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Abstract

Heterogeneous systems especially those that pair UAVs with UGVs are becoming in-
creasingly popular. The advantages a multi-agent robot system brings are desirable
for a multitude of tasks such as search and rescue, surveillance and reconnaissance.
The mobility of UAVs by far makes them a better fit for perception and mapping
tasks while the power and interaction capabilities of UGVs make them the desir-
able mode of operation for several other tasks. Thus, a system that looks to utilize
them cooperatively has to solve the integral problem of localizing both robots in the
same global map. Adding to this problem is the fact that a UAV-UGYV pair is often
desirable in scenarios where a common global sensor system such as GPS may not
be available. In this thesis, a method to localize both vehicles in a single map is
proposed by utilizing inertial sensors based estimates which are corrected through a
single visual sensor onboard the UAV. We explore a method of generating a unified
map which can be used to localize both the UGVs in the area as well as the UAV by
levying the additional charge of conducting visual odometry and object detection
on the UAV.



IHA KULLANARAK IKA'LARIN BILGISAYAR GORU TABANLI KONTROLU
VE LOKALIZASYONU

FARJAD ZAFAR
ME, YUKSEK LISANS TEZI, Aralik 2021
Tez Damigmani: Prof. Dr. Mustafa Unel

Anahtar Kelimeler: Durum Tahmini, Insansiz Hava Araglari, Insansiz Kara

Araclari, Gorsel Odometri, Yerellegtirme

OZET

Heterojen sistemler, 6zellikle IHAlar1 IKA’larla eglestiren sistemler giderek daha
popiiler hale geliyor. Cok etmenli bir robot sisteminin getirdigi avantajlar, gozetleme
veya arama ve kurtarma gibi ¢ok sayida gorev icin arzu edilir. Cok etmenli bir robot
sisteminin getirdigi avantajlar, gozetleme veya arama ve kurtarma gibi ¢ok sayida
gorev icin arzu edilir. THAlarin hareketliligi, onlar1 algilama ve haritalama gorevleri
icin daha uygun hale getirirken, IKA’larin gii¢ ve etkilesim yetenckleri onlari cogu
gorev icin arzu edilen ¢aligma modu haline getirir. Bu nedenle, onlar1 igbirligi icinde
kullanmay1 diiglinen bir sistem, her iki robotu da ayni kiiresel haritada yerellestirme
sorununu ¢ozmek zorundadir. Bu soruna ek olarak, GPS gibi ortak bir kiiresel
sensor sisteminin meveut olmayabilecegi senaryolarda genellikle bir THA-IKA ciftinin
istenmesi gercegidir. Bu tezde, IHA iizerindeki tek bir gorsel sensér araciligiyla
diizeltilen ataletsel sensor tabanlh zayif tahminler kullanilarak her iki araci tek bir
haritada konumlandirmak icin bir yontem onerilmistir. IHA’da gorsel odometri
ve nesne algilama yiiriitmenin ek maliyetini alarak hem bélgedeki IKA’lar hem de
IHAy1 lokalize etmek icin kullanilabilecek birlesik bir harita olusturma yéntemini

aragtiriyoruz.
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Chapter 1

Introduction

The development of new sensors and processing units as well as the industrial suc-
cess of stationary robots in their attempt to autonomously perceive and carry out
tasks in their environment has generated tremendous interest in the field of mobile
robotics. With abundant research being actively carried out in the arecas of sensor
fusion, precision navigation, precision positioning systems and obstacle avoidance
over the last decade. Today, multiple solo mobile robot platforms such as Boston
Dynamics Spot, have leveraged on-board multi-sensor systems to achieve a degree
of autonomy in their tasks. However, single robot systems regardless of their ro-
bustness are often limited in their capabilities either due to design constraints such
as locomotion mechanisms or by mission requirements such as in spatially separate

tasks.

As a consequence, the idea of using heterogencous systems wherein different kind
of mobile robots cooperatively work together has gained popularity. Heterogeneous
systems can consists of teams of two or more different types of vehicles such as Un-
manned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs) or Unmanned
Surface Vehicles (USVs). The difference in shape, size, design and mode of locomo-
tion between these robots allows a heterogeneous system to be employed in a broader

spectrum of automated tasks. Perception, payload and computation tasks can be
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easily distributed across the system to vehicles that best suit mission requirements.
Evidently, the architectural scheme of co-dependence that a heterogeneous system
introduces allows cooperating robots to accomplish complex tasks that would oth-
erwise be impossible for a single powerful robot to accomplish. The fundamental
theory of such a system encourages breaking down a difficult task into simpler sub-
routines and pass them to individual robots such that they interact to find ideal
solutions. This allows cost effective and simpler robots to be used in lieu of a single

costly robot with multiple capabilities.

A common combination utilised in heterogeneous systems is the UGV-UAV multi
robot system. Such a system provides the agile and vantage point benefits from the
UAV while keeping the payload and power capabilities of a UGV. This combination
is of particular interest since the UAV can cover a larger spatial area and can provide
information that a UGV might not be able to cover with the same on board sensors.
This opens possibilities for better mapping and an additional layer of localization

for the UGV using the UAV.

1.1 Motivation

UAV-UGV pairs are becoming increasingly popular in robotics. Recently, NASA
launched the Ingenuity, a quad rotor UAV, alongside the Perseverance UGV rover
to Mars. The Ingenuity has made the exploration on Mars efficient and safer for the
rover by being able to provide additional mission data. Similar advantages are also
sought in search and rescue missions where a UAV-UGV pair can definitively stand

out compared to a single unmanned robot.

While advantageous, for most heterogeneous systems, it is imperative that the un-
manned vehicles are able to localize themselves with respect to each other. This
puts emphasis on the unmanned vehicles to be able to draw alignments between

their maps and to continuously update their positions and estimate the difference
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on the respective robots coordinate frame globally. Michael et al. [1] suggested us-
ing a common point for initializing all robots in a system to overcome this problem,
while in [2] it is suggesting that using global positioning sensors can allow for good
estimation of relative coordinate frames. A more recent and popular approach is
to generate a reference map through one of the agents in the system while using
an active sensor such as LIDAR or laser sensor to generate metrical map merges

attached on the other robot [3].

The aforementioned while being increasingly viable according to their order of be-
ing stated, they each have their own drawbacks. The first method presents an ideal
scenario which might not always be the case in the real world, the second method
depends on sensors such as GPS, such sensors are closely dependant on the avail-
ability of satellites and their utility may be limited in certain scenarios and finally

the last mentioned method is reliant on heavy and costly sensors.

As an alternative, rather than having to generate two different maps and merg-
ing them, this thesis suggests using a single map generated through the UAV and
localize both vehicles through it. To this end it is suggested the UAV utilize a
monocular camera to generate a map and localize the UGV through it by using

computer vision algorithms.

1.2 Thesis Contribution

The contributions of this thesis are summarized as follows:

o A heterogeneous system where a UAV maps the environment and localizes

UGV in the camera frame is presented.

e The models are simulated in a simulation environment where the physics are

meticulously defined to exhibit the real world.
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1.3 Thesis Outline

This thesis is organized into 6 chapters:

Chapter 2 of the thesis is dedicated to conducting a literature survey regarding

current UAV-UGYV pairs and how they coordinate.

o Chapter 3 describes the mathematical modeling of both the UGV and UAV,

with multiple models of the UGV discussed.

o Chapter 4 takes a look at the computer vision algorithms that will be used to

carry out state estimation tasks.

o Chapter 5 explains how simulations are performed and provides a discussion

about their results.

o Chapter 6 concludes the thesis with several remarks and indicates possible

future directions.



Chapter 2

Background and Literature Survey

As previously stated heterogeneous robot systems consists of two or more than two
different types of robots. This chapter presents the literature survey regarding the
pair of UAVs and UGVs commonly used in research as well as the localization and

mapping techniques utilized on such systems.

2.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) belongs to a class of robots that operate above
the surface of the earth. Generally, UAVs can be broadly divided into three cate-

gories with examples shown in Figure 2.1.

o Fixed-Wing: These types of UAVs adopt the age-old customary designs of air-
crafts. Often used for military surveillance and weather forecast purposes.
Fixed-Wing UAVs are primarily favoured for their high-altitude and high

cruise speed capabilities.

« Rotary-Wing: This class of UAVs refers to crafts that utilize horizontal rotat-
ing aerofoils to generate lift. Helicopters as well as quadcopters belong to this
class. The VTOL and hover capabilities that rotary-wing UAVs bring are of

particular importance.
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o Hybrid: This class of UAVs merges both the VTOL capabilities of rotary-wing
as well as the cruise speed and fuel efficiency of a fixed wing UAV. Tilt-rotor

UAVs are a prime example of the hybrid class.

Figure 2.1: Left:Rotary Wing DJI Quadcopter. Middle: Fixed Wing AA
Albatross. Right: PD1 UKR Hybrid

Among the UAV classes, rotary-wings, particularly quadrotors are very popular in
both solo-robot SLAM tasks as well as multi-robot tasks. This is partly due to their
easy availability and the plethora of controls and modeling research that has been
carried out on them [4]. However, arguably the most desirable quality for quadro-
tors is their versatility in being able to carry out missions with both close and far

proximity from the ground and other unmanned agents in the area.

Multiple works have taken advantage of this versatility, such as in [5], where a
UAV is used to conduct surveillance by taking the weak perspective approximation.
Through this, the onboard camera of the UAV can be considered far away from the
Earth such that the image plane is parallel to the ground plane, effectively allowing
internal depth differences between objects on the ground to be disregarded [6]. Sim-
ilarly, quadrotors have been used in a variety of different mission settings to detect
obstacles either through a birds-eye view of the ground or to detect trajectory of

obstacles in its paths to initiate obstacle avoidance maneuvers [7], [8].

Fixed-wing UAVs tend to be the more staple choice for tasks where a relatively
large spatial area needs to be covered in a short amount of time. In recent works,

fixed-wing UAVs equipped with cameras have been used to autonomously detect the
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depth of snow in alpine conditions in order to help understand climate change over
a period of time [9]. The work of Pfeifer et al. used a similar technique to detect

and approximate the population of penguin colonies in Antarctica [10].

