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Abstract: The inverse finite element method (iFEM) is one of the best candidates to perform 

displacement monitoring (shape sensing) of structures using a set of on-board/embedded strain 

sensors. This study demonstrates the high efficiency, robustness, and accuracy of the iFEM 

approach to reconstruct geometrically non-linear deformations of thin laminated plates and shells 

by performing experimental measurements and numerical analyses. The iFEM formulation is 

derived based on the first-order shear deformation theory of plates. A weighted least-squares 

variational principle is utilized with incremental non-linear strains while performing the 

geometrical update of the model using predicted incremental deformations. Moreover, a 

quadrilateral inverse-shell element (iQS4) is employed to discretize the whole domain of the 

laminated panels and solve the numerical/experimental shape-sensing problems. Further, a 

polynomial strain pre-extrapolation technique is incorporated with the iQS4 formulation to 

smoothen the discrete strain data obtained from a few strain rosettes placed along the entire length 

of the structures. For each case study, a high-fidelity finite element analysis is performed to 

establish a reference displacement solution. Finally, the qualitative and quantitative comparison of 

reconstructed displacement results with reference solutions confirms the superior potential of the 

iFEM-iQS4 approach for full-field shape sensing of thin laminates undergoing non-linear 

deformations. 

Keywords: Thin laminated composites, large displacement, inverse finite element method, 

nonlinear strain measurement, structural health monitoring. 
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1. Introduction 

Long fiber-reinforced polymer composites with advanced mechanical performances are 

commonly used to manufacture laminated structures of two or more plies with variable fiber angles 

to offer high flexural rigidity and lighter weight. These laminated structures can be classified 

according to their span-to-thickness ratio   as thin (slender), 100  , moderately thick, 

10 100  , and thick plates or shells, 10   [1]. Among this class of composites, thin 

laminated plates are widely used for various types of aerospace, marine, and civil structures due 

to their improved mechanical properties, i.e., long fatigue life [2-3], high strength [4-5], and 

superior corrosion resistance [6]. However, the thin laminated structures are susceptible to 

geometrically non-linear displacements due to harsh operating conditions, such as large deflections 

and/or buckling deformations. Therefore, the safety of these structures must be ensured by a 

reliable inspection system in real time. To this end, structural health monitoring (SHM) systems 

can be effectively employed to dynamically track large structural deformations for predicting any 

occurrence of progressive damage accumulation before catastrophic structural failure. For 

instance, in the last few decades, various SHM techniques have been used to detect damage and 

failure modes of composite structures utilizing embedded and/or surface-mounted sensor systems 

[7-10]. Hence, smart composites integrated with sensors and SHM systems is key to future 

engineering science and technology.  

Shape sensing is one of the critical aspects of SHM systems that deals with the real-time 

reconstruction of deformation levels on structural components [11]. This approach utilizes 

experimental strain data collected from a network of on-board/embedded sensors which can be 

transmitted via wireless or wired (conventional) techniques to data processing platforms. Fiber 

Bragg Grating (FBG) sensors and strain rosettes are among the wired systems primarily used in 

composite structures due to their simple and efficient applicability. FBG sensors are flexible and 

durable enough to embed in composite materials easily [12]. When these sensors are embedded in 

the laminated structure, they can observe temporary and permanent strain variations at discrete 

positions within the composite materials [13-14]. Shape sensing is an inverse problem. Inverse 

problems arise in a variety of sensing applications. Recently, data-driven methods using neural 

networks have been shown to be significantly superior to classical solution methods for inverse 

problems [15]. Surrogate modelling was also created to speed up the solution of the inverse 

problems [16]. To obtain a solution for a full-field displacement, in situ sensor measurements must 
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be used in an inverse method to solve the shape sensing problem. To this end, several inverse 

methods such as modal [17-19], analytical [20], and curve-fitting [21] approaches have been 

proposed in the literature. The inverse finite element method is a state-of-the-art robust shape-

sensing algorithm [22-23] that has recently attracted much more attention than other inverse 

methods due to its unique features. These advantages mainly include (i) no requirement of 

loading/material information and (ii) full-field deformation reconstruction capability over the 

entire structural domain.  

The iFEM method was initially developed based on the first-order shear deformation theory 

(FSDT) for the shape estimation of plate structures. The critical input of this method is triaxial 

strain data obtained from a discrete number of on-board sensors, e.g., strain rosettes. The iFEM 

algorithm minimizes the difference between the calculated numerical strains and their 

experimental counterparts utilizing a weighted least-squares functional. Thus far, different types 

of the inverse beam [24-25] and plate/shell [26-27] elements have been proposed using iFEM 

methodology for real-time monitoring of complex deformed shapes. In a recent comparative study, 

the performance of C0-continuous inverse shell elements was investigated for shape sensing and 

damage detection of various plate/shell-like geometries [29]. Furthermore, experimental and 

numerical studies leveraged the iFEM algorithm for displacement and stress monitoring of 

different marine [30-34], aerospace [35-38], and civil structures [39-41]. Also, recent research 

efforts have addressed the optimal placement of sensors for iFEM analyses using effective 

optimization methods [42-44].  

Additionally, isogeometric iFEM formulations were developed for displacement monitoring 

of thin-shell [45-46] and beam-like [47-48] structures. Most recently, Kefal et al. [49] have 

introduced coupling of iFEM methodology with a nonlocal meshless approach known as 

peridynamics for crack propagation monitoring of laminated composite plates. Besides, the ability 

of the iFEM approach was numerically demonstrated for shape sensing of isotropic plates 

undergoing large deformations [50]. Since the FSDT-based iFEM method may not always be 

applicable to accurate reconstruction of the displacement, strain, and stress fields of thick multi-

layered composite and sandwich structures, enhanced iFEM formulations [51-52] were developed 

by extending kinematic relations towards zigzag theories [53]. On this basis, smoothed iFEM 

approach has been proposed by coupling enhanced iFEM formulation with smoothing element 
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analysis for effective shape sensing application [54]. The predictive capability of the enhanced 

iFEM approaches was numerically and experimentally assessed on real-time displacement 

monitoring of moderately thick sandwich structures [55-56]. In addition to top/bottom sensor, 

these iFEM formulations require an additional set of interlaminar in-situ strain data (which can be 

obtained from embedded FBG sensors) for thick structures. Therefore, the iFEM-FSDT 

formulation is preferable compared to enhanced iFEM methods in terms of practical experimental 

implementation on thin-walled structures with a smaller number of strain sensors. 

