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Abstract

In this paper, we propose four policies to serve price and lead-time sensitive cus-

tomers with a single type of product produced in an M/GI/1 type make-to-stock

queueing system. The policies are developed to observe certain principles of fairness:

if a customer is quoted a longer lead-time, she must be charged a lower price and a

significant proportion of the deliveries have to be made during the quoted lead times.

Although handling non-exponential service times in this setting presents difficulties,

our analysis of the proposed policies is exact. Two of the policies operate with static

prices, while one of the two dynamic pricing policies also quotes dynamic lead times. By

construction of the policies, we show that the dynamic pricing policies are more prof-

itable. Numerical examples bring additional light by showing that in small markets

with oversensitive customers, dynamic policies can be profitable while static pricing

policies can fail. In a larger market, a simple dynamic policy charging two prices de-

pending on the stock availability can be a reasonable compromise. Dynamic policies

tend to suffer less against high production time variability as well.

Keywords and Phrases: queueing; make-to-stock queues; pricing; lead-time quo-

tation; service time variability



1 Introduction

In markets that are getting more competitive everyday, in order to increase profitability,

companies are obliged to make offers that should adjust to changing circumstances. Dynamic

pricing and lead-time quotation are well-established responsive tools to this end (see e.g.,

Webster, 2002, Çelik and Maglaras, 2008, Zhao, Stecke, and Prasad, 2012). Dynamic pricing

has a long and rich history of application in the airline or hotel industries, or for managing

inventory of items sold over a finite time horizon (see, e.g., Bitran and Caldentey, 2003, for

an overview). Employing dynamic pricing policies for items that are replenished regularly

is also not new (see reviews by Yano and Gilbert, 2002 and Elmaghraby and Keskinocak,

2003). While in a setting with non-renewable capacity customers would find it rational that

different prices be charged at different points in time over the finite horizon, in a setting

with renewable goods, customers would prefer companies that treat them fairly such as by

charging customers in identical situation the same price or offering lower prices when service

level gets lower for them.

In this paper, our goal is to characterize fair dynamic pricing policies and contrast them

with fair static pricing policies. This helps us explore which policy is more profitable and

practical to apply with different market and customer profiles. To do this, we consider

a producer of a single type of item and model its production and inventory system by a

make-to-stock queue where demand is generated by a Poisson arrival process that has state-

dependent rates. The company can vary the price depending on the amount of work-in

progress and, if backlogging is considered, can announce a lead-time as well. The demand

rate is assumed to be a function of the offered price and – when quoted – the lead-time.

We assume that the company pays tardiness costs when the delivery occurs after the quoted

lead-time (see, Savaşaneril, Griffin, and Keskinocak, 2010, and the references therein for

examples where this cost is incurred). Yet, one expects reliable quotes from a fair company

so that in the long run a high proportion of deliveries is made within these quoted lead

times. To consider the impact of production time variability, we assume that production
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times have general distributions. This gives us Mn/GI/1 type make-to-stock queues as the

underlying building blocks. Our major contribution is to design four policies, two of them

operating with static prices, and the other two varying prices dynamically. One policy in

the latter group quotes lead times dynamically as well. Characterizing the optimal dynamic

pricing and lead-time quotation policy in this setting is not tractable as discussed in Section

3. With numerical examples we compare these four policies and we are able to show that in

smaller markets, charging prices and quoting lead times dynamically should be considered,

whereas in larger markets a simpler policy charging a high/low price when there is stock/no

stock can be employed as a reasonable compromise. Dynamic policies could be the only

way to make profit when customers are very sensitive to price and delay. We also glean

from the numerical examples that being fair does not decrease profitability significantly and

the dynamic policies are, on average, more resilient against the worsening impact of the

production time variability.

In the literature, Naor (1969), Mendelson (1985), and Dewan and Mendelson (1990) are

examples to those who obtain the optimal static price in delay systems to control arrival rates.

