operators
{Ak ∈ L(Hd1 ,Hd2)}mk=1 as Φ(X) =∑m

k=1AkXA
†
k, which is known as Kraus represen-

tation and Ak’s are called Kraus operators (Watrous, 2018, pp. 77-91). Due to the
trace-preserving condition of quantum operations, it holds that ∑m

k=1A
†
kAk = Id1 ,

where Id1 is the identity matrix of the Hilbert space Hd1 . The set {Fk =A†
kAk}mk=1

can be considered as a POVM. It is possible to give a physical interpretation to
Kraus representation: the action of the quantum operation on the quantum state
ρ is equivalent to randomly applying the transformation ρ 7→ ρk = AkρA

†
k

tr
(
AkρA

†
k

) with

probability p(k) = tr
(
AkρA

†
k

)
. In accordance with this interpretation, we have

(2.2) ρ 7→ Φ(ρ) =
m∑
k=1

p(k)ρk =
m∑
k=1

AkρA
†
k.
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Quantum operation formalism is fundamentally the generalization of any physically
accessible operation, including time evolution of quantum systems and the measure-
ment procedure. Quantum operation formalism given above describes the evolution
of the system of inquiry without having to explicitly know the properties of the
external agent interacting with the system; all that we need to know is encapsulated
into the operators Ak’s, which act on the system of inquiry alone. The most advan-
tageous feature of quantum operation formalism is that it enables us to handle open
quantum systems. Any external effect on the principle system can be regarded as
a part of the closed composite system, which includes the principle system and the
effect. We generally refer to the effects as the environment. Accordingly, the dynam-
ics of the composite system can be expressed by a unitary operation. Let us assume
that the composite system at the beginning has the quantum state ρse such that the
letters s and e refer to the principle system and the environment respectively. Then,
the dynamics, including any interaction occurring between the principle system and
environment, can be determined by a suitable unitary evolution U after which the
environment is discarded by taking partial trace over it:

(2.3) ρsei 7→
(
Uρsei U

†
)

7→ tre
(
Uρsei U

†
)

= Φ(ρsi ) =
m∑
k=1

Akρ
s
iA

†
k = ρsf ,

where ρsei is the initial state of the composite system, ρsf the final state of the prin-
ciple system, and {Ak = (I⊗⟨k|)Uρsei U †(|k⟩⊗ I)}mk=1 are the Kraus operators. The
approach to the dynamics of the principle system by invoking the composite system
and a suitable unitary evolution as given above is called natural representation. If
the principle system has a Hilbert space of d dimension, it is possible to model the
environment as residing in a Hilbert space of no more than d2 dimension even if the
environment has infinite degrees of freedom.

To give an example for composite system approach, let us assume that the unitary
operation on the composite system of a single qubit system and a single qubit
environment be U = |0⟩⟨0|⊗ I+ |1⟩⟨1|⊗X, where X is the usual Pauli matrix, and
let the initial state of the composite system be a product state as ρsei = ρ⊗ |0⟩⟨0|.
The unitary evolution then yields

ρ⊗|0⟩⟨0| 7→ U(ρ⊗|0⟩⟨0|)U † = P0ρP0 ⊗|0⟩⟨0|+P1ρP0 ⊗X |0⟩⟨0|

+P0ρP1 ⊗|0⟩⟨0|X+P1ρP1 ⊗X |0⟩⟨0|X,
(2.4)

where P0 = |0⟩⟨0| and P1 = |1⟩⟨1|. Taking the partial trace over the environment
gives the quantum operation on the system

(2.5) tre(U(ρ⊗|0⟩⟨0|)U †) = P0ρP0 +P1ρP1 = Φ(ρ),
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in which case the Kraus operators are A1 = P0 and A2 = P1. This is the quantum
operation formalism of controlled-NOT gate. As an alternative approach, especially
when a continuous-time evolution of the effects in differential equation form comes to
the word, Lindblad master equation is often used, which has the form for a quantum
state ρ

(2.6) dρ

dt
= − i

h̄
[H,ρ]+

∑
j

(
2LjρLj −{L†

jLj ,ρ}
)
,

where the form {x,y} is equal to anti-commutator xy+ yx, H is the hamiltonian
of the system own, and Lj ’s are the Lindblad operators representing the interaction
between the system and its environment. Lindblad master equation takes on the
above form in order that the evolution is completely positive and trace-preserving. It
is also assumed generally that the initial state of the composite system is a product
state in this formalism. Furthermore, in order to derive Lindblad master equation
for a process, one usually starts with the hamiltonian of the composite system from
which one obtains Lindblad operators by employing Born and Markov approxima-
tions (Moy et al., 1999). Every Lindblad master equation can be put into Kraus
representation.

We examine measurement phenomenon as a quantum operation in the sphere of
quantum information theory. Given the unitary operation U of a composite system,
we are able to write the Kraus representation for the dynamics of the principle sys-
tem by having the expression Ak = I⊗⟨k|

(
UρseU †

)
I⊗|k⟩ for the Kraus operators.

One can extend this result a step further by including the possibility that a joint
measurement is performed on the composite system after the unitary evolution U ,
allowing an information gain about the quantum state of the principle system. We
recall that information gain about an observable in quantum information theory
is possible by a measurement of the observable on the system of inquiry. It turns
out that the aforementioned extension gives rise to a non-trace-preserving quantum
operation (Nielsen & Chuang, 2010, p. 363). Let us suppose that, at the begin-
ning, the composite system has the separated state ρsei = ρsi ⊗σei . After the unitary
interaction U , we perform a projective joint measurement M = {Πm}nm=1 on the
composite system whose outcomes gives us information by which we determine the
final state of the principle system. The final quantum state ρsef of the composite
system is given by

(2.7) ρsi ⊗σei 7→ U(ρsi ⊗σei )U † 7→ ΠmU(ρsi ⊗σei )U †Πm

tr
(
ΠmU(ρsi ⊗σei )U †Πm

) = ρsef
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provided that the outcome m has been disclosed while performing the measurement.
The final quantum state of the principle system is then obtained by simply discarding
the environment from the final state of the composite system

(2.8) ρsef 7→ tre(ρsef ) =
tre
(
ΠmU(ρsi ⊗σei )U †Πm

)
tr
(
ΠmU(ρsi ⊗σei )U †Πm

) = ρsf .

By defining a quantum operation Φm(ρsi ) = tre
(
ΠmU(ρsi ⊗σei )U †Πm

)
, the final state

of the principle system can be described as ρsf = Φm(ρs
i )

tr(Φm(ρs
i )) . Let σei = ∑

j λj |j⟩⟨j|

be the spectral decomposition of σei and {|ek⟩}lk=1 be an orthonormal basis for the
environment. We have then

Φm(ρsi ) =
∑
j,k

λjI⊗⟨ek|
(
ΠmU(ρsi ⊗|j⟩⟨j|)U †Πm

)
I⊗|ek⟩

=
∑
j,k

Akjρ
s
iA

†
kj ,

(2.9)

where Akj =
√
λj ⟨ek|ΠmU |j⟩. Equation (2.9) is the generalization of quantum op-

eration formalism to non-trace-preserving operations. Indeed, the Φm(·) in equation
(2.9) is not trace-preserving, which arises from taking into account the measurement
phenomenon.

One of the fundamental problems of the quantum operations from the perspective
of their realization is understanding how they can be specified in laboratory, i.e., in
the physical world. In reality, we do experiments and perform some measurements
whose outcomes are just numbers, not operators. Any quantum operation can be
characterized physically by means of performing some experiment, which is a pro-
cedure that is known as quantum process tomography. Determining an unknown
quantum state so-called quantum state tomography (QST) is a part of quantum pro-
cess tomography. The number of the copies of the unknown quantum state is a sort
of resource. If only one copy of an unknown quantum state ρ is given, it is impossible
to determine the state with certainty due to the fact that two non-orthogonal quan-
tum states cannot be distinguished by any measurement procedure with certainty.
Therefore, in order to characterize ρ, we need an ensemble of the copies of ρ. In this
case, many copies of ρ are prepared in an experiment and they are subjected to some
measurements. But, how many copies do we need? Our desire is to keep the number
of copies as fewest as possible. For example, let us assume that ρ is the quantum
state of a qubit system. The set {I/√

2,X/
√

2,Y/
√

2,Z/
√

2} forms an orthonormal basis
for the state space of qubits with respect to Hilbert-Schmidt inner product so that
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ρ may be expressed as

(2.10) ρ= tr(ρ)
2 I+ tr(Xρ)

2 X+ tr(Y ρ)
2 Y + tr(Zρ)

2 Z.

Recalling that tr(Xρ) is the expectation value of the operator X, the above ex-
pression tells us that one can reconstruct the unknown quantum state ρ of a qubit
system if one performs the measurement of the basis elements, or in general an
informationally complete measurement, on its ensemble. Since quantum opera-
tions are linear, it is enough to characterize their effect on a basis. Let us assume
that Φ : L(Hd) → L(Hd) be the quantum operation under consideration such that
Φ(X) = ∑

kAkXA
†
k. We choose a basis {El}d

2
l=1 for L(Hd) by which one can write

Ak =∑
l tklEl. Eventually,

(2.11) Φ(X) =
∑
k,l,p

tklt
⋆
kpElXE

†
p =

∑
l,p

γlpElXE
†
p,

where the numbers γlp =∑
k tklt

⋆
kp forms a positive semi-definite matrix. Therefore,

if we are able to determine the numbers γlp by means of an experiment, we will be
determining the Kraus operators of the quantum operation Φ(·). We enlist the main
rules of the procedure of how to determine a quantum operation as follows:

1.1 Choose a set of vectors {|ψi⟩}d
2
i=1 whose projections {|ψi⟩⟨ψi|}d

2
i=1 forms a basis

for the Hilbert space of d-dimension. A basic choice is the standard basis
{Eij = |i⟩⟨j|} for the Hilbert space of d-dimension.

1.2 For each |ψi⟩, prepare the principle system in that state and subject it to the
quantum operation Φ, which is to be characterized. Assuming the standard
basis again, one needs only to prepare the principle system in the states |i⟩, |j⟩,
|xij⟩ = 1√

2(|i⟩ + |j⟩) and |yij⟩ = 1√
2(|i⟩ + i |j⟩). These are quantum states that

can be physically constructible in the laboratory. The effect of the quantum
operation on the elements |i⟩⟨j| can be expressed in terms of its effect on
these quantum states: Φ(|i⟩⟨j|) = Φ(|xij⟩⟨xij |)+iΦ(|yij⟩⟨yij |)− 1+i

2 Φ(|i⟩⟨i|)−
1+i
2 Φ(|j⟩⟨j|).

1.3 After the quantum operation on the basis element |ψi⟩ completes, apply a QST
in order to determine the resultant quantum state: Φ(|ψi⟩⟨ψi|) =∑m

k=1 sikρk,
where ρk’s are the measurement elements for QST. In this step, the numbers
sik are specified by the measurement for QST. In addition, choosing the type
of measurement {ρk}mk=1 in principle depends on the experimenter’s choice.
Repeat step 1.3 for every |ψi⟩ and for the fixed informationally complete mea-
surement {ρk}mk=1 for QST.
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We schematize the above rules in Figure 2.1.

Figure 2.1 Schematic picture of quantum process tomography for a quantum oper-
ation Φ(·). After operating the quantum operation Φ(·) on the basis elements |ψi⟩,
the resultant quantum state Φ(|ψi⟩⟨ψi|) is subjected to a quantum state tomogra-
phy (QST) by means of an informationally complete measurement {ρk}mk=1. After
all, the quantum operation Φ(·) has been characterized by its effect on the basis
elements.

Having known Φ(|ψi⟩⟨ψi|), one can write

(2.12) Φ(|ψi⟩⟨ψi|) =
∑
k

λik |ψk⟩⟨ψk| ,

where we can write λik = tr(|ψk⟩⟨ψk|Φ(|ψi⟩⟨ψi|)) for simplicity without loss of gen-
erality. To proceed, we have the opportunity

(2.13) El |ψi⟩⟨ψi|E†
p =

∑
k

βlpik |ψk⟩⟨ψk|

with βlpik = tr
(
|ψk⟩⟨ψk|El |ψi⟩⟨ψi|E†

p

)
since {|ψi⟩⟨ψi|}d

2
i=1 is a basis. Using equation

(2.13) in equation (2.11) and makes it equal to equation (2.13), we obtain finally
the main result

(2.14)
∑
k,l,p

γlpβ
lp
ik |ψk⟩⟨ψk| =

∑
k

λik |ψk⟩⟨ψk|

from which we achieve the equation ∑l,pβ
lp
ikγlp = λik. From this equality we can form

the matrix Γ = (γlp). Γ can be diagonalized by some unitary matrix U such that
UΓU † =R= (riδij) which leads to γlp =∑

k,jU
⋆
klrkδkjUjp =∑

k tklt
⋆
kp. In conclusion,

we obtain tkl = √
rkUlk, and so thus, Ak = √

rk
∑
jUjkEj .

In the context of this thesis, we study two types of measurement in regard to entropic
uncertainties. One of them is a set of projective measurements that are constructed
from MUBs corresponding to a set of some specific observables. The other type of
measurement is symmetric, informationally complete, positive operator-valued mea-
sure (SIC-POVM). In contrast to the projective measurements based on MUBs, a
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SIC-POVM in a d-dimensional Hilbert space is an informationally complete measure-
ment whose elements are d2 projective operators up to a multiplication. Therefore,
it is not a set of measurements but just one measurement.

2.1.1 Mutually unbiased bases

The importance of MUBs appears on the stage if the issue is related to QST. One
of the fundamental tasks in the quantum information theory is how to extract the
complete information of the quantum state of a system. To this aim, an informa-
tionally complete set of measurement elements with rank-1 is performed so that it
is a maximally efficient measurement. Mutually Unbiased Bases (MUBs) (Wootters
& Fields, 1989) provide such a measurement. In addition to their importance in the
theoretical view (Durt et al., 2010), they have found room in diverse application
areas such as quantum error correction (Calderbank et al., 1997), quantum cryp-
tography (Mafu et al., 2013), entanglement detection (Spengler et al., 2012; Wang
& Zheng, 2021), quantum key distribution (Cerf et al., 2002) and quantum state
tomography (Ivanovic, 1981; Wootters & Fields, 1989).

Ivanovic (Ivanovic, 1981) first examined the importance of MUBs for QST. A general
quantum state in d-dimensional Hilbert space has d2 −1 real parameters. Assuming
that we perform a projective measurement in the space, we can specify d real param-
eters by means of the probabilities of the applied projective measurement. One of the
probabilities can be determined in terms of the others because of the completeness
relation, that is, the summation of the probabilities is equal to 1. Therefore, d−1 pa-
rameter can be determined by a projective measurement. Eventually, we need d+1
projective measurements to determine a quantum state in general that is deduced
from counting the required projective measurements: d2−1

d−1 = (d+1)(d−1)
d−1 = d+1.

One can construct a projective measurement from a basis. For example, let us
assume that {|ei⟩}di=1 be an orthonormal basis for d-dimensional Hilbert space.
Then, {Pi = |ei⟩⟨ei|}di=1 forms a projective measurement. MUBs are orthonormal
bases. Therefore, one can construct projective measurements from MUBs. For
this reason, we say that MUBs represent projective measurements. The quest of
the existence of d+ 1 MUBs enforces itself to us naturally. We call a set of d+ 1
MUBs as an informationally complete set of MUBs since a set of d+ 1 projective
measurements constructing from MUBs forms a set that is informationally com-
plete. Labeling the bases in a set of MUBs with the integer n and the basis el-
ement with the integer k, we can write an informationally complete set of MUBs
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as {|nk⟩ ,n = 0,1, . . . ,d,k = 0,1, . . . ,d− 1} such that one reads |nk⟩ as the kth basis
element of the nth basis. As was mentioned above the eigenvectors of Pauli ma-
trices are MUBs and since they are 2 + 1 = 3, so do they form an informationally
complete set of MUBs. In this case, we write {|nk⟩ ,n = x,y,z;k = 0,1} so that
|x0⟩ = |x0⟩ , |y1⟩ = |y1⟩ and so on in equation (2.23). We are to construct projective
measurements from MUBs trivially as {Πnk = |nk⟩⟨nk|}d,d−1

n,k=0,0 such that they satisfy
the completeness condition of a measurement: ∑d−1

k=0 Πnk = I for all n. Therefore, we
revise the basic relation between the basis elements of a pair of MUBs in equation
(2.20) in favor of the respective projection operators as

(2.15) tr(ΠnkΠml) = 1+(dδkl−1)δnm
d

.

Having these informationally complete set of MUBs and defining the probabilities
pnk = tr(Πnkρ), the quantum state ρ in d-dimensional Hilbert space is reconstructed
as

(2.16) ρ=
d,d−1∑
n,k=0,0

pnkΠnk − I.

From now on, whenever we mention the measurements of MUBs, we actually means
the projective measurements that are constructed from MUBs. This is just a con-
vention to economize writing.

As we noted above, the importance of an informationally complete set of MUBs
arises when we performs a QST. In that case, we of course wish to choose an in-
formationally complete measurement which minimizes our statistical errors in the
sense that one estimates the probabilities as precisely as it is possible with the op-
timal usage of resources. We wish to give an example for this point to concrete the
privilege status of MUBs over the other sets of d+1 projective measurements.

Let us assume that we are to ascertain the unknown quantum state of a qubit
system by means of performing a set of measurements on the ensemble of N copies
of the quantum state. Since we have a finite number N of the copies, we are surely
not going to estimate the probabilities precisely. We seek for 3 measurements that
minimizes our statistical error while fixing the number of the copies. The quantum
state of a qubit system is expressed as ρ= 1

2(I+r ·σ) such that r = (r1, r2, r3) ∈ R3

with |r| ≤ 1 is the Bloch vector and σ = (σx,σy,σz) is the vector representation of
Pauli matrices. We perform the measurement of some operators having the form
A= a ·σ (Durt et al., 2010) since any operator on 2-dimensional Hilbert space can be
written as a linear combination of Pauli operators and the identity, which we ignore
without lost of generality. It is enough to measure three operators like A whose Bloch
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vectors a do not rely on the same plane. Each measurement restricts the Bloch vector
to a specific plane and the intersection of the planes characterizes a with certainty.
However, the absent of precisely defining the probabilities precludes us to restrict the
Bloch vector to a plane but rather to, as it were, a plane having some thickness. All
measurements together thus leave the Bloch vector in a volume. Our concern then
is that what kind of three measurements minimizes that volume, which is accounted
for the statistical error (Wootters & Fields, 1989). The volume is a parallelepiped
in general and it would be minimum if it takes a cube shape which is formed by
three orthogonal planes. This implies that if the Bloch vectors characterizing the
planes are orthogonal, the statistical error is minimum. Surprisingly, two operators
A = a · σ and B = b · σ are mutually unbiased, or complementary, if their Bloch
vectors are orthogonal, i.e., a ·b = 0 (Durt et al., 2010). In our example, the simple
choices for Bloch vectors are a1 = (1,0,0),a2 = (0,1,0) and a3 = (0,0,1), which
are corresponding to Pauli operators. This geometrical reasoning can be extended
straightforwardly to higher dimension by means of the generalized Pauli matrices.
As is well known, Pauli matrices are the generators of SU(2) group. Any quantum
state ρ in d-dimensional Hilbert space can be expanded in terms of the generators
{Λj}d

2−1
j=1 of SU(d) as

(2.17) ρ= 1
d
I+ 1

2

d2−1∑
j=1

λjΛj ,

where λj = tr(ρΛj) is the expectation value. Then, λ = (λ1,λ2, . . . ,λd2−1) ∈ Rd
2−1

can be considered as Bloch vector in d-dimensional Hilbert space (Kimura, 2003).
Based on this extension and the above reasoning, we can argue directly that there
are not more than d+ 1 MUBs, that is indeed the case (Ivanovic, 1981; Wootters
& Fields, 1989). In conclusion, we call d+ 1 MUBs optimal, or minimizing the
statistical error, in the above sense.

In his famous paper (Heisenberg, 1927), Heisenberg introduced the celebrated un-
certainty principle of position and momentum operators. Without dealing with its
technical expression, its most important conclusion was that if one has the full in-
formation of one of these operators, the other operator becomes fully uncertain in
the sense that there is no way to acquire any piece of information about it while
respecting the rules of quantum mechanics. This maximal trade-off relation between
position and momentum operators is called complementarity: our certainty of one
of them leaves the other fully uncertain. Speaking of any finite system, we natu-
rally seek for operators that have complementarity relation. The formal expression
and importance of complementary operators, especially in finite dimensions, was
first highlighted by Schwinger (Schwinger, 1960) in the sense that the bases corre-
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sponding to complementary operators represent measurements that are maximally
unbiased. In quantum information theory, two complementary operators are known
as mutually unbiased. Let us assume that we have two non-degenerate cyclic oper-
ators X and Z with period d, that is, Xd = I and Zd = I, where I is the identity
and any power less than d of them does not give identity. The eigenvalues of X and
Z are then going to be d roots of unity,

(2.18) X |xk⟩ = wkd |xk⟩ ; Z |zk⟩ = wkd |zk⟩ , with wd = e
i2π
d .

That the cyclic operators X and Z are mutually unbiased can be stated as

(2.19) 1
d

tr(XsZp) = δs0δp0 for all s,p= 0,1, . . . ,d−1.

If two operators X and Z on a Hilbert space of d-dimension are mutually unbiased,
so do aX and bZ with ab ̸= 0. In addition, if a unitary transformation takes X
to X ′ and Z to Z ′, the pair (X ′,Z ′) is also mutually unbiased. Therefore, we can
anytime turn our attention from the operators X and Z to their corresponding set
of eigenvectors {|xk⟩}dk=1 and {|zk⟩}dk=1 each of which forms a basis for the Hilbert
space of d-dimension provided that the operators are non-degenerate. From now on,
we will focus on the bases of mutually unbiased operators which are called mutually
unbiased bases (MUBs). Formally, two orthonormal bases {|ek⟩}d−1

k=0 and {|fl⟩}d−1
l=0

of a d-dimensional Hilbert space are called mutually unbiased bases if

(2.20) |⟨ek|fl⟩| = 1√
d

for all k, l ∈ {0,1, . . . ,d−1}.