Real-time deformation prediction of thin laminated plates/shells plays a critical role in the 

realistic assessment of structural damage and fatigue life of structural components used in today’s 

engineering industry. In this regard, the need for an extensive numerical-experimental application 

of iFEM-FSDT to thin-walled composite structures is evident. Nevertheless, the predictive 

capability of the iFEM algorithm has not been assessed for reconstructing geometrical nonlinear 

deformations of thin composite structures subjected to bending and/or post-buckling loads. Among 

the myriad of computational or experimental shape-sensing investigations, the application of 

iFEM-FSDT to displacement monitoring of composites is limited to only a few studies, which 

include linear elastic shape-sensing of thin composite structures under thermo-mechanical [57], 

compressive linear-buckling [58], and impact [59] loads.  

To fill the critical gap mentioned above, this study performs geometrically nonlinear 

deformation reconstruction of thin composite plates and shells using experimental strain 

measurements employing iFEM-FSDT formulation for the first time. Therefore, the novelty of this 

study lies in the numerical and experimental investigation of the iFEM-FSDT approach for shape 

sensing of thin laminated structures undergoing large bending/post-buckling deflections in real 

time. For this purpose, two numerical and one experimental study cases are performed to verify 

the iFEM approach for nonlinear shape sensing of thin laminates. A robust and computationally 

efficient quadrilateral inverse shell element (iQS4) [27] is used to perform the nonlinear iFEM 

analysis. In addition, the iFEM-iQS4 model is extended through a smoothing analysis to recover 

continuous strains from discrete strain measurements obtained during the experimental test. 

Finally, the obtained iFEM results are validated by the reference solutions generated using a well-

known commercial finite element software, i.e., ANSYS APDL. 
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This paper is organized in the following order. In Section 2, the fundamental formulation of 

the iQS4 element, the algorithm of nonlinear-displacement geometric update, and the polynomial 

smoothing approach are summarized. Section 3 first describes the numerical examples, (1) a post-

buckling analysis of a thin laminated plate and (2) bending analysis of a curved plate with large 

deflection using the iFEM technique. Then, experimental shape-sensing implementation of iFEM-

iQS4 for thin laminated plate is elaborated in Section 3. Finally, in Section 4, several important 

implications are drawn from the iFEM results of the thin multi-layered composite structures 

exposed to large bending/buckling deformations. 

2. Theoretical Framework 

2.1 The iFEM-iQS4 Element for Shape Sensing of Thin Laminated Structures 

The iQS4 is an inverse shell element with four nodes, originally developed by Kefal et al. [25], 

for shape and stress sensing of plate/shell structures. Each node of this inverse element has three 

translational ( 1iv , 2iv , ziv ) and three rotational ( 1i , 2i , zi ) degrees of freedom (DOF) with the 

positive directions as shown in Fig. 1(a). With the use of hierarchical drilling rotation DOF, zi , 

this element becomes a robust iFEM tool for modelling curved/blade-stiffened shell geometries.  

Mathematical fundamentals for the development of the elements with drilling DOF were 

investigated in detail by Hughes and Brezzi [60]. 

 
Fig. 1. (a) Geometry of iQS4 inverse shell element with associated coordinates and its nodal 

DOFs, (b) Cross-section of a laminated panel. 

The element has a total thickness of 2h, and therefore its thickness coordinate is defined as 

( , )z h h   . Besides, the element is oriented with respect to a local (element) coordinate system, 

1 2( , )x xx , representing the in-plane coordinates of the element. Here, the iQS4 element is 
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employed to model a laminate with a total number of Ln  layers (made of isotropic or orthotropic 

materials) as shown in Fig. 1(b). The laminate notation can be described as follows. The superscript 

(k) is utilized to identify the interlaminar strain field and thickness coordinate between ( 1)k  -th 

and k -th plies. Besides, the (k)-th lamina has thickness of ( )2 kh  with the top and bottom thickness 

coordinates,  1kz   and  kz , respectively, as illustrated in Fig. 1(b). 

Regardless of the individual ply kinematics, the in-plane and out-of-plane displacement 

components of any material point can be described according to FSDT as a function of five 

independent kinematic variables as: 

1 1 2( , ) ( ) ( )u z v z x x x  (1) 

2 2 1( , ) ( ) ( )u z v z x x x  (2) 

( , ) ( )z zu z vx x  (3) 

where translational ( 1v , 2v , zv ) and rotational ( 1 , 2 ) kinematic variables can be approximated 

utilizing shape functions of the iQS4 element as [27]: 
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where the isoparametric mapping of in-plane coordinates to parent domain ( , )s t  can be performed 

using the nodal coordinates of the iQS4 element, 1 2, ( 1, 2,3, 4)i ix x i  , as: 

4
11

1 22

( , )

( , )
i

i
i i

xx s t
N

xx s t 

  
    
   

x  (8) 

In Eqs. (4-7), the ( , )i iL L s t  and ( , )i iM M s t  functions are the second order anisoparametric 

shape functions [58], and ( , )i iN N s t  is bilinear isoparametric shape functions. The explicit form 

of these shape functions can be found in references [27, 61].  
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Substituting Eqs. (4-7) to Eqs. (1-3) and subsequently taking the spatial derivatives of the resultant 

displacement vector according to infinitesimal strain theory, the in-plane, ε , and transverse-shear, 

γ , strains at every position of the plate/shell domain can be derived analytically in terms of the 

nodal DOF vector of the iQS4 element, eu , as:  

( ) = ( ) + ( ) = ( + )e e e e ez z ε u e u κ u B B u  (9) 

( )e eγ u B u  (10) 

1 2 3 4

Te e e e e   u u u u u  (11) 

 1 2 1 2 ( 1, 2,3, 4)e
i i i zi i i ziv v v i   u  (12) 

where e
iu  represents the DOF of the i-th node, the ( )ee u  and ( )eκ u  vectors are the membrane and 

bending section strains, respectively, and the 1 2 3 4 ( , , )e          B B B B B  matrices are 

the strain-displacement matrices of the iQS4 element. These matrices contain derivatives of the 

shape functions with respect to 1x  and 2x  axes and can be explicitly described as [27]: 

,1 ,1

,2 ,2
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0 0   0 0 ( 1, 2,3, 4)

0 0 0

i i
e
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B  (13) 
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where the comma subscript followed by 1 and 2 indicates the partial derivative of 

( )
,( ) ( 1,2)x  

   . Using the chain rule and the inverse of the Jacobian matrix of the iQS4 

element, one can calculate the derivatives of the shape functions, ,i jN , ,i jL , ,i jM  ( 1, 2)j  , as: 

1

,1 1, 2, ,

,2 1, 2, ,
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 
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 
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     
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where the symbol ( )
,( ) ( , )s t   

    indicates the partial derivatives of the shape functions or 

local in-plane coordinates with respect to the isoparametric coordinates. 

