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Abstract
Spread and partial spread constructions are the most powerful bent function constructions. A
large variety of bent functions from a 2m-dimensional vector spaceV(p)

2m over Fp into Fp can

be generated, which are constant on the sets of a partition ofV(p)
2m obtained with the subspaces

of the (partial) spread. Moreover, from spreads one obtains not only bent functions between
elementary abelian groups, but bent functions from V

(p)
2m to B, where B can be any abelian

group of order pk , k ≤ m. As recently shown (Meidl, Pirsic 2021), partitions from spreads
are not the only partitions ofV(2)

2m , with these remarkable properties. In this article we present

first such partitions—other than (partial) spreads—which we call bent partitions, for V(p)
2m , p

odd. We investigate general properties of bent partitions, like number and cardinality of the
subsets of the partition. We show that with bent partitions we can construct bent functions
fromV

(p)
2m into a cyclic groupZpk . With these results, we obtain the first constructions of bent

functions from V
(p)
2m into Zpk , p odd, which provably do not come from (partial) spreads.

Keywords Bent function · Difference set · Partial spread · Partition · Relative difference
set · Vectorial bent function · Zpk -bent function

Mathematics Subject Classification 06E30 · 05B10 · 94C10

1 Introduction

Boolean bent functions, introduced by Rothaus in [34] attract a lot of attention since several
decades (see [2]), due to applications in coding and cryptography—they are the functions
of furthest distance from the set of affine functions—and due to rich connections to objects
from geometry and combinatorics. In [19], the concept of bent functions has been gener-
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alized to p-ary functions, i.e., to functions from an n-dimensional vector space V
(p)
n over

the prime field Fp to Fp . Meanwhile, many constructions of bent functions are known, like
the Maiorana-McFarland construction and the partial spread construction, and numerous
secondary constructions, i.e., constructions of bent functions from known bent or related
functions.

The most powerful construction seems to be the construction via (partial) spreads, which
for the Boolean case has already been studied comprehensively in Dillon’s thesis [9]. The
generalization of the (partial) spread construction to p-ary functions is then given in [15, 21].
The construction for the Boolean case (with a complete spread) can be described as follows:

Let S be a spread ofV(2)
2m , i.e., a collection of 2

m +1 subspaces ofV(2)
2m , each of dimension

m, which pairwise intersect trivially. The union of 2m−1 of subspaces from S, the 0-element
excluded, is the support supp( f ) of a Boolean bent function f , where supp( f ) = {x ∈
V

(2)
2m : f (x) = 1}. Likewise, the union of 2m−1 + 1 of subspaces from S (with the 0

element), is the support of a bent function. For more details, we refer to Sect. 2.
As shown in [14,Theorem 2], with the Desarguesian spread, one obtains exponentially

many pairwise inequivalent Boolean bent functions. Furthermore, differently from other
constructions, with (partial) spreads one can generate bent functions from V

(2)
2m (respectively

V
(p)
2m ) into arbitrary abelian groups of order 2k (respectively pk), k ≤ m. For the definition

of bent functions between arbitrary abelian groups, we refer to Sect. 2.
Very recently, in the paper [26], the second author and Pirsic showed that spreads are not

the only partitions of V(2)
2m with these remarkable properties. (The main objective in [26] has

been to construct bent functions fromV
(2)
n into the cyclic group Z2k which do not come from

the partial spread construction.) A class of partitions is constructed, for which the union of
a fixed number of its elements is again always the support of a Boolean bent function. The
partitions in [26] can be seen as a generalization of the Desarguesian spread, in fact, the
Desarguesian spread is a special case.

Motivated by the construction of the partitions of V(2)
2m in [26], we introduce the new

concept of bent partitions, roughly speaking as partitions ofV(p)
2m , which have similar proper-

ties as (partial) spreads, with respect to the construction of bent functions. Exact definitions
are provided in Sect. 3. As we believe, bent partitions are quite significant objects, (partial)
spreads are examples, but, aswe nowknow, not the only ones—at least not for characteristic 2.

This article is organized as follows. In Sect. 2, we first recall some basics on bent func-
tions. Then we discuss in detail the construction of bent functions from spreads and partial
spreads, and from the partitions presented in [26]. This detailed discussion is fundamental
for understanding the significance of the concept of bent partitions, which we introduce in
Sect. 3. We analyse general properties of bent partitions, such as the number of the subsets
in the partition, properties of their subsets, like the cardinality, and properties of the resulting
bent functions. In Sect. 4, we point out that vectorial bent functions, and most notably, bent
functions fromV

(p)
n to cyclic groups Zpk can be constructed from bent partitions ofV(p)

n . As

a major result, in Sect. 5 we present the first bent partitions of V(p)
n for odd primes p, which

do not arise from any (partial) spread. This also yields the first bent functions fromV
(p)
n into a

cyclic group Zpk , p odd, different from (partial) spread functions. To show that the partitions
we obtain for odd characteristic do not arise from any (partial) spread, hence are new, we
generalize a classical result by Dillon [9] on the algebraic degree of Boolean partial spread
bent functions to odd characteristic. Finally, motivated by the connection between Boolean
bent functions and Hadamard difference sets, we introduce the concept of difference set
partitions, and we give some perspectives for future research.
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2 Preliminaries

In this preliminaries, after providing the necessary background on bent functions, we recall
in detail the very powerful construction of bent functions based on (partial) spreads of V(p)

n ,
n = 2m. We then describe a main result from [26] on bent functions obtained from parti-
tions of F2m × F2m , which have properties similar to spreads. This detailed analysis of bent
constructions obtained from these classes of partitions is crucial to capture the significance
of the concept of bent partitions, which we will introduce in Sect. 3.

Let (A,+A), (B,+B) be finite abelian groups. A function f from A to B is called a bent
function if

∣
∣
∣
∣
∣

∑

x∈A

χ(x, f (x))

∣
∣
∣
∣
∣
= √|A| (1)

for every character χ of A × B which is nontrivial on B. Alternatively, f : A → B is
bent if and only if for all nonzero a ∈ A, the function Da f (x) = f (x +A a) −B f (x) is
balanced, i.e., every value in B is taken on the same number |A|/|B| of times. The graph of
f , G = {(x, f (x)) : x ∈ A}, is then a relative difference set in A × B relative to B, see
[32]. For background on relative difference sets we refer to [33].

In the classical case, A = V
(p)
n and B = V

(p)
m are elementary abelian p-groups, i.e., they

are vector spaces of dimension n and m respectively over the prime field Fp for some prime

p. In this case the character sum in (1), calledWalsh transform of f at (a, b) ∈ V
(p)
m ×V

(p)
n ,

a �= 0, is of the form

W f (a, b) =
∑

x∈V(p)
n

ε
〈a, f (x)〉m�〈b,x〉n
p ,

where 〈, 〉k denotes an inner product in V
(p)
k , εp is a primitive p-th root of unity, and ⊕

(respectively �) denotes the addition (respectively subtraction) modulo p. If V(p)
k = F

k
p ,

we may use the conventional dot product as inner product. If V(p)
k = Fpk , the finite field

of order pk , we may use the absolute trace Trk(bx) as the inner product 〈b, x〉k . A function
f : V(p)

n → V
(p)
m is bent, ifm > 1 also called vectorial bent, if and only if |W f (a, b)| = pn/2

for all nonzero a ∈ V
(p)
m and b ∈ V

(p)
n . If p = 2, then ε2 = −1, henceW f (a, b) is an integer,

and for a bent function we have W f (a, b) = ±2n/2. Therefore, (vectorial) bent functions

from V
(2)
n to V(2)

m only exist for even dimensions n. Furthermore, by Nyberg’s bound [30], m
can be at most n/2. For odd p, (vectorial) bent functions exist for integers n, even and odd,
and m ≤ n.