Equation (2.19) and equation (2.20) result in each other, which means that they are
equivalently the statement of mutually unbiasedness. It is always easy to construct
two MUBs by Fourier transformations. To be more explicit, if {|ej⟩}d−1

j=0 is the
standard basis of d-dimensional Hilbert space, its Fourier transformation

(2.21) |fk⟩ = 1√
d

d−1∑
j=0

w−kj
d |ej⟩

gives another basis {|fk⟩}d−1
k=0, which is mutually unbiased with respect to it, that is,

⟨fk|ej⟩ = 1√
d
wkjd for all j,k ∈ {0,1, . . . ,d−1}. Here, wd = e

2πi
d . The most famous and

familiar MUBs are the set of eigenvectors of Pauli matrices {σx,σy,σz}. Indeed, we
have

σx |xj⟩ =wj2 |xj⟩ , σ2
x = I; σy |yj⟩ = wj2 |yj⟩ , σ2

y = I;

σz |zj⟩ =wj2 |zj⟩ , σ2
z = I, j = 0,1

(2.22)
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with 1
2 tr

(
σjxσ

k
y

)
= 1

2 tr
(
σjxσ

k
z

)
= 1

2 tr
(
σjyσ

k
z

)
= δj0δk0 and |⟨xj |yk⟩| = |⟨xj |zk⟩| =

|⟨yj |zk⟩| = 1√
2 for j,k = 0,1. The bases are

|x0⟩ =
 1√

2
1√
2

 , |x1⟩ =
 1√

2
− 1√

2

 ,
|y0⟩ =

 1√
2

i√
2

 , |y1⟩ =
 1√

2
−i√

2

 ,|z0⟩ =
1

0

 , |z1⟩ =
0

1

 .
(2.23)

It is easy to construct d+1 MUBs by using Weyl-Heisenberg group of unitary oper-
ators if the finite dimension we study on is a prime number. Recalling the operators
in equation (2.18), we express them as

X =
d−1∑
k=0

|k+1⟩⟨k| ,

Z =
d−1∑
k=0

wkd |k⟩⟨k| , wd = e
2πi
d ,

(2.24)

on the field Zd = {0,1, . . . ,d− 1}, whose addition and multiplication operations are
performed according to modulo(d). The group of the unitary operators generating
from these two unitary operators is

(2.25) WH =
{
X,Z,XZ,XZ2,XZ3, . . . ,XZd−1

}
,

which is known as Weyl-Heisenberg group. The basic and general relation of the
elements is that XmZn = w−mn

d ZnXn. The eigenbases of the elements of Weyl-
Heisenberg group provides an informationally complete set of MUBs, i.e., d+ 1
MUBs. In addition to the eigenbasis of Z, {|0k⟩}d−1

k=0, which is considered as compu-
tational basis, the eigenbases of the elements XZm−1 are {|mk⟩}d,d−1

m,k=1,0, with the
explicit expression (Bandyopadhyay et al., 2002)

(2.26) |mk⟩ = 1√
d

d−1∑
j=0

w
−jk−(m−1)sj

d |j⟩ , for m= 1,2, . . . ,d

such that |j⟩ = |0j⟩, sj = j + j + 1 + . . .+ d− 1 and XZm−1 |mk⟩ = wkd |mk⟩. We
also note that XZ l−1 |mk⟩ = wk+m−l

d |m(k+m− l)⟩ for l = 1,2, . . . ,d. The set
{|mk⟩}d,d−1

m,k=0,0 then forms an informationally complete set of MUBs. For instance,
in the light of above methods, we have in dimension d = 3 the unitary operators
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{Z,X,XZ,XZ2} with the respective following expressions

(2.27)


1 0 0
0 1 0
0 0 1

 ,


0 0 1
1 0 0
0 1 0

 ,


0 0 w2
3

1 0 0
0 w3 0

 ,


0 0 w3

1 0 0
0 w2

3 0


whose corresponding bases




1
0
0

 ,


0
1
0

 ,


0
0
1


 ,



1√
3

1√
3

1√
3

 ,


1√
3

w2
3√
3

w3√
3

 ,


1√
3

w3√
3

w2
3√
3





1√
3

1√
3

w3√
3

 ,


1√
3

w2
3√
3

w2
3√
3

 ,


1√
3

w3√
3

1√
3


 ,



1√
3

1√
3

w2
3√
3

 ,


1√
3

w2
3√
3

1√
3

 ,


1√
3

w3√
3

w3√
3




(2.28)

forms an informationally complete set of MUBs.

We are still able to construct d+ 1 MUBs if the dimension d is a power of an
odd prime number, that is, if d = pr, where p is an odd prime number and r is a
positive integer. The construction of d+ 1 MUBs in this case is based on Galois
fields GF(pr), the finite fields with characteristic p and cardinality d= pr (Wootters
& Fields, 1989; Bandyopadhyay et al., 2002). The idea substantially consists on the
case of when the dimension is a prime number. We always refer to the number p
as an odd prime number in the following unless otherwise stated. Additionally, the
following prescription of constructing MUBs is a summary of the construction given
in (Wootters & Fields, 1989) together with a little revision of the notation that was
used there so as to stay in coherent with the notation we use in the thesis.

As a consequence of a theorem from abstract algebra, the number of the elements
of any finite field is equal to a power of a prime number. If the dimension is a
prime number p, the two binary operations of a finite field, that is addition and
multiplication, are simply defined according to modulo(p). It is always possible to
find an n-degree polynomial on a finite field of cardinality p which is not solvable,
that is, that polynomial does not have solution in the field. From such a polynomial,
one can always construct a field of cardinality pn and of characteristic p. To give
an example, the set of complex numbers is an extension of real numbers with the
polynomial x2 + 1 = 0, which is not solvable in real numbers. Let us assume that
Fp = {0,1, . . . ,p−1} be a finite field of cardinality p. We first consider an insoluble,
nth-degree polynomial on Fp: β0 +β1x+ . . .+βnx

n = 0 such that β0,β1, . . . ,βn ∈ Fp.
We then introduce a solution α, like the imaginary number i =

√
−1, and for the
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closure of the multiplication operation we need to also introduce the powers of α:
α2,α3, . . . ,αn−1. We then take the linear combination of the powers of α on Fp
such that the set {1,α,α2, . . . ,αn−1} plays the role of a basis for a vector space
whatsoever of dimension n. For example, {1, i} can be considered as a basis in the
case of complex numbers, and such that any complex number can be expressed as a
linear combination like a+ ib on real numbers R, i.e., a,b ∈ R. The set of all linear
combinations

(2.29) Fpn = {a0 +a1α+ . . .+anα
n | a0,a1, . . . ,an ∈ Fp}

then forms a field with the fact that addition and multiplication operations are
performed based on modulo(β0 +β1α+ . . .+βnα

n). For example, let us assume that
p2 = 32 = 9, and as is known that F3 = {0,1,2}. An irreducible, that is, unsolvable,
second-order polynomial on F3 is x2 + 1 = 0. Introducing α to be a root of this
equation, we obtain F9 = {0,1,2,α,1 +α,2 +α,2α,1 + 2α,2 + 2α}. Then, One can
construct the addition and multiplication tables for F9 bearing in mind the fact that
α2 +1 = 0.

We also define a trace operation over Fpn : Tr : Fpn → F such that Tr(a) := a+ap+
ap

2 + . . .+ap
n−1 , for all a ∈ Fpn . The trace function has the following properties:

i. Tr(a) ∈ Fp for all a ∈ Fpn .

ii. Tr is linear in Fpn where the coefficients are from F, that is, Tr(c1a+ c2b) =
c1 Tr(a)+ c2 Tr(b) for all a,b ∈ Fpn and for all c1, c2 ∈ Fp.

iii. Linear mappings from Fpn to Fp have the form a 7→ Tr(ba) for b ∈ Fpn .

Having now the theoretical background of Fpn , we introduce the MUBs for dimension
d = pn. We still use the integers like i, j,k, l, r, etc. as indices meanwhile also for
representing the field numbers. As with the case of the dimension d = p, we start
with the computational basis again, by taking it as {|0k⟩}p

n−1
k=0 . The remaining pn

MUBs are given by the explicit expression of their elements as follows

(2.30) |nk⟩ = 1√
d

pr−1∑
j=0

w
Tr(nj2+kj)
p |0j⟩ ;n,k, l ∈ F(pr),n ̸= 0

Mutually unbiasedness of the constructed bases above is guaranteed by the equality

(2.31)

∣∣∣∣∣∣∣
∑
j∈Fpn

e
2πi/pTr(mj2+nj)

∣∣∣∣∣∣∣=
√
pn, (m ̸= 0, p is an odd prime).
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The above treatment does not work for dimensions d= 2r since left side of equation
(2.31) is zero any more. In that case, the following construction for d = 2r was
proposed in (Wootters & Fields, 1989). Since any field Fpr can be considered as a
vector space, any element a ∈ Fpr can be written as a linear combination of a basis
{vi}ri=1: a =∑r

i=1aivi, where ai ∈ Fp. We define the product of the basis elements
as

(2.32) vjvk =
n∑
s=1

α
(s)
jk vs,

from which we define the matrices α(i) = (α(i)
ij )r×r. Bearing in mind these matrices,

we first consider the standard basis {|0k⟩}d−1
k=0 again, and the remained d MUBs are

(2.33) |nk⟩ = 1√
2r

2r−1∑
j=0

ij
T (n·α)j(−1)k·j |j⟩ , n,k,j ∈ F2r , r ̸= 0.

Here the indices n,k,j are r-component vectors with elements in the set {0,1}, and
α = (α(1),α(2), . . . ,α(r)). In addition, i is the imaginary number, and the multipli-
cation and addition in the exponent of i is modulo (4). For further information, we
refer to (Wootters & Fields, 1989).

However, the treatment ensured by Galois fields does not work for the composite
dimension d, such as d = 6,10,15, etc. because the cardinality of a finite field is
always a power of a prime number.

The existence of an informationally complete set of MUBs is still a conundrum if
the dimension is a composite number. Nevertheless, there exist at least 3 MUBs
in any d-dimensional Hilbert space. Therefore, the first step of an approach to the
existence of MUBs in the composite dimensions is to study the fourth MUB. In line
with this task, dimension six is the lowest composite dimension, which occupies a
central importance in searching the existence of more than three MUBs in composite
dimension. A proof of the existence of more than three MUBs in dimension six has
not still been given, although lots of works have been dedicated to the understanding
of them (Brierley & Weigert, 2008; Jaming et al., 2010; Goyeneche, 2013; D’Ambrosio
et al., 2013; Chen & Yu, 2017, 2018; Liang et al., 2021). There are also some work
that have tried to understand the existence of MUBs by looking at their relations
with SIC-POVMs (Wootters, 2006; Albouy & Kibler, 2007; Appleby, 2009). In the
sphere of this thesis, we shall use MUBs when studying the entropic uncertainty.
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2.1.2 An informationally complete measurement: SIC-POVM

Another celebrated, informationally complete measurement is SIC-POVM, which
has been occupying a central position in quantum information theory since the
work by Zauner in 1999 (Zauner, 2011). Zauner showed that a set of equiangular
vectors can be constructed using the Weyl-Heisenberg group up to dimension 7 by
means of an appropriate complex vector known as a fiducial vector, and conjectured
that fiducial vectors exist in every dimension. The existence problem of the fiducial
vector in every dimension is known as Zauner’s conjecture. Currently, SIC-POVMs
are studied numerically and analytically. The numerical solutions have shown that
SIC-POVM are related to deeper questions in number theory, and have allowed the
formulation of exact solutions from the numeric ones (Scott, 2006; Appleby et al.,
2017, 2018; Appleby & Bengtsson, 2019). Some connection between the solutions of
different dimensions has been revealed by the analytical studies of the SIC-POVMs
(Appleby et al., 2017; Fuchs et al., 2017). Currently, the solutions based on Weyl-
Heisenberg group have been constructed both numerically and analytically in all
dimensions up to 151 and in special dimensions as high as 844 (Grassl & Scott,
2017). Focusing on the analytical research, some remarkable algebraic properties of
SIC-POVMs that are covariant under the action of Weyl-Heisenberg group have been
explored by focusing on the extended Clifford group, which is a group of unitary and
anti-unitary operators, and is the normalizer of Weyl-Heisenberg group (Appleby,
2005; Zhu, 2010; Hughston & Salamon, 2016).

By definition, a SIC-POVM in a d-dimensional Hilbert space is constructed from
a set of d2 vectors, {|ψi⟩}d

2
i=1, where the norm of the inner product of any two

vectors is constant: |⟨ψi|ψj⟩|2 = dδij+1
d+1 . This means that the vectors are equiangular

to each other. The measurement elements of the SIC-POVM is the set of rank
one operators {Πj = 1

d |ψi⟩⟨ψi|}d
2
i=1, which are satisfying the completeness condition:∑d2

i=1 Πi = I. Defining the probabilities of detecting the outcomes corresponding to
the measurement elements as pi := tr(Πiρ), where ρ is the quantum state under
consideration, we can reconstruct ρ from the SIC-POVM as

(2.34) ρ= (d+1)d
d2∑
i=1

piΠi− I.

SIC-POVMs are optimal measurement for QST (Renes et al., 2004; Scott, 2006;
Fuchs & Schack, 2013). In addition to their use for QST, they are also used in
the foundational study of quantum mechanics, where a specific SIC-POVM is cho-
sen primarily as the underlying measurement for reformulating quantum mechanics
completely based on probabilities (Fuchs & Schack, 2013; Yashin et al., 2020). They
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have been used also for quantum cryptography (Renes, 2005), quantum communi-
cation (Oreshkov et al., 2011; Szymusiak & Słomczyński, 2016) and entanglement
detection (Chen et al., 2015).

All known SIC-POVMs with the exception of the Hoggar SIC-POVM in dimension 8
(Hoggar, 1998), are constructed by using Weyl-Heisenberg group (Bengtsson, 2017;
Fuchs et al., 2017). For any dimension d ∈ N, let {|k⟩}d−1

k=0 be an orthonormal basis
for Cd, and we define the following operators

(2.35) w = e
2πi
d , Djk = wjk

d−1∑
m=0

wjm |k⊕m⟩⟨m| ,

where ⊕ denotes addition modulo d. Then, it was conjectured that there exists a
normalized fiducial vector |ϕ⟩ ∈Cd, such that the set {Djk |ϕ⟩}dj,k=1 is a SIC-POVM.
The existence of a fiducial vector is still an open problem, which in turn means that
the existence of SIC-POVMs for every dimension has not been proved yet (Kopp,
2021; Appleby et al., 2021).

A fiducial vector in dimension d= 8 was proposed by Jedwab and Wiebe such that
the SIC-POVM is obtained by acting Weyl-Heisenberg group elements on it (Jedwab
& Wiebe, 2016). Weyl-Heisenberg group generators in dimension d= 2 are

(2.36) Z = |0⟩⟨0|− |1⟩⟨1| =
1 0

0 −1

 , X = |1⟩⟨0|+ |0⟩⟨1| =
0 1

1 0


from which we obtain the group {I,U,V,UV }. We consider threefold tensor product
G of this set: G= {A1 ⊗A2 ⊗A3 |Ai ∈ {I,U,V,UV }}. Having the proposed fiducial
vector |ϕ⟩ =

(
0,0, 1+i√

2 ,
1−i√

2 ,
1+i√

2 ,−
1+i√

2 ,0,
√

2
)T

, the set {A |ϕ⟩ |A∈G} is a SIC-POVM.

2.2 An outlook of entropy

We studied mainly the entropic uncertainties of MUBs and SIC-POVM as two im-
portant quantum measurements. We now wish to present some important entropies
and their characteristic properties. It would better to give a clear reason for the
structure of this subsection:

"The literature devoted to analysing the second law of thermodynamics
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in the context of statistical mechanics starts with the development of
statistical mechanics in the late 19th century. Considerable confusion
has arisen simply due to the fact that as the subject has developed, the
meaning of key terms have changed or become ambiguous. When one
paper speaks of the second law being violated or of entropy decreasing
and another of it being saved or being non-decreasing, it is not necessarily
the case that they are referring to the same things" (Maroney, 2009)
[emphasis added].

There are many entropy functions that are used in diverse but relevant fields suc-
cessfully. Even this bare fact alone suggests us that entropy is not as fundamentally
clear as energy is. Based on this suggestion and the given quotation, we wish first
to draw a clear outline of some relevant entropies and the reasons behind their
introduction.

The fundamental problem of thermodynamics is to find the equilibrium state of an
overall isolated composite system accompanied by relaxing some internal constraints.
Aiming at this goal, thermodynamics states that: "All physical systems in thermal
equilibrium can be characterized by a quantity called entropy, and that this entropy
cannot decrease in any process in which the system remain adiabatically isolated,
i.e., shielded from heat exchange with its environment" (Uffink, 2001). In the frame
of thermodynamics, entropy is characterized by the following properties: (1) The
minimality of energy in an equilibrium state corresponds to maximality of entropy;
(2) entropy is a continuous, differential and monotonically increasing function of
energy; (3) entropy of a composite system of two independent subsystems is the sum
of the entropies of the subsystems, i.e., entropy is an additive function. The first
property yields to concavity of entropy; the third property requires that entropy is a
first-order homogeneous function of extensive parameters, while the second property
implies that entropy is invertible with respect to energy, which first and foremost
suggests that entropy has a fundamental and determinative relation with energy.
Based on these properties and asserting that the state of a thermodynamics system
can be fully characterized by energy (U), number of molecules (N) and the volume
of the considered system (V ), thermodynamic entropy, S(U,V,N), can be expressed
as

(2.37) S(U,V,N) = ∂US(U,V,N)U +∂V S(U,V,N)V +∂NS(U,V,N)N

First and second properties imply that ∂US(U,V,N)> 0, which enables us to rewrite
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equation (2.37) in the form of energy expansion

U(S,V,N) = 1
∂US(U,V,N)S− ∂V S(U,V,N)

∂US(U,V,N)V − ∂NS(U,V,N)
∂US(U,V,N)N

= T (S,V,N)S−P (S,V,N)V +µ(S,V,N)N
(2.38)

from which one can deduce that ∂US(U,V,N) = 1
T (U,V,N), ∂V S(U,V,N) =

P
T (U,V,N) and ∂NS(U,V,N) = − µ

T (U,V,N). In the context of this thesis, the hall-
mark of thermodynamic entropy can be characterized by two such properties: 1) it
is a measure of the uncertainty (or disorder) inherent to the system; 2) there is a
one-to-one and determinative correspondence between entropy and energy, and 3)
it is defined for the equilibrium states, i.e., non-equilibrium states are out of the
context of thermodynamic entropy. Indeed, the differentiability in the second prop-
erty of entropy is inferred from a detailed analysis of Carnot’s cycle (Kondepudi &
Prigogine, 2015, pp. 89-104), which is a reversible process and directly yields that
the integral of d̄Q/T over a closed a path C representing a reversible process is

(2.39)
∮

C

d̄Q

T
= 0,

which suggested Clausius to define thermodynamic entropy, dS :=d̄Q/T . If one wishes
to generalize this definition to any process, it must be assumed that any two thermo-
dynamics states can be connected by a reversible transformation or process (Kon-
depudi & Prigogine, 2015, p. 101). The concept of thermodynamic entropy as a state
function is purely macroscopic and it is stated that, as the second law of thermody-
namics, thermodynamic entropy is a non-decreasing state function, whose validity
is based on the irreversible processes. However, in contrast to the irreversibility
of processes, the law of both classical and quantum mechanics are reversible. The
classical and quantum laws of motion admit the time reversal of any evolution from
a state A to a state B. For example, the flow of gas molecules confined in one half
of a container to the whole container and its reverse (which violates the second law)
are admissible to classical and quantum mechanics. Processes that are not allowed
by the second law do not violate the laws of mechanics. Fundamentally, bearing in
mind that all irreversible processes are the consequences of the motion of molecules
ruled by the laws of mechanics, some of questions arise naturally: 1) How can ir-
reversible processes emerge from the reversible processes of of molecules?; 2) What
connection can be derived between entropy as a macroscopic property of a system
and the microscopic constituents of the system?; 3) If there is a determinative rela-
tion between entropy and energy, and if energy of a system is the sum of the energies
of its microscopic constituents, can one determine, if possible and reasonable, en-
tropy in terms of microscopic properties of the system? Addressing to such sort of
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questions, Boltzmann obtained (thermodynamics) entropy as the logarithm of the
number of microscopic states W corresponding to a macroscopic state:

(2.40) HBG = kB ln(W ),

where kB is the Boltzmann constant. This expression corresponds to the entropy
of an isolated system. This is the first step that links entropy of a system to the
statistical properties of the system. In the context of statistical mechanics, thermo-
dynamic entropy is also known as Boltzmann-Gibbs entropy, which we use hereafter.
When the system of inquiry is in contact with a heat reservoir, Boltzmann-Gibbs
entropy takes the form HBG = −kB

∑
i pi ln(pi) such that pi is the probability of the

state having energy ϵi that the system to be in.

To summarize, Boltzmann-Gibbs entropy with its properties given above is a conse-
quence of reversible processes, which are considered to be in thermodynamic equi-
librium at every stage of their evolution.

On the other hand, according to Shannon, the fundamental problem of communica-
tion theory is to reproduce at some point at a possible desired accuracy a message,
which is delivered from another point. As is well known, messages have meaning,
they "refer to or are correlated according to some system with certain physical or
conceptual entities." (Shannon, 1948, p. 1). However, according to Shannon, it is not
this semantic aspect of messages that is relevant to the problem of engineering but is
the fact that a message is a selection from a set of messages. In other words, the sig-
nificant aspect of a message is its distinction from (or its distinguishability among)
a set of messages. Immediately after putting forward this statement, a very natural
question imposes itself at the outset upon the reason to be answered urgently: How
can one quantify the information content of the set of considered messages? The
answer was given by Shannon to be entropy based on some requirements that were
set down as the pillars of the definition of entropy. These requirements are as follows
(Shannon, 1948):

i. Entropy function H is a continuous function of probabilities, {pi, i =
1,2, . . . ,n}, of the messages released by the information source.

ii. If all messages have equal probabilities, pi = 1
n , entropy function

H(p1,p2, . . . ,pn) is a monotonically increasing function of n.

iii. If a message is broken into two successive messages, the original entropy should
be the weighted sum of the individual entropies of the new messages sample.

Later, Khinchin reformulated the requirements in a rigorous mathematical manner
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which determine the entropy proposed by Shannon uniquely (Khinchin, 1957, pp. 9-
13). Today, these requirements are known as Shannon-Khinchin (SK) axioms, which
can be enlisted as follows:

2.1 Continuity (SK1): Entropy is a continuous and non-negative function of prob-
abilities of the occurrence of messages.

2.2 Principle of Maximum Value (SK2): Having n messages with correspond-
ing probability distribution {pi, i = 1,2, . . . ,n}, entropy function H(p) :=
H(p1,p2, . . . ,pn) takes its largest value when pk = 1

n (k = 1,2, . . . ,n).

2.3 Expansibility (SK3): Adding impossible messages to the set of messages does
not change the entropy of a scheme, i.e.,
H(p1,p2, . . . ,pn,0) =H(p1,p2, . . . ,pn).

2.4 Additivity (SK4): The joint entropy of two independent subsystems A and B

is equal to the sum of the individual entropies, i.e., H(A∪B) =H(A)+H(B).

Based on SK axioms, entropy for measuring the information content of a set of
messages is defined uniquely, HS(p) := −∑i pi ln(pi), which is known as Shannon
entropy. The first three axioms correspond to the requirements respectively that was
stated by Shannon. Axiom SK1 was reformulated by B. Lesche in a mathematical
syntax (Lesche, 1982):

Definition 2.2.1 (Lesche Stability) Having a system which takes countable en-
ergy values together with a corresponding probability distribution of microstates
{pi, i = 1,2, . . . ,n | n ∈ N}, and l1-norm, ∥p′ − p∥1 = ∑n

i=1 |p′
i−pi|, the entropy of

the system is a continuous measurable quantity if and only if there is at least a δ > 0
such that for all ε > 0, if ∥p′ −p∥1 < δ then |HS(p′)−HS(p)|

Hmax
S (p) < ε.

The reason behind Lesche stability so as to consider it as a fundamental requirement
for the validity of an entropy is that any physically observable quantity must change
infinitesimally if an infinitesimal change happens to probability distribution, oth-
erwise the experimental observations of the quantity cannot be reproducible (Abe,
2002). Apart from everything, SK axioms fundamentally represent a distillation of
the requirements underlying the physical reasoning on the problem of quantifying
information content of a set of messages. However, a question arises: Do SK axioms
comprise exhaustively all sort of information content of all systems, for example, the
systems having long range interaction? Since SK axioms are based on the nature of
information, and since, according to Shannon, that the messages [states of a system]
are correlated according to some system with certain physical entities are irrelevant
to the concept of entropy (Shannon, 1948), one cannot put forward an affirmative

27



answer to the question with certainty. We shall give an example to this fact in
the context of the existence of MUBs in section 3.6. This fact implies that there is
not an equivalence relation between the comprehensive requirements for information
quantification and the formal SK axioms. In other words, both requirements for
information quantification and SK axioms cannot be biconditionally related to each
other due to the logical connection that links them. Bearing in mind this fact, any
critic or attempt that aims to generalize Shannon entropy should pay attention not
on SK axioms, but on the requirements that are backbone of SK axioms, and on
the constraints imposed on the constituents of the relevant system. Unlike Shannon
entropy, Boltzmann-Gibbs entropy has a determinative relation with the energy of
the system, which enables one to examine Boltzmann-Gibbs entropy on the ground
of physical considerations rather than in the abstract frame of some axioms. An-
other but maybe the most important difference between Boltzmann-Gibbs entropy
and Shannon entropy is that while the former in physics quantifies the number of
microstates corresponding to a particular macrostate, the latter in information the-
ory serves to infer the most attainable information under some given constraints
(Jizba & Korbel, 2019).