The experimental surface strains collected from the on-board strain rosettes and/or embedded 

FBG sensors are the main input of the iFEM-iQS4 formulation. To provide this data, the sensors 

must be located in at least two different positions along the thickness coordinate of the laminate 

for a given discrete in-plane position, 1 2( , ) ( 1, 2,..., )i i Sx x i n x , where the Sn  represents the 

number of the two strain rosettes set. For clarity, an example of sensor placement configuration is 

depicted in Fig. 2, where ( )
1 2( , )i k k  ε   denotes the interlaminar triaxial strains measured at 1k  

and 2k  interface of the plies at ix  position. Here,  0, ( 1, 2)i Lk n i    interfaces can be assigned 

to any arbitrarily integer and it is assumed that 2k  interface is closer to the top surface of the 

laminate than 1k  interface as such 2 1k k .  

 
Fig. 2. Layout of strain sensors along the thickness coordinate of the thin laminated composite 

structure. 

Utilizing the in-plane strain definition given in Eq. (9), experimental surface strains, 1( )k
iε  and 

2( )k
iε , can be expressed in terms of the experimental membrane, e , and bending, κ , section 

strains as: 

1 1 1( ) ( ) ( )( , ) ( ) ( )k k k
i i i iz z   ε ε x e x κ x  (17) 

2 2 2( ) ( ) ( )( , ) ( ) ( )k k k
i i i iz z   ε ε x e x κ x  (18) 
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which be solved to obtained general description of experimental membrane and bending section 

strains of laminate with Ln  plies as: 

1 2 2 1

2

1

( ) ( ) ( ) ( )

2 1
( )

1

( ) ( 1, 2,..., ; )

2

k k k k
i i
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e x e  (19) 
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i n k k

h

 

 


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κ x κ  (20) 

It is important to recall that the i
e  and i

κ  vectors are the experimental counterparts of the 

membrane, ( )ee u , and bending, ( )eκ u , section strains given in Eq. (9), and thus can be directly 

computed during the experimental test given that the 1( )k
iε  and 2( )k

iε  are gathered by sensors. If no 

experimental test is available, these strain measurements can be simulated using numerical 

methods such as finite element method to be able to optimize sensor placement configurations for 

an experimental setup. If surface mounted strain gauges are located on top and bottom position of 

the laminate (i.e., no embedded FBG sensors), the interface indices are automatically set to 

1 20; Lk k n   in Eqs. (19-20), leading to the original expression of the iFEM-iQS4 formulation 

for isotropic plates/shells as [22]: 

( ) ( ) ( ) ( )(0) (0) (0) (0)
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L L L L
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k
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h





 
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
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where the vectors ( ) (0),Ln
i iε ε  represent the top and bottom surface triaxial strains collected from 

sensors at any ix  position (Fig. 2). Unlike the membrane and bending section strains, experimental 

counterpart of the transverse-shear strains ( )eγ u  cannot be extracted directly using surface strain 

data, ( )
1 2( , )i k k  ε . However, the contributions of transverse-shear strains to large bending 

deformations can be ignored for shape sensing of thin-walled structures. 
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For an individual iQS4 element with the area of eA , the weighted least-squares functional of 

iFEM methodology can be expressed based on calculated errors between analytical and 

experimental section strains as [23, 27]: 

 2 2 22
1 2

1
) ) (2 ) ) )

e

e e e e
ee

A

w w h w dx dx
A

 
         u e u e κ u κ γ u  (23) 

where the ew  and w  represent the weighting constants related to the membrane and bending 

strains respectively, and w  stands for the weighting coefficient of transverse-shear strains that is 

always set to a small number compared to unity, e.g., 510w
 , due to the lack of experimental 

counterpart. In the case of e  and κ  section strains being available for the iQS4 element, the 

weighting coefficients take the value of unity ( 1ew w  ). Otherwise, they should be set to 

relatively small values such as 510ew w
  . Minimizing the )eu  functional with respect to 

the unknown eu  nodal displacement of the iQS4 element, the final equation system of the element 

can be written as: 

)
0

e
e e e

e


  


u

k u f
u

 (24) 

 2
1 2

1
( ) (2 ) ( ) ( )

e

e e T e T T
ee

A

h w dx d
A

w xw    
   k B B B B B B  (25) 

 2e
1 2

1
( ) (2 ) ( )

e

e

A

T T
ee

h xw w dx
A

d  
  B e B κf  (26) 

where the ek  and ef  indicate shape matrix and experimental strain vectors corresponding to an 

individual element in the given order. Note that, unlike shape matrix ek , the ef  vector is dependent 

on experimental measurements. To numerically compute the area integral in Eq. (26), the discrete 

values of the experimental section strains, i
e  and i

κ , given by Eqs. (21-22) are required at the 

Gauss points of the iQS4 element. One can employ ‘a priori’ strain smoothing methods or 

“smoothed iFEM” to overcome this issue for practical applications [54]. Alternatively, if a single 

sensor set is available within the iQS4 element, then the experimental data can be assigned 

uniformly to each Gauss integration point (e.g., the same i
e  and i

κ  values for each of four Gauss 

points). For reasonable averaging of the sensor data, the centroid element can be chosen to mount 
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this sensor set [28]. A suitable transformation matrix, eT , should be utilized to transform the iFEM 

equation (Eq. 24) from local to global coordinate system, and then they can be assembled for the 

entire iQS4 discretization as:  