Bent functions from V
(p)
n to Fp are also called p -ary bent functions, and Boolean bent

functions if p = 2. The Walsh transform is then of the form

W f (1, b) = W f (b) =
∑

x∈V(p)
n

ε
f (x)�〈b,x〉n
p .

(We remark that the coefficient a ∈ F
∗
p of f in the exponent is w.l.o.g. set to a = 1, as with

f also a f , a ∈ F
∗
p , is bent.) In the Boolean case, W f (b) = 2n/2(−1) f

∗(b) for a Boolean

function f ∗, called the dual of f . For p-ary bent functions f from V
(p)
n to Fp , p odd, the
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Walsh coefficient W f (b) at b ∈ V
(p)
n of f always satisfies (see [11, 19])

W f (b) =
{

±ε
f ∗(b)
p pn/2 : pn ≡ 1 mod 4,

±iε f ∗(b)
p pn/2 : pn ≡ 3 mod 4,

(2)

where i is a complex primitive 4-th root of unity, and f ∗ is a function fromV
(p)
n to Fp , which

again is called the dual of f .
A bent function f : V(p)

n → Fp is called weakly regular if, for all b ∈ V
(p)
n , we have

W f (b) = ζ ε
f ∗(b)
p pn/2 for some ζ ∈ {±1,±i}, cf. Equation (2). If ζ = 1, we call f

regular, which trivially applies if p = 2. If (the sign of) ζ changes with b ∈ V
(p)
n , then f

is called non-weakly regular bent. Weakly regular bent functions f belong to the class of
dual-bent functions, for which the dual f ∗ is bent as well. In particular, the dual of a Boolean
bent function is always bent. A non-weakly regular bent function can be either dual-bent or
non-dual-bent, see [5, 6].

For a vectorial function f : V(p)
n → V

(p)
m and a nonzero element a ∈ V

(p)
m , the function

fa : V(p)
n → Fp given as fa(x) = 〈a, f (x)〉m is called a component function of f . Observe

that f is a vectorial bent function if and only if all component functions are bent. Hence,
adding the 0-function, we can see a vectorial bent function as anm-dimensional vector space
of p-ary (Boolean) bent functions.

Recently one can observe increasing interest in functions from the vector space V(p)
n into

the cyclic group Zpk . The character sum in (1) for functions f : V(p)
n → Zpk is of the form

H f (c, u) =
∑

x∈V(p)
n

ε
c f (x)
pk

ε〈u,x〉n
p , εpk = e2π i/p

k
,

and f is bent if and only if |H f (c, u)| = pn/2 for all u ∈ V
(p)
n and nonzero c ∈ Fpk .

The class of functions satisfying the much weaker condition that |H f (1, u)| = pn/2 for

all u ∈ V
(p)
n is called the class of generalized bent functions, which meanwhile is quite

intensively studied in the literature. Several results on generalized bent functions point to
connections with partitions of V(p)

n , see [23, 27, 28].
Satisfying only a much weaker condition, generalized bent functions (in general) do not

yield relative difference sets. However, in the research on bent functions into the cyclic group
they play an important role, since f : V(p)

n → Zpk is bent if and only if pt f is generalized
bent for every t , 0 ≤ t ≤ k − 1, see for instance [12].

Many of the classical examples and constructions of Boolean and p-ary bent functions
also have a vectorial version, i.e., yield also vectorial bent functions, see [7]. Differently from
bent functions between elementary abelian groups, bent functions from V

(p)
n to Zpk , which

we will also call Zpk -bent functions, seem to be “rare".
Among the many classical constructions, it seems it is only the partial spread construction

that can produce bent functions that map into the cyclic group, and moreover (based on a
spread of V(p)

2m ), bent functions from V
(p)
2m into arbitrary abelian groups of order pk , k ≤ m.

Only recently, the first examples of bent functions from V
(2)
n to Z2k have been found, which

do not come from the ubiquitous spread construction, see the discussion below.
In the remainder of this section, we describe in detail bent constructions obtained from

spreads, partial spreads, and the partition presented in [26].
First recall that a partial spread S of V(p)

n , n = 2m, is a set of m-dimensional subspaces
of V(p)

n , which pairwise intersect trivially. If |S| = pm + 1, hence every nonzero element of
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V
(p)
n is in exactly one of those subspaces, then S is called a (complete) spread. The standard

example is the Desarguesian spread, which for V(p)
n = Fpm × Fpm has the representation

S = {U ,Us : s ∈ Fpm }, with U = {(0, y) : y ∈ Fpm } and for s ∈ Fpm , Us = {(x, sx) :
x ∈ Fpm }.
Construction with a spread Let U0,U1, . . . ,Upm be the subspaces of a spread of V(p)

n ,
n = 2m, and let B be an abelian group of order pk for some 1 ≤ k ≤ m. We obtain a bent
function from V

(p)
n to B as follows.

1. For every z ∈ B, the nonzero elements of exactly pm−k of the subspacesUj , 1 ≤ j ≤ pm

are mapped to z.
2. The elements of U0 are mapped to a fixed c ∈ B.

From the spread construction one obtains a large variety of bent functions into various abelian
groups. In [14,Theorem 2], a lower bound on the number of pairwise inequivalent Boolean
bent functions obtained with the Desarguesian spread of V(2)

n is shown. By this bound,
the number of pairwise inequivalent Desarguesian spread Boolean bent functions grows
exponentially with n. One can infer from Theorem 1 in [14] similar results for odd p. We
remark that a weaker bound on this number for arbitrary spreads is given in [15,Corollary
2.9] (see also [15,Remark 4]).

Construction with a partial spread We restrict ourselves to the case that p = 2, the case
of odd p is similar. The proofs for Construction I and Construction II below, are in [26],
following the approach in [21] for p-ary bent functions from partial spreads, p odd.

Construction I
For some k, 1 ≤ k ≤ m, let S = {Uj , 1 ≤ j ≤ (2k − 1)2m−k} be a partial spread of V(2)

n ,

n = 2m, and B an abelian group of order 2k . We define f : V(2)
n → B as follows.

– Every nonzero element γ of B has as preimage the union of exactly 2m−k elements of S
except from 0 ∈ V

(2)
n , i.e., f −1(γ ) = ⋃2m−k

i=1 U∗
γ,i , where U

∗
j = Uj \ {0}.

– All other elements are mapped to 0 ∈ B, i.e., f −1(0) = V
(2)
n \ ⋃

j U
∗
j .

Construction II
For some k, 1 ≤ k ≤ m, let S = {Uj , 1 ≤ j ≤ (2k − 1)2m−k + 1} be a partial spread of

V
(2)
n and B an abelian group of order 2k . We define f : V(2)

n → B as follows.

– All elements which are not in Uj for all 1 ≤ j ≤ (2k − 1)2m−k + 1 are w.l.o.g mapped

to 0 ∈ B, i.e., f −1(0) = V
(2)
n \ ⋃

j U j .

– For an element γ̃ ∈ B∗ we have g−1(γ̃ ) = ⋃2m−k+1
i=1 Uγ̃ ,i , i.e., γ̃ has the union of

2m−k + 1 elements of a partial spread as preimage (note that also f (0) = γ̃ ).

– If γ ∈ B∗, γ �= γ̃ , then g−1(γ ) = ⋃2m−k

i=1 U∗
γ,i , i.e., the preimage of γ consists of the

nonzero elements of 2m−k elements of a partial spread.

Though from (partial) spreads we can obtain bent functions from elementary abelian
groups into various abelian groups, mostly Boolean partial spread bent functions, as already
introduced in Dillon’s thesis [9], are considered in the literature. Since bent partitions will
be defined via Boolean (and p-ary) bent functions, we review this important special case.