However, regarding SK axioms comprehensive so that Shannon entropy is general
enough to comprise all kind of information content of systems, a very fundamental
question is exist that one must deal with in the context of engineering: having a priori
probability distribution {pi}ni=1 of a set of messages or events, how can one obtain
the best estimate of a posterior probability distribution {p′

i}ni=1 after learning some
constraint on the events in terms of the expectation value of some certain function,∑
i pif(xi), or in terms of some certain bounds on the values of these functions?

Addressing to this question, Jaynes suggested principle of maximum entropy by
proposing that it is uniquely correct method for the best estimate of a posterior
probability distribution after learning some constraints in terms of the expectation
values of some certain functions (Jaynes, 1957a,b). Principle of maximum entropy
states that among all probability distributions that satisfy the constraints one must
choose the one for which Shannon entropy HS(p) takes its largest value. To put it
in a formal expression, assuming that ∑i pif(xi) = Ef is the given constraint, one
maximizes the expression

(2.41) HS(p)−λ(
∑
i

pi−1)−β(
∑
i

pif(xi)−Ef ),

which is known as maximization procedure. It is fundamentally a formal extension
of the principle of insufficient reason 1 that was used as a guiding principle for

1"The principle of insufficient reason states that probability assignments are based on a symmetry in our

28



inference at the birth time of probability theory (Uffink, 1995). Jaynes approach is
based on the SK axioms that determine entropy uniquely as information measure.
Indeed, since the requirements stated by Shannon are specified according to the
quantification of the information content of the messages, which is entropy, Shore
and Johnson explore some new axioms, for which it was claimed that they do not
have in themselves any reference to a particular information measure. According to
Shore and Johnson, all reasonable methods for revising a probability distribution
based on some posterior evidence must lead to a consistent result when different
ways of taking the posterior evidence into account exist. This intuitively reasonable
dictum was stated as four consistency axioms, which are as follows (Shore & Johnson,
1980):

3.1 Uniqueness (SJ1): The result must be unique.

3.2 Invariance (SJ2): The choice of coordinate system must not change the result.

3.3 System Independence (SJ3): If two systems are independent, individual in-
formation measures of them are the same for marginal and joint probability
distributions of the systems.

3.4 Subset Independence (SJ4): The treatment of any independent subset of the
system states does not make any difference whether it is taken in terms of
separated conditional probability distributions or in terms of joint probability
distributions.

The fact that makes SJ axioms special is that they have precedence to the principle
of maximum entropy because they focus on the consistency and unbiasedness such
that the maximization procedure of any information measure is an issue coming
afterward. SJ axioms serve to derive a functional for information measure which
in turn is to be maximized. Ignoring this vital step implies the possible failure of
the principle of maximum entropy and some posterior arguments about the formal
structure of entropy function such as additivity. Furthermore, if a given constraint
is on the mean value of an observable quantity, SJ axioms yield Shannon entropy as
the unique functional for information measure (Shore & Johnson, 1980). Therefore,
the crux of finding a consistent functional for information measure is not only the
issue of axioms but also of the relevant constraints.

It is worth noting that it was recently shown that SK and SJ axioms give rise to the
same functional form for information measure if SK4 is generalized so as to capture
systems and subsystems independence which implies that SK and SJ axioms plays

judgement, i.e., on the absence of our knowledge that would favour the occurrence of one event above the
others" (Uffink, 1995).

29



the same role on the stage (Jizba & Korbel, 2020). To this aim, the elementary
algebraic operations, that is, addition, multiplication, subtraction and division, are
firstly extended by means of a strictly increasing bijection f :M 7→N ⊂ R. Having
such a bijection, one can extend the elementary operations in M respectively as
follows:

x⊕y = f(f−1(x)+f−1(y));x⊗y = f(f−1(x)f−1(y))

x⊖y = f(f−1(x)−f−1(y));x⊘y = f(f−1(x)/f−1(y)).
(2.42)

Generalized arithmetic of real multivariate functions naturally arises in the light of
generalizing the elementary operations. For example, a function of two variables,
G(x,y), can be extended as Gf (x,y) := f(G(f−1(x),f−1(y))). After these general-
izations, SK4 axiom can be revised as follows (Jizba & Korbel, 2020):

Definition 2.2.2 (Composability (SKg4)) Joint entropy of two physically ob-
servables A and B can be expressed as H(A,B) = H(A | B) ⊗f H(B) such that
H(A,B) and the conditional entropy H(A | B) should satisfy the following require-
ments for consistency:

i. For two independent physical observables, or random variables, A and B, the
joint entropy should be composed of the individual entropies H(A) and H(B),
i.e., H(A,B) = F (H(A),H(B)).

ii. Conditional entropy can be decomposed into entropies of conditional distribu-
tions, i.e., H(A |B) =G({pAi ,H(B | A= ai)}ni=1).

It was shown that SK axioms with the generalized form of SKg4 give rise to the
same function for information measure as SJ axioms such that the function has the
form Hf

q (p) = f(
(∑

i p
q
i

)1/(1−q)
). That SK and SJ axioms yield the same functional

form is indeed true if one adds the maximality condition to SJ axioms which states
that the uniform distribution is the solution for posterior distribution in the case of
having no prior information.

On the other hand, SJ3 and SJ4 axioms are disputable. Because they are about the
independence of systems which are special cases reduced from the general systems
that could have interrelation. In addition, they are about the state of the observer’s
knowledge based on the experimental data of the systems that can be considered
independent of the real relation between the systems (Uffink, 1995). Indeed, assum-
ing that subsystems or two systems are not independent, could one still claim that
the functional form of information measure is again the same as that of indepen-
dent subsystems or systems? For example, as was stated before, Boltzmann-Gibbs
entropy is restricted to reversible processes. Accordingly, how could one extend it
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to irreversible processes? A successful and celebrated attempt during the second
half of 20th century was taken by adding an extra term to the orthodox expression,
that is, the general entropy was stated as dS = deS+diS, where deS = d̄Q/T is the
orthodox expression of entropy and diS =∑

kFkJk is the entropy change caused by
the irreversible processes within the relevant system, and Fk and Jk are thermody-
namic forces and thermodynamic flows respectively (Kondepudi & Prigogine, 2015).
If the independence of subsystems or systems is assumed, dS = deS+diS reduces to
dS = deS. Having confined with this reduction, it is dubious in principle to claim
that the characteristic properties of the reduced entropy, dS = deS, encompass the
characteristic properties of the general entropy, dS = deS+diS. This suggests that
the extension of the entropy limited to thermal equilibrium regimes or independent
systems to the general scheme is not a trivial matter, even if it is simply by changing
the axioms that determine the characteristic properties of entropy. In addition to
these sort of questions, it becomes an extra problem how to write the conditional
entropy of the subsystems and how to take into account the stochastic effect oc-
curring in the system of inquiry. Addressing to these questions and the existence
of some experimental events such as anomalous diffusion (Abe & Thurner, 2005)
whose statistics are not explained by HBG based on the maximization procedure
in equation (2.41), some new entropy functions were proposed among which Rényi
entropy (Iα(p)) and Tsallis entropy (Hα(p)) are the most wide known due to the
fact that they satisfy many desired physical and informational properties.

Rényi entropy was proposed by Rényi (Reńyi, 1961, 1965) as a function for informa-
tion measure based on the generalization of mean value estimation while preserving
the additive property of information measure:

(2.43) Iα(p) := 1
1−α

log2

(∑
i

pαi

)
,

where {pi}ni=1 is the probabilities of a set of n events of a random variable X, and α
is the generalization parameter with the fact that it converges to Shannon entropy
for the limit α→ 1.

Mean value of a set of data {xi, i = 1,2, . . . ,n} weighted with a probability distri-
bution {pi}ni=1 can be measured in general by means of a continuous and strictly
increasing function f(x) as M(x1,x2, . . . ,xn) := f−1 (∑i pif(xi)). In information the-
ory, the set of data is the information gain, {− log2(pi), i = 1,2, . . . ,n}. In contrast
to Shannon entropy, mean value is measured exponentially in case of Rényi entropy,
that is, with g(α,pi) = pα

i∑
i p

α
i

, f(x) = (2(1−α)x−1)/(1−α) and assuming two random vari-
ables X and Y with conditional probabilities {pi|j}ni=1 and marginal probabilities
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{qj}mj=1 respectively, conditional entropy of random variable X given Y is given by

Iα(X | Y ) : = f−1
(∑

i

g(α,qi)f (Iα (X | Y = yi))
)

= 1
1−α

log2

(∑
i,j q

α
i p

α
i|j∑

k q
α
k

)
= Iα(X,Y )− Iα(Y ),

(2.44)

which reduces to Shannon entropy if the limit α→ 1 is taken. If α→ 1, g(1,pi) = pi,
which means that mean value is estimated linearly in case of Shannon entropy. Using
the exponential average makes the role of probabilities questionable. Indeed, after
using the exponential average, one acquires the right to query the role and meaning
of the probability of the occurrence of the events; that is an inquest out of the frame
of the mathematical formalism of probability theory (Uffink, 1995, 1996).

Rényi entropy satisfies SK axioms while, in contrast to Shannon entropy, it does
not satisfy Lesche stability criterion (Lesche, 1982) and violates SJ3,4 axioms inde-
pendent of whether the linear or exponential average is used (Oikonomou & Bagci,
2019). The most important fact is that Rényi entropy induces artificial biases which
are not warranted by data.

Tsallis entropy was proposed by Tsallis (Tsallis, 1988) so as to generalize Shannon
entropy with the generalization parameter α which has the form

(2.45) Hα(p) = 1
1−α

∑
k

pαk −1
 .

Rényi entropy and Tsallis entropy have close connection such that the former is a
monotonic increasing function of the latter:

(2.46) Iα(p) = 1
(1−α) log2(1+(1−α)Hα).

By means of this relation, Tsallis entropy for composite of two random variables
X and Y reads Hα(X,Y ) = Hα(X) +Hα(Y | X) + (1 −α)Hα(X)Hα(Y | X), which
means that Tsallis entropy does not obey SK4 axiom. It satisfies Lesche Stability
for α > 0 (Abe, 2002). Like Rényi entropy, Tsallis entropy also gives rise to spurious
biases that are not warranted by data (Pressé et al., 2013). It does also not obey
SJ3 axiom, which requires that in the absence of coupling between two events xi
and yj of random variables X and Y respectively, the posterior joint probability of
the variables obtained through maximization procedure should satisfy multiplication
rule, that is, p(xi,yj) = p(xi)p(yj).
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The stimulative reasons behind proposing the generalized entropies are the beliefs
that Shannon entropy does not capture the systems whose constituents have long-
range interaction (Plastino & Wedemann, 2020; Rodríguez et al., 2019), and to find
a systematic way of how to infer power-law distributions that arise in some problems
such as anomalous diffusion. However, first of all, the generalized entropies given
above induce biased posterior probabilities that are obtained through maximization
procedure, in which case the function of information measure is the relevant gener-
alized entropy rather than Shannon entropy and the mean value constraint might be
given by exponential average rather than linear average. Exponential average, which
is also known as escort average, is invoked in order to preserve the concavity and
additivity of generalized entropies. Secondly, invoking generalized entropies in max-
imization procedure results in probability distributions that do not have any power
of prediction because of that the generalized parameter is specified by posterior data,
which in turn is incompatible with Bayesian updating law (Pressé, 2014). Assuming
that P (α,M) is a prior generalized probability andD is a set of data gained by exper-
iment, Bayesian updating law then states that the posterior probability P (α,M |D)
has the following proportionality: P (α,M | D) ∝ P (D | α,M)P (M | α)P (α). Here,
P (α) has to be determined prior to experiment data D. However, generalized en-
tropies, in general, require the generalized parameter to be informed of the ex-
perimental data. In conclusion, we are left to the fact that in order to model a
non-exponential probability distribution, such as power laws, non-extensivity or the
coupling risen from the interaction between events must be expressed in terms of
constraints or by a prior probability distribution, not in terms of entropy. Indeed,
if a constraint is imposed on the number of events, such as ∑n pn ln(n) = χ, one can
obtain a power law through the maximization procedure in case of Shannon entropy
(Visser, 2013).

Finally, as a candidate for information measure von Neumann entropy is also used,
which is formally the counterpart of Shannon entropy in quantum information the-
ory. Having the quantum state ρ of the relevant system, von Neumann entropy
reads S(ρ) = −tr(ρ ln(ρ)).

In the scope of this thesis, we mainly studied Shannon entropy (HS(p)) and von
Neumann entropy (S(ρ)) to express entropic uncertainties, not the generalized en-
tropies because of that, in contrast to the former entropies, the latter entropies do
not satisfy fully either SK axioms or SJ axioms (Pressé et al., 2013; Oikonomou &
Bagci, 2019), which serve to draw a reasonable and consistent frame for information
measure.
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3. ENTROPIC UNCERTAINTIES IN QUANTUM

MEASUREMENTS

The notion of uncertainty is not special to physics. For example, in his famous work
in the field of communication theory Shannon preferred to talk about the measure
of uncertainty about the transmitted messages, which was expressed by the function
of entropy (Shannon, 1948). Shannon’s idea addresses to the state of humankind’s
knowledge about the system under consideration; that is an uncertainty which can
be always remedied in principle by means of some observation whatsoever. However,
Heisenberg uncertainty principle has radically changed our view of nature ever since
it was stated by Heisenberg as a principle in quantum mechanics (Heisenberg, 1927).

Monumental improvements in physics have usually resulted from a philosophical
perspective on its foundation. Interpreting the motion of physical systems in phase-
space and the idea of (the principle of) action has given rise to analytical me-
chanics. A strict and robust examination of both measurement and observation
led A. Einstein to a new comprehension of space-time, and thus, to the theory
of special relativity; and in contrast to the prevalent view at that time, assuming
the disintegration of energy discreetly led M. Planck to reach his formula of black
body radiation, which is also the origin of quantum theory. In a similar manner,
after Heisenberg and Schrödinger published their works (Heisenberg, 1927, 1925;
Schrödinger, 1928) on the dynamics of quantum systems, a debate about the phys-
ical content of Schrödinger wave function arose among physicists, which again had
a philosophical character and still maintains its vitality. Also related to this debate
and after the field of quantum information and computation emerged, many studies
have been dedicated to giving a reasonable and satisfactory explanation to quan-
tum mechanics, especially to its fundamental features, such the quantum state of a
quantum system (Pusey et al., 2012; Lewis et al., 2012; Fuchs et al., 2014; Combes
et al., 2018; Frauchiger & Renner, 2018), the measurement process (Moreira et al.,
2018), and most importantly the uncertainty principle (Bialynicki-Birula & Myciel-
ski, 1975; Deutsch, 1983; Maassen & Uffink, 1988; Ozawa, 2003; Bush et al., 2013).
Heisenberg’s uncertainty principle is expressed in two version, one in terms of posi-
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tion and momentum observable and the other in terms of energy and time. It states
that it is impossible to determine with certainty the position and momentum of a
physical system simultaneously; or, to express in terms of energy and time, it is
impossible to determine with certainty the energy of a physical system at an instant
of time. In the literature, since the works on uncertainty principle have been placed
from an operational perspective (Hilgevoord & Uffink, 2016), they have unavoidably
given rise to either a measuremental interpretation (Heisenberg, 1927; Ozawa, 2003;
Bush et al., 2013) or statistical interpretation of it (Wigner, 1963; Margenau, 1963).

The concept of uncertainty is presented in several different meanings in the physical
literature. It may mean to a lack of knowledge of a physical quantity that is to be
observed by an observer (Fuchs et al., 2014), or to the experimental inaccuracy with
which the quantity is measured (Ozawa, 2003; Bush et al., 2013), or to a statistical
spread in the preparation of an ensemble of a particular system (Margenau, 1963).
In the operational perspective of Heisenberg, two complementary observables "can
be determined simultaneously only with a characteristic indeterminacy. This
indeterminacy is the real basis for the occurrence of statistical relations in quantum
mechanics" (Wheeler & Zurek, 1983, p. 1) [emphasis added]. Operational perspec-
tive states that only those quantities that are in principle observable should play a
role in the understanding of the considered theory. For example, it is principally
meaningful to mention about the orbit of an atom in the classical realm, whereas,
as was argued by Heisenberg (Heisenberg, 1927), it should be avoided from quan-
tum mechanics since it is impossible to observe the position and momentum of an
electron simultaneously which are required to define the orbit. To be more precise,
Heisenberg argued that "when one wants to be clear about what is to be understood
by the words ’position of the object’, for example of the electron (relative to a given
frame of reference), then one must specify definite experiments with whose help one
plans to measure the ’position of the electron’; otherwise this word has no meaning"
(Wheeler & Zurek, 1983, p. 64). After formulating the basic physical quantities, such
as position and momentum, in the form of matrices (Heisenberg, 1925), Heisenberg
postulated that the matrices X and P representing the canonical position and mo-
mentum quantities of a particle obey the so-called canonical commutation rule

(3.1) [X,P ] :=XP −PX = ih̄,

where h̄ = h
2π , h is Planck’s constant. A first attempt for giving a physical inter-

pretation of this commutation relations was explored by Heisenberg (Heisenberg,
1927) after Schrödinger published his works (Schrödinger, 1928) on wave mechanics
in which Schrödinger argued that his approach is more perceptual, or physical (an-
schaulichen), than matrix mechanics, which was developed primarily by Heisenberg
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Born and Jordan (Born & Jordan, 1925; Born et al., 1926). For Schrödinger, the
perceptual understanding of a phenomenon refers to having a space-time picture
of the phenomenon since a complete physical description of a system can be pro-
vided by a continuous determination of position and momentum quantities, which
give rise to a space-time picture. However, for Heisenberg, gaining a perceptual
understanding of physical theory is succeeded if in all basic cases, we can grasp the
experimental results qualitatively and be sure that the theory does not give rise to
any contradiction. We wish to give his idea by his own word:

"We believe we understand the physical content (anschaulichen in-
halt) of a theory when we can see its qualitative experimental conse-
quences in all simple cases and when at the same time we have checked
that the application of the theory never contains inner contradictions.
For example, we believe that we understand the physical content of Ein-
stein’s concept of a closed 3-dimensional space because we can visualize
consistently the experimental consequences of this concept. Of course
these consequences contradict our everyday physical concepts of space
and time. However, we can convince ourselves that the possibility of
employing usual space-time concepts at cosmological distances can be
justified neither by logic nor by observations. The physical interpreta-
tion of quantum mechanics is still full of internal discrepancies, which
show themselves in arguments about continuity versus discontinuity and
particle versus wave" (Wheeler & Zurek, 1983, p. 1) [emphasis added]

Therefore, for Heisenberg, experiment is underlying the perceptual understanding of
a theory. In accordance with his idea, Heisenberg interpreted the canonical commu-
tation rule of position and momentum in terms of their deviations, ∆(X)∆(P ) ≥ h,
with the aid of a thought experiment he considered. The experiment is to measure
the position of an electron by illuminating it with light and using a microscope.
When a monochromatic light is sent on the electron, light reflects from the electron
and comes toward the microscope, which has an aperture angle θ. We have depicted
this event in Figure 3.1.
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Figure 3.1 Schematic picture of electron-photon collision for determining the position
of an electron. A photon with frequency ν hits the electron and scatters with
frequency ν ′ toward the microscope that has an aperture angle θ, meanwhile the
electron suffers a recoil. The higher frequency does the photon has, the more precise
is the position of the electron determined. To this aim, γ-ray must be used, which in
turn causes a discontinuous change in the momentum value of the electron, which is
known as Compton effect, that cannot be ignored. Eventually, the more accurately
is position ascertained, the more deviation occurs in momentum value.

At the moment when the position is determined, while at the same time the photon
is scattered by the electron, the electron undergoes an discontinuous change in mo-
mentum. This change increases by decreasing the wavelength of the photon, which
is required for a precise determination of the position. Conversely, if we do not want
to causes a significant change in the momentum of the electron, we need to use a
monochromatic light with relatively larger wavelength. The scattered light of wave-
length λ enters the microscope of aperture angle θ. According to the law of optics,
the accuracy of the microscope depends on both λ and θ, which is stated by Abe’s
criterion for its resolving power, that is, the size of the smallest deviation ∆(X) of
the position is about ∆(X) ≈ λ

sin(θ) . On the other hand, the direction of the entering
photon is unknown within the angle θ, rendering a change ∆(P ) in the momentum
of the electron by an amount ∆(P ) ≈ hsin(θ)

λ . Therefore, ∆(X)∆(P ) ≈ h, which
was firstly formulated by Heisenberg (Heisenberg, 1927). We can state Heisenberg’s
idea of uncertainty as follows: "Essentially, experiments and only experiments can
serve to provide a determination of the physical quantities, and they are subjected
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to irreducible indeterminacies1."

The first mathematical formulation of Heisenberg uncertainty principle was given
by Kennard (Kennard, 1927). He proved that for a normalized quantum state |ψ⟩,
the following inequality holds:

(3.2) ∆(X)∆(P ) ≥ h̄

2 ,

where ∆(X) and ∆(P ) are deviations of position and momentum in state |ψ⟩, that
is,

(3.3) (∆(X))2 = ⟨ψ|X2 |ψ⟩− (⟨ψ|X |ψ⟩)2 ; (∆(P ))2 = ⟨ψ|P 2 |ψ⟩− (⟨ψ|P |ψ⟩)2 .

The inequality (3.2) was later generalized by Robertson for all hermitian operators:

(3.4) ∆(A)∆(B) ≥ 1
2 | ⟨ψ|[A,B] |ψ⟩|.

There are experimental results, some of which support the uncertainty (Nairz et al.,
2002; Nikolic & Nesic, 2011; Qu et al., 2021), while some violate it (Sulyok et al.,
2013; Rozema et al., 2012). Schrödinger improved the inequality further by consid-
ering the correlation between the observables (Schrödinger, 1930) as follows:

(3.5) ∆(A)∆(B) ≥ 1
2

√
(⟨ψ|{A,B}|ψ⟩− ⟨ψ|A|ψ⟩ ⟨ψ|B|ψ⟩)2 + | ⟨ψ|[A,B] |ψ⟩|.

Position and momentum are two complementary observables, that is, they are two
observables corresponding to two MUBs. Heisenberg uncertainty principle puts
a limit on obtaining information content of a quantum system. The observables
corresponding to MUBs cannot be determined simultaneously with certainty; the
more precisely one of such observables is determined, the more uncertain the other
must be.

In the formulation of Heisenberg uncertainty, there is no reference to the resolving
power of the experimental apparatus and the effect of the measurement device on
the conjugate variable. The variances given in equation (3.4) are based on the usage
of many copies of the quantum state under consideration. However, in reality, we
need to also take the imprecision and effect of the devices on the conjugate quantity
into account for a reasonable and applicable purpose. To put it clearly, there is no
measurement procedure in quantum mechanics, just as was claimed by Heisenberg,

1This idea is fraught with vicious circle: According to this idea, we should test an irreducible indeterminacy
of an experiment by performing that experiment.
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by which we can determine accurately one of the complementary observables without
disturbing the other; that is, the inaccuracy in one of them and the disturbance in
the other cannot together be arbitrarily small in a particular experiment. To this
aim, Ozawa (Ozawa, 2003) and Bush et. al. (Bush et al., 2013) reformulated the
uncertainty relation based on this consideration. In Ozawa’s approach, we consider
the measurement device and the system together which are to interact at the instant
of measurement. The system with the quantum state |ϕ⟩ interacts with the device
having the state |E0⟩. Their interaction is governed by a unitary operation U in
accordance with the quantum operation formalism. The observable A of the system
that are to be measured can be expressed as Ain =A⊗ I on the joint Hilbert space
of the system and the device. We express the action of reading of the device by a
pointer observable M , and Min := I ⊗M on the joint space before measurement.
After the interaction, the pointer change as Min 7→Mout =U †(I⊗Min)U and Ain 7→
Aout = U †(A⊗ I)U . Based on this notational conventions, the inaccuracies in the
measurement of, for instance, position X was given as

(3.6) ϵ(X, |ϕ⟩) =
(
⟨ϕ⊗E0|(Mout−Xin)2 |E0 ⊗ϕ⟩

)1/2
,

and the disturbance of momentum P that is caused by the device which has been
used for measuring the position was proposed as (Ozawa, 2003)

(3.7) η(P, |ϕ⟩ ,X) =
(
⟨ϕ⊗E0|(Pout−Pin)2 |E0 ⊗ϕ⟩

)1/2
.