KU F  (27) 

 
1

( )
eln

e T e e

e

K T k T  (28) 

 
1

( )
eln

e T e

e

F T f  (29) 

 
1

( )
eln

e T e

e

U T u  (30) 

where eln  denotes the number of inverse elements for a given discretization, and the  operator 

represents the finite element assembly process. The details of computing the eT  transformation 

matrix by using global coordinates of the nodes were given in reference [28]. In Eq. (27), the K , 

U , and F  symbols are referred to global shape matrix, displacement vector and experimental 

strain vector, respectively. Note that since F  vector is dependent on experimental strain data, it 

needs to be updated at each time step to provide a real-time monitoring system. After imposing 

displacement and loading boundary conditions, the Eq. (27) can be updated for the reduced forms 

of global equations. Then, an inversion process is performed to solve this equation system as: 

1
R R R R R R

  K U F U K F  (31) 

which provides the real-time deformations (nodal DOF of the entire iQS4 model) for any strain 

increment. To obtain more accurate non-linear large deformations reconstruction for a given strain 

increment step, ls , the global displacement vector of the nodes, 

  ( 1,2,..., )
T

i i i i nodeU V W i n U , can be utilized to update the geometry of the iFEM-iQS4 

domain before the shape analysis for next strain-increment step, 1ls , as: 

1( ) ( ) ( )  ( 1,2,..., ; 1, 2,3,..., )i ls i ls i ls step nodels n i n    X X U  (32) 

where the vector    Ti i i ils ls
X Y ZX  indicates the global coordinates of the i-th node at strain 

increment step of ls , the noden  and stepn  symbols stand for the total number of nodes and strain-
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acquisition step. Note that the ( )i lsU  displacements are calculated by performing linear iFEM 

analysis. Nonlinear deformation reconstruction is enforced by using new geometrical surface, 

1( )i lsX , for the next iFEM analysis. Besides, the nonlinear deformations can be calculated 

correctly since the experimental section strains vary nonlinearly in case of large displacement 

event. If the incremental deformations are not large enough as compared to geometrical 

dimensions of the iQS4 model, they can be neglected for next steps. Accurate large deformation 

can still be monitored in this case due to the nonlinear input of experimental data. For further 

details of the incremental iFEM analysis, the reader can refer to the reference [50]. To facilitate 

the computer implementation, the flowchart and pseudocode of the iFEM-iQS4 approach have 

been scrutinized in Fig. 3 and Algorithm 1, respectively. 

 

 
Fig. 3. Flowchart of iFEM solution for geometrically non-linear deformations. 

 

 

 

 



13 
 

Algorithm 1 iFEM analysis for displacement reconstruction of non-linear deformations 
 procedure iFEM SOLUTION 
 Read nodal coordinates and elements connectivity data 
for e = 1 to nel do 
 Compute ( , , )e   B  matrix defined in Eqs. (13-15) 

 Compute ef and ek matrix using Eqs. (25-26)  
 Assemble ef and ek matrices for all inverse elements 

end 
 Read constraint boundary conditions 
 Compute RF and RK  reduced matrices using constraint conditions and obtain RU   

for e = 1 to nel do 
 Compute the kinematic variables using element DOF vector  
 Compute full-field strain components  
 Compute full-field stress components 

end 
if the reconstructed results are far from the reference solution 
 Update the geometry of the structure using Eq. (32) for each time step and 

repeat the process until the result matches the FEM solution 
end 

 

2.2. The Role of Strain Pre-extrapolation Technique for iFEM Analysis 

The experimental strain measurements are most likely noisy and erroneous, either due to 

operator error or poor equipment. In addition, due to the tendency to use a minimum number of 

sensors in real conditions, the number of sensors is optimally chosen, which can lead to 

discontinuity between strain data. To minimize this type of errors and to obtain a continuous 

distribution of experimental strains over the entire area of the plate, the experimental strain data 

can be processed using analytical techniques. Different types of smoothing techniques for stress 

and strain recovery and error estimating have been discussed in the literature [62-63]. Strain pre-

extrapolation is one of those techniques which is based on data smoothing. To implement the 

proposed methodology for the experimental example, the number of sensors is kept constant while 

a high-resolution iFEM mesh is used to generate additional elements throughout the domain. A 

multinomial curve is then fitted through the available discrete experimental strain measurement 

points to replace the missing strain values with virtual strain data. The least squares method is a 

curve fitting technique which fits polynomials through discretely determined strain data. The 

general form of a polynomial with k-th order takes the form: 
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where ( 0,1,2,..., )i i k   is the polynomial coefficient and the term k is the degree of the 

polynomial curve. The least-squares method minimizes the difference between the estimated 

values of the polynomial and the expected values from the data set. The coefficients of the 

polynomial regression model are determined by solving system of linear equations as follows: 
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where Pn  is the number of points to be regressed, and i  is the discrete strain data obtain during 

the experimental test from sensors. These set of equations can be represented in a general form of 

=H αQ  and the coefficients k  can be determined as: 

det( )

det( )
i

k 
H

H
 (35) 

where the iH  is a new matrix with the i-th column replaced by the column vector Q . An example 

of 0H  matrix computation can be found in [56]. Solving these equations for different polynomial 

order, the best curve fit for the discrete experimental strain measurements can be obtained and 

accordingly the results of pre-extrapolated strains can be employed in iFEM-iQS4 analysis.  

3. Numerical and Experimental Examples 

In this section, the ability of the iFEM method to reconstruct the geometrically non-linear 

deformation of thin laminated plates and shell structures is thoroughly investigated numerically 

and experimentally. The numerical problems involve flat and curved laminated panels subjected 

to increasing compressive load and exhibiting geometrically non-linear buckling and bending 

deformations. In the experimental case, a rectangular thin laminated plate is subjected to a line 

load that leads to deformation with a large deflection in the center of the plate. It should be noted 

that these case studies are carefully selected to demonstrate the inherent geometric application of 
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the iFEM-iQS4 element for flat and curved thin laminated composite panels. As mentioned earlier, 

strain values have a critical role in iFEM shape sensing methodology. These required strain data 

are obtained for the numerical problems by performing non-linear FEM analysis utilizing ANSYS-

APDL software [64]. However, these strain values are collected for the experimental case by using 

a network of strain gauges on the surface of the plate. To improve the accuracy of iFEM analyses 

with discrete in-situ strain data, a polynomial extrapolation strategy is used to smooth the discrete 

in-situ strain data. Finally, all the numerical and experimental results are verified using high-

fidelity FEM analyses. 