PS− Boolean bent functions and their complement. A Boolean function f
from V

(2)
n to F2, n = 2m, of which the support, supp( f ) = {x ∈ V

(2)
n : f (x) = 1}, is

the union of 2m−1 elements of a (partial) spread, with the 0 excluded, is called a PS− bent
function. The complement g = f + 1 of a PS− bent function is then a bent function for

123



N. Anbar, W. Meidl

which exactly the nonzero elements of 2m−1 elements of a (partial) spread are mapped to 0.
The bent functions in Construction I above for k = 1, are PS− bent functions.

PS+ Boolean bent functions and their complement. A Boolean function f
from V

(2)
n to F2, n = 2m, of which the support is the union of 2m−1 + 1 elements of a

(partial) spread (the 0 is now included), is called a PS+ bent function. A Boolean bent
function f obtained with Construction II when k = 1, is a PS+ bent function, since w.l.o.g.,
the elements which are not in one of the subspaces of the spread are mapped to 0 (hence
γ̃ = 1). If we choose the other way round, then f is the complement of a PS+ bent function.

Observe that the complement of a PS− bent function defined with a partial spread which
is a part of a complete spread, is a PS+ bent function (and vice versa).

Finally we also describe the partial spread versions for p-ary functions, see [15, 21].
p- ary PS− bent functions from V

(p)
n to Fp , n = 2m, are the functions with the

following property: Every nonzero element of Fp has the union of pm−1 subspaces, without
the 0, as the preimage set. All other elements are mapped to 0. Observe that this requires a
partial spread with at least (p − 1)pm−1 subspaces.

p- ary PS+ bent functions from V
(p)
n to Fp , n = 2m, are the functions with the

following property: For some fixed nonzero c ∈ Fp , we take the union of pm−1+1 subspaces
(including 0) as the preimage of c. For all remaining nonzero elements of Fp the preimage

is the union of pm−1 subspaces, without the 0. All remaining elements of V(p)
n are mapped

to 0. Note that a partial spread with at least (p − 1)pm−1 + 1 subspaces is required.
Until very recently, the (partial) spread construction has been the only construction which

yields also bent functions into the cyclic group Zpk , k ≥ 3. In [26], a construction of bent

functions from V
(2)
n to Z2k is proposed, which is based on partitions �1, �2 of F2m × F2m ,

which have similar properties as a spread of F2m × F2m .

The construction in [26] Letm, k be integers such that k dividesm and gcd(2m−1, 2k+1) =
1, let e = 2k + 1 and d such that de ≡ 1 mod 2m − 1. For an element s ∈ F2m define

Us := {(x, sxe) : x ∈ F2m }, U∗
s = Us \ {(0, 0)}, and U = {(0, y) : y ∈ F2m }.

Then U , U∗
s , s ∈ F2m , form a partition of F2m × F2m .

Similarly, for an element s ∈ F2m we define

Vs := {(xds, x) : x ∈ F2m }, V ∗
s = Vs \ {(0, 0)}, and V = {(x, 0) : x ∈ F2m }.

For the divisor k of m and an element γ of F2k let

A(γ ) =
⋃

s∈F2m
Trmk (s)=γ

U∗
s and B(γ ) =

⋃

s∈F2m
Trmk (s)=γ

V ∗
s .

With these definitions we obtain two partitions of F2m × F2m ,

�1 = {U ,A(γ ); γ ∈ F2k }
�2 = {V ,B(γ ); γ ∈ F2k },

into 2k + 1 subsets, that have similar properties as spreads have. In fact, for k = m, both
partitions reduce to the Desarguesian spread.

Remark 1 In [26], the partitions �1, �2 are introduced slightly different, as there e is set as
e = 2m − 2k − 2, and therefore (modulo 2m − 1) −e = 2k + 1. Hence, in [26]Us and Vs are
represented as Us = {(x, sx−e) : x ∈ F2m } and Vs = {(x−ds, x) : x ∈ F2m }.
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Theorem 1 [26] Let m, k be integers such that k divides m and gcd(2m − 1, 2k + 1) = 1,
and let U, A(γ ), V , B(γ ) be defined as above.

I. Every Boolean function of which the support is the union of 2k−1 of the sets A(γ ) is a
bent function. Likewise, their complements, i.e., the Boolean functions with U and 2k−1

of the sets A(γ ) as their support, are bent.
II. Every Boolean function of which the support is the union of 2k−1 of the sets B(γ ) is a

bent function. Likewise the Boolean functions with V and 2k−1 of the sets B(γ ) as their
support, are bent.

The duals of the bent functions of the class in I are in the class in II (and vice versa).

As for spreads, we also obtain bent functions from V
(2)
n into various abelian groups B, in

particular into cyclic groups.

Theorem 2 [26] Let m, k be integers such that k divides m and gcd(2m −1, 2k +1) = 1, and
let π(i) = γi be a one-to-one map from Z2k to F2k . Then the function f : F2m ×F2m → Z2k

given as

– f (x, y) = i if (x, y) ∈ A(γi ) ((x, y) ∈ B(γi )),
– f (0, y) = 0 w.l.o.g. ( f (x, 0) = 0 w.l.o.g.) for all y ∈ F2m (x ∈ F2m ),

is a Z2k -bent function.

With an argument via the algebraic degree, it is shown in [26] that the bent functions in
Theorems 1, 2 do not come from the (partial) spread construction if k < m. For k = m, the
partitions �1, �2 reduce to the Desarguesian spread.

3 Bent partitions of elementary abelian groups

Motivated by the observations in the previous section, we introduce a class of partitions
of an elementary abelian p-group V

(p)
n , which possess similar properties as partitions from

spreads.

Definition 1 For an integer K divisible by p, let � = {A1, . . . , AK } be a partition of V(p)
n .

Suppose that every function for which every c ∈ Fp has exactly K/p of sets A j in � in its

preimage, is a p-ary bent function. Then we call � a bent partition of V(p)
n of depth K .

Example 1 Let S = {U0,U1, . . . ,Upm } be a spread of V(p)
n , n = 2m. W.l.o.g. we set A1 =

U0∪U1 and A j = U∗
j , 2 ≤ j ≤ pm . Then {A1, . . . , Apm } is a bent partition ofV(p)

n . Observe

that we can obtain
(pm+1

2

)

bent partitions from a spread of V(p)
n .

Example 2 From a partial spread of V(2)
n with (2k − 1)2m−k subspaces, as used also for

Construction I in the previous section, we get a bent partition � = {A1, A2, . . . , A2k } of
V

(2)
n as follows: A j , 2 ≤ j ≤ 2k , is the union of 2m−k elements of the partial spread—the

0-element excluded. The remaining elements form A1.
Note that then |A j | = (2m −1)2m−k for 2 ≤ j ≤ 2k , and |A1| = 2m +|A j | (2 ≤ j ≤ 2k).
We observe that a Boolean function that maps exactly half of the sets in� to 1 (the other to

0), is a partial spread bent function. It is a PS− bent function if A1 is mapped to 0, otherwise
it is the complement of a PS− bent function.
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Example 3 From a partial spread of V(2)
n with (2k − 1)2m−k + 1 elements, as used also

for Construction II in the previous section, we get the following bent partitions � =
{A1, A2, . . . , A2k } of V(2)

n : A1 is the union of 2m−k + 1 elements of the partial spread,
including 0, A j , 3 ≤ j ≤ 2k is the union of 2m−k of them, the remaining elements of V(2)

n

form A2.
The cardinalities of the sets A j are as in Example 2.
As easily observed, again a Boolean function f that maps exactly half of the sets in � to

1, is a partial spread bent function. If both (none of), A1 and A2 are mapped to 0, then f is a
PS− bent function (the complement of a PS− bent function), if A1 is mapped to 1 and A2

to 0 (A1 is mapped to 0 and A2 to 1), then f is a PS+ bent function (the complement of a
PS+ bent function).