While quadrotors are currently the more popular choice for UAV-UGV pair sys-
tems, earlier research was focused on mobile target tracking using fixed-wing UAVs.
In [11], target is separated from the background using a Laplacian operator based
method and its velocity estimated by performing coordinate transformations and

Kalman filtering.

2.2 Unmanned Ground Vehicles

Unmanned Ground Vehicles refers to all mobile robots that carry their tasks while
retaining contact with the ground either autonomously or by passing information to
a ground station. One of the first UGV dates back to 1904, it was called the RCA
and was constructed by Leonardo Torres-Quevedo. The vehicle was tri-wheeled and
was meant to be controlled through radio signals. Its simplistic tricycle model can

be seen in Figure 2.2.

Figure 2.2: RCA revealed to the public

Today, multiple types of UGVs based on traditional vehicles as well as having been
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inspired from biological organisms exist. We can loosely classify them as wheeled
robots and legged robots. The term loosely is used since a very wide range of loco-
motion mechanisms exist within these classes, as well as with the current progress
in soft-robotics an even larger array of UGVs may exist. But for clarity and with
the perspective of this thesis, the later will not be considered as a category among

UGVs.

2.2.1 Legged UGVs

Legged UGVs have long been a subject of interest due to their ability to tread rough
terrain. The kinematics involved in legged robots give it the advantage of acting as a
natural suspension allowing the motion of the main body to be fairly independent of
how the legs interact with the ground. This is emphasized from the fact that one of
the earlier legged UGVs developed in the 1980s was named the adaptive suspension

vehicle [12].

Generally, there is no limit to the number or type of limbs a legged robot may
have. Designs can vary from a single legged hopping robot [13], to complex six-
teen legged large mechanical ones [14]. The primary problem in legged robots is the
problem of keeping its balance and the ability of the robot to predict where it should
land its feet even in cases of strong perturbations. A static system with external
forces will be considered stable if its point of contact with the ground (assuming its
an infinitesimally small point) is directly below its center of mass. If the points of
contacts are increased e.g. in the case of a bi-pedalled robot that static stability is
achieved when the center of mass is along the line between the two points. Addi-
tionally if more than three points of contact exist, than they will form the support
polygon and as long as the center of mass remains within this polygon, balance is
retained [15]. Figure 2.3 provides a visual representation of how center of mass and

points of contacts are related for static stability.
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Figure 2.3: a: Stability for single point contact. b: Stability for dual point contact.
c: Stability for three points of contact.

In [16], the standard approaches to modeling and controlling bi-pedalled robots
are presented. And again in [17], a method of allowing bi-pedal robots to behave
more closely to humans is presented. Quadruped and hexapod robots have received
similar attention, with their design purposed more closely to work for disaster relief

and surveillance mission [18].

2.2.2 Wheeled UGVs

The most typical form of a wheeled UGV is a standard differential drive robot. The
differential drive robot generally consists of one or two castor wheels with two motor
controlled wheels whose rotation rates can be separately altered. One of the most
widely used differential drive robots for research are from the Turtle-bot family. The
differential drive robot is preferred due to its simpler mathematical modeling and
its accessible library and simulation environment on the robot operating platform
ROS. New control algorithms and efficient path planning techniques such as in [19]

are often carried out on this system.

Another widely researched UGV is the omni-wheeled UGV. These UGVs are equipped
with wheels that have small discs around the circumference which are perpendicular
to the turning direction. Due to this the wheel has the capability of easily slipping
sideways. Omni-wheeled UGVs derive their research interest from their ability in

making the drive system holonomic. Advanced control techniques and efficient ma-
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neuverability are still of great interest in these UGVs. In [20] a fuzzy controller for
improved response in robot soccer is proposed for omni-wheeled UGVs. Figure 2.4

shows an example for a typical arrangement in differential and omni-wheeled robots.

Figure 2.4: Left: TurtleBot Burger. Right: Typical Omniwheel Configuration

Among all wheeled UGVs however, the standard 4 wheeled configuration in terms of
real life application is the most important. While new algorithms may be tested on
differential drive UG Vs ultimately, they are all designated to be used on the everyday
car configuration. Today, a plethora of work is being carried out on developing a
level 5 autonomous car, with new SLAM algorithms being tested on standardised
benchmarks, such as the EuRoC or TUM dedicated primarily for this purpose [21].
For this UGV configuration and for the goal of attaining level 5 autonomy, a greater
stress is laid on how such a system can accurately estimate its own state as well as

the state of agents in its surrounding environment [22].

2.3 UAV-UGYV Pairs

As mentioned previously, a UAV-UGV pair is a heterogeneous platform that has a
wide array of advantages over a using either of the two in a singular platform. The
work carried out in literature is generally purposed towards methods of coordinating

between the pair in order to carry out simple to complex tasks.



Background and Literature Survey 11

The strategies undertaken for multi-agent tasks involve giving top level decision
taking authority to one agent or to levy task priority among all available agents in
the system. The type of system being used depends on the level of hierarchy given
to the number of agents present in the system. Depending on this coordination
strategies can be divided into Distributed systems, Centralized Systems and Decen-
tralized Systems. We take a brief look at how these methods are used in literature
in the specific case of UAV-UGYV pairs, a graphical description of these systems is

provided in Figure 2.5.

Figure 2.5: a: Distributed System. b: Centralized System. c¢: Decentralized System

2.3.1 Distributed Coordination Systems

In the distributed coordination architecture, no single robot is in charge of making
unilateral decisions for other agents in the system. Instead each robot in the system
is given an equal degree of autonomy and decision making preference [23]. Each
robot in the system is equipped with its own set of sensors and computational pro-
cessors and is responsible for generating its own map of the environment. The robots
do however, exchange information and holistically develop the entire map model of

the covered spatial area by sharing their own local maps. While distributed sensors
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can be effective in developing a more accurate representation of the world, they are

not very effective in dynamic environments.

A distribution coordination system is used in [24] to generate multi view map by us-
ing multiple agents in the system. Each robot is responsible for carrying out its own
SLAM task in it local environment while simultaneously updating the global map
by sharing map information. The method presented here maintains a topological
pose graph which is stored in nodes and edges. Since only reduced graph structure is
shared, maps from multiple robots can be merged to create a large global map. The
maps are optimally merged by using visual features detected by individual robots

in the distributed system.

In another work, the authors have used a UAV and UGV pair to collaboratively
localise and generate an elevation map based on 2 different sensors [25]. The UAV
is equipped with a monocular camera and generates an clevation map using visual
features, while the UGV is equipped with a rotating laser which it uses to generate
its own elevation map. The robots continuously update their elevation maps and
share this data with each other. This allows the ground robot to use the aerial view
point as a reference map to better estimate its own states while the UAV can use
this information to localize the UGV in its own local map. A great advantage of this
technique is that the method is independent of having to calculate the respective

viewpoint of each vehicle.

2.3.2 Centralized Coordination Systems

The main concept behind centralized coordination is to assign decision making au-
thority to one agent in the system. This agent makes use of its on board sensors to
perceive the environment and to make control decisions for itself as well as all the
other agents. It is essentially, the brain of the entire architecture that alone ensures

how tasks are to be carried out. An euphemism popularly used for this approach in
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literature is the Leader-Follower control formation [26], [27].

Since the centralized approach simply extends the modality of agents in single robot
systems. This makes the architecture computationally simpler. However, since the
entire system is dependant on the leader to receive information and perform loop
closure for follower robot responsibility, it becomes liable to communication over
head and transmission loses. The entire system is liable to become unstable if the
leader malfunctions unless an alternative robot exists [28]. In [29], a centralized

architecture is used to conduct surveillance using a UAV-UGV pair.

In [30] the authors present a fully autonomous collaboration between a UAV and
UGV in a mock-up disaster scenario. The scenario builds on the fact that the ground
robot is unable to find the ideal path through obstacles, and hence the UAV carries
out a prior mission to map the area of interest first, and then through the aid of
fiducial markers localizes the UGV in the global map and guides it through the

optimized way points.

Garzon et. al. in his work also uses a centralized approach to map obstacles and
navigate a UGV using visual feedback received from the UGV [31]. The UGV uses
visual information from the camera to detect obstacles in its path and utilizes its
own inherent positioning system to be able to localize itself with respect to the ob-

jects in its path.

2.3.3 Decentralized Coordination System

This architecture presents a hybrid approach between centralized and distributed
coordination systems. In this paradigm the control process is achieved by giving one
or more local centric robots within the system to carry out decision making for the

agents within their immediate vicinity. This causes groups of clusters to be formed
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throughout the system where each group is responsible for carrying out sub tasks
individually in a centralized manner [32]. This form of coordination is robust com-
pared to distributed architecture and allows the system to perform tasks efficiently
through global goals and plans. Decentralized systems are often the more popular

approach in heterogeneous systems.

2.4 Simulation Environment

CARLA is an open source Simulation software developed by Toyota in the Un-
real Engine environment for the study and development of machine algorithms for
autonomous driving. Using the Unreal Engine physics, it allows a ground vehicle
to be simulated within an open world environment where data can be extracted
in different forms from simulated sensors. Some sensors featured by CARLA are
LIDAR, Depth Camera, Collision Sensor and most importantly for this thesis, the
RGB camera. CARLA also comes equipped with a complex traffic manager which
simulates pedestrian and vehicle NPC behavior. In addition to the intrinsic capabil-
ities of the simulator that embeds the control logic, physics and graphical rendering
of the environment and characters within it, it includes a Python API module which
allows user generated code and existing libraries such as pytorch or openCV to in-
teract with the simulation [33]. Figure 2.6 provides a basic idea of how the inherent

architecture is separate from the python API.

Most aspects of the simulation can be accessed from the API. With scripts it is
possible to generate, retrieve and process raw data coming from and into CARLA
sensors. This data can be additionally processed for control actions. We can divide

the python scripts into two logical parts.

o Configuration: Before any valid work can be done on CARLA, a connection

with the CARLA server needs to be established and the objects of interest
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including sensors, vehicles or else need to be created, spawned or destroyed.

o Communication: This part of the simulation is dedicated to carrying out user
generated actions. This includes receiving data from the sensors, processing

them and actuating the vehicle through user defined control logic.