3.1 Post-buckling Analysis of a Flat Laminate: First Numerical Case Study  

A carbon fiber reinforced polymer (CFRP) laminate with a square shape of 1 [m2] area is 

considered as shown in Fig. 4. The stacking order of the laminate is [± 30]3s, with a total of 12 

layers symmetric about the midplane. Each layer has a thickness of 0.3 [mm], resulting in a total 

laminate thickness of 3.6 [mm]. The right edge of the plate is rigid, and a concentrated axial load 

of 60 [kN] is applied across this rigid end, thereby resulting in a uniform displacement in the 

negative x-direction, as depicted in Fig. 4. Since the load is applied so slowly that there are no 

dynamic effects within the structure, which is called quasistatic, the non-linear nature of the 

problem requires that the load be increased gradually. The initial load of 600 [N] is applied and 

then ramped to 60 [kN] with 17 incremental steps. Nonlinear analyses are performed using FEM 

software (i.e., ANSYS APDL). This software uses Newton-Raphson convergence criteria for 

nonlinear problems. The maximum number of equilibrium iterations is set to 1000 in ANSYS for 

each load increment to ensure a correct convergence and load-equilibrium analysis. 

The left edge of the laminated plate is fully clamped. However, only the transverse 

displacement  w  and bending rotation about the y-axis 
y  are considered constrained for both top 

and bottom edges of the plate, as shown in Fig. 4. The mechanical properties of the CFRP material 

are listed in Table 1. This post-buckling analysis aims to evaluate the ability of the iFEM analyses 

to track the variations of the translational and rotational displacement at points A, B, and C as the 

load increases (the exact positions of points A, B, and C are depicted in Fig. 4). For this purpose, 

a non-linear FEM analysis is performed to simulate the required strain data as input to the iFEM 

analysis.  
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Table 1. Mechanical properties of the CFRP material 

 Lamina material  Young’s modulus [GPa]  Poisson’s ratio  Shear modulus [GPa] 
Carbon-epoxy 
unidirectional 
composite 

( )

1  157.9kE   
( ) ( )

2 3 9.584k kE E   

( ) ( )

12 13 0.32k k    
( )

23 0.49k   

( ) ( )

12 13 5.93k kG G   
( )

23 3.227kG   

 

The entire area of the plate is discretized into 100 sub-areas, as shown in Fig. 5. Three types 

of sensor placement models, namely 'Model I', 'Model II', and 'Model III' are used to perform the 

iFEM analyses at the same mesh resolution. In the arrangement of sensors for Model I, all inverse 

elements contain two strain measurement sets at the center of the element at two different 

interlaminar positions. These positions are chosen preferably through the thickness of the laminate 

(as mentioned in Section 2) with a total number of 2 100 200   strain rosettes. The sensor 

placement strategy of Model II uses 2 40 80   strain rosettes placed in the center of 40 elements. 

In the last sensor configuration (Model III), the total number of strain rosettes is reduced to 

2 16 32   sensors, as shown in Fig. 5. 

The weighting coefficients for elements owning sensors at the middle are assigned as  

1ew w   and 710w
 . However, for elements without sensors, these constants are set to 

410ew w w 
   . It is worth noting that although thin plates undergo large deformations, but 

the strain values remain small, i.e., 1 to 10 micro strains. Therefore, when performing iFEM 

analyses, it is not practical to update the in-plane geometry and sensor positions with respect to 

each time step. However, the out-of-plane geometry (i.e., deflection) of the plate may need to be 

updated at each loading step. Since there is no significant deflection between each time step, a 

linear iFEM analysis is preferred in the first numerical case compared to incremental linear iFEM 

analysis. 
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Fig. 4. Dimensions, fiber orientation, and boundary conditions of the laminated plate. 

 

 
Fig. 5. Different sensor placement models of the plate. 
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Fig. 6. Variation of transverse and axial displacement components at points A, B, and C.  
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Fig. 7. Variation of rotational displacement components at points A, and B.  
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Fig. 6 shows the change in z-displacements w for points A and B, and the absolute value of x-

displacement u at point C under incremental loading obtained by FEM and iFEM analysis using 

three types of sensor configuration. Moreover, the rotation variation about the x-axis x  for point 

A and the y-axis y for point B is illustrated in Fig. 7. The force-displacement diagrams (Fig. 6, 7) 

exhibit that points A and B of the plate experience linearly transverse and rotational displacement 

almost up to 35 [kN] load level. After that, as the load increases, the plate experiences 

geometrically non-linear deformations up to 60 [kN]. However, point C experiences bilinear axial 

deformation throughout the loading history, as shown in Fig.6. It can be observed from Figs. 6-7 

that the iFEM can accurately capture the bilinear and non-linear behavior of the plate using Model 

I and Model II. However, regarding Model III, the iFEM results are slightly deviating from FEM 

results due to a smaller number of sensors, but it can still forecast the trend of FEM results. 

The contour plots of obtained transverse and rotational displacements are compared between 

FEM and iFEM analyses with different sensor deployments are shown in Figs. 8-10. These figures 

show that the last time-step contour plots of transverse and rotational displacement of iFEM 

analyses are compared with the reference FEM solution. It can be seen from these figures that the 

iFEM results are quite similar to each other and almost indistinguishable from the FEM result. 

These contour results confirm the superior ability of the iFEM-iQS4 element to reconstruct post-

buckling analyses of thin laminates.  