Low (1974) designs a dynamic pricing scheme by choosing optimal prices from a given set of

prices. He shows that the optimal price to charge is nondecreasing in the number of customers

in the queueing system. In make-to-stock queues using dynamic pricing schemes, in case of

lost sales, Li (1988) assumes that the customer arrival/demand rate is a continuous function

of the price and shows that the base-stock policy is optimal, and the optimal sequence of

prices is nonincreasing in inventory level. Gayon et al. (2009) extend this model letting

demand depend on the state of the external environment. They observe that if demand does

not depend on the state of the external environment, the optimal dynamic pricing policy

results in modest improvements against optimal static pricing. In our study, if lost sales is

considered, all customers arriving when there is stock need to be charged the same price in

order to be fair. The decision variables for this static pricing policy are the optimal base-

stock to keep and the optimal price to charge making use of the function that relates demand

rate to price.

2



When backlogging is permitted, Chen, Feng, and Ou (2006) in the M/M/1 queue, and

Chen, Chen, and Pang (2011) in the M/Ek/1 queue employ a Markov decision process

approach and show that the base-stock policy together with a price-switch policy is optimal.

When the number of production orders surpasses a higher threshold a higher price is charged.

This way, the customer arrival rate and the delay related penalty costs incurred get lower.

Chen and Frank (2001) provide similar discussions on how listing prices non-decreasing in

the length of production order queue helps lower the frequency of penalty payments. These

policies are not applicable in the problem we study: if a customer arriving when the order

queue is longer ends up waiting for delivery, she should be charged a lower price to compensate

for the lower service level (since she has to wait) than a customer that is served immediately

when there is stock. This idea is frequently used in the construction industry. A customer

pays less if she is purchasing a house under construction or in the planning stage than another

customer who buys a brand-new home in stock. Or a customer may have to pay more if

she wants an expedited delivery in other settings. In cases of backlogging, the policies we

propose quote a reliable lead-time estimate. The length of the lead-time, which may depend

on the order queue length, is what lowers the demand rate when the inventory is out of stock.

The idea of using sojourn time distribution of an order in the M/M/1 queue to quote the

lead-time is proposed by Dellaert (1991). We make use of the distribution of the sojourn time

in the M/GI/1 setting for two policies that quote the same lead-time to all backlogged cus-

tomers. Duenyas and Hopp (1995) show that the optimal lead-time to quote in the M/M/1

make-to-order system increases in the order queue size. Savaşaneril, Griffin, and Keskinocak

consider dynamic lead-time quotation allowing order rejection when the number of pending

orders gets critical in an M/M/1 make-to-stock queue. They show that the optimal quoted

lead-time increases in the number of pending orders. Kahveciog̃lu and Balcıog̃lu (2016) adapt

their problem setting to the M/GI/1 queue and propose two policies of dynamic lead-time

quotation. In both studies, the price is fixed and different customer responses to the quoted-

lead times change the arrival rate. Companies are not assumed to provide reliable lead-time

estimates: Implicitly assuming that the customers are fine with this, companies can quote
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zero for lead-time if it is more profitable to sell than paying penalty costs. In our study,

whether a single lead-time is quoted for all backlogged customers or the quotation is done

depending on the order queue size that the arrival sees, we stipulate that a certain proportion

of deliveries need be made within the quoted lead times.

Palaka, Erlebacher, and Kropp (1998) assume that the Poisson demand decreases linearly

in price and lead-time in an M/M/1 type make-to-order queue. They design their problem

to find the optimal static price and the single lead-time to announce while satisfying that a

desired proportion of deliveries be made within the lead-time. While using the same linear

demand function, Ray and Jewkes (2004) also consider that the price is dependent on the

lead-time to capture the fact that a higher price be charged for shorter lead times. They, then,

solve for the optimal lead-time to announce everyone, which in return, yields the optimal

static price and the production capacity as well. Hammami, Frein, and Albana (2020)

introduce the concept of rejecting customers when the number of orders reaches a critical

level while optimizing the static price and lead-time in a make-to-order setting. In our study,

we do not consider production capacity as a decision variable while in the literature, there

are studies such as Webster, Boyacı and Ray (2003), Pekgün, Griffin, and Keskinocak (2008),

Zhao, Stecke, and Prasad, that consider it to respond to market changes or meet the lead-time

service constraint. Pekgün, Griffin, and Keskinocak show the inefficiencies when pricing and

lead-time quotation decisions are made by separate departments. Boyacı and Ray consider

a regular and express delivery option for a product and study how prices for both delivery

types and lead-time for the express delivery option are determined. All these studies use

the linear demand model as a model assumption, whereas we do not have that restriction

although in our numerical examples we employ the linear model due to its popularity in the

literature. There are also studies that consider different products allowing non-exponential

distributions for the interarrival and service times. Çelik and Maglaras study a multi-class

Mn/GI/1 type make-to-order queue allowing orders to be expedited to meet the lead times.