4 @ python

[ & python | —

A python

[ @ python |

Simulator User scripts

Figure 2.6: Carla Python API



Chapter 3

Mathematical Modeling of UAV
and UGV

Mathematical models are necessary to describe how a system will behave in the
simulation environment. In this chapter the mathematical models for the unmanned
vehicles to be used in our simulation environment are described. These mathematical
models will be used to navigate the UAV through the virtual environment and to
consequently control the UGV from state observations made by the camera and

internal sensors of the UGV.

3.1 Quadrotor Modeling

The quadrotor configuration of a UAV consists of four rotors arranged in a cross
configuration. The angular rotation of each rotor can be independently controlled
to produce different thrusts. How the angular rates of these rotors are changed
primarily govern how the quadrotor will react. The pitch and roll moments can be
controlled by varying the speeds of rotors arranged in a cross, while the acceleration
in altitude can be controlled using the sum of thrust for all four motors. Finally,
yaw control of the quadrotor is obtained from the net torque of all four motors.

These relations are depicted in Figure 3.1.

16



Mathematical Modeling of UAV and UGV 17

To this end we will first discuss the axes system used to analyze the quadrotor
dynamics followed by the transformation from one axes system to another. At the

end we will formulate the quadrotor dynamics and present equations of motion for

6-dof.
AF=FR+F4+F+F,
F, F -
i
A "N
= = @ roll
0,
e CAE]
~ a,
o =5,
“-‘H-% > /ﬁ-‘:-!) 2
~ 0 ” =
{ y
Y=, 48,8, + 2, 0
i {_.) Pitch
¥
o Z ¥ Yaw Body coordinate system B(F,xy.z)
f] Inertial cocrdinate system ({O:x,.0,.2.)

& o

Figure 3.1: Forces and Angular Rates of a Quadrotor.

3.1.1 Assumptions

A real system involves numerous variables that when considered increasingly com-
plicates the modeling manifold. This complexity increases computation time and
does not prove too much in the way of accuracy for the implementation in this
thesis. Hence, we take reasonable assumptions that do not inhibit the model from

representing the actual outcome by too large a margin.

o Rigid Structure: This implies that no body distortions or blade flapping take
place. Additionally, the relative distance between any two points on the pro-

pellers will remain constant [34].

e Symmetric Structure: Based on the assumption the mass of the quadrotor

including any on board sensors is considered to be symmetrically distributed
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along all three axis. This allows us to take elements not on the main diagonal

of inertia to be taken as zero.

o Flat, non-rotating Earth: This assumption allows us to ignore the orbital

motion of the Earth.

o Negligible Ground Effect: In our simulations the quadrotor is expected to be
at a certain height from the ground. Take-off phase of the mission can largely
be ignored since the quadrotor is only expected to start estimating the states

of the UGVs once it is on its flight path.

o Constant Mass: The mass of the quadrotor will not change throughout oper-

ation.

3.1.2 Axes Systems

The following axes systems will be used for the dynamic modeling.

Inertial Axes System

Specifying an inertial axis is important since Newton’s laws of motion are only ap-
plicable when acceleration is measured with respect to an Earth-fixed frame. Hence,
to formulate the dynamics problem we take a non-rotating reference frame placed
at the center of the Earth as the inertial frame of reference. This frame is placed in

the NED configuration as listed below.
» Positive x-axis is directed towards the North.
o Positive y-axis is directed towards the East.

e Positive z-axis is directed downwards towards the center of the Earth.

Body Axes System

The center of mass of the quadrotor is taken as the origin for the body axis system.

The body axes system allows the moments and products of inertia as well as the
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forces and moments acting on the quadrotor to be specified easily. This system is

taken as orthogonal right-handed.
e x-axis passes through rotor 1.
o y-axis passes through rotor 2.

o z-axis represents downwards direction.

Transformations between Reference Frames

As the body-fixed frame is a rotating frame of reference which moves along with the
quadrotor, Newton’s laws can not be directly applied to it. Hence, there is a need
to transform the variables calculated in the body frame to the inertial frame. There

are three general methods available to do so.
o Euler Angles
e Quaternions
e Direct Cosine Matrices

Of these methods the most intuitive and computationally inexpensive technique is
to use the Euler Angles. And since the quadrotor is not expected to carry out
any aggressively maneuvers, the singularity problem associated with this method
can be largely ignored. The rotation matrices associated with the z, y and x axis

respectively are given below.

cosy siny 0
R.(¢) = |—siny cosyp 0 (3.1)
0 0 1

cosf 0 —sind

R@=10 1 0 (3.2)
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1 0 0
R.(¢) = [0 cos¢ sing (3.3)

0 —sing coso¢

The sequence of rotations of these matrices are defined in Equation 3.4.

R = Ry (6)Ri(0)R;(¥) (3.4)
1 0 0 cos 0 —sind cos®y siny 0
R7 = |0 cos ¢ sing 0 1 0 —siney cosy 0
0 —sing cos¢| [sinf 0 cosf 0 0 1

The final transformation is represented Equation 3.5.

cos 0 cos ¢ cos 6sin ¢ —sin@
R? = |costsinfsing — sinty cos@ siny sinfsin g + cosp cosd  cosfsin @ (3.5)

cos 1 sinf cos ¢ + sinsin ¢ siny sinf cos ¢ — coswsin g  cos O cos ¢

Since the individual transformation matrices are orthogonal, the final matrix is also

orthogonal.

[R7™' = [R]"
Now we can easily transform a vector from the body frame to the inertial frame.

X; = RPXp

These Euler angle rotations are also graphically represented in Figure 3.2.
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Figure 3.2: Euler Angle Rotations [35]

3.1.3 Kinematic Relations

Modeling relations that describe the motion of an object without accounting for the
forces acting on it are known as the kinematic relations. These relations are used to

describe how an object translates and rotates.

Using the sequence of transformations stated previously angular rates (p,q,r) can be

expressed in terms of Euler angle rates in the body frame.

p| |9 0 0
q| = |0 T Ra(0) [6] + Re(d)Ry(0) |0 (3.6)
r 0 0 v

P 1 0 —siné é

q| = [0 cos¢ singcosf| |8 (3.7)

r 0 —sing cos¢cost w

And in terms of Euler angle rates we represent this with the relation given below.
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) 1 singtanf cos¢ptanf| |p
=10 cos¢ —sin¢ q (3.8)

1/) 0 secfsing seclcoso| |r

By integrating these equations the attitude of the quadrotor can be obtained in the

inertial frame of reference.

Similarly, the same matrix declared earlier can be used to find the position and
velocity of the quadrotor in the earth frame. We mathematially describe these

equations below.

X u
z w

& = (cos ¥ cos f)u + (cos v sin 0 sin ¢ — sin ¥ cos ¢)v + (cos 1 sin O cos ¢ + sin ¢ sin ¢)w
(3.10)

j = (sin 1 cos 0)u + (sin ) sin 0 sin ¢ + cos 1 cos ¢)v + (sin ¥ sin  cos ¢ — cos ¢ sin ¢)w
(3.11)

2 = —(sinf)u + (cos 0sin ¢)v + (cos f sin ¢)w (3.12)

Through integration, the position of the quadrotor in the inertial frame can be

calculated.

3.1.4 Dynamic Relations

Now that we have defined the kinematic relations for the quadrotor, we now move
to the mathematical relations that govern how forces and moments cause motion.

These relations also known as the dynamic relations can be built for the quadrotor
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starting from Newton’s second law of motion.

d
F=2(mv
V) s
Fx X —mgsin6 m(t + quw — 1)
Fy| = |Y |+ [mgcosfsing| = [m(v+ru— pw) (3.13)
Fy Z mg sin 6 cos ¢ m(w + pv — qu)

Here the term d/dt is not carried since mass is assumed to be constant. These

equations can now be solved for acceleration.

1
U=rv—quw—gsinh+ —Fyy (3.14)
m
. ) 1
U =pw—ru+gcosfsing + —F,, (3.15)
m
. 1
W= qu—pv+ gcoshcosp+ —F,y (3.16)
m

The force disturbance terms F,q4, Fyq and F.; act on their respective axis as drag.

1
1

Fyd == —§CDADpU.|U| (318)
1

de = —éCDADpw\M (319)

where Ap and Cp are aerodynamic area and drag coefficient respectively.

As moments are also integral for defining the dynamic relations of the quadrotor.

Similar to the force equation we can use the moment equation to describe the model.
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d
M=—(H
() s
MX L Ix:cp + (Izz - Iyy)qT
]\[y = |M]| = Iyyq + (Ixx - [zz)rp (320)
My N L.+ (Iyy — Lea)pq

As per the symmetric structure assumption, cross product terms are taken as zero
and not represented in the equations above. Finally, the moments can be solved for

in the inertial frame as,

1
p= I_[(Im = L..)qr + M, + M) (3.21)
. 1
qg= [—[(IZZ — Ly)rp + M, + M,,] (3.22)
vy
. 1
= (e = Ly )qp + M+ M) (3.23)

zz

the moment disturbance terms M,,, M,,, and M., in the aforementioned equations
occur due to the gyro effect, which in quadrotors generally occurs when the rotors

are not rotating at the same speed. We model this with the following equations.

M,, qsd,
My, | = Jr |—pQ2, (3.24)
M., Q,

where, J, is the inertia of the rotors and €2, is the residual rotational rate of rotors.

QT - Ql + QQ - Qg + Q4 (325)

The complete non-linear model of the quadrtor consists of 12 states which is repre-

sented by the vector equation 1.
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i = f(X,U) (3.26)

Where X represents all the states of the system.
(cos ) cos )u + (cos 1 sin O sin ¢ — sin 1) cos ¢)v + (cos 1 sin b cos ¢ + sin 1 sin q'))w_
(sin ) cos B)u + (sin 4 sin O sin ¢ + cos 1 cos v + (sin ¢ sin 6 cos ¢ — cos 1 sin P)w
—(sin@)u + (cos @ sin ¢)v + (cos O sin p)w
rv—qw — gsin g + %de
pw — ru + gcosfsin g + L F,

m*yd

qu — pv + g cos 6 cos ¢ + %FZ

X = ! (3.27)

p + tan6(gsin ¢ + r cos @)
qcos ¢ — rsing

(gsin ¢ + r cos ¢) secd

= [(Loe — L2 )qr + My + My,)

wx

[([zz - Izz)rp + ZMU + lwyg]

~
|- -
<

[([zz - ]’yy)qp + MZ + Mzg]

~

zz

The input vector U represents the four inputs passed to the model to control the

rotorcraft represented below.