To compare the quantitative results related to Figs. 8-10, a percent differences calculation is 

performed between maximum values of FEM and the iFEM analyses. In this regard, the percent 

differences between the reference solution and the iFEM analyses using sensor positions of Model 

I to III for the maximum transverse displacement are about 0.0%, 0.15%, and 5.4% in the given 

order. However, the same comparison for the maximum rotation about the x-axis between FEM 

and the iFEM analyses are 0.0%, 0.03%, and 1.1%, respectively. Finally, the comparison between 

the FEM and iFEM analyses for the maximum rotation about the y-axis are 0.45%, 2.5%, and 3%, 

respectively. This quantitative evaluation proves that iFEM is accurate enough to predict the 

maximum values of the translation and rotation field with only a small margin of error, even when 

only a few discrete sensor data are used. 
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Fig. 8. Contours of transverse displacement w [mm] between FEM and iFEM analyses. 

 
Fig. 9. Contours of rotation [rad] around x-axis between FEM and iFEM analyses. 
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Fig. 10. Contours of rotation [rad] around y-axis between FEM and iFEM analyses. 

3.2 Large Deflection of a Clamped Laminated Cylindrical Panel: Second Numerical Case 
Study  

A deep cylindrical CFRP laminated plate under a point load with a stacking order of 

(0/90/0/90)s is evaluated by iFEM analyses. The geometry and boundary conditions are similar to 

a benchmark problem performed in some preliminary studies [65] with the following data: R = 

500 [mm], L = 450 [mm], β = 30°, h = 4 [mm] (refer to Fig. 11). The plate is subjected to gradually 

increasing concentrated loads of a maximum of 4 [kN] to achieve geometrically non-linear 

deflection. Like the previous example, three sensor positions are used to provide the required strain 

values for the iFEM formulation. Herein, the whole curved domain is divided into 144 sub-

elements. For the first type of sensor distribution, indicated by the legend 'Model I,' all elements 

are instrumented using 2 144 288   strain sensors. The second model of sensor deployment is 

labelled as 'Model II', and the number of sensors is reduced to half ( 2 72 144  ). However, for 

the third model of sensor distribution, 'Model III', the number of rosettes is reduced to one-sixth (

2 24 48  ) as shown in Fig. 12.  The weighting constants for elements with sensors are set as 

1ew w  , 610w
 . However, for elements without sensors, they are assigned as 

310ew w w 
   . 



23 
 

 
Fig. 11. Clamped laminated cylindrical panel under point load. 

 
Fig. 12. Different types of sensor placement for cylindrical panel. 

The capabilities of iFEM analyses in terms of shape sensing of curved laminates under point 

loads are evaluated. The central point of the laminate is subjected to a gradually increasing load of 

a maximum of 4 [kN]. The load is applied to the structure in ten increasing steps with equal 

intervals of 400 [N], as shown in Fig. 13. In this way, the central point of the plate is deflected as 

a function of incremental forces. Since the incremental strain values associated with the alternating 

time-steps are large enough to affect the deflection results of the iFEM analyses, the incremental 

linear iFEM formulation is applied at each loading step to reconstruct the current deformed shape. 

Then, the geometry is updated, and the iFEM analyses are performed based on the incremental 

strain data utilizing three types of sensor configurations (i.e., Models I to III). Fig. 13 obviously 

shows that the deflection predicted by the linear incremental iFEM approach agrees quite well with 

the FEM solution when the first sensor model is used. It is also clear that as the number of strain 

gauges decreases, there is a discrepancy between the linear incremental iFEM and FEM results. 

However, these error margins are negligibly small, indicating that the incremental linear iFEM 

approach can capture well the geometrically non-linear deflection of a thin laminated shell 

structure. The linear iFEM results are calculated and compared with the FEM solution and are 
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exhibited in Fig. 13. In the current case study, it can be observed that, unlike the previous numerical 

example, linear iFEM analyses cannot be a substitute for the shape sensing of curved laminates. 

 
Fig. 13. Central deflection of the cylindrical laminate using three types of sensor placement. 
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Fig. 14. Contours of x-displacement [mm] component obtained by iFEM and FEM analyses. 

Additionally, the ability of the incremental iFEM approach to reconstruct the axial and 

rotational displacements of the last time-step using the Model I, Model II, and Model III sensor 

configurations are illustrated in Figs. 14-16. These axial and rotational displacement contours 

show that the iFEM analysis with the sensor distribution of Model I reconstructs quite similar 

contours to the reference FEM solution. Moreover, the obtained contours of the iFEM analyses 

with the Models II and III sensor configuration are less accurate but still comparable to FEM 

solutions. It should be noted that although the use of a smaller number of sensors leads to a minor 

contour inconsistency compared to the reference solution, it predicts the precise location of the 

occurrence of the maximum displacement, which fulfills the most crucial requirement of a reliable 

shape sensing system.  
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Fig. 15. Contours of y-displacement [mm] component obtained by iFEM and FEM analyses. 

Quantitatively speaking, the percent differences for the maximum x and y displacements 

between the FEM reference and the iFEM analyses are calculated as (3.7%, 7.3%, 16%) and (5.8%, 

9.1%, 18%), respectively, for the Models (I, II, III). However, when a similar comparison is made 

between FEM and iFEM analyses for the case of rotation z  (around global z-axis), these margins 

of error are reduced to 0.04%, 0.9%, and 0.91% in the given order. These values for the percent 

difference show the superior performance of the iFEM approach at a higher sensor density, 

especially at the maximum rotational displacement. Although the values for the percent difference 

increase at lower sensor densities, these error percentages are not significant enough to affect the 

reconstruction performance of the iFEM method. Overall, based on the obtained quantitative and 

qualitative results, it can be declared that the iFEM-iQS4 element is efficient enough to reconstruct 

the non-linear deformations as well as the axial and rotational contours with only a few sensors. 

These two numerical investigations clearly illustrate that using iFEM analyses for shape sensing 

of thin laminated plates and shells leads to reliable and cost-effective results. 
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Fig. 16. Contours of rotation [rad] around z-axis obtained by iFEM and FEM analyses. 