In order to show that this formulation implies the inequality (3.4), Ozawa considered
the expressionsMout :=Xin+N(X) and Pout :=Pin+D(P ), whereN(X) is the noise
operator and D(P ) the disturbance operator such that [Mout,Pout] = 0 since they
are observables in different systems. Hence, we have

(3.8) [N(X),D(P )] + [N(X),Pin] + [Xin,D(P )] = −[Xin,Pin] = −[X,P ] ,

from this last expression, Ozawa proposed the following inequality

ϵ(X, |ϕ⟩)η(P, |ϕ⟩ ,X)+ |⟨[N(X),Pin]⟩+ ⟨[Xin,D(P )]⟩|
2

≥ |⟨ϕ| [Xin,Pin] |ϕ⟩|
2 = |⟨ϕ| [X,P ] |ϕ⟩|

2 ,

(3.9)

which reduces to the inequality (3.4) if second term on the left side vanishes. There
are some experimental works (Erhart et al., 2012) that supports this inequality.

The approach of Bush et. al. is again to formulate the slogan "no measurement with-
out disturbance", which is underlying the physical content of Heisenberg uncertainty
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principle, and to put forward the statement that Heisenberg uncertainty principle
is still correct in spite of the conflicting result obtained in the reference (Rozema
et al., 2012), where the violation of the uncertainty relation in equation (3.4) was
argued experimentally. The authors have argued that Heisenberg’s discussion of un-
certainty presented in his work (Heisenberg, 1927) is not covered by the inequality
in equation (3.4), because the momentum disturbance in Heisenberg’s discussion
apparently involves the comparison of the momentum before measurement and the
momentum after measurement. In addition, they argued that the inequality (3.4)
is just a quantitative measure of the fact that "there are no dispersion-free quantum
states" (Bush et al., 2013) since the observables are measured in different experi-
ment on the distinct copies of a particular quantum state. They have considered a
measurement device which performs an joint unsharp measurement of both position
and momentum. Using the formalism of quantum operations, they assume a set of
POVMs N = {N(x,p)} for joint measurement such that

N(x,p) ≥ 0 and
∫∫

dxdpN(x,p) = I

NX(x) =
∫
dpN(x,p) and NP (p) =

∫
dxN(x,p).

(3.10)

For a system having a quantum state |ϕ⟩, the joint distribution for the joint outcomes
(p,x) is

(3.11) P(x,p) := ⟨ϕ|N(x,p) |ϕ⟩

such that

µ1(x) :=
∫
dpP(x,p) = ⟨ϕ|NX(x) |ϕ⟩

ν1(p) :=
∫
dxP(x,p) = ⟨ϕ|NP (p) |ϕ⟩ .

(3.12)

The distributions defined in equation (3.12) represent a real scenario of measurement
that are unsharp. On the other hand, the ideal measurements in the quantum
formalism are represented by von Neumann measurement. The corresponding ideal
distributions of the realistic distributions of equation(3.12) then are

(3.13) µ0(x) := |⟨x|ϕ⟩|2 and ν0(p) := |⟨p|ϕ⟩|2.

Bush et. al. proposed a distance function D between the realistic probability distri-
butions and the ideal. The distance they proposed is Wasserstein-2 distance, which
can be stated as follows:

Definition 3.0.1 Let µ1(x) and µ0(y) be two marginal probability distributions of
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a joint probability distribution p(x,y). Then, Wasserstein-2 distance is defined as

(3.14) D(µ1,µ0) := inf
p(x,y)

(∫∫
(x−y)2p(x,y)dxdy

) 1
2
.

Applying this definition to above distributions for position and momentum, and
writing the measured and ideal values of position and momentum as (X1,X0) and
(P1,P0) respectively, they have defined the inaccuracy of position and momentum
as the supremum over all possible input states |ϕ⟩:

(3.15) ∆(X0,X1) = sup
|ϕ⟩

D(µ0,µ1) and ∆(P0,P1) = sup
|ϕ⟩

D(ν0,ν1).

They have obtained from this statements their final result as

(3.16) ∆(X0,X1)∆(P0,P1) ≥ h̄

2 .

Inequality of (3.16) has been experimentally supported (Xiong et al., 2017). We
emphasize that both statements of uncertainty in equations (3.9) and (3.16) suffer
from a vicious circle. Because they are statements about the measurements devices
which are to be tested by measurement devices. The expression of uncertainty
principle in terms of deviations was also formulated as the sum of them (Mondal
et al., 2017); from a quantum operational perspective (Renes et al., 2017) and based
on the median of position and momentum (Bera et al., 2019). A detailed analysis
of Heisenberg uncertainty principle has been explored in (Busch et al., 2007).

However, as firstly highlighted by Deutsch (Deutsch, 1983), these formulations of
uncertainty based on deviation have some drawbacks; for example, lower bound
of the uncertainty principle, ∆(A)∆(B) ≥ 1

2 | ⟨ψ|[A,B] |ψ⟩|, depends on the initial
state |ψ⟩, and thus, is not fixed such that it can vanish for some choices of |ψ⟩
which do not have to be simultaneous eigenfunctions of the observables A and B. In
addition, deviation-based uncertainty relations do not capture in general the physical
content of the complementary aspect (Dammeier et al., 2015), and the spread of
informational content (Bialynicki-Birula & Rudnicki, 2011), of the observables. Due
to these reasons, which we shall explore in detail below, uncertainty was formulated
in terms of entropy function.

Expressing uncertainty in terms of entropies of the observables was first set forth as
a question by Everett (Everett, 1957). It was answered affirmatively by Hirschman
(Hirschman, 1957) such that the sum of entropies of position and momentum ob-
servables satisfies an inequality. This Entropic Uncertainty Relation (EUR) was
proved and improved respectively in Refs.(Beckner, 1975; Bialynicki-Birula & My-
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cielski, 1975) for the observables of having a continuous spectrum. The lower bound
of the inequality is achieved when the state of the system is a Gaussian wave-packet.
The extension of EUR to the observables in a finite dimensional Hilbert space was
first presented by Deutsch (Deutsch, 1983), and improved later by Maassen and
Uffink (Maassen & Uffink, 1988). The importance of EUR is that it does not have
the aforementioned drawbacks of the uncertainty relations based on deviations. We
wish to explore some drawbacks of deviation-based uncertainty principles in order
to see the necessity of a new formulation of uncertainty principle.

3.1 Problematic nature of Heisenberg uncertainty principle

We note that at least one of the following problems are going to arise in the other
formulations of uncertainty principle that are based on deviation of the observables
such as those in the references (Ozawa, 2003; Bush et al., 2013; Mondal et al., 2017;
Inoue & Ozawa, 2020).

Example 1. First of all, let us assume spin-1/2 observables, Sx = h̄
2σx,Sy = h̄

2σy

and Sz = h̄
2σz. According to inequality (3.4),

(3.17) ∆(Sx)∆(Sy) ≥ h̄

2 | ⟨ψ|[Sx,Sy] |ψ⟩| = h̄

2 | ⟨ψ|Sz|ψ⟩|.

Now, if we choose the state |ψ⟩ = 1√
2(1,1), which is an eigenvector of Sx, but not of

Sy, the left side of the inequality (3.17) becomes zero, which implies that it would be
possible to find some pure quantum state by which we can represent our knowledge
of Sx and Sy simultaneously, that is, there would be some quantum state that is the
eigenvector of both of Sx and Sy. This is however not true.

Example 2. We now consider the deviations of Sx and Sz:

(3.18) ∆(Sx)∆(Sz) ≥ h̄

2 | ⟨ψ|[Sx,Sz] |ψ⟩| = h̄

2 | ⟨ψ|Sy|ψ⟩|.

Now, let us assume that the quantum state would be

(3.19) |ψ⟩ = 1
2(1+ eiθ) |0⟩− i

2(1− eiθ) |1⟩
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in the computational basis {|0⟩ , |1⟩}. |ψ⟩ is neither the eigenvector of Sx nor of Sz
in general. A straightforward calculation yields that ∆(Sx) = h̄

2 cos(θ) and ∆(Sz) =
h̄
2 sin(θ), whose product gives ∆(Sx)∆(Sz) =

(
h̄
2

)2 1
2 sin(2θ). The product is zero for

2θ = nπ, n ∈ N. Moreover and surprisingly, ⟨ψ|Sy|ψ⟩ = 0. Therefore, it would be
possible to find some quantum state for which the deviations could vanish. This
shows us that in a finite dimensional Hilbert space one can find some quantum
state |ψ⟩ for which we can ascertain some complementary, or mutually unbiased,
observables simultaneously with certainty. This is however not true.

Example 3. In this third example, we wish to give a classical example, which has
been explored in the reference (Bialynicki-Birula & Rudnicki, 2011). We consider
two scenarios that are depicted in Figure 3.2. In the first scenario in Figure 3.2a, the
classical particle is allowed to move in the regions I and IV. In the second scenario
in Figure 3.2b, the classical particle is allowed to move in the whole box freely;
there are no barriers inside the box. Intuitively and reasonably we expect that the
inaccuracy in the determination of the particle’s position in the first scenario should
be less than that of the second scenario. Let us see if this is true. The probability
for finding the particle at a position in the first scenario is

(a) A classical particle’s motion is con-
fined in the regions I and IV . Each
region has the length of L/4.

(b) A classical particle’s motion is con-
fined in a box of length L, having four
regions.

Figure 3.2 The motions of a classical particle in two different scenarios. In (3.2a),
regions II and III have been placed on the regions I and IV respectively and they
are forbidden. The particle can be placed, and so thus, move in the regions I and
IV. In (3.2b), all of the regions together constitute a box of length L and there are
no barriers or partitions between the regions. The particle can move freely in the
box.

(3.20) pa(x) =


2
L if x ∈ [0, L4 ]
2
L if x ∈ [3L

4 ,L]
0 elsewhere.

A straightforward calculation of the position deviation yields the result ∆a(X) =
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√
7
4

L√
12 . For the second scenario, the corresponding probability is

(3.21) pb(x) =


1
L if x ∈ [0,L]
0 elsewhere.

We estimate the deviation for position of the particle in this case as ∆b(X) = L√
12 .

As is seen, ∆a(X) > ∆b(X), which contradicts our intuition. This shows us that
deviation-based uncertainty depends on the variance, which is very sensitive to the
tail of probability distribution. In the other words, the uncertainty is very sensitive
to labeling the outcomes. Surprisingly, this counter-intuitive fact also arises if we
consider a quantum particle.

Example 4. We now consider an electron in two scenarios that are very similar
to that of Example 3. In the first scenario, the electron is confined with equal
probability in the small boxes with length a attached to the edges of the long box
of length L, which has been centered at x= 0. In the second scenario, the electron
moves inside the box of length L+2a, centered at x= 0. We have schematized them
in Figure 3.3. We assume that in the first scenario the two small boxes are far

(a) An electron’s motion is confined in
the boxes of length a, attached to the
edges of the box of length L.

(b) An electron’s motion is confined in
a box of length L+ 2a. The electron
moves freely inside the box.

Figure 3.3 The motions of an electron in two different scenarios. In (3.3a), the
electron is allowed to be move in the boxes attached to the edges of a relatively
long box of length L. In (3.3b), the electron moves freely in the long box of length
L+ 2a. We do not take other physical quantities such as spin into account that is
not affect our conclusion

away from each other enough so that the overlapping of Schrödinger functions in the
middle can be ignored. In that case, solving Schrödinger equation for the electron
in the first scenario gives

(3.22) ψn(x) = 1√
2

√2
a

sinI
(
nπ

a
(x+ L

2 )
)

+
√

2
a

sinII
(
nπ

a
(x− L

2 )
)

for the nth level energy from which we find the variance of the position for electron
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as

(∆a(X))2 = V ara(X) = (L+2a)2
(

1
12 + L

6(L+2a) − a2

2n2π2(L+2a)2

)

≈ L2

4 , if L >> a and n >> 1.
(3.23)

In the second scenario, Schrödinger function of nth level energy that are found by
solving Schrödinger equation is

(3.24) ψn(x) =
√

2
L+2a cos

(
(2n+1)π
L+2a x

)
,

from which we find the variance of the position for the electron as

(∆b(X))2 = V arb(X) = (L+2a)2
(

1
12 − 1

2π2(2n+1)2

)

≈ L2

12 , if L >> a n >> 1.
(3.25)

Again, ∆a(X)>∆b(X), which is unexpected.

Examples (3) and (4) suggest us that deviation-based uncertainties depend on the
labeling of the outcomes. This is very absurd since one can reduce uncertainty
by simply relabeling the outcomes, or eigenvalues say, of the observables. This is
valid for every type of uncertainty relations that are based on the deviations of the
observables. We note that the dependence of the variance on labeling also arises if
the labeled quantities are finite (Coles et al., 2017). There are also some examples
that are to sign the problematic nature of the deviation-based uncertainty relations
(Urbanowski, 2020).

3.2 Entropic uncertainty relations

Quantum theory formalism is based on measurements and the corresponding out-
comes of the measurements. To be more explicit, let us assume that we have a system
with a quantum state ρ. If one wishes to know the value of a physical observables A
of the system, they must first perform a measurement of A on the system. Secondly,
They need to estimate the probabilities of the possible outcomes of the measure-
ment, which are corresponding to the eigenvalues of A. According to Born’s rule,
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we express the probabilities as pk = tr(Πkρ), where Πk is the projection operator,
or measurement element, that is supported by the eigenspace of the corresponding
eigenvalue ak. However, as is well known, all physical observables are not compat-
ible with each other, that is, we are not able to find a common eigenvector for two
observables in general. Therefore, the probability distributions {pnk = tr(Πnkρ)}dk=1
and {pmk = tr(Πmkρ)}dk=1 that correspond to two different observables An and Am,
but for the same quantum state ρ are correlated in general.

The measurement correlations result in restrictions on any entropy function H(p)
of the probabilities. When the restrictions are of the form H(p | An)+H(p | Am) ≥
C > 0, it is worth considering them as EURs because they do not only avoid the
simultaneous vanishing of the individual entropies but also lead to a trade-off rela-
tion between the individual entropies, that is, when one increases, the other has to
decrease in order to satisfy the inequality. This is the core reasoning of the EURs.
We say EURs because there are more than one EUR by choosing different entropies.
In the following subsequent sections, we first recover some EURs for positions and
momentum, and then, introduce EURs for finite dimensions.

3.2.1 Entropic uncertainty relations for position and momentum

EUR for position and momentum was given firstly by (Bialynicki-Birula & My-
cielski, 1975) in terms of Shannon entropy. In their approach they have used a
very important theorem, the Sobolev inequality. However, Bialynicki-Birula later
improved their results by taking the physical consideration into account and ex-
tending the result to Rényi entropy (Bialynicki-Birula, 2006). Firstly, we would like
to present Sobolev inequality, and then, EURs of continuous variables in terms of
Rényi, Shannon and Tsallis entropies.

Let us consider the function ψ(r) ∈ Lq and its Fourier transformation ϕ(k) ∈ Ls,

(3.26) ϕ(k) = 1
(2πα)n

2

∫
dnrψ(r)e− ik·r

α ,

in n-dimensional normed space, where 1
q + 1

s = 1 and α ∈ R+ such that α = h̄ in
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quantum theory. The norms in these spaces are defined as

∥ψ(r)∥q =
(∫

dnr|ψ(r)|q
) 1

q

∥ϕ(k)∥s =
(∫

dnk|ϕ(k)|s
) 1

s

.

(3.27)

Sobolev inequality then is

(3.28) ∥ϕ(k)∥s ≤ v(q,s)∥ψ(r)∥q, v(q,s) =
(

q

2πh̄

) n
2q
(

s

2πh̄

)− n
2s

and s≥ q.

We now consider Rényi entropy in order to derive EUR for continuous observables
such as position and momentum. We consider 1-dimensional normed space, i.e., n=
1. Then, probability densities for position and momentum are defined as the square
of Schrödinger function: P (x) = |ψ(x)|2 and P (p) = |ϕ(p)|2, for which q = s = 2.
Ignoring physical considerations and requirements we can take simply α= 1 so that
x and p are to be regarded as two dimensionless variables. Using Sobolev inequality
for ψ(x) and ϕ(p) in terms of the corresponding probabilities we have

(3.29)
(∫ ∞

−∞
dp(P (p))a

) 1
a

≤ v1(a,b)
(∫ ∞

−∞
dx(P (x))b

) 1
b
,

where a= s
2 , b= q

2 and

(3.30) v1(a,b) =
(
b

π

) 1
2b (a

π

)− 1
2a

.

From 1
q + 1

s we write 1
a + 1

b = 2, which yields a
b = a−1

1−b . Since ψ(x) can be also
treated as Fourier transformation of ϕ(p), Sobolev inequality is also valid by simply
exchanging ψ(x) and ϕ(p), that is,

(3.31) ∥ψ(r)∥s ≤ v(q,s)∥ϕ(k)∥q

Using this inequality, we obtain

(3.32)
(∫ ∞

−∞
dp(P (x))a

) 1
a

≤ v1(a,b)
(∫ ∞

−∞
dp(P (p))b

) 1
b
.

We will use the equations (3.29) and (3.32) in the following. At this stage, it is easy
to obtain an EUR based on Rényi entropy

(3.33) Ia(P (x)) = 1
1−a

ln
(∫ ∞

−∞
dxP (x)a

)
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for two continuous observables. To this aim, if one takes the natural logarithm of
both sides of equation (3.29), they achieve to

(3.34) 1
a

ln
(∫ ∞

−∞
dp(P (p))a

)
≤ ln(v1(a,b))+ 1

b
ln
(∫ ∞

−∞
dx(P (x))b

)
,

and multiplying both sides with a and using a
b = a−1

1−b , they obtain

ln
(∫ ∞

−∞
dp(P (p))a

)
≤ a ln(v1(a,b))+ a−1

1− b
ln
(∫ ∞

−∞
dx(P (x))b

)
1

a−1 ln
(∫ ∞

−∞
dp(P (p))a

)
≤ a

a−1 ln(v1(a,b))+ 1
1− b

ln
(∫ ∞

−∞
dx(P (x))b

)
1

1−a
ln
(∫ ∞

−∞
dp(P (p))a

)
+ 1

1− b
ln
(∫ ∞

−∞
dx(P (x))b

)
≥ − a

a−1 ln(v1(a,b))

(3.35)

and finally, using the explicit form of v1(a,b) in equation (3.30), they arrive at the
EUR for position and momentum based on Rényi entropy as (Bialynicki-Birula,
2006)

(3.36) Ia(P (p))+ Ib(P (x)) ≥ − 1
2(1−a) ln(a)− 1

2(1− b) ln(b)+ ln(π).

By means of equation (2.46), one can write the corresponding EUR of Tsallis entropy
(Rajagopal, 1995). If one takes the limits a → 1 and b → 1, they obtain EUR of
Shannon entropy,

(3.37) HS(P )+HS(X) ≥ ln(πe),

where

(3.38) HS(P ) = −
∫ ∞

−∞
P (p) ln(P (p))dp and HS(X) = −

∫ ∞

−∞
P (x) ln(P (x))dx.

The most important fact of equation (3.37) is that it implies Heisenberg uncertainty
relation. To see this, we first note that maximization of Shannon entropy of a
continuous variable X under the constraints of having a fixed mean value x, a fixed
deviation σ(X) of the variable and the normalization condition for the distribution
gives rise to the Gaussian distribution,

(3.39) P (x) = 1√
2πσ(X)2

exp
(

−(x−x)2

2σ(X)2

)
,

for which Shannon entropy of the variable takes its maximum value that is equal to
1
2 ln

(
2πeσ(X)2

)
. Accordingly, taking σ(X) and σ(P ) as the deviations of position

and momentum respectively, we can write HS(X) ≤ 1
2 ln

(
2πeσ(X)2

)
and HS(P ) ≤
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1
2 ln

(
2πeσ(P )2

)
. Using these inequalities and the uncertainty relation of equation

(3.37) we obtain Heisenberg uncertainty relation

ln(2πeσ(X)σ(P )) =ln
(√

2πeσ(X)
)

+ln
(√

2πeσ(P )
)

≥HS(X)+HS(P ) ≥ ln(πe)

⇒ σ(X)σ(P ) ≥1
2 .

(3.40)

In the previous example, we just treated the situation from a very mathematical
perspective; we implicitly assumed that the measurement devices have a perfect
resolution such that they could detect the ideal values without any inefficiency.
However, this is not true because every measurement are performed by a finite
resolution such that we always register an interval of the outcomes, not precise real
values. To be more realistic and consider the situation in a physical perspective
we should handle the individual probabilities with a finite interval. Based on this
reasoning, we now consider a realistic situation, following the work of Bialynicki-
Birula (Bialynicki-Birula, 2006).

The probabilities of kth and lth outcomes associated with position and momentum
of a quantum particle having the corresponding quantum states |ψ⟩ and |ϕ⟩ can be
expressed as

pk(δx) =
∫ (k+1)δx

kδx
dx|⟨x|ψ⟩|2 =

∫ (k+1)δx

kδx
dx|ψ(x)|2

pl(δp) =
∫ (l+1)δp

lδp
dp|⟨p|ϕ⟩|2 =

∫ (l+1)δp

lδp
dp|ϕ(p)|2

(3.41)

respectively, and the integer indices k and l run from −∞ to ∞. We have assumed
reasonably that the intervals have equal size. We note that the resolution intervals
δx and δp are not about the accuracy of the measuring instruments, but rather
about the standard error of the measurement itself. As was pointed out before,
if we refer these intervals to the measuring instruments, we come about a vicious
circle. δxδp represents the area of the phase space in which the particle is to be
detected. Therefore, we can construe the area as follows: the more accurately one
wishes to localize the particle in phase space, the more is the momentum blurring
in the phase space.

Based on slicing the probabilities as above, we can write the left and right hand
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sides of equation (3.29) as

∫ ∞

−∞
dp(P (p))a =

∞∑
l=−∞

∫ (l+1)δp

lδp
dp(P (p))a,

∫ ∞

−∞
dx(P (x))b =

∞∑
k=−∞

∫ (k+1)δx

kδx
dx(P (x))b

(3.42)

and similarly for both sides of the equation (3.32). We now apply Jensen inequality
of integral form to each term in the sums. Jensen inequality states that the value
of a convex function at the average point is less than or equal to the average value
of the function, and vice versa for concave functions. Any function f(t) = tα with
α > 1 is a convex function while for α < 1 is a concave function. Assuming that
a > 1 and b < 1 in equation (3.42), and applying Jensen inequality to each integral
in the sums we obtain(

1
δp

∫ (l+1)δp

lδp
dpP (p)

)a
≤ 1
δp

∫ (l+1)δp

lδp
dp(P (p))a

1
δx

∫ (k+1)δx

kδx
dx(P (x))b ≤

(
1
δx

∫ (k+1)δx

kδx
dxP (x)

)b
.