Feng and Zhang (2017) assume renewal demand and Phase-type service times in a make-to-

order setting and explore pricing and lead-time quotation considering customer differences.
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Zhao, Stecke, and Prasad compare two modes, one offering a single price and lead-time,

and another mode with a menu of lead times and prices and observe that customer and

production characteristics are influential to decide on which mode should be preferred.

In our study, we consider a single type of customer whose demand for a single type of item

is sensitive to both price and delay. There is a fixed unit time cost that is assumed to capture

all the facility running, machinery maintaining, labor, and raw material inventory costs. This

cost, together with the inventory holding cost for finished items and the penalty cost for late

deliveries, makes the major contribution to the possibility that the proposed policies can

turn unprofitable when revenues fall short of costs. All the proposed policies operate in

the steady-state, thus, we need to compute the steady-state distribution of the number of

pending orders in the Mn/GI/1/ queue for which we employ the algorithm by Yang (1994)

for its speed. We refer the interested reader also to Abouee-Mehrizi and Baron (2016) and

Economou and Manou (2015) for other alternatives. According to the fairness principles

outlined in Section 2, if a static price is charged and inventory is kept, one should operate in

a make-to-stock regime with lost sales as we do in Section 3.1. A make-to-order regime with

static price studied in Section 3.2 stipulates a single lead-time to be quoted everyone. The

two dynamic pricing policies operate on two arrival rates, one for when there is stock, the

other for when customers are backlogged. The simplest dynamic pricing policy, in Section

3.3, announces one lead-time to all backlogged customers and charges two prices: one to

customers who are served directly from stock, a lower price to the backlogged customers. A

more refined policy, in Section 3.4, announces the lead-time based on the number of orders a

backlogged customer sees upon arrival. This policy also limits the total number of backlogged

customers to increase the profit. The optimization for the base-stock level, the maximum

number of backlogged customers, and prices is performed by basically searching over arrival

rate(s). With the arrival rate(s) in hand, by numerically inverting the Laplace transform

(LT) of the sojourn time of an order, we first search for the lead-time(s) that satisfy a given

probability of delivery during the quoted lead-time(s). With the lead-time(s) determined,

one obtains the corresponding price(s).
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The numerical examples presented in Section 4 following this optimization procedure

show the superiority of the refined dynamic pricing policy, especially in a smaller market

with customers very sensitive to price and delay. These cases could be examples for when a

company can survive only with dynamic policies. In fact, we see that make-to-order regimes

may not be a viable alternative, especially if production time variability cannot be reduced.

In addition to decreasing production time variability, if customer sensitivity to delay can be

decreased by producing high quality items and sustaining good customer relations, we see

that proposed policies perform much better.

The rest of the paper is organized as follows. In Section 2, we present the problem

analyzed. We discuss the proposed policies in Section 3 and present our numerical examples

in Section 4. Section 5 is for the concluding remarks and possible future research questions.

2 The Mn/GI/1 Queue with Price and Lead-Time Quo-

tations

In this section, we consider a manufacturer producing a single type of item whose underlying

production system is modeled as a make-to-stock queue. Production is controlled by a base-

stock policy: it stops when the continuously reviewed inventory level reaches the base-stock

level S and starts as soon as the inventory level decreases to S−1. We assume that customers

arrive one at a time. If there is stock, depending on the selling price an arriving customer

may buy one item right away. If there is no stock, considering also the lead-time quoted, she

may place an order, and consequently becomes a backlogged customer. Those who do not

place an order – whether when there is stock or not – are simply lost. We assume that after

placing it a backlogged customer never cancels her order and she eventually receives the item

produced for her. A backlogged customer can be monetarily compensated for if the item

is delivered beyond the quoted lead-time. The system does not incur any cost due to lost

customers, however, there is an expected cost of K per unit time, which possibly includes the
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labor, the facility maintenance, and the material costs, that has to be paid for independent

of the production status. To cover K, one would expect that the company cannot simply

reject arriving customers (by posting extremely high prices or tendering unacceptably long

lead times) and would try to attract customers while trading off the inventory holding and

the late delivery/tardiness costs against the revenue to be accrued from a new customer.