 

3.3 Large Deflection Sensing of a Clamped Laminated Flat Panel: Experimental Case Study  

3.3.1 Laminate manufacturing and testing 

E-glass fiberglass woven roving fabric with an areal weight of 300 g/m2 and Biresin CR120 

resin and CH120 hardener were procured from Metyx-Turkey and Sika for fabrication, 

respectively. The vacuum-assisted resin infusion process is used to fabricate the composite sheet 

with a uniform thickness of almost 0.83 [mm]. For the resin infusion, a flat stainless-steel surface 

of the table was prepared by applying coats of sealant and release films. Four layers of fibers were 

placed on the prepared surface and covered with a peel ply and then flow-mesh, which helps 

prevent the air entrapment and assists the uniform resin flow. A vacuum bag was sealed with the 

help of sealant tape, and then a debulking process was carried out for 30 minutes. Resin and 

hardener were mixed in a ratio of 100:30 wt% and then degassed for 20 minutes to remove 

entrapped air. After degassing, epoxy was injected into the system, and a temperature of 120ºC 

was applied through Wittmann Tempro plus D-18 for 24 hours. The samples from the composite 
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plate were machined by a Kuka KR16 Ultra-F-robot water jet to characterize the material 

properties.  

 
Fig. 17. The schematics of tensile and shear test specimens. 

Table 2. Mechanical properties of the Glass-Epoxy material 

 Lamina material  Young’s modulus [GPa]  Poisson’s ratio  Shear modulus [GPa] 

Glass-epoxy 
twill composite 

( ) ( )

1 2 24k kE E   
( )

3 7.1kE   

( ) ( ) ( )

12 13 23 0.14k k k      

 

( ) ( ) ( )

12 13 23 3.1k k kG G G    

 

 

Tensile test was performed according to ASTM D-3039 standard to determine the elastic 

modulus and Poisson's ratio, whereas Iosipescu shear test was performed as per ASTM D5379 to 

measure the shear modulus. For the tensile test, six specimens with a size of 250×25 [mm2] were 

cut and tabbed with 50 [mm] aluminum, while for the shear test, five specimens with a size of 

76×19 [mm2] were tested. Both shear and tensile tests were performed with the help of the Instron 

universal testing machine (UTM) 5982, which is equipped with a 100 [kN] load cell. Fig. 17 

depicts the schematic of tensile and V-notch shear test specimens. The obtained mechanical 

properties of the glass-epoxy material are listed in Table 2. It is noteworthy that a bending test 

cannot determine the out-of-plane material properties because the plate is not thick enough. 

Therefore, these material properties are approximated and calibrated using the FEM analysis. 

3.3.2 Large deformation test setup 

For the large deformation test setup, sixteen Type I C2A-06 125ww-350 strain gauges with 

quarter bridges are used to measure the strain. These strain gauges have a grid resistance of 350 ± 

0.6% [Ohms] and are stacked as 0º-45 º-90 º rosette, recommended for steep strain gradient and 

limited gaging areas. These strain gauges are attached to the bottom of the 1200×300 [mm2] 

composite laminate. The laminate is fixed in a metal fixture, and a compression line load is applied 

along the length of the laminate (refer to Fig. 19). The geometry, boundary conditions, and sensor 
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positions of the clamped flat plate are shown in Fig. 18. The whole area of the plate is discretized 

into several elements. Some of these elements have sensors at their centers marked with yellow 

color as seen in Fig. 18. The exact location of these sensors is shown in Table 3. 

Table 3. Coordinates of sensors on experimental laminated plate 

Sensor x [mm] y [mm] Sensor x [mm] y [mm] 
1 1100 75 9 1100 225 
2 900 125 10 900 275 
3 700 75 11 700 225 
4 900 25 12 900 175 
5 500 75 13 500 225 
6 300 125 14 300 275 
7 100 75 15 100 225 
8 300 25 16 300 175 

 

 
Fig. 18. The geometry, boundary conditions and sensor positions of the flat plate under line 

load.  
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Strain data is acquired using the NI PXIe-1075 chassis via the NI 6363 strain card, using the 

NI signal express software to record the continuous data. To achieve a homogeneous distribution 

of strains, a preload of 100 [N] is applied to the surface of the plate via a steel bar. At a preload of 

100 [N], the strain gauges are calibrated to use the zero value as a reference. A continuous ramp 

load of 100 [N] to 750 [N] with a hold time of 10 seconds between each ramp is applied to the 

plate within an interval of 250 seconds, as shown in Fig. 20. Strain data are post-processed using 

NI- DIAdem 2021 software, where strain data for each 10-second hold step (13 in total) from each 

strain gauge are averaged and then used for iFEM calculations. As shown in Fig. 18, the 

arrangement of the sensors and the applied boundary condition are symmetrical, which also results 

in symmetrical strain data. Therefore, one set of strain gauges (1 to 4) can represent the strain 

distribution across the whole laminate. Fig. 21 shows the non-linear variation of axial strains of 

these sensors (1 to 4) over the time-steps. 

 
Fig. 19. Test setup a) before loading, b) after loading, c) data acquisition system.  
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Fig. 20. Time-loading history. 

 
Fig. 21. The variation of axial strains of sensors number 1 to 4 over the time steps. 

 

3.3.3 iFEM-based Shape Sensing  

This section presents real-time shape sensing for the clamped laminated plate by performing 

iFEM analyses. As described in the previous sections, a prior smoothing analysis is performed 

over the obtained experimental strain data. For this purpose, a moderately fine resolution of the 

iFEM discretization is used with discrete strain data obtained through strain gauges, as shown in 

Fig. 22(a). After that, the missing strain values of the empty elements are predicted by performing 

a strain pre-extrapolation technique to fit a fourth-order polynomial curve through discrete strain 

values aligned along the x-axis (Fig. 22b). Thus, the number of available strain data is increased 
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from sixteen to forty-four, and this extensive strain data is used in the iFEM formulation. The 

iFEM analyses are then performed for all incremental loading steps to reconstruct the non-linear 

large deflection of the entire laminate. The weighting values for the elements accommodated with 

sensors are set as 1ew w   and 610w
 . However, these constants are assigned as 

510ew w w 
    for elements without sensors (strain-less elements). Finally, a high-fidelity 

FEM analysis with 14701 nodes and 88206 DOFs is performed to serve as a reference solution to 

compare with the iFEM results (Fig. 22c).  

 

Fig. 22. Mesh resolution and iQS4 elements with strain measurement sets at the center for a) 

iFEM analysis using discrete sensors, b) iFEM analyses using polynomial smoothing approach, 

and c) FEM model. 