T
U= |:’LL1 Uy U3 U4:|

b(QF + Q3+ QF + OF

bl(—Q2 + 02
bU(QF — )

d(—Q2 + 02 -2+ 02
Here u, represents total vertical thrust, us represents pitching moment, uz represents

rolling moment and wu4 the yawing moment. Constants b, d and 1 represent thrust

factor, drag factor and length of moment arm respectively.
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3.2 Ground Vehicle Modeling

Now that one of our agents to be simulated has been defined. We move towards
describing the mathematical model of the ground vehicle. We take a 4 wheel vehicle
and move to define how it is expected to behave. First we will define a simple

kinematic mathematical model, followed by the dynamic model for the vehicle.

3.2.1 Kinematic Model

As described previously, kinematic models are used to describe motion by using the
geometric constraints imposed on the system.For the 4-wheeled car we take the well

known kinematic bicycle model.

In the bicycle model of a 4 wheeled vehicle the front left and right wheels are
taken as a single unit, the same assumption is also taken for the two rear wheels.
Both wheels are donated by d; and d,, such that it is assumed that both the front
unified wheels as well as the rear unified wheels are steerable. If steer ability for
only one set of wheels is required, the other can be set as zero. The center of gravity
of the vehicle is located between the line passing through the front wheel and the

rear wheel. For a better representation the following Figure 3.3 is used.
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Figure 3.3: Kinematics of lateral vehicle motion [36]

A and B are the front and rear wheels respectively. C represents the center of grav-
ity, while the distance of the front wheel and rear wheel from the C.G are given
as Iy and [, respectively. As a simplified assumption, in the kinematic model the
vehicle is assumed to be in planar motion hence, x,y and v are required to describe
the motion of the vehicle. Where x and y are the inertial coordinates of the center
of gravity of the vehicle and v represents the orientation. The vector V at the c.g
represents the velocity of the vehicle. A difference between the angle of the velocity
at C and the heading of the vehicle may exist. This difference is denoted by 8 and

is known as the side slip angle.

The point O in the Figure 3.3 above represents the instantaneous rolling center
for the vehicle. This point is defined by the intersection between the imaginary lines
drawn perpendicularly from the center of both wheels. The radius of the vehicles
path is now defined by the how far the point O exists from the the c.g. By creating
these imaginary lines we are able to obtain two similar triangles, OCA and OCB.

By solving for them we can arrive at the following equation.

lf—l-lr

(tan(dy) — tan(d,)) cos f = 7

(3.29)
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An integral assumption in the kinematic bicycle model is that the vehicle has a slow
speed such that the rate of change of orientation of the vehicle becomes equal to the

angular velocity of the vehicle. We can describe this using the relation,
-V
V=R

And by substitution we further obtain Equation 3.30.

b= Vs B) s, — tan(s,) (3.30)

lf+lr

Now we can write the overall equations of motions.

T =V cos(v + f) (3.31)
y = Vsin(y + 0) (3.32)
)= Vlf%sf)(tan(éf) — tan(d,)) (3.33)

The slip angle can be similarly measure by carrying out the appropriate substitu-

tions.

B =tan"! {W] (3.34)

The Kinematic Bicycle model suffers from its base assumption that the vehicle is
moving a at a very slow speed. However, in most scenarios the this assumption will
be violated, hence we move to develop the dynamic model of the vehicle to overcome

this short coming.

3.2.2 Longitudinal Dynamic Modeling

For describing the longitudinal dynamics of the car we take a vehicle placed on an

inclined plane such as in Figure 3.4 and observe all the external forces acting on it.
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F‘U('f‘ri

Figure 3.4: Forces on a body in an inclined plane [37]

Table 3.1: Parameters acting on an inclined vehicle

Parameter Description

Far Longitudinal tire force at front tires

Fu, Longitudinal tire force at rear tires

Foero Equivalent longitudinal aerodynamic drag force
m Mass of vehicle

g Gravitational acceleration

0 Angle of inclination

Ras Rolling resistance at front tires

R, Rolling resistance at rear tires

Using the tire forces to describe the thrust being obtained from the power train and
by balancing it with the resisting forces along the longitudinal axis of the vehicle we

can obtain the force relations.

mr = Fxf + Fmr - Faero - Rxf - Rar?“ —mg Slﬂ(9> (335)

Now we move towards better defining the force terms on the right hand side of the

equation.

The aerodynamic drag force is the resistant force exhibited by the air. It depends
on both the vehicle speed and the wind speed and for vehicles can be given with the

relation in Equation 3.36.

1
Fae’/‘o - §PCdAF(Vx + Vwind)2 (336)
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In the aforementioned equation p refers to the density of air, A is the normal frontal
area of the vehicle that is facing the direction of travel and C, is the coefficient of
aerodynamic drag. The wind term can be positive for a head wind or negative in
case of a tail wind. [36] showed that frontal area is about 80 percent of the vehicle
area calculated from width and height, they also showed that for cars in the mass

range of 800-2000 kg can be given with the following relation.

Ap = 1.6 + 0.00056(m — 765) (3.37)

The aerodynamic drag coefficient can be carried out using a simple coast down test
[38]. Assuming that the inclination angle is zero, the throttle is small enough to be
considered zero and wind speed is negligible next set of operations on the dynamics

equation.

v, 1 _,

By integrating for an initial longitudinal velocity V4,

pArCy

o )2] (3.38)

Emy3] — tan [V

if we take t=T as total time and add the non-dimesiinalizing parameter,

pArCy. 1
=W 2 3.39
f=V(55—) (3.39)
Ve 1 t
% represent a single family of curves that cane use to obtain f for a vehicle at any

particular time. We can use these values to then calculate the drag coefficient and

the rolling resistance.
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_ 2mftan~!(p)

= 41
Cq VaTpAr (3.41)

_ Vom tan=1(3)

R, T

(3.42)

Next we move to better define the longitudinal tire forces in the front and rear

wheels. These forces depend on a variety of factors including,
o Normal load on tire
 Friction coefficient
 Slip ratio

Longitudinal slip is the difference between the actual longitudinal velocity of the
vehicle and the rotational velocity. The slip ratio for acceleration and breaking are

respectively given as,

TeffWyw — ‘/m

= ————— 3.43

o - (3.43)
TeffWy — ‘/w

g = ———————— 3.44

7, = A (3.41)

if the friction coeflicient of the tire and road interface is assumed as one while the
normal force to the tire is taken as constant a function of slip ratio to tire force is

shown in Figure 3.5.
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Figure 3.5: Tire Force as a function of slip

0.4

The linear region describes how the slip ratio remains during normal driving condi-

tions. Taking this as a proportional relationship the tire forces can now be modeled

as given in Equations 3.45 and 3.46.

sz = CUfO'xf

F:cr:

0'7"0—31‘1"

(3.45)

(3.46)

The rolling resistance of the tires are roughy modeled as being proportional to the

normal force on the tires as,

(3.47)

f here represents the rolling resistance coefficient which for typical passenger cars is

0.015 [36].

Apart from weight, the normal load on tires is also affected by additional parame-
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ters such as the longitudinal acceleration, fore-aft location of c.g., the aerodynamic
drag forces and the terrain. We model these by taking moments about the point of

contact of the tires using Figure 3.6 as reference.

., = ~Furohuers = mih - rzzrglh sin(0) + mgl, cos(0) (3.48)
f T

Foerohaero + m&h + mghsin(0) + mgl, cos(0)

4
lf + 1, (3 9)

F, =

F AEr = .

F zr

Figure 3.6: Normal Tire Loads Calculation

Table 3.2: Parameters for normal tire loads

Parameter Description

h Height of c.g.

haero Height of aerodynamic center

1¢ Distance between front axle and c.g.
1, Distance between rear axle and c.g.
Teff Effective radius of tires

Driveline Dynamics

We defined how the longitudinal motion of the vehicle is dependant on the longitu-

dinal forces of the tires. These tire forces are greatly dependant on the difference
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between wheel rotational velocity and the vehicle longitudinal velocity. The rota-
tional velocity of the wheel itself is greatly dependant on the driveline dynamics of
the vehicle, which makes it an integral part of the model. A standard power train

and its flow is defined in Figures 3.7 and 3.8.

Figure 3.7: Typical Power Train

Figure 3.8: Power train flow (solid arrows represent power; dotted arrows represent
load)

Due to the direct connection between wheel and engine when in gear, we can model
this behaviour with a kinematic restraint such that rotational coupling exists at all
time [39].

wy = GRw; = GRw, (3.50)

where w,, is wheel angular speed, w; is turbine angular speed, w, is engine angular
speed and finally GR is the gear ratio. We can also represent the longitudinal

velocity in terms of angular wheel velocity.

T = Tef fWw (351)
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T = TeffGRUJw (352)

The wheel represent the intersection between torques coming from the power train

and the torques from external forces, we use these to model the dynamic behavior.

Iwww — Lwheel — TefszTwheel - [www + TeffF:r (353)

Twheel = Iwww + 7ﬁeffF’z (354)

Since we already have defined the equation for force exhibited by the tyres, we
can solve this differential equation for wheel torque. Now the turbine torque can
be defined as the torque which comes from the torque converter that couples the

engine to the transmission. This can be modeled with the following relations.

Itwt =T, — (GR>Twheel (355)

Itwt - 7—% - (GR)TIwW.w‘i’Tefsz (356>

Next is the torque converter which is perhaps the most complicated part of the
drivetrain, the torque converter can undergo coupling and decoupling with the engine
due to the multiple impellers and fluid flowing through it. For our purposes however,
we consider the converter to be coupled at all times which allows us to use the
relation in Equation 3.57.