Thus, for each item sold or ordered, a production order is created. In the rest of the

paper, we refer to customers buying directly from the stock or placing orders as “customers”

and production orders as “orders”. Let N(t), denote the number of (production) orders

present at time t in the single server queueing system modeling the production facility. N(t)

gives the shortfall from the base-stock level S. This implies that when N(t) ≤ S, the

inventory carries S − N(t) units and when N(t) > S, the system has N(t) − S backlogged

customers. In this setting, we focus on policies under which the price to charge and the

lead-time to quote depend on the number of orders present, n, when a new customer arrives.

We assume that customers (and consequently orders) arrive according to a Poisson process

with a state-dependent arrival rate λn when there are n orders in the queueing system. Such

a customer generates Rn as the revenue. If there is no stock, a lead-time dn is quoted to

such a customer. If the produced item cannot be delivered during the quoted lead-time, a

tardiness cost, l, is incurred/paid to the customer per unit time for her waiting time in excess

of dn. Additionally, the system incurs a holding cost of h per unit inventory per unit time.

The production/service times are assumed to be independent and identically distributed

(i.i.d) random variables (r.v.s) with an LT denoted by b̃(θ), a mean and second moment of

β1 = 1/µ and β2, respectively and a variance of σ2 = β2 − β2
1 . Let also c2 = σ2/β2

1 denote

its squared-coefficient of variation.

The company maintains certain principles of fairness in alternative policies that can

be implemented because we assume customers to be homogeneous in their response to the

charged price and quoted lead times. Accordingly, the policies should satisfy the following

principles of fairness:
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1. The company charges the same price to customers if the same lead-time is quoted to

them.

2. The company does not charge a higher price to a customer that is quoted a longer

lead-time than the price charged to a customer to whom a shorter lead-time is quoted.

3. The company is socially responsible to deliver a disclosed proportion of deliveries within

the quoted lead-time.

As a result of Principle 1, for instance, the company does not charge different prices to

customers arriving when there is stock. These are the customers served with the highest

service level (experiencing zero delay) who would pay the highest price. Even if the non-zero

inventory level could be different when different customers arrive at different times, from the

perspectives of all these customers the conditions are the same because they are to receive

the item right away if they decide to buy it. Thus, the company can not risk losing customer

confidence by charging different prices, which would make the company appear as exploiting

some customers from time to time.

Therefore, the company decides on S ≥ 0 and the vectors d = [d0, d1, . . . , dS, dS+1, . . .]/R =

[R0, R1, . . . , RS, RS+1, . . .] where dn/Rn is the announced lead-time/charged price to a cus-

tomer when there are n orders in the system with dn = 0 for n = 0, 1, . . . , S − 1 and

R0 = R1 = . . . = RS−1 > RS ≥ RS+1 ≥ . . .. Assuming that the system is stable, for given

S, d, and R with the steady-state probability of having n orders in the system, namely

p(n) = P (N = n), the expected profit per unit time is

P (S,R,d) = E[RV ]− E[CH ]− E[CD]−K,

=
∞∑
n=0

λnRnp(n)− h
S−1∑
n=0

(S − n)p(n)− l
∞∑
n=S

λnp(n)Ln(dn)−K, (1)

subject to

P (Tn+1 ≤ dn) ≈ α, n = S, . . . . (2)

In Eq. (1), Ln(dn) is the expected waiting time in excess of dn of a customer that accepts

the quoted lead-time dn. In Eq. (2), Tn+1 is the r.v. showing the elapsed time from the
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moment she places this order until she receives the finished item (the subscript referring to

the (n+ 1)st order that will be sent to the make-to-stock queue due to this customer) and α

is the proportion of deliveries that should be done within the quoted lead times. Then, with

gn+1(·), the probability density function (PDF) of Tn+1, we have

Ln(dn) =

ˆ ∞
dn

(x− dn)gn+1(x)dx. (3)

Observe that the first term on the RHS of Eq. (1) is the expected revenue per unit time

(E[RV ]) whereas the second and third terms are the expected inventory holding (E[CH ])

and delay penalty cost rates (E[CD]), respectively, while the last item is the expected cost

rate that has to be incurred even if no item is produced.