Example 4 For a divisor k of m with gcd(2m − 1, 2k + 1) = 1, consider the partition �1 =
{U ,A(γ ); γ ∈ F2k } of F2m ×F2m given as above. Let A1 = U ∪A(0), w.l.o.g. (we may pick
any otherA(γ ) forA(0) - 2k choices). Then � = {A1,A(γ ); γ ∈ F

∗
2k

} is a bent partition of
F2m × F2m . Similarly we obtain bent partitions from �2.

We recall that for k = m both partitions,�1 and�2, reduce to the Desarguesian spread.When
k < m the partitions do not come from any (partial) spread at all. For integersm with several
divisors, several constructions of bent partitions of F2m × F2m emerge.

Our first objective is to determine the possible cardinalities of the sets in a bent partition.
We therefore recall a result of Nyberg that gives the value distribution of a bent function, see
[29].

Lemma 1 Let p be an odd prime and f : V(p)
n �→ Fp a bent function. For 	 ∈ Fp, we set

b	 = | f −1(	)|, where f −1(	) = {x ∈ V
(p)
n : f (x) = 	}.

(i) If n is even, then there exists a unique c ∈ Fp such that bc = pn−1 ± (p − 1)p
n
2 −1 and

b	 = pn−1 ∓ p
n
2 −1 for all 	 ∈ Fp \ {c}. Moreover, if f is regular, then the upper signs

have to be attained.
(ii) If n is odd, then b0 = pn−1 and b	 = pn−1 + (

	
p

)

p
n−1
2 for all 	 ∈ Fp \ {0} or b	 =

pn−1 − (
	
p

)

p
n−1
2 for all 	 ∈ Fp \ {0}, where (∗

∗
)

is the Legendre symbol.

Theorem 3 Let � = {A1, . . . , AK } be a bent partition of V(p)
n . Then the following holds.

(i) n must be an even integer.
(ii) Besides from one set, without loss of generality the set A1, all sets A j have the same

cardinality, namely

|A j | = pn/2(pn/2 ∓ 1)

K
, 2 ≤ j ≤ K , and

|A1| = pn/2(pn/2 ∓ 1)

K
± pn/2.

(iii) If p = 2 then K ≤ 2(2n/2∓1), and |A j | ≥ 2n/2−1. For odd p we have K ≤ 2pn/2− p,

and |A j | ≥ pn/2+1
2 .

Proof (i) Trivially, n must be even if p = 2. In the case of odd p and odd n, by Lemma
1(ii), the cardinality b	 depends whether 	 is a quadratic residue modulo p or not. However,
once we choose the sets of a preimage partition for a bent function as unions of the sets A j ,
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by the definition of a bent partition, we may arbitrarily assign which set shall be mapped to
which value. This contradicts the fact that for odd n, the cardinality of the preimage set of 	

depends on properties of 	.
(ii) We use the fact that the preimage sets of a bent function in even dimension n attain

exactly two different cardinalities, 2n−1±2n/2−1 in the Boolean case, the two cardinalities for
p odd are given in Lemma 1(i). Consequently, any union of K/p sets of {A1, A2, . . . , AK }
must have one of the two cardinalities (and both cardinalities appear). It is easily seen that
this applies if and only if all sets A j have the same cardinality, except from one, w.l.o.g. A1.

First suppose that |A1| > |A j |, 2 ≤ j ≤ K . Then for p = 2, any union of half of
the sets A j , which does not in include A1, has cardinality 2n−1 − 2n/2−1. Consequently,
|A j | = (2n − 2n/2)/K , 2 ≤ j ≤ K . A union of K/2 of the sets |A j | which includes A1 has
cardinality 2n−1 + 2n/2−1. Therefore |A1| = |A j | + 2n/2 ( j �= 1).

If on the other hand |A1| < |A j |, 2 ≤ j ≤ K , then with the same argument we see that
|A j | = (2n + 2n/2)/K , 2 ≤ j ≤ K , and |A1| = |A j | − 2n/2 ( j �= 1).

Similarly for odd p, the union of K/p sets A j has cardinality pn−1 ∓ pn/2−1 if it does
not include A1, and cardinality pn−1 ± (p − 1)pn/2−1 if it does include A1. With the same
arguments as for p = 2, we infer the claimed cardinalities for A1 and A j , 2 ≤ j ≤ K .

(iii) We recall that the distance between two bent functions f , g : V(p)
n → Fp is at least

pn/2, see [17], Proposition 1 in [18], and [31] for odd p (and even n). Exchanging two sets
A j1 and A j2 in the preimages of c1 and c2 we get two bent functions f , g with distance

d( f , g) = 2|A j | = 2 pn/2(pn/2∓1)
K ≥ pn/2, and K ≤ 2(pn/2 ∓ 1), |A j | ≥ pn/2/2 follows.

The value for |A j | for odd p is imposed by |A j | being an integer. Since p must divide K ,
the values for K follow. ��
Remark 2 For all our examples of bent partitions we have |A1| > |A j |, 2 ≤ j ≤ K , and K is
always a power of p. Note that K must divide pn/2(pn/2 ± 1). The question of the existence
of bent partitions with other values of K , or of the bent partitions for which one of the sets
in the partition is smaller than the other sets is open.

Remark 3 For a bent partition obtained from a complete spread, we have K = pn/2 and
|A j | = pn/2 − 1, 2 ≤ j ≤ K . One may expect that in fact this is the largest possible value
for K , respectively the smallest possible value for |A j |.

In the light of Theorem 3, from now on we suppose that n is even.
Observe that for the partitions �1 and �2, the subgroups U and V play a special role,

see Eq. (6). In a corresponding bent partition described as in Example 4, together with an
arbitrary A j (respectively B j ), they form the set A1 with the larger cardinality. In this way,
several bent partitions (precisely pk) can be obtained from �1 respectively �2 (note that with
a spread one has even more freedom, as A1 is the union of two arbitrary subspaces). These
observations motivate to refine the definition of a bent partition as follows.

Definition 2 Let � = {U , A1, . . . , AK } be a partition of V(p)
n . Suppose that every function

with the following properties is bent:

I Every c ∈ Fp has exactly K/p of the sets A1, . . . , AK in its preimage set,
II f (x) = c0 for all x ∈ U and some fixed c0 ∈ Fp .

Then we call � a normal bent partition of V(p)
n of depth K .

Remark 4 Recall that a bent function f : V(p)
n → Fp is called normal if there exists an n/2-

dimensional subspace U of V(p)
n on which f is constant, see [1, 8, 25]. By Theorem 4(ii)

below, every bent function obtained from a normal bent partition is a normal bent function.
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Similar as Theorem 3 for bent partitions, Theorem 4 below presents the possible cardi-
nalities for the sets in a normal bent partition.

Theorem 4 Let � = {U , A1, . . . , AK } be a normal bent partition of V(p)
n . Then p divides

K , and

(i) |U | = pn/2 and |A j | = pn/2(pn/2−1)
K , 1 ≤ j ≤ K ,

(ii) U is an affine subspace of V(p)
n , K ≤ 2pn/2 − p, and |A j | ≥ 2n/2−1 if p = 2 and

|A j | ≥ pn/2+1
2 if p is odd.