Wy = We (3.57)
Ty = (I, + 1,GT?)&. + GRro s Fy (3.58)
Finally we add the engine dynamics where the engine inertia term is equal to the

torque produced by the engine from the combustion process minus the torque from

the torque converter.
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Iewe = TEngine - jjt (359)

I6e = Tongine — (It + L,GT?)S. — GRrog s Fy (3.60)

From the dynamic modeling we have the following list of equations. Starting with

the primary vehicle dynamic equation.

mi = sz + F:m" - Faero - Rxf - Ra:r —mg Sln(‘g) (335)

For front longitudinal tire forces,

Fop = Coy0uy (3.45)
TeffWwf — T
Opf = ————— (3.43)
TeffWwf
o, = I T T (3.44)
' x
For rear longitudinal tire forces,
F:r,r = UorOgyr (346)
0y = AL E0r T T (3.43)
Tef fWwr
0y = LI T (3.44)
T
For rolling resistances,
Rxf—l—Rmr = f(sz—l-FzT) (347)

P Frerolaero — mih _z ﬁglh sin(6) + mgl, cos(9) (3.48)
f T
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Foerohaero + mEh + mghsin(6) + mgl, cos(0)

F, = 3.49
" lf + 1, ( )
For Aerodynamic Drag force,
1 2
Faero - EpOdAF(Vx + Vwind) (336)
Finally the combined engine dynamic model,
(Ie + I + TwGR? + m(GR?*)r2;5)de = Tengine — (GR)(ress Fy) (3.61)

3.2.3 Lateral Dynamics

Moving with the same assumption as in the kinematic model, we lump the two front
wheels and the two rear wheels together at the center of the car to generate a bicycle
model again. The model is considered to be planar and has two degrees of freedom

i.e. the vehicles lateral position and the vehicles yaw angle such as in Figure 3.9.

b

- =

Lane
canterling

[ ‘,Urlm’

Figure 3.9: Lateral vehicle dynamics [36]
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We apply newtons second law along the y-axis to obtain the relation [40],

may = Fyr + Fy, (3.62)

where, a, represents the inertial acceleration of the vehicle at the c.g. while Ff
and £, f represent the lateral tire forces in the combined wheel. The acceleration

is affected by the motion in the y axis as well as the centripetal acceleration.

m(ij+ pV,) = F,p + F, (3.63)

By balancing the moments about the z axis we can obtain relations for yaw.

Lpsi = 1;F,; + F,, (3.64)

Where the same notations represent the same parameter for the remaining terms
as used in the kinematic model. Similar to how slip angle was previously defined,
in lateral dynamics slip is very essential to calculating the lateral wheel forces. We

represent slip angle for lateral dynamics in Figure 3.10.

;. longitudinal axis of the
' vehicle

Figure 3.10: Tire slip angle

where slip angle at front wheel and rear wheel can be represented with the following
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equations.

af = 0 — Qvf (365)

a, = —0y, (3.66)

The lateral tire forces with the slip angles for front and rear wheel cluster can be
given as,

F,; = 2C.(6 — Ovy) (3.67)
Fyy = 2C0,(—0y) (3.68)

where the constant C,, is the cornering stiffness of each wheel. The equations are
multiplied by a constant 2 since both wheels are clustered together.

Now we can resolve for 6.

V, + 14
tan(fy ;) = Vit (3.69)
V.
V, — 1,4
tan(fy,) = Yy —bv (3.70)
Vo
We can take a small angle approximation to remove tan from the equations.
Finally, we can use these equations to write the state space model.
Yy 0 1 0 0 0
. 2C, ;+2Car 2C,, 11y —2Carly 2C, s
d 9] |0 T 0 Ve T "
- = Ve Ve + 5 (3.71)
Y 0 0 0 1 0
. 2 2

3.2.4 Lateral Dynamics Model w.r.t The Road

As we are trying to control the car in a urban road setting, it is advantageous to
develop a mode which reflect the state variables in terms of position and orientation

error with respect to the road. We take two error terms,
o ¢1: the distance of the c.g. of the vehicle w.r.t the center line of lane.

e ¢9: the orientation error of the vehicle w.r.t the road.
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Assuming that a vehicle with constant longitudinal velocity is travelling on a road
with a large radius R. Holding the small angle assumption we can define the desired

rate of orientation and acceleration.

Vi
wdes = E (372)
2
LEREV 3.73
7 Ya (3.73)

Following the approach in [41], we now define error terms.

. V2 . .
v =(J+ Vo)) = 5 = G+ Vol — Yaes (3.74)
€r = ¢ - wdes (375>
él = y + Vx(w - wdes) (376)

Assuming that the longitudinal velocity is constant a linear time invariant model.

mé =€ |~ ZC,y — V%cm} + ey {QCaf +2CM} + €, {—zcv—flf + %} (3.77)

: 2004 l ZCarlr

Léy = 2C, 110 + € {_QCV_flf + %] + €3 [Qoaflf _ goml,l (3.78)

N 2004 l2 20arl2 - 2004 l2 20(17“12
€9 {_% _ TT — dees _% _ Tr
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The state space can now be represented in Equation 3.79.
€1 0 1 0 0 €1
. 2C, §+2C 2C, 1+2C. 2C fl§+2C0rl .
d € O _ a:::"/r ar afm ar _ af,’fl‘;z arlr €1
Aol o 0 0 1 e
. 20+Cp s —212Car  20$Co —21rCoar 23 Coy+202C0or .
€2 0 —==/+ v I €2
0 0
2C..; 2Ca lf—2Ca, br v
A
+| ™ | d+ " (3.79)
0 0
24C ¢ 2Ca (1342Ca, 17
| L | LV, i

This creates the tracking objective of the steering control problem, however it takes

the assumption that longitudinal velocity is constant.



Chapter 4

Vision Based Localization

This chapter presents the camera based algorithms used to estimate the camera
pose of the UAV in order to help update its state estimates and construct a map of
the world. The algorithms are also needed in order to localize the UGV within the

camera frame of the UAV and hence, localize it within the aerial view map.

4.1 Pose Estimation

The pose estimation problem for the UAV is tackled through a filter based visual
inertial solution. For visual estimates. The pose estimation strategy follows such
that the UAV has a birds eye view of the ground and captures new frames consec-
utively an example of this frame capture strategy is presented in Figure 4.1. The
3D motion information is matched by extracting and tracking feature points in the

consecutive frames.

42
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Figure 4.1: Pose Estimation Strategy, where R and T represent rotation and
translation matrices [42]

A high number of unique feature points being detected in consecutive frames is

desirable for accurate motion estimation.

4.1.1 Feature Detection and Matching

Feature detection is a low level image processing techniques which identifies unique
points of interest that ideally are replicate-able from different view points. Corner
points are one such feature that can be detected through algorithms such as the
Harris corner detection [43]. While feature description refers to the method of de-
scribing these points of interest with reference to the pixels around them. Today
many algorithms such as SIFT, SURF, FREAK, BRIEF, and ORB exist that can
both detect features and describe them [44], [45]. These detectors are widely applied

to visual navigation purposes.

Popular choices among these algorithms are the SIFT, SURF and ORB features:

1. SIFT: Scale Invariant Feature Transform features were one of the first modern
feature detectors presented to extract points of interest from images. SIFT
algorithm follows 4 main steps: 1. Use difference of Gaussian to identify
key points from a pyramid of scale, localise important key points, orientation

assignment and key point description.
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2. SURF': Speed-Up Robust features was an algorithm that was inspired by the
SIFT algorithm. The SURF algorithm sped up the process of feature detection
by making use of integral images [46]. The SURF method is based on two
major steps: Using Laplacian of Gaussian on images followed by the Hessian

matrix for identifying key points and key point description.

3. ORB: Oriented Fast and Rotated Brief is an algorithm that took advantage of
two other algorithms, FAST and BRIEF. ORB makes use of FAST for feature
detection and BRIEF for feature descriptions. ORB features have proven to
provide the same accuracy as SIFT while being two orders of magnitude faster.
For these reasons we chose ORB as the primary algorithm for feature detection

and explain it in greater detail below.

To understand ORB we first look at FAST feature detection. FAST works by com-
puting the brightness of a pixel p, such as that given in Figure 4.2, with the sur-
rounding 16 pixels. The pixels in the neighbourhood of p are then sorted into three
categories: Darker than p, same as p and lighter than p. If more than 8 pixels are

either darker or brighter than p it is selected as a key point [47].

Figure 4.2: FAST algorithm detecting a key point

However, unlike SIFT or SURF, FAST features do not have an orientation or multi
scaling component. Which means that for different orientations or scaling of the

image FAST may not be able to find the same keypoints. To amecliorate this ORB
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algorithm implements a multiscaled image pyramid (see Figure 4.3). This pyramid
consists an array of different scales of the same image. Each level contains a down
sampled resolution. After creating an array of down-sampled images, ORB finds
keypoints based on FAST at every resolution level, making orb partial scale invari-

ant.

Figure 4.3: Pyramid of Scales

After the detection of keypoints, an orientation to each of them is defined based
on the levels of intensity around the pixel of interest. This action is carried out
through intensity centroids achieved by first calculating moments of a patch given

in Equation 4.1.
mpg = Y 2Py (,y) (4.1)
7y
The center of mass of the patch can easily be identified with Equation 4.2.
_ (Mo Mot

= ) (4.2)

moo7 Mmoo
Now a vector from the center to the centroid can be calculated.

0 = arctan 2(mg;, m10) (4.3)
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With the orientation calculated, the patch can be rotated to a canonical rotation
and description can be carried out to achieve rotation invariance. A visualization of

this is given in Figure 4.4.

Figure 4.4: A canonicaly rotated patch

Once the key points are sought out by the FAST detector, BRIEF is used to convert
the key points into binary feature vectors. The binary feature description is a
feature vector that only contains values of 0 and. This part starts by smoothing
the image using a Gaussian Kernel to prevent the descriptor from failing to high
frequency noise. However, BRIEF is not invariant to rotation. Hence, ORB makes
an adjustment by providing a patch orientation # and the corresponding rotation
matrix, this operation basically steers the BRIEF operator. It finally discretizes the
angle to increments of 12 degrees and constructs a lookup table of BRIEF patterns.
As long as the steered BRIEF remains consistent across views, BRIEF will not fail

to rotation.

4.1.2 Processing and Outlier Detection

Having described how our detector works, for any image we first calculate the rele-
vant features and extract its descriptors using orb. These features are then matched

against the following frame to capture the motion.