The central deflection (maximum displacement) of the laminate for all loading levels obtained 

by experiment, FEM, iFEM using discrete strain data, and iFEM coupled with the pre-

extrapolation technique are shown in Fig. 23. This figure shows that the iFEM (pre-extrapolated 

strain data), experimental results and FEM analyses have a higher degree of agreement compared 

to iFEM (discrete strain data), thereby proving the advantage of the strain extrapolation before 
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running an iFEM analysis. In other words, the use of polynomial smoothing analyses for iFEM 

analysis results in almost identical nonlinear deflection predictions to the experimental deflections 

and reference FEM solutions, whereas iFEM analysis with discrete strains underestimates the 

maximum deflections as shown in Fig. 23. This behaviour is even more apparent at the higher 

loading levels (after load step of 6). For smaller loads (before load step 6), both iFEM approaches 

produce more erroneous deformations due to the fully clamped constrained boundary condition of 

the plate and unavailability of adequate sensors near the clamped edges as can be observed from 

Figs. 22a-b. This means that in the lower loading stages, the strains dominate at the edges of the 

laminates whereas, at higher load levels, these strain magnitudes become smaller as compared to 

the strains at the centre of the plate, thereby allowing a better deformation reconstruction after load 

step of 6. In sum, since the edge lines of the plate do not have a sufficient number of sensors to 

detect these experimental strains, the iFEM-reconstructed displacements at low loading levels 

become less accurate than that of the higher loading stages. 

 
Fig. 23. Central deflection of the plate obtained from experiment, FEM analysis, and iFEM 

analysis. 

Figs. 24-26 illustrate full-field deflection of the plate obtained with iFEM using discrete and 

pre-extrapolated strains and FEM analyses for three arbitrarily selected time loading levels (i.e., 

steps 3, 8, and 13). As can be seen in these figures, the total displacement contours obtained using 

iFEM in conjunction with a polynomial smoothing approach are comparable to the reference FEM, 

which also confirms the high performance of the iFEM method for full-field reconstruction in real-

time. However, the iFEM analyses with discrete strains show lower accuracy in reconstructing the 
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full-field displacement contours. In terms of numbers, the maximum values of the total 

displacement between FEM and the iFEM analyses using the strain pre-extrapolated technique are 

12%, 0.9%, and 0.3% for steps 3, 8, and 13, respectively. However, the percentage errors between 

FEM and the iFEM analyses using discrete strain data are 21%, 7.5%, and 7% in the given order, 

confirming the higher accuracy and efficiency of the iFEM analyses using the pre-extrapolated 

strain data. 

 
Fig. 24. Total displacement contours at time-step 3 obtained by (a) iFEM analysis using 

discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) FEM analysis. 
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Fig. 25. Total displacement contours at time-step 8 obtained by (a) iFEM analysis using 

discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) FEM analysis. 

 
Fig. 26. Total displacement contours at time-step 13 obtained by (a) iFEM analysis using 

discrete sensors, (b) iFEM analysis using polynomial smoothing approach, and (c) FEM analysis. 
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Finally, the three-dimensional deformed shapes reconstructed utilizing the iQS4 models of the 

iFEM (discrete and pre-extrapolated strains) are compared with each other and reference solutions 

in Fig. 27. According to these deformed shapes, the improved performance of iFEM-iQS4 with 

pre-extrapolated strains can be observed for full-field large deformation sensing, thus proving the 

experimental advantages of the proposed method. Overall, this study case experimentally verifies 

the ability of the iFEM-iQS4 inverse element to capture the geometrically non-linear deflection of 

thin laminates and validates the practical utility of the strain pre-extrapolation technique for the 

iFEM-FSDT approach. The computational strategy presented here can be used to develop accurate 

and efficient applications of the iFEM-FSDT method in future research on shape detection of thin 

laminated structures subjected to large deformations using a small number of discrete sensors. 

 

Fig. 27. Comparison of three-dimensional deformed shapes (30 times magnified) obtained at 

time-step 13. 
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4. Conclusion 

This study presents an experimental and numerical evaluation for shape sensing of thin 

laminated structures subjected to large deformations using the iFEM approach. The iFEM is a 

sensor-based algorithm that uses a weighted least squares function to minimize the error between 

experimental and numerical section strains to predict full-field deformations. To this end, the entire 

domain of the structure is discretized into quadrilateral inverse shell elements, referred to as the 

iFEM-iQS4 model. For the numerical verification of the iFEM approach for geometrically non-

linear displacement monitoring of thin laminated structures, two case studies are considered, 

including a post-buckling analysis of a thin laminated plate and a curved thin laminated shell 

geometry subjected to large deformations. For this purpose, three different sensor placement 

models are used for these laminates.  

Furthermore, the efficiency of the iFEM-iQS4 element is verified through experiments where 

initially a thin laminate is fabricated, and then the mechanical properties of the laminate are 

measured through tensile and shear tests. Moreover, this thin laminate is clamped on a fixture and 

then tested under large deflection deformation. The appropriate locations for installing sixteen 

strain rosettes are calculated to obtain the required strain data for the iFEM analysis. Then, these 

sensors are placed at the designated locations on the surface of the plate, and the strain data is 

collected using data acquisition systems. Since the sensors are discretely distributed from each 

other, the iFEM formulation is coupled with a strain data smoothing technique known as the “strain 

pre-extrapolation technique” to recover these sparse strain data over the entire area of the structure. 

This smoothing method also helps to neglect strain measurement errors and other operational 

mistakes during the analyses.  

The obtained quantitative and qualitative results of the post-buckling analysis clearly show the 

high performance and accuracy of iFEM in buckling deformation reconstruction of thin laminates 

even by employing a few sensors. Moreover, the incremental iFEM analyses obtained for the 

curved shell laminate show a good agreement with the reference FEM solution by using sparse 

sensor deployments. In the experimental analyses, the efficiency of the coupled iFEM method with 

the pre-extrapolated strain technique is well demonstrated in recovering discrete strain data over 

the entire domain of the structure. This smoothed strain data leads to almost excellent 

reconstruction of the displacement field of the thin laminates subjected to large deformation. In 
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conclusion, the knowledge acquired from this study can be utilized as a practical guideline for 

future applications of the iFEM-iQS4 algorithm for displacement monitoring of thin laminated 

structural components subjected to geometrically non-linear deformations. 
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