Proof (i) We can order the sets A j so that we have

|A1| ≤ |A2| ≤ · · · ≤ |AK−1| ≤ |AK |.
Suppose that the cardinalities of the sets A j are not all the same, i.e., we have

∑K/2
j=0 |A j | <

∑K
j=K/2+1 |A j |.
We first consider the case that p = 2. Since any union of K/2 of the sets A j , 1 ≤ j ≤ K ,

forms the support of a bent function we have

K/2
∑

j=0

|A j | = 2n−1 − 2n/2−1 and
K

∑

j=K/2+1

|A j | = 2n−1 + 2n/2−1. (3)

By the definition of a normal bent partition, also U ∪ ⋃K
j=K/2+1 A j is the support of a

bent function f . However, by Eq. (3), we then have |supp( f )| > 2n−1 + 2n/2−1, which
is a contradiction. Therefore, |Ai | = |A j | for any i, j ∈ {1, . . . , K }. Since ⋃K/2

j=1 A j and

U ∪ ⋃K/2
j=1 A j , both form the support of bent functions, we conclude that |U | = 2n/2, hence

|A j | = (2n − 2n/2)/K for all j = 1, . . . , K .
A similar argument applies for odd p. Let f be a p-ary bent function f obtained from a

normal bent partition. By Lemma 1(i), bc = pn−1 ± (p − 1)p
n
2 −1 for a unique c ∈ Fp and

b	 = pn−1 ∓ p
n
2 −1 for all 	 ∈ Fp \ {c}. By the definition of a normal bent partition, U must

be mapped to c, bc > b	, hence |U | = bc − b	 = p
n
2 . Furthermore, as any union of K/p

sets A j can be the preimage of an element 	, we must have |A1| = |A2| = · · · = |Ak |, and
the claim for the cardinalities follows.

(ii) The bounds on K and A j are given in Theorem 3(iii). By the definition of a normal bent
partition � we can obtain bent functions f , g which only differ on the set U of cardinality
pn/2. Then f and g have the minimal possible distance between bent functions, andU must
be an affine subspace of V(p)

n , see [17], Proposition 1 in [18], and [31] for odd p. ��
All bent functions obtained from a (partial) spread of V(p)

n are regular bent functions, see
[21]. The following corollary of Theorem 4 indicates that this is the situation for any normal
bent partition.

Corollary 1 All bent functions constructed from a normal bent partition of V(p)
n are regular

or non-weakly regular.

Proof Boolean bent functions are always regular, hence we have to consider the case of p
odd. From the cardinalities given in Theorem 4, we see that for a bent function f obtained
from a normal bent partition we haveW f (0) = ∑

	∈Fp
| f −1(	)|ε	

p = pn/2εcp ifU is mapped
to c. Hence if f is weakly regular then it is regular. ��
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Corollary 2 Let � = {A1, A2, . . . , AK } be a bent partition of V(p)
n and suppose that |A1| =

pn/2 + |A j |, 2 ≤ j ≤ K. Then � can be transformed into a normal bent partition �′ =
{U , A′

1, A2, . . . , AK } if and only if A1 contains an n/2-dimensional subspace U.

Proof Clearly, if A1 does not contain an n/2-dimensional subspaceU , then we cannot obtain
such a normal bent partition �′. Suppose now that U is an n/2-dimensional subspace of A1

and consider the partition �′ (with A′
1 = A1 \U ). Observe that every potential bent function

f obtained from�′ is either a bent function obtained from� (if f takes on the same value on
U and on A′

1), or a function that differs from a bent function obtained from � solely on the
subspace U by a constant. Hence, by Proposition 1 in [18] for p = 2, and the analog result
for odd p in [31], the function f is bent as well. Therefore �′ is a normal bent partition. ��

The Examples 1, 3, 4 of bent partitions obviously give rise to normal bent partitions. This
may be different for Example 2, as the following immediate consequence of Corollary 2
points out.

Corollary 3 The bent partition ofV(2)
n given in Example 2 cannot be altered to a normal bent

partition if and only if the corresponding partial spread with (2k − 1)2m−k subspaces is not
included in a larger partial spread.

We remark that it is difficult to construct a partial spread of a given size, which is not
extendable to a larger partial spread, see for instance [16]. A potential construction of a
partial spread from linear recurring sequences is in the recent article [10]. So far we do
not know an example of a bent partition, which cannot be transformed into a normal bent
partition, besides from the trivial example of the partition of V(2)

n into two sets, the support
of a Boolean bent function f , and its complement. This partition cannot be transformed into
a (trivial) normal bent partition if and only if f is not normal.

4 Bent partitions, vectorial bent functions and Zpk -bent functions

As pointed out in the preliminaries, with spreads and partial spreads one can generate bent
functions from the elementary abelian group to abelian groups B (of some prime power
cardinality). For the proof for partial spreadswe refer to the preliminaries in [26]. In particular,
bent functions mapping into cyclic groups Zpk can be obtained. The main objective in [26]
has been to show the existence of bent functions into the cyclic groupZ2k , which do not come
from the spread construction. From the construction found in [26], the partition of F2m ×F2m

in Example 4 emerged. In this section we point out that this is a general property for (normal)
bent partitions. More precisely, as a main result, we will show that bent partitions of V(p)

n of
depth pk yield bent functions from V

(p)
n to the cyclic group Zpk .

We first show that vectorial bent functions arise from (normal) bent partitions. As all
our concrete examples are potentially normal bent partitions, we state the result in terms of
normal bent partitions. The argument applies in the same way also to bent partitions which
are not normal.

Theorem 5 Let � = {U , A1, . . . , AK } be a normal bent partition of V(p)
n , and suppose that

K = pk. Then every function F : V(p)
n → V

(p)
k such that every element c ∈ V

(p)
k has the

elements of exactly one of the sets A j , 1 ≤ j ≤ K, in its preimage, and U is mapped to some
element c0, is a vectorial bent function.
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Proof It suffices to show that for every nonzero v ∈ V
(p)
k the component function Fv(x) =

〈v, F(x)〉k is a p-ary (Boolean) bent function. For x ∈ A j we have Fv(x) = 〈v, c j 〉k if F

maps A j to c j . Since the inner product 〈, 〉k on V
(p)
k is balanced, every element of Fp has

exactly pk−1 of the sets A j , 1 ≤ j ≤ K , in its preimage. As Fv is also constant onU , by the
definition of a bent partition, Fv is bent. ��
Remark 5 Given a (normal) bent partition of depth K = pk H for some H > 1 not divisible
by p (if exists), one of course can form many bent partitions of depth pk by forming unions.

To show that a bent function from V
(p)
n into the cyclic group Zpk can be obtained from

a bent partition with K = pk , we recall that a function f : V(p)
n → Zpk can be uniquely

written as
f (x) = a0(x) + a1(x)p + · · · + ak−1(x)p

k−1 (4)

for some p-ary functions ai , 0 ≤ i ≤ k − 1. The following lemma will be our essential tool.

Lemma 2 (i) f : V(p)
n → Zpk is bent if and only if pt f is generalized bent for every t,

0 ≤ t ≤ k − 1, see e.g. [12].
(ii) [28] f : V(p)

n → Zpk given as in (4) is generalized bent if and only if every p-ary function
of the form ak−1(x)⊕C(x) is bent, where C is a p-ary function which is constant on the
sets of the partition P f = {A(d) : 0 ≤ d ≤ pk−1 − 1} with

A(d) =
{

x ∈ V
(p)
n :

k−2
∑

i=0

ai (x)p
i = d

}

. (5)

Let � = {U , A0, . . . , Apk−1} be a normal bent partition of V(p)
n . By adding a constant to

f (x) and reordering the partition, we can without loss of generality suppose that f (x) = j
if x ∈ A j and f (x) = 0 if x ∈ U . With this convention we first show that f is a generalized
bent function.

Proposition 1 Let � = {U , A0, . . . , Apk−1} be a normal bent partition of V(p)
n . Then the

function f : V
(p)
n �→ Zpk such that f (x) = j if x ∈ A j and f (x) = 0 if x ∈ U, is

generalized bent.

Proof WeuseLemma 2 (i i), and show that every function ak−1⊕C(x) is bent, ifC is constant
on every set A(d). More precisely we show that ak−1 ⊕ C(x) is a bent function that can be
obtained from the (normal) bent partition �. We therefore express the preimage sets of ak−1

and the sets A(d) in Eq. (5) in terms of the sets in �. For j ∈ {0, . . . , pk − 1}, we can write
j = d + 	pk−1 for some d ∈ {0, . . . , pk−1 − 1} and 	 ∈ {0, . . . , p− 1}. As easily observed,
ak−1(x) = 	 if and only if x ∈ A j with j = d + 	pk−1 for some d = 0, . . . , pk−1 − 1. On
the other hand, for d = 1, . . . , pk−1 − 1, the sets A(d) are given by

A(d) = {Ad+	pk−1 : 	 = 0, . . . , p − 1} and
A(0) = {U , A	pk−1 : 	 = 0, . . . , p − 1}.