(3.43)

With the use of the definition of probabilities in equation (3.41) we can put the
equalities of (3.42) in inequality forms by means of equation (3.43) as

(δp)1−a
∞∑

l=−∞
pal (p) ≤

∫ ∞

−∞
dp(P (p))a

∫ ∞

−∞
dx(P (x))b ≤ (δx)1−b

∞∑
k=−∞

pak(x),
(3.44)

and combining these inequalities with equation (3.29) lead to

(δp)1−a
∞∑

l=−∞
pal (p)


1
a

≤ v1(a,b)
(δx)1−b

∞∑
k=−∞

pbk(x)


1
b

 ∞∑
l=−∞

pal (p)


1
a

≤
(
δxδp

πh̄

) 1−b
b

(a)− 1
2a (b)

1
2b

 ∞∑
k=−∞

pbk(x)


1
b

 ∞∑
l=−∞

pal (p)


1
a−1

≤ δxδp

πh̄

b
1

2(1−b)

a
1

2(a−1)

 ∞∑
k=−∞

pbk(x)


1
1−b

1
1−a

ln
 ∞∑
l=−∞

pal (p)
+ 1

1− b
ln
 ∞∑
k=−∞

pbk(x)
≥ −1

2

(
ln(a)
1−a

+ ln(b)
1− b

)
− ln

(
δxδp

πh̄

)

(3.45)
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from which we finally state EUR for position and momentum based on Rényi entropy
as (Bialynicki-Birula, 2006)

(3.46) Ia(P )+ Ib(X) ≥ −1
2

(
ln(a)
1−a

+ ln(b)
1− b

)
− ln

(
δxδp

πh̄

)
.

This result is true for a > 1, b < 1 since we came about this conclusion by using
Jensen inequality under these restrictions. However, we obtain the same result for
a < 1 and b > 1 if we start from the equation (3.32). Therefore, the result is general
under the condition 1

a + 1
b = 2. Taking the limits a→ 1 and b→ 1 in equation (3.46)

we obtain EUR of Shannon entropy

(3.47) HS(P )+HS(X) ≥ − ln
(
δxδp

πh̄

)
,

and using the equation (2.46) one can obtain the corresponding EUR of Tsallis
entropy. There are also many other examples of EURs of different entropies for
continuous variables, such as EUR of Tsallis entropy for signal processing associated
with fractional Fourier transformation (Guanlei et al., 2021); providing link between
deviation-based uncertainty relation and EURs (Hertz & Cerf, 2019); application
of EUR of Shannon entropy to generalized Hulthen-Yukawa potential (Ikot et al.,
2020) and to a two-dimensional nanoring placing in the combination of a transverse
uniform magnetic field and the Aharonov-Bohm flux (Olendski, 2019), and also the
extensions of EURs to relative entropies (Floerchinger et al., 2021).

3.2.2 Entropic uncertainty relations in finite dimensions

As was pointed out in section 3.1, the problematic nature of deviation-based uncer-
tainty relations inspired Deutsch (Deutsch, 1983) to introduce a new formulation
of the uncertainty principle. Let us consider that we have two observables A1 and
A2 associated with a system in d-dimensional Hilbert space. We also assume that
the observables are non-degenerate, and so thus, each of them has d distinct eigen-
values. In addition, let {|1ek⟩}d−1

k=0 and {|2ek⟩}d−1
k=0 be their respective eigenvectors

corresponding to the sets of their eigenvalues {a1k}d−1
k=0 and {a2k}d−1

k=0. Deutsch’s
aim was to obtain an irreducible lower bound for the non-commutative observables
A1 and A2 in the finite dimension d, such as for spin-half operators in d = 2. In
accordance with their idea, Deutsch firstly expressed the EUR verbally as
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Uncertainty in the result of

a measurement of A1 and A2

≥ (An irreducible lower bound) .

Assuming that the system has the quantum sate |ψ⟩ and considering the probabilities
p1k = |⟨e1k|ψ⟩|2 and p2k = |⟨e2k|ψ⟩|2 of obtaining the outcomes a1k and a2k through
the measurement of the observables A1 and A2 respectively, Deutsch expressed the
right side of his idea given above in terms of the summation of Shannon entropy of
the observables

(3.48) HS(p | A1)+HS(p | A1) = −
d−1,d−1∑
k=0,j=0

p1kp2j (ln(p1k)+ ln(p2j)) ,

and aimed to give a lower bound of this expression. For a fixed k, the term in the
parenthesis of equation (3.48) is in general non-positive and it takes its maximum
value when the quantum state |ψ⟩ is in the midway between |e1k⟩ and |e2j⟩ as follows:

(3.49) |ψ⟩ = 1√
2(1+ |⟨e1k|e2j⟩|)

(
|e1k⟩+ e−iarg(⟨e1k|e2j⟩) |e2j⟩

)
.

Using this fact we can write in general

HS(p | A1)+HS(p | A2) ≥ −2
d−1∑
k=0

p1kp2k ln
(1

2(1+ |⟨e1k|e2k⟩|)
)

≥ −2ln
(

1
2(1+max

k,j
{|⟨e1k|e2k⟩|})

)

= 2ln
(

2
1+maxk,j{|⟨e1k|e2k⟩|}

)
.

(3.50)

For notational convention we make the definition c := maxk,j |⟨e1k|e2j⟩|. Kraus con-
jectured that Deutsch’s achievement of EUR could be improved further as (Kraus,
1987)

(3.51) HS(p | A1)+HS(p | A2) ≥ −2ln(c),

which was proved by (Maassen & Uffink, 1988). The advantage of equation (3.51)
over the deviation-based uncertainty relation in equation (3.4) is that the right hand
side is independent of the system state. Therefore, it yields a nontrivial information
about the correlation of the probabilities whenever c < 1, which in turn becomes
an evidence for the non-commutativity of the observables. Since Rényi entropy is
mathematically the generalization of Shannon entropy and satisfies SK axioms, it
would be useful to introduce the extension of equation (3.51) to Rényi entropy form.
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To this aim, we first introduce Riesz theorem:

Theorem 3.1 (Riesz theorem) Let |v⟩ = (v1,v2, . . . ,vN )T ∈ CN and U be a uni-
tary transformation such that (T |v⟩)j =∑

k Tjkvk, and let κ= maxj,k
∣∣∣Ujk∣∣∣. Then

κ
1
a

 N∑
j=1

|(U |v⟩)j |a


1
a

≤ κ
1
b

 N∑
k=1

|xk|b


1
b

, 2 ≥ b≥ 1 and 1
a

+ 1
b

= 1.

Recalling our previous considerations for two probabilities, p1k = |⟨e1k|ψ⟩|2 and
p2k = |⟨e2k|ψ⟩|2, Riesz theorem can be readily used if we choose vk = ⟨e1k|ψ⟩, Ujk =
⟨e2j |e1k⟩ and (U |v⟩)j = ⟨e2k|ψ⟩, so that it becomes p1k = |vk|2 and p2j = |(U |v⟩)j |2.
we can then restate Riesz theorem in terms of probabilities as

(3.52) c
1
β

 N∑
j=1

pβ2j


1
β

≤ c
1
α

 N∑
k=1

pα1k


1
α

,

where α= b
2 and β = a

2 so that we have 1
α + 1

β = 2, from which we read α
β = α−1

1−β . By
imitating the steps in equation (3.45) we reach to EUR of Rényi entropy

(3.53) Iα(p | A1)+ Iβ(p | A2) ≥ −2ln(c).

Taking the limits α→ 1 and β → 1 we obtain EUR of Shannon entropy, and again,
using the equation (2.46) the corresponding relation can be obtained for Tsallis
entropy. Lower bound of equation (3.53) is in general referred as qMU := −2ln(c)
after Maassen and Uffink. Our first application of equation (3.53) is to MUBs
of Pauli operators. For a pair of MUBs in 2-dimensional Hilbert space, qMU =
ln(2). In general, for any pair of MUBs in d-dimensional Hilbert space, qMU =
ln(d). This is quite reasonable because it is what we wish to come about. This
tells us that the uncertainty of two mutually unbiased bases cannot be removed
completely when considering a particular quantum state |ψ⟩ of the system under
consideration. In other words, one cannot code a complete knowledge of two MUBs
into one quantum state |ψ⟩. Complete knowledge here means that one knows what
exact eigenvalues the corresponding observables have. For example, if one knows
that spin-half observable Sz has up-spin with certainty, one can confidently represent
this complete knowledge with the quantum state |0⟩. Now, we ask to ourselves: Does
one also have an opportunity, even in principle, to know a complete knowledge of
the spin-half observable Sx? The inequality (3.53) tells us that it is impossible
without the use of further resource, such as using another system as a memory, a
phenomenon that are to be mentioned below.
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The result explored above becomes general only for Shannon entropy when we con-
sider a general quantum state ρ, rather than a pure one, |ψ⟩. It is not tight even for
a general quantum state ρ; for example, if the quantum state is maximally mixed
sate, ρ = 1

dI, the left side of equation (3.53) becomes 2ln(d), which is greater than
the lower bound. Addressing this problem, Frank and Lieb (Frank & Lieb, 2012)
proved the following result conjectured by Rumin (Rumin, 2011)

(3.54) HS(p | A1)+HS(p | A2) ≥ qMU +S(ρ),

where S(ρ) = −tr(ρ ln(ρ)) is the von Neumann entropy. Now, the bound is tighter
than the previous result, and this is for any two observables A1 and A2.

The above approaches are based on the notion of two observables with the sets
of their corresponding eigenvectors. From the perspective of quantum operations
formalism, we need to consider two general measurements M = {Mk}nk=1 and
N = {Nk}mk=1 in a d-dimensional Hilbert space. The probabilities then are {pk =
tr(Mkρ)}nk=1 and {qk = tr(Nkρ)} and their entropies, H(M | ρ) and H(N | ρ) for
any entropy function. Let us define the norm ∥A∥s := max|ψ⟩ {|A |ψ⟩| : ⟨ψ|ψ⟩ = 1}.
Then, using Rényi entropy in this case for a general quantum state ρ, Rastegin found
the following EUR (Rastegin, 2010)

(3.55) Iα(M | ρ)+ Iα(N | ρ) ≥ −2ln(g(M,N )) ,

where g(M,N ) = maxj,k ∥M
1
2
j N

1
2
k ∥s and 1

α + 1
β = 2 as usual. This is the generaliza-

tion of the relation in equation (3.53) to the quantum operation formalism. Indeed,
if we take M and N as the measurements of two MUBs, we recover the result
of equation (3.53). Further efforts have been done to improve these uncertainty
relations under special cases (Zozor et al., 2014).

The above results are just for two observables and quantum operations. But, what
if we consider more than two observables? This question was addressed by Sanchez-
Ruiz (Sánchez-Ruiz, 1993, 1995) and they gave an EUR for N MUBs. In order to
explore this result we need to introduce the concept of purity of a probability distri-
bution. Let {Πnk}d−1

k=0 be measurement elements of a MUB in d-dimensional Hilbert
space, ρ be a general quantum state and {pnk = tr(Πnkρ)}d−1

k=0 be the corresponding
probabilities. Then, we define the purity of the probabilities as Cn(Pn) :=∑d−1

k=0 p
2
nk.

It has been shown that the summation of the purities of N MUBs obeys the following
inequality (Ivanovic, 1992; Wu et al., 2009)

(3.56)
N∑
n=1

Cn(Pn) ≤ tr
(
ρ2
)

+ N −1
d

.
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For N = d+ 1, the right side becomes tr
(
ρ2
)

+ 1. Based on this inequality and the
equation (3.53) for N MUBs, Sanchez-Ruiz obtained (Sánchez-Ruiz, 1993)

(3.57)
N∑
n=1

HS(An | ρ) ≥ (N +1)ln
(

N +1
tr(ρ2)+1

)
.

However, this result is not optimal. There are some other works devoted to improve
this lower bound (Sánchez-Ruiz, 1995; Wu et al., 2009; Puchała et al., 2015). Using
variational calculus, Sanchez-Ruiz succeeded to find optimal lower bound for an
informationally complete set of MUBs in dimension two (Sánchez-Ruiz, 1993):

(3.58) HS(σx | ρ)+HS(σy | ρ)+HS(σz | ρ) ≥ 3
2 ln(2).

EUR of Rényi entropy for N MUBs and two SIC-POVMs was obtained by (Rastegin,
2013). They found the EUR of Rényi entropy for N MUBs in d-dimensional Hilbert
space as

(3.59)
N∑
n=1

Iα(An) ≥ Nα

2(α−1) ln
(

Nd

dtr(ρ2)+N −1

)
,

where the set {An}Nn=1 represents the operators corresponding to N MUBs. In the
same work, Rastegin showed that the purity of a SIC-POVM N with measurement
elements N = {Nj}d

2
j=1 and the corresponding probabilities {pj = tr(Njρ)} obeys the

following equality

(3.60) C(N ) =
d2∑
j=1

p2
j =

tr
(
ρ2
)

+1
d(d+1) .

Using this equality and keeping the notation for the SIC-POVM above, Rastegin
obtained the EUR of Rényi entropy for a SIC-POVM as

(3.61) Iα(N | ρ) ≥ α

2(α−1) ln
(
d(d+1)

tr(ρ2)+1

)

for α∈ [2,∞) and the lower bound, that is, the right side is ln
(
d(d+1)

tr(ρ2)+1

)
for α∈ (0,2].

In contrast to MUBs, we cannot talk about EUR of more than one SIC-POVM be-
cause a SIC-POVM is informationally complete; once one knows a complete knowl-
edge of a SIC-POVM, knowing the other is trivial. Therefore, it is meaningless to
talk about the uncertainty of more than one SIC-POVM, which has been argued
in (Rastegin, 2013). In that case, can we spell out entropic uncertainty relation
for a single SIC-POVM? We have a chance to interpret it physically: if we regard
each element of a SIC-POVM as an operator, then we could argue that knowing
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the quantum state of the system is one of the SIC-POVM’s element with certainty
leaves us uncertain about the knowledge of the other elements. In other words,
the information content of a SIC-POVM cannot be represented by a single pure
quantum state.

So far, we have considered EURs of MUBs and SIC-POVM such that the principle
system is not correlated with another system. Let us assume a correlation between
the principal system and another secondary system, and an agent whose is going
to perform the measurement of two MUBs on the principle system. Can the agent
determine both MUBs with certainty if they have access to the knowledge of the
secondary system? This is an interesting question that was firstly studied by Berta
et. al. (Berta et al., 2010). In that case, EUR is illustrated in the frame of a game
played by two fictitious characters called Alice and Bob. Bob initially prepares a
correlated bipartite state ρBA of two particles A and B, and sends particle A to
Alice while he holds the other as a quantum memory for himself. They agree on
the observables, say A1 and A2, that will be measured on particle A by Alice. Alice
performs her measurement and tells Bob which observables she has measured but not
the outcome of her measurement. The goal of the game is for Bob to guess correctly
the outcome of Alice’s measurement by means of his quantum memory particle.
Entropic uncertainty for the observables in the presence of quantum memory was
obtained by Berta et al. (Berta et al., 2010) as

(3.62) S(A2 |B)+S(A2 |B) ≥ − log2(c)+S(A |B),

where S(As | B) = S(ρBAs) − S(ρA) = −tr(ρBAslog2(ρBAs)) + tr(ρBlog2(ρB)) is
the conditional von Neumann entropy of the post-measurement state ρBAs =∑
k(|sk⟩⟨sk|⊗I)ρBA(|sk⟩⟨sk|⊗I) for s∈ {1,2}, and also S(A |B) is conditional von

Neumann for the initial state ρBA. This reformulation is generally called Quantum-
Memory-Assisted Entropic Uncertainty Relation (QMA-EUR) which is stronger than
Maassen and Uffink’s uncertainty relation (Maassen & Uffink, 1988), and its most
remarkable result is that Bob could guess with certainty if ρBA is maximally entan-
gled state.

For instance, let us assume that Bob has prepared the Bell state
∣∣∣ϕ+

〉
= 1√

2(|0⟩A⊗
|0⟩B + |1⟩A⊗|1⟩B), and Bob and Alice have agreed on the measurements of SZ and
SX that are going to be performed by Alice. Accordingly, S(A | B) = −log2(2).
Then, the right side of equation (3.62) becomes log2(2) − log2(2) = 0, which means
that Bob will be able to guess the outcomes of the measurement performed by Alice
with certainty. QMA-EUR and its revised versions were experimentally verified
(Prevedel et al., 2011; Li et al., 2011; Bergh & Gärttner, 2021; Sponar et al., 2021)
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and many other experiments based on neutron optics were proposed for testing
them (Demirel et al., 2020). QMA-EUR has found room in diverse application areas
such as quantum noisy channel (Pourkarimi et al., 2020), entanglement witness (Li
et al., 2011), quantum steering (Uola et al., 2020) and EUR of correlated position
and momentum (Furrer et al., 2014). As is seen from equation (3.62), the lower
bound of QMA-EUR is dependent on the quantum memory system in terms of the
conditional entropy S(A | B), which in turn can be expressed in terms of mutual
information I(A : B) = S(A) −S(A | B). Based on this equality, further efforts has
been made to tighten the lower bound in equation (3.62) by having recourse to
mutual information and Holevo quantity (Adabi et al., 2016; Huang et al., 2018;
Ming et al., 2020). The reformulation of QMA-EUR given by (Huang et al., 2018)
reveals that the effect of quantum memory on the entropic uncertainty completely
reflects into the lower bound when the lower bound is presented in terms of Holevo
quantity. Recasting the lower bound into mutual information and Holevo quantity
provides one to investigate the dynamics of QMA-EUR, such as the effect of Hawking
radiation (Huang et al., 2018; Ming et al., 2019) and of the neutrino oscillation
(Wang et al., 2020) on the quantum correlation between the system of interest and
the memory system. In addition, extension of QMA-EUR to tripartite system was
also worked out (Dolatkhah et al., 2020). A review of EURs and their applications
have been collected in (Coles et al., 2017).

In addition to EUR, the upper bound of EUR is another important concept which
puts an upper bound on the summation of the entropies of two or more observables
which we henceforth abbreviate as entropic certainty relation (ECR). While EUR
quantifies the lack of information, ECR is related to the correlation between the
observables, i.e., it measures our certainty about the observables. Therefore, to be
more precise, EUR and ECR cannot be treated on the same grounds. Because, if one
would investigate EUR, for example, for the spin-1/2 observables Sx and Sy, they
would always find that EUR is satisfied if there is no accessible memory. However,
in case of ECR, it is impossible to say that the spin observables are incompatible
if, for instance, the state of the system is one of the eigenstate of the spin-1/2
observable Sz. Because, in that case, Sx and Sy are fully uncertain, i.e., ECR does
not reveal any correlation. However, we show that this fact has an advantage for
searching the existence of mutually unbiased bases. ECR for the observables set
{An}Nn=1 is defined as ∑nHS(An | ρ) ≤ f for which the upper bound function f

is most likely dependent on the dimension (d) of the system, the number (N) of
the observables, the state (ρ) of the system and the measurement elements of the
observables ({|nk⟩}). If such an upper bound is found, mutual information of the
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observables, which measures the correlation between the observables,

(3.63) I(An : Y ) := S(ρAn)−S(ρAn|Y )

can also be bounded, where Y is a classical (or quantum) memory given its access to
the observer and it becomes S(ρAn) =HS(An | ρ). If the memory Y is classical mem-
ory, EUR implies an inequality for conditional entropy, ∑nH(An) ≥ q ⇒∑

nH(An |
Y ) ≥ q, which, by means of equation (3.63), yields directly an inequality for mutual
information: ∑

n I(An : Y ) ≤ ∑
nH(An) − q [Henceforth, we discard the quantum

state ρ in the expression of entropy for notational convention, that is, we shall use
HS(An) instead of HS(An | ρ), and the same for von Neumann entropy]. This was
first presented by Hall (Hall, 1995) for bipartite case and is called information ex-
clusion relation. The relation between mutual information and conditional entropy,
I(An :B) = S(An)−S(An |B), shows that the decrease of our uncertainty about an
observable An due to the access to a quantum memory B equals to the increase of
our certainty about the observable due to our knowledge of the memory. This fact
immediately implies that dynamical behaviour of QMA-EUR is completely reflect
into mutual information. Therefore, the dynamics of the entanglement between the
memory and measurement systems can be also investigated in the context of mu-
tual information (Fuentes-Schuller & Mann, 2005). Indeed, QMA-EUR in equation
(3.62) can be directly put in the form of information exclusion relation:

(3.64) I(A1 :B)+ I(A2 :B) ≤ S(A1)+S(A2)+ log2(c)−S(A |B),

where S(As) is to be Shannon entropy HS(As) for s ∈ {1,2}. For instance, one
can conclude that Hawking radiation results in an decrease of the upper bound of
information exclusion relation since it gives rise to an increase of the lower bound
of QMA-EUR (Huang et al., 2018; Feng et al., 2015). Therefore, it is not ECR that
captures the correlation of the observables exhaustively, but information exclusion
relation as the counterpart of EUR. As is seen from equation (3.64), the upper bound
of the summation of marginal entropies S(As), that is ECR, plays a crucial role in
information exclusion relation. As we show, in contrast to EUR, ECR can also be
used as a criterion in searching the existence of more than three MUBs especially
when the dimension of the system is not a power of a prime number. To give an
example, the existence of more than three MUBs in six-dimensional Hilbert space
can be numerically studied based on the criterion. The extendibility of MUBs is one
of the most important question in quantum information theory. We will return to
this point in Section.3.3.
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3.3 Optimal upper bound of entropic uncertainty relation

Some Optimal upper bound of entropic uncertainty relations (ECRs) have been
presented but they are not optimal (Sánchez-Ruiz, 1993, 1995; Puchała et al., 2015)
and some of them are valid only for pure states (Puchała et al., 2015). In addition,
they have not been applied yet to any physical problem. We obtain optimal ECR
of the measurements performed by N MUBs for some state and it becomes valid
for general state when N = d+1. We also give some applications of our result. Our
method is based on the variational calculus with some conditions satisfied by the
probability distributions. Since a valid entropy function is a concave function, one
of the extremum values of its argument found by means of variational calculus gives
indeed its optimal upper bound (Lanczos, 1986).

In the literature, there is not a physically meaningful interpretation of the EUR for
SIC-POVMs although some effort has been devoted to find them (Rastegin, 2013).
However, as we pointed out above, EUR for a SIC-POVM is meaningful. Likewise,
it would be also meaningful to argue about the upper bound of the entropy of a
SIC-POVM. Since a SIC-POVM N has d2 measurement elements in d-dimensional
Hilbert space, the maximum value of the entropy could be at most HS(N ) = 2ln(d).
If we find a maximum less than this value, then we could argue that all the elements
of a SIC-POVM cannot be fully uncertain simultaneously. We indeed found such a
bound in our studies.

In this section, we shall present optimal upper bound of EUR for MUBs and SIC-
POVMs 2. We start with N MUBs {|nk⟩}N,dn=1,k=1 in Hilbert space Hd, which may
be considered as eigenvectors of the observables {An}Nn=1. These observables An
are known as complementary, or mutually exclusive, observables. If there are (d+
1) MUBs, we reconstruct the state ρ of a system with the aid of measurement
outcomes of the observables as ρ=∑d+1,d

n=1,k=1 pnkΠnk−I, where Πnk is the projection
operator onto the eigenspace of the eigenvector |nk⟩ of the observable An, and pnk

(=tr(Πnkρ)) is the probability of obtaining the corresponding eigenvalue through
measurement (Ivanovic, 1981). The relation between the elements of two MUBs can
be then rewritten as tr(ΠnkΠml) = 1+(dδkl−1)δnm

d . The set of probability distributions

2We have not studied here the EUR of Rényi and Tsallis entropies since applying our results to them is a
trivial problem.
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{pnk,n= 1,2, . . . ,N ;k = 1,2, . . . ,d} of N MUBs obeys the algebraic relation,

(3.65)
N,d∑

n=1,k=1
p2
nk ≤ tr

(
ρ2
)

+ ξ,

which was obtained in (Ivanovic, 1992) with ξ = 1,N = d+ 1, and in (Wu et al.,
2009) with ξ = N−1

d independently. Hence, the inequality in equation (3.65) is a
restriction on the summation of the purities of N mutually exclusive observables,
and the equality is achieved when N is d+ 1. When the summation of entropies of
N observables is maximized, this condition on purities has to be taken into account.
The optimization of the summation of the purities in equation (3.65) was used in
Ref.(Puchała et al., 2015) in order to obtain lower and upper bounds of entropic
uncertainty relation of N observables for pure states. Optimal ECR for N MUBs
can be obtained if the inequality (3.65) and the summation of probability to unity
are considered in the maximization of the entropy-summation of the observables. In
(Sánchez-Ruiz, 1993, 1995), Sánchez-Ruiz found ECR for (d+ 1) MUBs, with the
aid of the assumption that the purities of the observables corresponding to MUBs
are constant independently. We first extend the equality in equation (3.65) to N

MUBs for some state, and then, take it as a necessary condition on the probabil-
ity distributions; thus, in contrast to Refs.(Sánchez-Ruiz, 1993, 1995), the purities
of the observables are considered dependent on each other. The intuitive reason
behind our consideration can be seen from the following scheme. If one assumes
the probability distribution of an observable as {pn1 = 1,pn2 = pn3 = · · · = pnd = 0},
then the probability distributions of the rest observables become equally likely as
{ps1 = ps2 = · · · = psd = 1/d;s = 1,2, . . . ,n− 1,n+ 1, . . . ,N}, which implies that the
purities of the observables corresponding to N MUBs are dependent on each other.