Alternative policies introduced in Section 3 could yield different E[RV ] values. To be

able to compare their profitability, we employ the following profit margin as the criterion in

the numerical study in Section 4:

PM =
P (S,R,d)

E[RV ]
. (4)

Let g̃n+1(θ) denote the LT of Tn+1 which changes according to the policy implemented as

discussed in Section 3. In the remainder of the paper, for various computations, we need to

numerically invert a given LT k̃(θ) and evaluate at d which will be denoted by L−1{k̃(θ)}(d).

Following Kahveciog̃lu and Balcıog̃lu (2016), Eq. (3) can be rewritten as

Ln(dn) =

ˆ ∞
dn

xgn+1(x)dx− dnGn+1(dn), (5)

where Gn+1(·) is the complementary distribution function of Tn+1 with Gn+1(dn) = L−1{(1−

g̃n+1(θ))/θ)}(dn) ≈ (1− α) and finally we arrive at

Ln(dn) = E[Tn+1] + L−1{
g̃

′
n+1(θ)

θ
}(dn)− dnL−1{

1− g̃n+1(θ)

θ
}(dn), (6)

where g̃
′
n+1(θ) is the derivative of g̃n+1(θ).

In the next section, we discuss four fair policies that such a company can consider for

profit maximization.
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3 Alternative Fair Policies

In this section, we propose four fair policies, the first two operating under the static pricing

scheme, and the other two with dynamic pricing strategies. We assume that the customer

arrival rate is a continuous function of the charged price and the quoted lead-time. Here

we have to distinguish the different natures of these two variables: While the price is an

independent decision variable, which affects the arrival rate, the quoted lead-time depends

on the arrival process. Consider an M/GI/1 queue where the linear λ(R, d) = λ0−aR− bdα

function is capturing the demand as a function of the price and the lead-time, where λ0, a,

and b are some constants. Choosing the price R and the lead-time dα at our will gives us

(as long as it is non-negative) an arrival rate but when the statistics with this arrival rate

are computed, we may not see that α portion of the customers would really spend less than

dα time units in this M/GI/1 queueing system. Thus, under each policy, for each n (the

number of orders) in the underlying queueing system, first an arrival process is considered,

which consists of λk, k = 0, . . . , n, and the corresponding lead-time dn is computed. With

λn and dn for n, now in hand, the price Rn (which has to be non-negative) is determined as

Rn = (λ0 − λn − bdα)/a.

This is how a decision maker tries to determine the optimal prices to charge together

with the optimal base-stock level: In Section 2, we discuss that, to observe fairness, there

has to be a single price to charge when there is stock, which results in the same customer

arrival rate for all n < S. In all policies, the price charged when there is stock should be the

highest since the highest service level (zero delay in product delivery) is offered to customers.

Thus, we denote the price and arrival rate when there is stock by RH and λH , respectively,

where the subscript H indicates the high price charged (or the high service level provided).

Observe that we do not have a closed-form, differentiable function of profit margin in Eq.

(4) (neither do we have a differentiable profit rate function in Eq. 1) from which we can

obtain the optimal parameters. Instead, these are “approximately” found via searching over

profit margin values computed for some discrete values of parameters such as the arrival rate
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and the base-stock level. For instance, the objective can be maximizing the profit margin

in Eq. (8) of a system that does not allow any backlogs. Then, for each (λH , S) couple to

consider, profit margins are computed as outlined in the SMTS Algorithm in Section 3.1.

Then, among the computed values we identify the maximum profit margin and designate

the parameters yielding it as the optimal λ∗H , R
∗
H , S

∗.