The features are matched using fast library for approximate nearest neighbours

(FLANN) which is comparatively faster than the brute force algorithm. The match-
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ing process is obtained through a library of nearest point matches on the FLANN
matcher. For improving accuracy it is important to remove points whose distance
from closest to second closest is greater than an assigned distance threshold. The

filtered match points can be presented as:

(x,y,8), if distance — ratio < 0.3
p(n) =
0, otherwise

where s represent the size of the keypoint and distance ratio is the minimum ratio

of the matched points.

While these start to allow us to make better approximations, extracted points are
still very susceptible to outliers that can be generated due to poor images, motion
blur, dynamic objects, or optical effects. The existence of outliers can greatly affect
the result and cause significant error in the motion.If the UAV loses track of its
states than UGV will be localized incorrectly which can cause great errors. Hence,
the RANSAC algorithm can be employed in order to generate an ideal solution [48].
Using available observations the RANSAC can predict and remove outliers greatly
improving the number of unique key points in the map. Figure 4.5 shows a RANSAC

algorithm differentiating between inliers and outliers
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Figure 4.5: RANSAC Algorithm Predicting Outliers

As an additional step before we pass our image to the feature detector we carry out
some necessary pre-processing particularly for illumination correction. As a camera
generally works with visual properties such as contrast, in order to deal with optical
effects from the environment. To achieve this we can increase the dynamic range of

the image intensities by using the histogram of equalization, given in Equation 4.4.

L(Cdfl — Cdfmin — (N X M)
N x M

Thise = (44)

Where L represents the number of gray levels, N,M are the image dimensions, while
cdfnin is the minimum non zero value of the cumulative distribution.

This action is followed by applying gamma correction.

1

Loy = I}, (4.5)

Where gamma tends to be less than one for darker images and white for brighter.

The results of such a correction is depicted in Figure 4.6.
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Figure 4.6: Example of [llumination Correction

4.1.3 Homography Formulation

Homography describes a planar relationship that is used to define points from one
plane to another. In homography a 3 x 3 matrix transforms 3 dimensional vec-
tors that represent 2D points on the plane as shown in Figure 4.7. The vectors
are described as the homoegeneous coordinates. The homography matrix can be

decomposed to retrieve the orientation and position of the camera.

Figure 4.7: Shows how 4 points on the plane relate to the image plane

Again, homogeneous coordinates are projective points which serve a key role in com-
puter vision. Since, the image plane is 2D when, the dimensionality of depth is lost.
Which means that any number of 3D points can be projected on a single pixel loca-
tion on the image plane.

We first describe the pin hole model to better explain how homography is a special
case for the model.

The pin hole camera can be defined through its projection matrix. Which is essen-
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tially a single matrix formed from two other matrices that relate to the properties

of the camera. The projection matrix is in the form of Equation 4.6.

P11 P12 P13 DPi4
P = P21 D22 D23 D24 (4.6)

P31 P32 P33 P34

The extrinsic matrix stores information relevant to position of the camera in the
world frame. This information is stored as a rotation and translation matrix, storing

the cameras 3D orientation and translation respectively.

1 T2 T3 te

Mem: T91 To2 To3 ty (47)

31 T3z T3z L.

Where the values r represent rotation and t represent translation. Since the extrin-
sic matrix maps homogeneous coordinates from the global frame, all transformed

vectors will represent the same position with respect to the focal point.

Another matrix that is used to define a cameras inherent properties is the intrinsic
matrix. The intrinsic matrix stores properties such as the focal length and principal
points of the camera. The intrinsic matrix transforms the 3D coordinates relative

to the focal point to the image. The intrinsic matrix is given as:

f: 0 ¢
K — O fy Cy (48)
0 0 1

When both these matrices arec combined we obtain the pin hole camera model.
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X
u
Y
o] = KM, (4.9)
Z
1
1

The homography matrix is simply just a special case of the pin hole model where
all the projected coordinates on the camera are lying on a plane such that the z
coordinate is 0. Such that our pinhole model follows conversion from Equations

4.10 to 4.12.

X
U
Y
ol = KM, (4.10)
0
1
1
u fo 0 ¢ [run m2 ta]| | X
v| = [0 fy cy| [rar o2 ty| |V (411)
1 0 0 1 31 T32 tz 1

hll h12 h13 X
hot hay has| |Y (4.12)
h31 h32 h33 1

Now the homography matrix can be given as H and it give a matrix that defines
the transformation of points from one plane to another. The homography matrix
makes use of the 4 point algorithm [49] to find correspondences from one plane to

the next.

Now we had calculated the ideal feature points through RANSAC and we can find

the error of two matched points using symmetric transfer error from homography H
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as,

Branser = ADi, H 'pic1)? + d(piy, Hpy)? (4.13)

where p and p; — 1 are the matched points and d refers to the distance between
them.

Taking points p;_; from a previous frame f;_; and taking correspondences with
current point p and frame f we can extract the frame to frame motion from image

plane homography.

Sp; = Hf_lpz'—1

Xy hir hia his Ti—1
Slyil = [har hoe hos| [yia (4.14)
1 hs1 hsa hss 1

We can finally carry out decomposition using SVD on the homography matrix to
find the rotation matrix represented by the first two column and the translations

represented by the last column of the decomposed matrix.

4.2 Object Detection

Since the camera on the UAV is set to look downwards towards the ground to detect
both the features in the environment as well as the vehicle, it is necessary to remove
the features detected by the camera on top of the UGV. Since the UGV is a dynamic
body in the camera image, its continuous presence can result in the algorithm incor-
rectly updating the camera pose. Hence, it is suggested that a fast object detection
algorithm is run which can quickly detect where the UGV is in the frame and pass
this information to the feature detector in order to make the necessary corrections.
We propose using a famous and light weight neural network for this task known as

Yolo [50].

Yolo or You Only Look Once is a re-imagined method of detecting obstacles us-
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ing machine learning. Conventional object detection techniques in machine learning
involve detecting obstacles by comparing it against classifiers of the given object
and test it at various parts of an image by re-scaling it. This process can involve
revisiting the same pixel values multiple times for each segment of the algorithm
and often to pre and post process them for classification, this redundancy of the
operation can result in slower outputs. Instead, Yolo seeks to carry out the entire
process using a single convolution network which detects all bounding boxes and
given class probabilities for those boxes by processing the image only once. An
initially proposed model which was later optimized for speed using anchor boxes is

described in Figure 4.8.

P

-
wm
BIm(

! LA DL R

Final detections

Class probability map

Figure 4.8: Yolo System Model

The performance power of Yolo comes from its ability to process images globally
instead of using a sliding window or region-based techniques. This allows Yolo
to implicitly factor in contextual information about classes and their appearance
without them having to be fed separately. The class-specific scores for each box is
calculated via the following formulae:

P(Class;|Object) x P(Object) x IOU™ " — P(Class;) * IOU"“"

P pred
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These scores are representative of both the probability of a class appearing in the re-

spective box as well as how accurately the predicted box is fitting over the object [51].

While the model provided in aforementioned figire can provide decent live pro-
cessing results, it is considerably inefficient since the bounding boxes over the entire
image have to be processed. Hence, an improvement on this primary model was
made in [52], which makes use of dimension clusters as anchor boxes. Anchor boxes
are class specific boxes that are generally defined and tuned by the user according
to what the object detection algorithm is purposed to do. Anchor boxes are fun-
damentally different from bounding boxes such that, anchor boxes are fed to the
network before training while bounding boxes are regions where the system believes

an object might exist.

4.2.1 Anchor and Bounding Boxes

Anchor boxes serve as a form of maximum and minimum standard against which
all detected bounding boxes are compared against. One standard of comparing a
bounding box against an anchor box is the Intersection of Unions standard. The
IOU standard fits different aspect ratios of bounding boxes to the anchor box. The
better the fit the higher the score. A threshold is used to either identify a bounding
box identifying an object or not. If an IOU score is greater than 50 percent an object
8 has been detected if it is lower than 50 percent the system identifies it as a place

without an object.

In case of Yolo, the anchor boxes are not defined by the user but are instead cal-
culated using k-means. The data set we used alrcady contains the relative ob-
jects bounded by rectangles according to their center coordinates, width and height.
These bounding boxes are then passed to a k-mean clustering algorithm to auto-
matically find good priors [52]. When predicting, the coordinates of the bounding

box are calculated as offsets from the anchors. These predicted bounding boxes are
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adjusted to the anchor according to the IOU and the anchors that best fit these
bounding boxes are used to classify the object. The parameters of these bounding

boxes and how they correspond to anchor boxes are described in Figure 4.9.

cl
P.
c s
y : :
: D, :
. o(t) « b=o(t,)+c
Pra | b, ._l “1: b =o(t )+c
: al+ ™ : . - ot |
. ocs y 0=P.E
. + b=p,e
:----1- ------- »--q-E

Figure 4.9: Bounding Box Parameter Determination

4.2.2 Loss Function

An integral part of the Yolo algorithm is its loss function. The loss function makes
use of sum-squared error between predictions and ground truths to calculate loss.
The complete loss function serves to calculate the classification loss, the localization
loss and the confidence loss.

The localization loss in Yolo is defined as follows:

wordzzﬂ’f =)+ (yi— i) +Acom~d221°’” \/E—\/E)er(\/h_i—\/hTi)?}

=0 5=0 =0 j=0

The localization loss is responsible for measuring the difference between the ground
truth and predicted location and size of boundary box. Next the confidence loss is

defined as:

ZZF””O C) +ZZ1”°°“C C;)?

1=0 7=0 =0 7=0
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Table 4.1: Localization loss Parameters.

Parameter Description

1;7;.’] Value given to cell responsible for object in its space
Acoord Weight for loss in given boundary box coordinate

X; Horizontal pixel of centroid for anchor box

Vi Vertical pixel of centroid for anchor box

w; Width of box

S Number of cells

B Number of anchor boxes

Table 4.2: Confidence loss Parameters.

Parameter Description
1Z°0bj Value given to cell that detects background

Anoobj Weight loss for background
' represents box confidence score of box at given (i , j) coordinate.