Proposition 3.1 Let {|nk⟩ ,k = 1,2, . . . ,d} be the orthonormal basis of the observ-
able An in Hilbert space Hd. Then, for the states ρ=∑N,d

n=1,k=1λnk |nk⟩⟨nk|, the sum-
mation of the purities of N observables is ∑N

n=1Cn :=∑N,d
n=1,k=1 p

2
nk = tr

(
ρ2
)

+ N−1
d .

We now prove this proposition. When the dimension of the relevant system is
a power of a prime number, the expression ρ = ∑N,d

n=1,k=1λnk |nk⟩⟨nk| is valid for
any states that can be expanded in terms of N mutual unbiased bases such that
1 ≤ N ≤ d+ 1, because in this case, there are (d+ 1) MUBs (Wootters & Fields,
1989). If the dimension is not a power of a prime number, the expression given
above for states is still valid at least when 1 ≤ N ≤ 3 since we know that there
exist at least three MUBs in any finite dimensional Hilbert space (Klappenecker &
Rötteler, 2003).

Let us assume that ρ=∑N,d
n=1,k=1λnk |nk⟩⟨nk| . Since tr(ρ) = 1 then∑N,d

n=1,k=1λnk = 1.
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Furthermore, the trace of the square of the sate leads to

tr
(
ρ2
)

=
∑

m,n,k,s

λnkλms
1+(dδks−1)δnm

d

= 1
d

+
∑
nk

λ2
nk − 1

d

∑
n,k,s

λnkλns,

(3.66)

and the probabilities are

pnk : = tr(Πnkρ)

= λnk + 1
d

∑
m,l

λml−
1
d

∑
l

λnl.
(3.67)

If we consider the probabilities {pnk} and the coefficients {λnk} as column vectors
p = (p11,p12, . . . ,p(N)d)T and λ = (λ11,λ12, ...,λ(N)d)T respectively, the relation be-
tween them can be written by means of an Nd×Nd symmetric matrix T as p = Tλ.
More explicitly,

(3.68)


...
pnk

...

=


Id D1 D2 . . . DN−1

D1 Id D2 . . . DN−1
... . . .
D1 D2 . . . DN−1 Id




...
λnk

...

 ,

where Id is d×d identity matrix and the matrices {Di}N−1
i=1 are also d×d matrices

such that their entries are 1
d , that is

(3.69) D1 = · · · =DN−1 =Dd = 1
d


1 1 . . . 1
1 1 . . . 1

...
1 1 . . . 1

 .

It is easily seen that D2
d = Dd. The matrix T is not invertible which implies that

a particular distribution p = (p11,p12, ...,p(N)d)T is not uniquely determined by the
state ρ. The summation of the purities of N complementary observables is equal to
the square of the norm of p, ∑N

n=1Cn =∑N,d
n=1,k=1 p

2
nk = pTp, where it reads

pTp = λTT2λ

= N

d
+
∑
n,k

λ2
nk − 1

d

∑
n,k,s

λnkλns

= N

d
+tr

(
ρ2
)

− 1
d

= tr
(
ρ2
)

+ N −1
d

,

(3.70)
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that was to be shown. Consequently, this equality of purities proves the aforemen-
tioned intuitive reasoning of the fact that purities of the observables are dependent
on each other. Therefore, the equality has to be taken into account when maximized
the summation of the entropies. We obtain the optimal ECR for N MUBs under
the following conditions satisfied by the probability distributions of the associated
observables

d∑
k=1

pnk = 1(3.71)

N,d∑
n=1,k=1

p2
nk = tr

(
ρ2
)

+ N −1
d

,(3.72)

and under the assumption that the state ρ can be expressed in terms of N MUBs
under consideration. For N = d+1, the expression of the state in terms of N MUBs
is general, and in turn, the following results become true for any state. We will
henceforth abbreviate the trace of the square of the state as Π := tr

(
ρ2
)
. Our

method is based on the variation of the function

K[{An}] :=
N∑
n=1

HS(An) = −
N,d∑

n=1,k=1
pnk lnpnk,

where HS(An) is Shannon entropy of the observable An. Maximization of the func-
tion K[{An}] under the conditions given above is equivalent to the maximization of
the following function

Ω({pnk}) := −
N,d∑

n=1,k=1
pnk lnpnk

−λ(
N,d∑

n=1,k=1
p2
nk −Π− N −1

d
)−β(

d∑
k=1

pnk −1),
(3.73)

where λ and β are Lagrange multipliers. Variation of Ω-function reads

δΩ =
d∑

k=1

−
N∑
n=1

lnpnk −2λ
N∑
n=1

pnk − (β+N)
δpnk = 0

so that the following equality must be satisfied for all pnk’s, where none of them can
be zero,

(3.74)
N∑
n=1

lnpnk +2λ
N∑
n=1

pnk +(β+N) = 0, k = 1,2, . . . ,d.

Without losing generality, we choose the probabilities set {pnd = bn,pnk = tnkbn,k =
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1,2, . . . ,d− 1;n = 1,2, . . . ,N}. Substituting these probabilities into equation (3.74),
we obtain two equations

N∑
n=1

lnbn+2λ
N∑
n=1

bn = −(β+N) for k = d,(3.75)

N∑
n=1

ln tnk +
N∑
n=1

lnbn+2λ
N∑
n=1

tnkbn = −(β+N) for k = 1,2, . . . ,d−1.(3.76)

Substituting −(β+N) of equation (3.75) into equation (3.76), we obtain the follow-
ing equality

(3.77)
∑N
n=1 ln tnk∑N

n=1 (tnk −1)bn
= −2λ; k = 1,2, . . . ,d−1.

The right hand side of equation (3.77) is a constant number for every k= 1,2, . . . ,d−
1, so that the parameter tnk must be independent of index-k, that is, tn1 = tn2 = · · · =
tn(d−1) = 1−bn

(d−1)bn
. Consequently, we obtain the probability distributions as {pnd =

bn,pnk = 1−bn
d−1 ,k = 1,2, . . . ,d− 1;n = 1,2, . . . ,N}. According to these distributions,

the summation of the entropies is

(3.78) HT ({bn}) := S[{An}] = −
N∑
n=1

bn lnbn−
N∑
n=1

(1− bn) ln
(

1− bn
d−1

)

with the condition

(3.79)
N∑
n=1

(
db2n−2bn

)
= (d−1) [d(Π+1)− (d+1)]−N

d
,

which is the revision of the condition in equation (3.72), since we could not eliminate
this condition at the end of the maximization of the function K[{An}]. To find the
extremum values of the function HT ({bn}), we define similarly another function as

Ψ({bn}) := −
N∑
n=1

bn lnbn−
N∑
n=1

(1− bn) ln
(

1− bn
d−1

)

−µ

 N∑
n=1

(
db2n−2bn

)
− (d−1) [d(Π+1)− (d+1)]−N

d

 .
(3.80)

The variation of Ψ function reads

(3.81)
N∑
n=1

(
ln
(

1− bn
(d−1)bn

)
−2µ(dbn−1)

)
δbn = 0
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Since the infinitesimals {δbn} are arbitrary, the coefficients must be zero

(3.82) ln
(

1− bn
(d−1)bn

)
−2µ(dbn−1) = 0 ⇒

ln
(

1−bn
(d−1)bn

)
dbn−1 = 2µ;n= 1,2, . . . ,N.

The left hand side of equation (3.82) is constant, so that the parameters bn must
be independent of index-n, that is, b1 = b2 = · · · = bN . Bearing in mind this fact, we
obtain bn from equation (3.79) as

(3.83) b±n =
√
N ±

√
(d−1) [d(Π+1)− (d+1)]

d
√
N

;d≥
⌈
d+1
Π+1

⌉
,

where ⌈.⌉ is the ceiling function. The condition on the dimension d in equation (3.83)
comes from the fact that the term

√
(d−1) [d(Π+1)− (d+1)] must be non-negative

real number. The value b+n gives the optimal upper bound of the total entropy HT .
Making the abbreviation α :=

√
(d−1) [d(Π+1)− (d+1)], we obtain ECR for N

MUBs as

HT ≤H+
T (N,d,α) =N ln

(
d(d−1)

√
N

(d−1)
√
N −α

)

− N +
√
Nα

d
ln
(

(d−1)(
√
N +α)

(d−1)
√
N −α

)
.

(3.84)

In order for b−n to be a positive real number, it requires that

b−n =
√
N −

√
(d−1) [d(Π+1)− (d+1)]

d
√
N

> 0

⇒ d <
d+1
Π+1 + N

(d−1)(Π+1) ≤ d+1
Π+1 + d

d−1

⇒ d≤
⌈
d+1
Π+1

⌉
+1.

(3.85)

Assuming that the state would be a pure state, the restriction in equation (3.85) on
the dimension d leads to d≤

⌈
d+1

2

⌉
+1, which is true only if d∈ {2,3,4}. This means

that b−n cannot be a stationary value for the function S[{An}] but an extremum
(Lanczos, 1986). In passing, we emphasize that the upper bound in equation (3.84)
is independent of whatever the set of MUBs has been chosen; it is the same for all
type of MUBs.

For a general state, our ECR for N = d+1 in equation (3.84) is optimal in contrast
to the one

(3.86) HT ≤ (d+1)ln(d)− (d−1)(dΠ−1) ln(d−1)
d(d−1)
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given as equation (10) in Ref.(Sánchez-Ruiz, 1995) since Shannon entropy HT is a
concave function so that its extremum value {b+n } in equation (3.83) gives its max-
imum value (Lanczos, 1986). However, equation (3.86) can be used to tighten the
upper bound of information exclusion relation in equation (3.64) for MUBs in gen-
eral. In order to obtain true optimal value of the function S[{An}] in maximization
procedure, the equality satisfied by the purities in equation (3.73) has to be taken
in account as has been done above. The upper bound of Shannon entropy H({pnk})
for N MUBs given in equation (28) of Ref.(Puchała et al., 2015) is

(3.87) −
N,d∑

n=1,k=1
pnk ln(pnk) ≤NH(P )−N ln(d)

with the probability distribution P = {p1 = 1+(Nd−1)
√
r

Nd ,pi = 1−
√
r

Nd , i= 2, . . . ,Nd−1},
where r = NdPmin−1

Nd−1 and Pmin is minimum value of the summation of N puri-
ties. Without being optimal, ECR in equation (3.87) is valid only for pure states
(Puchała et al., 2015) while our result is valid whenever the state can be expressed
in terms of N MUBs. Another difference from the inequality in equation (3.87)
is that H+

T (N,d,α) is state-independent for pure states. To conclude, as its main
difference, our ECR for MUBs is optimal whenever the state can be expressed in
terms of N MUBs and for any state when N = d+1.

We have confirmed our result by some numerical estimations. For a pure state ρ in
dimension d= 2,

(3.88) ρ=
| α |2 αβ∗

α∗β | β |2

 ,
we can estimate ECR for spin observables (operators) {σX ,σY ,σZ}. In addition,
taking the eigenstates of spin operators as columns for constructing the unitary
matrices

(3.89) Uz =
1 0
0 1

 ,Ux = 1√
2

1 1
1 −1

 ,Uy = 1√
2

1 1
i −i

 ,
we can calculate the probabilities as pnk = ⟨1k|U †

nρUn |1k⟩, where {|11⟩ = |0⟩ , |12⟩ =
|1⟩} is computational basis. Without losing generality, if we choose α =

√
r and

β =
√

1− r exp(iϕ), then we obtain the probability distributions of spin observables
Sz,Sx,Sy as in Table 3.1.
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Table of MUBs and their probabilities, d= 2
Sz p11 = r p12 = 1− r

Sx p21 = 1
2(1+2

√
r(1− r)cos(ϕ)) p22 = 1

2(1−2
√
r(1− r)cos(ϕ))

Sy p31 = 1
2(1−2

√
r(1− r)sin(ϕ)) p32 = 1

2(1+2
√
r(1− r)sin(ϕ))

Table 3.1 The probability distributions table of MUBs in d = 2 when the state is
pure. The leftmost column stands for MUBs (Sn,n= z,x,y.), and the other columns
for probabilities of obtaining their first and second eigenvalues, respectively.

Writing total Shannon entropy of the observables (HS(σn),n= z,x,y.)

(3.90) HT (r,ϕ) :=
3∑

n=1
HS(σn) = −

3,2∑
n=1,k=1

pnk ln(pnk),

we can estimate numerically the maximum value of HT by running over the parame-
ters r and ϕ. The maximum values, as ca be seen in Figure 3.4, is 1.547120, achieving
when r = 0.2113 and ϕ = π

4 , which coincides with the value of ECR (H+
T (N,d,α))

given in equation (3.84).

Figure 3.4 Total Shannon entropy of 3 MUBs in equation (3.89) for different values
of the parameter ϕ.

We also confirmed our result for d = 3, N = d+ 1. Like in dimension d = 2, the
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general pure state in dimension d= 3 can be written as follows

(3.91) ρ=


| α |2 αβ∗ αγ∗

α∗β | β |2 βγ∗

α∗γ β∗γ | γ |2

 ,

and we choose the unitary matrices

U1 =


1 0 0
0 1 0
0 0 1

 ,U2 =


1√
3

1√
3

1√
3

1√
3

ω√
3

ω2
√

3
1√
3

ω2
√

3
ω√
3

 ,

U3 =


1√
3

1√
3

1√
3

ω√
3

ω2
√

3
1√
3

ω√
3

1√
3

ω2
√

3

 ,U4 =


1√
3

1√
3

1√
3

ω2
√

3
ω√
3

1√
3

ω2
√

3
1√
3

ω√
3

 ,
(3.92)

of an informationally complete set of MUBs, where ω = exp
(

2πi
3

)
. Then,

the probability of obtaining the eigenvalue λk of the observable An is pnk =
⟨1k| [U †

nρUn |1k⟩. Without losing generality, we choose α=
√
r,β = √

q exp(iϕ1) and
γ =

√
1− (r+ q)exp(iϕ2), leading to the probability distributions in Table 3.2:

Table of MUBs and their probabilities, d=3
A1 p11 = r p12 = q p13 = 1− (r+ q)
A2 p21 = 1

3(1+2f21) p22 = 1
3(1+2f22) p23 = 1

3(1+2f23)
A3 p31 = 1

3(1+2f31) p32 = 1
3(1+2f32) p33 = 1

3(1+2f33)
A4 p41 = 1

3(1+2f41) p42 = 1
3(1+2f42) p43 = 1

3(1+2f43)

Table 3.2 The probability distributions table of MUBs in d=3 when the state is pure.
The leftmost column stands for MUBs (An,n= 1,2,3,4.), and the other columns for
probabilities of obtaining their first, second and third eigenvalues, respectively.

The functions fnk’s are as follows:

f21 = √
rqcos(ϕ1)+

√
r(1− (r+ q))cos(ϕ2)+

√
q(1− (r+ q))cos(ϕ1 −ϕ2),

f22 = f21(r,q,ϕ1 − 2π
3 ,ϕ2 + 2π

3 ),f23 = f21(r,q,ϕ1 + 2π
3 ,ϕ2 − 2π

3 ),

f31 = f21(r,q,ϕ1 − 2π
3 ,ϕ2 − 2π

3 ),f32 = f21(r,q,ϕ1 + 2π
3 ,ϕ2),

f33 = f21(r,q,ϕ1,ϕ2 + 2π
3 ),f41 = f21(r,q,ϕ1 + 2π

3 ,ϕ2 + 2π
3 ),

f42 = f21(r,q,ϕ1 − 2π
3 ,ϕ2),f43 = f21(r,q,ϕ1,ϕ2 − 2π

3 ).

(3.93)
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Like in dimension d= 2, the maximum value of total Shannon entropyHT (r,q,ϕ1,ϕ2)
can be estimated, searching over its parameters r,q,ϕ1 and ϕ2. We obtained numer-
ically the (maximum) value as ≈ 3.44912, achieving when r = 0.210, q = 0.395,ϕ1 =
ϕ2 = 5.236 ≈ 5π

3 , which almost coincides with the value 3.47025 of H+
T (N,d,α).

These numerical results suggests that ECR in equation (3.84) is optimal.

The most physical significance of ECR is that it arises in searching mutually coherent
states, which are related to the existence of MUBs. By definition, |ψcoh⟩ is a mutu-
ally coherent state with respect to N MUBs associated with the set of observables
{An}Nn=1, iff {tr(Πnk |ψcoh⟩⟨ψcoh|) = 1

d ,∀n,k;n = 1,2, . . . ,N ;k = 1,2, . . . ,d}. Even if
the existence of 3 MUBs is known (Klappenecker & Rötteler, 2003), whether there
are more than three MUBs in non-prime power dimension is still an open question.
If {|ψk⟩}dk=1 are mutually coherent states with respect to N MUBs, the set of N
MUBs can be extended to (N + 1) MUBs (Mandayam et al., 2014). Stating in a
reverse manner, (i) if there is no a mutually coherent state |ψcoh⟩ with respect to N
MUBs, this set of N MUBs cannot be extended to (N + 1) MUBs. It is straight-
forward to see that in case of the state of the system being either a maximally
mixed state or a mutually coherent state (with respect to N MUBs in question),
total entropy of N MUBs must achieve its maximum value, that is, N ln(d). We
now wish to show how ECR (HT (N,d,α)) covers this fact. First of all, when the
state is a maximally mixed state (i.e., ρ = 1

dI), the parameter α becomes zero and
H+
T (N,d,0) = N ln(d), an extreme case in which we are not interested. Secondly,

we assume that the state of the system of inquiry could be written in terms of N
MUBs and a mutually coherent state |ψcoh⟩, that is,

(3.94) ρ=
N,d∑

n=1,k=1
λnk |nk⟩⟨nk|+ r |ψcoh⟩⟨ψcoh| .

For such state, the only change in our maximization procedure for total entropy
happens to the parameter α and the condition on the validity of b−n in equation (3.85)
such that α 7→ ᾱ=

√
(d−1) [d(Π+1)− (d+1)− r2(d−1)] and d≤

⌈
d+1
Π+1

⌉
+1 7→ d≤⌈

d+1
Π+1 + r2(d−1)

Π+1

⌉
+1. In that case, b−n is not valid when d≥ 6 for

√
d−5
d−1 ≥ r > 0 since

the condition d≤
⌈
d+1
Π+1 + r2(d−1)

Π+1

⌉
+1 is not satisfied anymore. In addition, we need

to make the revision H+
T (N,d,α) 7→H+

T (N,d, ᾱ) in equation (3.84). Now, if ρ is any
mutually coherent state with respect to N MUBs, it must be ∀λnk = 0, r = 1, which
makes the parameter ᾱ = 0, and thereby, H+

T (N,d,0) reduces to N ln(d) that was
to be shown. This is another justification that ECR in equation (3.84) is indeed
optimal. Since H+

T (N,d,α) ≤H+
T (N,d, ᾱ), and since the ECR in equation (3.84) is

optimal upper bound, we can, in consequence, assert that (ii) there is no a mutually
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coherent state with respect to N MUBs if the ECR in equation (3.84) cannot be
exceeded. As a result, from the two premises (i) and (ii) above, we make the following
inference: (iii) If ECR for N MUBs in equation (3.84) cannot be exceeded, this
set of N MUBs cannot be extended to (N + 1) MUBs. This inference sets forth a
quantitative criterion for the existence of mutually coherent states, and thus, for
the extendibility of MUBs. We emphasis that this inference is clearly valid not
only for the states that can be written in terms of N MUBs but for any state.
Therefore, ECR in equation (3.84) is not just an incremental but also a substantial
improvement of the previous ECRs. To give an example, since the existence of 4
MUBs in 6-dimensional Hilbert space is still a conundrum, this criterion can be used
as a numerical ground in order to show the non-existence of fourth MUB. If ECR
in equation (3.84) cannot be exceeded for 3 MUBs in six dimensional Hilbert space,
there is no fourth MUB. For a simple application, one can first prepare a general pure
state of the system, and then, perform the measurement of three MUBs. If the total
entropy of the outcomes of three MUBs does not exceed the bound in equation (3.84),
one can infer that there are no further MUBs. Since H+

T (N,d,α) ≤H+
T (N,d, ᾱ), the

criterion also implies that total entropy of N MUBs cannot be between H+
T (N,d,α)

and N ln(d) if there is no a mutually coherent state, and so thus, further MUBs.
Otherwise, a mistake must have happened when performed the measurements. In
other words, there is no state which results in a total entropy between H+

T (N,d,α)
and N ln(d) for N MUBs unless it consists of at least a mutually coherent state
as its part like in equation (3.94) . Therefore, if we are sure about performing the
measurement correctly, any total entropy of N MUBs that exceeds H+

T (N,d,α) must
be interpreted as an evidence for the existence of a mutually coherent state.

Another direct consequence of ECR in equation (3.84) is to decrease the upper bound
of information exclusion relation for MUBs. As was stated before, if the total en-
tropy of the observables set {An}d+1

n=1 has a lower bound such as ∑nHS(An) ≥ q,
the total entropy of the observables, where each of them is conditioned with a
classical memory Y , satisfies the inequality ∑nHS(An | Y ) ≥ q, which yields infor-
mation exclusion relation, ∑n I(An : Y ) ≤ ∑

nHS(An) − q. This means that, if the
observables are not compatible (i.e., q > 0), it is impossible to construct a deter-
ministic correlation between a classical memory and each of the observables of the
set {An}Nn=1. For the complementary observables {An}d+1

n=1 in d-dimensional Hilbert
space, q = (d+ 1)ln

(
d+1
Π+1

)
(Rastegin, 2013) and using the inequality in equation

(3.84) for (d+1) MUBs, we obtain an upper bound on the summation of the mutual
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information as

d+1∑
n=1

I(An : Y ) ≤ I+
T (N,d,α) = (d+1)ln

 d(d−1)(Π+1)
√
d+1

(d+1)
[
(d+1)

√
d+1−α

]


− d+1+
√
d+1α

d
ln
(

(d−1)
√
d+1+α

(d−1)
√
d+1−α

)
.

(3.95)

This result has a significant implication. Not only the lower bound but also the
upper bound of the total entropy for observables makes it impossible to construct
a deterministic correlation with classical memory which implies the incompatibility
of the observables. Because, if the (d+ 1) observables were compatible, the upper
bound of total mutual information would be (d+ 1)ln(d) − q, which is greater than
I+
T (N,d,α). We have shown that the upper bound of information exclusion relation

of the observables is dependent on the ECR for the observables. ECR becomes a
part of the upper bound of information exclusion relation together with q irrelevant
to the case of having a memory. Therefore, in expression of information exclusion
relation in equation (3.64), the term S(A1)+S(A2)+ log2(c) in information exclusion
relation plays the role of the lower bound q of EUR.

We can also apply the variational method explored above to Shannon entropy of SIC-
POVMs. We shall try to find an optimal upper bound of EUR for SIC-POVMs. We
are not going to use Rényi and Tsallis entropy, but only Shannon entropy.