Suppose C(x) = cd on A(d) for some cd ∈ Fp . We fix d ∈ {0, . . . , pk−1 − 1}. Then every
element of Fp is attained as an image of ak−1(x) ⊕ C(x) on exactly one A j lying in A(d)

while 	 runs through {0, . . . , p− 1}. Therefore, for each d ∈ {0, . . . , pk−1 − 1} and b ∈ Fp ,
there exists a unique A j ∈ A(d) such that ak−1(x) ⊕ C(x) = b for all x ∈ A j . Moreover,
ak−1(x) ⊕ C(x) = c0 for all x ∈ U . Hence, the preimage of b ∈ Fp \ {c0} consists of the
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union of pk−1 sets A j in �, and the preimage of c0 consists of the union of pk−1 sets A j in
� and U . Since � is a bent partition, ak−1(x) ⊕ C(x) is a bent function. ��

Theorem 6 Let � = {U , A0, . . . , Apk−1} be a normal bent partition of V(p)
n , then the func-

tions given by f (x) = j if x ∈ A j and f (x) = 0 (w.l.o.g.) if x ∈ U, is a bent function from

V
(p)
n to Zpk .

Proof ByLemma2 (i), we have to show that pt f (x) is generalized bent for any 0 ≤ t ≤ k−1.
By Proposition 1, this holds for t = 0. It remains to show the case that t ≥ 1. The argument
is similar. We first observe that

H f (c, u) =
∑

x∈V(p)
n

ε
cpt f (x)
pk

ε〈u,x〉n
p =

∑

x∈V(p)
n

ε
c f̃ (x)
pk−t ε〈u,x〉n

p ,

where

f̃ (x) = a0(x) + · · · + ak−t−1(x)p
k−t−1.

Hence, f is generalized bent as a function into Zpk if and only if f̃ is generalized bent as a
function mapping into Zpk−t . Consequently, it suffices to show that ak−t−1 ⊕ C(x) is bent
for every p-ary function which is constant on the sets

A(d) =
{

x ∈ V
(p)
n :

k−t−2
∑

i=0

ai (x)p
i = d

}

, d = 0, . . . , pk−t − 1.

Suppose that C(x) = cd on A(d). Writing j ∈ {0, . . . , pk − 1} as
j = d + 	pk−t−1 + st p

k−t + · · · + s1 p
k−1

for some d ∈ {0, . . . , pk−t−1 − 1} and 	, st , . . . , s1 ∈ {0, . . . , p − 1}, we see that A j is
included in A(d), i.e., C(x) = cd on A j , and ak−t−1(x) = 	. For a fixed d and st , . . . , s1
running over Fp , every element of Fp is attained as the image of ak−t−1(x) ⊕ C(x) on
exactly pt sets A j as 	 runs over Fp . Moreover, ak−t−1(x)⊕C(x) = c0 onU . With the same
argument as in Proposition 1, ak−t−1 ⊕ C(x) is a bent function obtained from the (normal)
bent partition �. ��
Remark 6 With MAGMA we confirmed that for some sporadic examples of bent functions
from F26 × F26 , into the (small) cyclic group Z8, obtained with Corollary 2 in [24], the
collection of the preimage sets do not form a bent partition. The converse of Theorem 6 does
hence not hold.

5 Bent partitions for odd characteristic

In characteristic 2, besides from the bent partitions obtained from (partial) spreads, we know
the class of partitions �1, �2 in Example 4. The partitions �1, �2 have been found in [26] by
using a property of Boolean bent functions that are connected with some Z2k -bent functions,
see [12,Corollary 1]. This property does in general not hold forZpk -bent functions, hence per
se, it is not clear that a generalization of �1, �2 for odd p exists. In this section we establish
generalizations for odd primes p. The proof with character sums is naturally more elaborate
than for the case p = 2.
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Let m, k be integers such that k divides m and gcd(pm − 1, pk + p − 1) = 1. Set
e = pk + p − 1, and let d be an integer such that de ≡ 1 mod pm − 1. For an element
s ∈ Fpm define

Us := {(x, sxe) : x ∈ Fpm }, U∗
s = Us \ {(0, 0)}, and U = {(0, y) : y ∈ Fpm }.

Then U , U∗
s , s ∈ Fpm , form a partition of Fpm × Fpm .

Similarly, for an element s ∈ Fpm we define

Vs := {(xds, x) : x ∈ Fpm }, V ∗
s = Vs \ {(0, 0)}, and V = {(x, 0) : x ∈ Fpm }.

For an element γ of Fpk , let then

A(γ ) =
⋃

s∈Fpm

Trmk (s)=γ

U∗
s and B(γ ) =

⋃

s∈Fpm

Trmk (s)=γ

V ∗
s .

With these definitions we obtain two partitions of Fpm × Fpm ,

�1 = {U ,A(γ ); γ ∈ Fpk }
�2 = {V ,B(γ ); γ ∈ Fpk }, (6)

into pk + 1 subsets, that have similar properties as spreads have. In fact, for k = m, both
partitions reduce to the Desarguesian spread.

Theorem 7 Let m, k be integers such that k divides m and gcd(pm − 1, pk + p − 1) = 1,
let e = pk + p − 1 and d such that de ≡ 1 mod pm − 1.

I. Let f be a p-ary function from Fpm × Fpm to Fp, for which every c ∈ Fp has the union
of exactly pk−1 of the setsA(γ ) (respectively B(γ )) in its preimage set. Further suppose
that f is constant c0 on U (respectively V ) for some c0 ∈ Fp. Then f is a regular p-ary
bent function. Conversely, every p-ary bent function that is constant on the elements of
�1 (respectively �2) is of this form.

II. Let F : Fpm × Fpm → Zpk be such that every c ∈ Zpk has exactly one of the sets
A(γ ) (respectively B(γ )) in its preimage set, and F(x) = c0 for all x ∈ U (respectively
x ∈ V ), for some c0 ∈ Zpk . Then F is a Zpk -bent function.

Proof I Wewill show that for any (α, β) ∈ Fpm ×Fpm \ {(0, 0)}we haveW f (α, β) = pmεcp

for some c depending on α and β. We use the notation γ (c) for elements γ for which A(γ )

lies in the preimage of c under f , i.e., we have

f −1(c) = {A(γ
(c)
1 ), . . . ,A(γ

(c)
pk−1)}
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for some γ
(c)
1 , . . . , γ

(c)
pk−1 ∈ Fpk . Then for (α, β) ∈ Fpm × Fpm we have the following

equalities.

W f (α, β) =
∑

(x,y)∈Fpm ×Fpm

ε
f (x,y)⊕Trm (αx⊕β y)
p =

∑

c∈Fp

∑

(x,y)∈ f −1(c)

ε
c⊕Trm (αx⊕β y)
p

=
∑

c∈Fp

∑

i=1,...,pk−1

∑

(x,y)∈A(γ
(c)
i )

ε
c⊕Trm (αx⊕β y)
p +

∑

(x,y)∈U
ε
c0⊕Trm (αx⊕β y)
p

=
∑

c∈Fp

∑

i=1,...,pk−1

∑

s∈Fpm

Trmk (s)=γ
(c)
i

∑

x∈F∗
pm

εc⊕Trm (αx⊕βsxe)
p +

∑

x∈Fpm

εc0⊕Trm (βx)
p

=
∑

c∈Fp

∑

i=1,...,pk−1

∑

s∈Fpm

Trmk (s)=γ
(c)
i

⎛

⎝
∑

x∈Fpm

εc⊕Trm (αx⊕βsxe)
p − εcp

⎞

⎠

+
∑

x∈Fpm

εc0⊕Trm (βx)
p

= −pk−1 pm−k
∑

c∈Fp

εcp +
∑

c∈Fp

εcp

∑

i=1,...,pk−1

∑

s∈Fpm

Trmk (s)=γ
(c)
i

∑

x∈Fpm

εTrm (αx⊕βsxe)
p

+
∑

x∈Fpm

εc0⊕Trm (βx)
p

=
∑

c∈Fp

εcp

∑

i=1,...,pk−1

∑

s∈Fpm

Trmk (s)=γ
(c)
i

∑

x∈Fpm

εTrm (αx⊕βsxe)
p +

∑

x∈Fpm

εc0⊕Trm (βx)
p (7)

Note that in the last equality we used the fact that
∑

c∈Fp
εcp = 0. Recall that

∑

x∈Fpm

εTrm (αx)
p =

{

0, if α �= 0
pm, if α = 0.