7

The confidence loss measures the objectness of the box i.e. it detects whether the
boundary boxes are correctly identifying objects or empty spaces according to cri-
terion. Since there will always be more empty spaces in an image where objects do
not exist, a class imbalance might occur. Ao, is hence tuned to ameliorate this
problem by fudging the loss down (by default its value is 0.5). Finally, we have the
classification loss, which represents predicting the wrong label in a given box. It is

given by:

Z Z 1?? Z (pi(c) = pilc))

=0 5=0 classes

The loss output can be summarized as a vector of the form [50]:

SxSxBx(44+1+0C)

The loss function serves to minimize detection of boxes which do not have any
objects within them as well as to improve the accuracy of the system over each iter-
ation. Since, the utilization of this loss function makes the algorithm unsupervised

a correctly labelled data set, and the richness of the data set can affect algorithm
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outcomes.

4.3 State Estimation

Inertial measurement units are self contained sensors that use internal gyroscopes,
accelerometers and magnetometer to detect linear acceleration, rotation rate and
heading. Inertial measurements provide the benefit of robust outputs at a high
frequency but suffer from internal biases and noise. Since position estimates from
an IMU are integrated values, any errors in the readings can accumulate over time
which can cause the IMU to drift. The distance between the actual values and
estimate values will keep increasing unless the drift is removed, to accomplish this
IMUs are often used with an external sensor whose values are combined with the
IMU readings through a fusion algorithm. Kalman filter is one such algorithm which

is widely used for state estimation [53].

In fact, a common implementation of IMUs known as the strap down inertial system,
also makes use of a Kalman filter. In the strap down implementation, the gyroscope
is used to calculate angular rates which are integrated for angular position. This
data is then fused with gravity vector outputs from the accelerometer to find atti-
tude estimates. The measurements from the accelerometer are transformed into the
inertial reference frame using the attitude estimates. These accelerations can now

be integrated to get the linear velocity and the linear position.

4.3.1 Kalman Filter

The purpose of the Kalman filter is to continuously update state estimates of interest
from noisy measurements from sensors, and for this particular case, from the IMU
and from visual odometry. The approaches to filter based sensor fusion can be

divided into two categories:

e Loosely coupled
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o Tightly coupled

The type of coupling decides how the data will be fed into the filter. In a loosely
coupled approach the data from both the IMU and camera will have been pre-
processed before being sent for Kalman filtering, while in the latter approach the
data is passed to the filter without any pre-processing. Figure 4.10 shows the flow

of these approaches.

Camera Image Image processing i_
algorithm Brss
Filter State——p
IMU IMU readings————»
Camera imag a
Filter State——p
IMU IMU readingS—————

Figure 4.10: Loosely (above) and tightly (below) coupled architectures for sensor
fusion [54]

Since the comparison between pre-processed measurements is computationally less

expensive, the loosely coupled integration approach is taken for our estimation task.

The filter of choice for our system is the Extended Kalman Filter (EKF) which

was designed to extend the application of the original Kalman filter for non-linear
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systems. We first define the state space form that needs to be modeled to employ
the EKF.

Th+1 = f(l'k,’dk,’Uk,T) (415)

Yr = h(zy, ur, ex) (4.16)

Where, z; is the state at time or observation k, u; is the input, vy is the process
noise, T is sampling interval, y;, is the measurement at time t and e;, is the measure-
ment noise. Equation 4.15 describes the motion model of the system and Equation

4.16 describes the measurement model.

The noise terms v and e are modeled as zero mean multivariate Gaussian noises.
Since, the state space in our system is non-linear the states and measurements may
not necessarily be jointly Gaussian. Regardless, the probability distribution function
of the states is still approximated with Gaussian disturbance. The motion model
is approximated using a first order Taylor expansion which is then applied to the

standard Kalman filter routine described below.

In the Kalman loop the first step following initialization is the prediction time up-
date. In this step the states and inputs of the system are propagated through the
motion model while the covariance of the states are updated by adding uncertainty

due to process noise. This step is described in the equations:

Frae = S (ki wn, 05, T) (4.17)

plc+1|k = FkPk\kF;;‘F + LiQrLy (4.18)

where,
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of
Fr,=— |£k\k:ukn{)k:vT

0x
of
Ly = % |i‘k\k,u1c7@k7T
T4k is the predicted state, Ty is the filtered state, 0y is the expected value of
noise and @)y is its covariance. The covariance describes the errors in the model and

is measure of how much the motion model can be trusted.

Next, the measured update is compared to the observed measurement using the
predicted measurement. This allows the optimal gain to be calculated and the pro-

portional error to be updated. This is described in a set of equations as:

Ky = Py H (Hy Pep—1 HY + MRy M) ™! (4.19)
Tape = k1 + Ki(yr — M@ rp1, ur, 1)) (4.20)
Py = (I — Ky Hy) Py (4.21)
where,
Sh

Hy, = 5_1, |jk\k7uk7ék

M =20

Se ’ik|k7uk7ék

é; is the expected value of measurement noise, while R; is the covariance of e;.
For the EKF' to properly work it is important for initial guesses xojo and Py to be
accurate. From our simulation, these values can be directly passed to the filter from

the environment. The Kalman filter process is summarised in Figure 4.11.
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Initial Estimate

Xojo Pmn

!

Prediction Time Update

1. Project the State Ahead

= fk+1|ﬁ: = f(i‘km; Up, U)

2. Project the error covariance ahead

Pyiaje = FiePepFi + Ly Q L,

Observation and Update

1. Compute the Kalman Gain
Ky = Pyjpe—1Hy, (HkPHk—ng + R.n:)_l
2. Update Estimate with Measurement
Xiepe = Xieppe—1 + Kie [}’k - hk(fmk—l)]
3. Update Error Covariance

Py = (I — K Hi )Prjie—s

Figure 4.11: Extended Kalman Filter Algorithm



Chapter 5

Simulations and Results

In this chapter we describe how the simulations are set up and how the described
models behave and the estimations of the UGV are carried out. We describe the

following tasks here:

o Implementation and testing of Stanley Controller to observe how the modeled

system behaves when given tracked points.
o How the computer vision algorithms work to observe UGVs in the image frame.

« Estimation of UGV states using a Kalman Filter on the UGV which receives

updates from the UAV for sensor fusion.

5.1 UAV Simulation

Based on the equations discussed in Chapter 3 a SIMULINK model of the quadro-
tor is prepared in MATLAB. As Carla does not inherently support UAVs, a flying
camera which exhibits the dynamical properties of a quadrotor is simulated in the
environment. The camera moves such that before every time step within the Carla
world, the MATLAB engine computes the transformations that the camera will ex-
perience and passes them through the Python API. Generally, Carla creates its own

dynamic atmospheric condition however, these can not be passed efficiently or easily

62
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to MATLAB. Hence, for the quadrotor simulations the COESA atmosphere model

is used which directly translates to the ICAO atmosphere model under 32,000 feet.

This is a reasonably good model for low altitude simulations. In Figure 5.1 the

SIMULINK model is shown, while Table 5.1 shows the parameters used.

G omenat uzf—eu2 P 3 ohi
2 r—»{omega2 uspb—su 3 q > theta > )
4
omegad fon Uab—piu s r »ir psi »
Angular Rates Orientation > theta H '@
W'"EQM UJ" phi
L: »(3)
Figure 5.1: Simulink Model of UAV.
Table 5.1: Simulation Parameters
Parameter Description Value
m Mass 1 kg
Jy Inertia of Motors 6x10~"kg.m?
L., Roll Moment of Inertia  0.005 kg.m?
L, Pitch Moment of Inertia 0.005 kg.m?
1. Yaw Moment of Inertia  0.0095 kg.m?
Ap Aerodynamic Area 0.0025 m?
Cp Drag Coefficient 0.5
1 Arm length 0.15m
d Drag Factor 7.7x107"N.m.s?
b Thrust Factor 3.13x1075

In order for the quadrotor to make meaningful movements within the simulation

environment it is necessary for it to be able to follow the desired path. Hence, a

cascading PD control is designed for position and attitude responses, while a PID

is defined for controlling the height of the UAV. The architecture of the control is

given in Figure 5.2.
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Figure 5.2: UAV Control Architecture

Since it is important for UAV to maintain a constant height for most of the simu-

lation, the UAV is passed a command to increase its height, with its PID response

given in Figure 5.3.

Actual
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| /

Amplitude

[} 5 10 15 20
Time

Figure 5.3: Height Tracking

The height control shows reasonable response. Next the UAV is tested against
different trajectories, based on difficulty and control demands. The first trajectory

is a rectangular trajectory, Figures 5.4 to 5.8 show UAV responses.
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Figure 5.8: Angular Errors in Rectangular Trajectory

From the responses we can identify that the UAV has a jerk reaction on initialization,

which can be attributed to the aerodynamic forces acting on the quadrotor that

the controller immediately tries to overcome. For the remaining responses the UAV
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Table 5.2: Error Parameters Rectangular Trajectory

Parameter RMS Error Parameter RMS Error

x (m) 0.59 g (m/s) 0.32
y (m) 0.25 Z (m/s) 0.10
z (m) 0.05 6(deg) 0.20
& (m/s) 0.92 o(deg) 0.11

shows acceptable results even though the RMSE for x position and velocity responses
are high this is due to the sharp corners that the UAV has to take in this trajectory.
The rectangular trajectory is the closest depiction of the waypoints the UAV will be
expected to pass through when detecting UGV in the simulation map.

Next we take a look at how the UAV performs against an ascending spiral trajectory,

the results are depicted through Figures 5.9 to 5.13.
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Figure 5.9: Ascending Spiral Trajectory
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Figure 5.13: Angular Errors in Spiral Trajectory

Table 5.3: Error Parameters Spiral Trajectory

Parameter RMS Error Parameter RMS Error

X (m) 0.60 Y (m/s) 0.24
y (m) 0.27 Z (m/s) 0.19
z (m) 0.11 6(deg) 0.31
T (m/s) 0.48 o(deg) 0.18

The UAV tends to show satisfactory responses for the spiral trajectory With the
highest RMSE incurred at x position tracking. Regardless, this shows that the UAV
would easily be able to follow the UAV through any trajectories that may require a
large amount of rotations. Similar to the rectangular trajectory the UAV exhibits
rapid movement in the beginning which is due to the controller adjusting to the
aerodynamic and gyro disturbances present throughout the trajectory. Another ob-
servation made is regarding the RMSE for the velocity response in the x direction,

this is due to the absence of sharp corners which tends to impose a jerk like response

on the UAV.