Let N =
{
Ni = 1

d |ϕi⟩⟨ϕi| ; i= 1,2, ...,d2
}

be a SIC-POVM and ρ be the density ma-
trix of the system under consideration in d-dimensional Hilbert space. We then
read the probability distribution as {pi = Tr(Niρ), i = 1,2, ...,d2}. Since the SIC-
POVM is considered as an informationally complete measurements, the quantum
state can be reconstructed. We have two conditions on the probability distribution
of SIC-POVM just as those on that of MUBs (Rastegin, 2013),

d2∑
i=1

pi = 1(3.96)

d2∑
i=1

p2
i = Π+1

d(d+1); Π := tr
(
ρ2
)

(3.97)

Under these two conditions, we define the following potential function:

(3.98) ζ := −
d2∑
i=1

pi ln(pi)−γ

 d2∑
i=1

pi−1
−κ

 d2∑
i=1

p2
i − Π+1

d(d+1)
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The variation of the potential ζ leads to

δζ =
d2∑
i=1

(ln(pi)+2κpi+(1+γ))δpi = 0

Since the variations δpi’s are arbitrary, the coefficient of each δpi must be zero,

(3.99) ln(pi)+2κpi+(1+γ) = 0; i= 1,2, ...,d2

According to equation (3.99), none of pi can be zero, otherwise the equation cannot
be satisfied. We now choose the distribution {p1 = q,pi = βiq; i = 2,3, ...,d2}, from
which we obtain two equation by means of the condition in equation (3.99):

ln(q)+2κq = −(1+γ); and ln(βi)+ ln(q)+2κβiq = −(1+γ), i= 2,3, ...,d2.

Substituting the first equation in the second one, we obtain

(3.100) 2κq = − ln(βi)
βi−1 , i= 2,3, ...,d2,

The left hand side of equation (3.100) is a constant and the same for each index-{i},
so that the parameters βi has to be independent of the index-{i}, that is, β2 = β3 =
... = βd2 . Then, we obtain βi’s from the normalization condition in equation 3.96
as {βi = (1 − q)/(d2 − 1); i = 2,3, ...,d2}. In addition, using the second condition on
the probability distribution in equation (3.97), we obtain two values for the positive
real parameter q,

(3.101) q± =
1±

√
(d−1) [d(Π+1)−d−1]

d2 .

The solution q− is not a stationary point, but an extremum which is the particular
value 1/d2 of q+, corresponding to the pure mixed state, ρ= 1

dI. Therefore, it cannot
be considered as an optimal value in general. Making the conventional abbreviation
α :=

√
(d−1) [d(Π+1)−d−1], the optimal upper bound of the entropy is achieved

by choosing q = q+:

(3.102) H ≤H+(α,d) = 1+α

d2 ln
(

d2

1+α

)
+ d2 −1−α

d2 ln
(
d2(d2 −1)
d2 −1−α

)
.

We note that ECR of equation (3.102) is independent of whatever SIC-POVM has
been chosen. We can check if the equation (3.102) is indeed optimal. To this aim,
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we take the SIC-POVM N =
{
Ni = 1

2 |ϕi⟩⟨ϕi| ; i= 1,2, ...,d2
}

as follows:

N1 = 1
2

1 0
0 0

 ,N2 = 1
6

 1 2√
2

2√
2 2

 ,

N3 = 1
6

 1 2e− 2πi
3√

2
2e

2πi
3√
2 2

 ,N4 = 1
6

 1 2e
2πi
3√
2

2e− 2πi
3√

2 2

 ,
(3.103)

and considering the pure quantum state in equation (3.91), the corresponding prob-
abilities are

p1 = 1
2r, p2 = 1

6

(
2− r+2

√
2r(1− r)cos(ϕ)

)
p3 = 1

6

(
2− r−

√
2r(1− r)

(
cos(ϕ)+

√
3sin(ϕ)

))
p4 = 1

6

(
2− r−

√
2r(1− r)

(
cos(ϕ)−

√
3sin(ϕ)

))
.

(3.104)

The maximum value of Shannon entropy of the SIC-POVM N can be numerically
estimated as ≈ 1.242 approximately that can be seen in Figure 3.5.

Figure 3.5 Shannon entropy of the SIC-POVM N in equation (3.103) for different
values of the parameter ϕ.

The theoretical value exactly coincides with the numerical value. Like the question
we raised as to whether EUR for SIC-POVM is meaningful, we also concern with
the question of whether ECR for SIC-POVMs is significant. The duality between
knowledge and ignorance, or certainty and uncertainty, reflects into the relation

72



between EUR and ECR, for that we are able to consider ECR for SIC-POVMs. In
accordance with this reflection, we argue that since the upper bound in equation
(3.102) is less than ln

(
d2
)

with the exception ρ= 1
dI, the measurement elements of

SIC-POVMs are correlated to each other. This correlation comes from the constant
value of the inner product of the measurement elements of SIC-POVMs.

As we noted before, if there is a SIC-POVM in a d-dimensional Hilbert space, we
have more than one. Let us see how this is possible. We consider that we have
the SIC-POVM N = {Ni = 1

d |ψi⟩⟨ψi|}d
2
i=1. Now, we take the complex conjugation

of the vectors |ψi⟩, and express it as |ψ⋆i ⟩. For example, the complex conjugation
of the vector |v⟩ = 1√

2(1, i)T is |v⋆⟩ = 1√
2(1,−i)T . The characteristic condition on

the SIC-POVM’s elements, as was presented before in Section 2.1.2, is |⟨ψi|ψj⟩|2 =
⟨ψi|ψj⟩⟨ψj |ψi⟩ = dδij+1

d+1 for all i, j ∈ {1,2, . . . ,d2}. Since
〈
ψ⋆i

∣∣∣ψ⋆j〉 = ⟨ψj |ψi⟩, it is

clear that the relation
∣∣∣〈ψ⋆i ∣∣∣ψ⋆j〉∣∣∣2 = dδij+1

d+1 is also valid for all i, j ∈ {1,2, . . . ,d2}.
Therefore, we have always more than one SIC-POVM provided that we have at
least one. Henceforth, we shall call this second SIC-POVM as star-SIC-POVM. In
that case, classification of the SIC-POVMs is an important issue in searching for
their existence, their importance in application and grouping them. We studied two
questions related to two more than one SIC-POVM:

1) Can we consider the star-SIC-POVM as the time reversal of its counterpart
SIC-POVM?

2) Is there a distinctive feature of SIC-POVMs that cannot be encapsulated in
the frame of classical information theory?

When studying the first question we recognized that the concept of the celebrated
Quantum Time Reversal is not compatible with the time reversal operation in quan-
tum mechanics. We also notice that the information coded in SIC-POVMs cannot
be represented in the classical information theory. In the following section, we shall
explore our results triggered by these two questions.

3.4 Time reversal and non-classical feature of SIC-POVMs

In quantum mechanics time reversal operation is expressed in general by a unitary
operation U and complex conjugation operation K. Let us define θ := UK. Having
a quantum state ρ in a d-dimensional Hilbert space Hd, time reversal operation on

73



Figure 3.6 Picture of the definition of classical time-reversal symmetry: Left side
schematizes the left side of Eg.(3.105), while the right side schematizes the right
side of equation (3.105). The (time-reversal) operation K represents Φ of the SIC-
POVM.

the space, σ : L(Hd) → L(Hd), is defined as σ(ρ) := θρθ†.

Time reversal operation in quantum mechanics is characterized as follows:

"Time-reversal invariance requires that two different sequences of oper-
ations applied to an arbitrary state |ψ(t0)⟩ [i.e., ρ(t0)] lead to the same
state. In the first sequence we allow |ψ(t0)⟩ [i.e.,ρ(t0)] to evolve for a
time t, whereupon we reverse all momenta, and then permit a further
evolution for a time t. In the second we merely reverse all momenta in
|ψ(t0)⟩ [i.e., ρ(t0)]. Thus, [by θ to refer to time-reversal operator], we
demand that" (Gottfried, 1989, p. 316)

(3.105) e−iHt/h̄θe−iHt/h̄ρ(t0)eiHt/h̄θ†eiHt/h̄ = θρ(t0)θ†,

which must be true for all states of the system of inquiry. We have depicted the two
aforementioned sequences in Figure 3.6. This perspective of time reversal operation
is just the expression of the classical notion of time reversal operation in quantum
mechanics. Therefore, we call it classical time reversal.

We wonder if the star-SIC-POVM can be considered as the time reversal of its
corresponding SIC-POVM. To be more explicit, we wish to see if a SIC-POVM is
time reversal invariant. With regard to time reversal operation, we first perform a
quantum operation of the SIC-POVM M1 = {Mi = 1

d |ψi⟩⟨ψi| , i = 1,2, . . . ,d2}, on
the state ρ of the system under consideration:

(3.106) Φ(ρ) :=
∑
i

dpiMi = ρ1,
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where pi = tr(Miρ). Then, we take complex conjugation of the resultant state:
ρ1 =∑

i dpiM i, where M i = 1
d |Kψi⟩⟨Kψi| = 1

d |ψ⋆i ⟩⟨ψ⋆i |. On the other hand, we first
apply time reversal operation on the state: ρ → σ(ρ) = θρθ† = ρ′. After that, we
perform the star-SIC-POVM measurement, M⋆

1 = {M i, i= 1,2, . . . ,d2}, on the new
state: Φ(ρ′) := ∑

j=1 dqjM i, where qj = Tr(M jρ
′). Our question is: Are two pro-

cedures above equivalent; or to be more formal, is Φ(σ(ρ)) equal to Φ(ρ)? Let us
rake together what we did above: In the first place, we simply took the complex
conjugation of the resultant state Φ(ρ), while in the second case, we applied the
star-SIC-POVM operation Φ on the time-reversed state ρ′ = σ(ρ). These two op-
erations exactly comply with the sequences that have been mentioned in the above
quotation with the exception that we did just apply the operation K on the quantum
operation Φ to obtain Φ instead of applying time reversal operation θ = UK . In
2-dimensional Hilbert space, time reversal operator θ is −iσyK, where σy is Pauli
matrix of y-component. We showed for spin-1/2 that Φ(ρ′) is transpose of ρ1, where
we took the SIC-POVM in equation (3.103). However, transpose operation can-
not be represented by any accessible quantum operation (Nielsen & Chuang, 2010).
Therefore, we cannot link them with the aid of any accessible quantum operation.

We can also apply classical time reversal operation on the quantum operation Φ
of the SIC-POVM and see if it is time reversal invariance; that is, we can check
if Φ ◦σ ◦ Φ(ρ) = σ(ρ). Let us consider the SIC-POVM in equation (3.103) and the
general quantum state

(3.107) ρ=
 1+z

2
x−iy

2
x+iy

2
1−z

2

 .
Then, we can define the quantum operation Φ(ρ) :=∑4

i=1AiρA
†
i with Kraus opera-

tors Ai = 2√
2Ni. They satisfy the completeness condition: ∑4

i=1A
†
iAi = I. Recalling

time reversal operator σ = −iσyK, we obtain

(3.108) Φ◦σ ◦Φ(ρ) =
 9−z

18
−x+iy

18
−x+iy

18
9+z
18

 .
On the other hand, if we apply time reversal operation σ on the state ρ, we obtain

(3.109) σ(ρ) =
 1−z

2
−x+iy

2
−x+iy

2
1+z

2

 .
As is seen, Φ ◦σ ◦ Φ(ρ) is not equal to σ(ρ), which means that quantum operations
based on SIC-POVMs are not classical time reversal invariant.
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In the classical perspective, we represent the physically accessible processes by
Markov transition matrices R = (rij)m×n such that rij is the transition probabil-
ity from state i to state j for a forward evolution chain. Similarly, R̃ = (r̃ij)n×m

is the transition matrix for the reversed chain. We also consider a probability dis-
tribution p(e) for the equilibrium of both chains such that Rp(e) = R̃p(e). In the
equilibrium, the probability of the transition i 7→ j in forward chain is equal to the
probability of the transition j 7→ i in the reversed chain. To express it formally,
r̃ijp

(e)(j) = rjip
(e)(i) for all i, j. Putting it in the matrix multiplication, we can

rewrite it as

(3.110) R̃ =D(p(e))RTD−1(p(e)).

A transition matrix R is balanced if Rp(e) = p(e), and is detailed balance if it is
time reversal invariant, that is, if R̃ = R. In line with this classical frame of the
processes, and considering a quantum operation Φ(ρ) :=∑m

i=AiρA
†
i , Crooks defined

time reversal for quantum operations as (Crooks, 2008)

(3.111) Φ̃(ρ) :=
m∑
i

ÃiρÃ
†
i ,

where Ãi = ρ
1/2
0 A†

iρ
−1/2
0 and ρ0 is a quantum state such that Φ(ρ0) = ρ0. The reason

behind this definition was given by Crooks as follows:

"Since we cannot observe a sequence of states for the quantum dynamics
(at least not without measuring and therefore disturbing the system), we
instead focus on the sequence of transitions. Each operator of a Kraus
operator sum represents a particular interaction with the environment
that an external observer could, in principle, measure and record. We
can therefore define the dynamical history by the observed sequence of
Kraus operators. For each Kraus operator of forward dynamics, Aα,
there should be a corresponding operator, Ãα, of the reversed dynamics
such that starting from equilibrium, the probability of observing any
sequence of Kraus operators in the forward dynamics is the same as the
probability of observing the reversed sequence of reversed operators in
the reversed dynamics" (Crooks, 2008, p. 2).

According to Crooks, quantum time reversal must be expressed as the time rever-
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sal of the environment in contrast to classical time reversal operation in equation
(3.105), in which we seek for time reversal of the considered system, not the envi-
ronment.

If Φ̃ = Φ, we say that Φ is in detailed balance (Crooks, 2008). This means that if a
quantum operation is detailed balance, then it is also time reversal invariant. Indeed,
this is the case in stochastic processes. Therefore, we reasonably demand that if a
quantum operation is detailed balance it has to be also time reversal invariance. We
state our demand as follows:

Corollary 3.1 If a quantum operation Φ has detailed balance, then it is time re-
versal invariant.

In accordance with classical time reversal invariance expressed in equation (3.105),
time reversal invariance for quantum operation Φ in literature is defined formally
as σ ◦ Φ ◦σ = Φ (Fagnola & Umanitá, 2008)3. Then, if we combine the expression
of time reversal invariance of Crooks and this last one, we state that a quantum
operation is time reversal invariant if

(3.112) σ ◦Φ◦σ = Φ̃.

We emphasis that we have brought together two different aspects of time reversal
of quantum operations: one aspect, that is σ ◦ Φ ◦ σ, has been stated based on
classical time reversal in equation (3.105), while other aspect was inspired by the
time reversal invariance of stochastic processes. However, even if we can state such
condition for time reversal invariance, the conceptual content of the aspect are not
compatible with each other. As we pointed out above, Crooks focused on time
reversal of environment, while classical time reversal is defined over the quantum
state of the system under consideration, which is thought of as separated from its
environment. According to the definition of time reversal of Crooks, SIC-POVMs
are time reversal invariant; however, it is not true if we take the time reversal
condition σ ◦Φ◦σ = Φ. The problem is that while the former approach ignores the
system itself, the latter ignores the environment. We can remedy the problem by
requiring that there should not be made any difference between the system and its
environment. Indeed, if we reverse time, then it must be reversed for every part of the
universe. Realistically, it is not meaningful to speak of a partial time reversal. Based
on this critics, we first revise the definition of the time reversal of Crooks as follows:
for a quantum operation Φ(ρ) := ∑m

i=AiρA
†
i , we define its quantum-classical time-

reversal operation as Φ̃qc(ρ) := ∑m
i ÃiρÃ

†
i , where Ãi = ρ

1/2
0 σ(A†

i )ρ
−1/2
0 and ρ0 is a

3From equation (3.105), it must be σ ◦ Φ ◦σ = Φ̃.
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quantum state such that σ(ρ0) = ρ0 and Φ(ρ0) = ρ0. Now, regarding this remedy, we
define quantum-classical time-reversal invariance as follow: If a quantum operation
Φ is quantum-classical time-reversal invariant, the following statement hold: If we
first perform a quantum operation Φ on (the state of) a system and then reverse the
time, this whole operation is equivalent to firstly reversing time and then performing
quantum-classical time-reversal operation Φ̃qc of the quantum operation Φ; to put it
in a formal language, σ ◦Φ ≡ Φ̃qc ◦σ. We have pictured this definition in Figure 3.7.

Figure 3.7 The quantum-classical time-reversal operation. The left side represents
the operation σ ◦Φ, and the right side represents the operation Φ̃qc ◦σ.

We point out that this definition includes classical time-reversal invariance that
is given in equation (3.105). If we take the quantum operation as the unitary
evolution of the system, Φ(ρ) = e−itH/h̄ρeitH/h̄, its quantum-classical time-reversal
operation becomes, Φ̃qc(ρ) = (θeitH/h̄θ†)ρ(θe−itH/h̄θ†). Then, θe−itH/h̄ρeitH/h̄θ† =
(θeitH/h̄θ†)θρθ†(θe−itH/h̄θ†) if and only if, θeitH/h̄θ† = e−itH/h̄, or θHθ† =H, which
is exactly what is required.

We show that SIC-POVMs are quantum-classical time-reversal invariant. To this
aim, we first note that the equilibrium state for a quantum operation that is defined
by a SIC-POVM is maximally mixed state: ρ0 = 1

dI. For example, let us consider
time dependent quantum state in 2-dimensional Hilbert space,

(3.113) ρ(t) =
 1+z

2
x−iy

2 e−iwLt

x+iy
2 eiwtt 1−z

2


and the quantum operation

(3.114) Φ(ρ) =
m∑
i

AiρA
†
i :=

√
2
∑
i

piLi

whose Kraus operators are defined as Ai = Li via the measurement elements of the
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SIC-POVM

L1 = 1√
2

3+
√

3
6

1√
6

1√
6

3−
√

3
6

 ,L2 = 1√
2

3+
√

3
6 − 1√

6
− 1√

6
3−

√
3

6


L3 = 1√

2

3−
√

3
6 − i√

6
i√
6

3+
√

3
6

 ,L4 = 1√
2

3−
√

3
6

i√
6

− i√
6

3+
√

3
6


(3.115)

such that pi = tr
(
LiρL

†
i

)
. We note that Li =L†

i for all i. The completeness condition
is satisfied: ∑4

i=1L
†
iLi = I. Considering time reversal operator θ = −iσyK0, we

showed that

(3.116) Φ̃qc(ρ(t)) =
 3+z

6
x−iy

6 e−iwLt

x+iy
6 eiwLt 3−z

6

= σ ◦Φ◦σ(ρ(t))

Therefore, the quantum operation of the SIC-POVM given above is quantum-
classical time-reversal invariant. In addition, we note that star-SIC-POVM is
quantum-classical time reversal of its SIC-POVM up to a unitary operation.

Now, we wish to know if there is any distinctive feature of SIC-POVM that cannot
be handled in the frame of classical information theory. We recall that any quantum
state can be expressed in terms of a SIC-POVM since the latter is informationally
complete. Let us assume a quantum state ρ, and M = {Mi = d−1 |ψi⟩⟨ψi| , i =
1,2, . . . ,d2} and N = {Ni = d−1 |φi⟩⟨φi| , i= 1,2, . . . ,d2} be two SIC-POVMs with the
corresponding probability distributions {pi = 1

d ⟨ψi|ρ|ψi⟩ , i = 1,2, . . . ,d2} and {qi =
1
d ⟨φi|ρ|φi⟩ , i= 1,2, . . . ,d2} in a d-dimensional Hilbert space.

According to equation (2.34), we can write

(3.117) ρ= d(d+1)
d2∑
i=1

piMi− I = d(d+1)
d2∑
i=1

qiNi− I,

from which we read the matrix that provides transition from {pi = 1
d ⟨ψi|ρ|ψi⟩ , i =

1,2, . . . ,d2} to {qi = 1
d ⟨φi|ρ|φi⟩ , i= 1,2, . . . ,d2} as

(3.118) Λ =



(d+1)|⟨φ1|ψ1⟩|2−1
d

(d+1)|⟨φ1|ψ2⟩|2−1
d · · · (d+1)|⟨φ1|ψd2⟩|2−1

d

(d+1)|⟨φ2|ψ1⟩|2−1
d

(d+1)|⟨φ2|ψ2⟩|2−1
d · · · (d+1)|⟨φ2|ψd2⟩|2−1

d
... ... . . .

(d+1)|⟨φd2 |ψ1⟩|2−1
d

(d+1)|⟨φd2|ψ2⟩|2−1
d · · · (d+1)|⟨φd2|ψd2⟩|2−1

d


.
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We simply write the vector form q = Λp, where q = (q1, q2, . . . , qd2)T and p =
(p1,p2, . . . ,pd2)T . We note that Λ = (λij)d2×d2 is an orthogonal matrix, each of
whose rows and columns sum to one, that is, ∑d2

i λij = ∑d2
j=1λij = 1 for all i, j,

which are the conditions that define a doubly stochastic matrix together with the
non-negativity of the entries. The entries of Λ could be negative in general. There-
fore, due to its properties, we can call Λ pseudo doubly stochastic matrix. Our first
quest is to seek for a possible physical description of Λ. If we would like matrix Λ of
equation (3.118) to be a stochastic map, we stress on all of its entries the condition
that they must be non-negative. In that case, Λ becomes a permutation matrix,
which is a trivial transition, that is, it takes a probability distribution to itself up
to a permutation. We know that Shannon entropies of two probability distributions
are equal if one of them is a permutation of the other. Inversely, if Shannon en-
tropies of two probability distributions are equal for all possible quantum states,
then the probability distributions are permutations of one another. However, this
is not what we demand for an entropy function as the measure of the information
content. SIC-POVMs encode the information content of a quantum state in the
same way. Therefore, we can reasonably expect that any function that quantifies
the information content of a system should give the same amount of information for
all the measurements that are the same type; for example it should give the same
amount of information for all SIC-POVMs. Indeed, this is the main reason that
pushed Brukner and Zeilinger to define a new measure of information content of
systems (Brukner & Zeilinger, 1999). We will turn back to this point in Section 3.6.

That the matrix Λ could consists of negative entries implies that stochastic maps do
not provide a frame for the description of quantum operation, especially the quantum
operation of SIC-POVMs. If we remove the non-negativity condition on the entries,
it becomes then possible to nail down a physical description of Λ. Accordingly,
an alternative formalism of quantum operations has been constructed such that, in
the formalism, probability vector plays the role of density matrix and a pseudo-
stochastic matrix Λ takes place of quantum operation (Yashin et al., 2020; Fuchs &
Schack, 2013).

To sum up this section, we first note that the expressions of time reversal oper-
ations in quantum mechanics and in the quantum operation formalism are not
compatible with each other. We propose another expression which harmonizes
them. We note that the distinction between principle system and environment
disappears in this revised expression of time reversal operation. Apart from this
change, we have preserved the formal structure of time reversal operation. There-
fore, we cannot conclude that time reversal operation of total system (i.e., principle
system+environment) is unitary.
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In addition we showed that quantum operation of SIC-POVMs cannot be encapsu-
lated in the frame of classical information theory, a fact that can be construed as
the non-classical feature of SIC-POVMs.

3.5 An algebraic relation between MUBs and SIC-POVM

The existence of a SIC-POVM and of a set of d+1 MUBs is still a conundrum. We
are more auspicious about the existence of SIC-POVMs than that of MUBs in every
dimension. Although we have SIC-POVMs in dimension d= 6, we do not yet have
a set of 7 MUBs. There are some geometrical approaches that aim to reveal the
connection between MUBs and SIC-POVMs (Wootters, 2006), however, we still do
not know how exactly they are related to each other, if any exists. Since they are
informationally complete, they can be connected to each other algebraically. Then,
we can seek for the existence of a set of d+ 1 MUBs in dimension d = 6 by means
of some algebraic relations with a SIC-POVM in that dimension. Here, we present
an algebraic relation between MUBs and SIC-POVMs.

Let us consider a set of d+ 1 MUBs, {Πnk}d+1,d
n,k=1,1, and a particular SIC-POVM,

{Nj = 1
dΠj = 1

d |ψj⟩⟨ψj |}d
2
j=1. Since the SIC-POVM is informationally complete and

each Πnk is a projector, we can write

(3.119) Πnk =
d2∑
j=1

c
(j)
nkΠj .