(8)

Hence for the case β = 0 (and hence α �= 0) by Eqs. (7) and (8) we haveW f (α, β) = pmε
c0
p .

Now we consider the case β �= 0. Let s(c)
i ∈ Fpm such that Trmk (s(c)

i ) = γ
(c)
i . Set

Z := {y ∈ Fpm | Trmk (y) = 0}. Then
{s ∈ Fpm | Trmk (s) = γ

(c)
i } = s(c)

i ⊕ Z.

Then by Eq. (8) we can write Eq. (7) as follows.

W f (α, β) =
∑

c∈Fp

∑

i=1,...,pk−1

∑

y∈Z

∑

x∈Fpm

ε
c⊕Trm (αx⊕β(s(c)i ⊕y)xe)
p

=
∑

c∈Fp

εcp

∑

x∈Fpm

εTrm (αx)
p

∑

i=1,...,pk−1

ε
Trm (βs(c)i xe)
p

∑

y∈Z
ε
Trm (βxe y)
p . (9)

Note that if βxe ∈ Fpk , then Trm(βxe y) = Trk(βxeTrmk (y)) = 0 as y ∈ Z. That is,
∑

y∈Z ε
Trm (βxe y)
p = pm−k . By Theorem 5.6 in [20], we know that the number of characters
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of Fpm annihilating Z is [Fpm : Z] = pk since |Z| = pm−k . That is, x ∈ Fpm such that

βxe /∈ Fpk results in a non-trivial character. In particular, we have
∑

y∈Z ε
Trm (βxe y)
p = 0 if

βxe /∈ Fpk . Therefore we can write Eq. (9) as

W f (α, β) = pm−k
∑

c∈Fp

εcp

∑

x∈Fpm

βxe∈Fpk

εTrm (αx)
p

∑

i=1,...,pk−1

ε
Trm (βxes(c)i )
p . (10)

Set y = βxe. Since de ≡ 1 mod (pm − 1) we have x = (β−1y)d . Set β̃ = Trmk (αβ−d).
Then by Eq. (10) we obtain the following equalities.

W f (α, β) = pm−k
∑

c∈Fp

εcp

∑

y∈Fpk

ε
Trm (αβ−d yd )
p

∑

i=1,...,pk−1

ε
Trm (ys(c)i )
p

= pm−k
∑

c∈Fp

εcp

∑

y∈Fpk

ε
Trk (β̃ yd )
p

∑

i=1,...,pk−1

ε
Trk (yγ

(c)
i )

p

= pm−k
∑

c∈Fp

εcp

∑

i=1,...,pk−1

∑

y∈Fpk

ε
Trk (β̃ yd⊕γ

(c)
i y)

p . (11)

Note that e ≡ p mod (pk − 1) and de ≡ 1 mod (pk − 1), i.e., dp ≡ 1 mod (pk − 1).
Then we have

∑

y∈Fpk

ε
Trk (β̃yd⊕γ

(c)
i y)

p =
∑

y∈Fpk

ε
Trk (β̃ p ydp⊕γ

(c)
i y)

p

=
∑

y∈Fpk

ε
Trk ((β̃ p⊕γ

(c)
i )y)

p =
{

pk, if γ
(c)
i = �β̃ p

0, otherwise.

Since there exists a uniqueγ
(c̃)
i ∈ Fpk such thatγ

(c̃)
i = �β̃ p , byEq. (11)wehaveW f (α, β) =

pmε c̃p , which gives the desired conclusion.
The fact that every bent function which is constant on the elements of �1 (respectively

�2) is of the form described as in the theorem, easily follows from the cardinalities of the
sets U and A j and Lemma 1.

I I follows from I together with Theorem 6. ��
We recall that the dual f ∗ of a regular bent function f is also bent. We have observed that
for f given as in Theorem 7,W f (α, β) = pmεc0 if β = 0, i.e., f ∗ is constant c0 on V . Also,
for (α, β) ∈ V ∗

s , the value f ∗(α, β) is uniquely determined by β̃ = Trmk (αβ−d). That is,

f ∗(α, β) = c if and only if β̃ p = �γ
(c)
i . By definition of Vs , we have β̃ = Trmk (s) = γ , and

hence f ∗ is constant on B(γ ). This implies that f ∗ is a bent function obtained by �2, which
gives the following corollary.

Corollary 4 The duals of the bent functions of �1 are in �2 and vice versa.

In [26] it is shown that for p = 2, the partitions �1, �2 do not come from any (partial)
spread. One may suspect that this also holds for odd primes.

The argument in [26] uses the known results on the algebraic degree of Boolean partial
spread bent functions, see [9,p. 96]: Every Boolean PS− bent function fromV

(2)
2m toF2 attains

the maximal possible algebraic degree m. Moreover, a Boolean PS+ bent function can have
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algebraic degree smaller than m, only if the corresponding partial spread with 2m−1 + 1
subspaces cannot be extended to a larger partial spread. An example is the quadratic bent
function, see [9,Theorem 6.3.12].

For an explicit argument for �1, �2 when p is odd, we first have to show a p-ary version
for the algebraic degree result for partial spread bent functions. As it is shown in [13], a
p-ary bent functions f from V

(p)
n to Fp can have algebraic degree at most n(p− 1)/2 if f is

weakly regular, the algebraic degree of non-weakly regular bent functions is upper bounded
by n(p − 1)/2 + 1 (the only yet known examples attaining this bound are ternary bent
functions in odd dimension n, see [3, 4]). The following theorem shows that differently from
p = 2, all p-ary partial spread bent functions (without the exception) do attain the maximal
possible algebraic degree.

Theorem 8 Let p be an odd prime, n = 2m an even integer, and let f : V(p)
n → Fp be a

partial spread bent function. Then f has algebraic degree deg( f ) = (p − 1)m.

Proof Without loss of generality we consider V(p)
n = F

n
p and f (0, . . . , 0) = 0. Let U be a

subspace of the spread such that f (x1, . . . , xn) = c on U \ {(0, . . . , 0)} for some nonzero
c ∈ Fp . Note that differently from the case of a PS+ bent function when p = 2, such a
subspace always exists. By a coordinate transformation A of Fn

p , we have

A(U ) = {(α1, . . . , αm, 0 . . . , 0)} = F
m
p × {(0, . . . , 0)} =: H

Set g = f ◦ A−1. Then g(x1, . . . , xn) = c on H \ {(0, . . . , 0)}. Set
g̃(x1, . . . , xm) := g(x1, . . . , xm, 0, . . . , 0).