We now move to an aggressive maneuver within a complex helical trajectory. Figures

5.14 to 5.18 show the UAV responses.
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Figure 5.18: Angular Errors in Complex Trajectory

Table 5.4: Error Parameters Spiral Trajectory

Parameter RMS Error Parameter RMS Error

X (m) 1.13 Y (m/s) 3.21
y (m) 2.24 Z (m/s) 0.15
z (m) 0.08 0(deq) 0.25
t (m/s) 1.70 o(deg) 0.45

The UAV evidently struggles to follow the trajectory, The controller fails to meet

the demands of the maneuver and shows large errors on position and velocity re-
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sponses. Regardless, from the ascending spiral responses and rectangular responses
it is evident that UAV can easily hold its height and track the x and y position for
non aggressive flights. We now design trajectories for generating synthetic data for

tracking a UGV, within UAV performance limits.

5.2 UGV State Estimation

For the UGV state estimation we expect the camera on board the UAV to carry
out two folds task. The first is to carry out visual odometry. For this purpose the
UAYV has to determine useful features from its image plane and compare them with
subsequent frames to understand how its pose has changed from one frame to the
next. Figure 5.19 shows a captured frame whist the UAV tracks the UGV while

passing through waypoints in our simulation environment.
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Figure 5.19: UAV Tracking UGV in Simulation Environment.
From the image we can see that a lot of texture is available from the given captured

frame. To make meaningful assumptions we find features from another image a few

seconds after this instance as shown in Figure 5.20.
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Figure 5.20: Extracted Features from Image.

However, an immediately noticeable problem is that much of the features that have
been detected lie on our UGV. Since the UGV is mobile and is passing the same
waypoints as the UAV this may result in incorrect odometry estimations. Hence, it
is imperative to filter the features on top of our UGV. To do this we make use of
the object detection network mentioned in Chapter 4. Through this algorithm we
can understand the pixels that belong to the UGV and can seamlessly filter them

out. The result is shown in Figure 5.21.
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Figure 5.21: Filtered Features from Image.

From Figure 5.21 we can see that the UGV and consequently the UAV are both
about to enter a turn, since feature points that may lead to erroneous results have
been removed, the UAV carries out visual odometry to estimate its position in the

local map over the turn.
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Figure 5.22: Visual Odometry Over a Turn.
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The result given in Figure 5.22 shows that the estimates made by the camera cor-
rectly encapsulate the motion and current state of the UAV. It is to be noted that
sice we are simulating a flying camera we do not need to transform from the camera

axis to the body axis of the UAV.

Now that the UAV can establish its own position in the environment and can use the
object detection network to establish the location of the UGV in its image frame,
we can begin to extract useful information regarding the environment for control
purposes. Taking Figure 5.19 as our base image one of the desirable information
from the map is drive-able terrain. Since, we established a mathematical model for
the UGV that can represents states as how far or close the UGV is from the lane
markings, finding their positions on the image and consequently the world can be
very beneficial. For this purpose we can make use of image segmentation that can
break down the pixels in the image into various sections. Figure 5.23 shows how

pixels can be alloted specific values to make this distinction through a color map.
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Figure 5.23: Semantically Segmented Image.

Using this information we can create a mask for the drive-able surface and extract
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road information. We can further calculate hough lines about the masked area to
find road markings which are of interest to us. Both of these steps are shown in

Figure 5.24 and 5.25 below.
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Figure 5.24: Masked Drive-able region extracted from image.
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Figure 5.25: Hough Lines Extracted from Road.

In Figure 5.25 we have extracted hough lines from our image. For further precision
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we can threshold the lines and find those that best fit the lane boundaries, however
in the current frame we face on of the primal challenges of vision based sensors that
pertain to occlusions and artifacts such as shadows in the images. On threshold-
ing the algorithm incorrectly identifies the the shadows made by two street lights to

be the road as they occupy a large portion of the image within the drive-able surface.

After performing these various steps, for the current image we are able to ascertain
additional information regarding relevant pixels. The pixels pertaining to the UGV
especially their centroid is of special interest to us since all estimates regarding the
vehicles position will be based made on the centroid pixel location from the camera.
For an aerial top down view, we expect the size of the bounding box on the UGV
to remain the same as it is tracked through each frame, which can help reduce the
variance of calculating different pixels around the UGV which may affect the esti-

mates.

We now initialize the UGV under the UAV view as depicted in Figure 5.26.

Figure 5.26: UAV camera’s aerial view.

In the given scenario the UAV uses an onboard camera and IMU to carry out
mapping while passing through a pre set trajectory. The Velocity of the UGV is set
such that it stays within the camera frame during the entire motion. The UAV is

also equipped with an IMU which it uses to make a bias prone estimate of its states.
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The IMU onboard the UGV runs at a faster frequency than the frequency of camera
updates, when updates are received UGV uses a Kalman filter to rectify its states.

The loop for the UGV runs as,
o UGV updates state with IMU readings.
o UGV propagates its uncertainty within the Kalman filter.

o If an update is available from the UAV, the UGV calculates the Kalman gain

and computes error states.
o With the new update corrections to the predicted state are made.
e Finally covariance is corrected to complete the Kalman loop.

We develop synthetic data using our simulator and for a specific road scenario we
test the affect of velocity of the vehicle on the accuracy of state estimation. We
run the given scenario in Figure 5.27 for two different velocities and the same noise

variance in the gyro and odometry.
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Figure 5.27: Ground Truth for Simulation

First the unmanned vehicles are tasked to travel through the waypoints at a reference

speed of 20 m/s. Figure 5.28 to 5.30 show the ground vehicle estimates for this
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Figure 5.29: Error in x position
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Figure 5.30: Error in y position

Table 5.5: UGV State Estimation Error Parameters at velocity 20 m/s

Parameter RMS Error

Max Error
x (m) 1.90 3.97
y (m) 1.26 3.1

At 20 m/s we can measure the the state of UGV to a degree of error. With a max
error of 3.97 m, the process is still liable of losing an accurate measure of position
of the UGV however, it prevents the IMU from continually drifting and tends to

lose accuracy at the high speed turns. Next from Figure 5.31 to 5.33 we check the
viability of the system at twice the speed.
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Figure 5.31: UGV State Estimation for 40 m/s
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Figure 5.33: Error in y position

Table 5.6: UGV State Estimation Error Parameters at velocity 40 m/s

Parameter RMS Error Max Error
x (m) 10.5 23.9
y (m) 13.8 33.3

From these results, the system shows poor performance at a speed of 40 m/s. The

system becomes reliant on the IMU as visual odometry fails at turns and misses

important correspondences between frames.

Regardless, we find the capped speed for the system, and we run another simulation

at a slower speed for the vehicles with inhibited noise on the odometry readings.
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Figure 5.34: UGV Position Estimation

From Figure 5.34, we can see that the filtered estimate of the UGV closely resembles
the ground truth trajectory that it is following with a mean error of 4.07 percent in
the x,y plane. We specifically mention the x,y plane since for our estimation tasks
we have used a simplified condition for the essential matrix assuming that the height
of the UGV is known and remains fixed through out the mission. However, that
is not the case as the IMU on board the UGV does collect information regarding
the changing levels of the terrain. This results in noise being accumulated over the
z-axis that the IMU struggles to filter alone. The sizeable noise is shown in Figure

9.30.
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The addition of a higher noise ratio in both IMUs tends to weaken the overall esti-

mate of the UGV. However, the linear velocity of the vehicles tends to have an even

greater impact on the performance. This may partly be due to the features between

camera frames being incorrectly matched due to a larger base line difference between

two subsequent camera images. Based on the dynamic model for the UGV defined

we prepare a scenario in CARLA where the UGV is provided with with scheduled

position and velocity estimates to match. The longitudinal dynamics are controlled

by way of a standard PID controller while the lateral dynamics are matched through

a Stanley Controller.
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Figure 5.36: UGV Path Tracking.

Figure 5.36 shows that the UGV can be controlled to detect and follow the desired
trajectory, the throttle of the UGV is capped at 20 m/s as to not prevent the

estimation from giving erroneous state estimates.



Conclusion and Future Work 89

Chapter 6

Conclusion and Future Work

In this thesis, we explored an alternate approach to estimating the position of a
UGV in GPS denied areas using a camera in a UAV-UGV heterogeneous setting.
The strategy involved providing the UAV with the ability to be able to create a
map in which it was able to estimate the location of the UGV in the global frame.
Taking advantage of the planar nature of the image scene, the projective space was
isomorphised to its homography. This allowed us to understand the camera pose
in successive frames with a certain degree of error, that was further corrected by
using IMU readings in Kalman fusion. With satisfactory results on the UAV state
estimation we moved to localize the UGV by deriving information from the image
frames. To this end, segmentation was used to understand the drive able area in the
scene and thresholded hough lines were used to extract the current lane markings.
The remaining task involved understanding the location of the UGV in the global
frame. Which was achieved using object detection to mark the pixels pertaining to
them, since multiple pixels on the image frame are occupied by the car, the centroid
position of the drawn bounding box is used for localizing the vehicle in order to
maintain the pixel pertaining to the same point on the vehicle in successive frames.
For constant altitude fights without any aggressive maneuvers or pure rotations,
this approach tended to provide noisy estimates of the UGV position estimates,

mainly due to the centroid approach not being very robust. Hence, an IMU sensor



on placed on the center of mass of the UGV was introduced. This IMU was used
to for Kalman Fusion in order to improve state estimates of the UGV. Finally, a
Stanley controller was used to test UGV by running the vehicle through predefined
trajectory points. While, the UGV was able to follow the trajected path closely, the
nature of the control system used was not able to cater for slower speeds however,

provided reasonable results for higher speeds.

This work currently makes use of a simplified controller and standard Kalman filter-
ing to accurately control and estimate the UGV; however the use of model predictive
controller (MPC) along with an optimal approach to sensor fusion could drastically

improve the results.
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