Taking the square of equation (3.119)

(3.120) Π2
nk = Πnk =

d2,d2∑
j,l=1,1

c
(j)
nk c

(l)
nkΠjΠl,

and using the equality ΠjΠl = ∑d2
m=1αjlmΠm, where αjlm = tr(ΠjΠlΠm) (Fuchs &

Schack, 2013), and adjusting some dummy indices, we obtain an algebraic equation
for the coefficients as

(3.121)
d2∑
m=1

c
(m)
nk Πm =

d2∑
m=1

 d2,d2∑
j,l=1,1

c
(j)
nk c

(l)
nkαjlm

Πm ⇒ c
(m)
nk =

d2,d2∑
j,l=1,1

c
(j)
nk c

(l)
nkαjlm.
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Defining |Cnk⟩ := (c(1)
nk , c

(2)
nk , . . . , c

(d2)
nk ) ∈ Cd

2 and the matrix Λ(m) := (αjlm) ∈
Md2×d2(C) over the indices j and l, we finally acquire

(3.122) Λm |Cnk⟩ = cmnk |Cnk⟩ ,

which is an eigenvalue problem for the coefficients. According to this equation, the
eigenvalues of Λm are possible choices for the particular coefficient c(j)nk in equation
(3.119); that is, for each c

(j)
nk , we need to solve the eigenvalue problem of equation

(3.122). Since the entries αjlm of the matrices Λ(m) are the triple product of the
elements of the SIC-POVM we consider, and since there exist SIC-POVMs in di-
mension d = 6, then we can seek at least numerically for the existence of MUBs in
dimension d= 6 by means of the algebraic equation (3.122).

3.6 Information energy and quantum measurements

In classical information theory, we generally consider a random variable that has a
set of events, or outcomes. One of the events is realized each time when the system
is observed or measured. Let us call the random variable X with its corresponding
set of events {xi, i= 1,2, . . . ,W}. Information content of the random variable X, is
generally measured by entropy. To be more concrete, if a random variable has W
possible outcomes, {xi, i = 1,2, . . . ,W}, through which the system manifests itself,
and if the probabilities of the outcomes are given by {pi, i = 1,2, . . . ,W} respec-
tively, then the information content of the random variable is averagely expressed
by Shannon entropy

(3.123) HS(p) := −
W∑
i=1

pi ln(pi).

However, in the classical frame of information theory, the understanding of the
information content of a system is fundamentally based on the occurrences of the
events, and the state that exhibits the geometrical and dynamical structure of the
system is not considered. When we turn our attention to the realm of quantum
systems, we need to take the quantum state of the systems into account, which
gives rise to a substantially different understanding of information.

The quantum state of a system in d-dimensional Hilbert space is characterized by a
set of d2 −1 parameters. If one performs a measurement, like the measurement of a
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SIC-POVM, or a set of measurements, such as d+ 1 MUBs, these real parameters
can be determined, so that the quantum state of the system is ascertained uniquely.
Such measurement or set of measurements are called informationally complete since
the quantum state can be determined by means of performing one of them. Informa-
tionally complete means that the information content of the system can be encapsu-
lated, or encoded, completely in terms of those measurements. On the other hand,
we do not have only one SIC-POVM or one set of d+ 1 MUBs in a d-dimensional
Hilbert space: If there is one SIC-POVM or one set of d+ 1 MUBs, then there
are more than one of them. Intuitively, we expect that every SIC-POVM should
encode the same amount of information, as well as we expect the sets of MUBs do
the same. However, if the information encoded by, for instance, two SIC-POVMs is
measured by Shannon entropy, we do not obtain the same amount of information.
This is also valid for two different sets of d+ 1 MUBs. Eventually, we look for a
function for measuring the information encoded by those informationally complete
measurements such that it should give the same amount of information for the same
type of measurements, for example, for every SIC-POVM.

Addressing to the problem stated above, Brukner and Zeilinger (Brukner & Zeilinger,
1999, 2009) proposed an alternative measure of information in terms of square of
the probabilities

(3.124) I(p) = N
W∑
i

p2
i

which is generally known as information energy in the literature (Pardo & Taneja,
1991). N is normalization constant; it is determined according to the requirements
that I(p) is equal to k bits of information, that is W = 2k, when one probabilities is
1 and all the others are zero (Brukner & Zeilinger, 1999). Considering a set of d+1
MUBs with the set of respective probabilities {pnk,n= 1,2, . . . ,d+1;k = 1,2, . . . ,d},
the measure of information is

(3.125) I(p) =
d+1∑
n=1

In(pn) = N
d+1,d∑
n,k=1,1

p2
nk,

where In(pn) = N ∑d
k=1 p

2
nk is the information energy for the nth measurement in

the set of d+ 1 MUBs. It was generalized to any measurement scenario. Assume
that M = {Aj}nj=1 be a POVM, ρ be the quantum state of the relevant system and
pj = tr

(
AjρA

†
j

)
be the probabilities. In addition, let ρ⋆ be the invariant state under

the quantum operation E such that E(ρ⋆) := ∑
jAjρ⋆A

†
j = ρ⋆. Defining the index

function C(M | ρ) :=∑n
j=1 p

2
j , The Brukner and Zeilinger approach to the measure
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of information can be expressed as (Rastegin, 2015)

(3.126) I(M | ρ) = C(M | ρ)−C(M | ρ⋆).

According to (Brukner & Zeilinger, 1999), information is the fundamental entity
for quantum theory, and there is an irreducible information unit such that every
physical system is an information building block of this unit. rukner and Zeilinger
to the measure of information has been criticized in different respects, especially for
its physical reasoning (Shafittee et al., 2006; Khrennikov, 2016). Here, we provided
a physical ground in the perspective of Stokes parameters for the use of the Brukner
and Zeilinger approach to the measure of information.

To determine experimentally the state of the polarization of an arbitrary beam of
electromagnetic radiation (photon), one must make a set of four measurements.
The most convenient set of four measurements are those that yield the following
information (Fano, 1949; McMaster, 1961):

(i) The intensity of beam,

(ii) The degree of plane polarization with respect to two arbitrary orthogonal axes,

(iii) The degree of plane polarization with respect to a set of axes oriented at 45◦

to the right of the orthogonal axes in item (ii).

(iv) The degree of circular polarization.

In optics, the second and third measurements can be performed by Nicol prisms,
while the fourth requires additional use of a quarter-wave plate (Fano, 1949). Let
us assume the general expression for polarization

(3.127) E = E1ei(wt+δ1)ê1 +E2ei(wt+δ2)ê2.

This general expression reduces to certain polarization under the following condi-
tions:

(i) we have planed-polarized radiation if ϕ= δ1 − δ2 = 0;

(ii) we have circular polarized radiation if E1 = E2 and ϕ= δ1 − δ2 = ±π
2 ;

(iii) we have elliptical polarization if E1 ̸= E2 ̸= 0 and ϕ ̸= 0.

A plane-polarized light can be expressed by the following quantum state |ψL⟩ =
a |e1⟩+ b |e2⟩. A measurement of linearly polarization then is

(3.128) Π =
(
sin(θ)

∣∣∣ψ⊥
L

〉
+ cos(θ) |ψL⟩

)(
sin(θ)

〈
ψ⊥
L

∣∣∣+ cos(θ)⟨ψL|
)
.
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The probability is tr(⟨ψL|Π |ψL⟩) = 1
2(1+cos(2θ)). If the quantum state is a partially

linearly polarized instead of being fully plane-polarized, it can be expressed as ρ =
1
2(1 −P )I +P |ψL⟩⟨ψL| (McMaster, 1954). Then, tr(Πρ) = 1

2(1 +Pcos(2θ)). Here
P is the degree of polarization which is determined by observing the maximum of
transmitted light (i.e., (1+P )/2 for θ= 0) or minimum fraction of transmitted light
(i.e., (1−P )/2 for θ = π/2) (Fano, 1949).

Now, Let us assume that we have a general polarized light (or a spin-1/2 system)
with the quantum state

(3.129) |ψ⟩ = α1 |ψ1⟩+α2 |ψ2⟩ ,

where the coefficients in general are complex and describes the amplitude and phase
of the polarized light along the orthogonal unit vectors. We assume that intensity is
normalized to unity: I = |α1|2 + |α2|2 = 1. Considering the unit vectors in equation
(3.129) as the vectors of computational basis, one can rewrite the vector in the form
of matrix

(3.130) ρα = |ψ⟩⟨ψ| =
α1α⋆1 α1α⋆2
α⋆1α1 α2α⋆2

=
ρ11 ρ12

ρ21 ρ22

 .

An orientation coefficient was defined as

(3.131) P (|ψ1⟩ , |ψ2⟩) = α1α
⋆
1 −α2α

⋆
2 = ρ11 −ρ22,

which gives the difference of the intensity measurements of the pure (basis) states
defined by |ψ1⟩ and |ψ2⟩ (McMaster, 1954).

We now perform a measurement for the degree of plane polarization with respect
to a set of axes oriented at 45◦ to the right of the computational basis {|ψ1⟩ , |ψ2⟩}.
With these choice of axes, the quantum state in this case is

(3.132) |ψ⟩ = β1 |ϕ1⟩+β2 |ϕ2⟩ ,

where

|ϕ1⟩ = cos(π/4) |ψ1⟩+ sin(π/4) |ψ2⟩(3.133)

|ϕ2⟩ = −sin(π/4) |ψ1⟩+ cos(π/4) |ψ2⟩ .(3.134)
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Then, we have

|ψ⟩ = β1(cos(π/4) |ψ1⟩+ sin(π/4) |ψ2⟩)+β2(−sin(π/4) |ψ1⟩+ cos(π/4) |ψ2⟩)

= (β1cos(π/4)−β2sin(π/4)) |ψ1⟩+(β1sin(π/4)+β2cos(π/4)) |ψ2⟩

= α1 |ψ1⟩+α2 |ψ2⟩ ,

(3.135)

which yields the equalities

β1cos(π/4)−β2sin(π/4) = α1

β1sin(π/4)+β2cos(π/4) = α2.
(3.136)

Putting equation (3.136) in the matrix-vector multiplication form, we obtain

(3.137)
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

β1

β2

=
α1

α2

 ,
from which one leads to

β1 = cos(π/4)α1 + sin(π/4)α2

β2 = −sin(π/4)α1 + cos(π/4)α2

A second orientation coefficient for this new frame was defined as (McMaster, 1954)

P (|ϕ1⟩ , |ϕ2⟩) = β1β
⋆
1 −β2β

⋆
2 = ρβ(11)−ρβ(22)

= ρα(12)+ρα(21) = ρ12 +ρ21.
(3.138)

Let us assume that |ψ⟩ = α1 |ψ1⟩+α2 |ψ2⟩ = b1eiδ1 |ψ1⟩+b2eiδ2 |ψ2⟩ is to be a general
polarized state. Then, a general quantum state of a beam is (Fano, 1949; McMaster,
1954)

(3.139) ρ= 1
2(1−P )I+P |ψ⟩⟨ψ| =

 1
2(1−P )+Pb21 Pb1b2ei(δ1−δ2)

Pb1b2e−i(δ1−δ2) 1
2(1−P )+Pb22

 .
In regard to the general quantum state in equation (3.139) we revised the orientation
coefficient in equation (3.138) as P (|ϕ1⟩ , |ϕ2⟩) = ρ12 +ρ21 = 2Pb1b2cos(δ1 − δ2).

We now choose a third measurement that is for circularly polarized light. To make
this measurement, we insert a quarter-wave plate with its fast axis 45◦ to the right
of |ψ1⟩ and make intensity measurements with the transmission axis of Nicol prism
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oriented along |ψ1⟩ and |ψ2⟩. That is, we are making the choice

|ν1⟩ = i√
2

|ψ1⟩+ 1√
2

|ψ2⟩

|ν2⟩ = 1√
2

|ψ1⟩+ i√
2

|ψ2⟩ ,

from which we obtain

|ψ1⟩ = 1√
2

(|ν2⟩− i |ν1⟩)

|ψ2⟩ = 1√
2

(|ν1⟩− i |ν2⟩).

The quantum state in equation (3.129) can be rewritten as

(3.140) |ψ⟩ = γ1 |ν1⟩+γ2 |ν2⟩ = 1√
2

(α2 − iα1) |ν1⟩+ 1√
2

(α1 − iα2) |ν2⟩ .

Similar to the previous orientation coefficients, a third orientation coefficient was
defined as (McMaster, 1954)

P (|ν1⟩ , |ν2⟩) = γ1γ
⋆
1 −γ2γ

⋆
2 = ρν(11)−ρv(22) = i(ρ21 −ρ12),(3.141)

which is equal to 2Pb1b2 sin(δ1 − δ2) in regard to the general statement of the quan-
tum state in equation (3.139). The orientation coefficients defined above become
equal to Stokes parameters together with the intensity (I), which is equal to trace
of the general quantum state in equation (3.139) in our case, that is, I = tr(ρ). The
first Stokes parameter is equal to the difference of the probabilities of the spin’s out-
comes whose eigenbasis can be considered computational basis. To be more explicit,
if we consider |ψ1⟩ and |ψ2⟩ in equation (3.129) as the eigenvectors of spin operator σz
along z-axis, then {Π31 = |ψ1⟩⟨ψ1| ,Π32 = |ψ2⟩⟨ψ2|} is the measurement elements of
σz, and the probability of the outcomes are p31 = tr(Π31ρ) = ρ11;p32 = tr(Π32ρ) = ρ22.
Similarly, we are to consider {Π11 = |ϕ1⟩⟨ϕ1| ,Π12 = |ϕ2⟩⟨ϕ2|} be the measure-
ment elements of spin operator σx along x-axis with the corresponding probabil-
ities {p11 = tr(Π11ρ),p12 = tr(Π12ρ)}, and {Π21 = |ν1⟩⟨ν1| ,Π22 = |ν2⟩⟨ν2|} be the
measurement elements of spin operator σy along y-axis with the corresponding
probabilities {p21 = tr(Π21ρ),p22 = tr(Π22ρ)}. Now, it is clear that there is rela-
tion between Stokes parameters and the probabilities as P (|ψ1⟩ , |ψ2⟩) = p31 − p32,
P (|ϕ1⟩ , |ϕ2⟩) = p11 − p12 and P (|ν1⟩ , |ν2⟩) = p21 − p22. We have the celebrated in-
equality

(3.142) P (|ψ1⟩ , |ψ2⟩)2 +P (|ϕ1⟩ , |ϕ2⟩)2 +P (|ν1⟩ , |ν2⟩)2 ≤ I = tr(ρ),
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where equality is satisfied if light is fully polarized, that is, if P = 1 in equation
(3.139). We can rewrite equation (3.142) in terms of probabilities as

(3.143) (p11 −p12)2 +(p21 −p22)2 +(p31 −p32)2 ≤ tr(ρ),

which can be expressed formally as

1
2

d+1,d,d∑
n,k,s=1,1,1

(pnk −pns)2 ≤ tr(ρ)

d
d+1,d∑
n,k=1,1

p2
nk − (d+1) ≤ tr(ρ)

d+1,d∑
n,k=1,1

p2
nk ≤ 1

d
tr(ρ)+ d+1

d
,

(3.144)

where the left side of the inequality in the last line is nothing but just the Brukner-
Zeilinger approach to the measure of information up to the normalization constant
N . This fact suggests us that the square of the probabilities difference, so thus
the Brukner-Zeilinger approach, could be more physical in order to measure the
information content of a system.

If, for example, the quantum state of the system is one of the computational basis
elements, say |0⟩, then we have {p31 = 1,p32 = 0,p11 = p12 = p21 = p22 = 1

2}, and thus,
(p11 − p12)2 + (p21 − p22)2 + (p31 − p32)2 = 1. This fact characterizes our certainty
about the quantum state of the system, that is, the summation of the probabilities
difference can be considered as the measure of the information that an observer has
about the system. Therefore, we can restate Brukner and Zeilinger approach to the
measure of information as

(3.145) I(p) =
d+1∑
n=1

In(pn) := N
2

d+1,d,d∑
n,k,s=1,1,1

(pnk −pns)2.

However, this expression is for a set of d+ 1 MUBs; but, how can we define it
for a SIC-POVM? The most reasonable way is to make use of the informationally
completeness of MUBs and SIC-POVMs. Let us consider the quantum state ρ of
the system under consideration, a set of d+1 MUBs {Πnk}d+1,d

n,k=1,1 with probabilities
{qnk = tr(Πnkρ)}d+1,d

n,k=1,1, and a SIC-POVM N = {1
dΠj}d

2
j=1 with probabilities {pj =

1
d tr(Πjρ)}d

2
j=1. By means of equations (2.16) and (2.34) we can write

(3.146)
d+1,d∑
n,k=1,1

qnkΠnk − I = ρ= (d+1)
d2∑
j=1

pjΠj − I,
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from which one can obtain qnk+1 = (d+1)∑j pjt
(j)
nk with t(j)nk = tr(ΠjΠnk) such that∑

j t
(j)
nk = d and ∑

k t
(j)
nk = 1. Substituting these equalities into the equation (3.145)

and using the fact ∑d+1,d
n=1,k=1 t

(i)
nkt

(j)
nk = d(1+δij)+2

d+1 , we obtain

1
2

d+1,d,d∑
n,k,s=1,1,1

(qnk − qns)2 = d2(d+1)
d2∑
j=1

p2
j − (d+1)

= d+1
2

d2,d2∑
i,j=1,1

(pi−pj)2 .

(3.147)

This equality is a consequence of the formal expressions of MUBs and SIC-POVMs,
and is valid if MUBs and SIC-POVMs do exist in every dimension, that is, the valid-
ity is ensured by the existence of MUBs and SIC-POVMs. Could we still meaning-
fully argue this equality if MUBs and SIC-POVMs do not exist? For example, we do
not know whether or not there are d+1 MUBs in dimension six. We wish to recall
the discussion in Section 2.2; the consequences (e.g., SK axioms) from the formal
statement of some entity (e.g., entropy) cannot replace the being of the entity (e.g.,
entropy).
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4. CONCLUSION

In the context of the thesis, we studied entropic uncertainty relations in two quan-
tum measurements that are MUBs and SIC-POVMs. These two measurements are
important due to the fact that they have found room in diverse application areas in
quantum information theory. In addition, entropic uncertainty relations provide an
alternative approach to quantify uncertainty in quantum mechanics. The advantage
of entropic uncertainty relations over deviation-based uncertainty relations is that
they do not suffer from many drawbacks that the latter relations have.

We have obtained the optimal ECR (H+
T (N,d,α)) for N MUBs if the state of the

relevant system can be expressed in terms of N MUBs whose importance is two
folds. First of all, this bound implies that the entropies of the observables cannot
achieve to their maximum values (ln(d)) simultaneously which, together with lower
bound of EUR, determines the upper bound of information exclusion relation for
MUBs. The crucial point in our derivation is the condition satisfied by the purities
of the observables. As pointed out, the purities of the observables corresponding to
N MUBs are dependent on each other; therefore, we have considered them in the
maximization of the total entropy. If an equality relation for the summation of the
purities of N MUBs exists for a general density matrix, our result can be extended
directly. An equality of this sort will be most likely related to the dimension of
the system (d), the state (ρ) and the number of MUBs (N). Furthermore, we have
also obtained an optimal upper bound of Shannon entropy for any SIC-POVM in
d-dimensional Hilbert space. We noted that it is possible to speak of ECR for SIC-
POVM meaningfully if we consider the measurement elements of the SIC-POVM as
observables. However, it is meaningless to speak of EUR or ECR of two SIC-POVMs.

Secondly, we have shown that ECR for MUBs provides a criterion for the existence of
mutually coherent states, which are related to the existence of MUBs. In that case,
we have inferred that any quantum state resulting in a total entropy of N MUBs
more than the upper bound H+

T (N,d,α) of total entropy of MUBs consists of at least
a mutually coherent state as its part. A question can be argued in connection with
the criterion: Can we assert that the optimal upper bound, H+

T (N,d,α), cannot be
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exceeded if there is no a mutually coherent states? The optimal upper bound cannot
be exceeded on the condition that the density matrix is not maximally mixed state.
Therefore, the premise that "if there is no a mutually coherent state |ψcoh⟩ with
respect to N MUBs, this set of N MUBs cannot be extended to (N + 1)MUBs"
becomes biconditional if density matrix is not maximally mixed state.

We have also applied entropic certainty relation to the summation of the mutual in-
formation of (d+1) complementary observables {An}d+1

n=1 conditioned with a classical
memory. Our result implies that it is not possible to construct a deterministic cor-
relation between a classical memory and each of (d+1) observables simultaneously.
One can make use of our result to detect whether the observables are compatible.
If the mutually information of the observables set {An}d+1

n=1 correlated with a clas-
sical memory cannot achieve its maximum value ((d+ 1)ln(d)), one can infer that
the observables are not compatible. In addition, if an observables becomes more
correlated to the memory, the other becomes less correlated with the memory.

We gave some concrete examples that show the problematic nature of the deviation-
based uncertainty relations in the sense that for some realistic examples, they loose
their ability of quantifying uncertainty and give rise to some counter-intuitive re-
sults. Like the problems that exist for the deviation-based uncertainty relations, it
is also claimed that entropic uncertainty relations do not capture exactly the phys-
ical content of the uncertainty principle that were examined by Heisenberg. To be
more explicit, Hilgevoord and Uffink argued that entropic uncertainty relations do
not quantify the complementarity of the observables; instead, the aforementioned
relations put forward the following statement:

"In quantum mechanics, it is impossible to prepare any system in a
state |ψ⟩ such that its position and momentum are both precisely pre-
dictable, in the sense of having both the expected spread in a measure-
ment of position and the expected spread in a momentum measurement
arbitrarily small" (Hilgevoord & Uffink, 2016).

Quantification of uncertainty of the observables on distinct but the same prepared
state is called preparation uncertainty relation. In the expression of entropic uncer-
tainty relations, entropy of the observables are computed on different copies of the
quantum state; that is, they are not computed in terms of successive measurements.
In that case, it might be true that entropic uncertainty relations do not grasp the
physical content of the notion of uncertainty, but provide a quantification of the
preparation uncertainty. However, if we restrict the notion of uncertainty to the
commutation relation of the observables, we can safely claim that entropic uncer-
tainty relation indeed reflects in themselves the exact meaning of uncertainty. But,
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if we take uncertainty as the impossibility of joint measurement of the observables,
then it is true that entropic uncertainty relations do not represent the notion of
uncertainty comprehensively. The contentious nature of uncertainty avoids us to
develop a quantitative measure of it. There are some works devoted to express en-
tropic uncertainties of successive measurements that were to give rise to the same
lower bound as EURs (Srinivas, 2003; Baek & Son, 2016; Rastegin, 2018).

Classification of SIC-POVMs is an important issue by which we can economize the
efforts that is to be spent for finding SIC-POVMs analytically. When comparing a
SIC-POVM with its star-SIC-POVM, we recognized that the notions of time reversal
in quantum mechanics and in quantum operation formalism are not compatible with
each other. The reason is that while in the former the system itself is considered
for reversing in time, in the latter it is the environment that is going to be reversed.
We proposed a harmonization of the two aspects form which we showed that SIC-
POVMs are time reversal invariant, such that star-SIC-POVM is time reversal of its
corresponding SIC-POVM up to a unitary transformation. In addition, we obtain
an algebraic relation between MUBs and SIC-POVMs, which, for example, enable
us to search the existence of fourth MUB numerically in dimension 6. If we succeed
to find the fourth MUB by means of this algebraic relation, it would be a great
progress for the existence of further MUBs; otherwise, we can read it as an evidence
for the non-existence of further MUBs.

Finally, we provided a physical ground for the use of information energy in quantum
information theory. It seems that the alternative expression of information energy
in terms of the square of the difference of probabilities serves to quantify our infor-
mation about the system, while any entropy function itself is to quantify our lack of
the information. It is well known that Rényi entropy Iα(p) of parameter α= 2 fulfills
the requirements that has been argued by Brukner and Zeilinger for the invariance
of the information content of a system. Being inspired by kinetic and potential en-
ergies, could we speculate that there might be information potential which can be
expressed in terms of Réyi entropy? The only thing that can be said at this moment
is that it is worth considering this question.
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