Note that deg( f ) = deg(g) ≥ deg(g̃). Hence, it is enough to observe that deg(g̃) = (p−1)m.
By Lagrange interpolation, we can write

g̃(x1, . . . , xm) =
∑

(α1,...,αm )∈Fmp
g̃(α1, . . . , αm)

m
∏

i=0

(

1 − (xi − αi )
p−1) . (12)

Since g̃(0, . . . , 0) = 0 and g̃(x1, . . . , xm) = c on H \ {(0, . . . , 0)}, Eq. (12) becomes

g̃(x1, . . . , xm) =
∑

(α1,...,αm )∈Fmp \{(0,...,0)}

m
∏

i=0

c
(

1 − (xi − αi )
p−1)

= (pm − 1)x p−1
1 · · · x p−1

m + h(x1, . . . , xm)

for some h ∈ Fp[x1, . . . , xm] of degree less than (p − 1)m. Hence g̃ has algebraic degree
(p − 1)m. Therefore f has algebraic degree at least (p − 1)m. Since every partial spread
bent function is a regular bent function, see [21], f has algebraic degree at most (p − 1)m,
which shows the desired result. ��
Remark 7 The proof of Theorem 8 also applies for p = 2. Solely for a Boolean PS+ bent
function the existence of a subspace with the required properties is only guaranteed if the
partial spread of 2n−1 + 1 subspaces, which defines the function, is extendable to a larger
partial spread.

Lemma 3 Let m, k be integers such that k divides m and gcd(pm − 1, pk + p − 1) = 1 and
set e = pk + p − 1. Then f (x, y) : Fpm × Fpm → Fp defined by f (x, y) = Trm1 (αx−e y),
for a nonzero α ∈ Fpk , is a bent function obtained from the normal bent partition �1 =
{U ,A(γ ); γ ∈ Fpk } defined by Eq. (6).
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Proof For any nonzero (x, y) ∈ Us = {(x, sxe) : x ∈ Fpm }, we have
f (x, y) = Trm1 (αx−e y) = Trm1 (αx−esxe) = Trm1 (sα) = Trk1(Tr

m
k (s)α) = Trk1(γ α),

where Us ∈ A(γ ). Also, for (x, y) ∈ U = {(0, y) : y ∈ Fpm }, we have f (x, y) = 0.
Consequently, f is constant on each element of �1. Since α �= 0 and γ runs over Fpk , there
are exactly pk−1 elementsA(γ ) such that f (x, y) = i for all i ∈ Fp . Therefore, by Theorem
7, f is a bent function obtained from �1. ��
Similarly, one can observe that f (x, y) : Fpm × Fpm → Fp defined by f (x, y) =
Trm1 (αxy−d), for a nonzero α ∈ Fpk and de ≡ 1 mod (pm − 1), is a bent function obtained
from the bent partition �2 = {V ,B(γ ); γ ∈ Fpk } defined by Eq. (6).

Proposition 2 The function f (x, y) = Trm(αx−e y) given in Lemma 3 is not a function
obtained from a partial spread.

Proof By Theorem 8, it is enough to show that the degree of f is less than (p − 1)m. We
have the following equalities:

−e = pm − pk − p = p(pk−1 − 1) + pk(pm−k − 2)

= p
(

(p − 1) + · · · + (p − 1)pk−2
)

+ pk
(

(p − 2) + (p − 1)p + · · · + (p − 1)pm−k−1
)

= (p − 1)p + · · · + (p − 1)pk−1 + (p − 2)pk + (p − 1)pk+1 · · · + (p − 1)pm−1.

(13)

Hence by Eq. (13), the degree of x−e is equal to

(p − 1)(k − 1) + p − 2 + (p − 1)(m − k − 1) = (p − 1)(m − 2) + (p − 2).

Consequently, the degree of x−e y is equal to (p − 1)(m − 1), which gives the desired
conclusion. ��

6 Difference set partitions

Boolean bent functions are in one-to-one correspondence with difference sets in the elemen-
tary abelian 2-group. Let us first recall the definition of a difference set in a finite group A.

Definition 3 Let A be a finite group of order v and let D be a subset of A. Then D is called
a (v, k, λ)-difference set in A if every nonzero element of A can be written as a difference
of two elements in D in exactly λ ways.

As is well known, see [9], a Boolean function f : V(2)
n → F2 is bent if and only if the

support of f , supp( f ) = {x ∈ V
(2)
n : f (x) = 1}, is a (2n, 2n−1 ± 2n/2−1, 2n−1 ± 2n/2−2)-

difference set inV(2)
n , a so-calledHadamard difference set. By a result in [22], such difference

sets are the only (nontrivial) difference sets in the elementary abelian 2-group.
With this connection between Boolean bent functions and difference sets, with bent parti-

tions of V(2)
n one equivalently can generate a large variety of difference sets. This motivates

the definition of a difference set partition, which can be seen as a generalization of a difference
set.
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Definition 4 Let A be an abelian group of order v and let
 be a partition of A into K subsets.
Then 
 is called a (v, K , d)-difference set partition of A if every union of d subsets of 
 is
a difference set of A.

Note that then difference sets are exactly the (v, 2, 1)-difference set partitions of A (the set
complement of a (v, k, λ)-difference set is a (v, v − k, v − 2k + λ)-difference set).

Clearly, in elementary abelian 2-groups, the difference set partitions are exactly the bent
partitions (we do not consider the trivial difference sets—the empty set, setswith one element,
and their complementary sets). We remark that we can interpret a Boolean bent function f
as a trivial bent partition of V(2)

n into two sets, the support of f , and its complement (both
Hadamard difference sets). Our nontrivial Examples 1–4 are difference set partitions of V(2)

n

with parameters (v, K , d) = (2n, 2m, 2m−1) respectively (v, K , d) = (2n, 2k, 2k−1). Which
groups allow nontrivial difference set partitions, we find an interesting question.

Remark 8 Depending on necessities, one may consider refined definitions of difference set
partitions. For instance, for a normal bent partition {U , A1, . . . , AK } of V(2)

n , half of the sets
A j with or without U form a difference set.

7 Perspectives

Having similar properties as spreads, bent partitions, which we introduced in this article,
are powerful objects for the construction of bent functions. We showed that with a (normal)
bent partition of V(p)

n of depth pk , we do not only obtain Boolean respectively p-ary bent
functions and vectorial bent functions, but also bent functions fromV

(p)
n into the cyclic group

Zpk .
Classes of bent partitions, which are different from (partial) spreads have been presented in

[26] for characteristic 2, and in this article for arbitrary characteristic p. These bent partitions
reduce to the Desarguesian spread in some special case, but in general yield several different
ones. Using group theoretical arguments, it is shown in [14] (see also Remark 4 in [15]),
that the number of pairwise inequivalent PSap bent functions (see [9]), which one can obtain

with the Desarguesian spread of V(p)
n , grows exponentially with n, more precisely is lower

bounded by
(
pm + 1

pm−1

)/

2m(pm + 1)pm(pm − 1)2. (14)

It is an interesting question, whether one can obtain a bound similar to (14) for the bent
partitions �1, �2, generalizations of the Desarguesian spread. A generalization of the argu-
mentation in [14] to �1, �2 is not at all obvious.

We believe that there is a variety of bent partitions, also besides from the partitions �1, �2

for different divisors k of m, and that there is also considerable potential for future research
on general properties of these powerful objects. We pointed to several open questions on bent
partitions� = {A1, . . . , AK } and normal bent partitions �̄ = {U , A1, . . . , AK } ofV(p)

n (e.g.
in Remarks 2 and 3), which we summarize below.

– Is K always a power of p?
– Do bent partitions exist with |A1| < |Ai |, 2 ≤ i ≤ K ?
– Do bent partitions exist which are not coming from a normal bent partition (bent partitions

with either |A1| < |Ai |, 2 ≤ i ≤ K , orwith a larger A1,whichdoes not contain a subspace
U of dimension n/2)?
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– Do normal bent partitions always yield regular bent functions, or can there be normal
bent partitions that generate non-weakly regular bent functions?

– Improve the bounds for K , |A j |. One may assume that the parameters we see for bent
partitions from spreads are the best possible (the largest possible K , hence the smallest
value for |A j |). If so, can only bent partitions from spreads achieve these values?
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