The problem becomes more challenging when backlogging is allowed in the absence of

stock: we end up facing practically an endless list of possible arrival rates to choose from

for each n, n ≥ S if the quoted dn depends on n and all λk’s, k = 0, . . . , n − 1 as well. For

instance, if there are M possible values to consider for each λn, for a system allowing at most

N backlogs, we have to search for the “approximate” optimal solution over MN+1 arrival rate

configurations of (λ0, λ1, . . . , λN). Thus, we cannot determine the optimal parameters of a

policy allowing different arrival rates for each n, n ≥ S. Consequently, we cannot characterize

the optimal policy or determine its parameters for our problem. Therefore, we restrict our

attention to policies that would keep the same arrival rate λL for all n when there is no

stock, which would lead us to take into account fewer arrival rate configurations of the form

(λH , λL) while searching for the optimum. As we demonstrate later on, with fixed λL, it is

still possible to quote different dn and consequently charge different Rn for different n ≥ S.

3.1 The SMTS Policy: The Static Pricing Policy in the Mn/GI/1

Make-To-Stock Queue

If all customers are going to be charged the same price in a system that keeps stock, according

to the fairness principles outlined in Section 2, the system should not be quoting lead times,

which would otherwise necessitate charging lower prices to customers arriving when there is

no stock. This implies that customers arriving when out of stock are lost. Given S, λH , and

RH , Eqs. (1) and (4) become
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P (S) = λHRH

S−1∑
n=0

p(n)− h
S−1∑
n=0

(S − n)p(n)−K, (7)

PMSMTS =
E[RV ]− E[CH ]−K

E[RV ]
=

P (S)

λHRH

∑S−1
n=0 p(n)

, (8)

respectively, with no costs arising due to tardiness. As a service level measure, we can also

compute the proportion of customers that can be served:

ζ =
S−1∑
n=0

p(n).

We employ the following SMTS (Static price policy in a Make-To-Stock system: the

capital letters in bold yield the acronym) Algorithm in Section 4 to optimize the base-stock

level and the arrival rate (and the price to charge). In this algorithm and the ones to be

presented in Sections 3.2-3.4, the parameter values to consider are varied over appropriately

chosen ranges. For instance, the STMS Algorithm uses two loops: starting from a minimum

λHmin the external loop increments λH by some ∆ in each round until a maximum λHmax is

attained. For a λH provided by the external loop, starting from a base-stock level of 1, the

internal loop increments S by 1 until an Smax is reached. To shorten the description of the

algorithms, therefore, we skip outlining the basic loops and instead, we present what the

algorithm does for a given parameter instance. At the end, each algorithm identifies the

instance that maximizes the profit margin which in return yield the optimal parameters.

The SMTS Algorithm: This algorithm explains how the optimal SMTS policy parameter,

λ∗H (with the corresponding R∗H) and S∗ are found.

Main Step For the (S, λH) values considered: Employ the algorithm provided by Yang

to obtain the steady-state probabilities of having n production orders (p(n)) in the

underlying Mn/GI/1 queue. Using λH obtain the corresponding RH from the λ(R, d)

function. Compute and record PMSMTS from Eqs.(7) and (8) to be used in the Final

Step.

Final Step Among all the instances with positive P (S) values coming from the Main Step,

the one with the highest PMSMTS value gives the optimal instance and its parameters
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are the optimal λ∗H , R∗H , and S∗. If none of the instances yields a positive profit, the

SMTS policy is deemed not profitable/feasible.

3.2 The SMTO Policy: The Static Pricing Policy in the M/GI/1

Make-To-Order Queue

If no stock is kept, the system is a make-to-order system. If a single price is going to

be charged, according to the fairness principles, each customer should be quoted the same

lead-time dα. The random delivery time for an arbitrary customer is the system time of a

production order in the M/GI/1 queue denoted by W . Then, Eq. (2) becomes

P (W ≤ dα) ≈ α, (9)

for all customers. At the end of this section, we provide the SMTO Algorithm to obtain dα

satisfying the constraint provided above.

After dα is computed for λL, from the function relating the arrival rate to the price and

the lead-time, the corresponding price denoted by RL is computed. And Eqs. (1) and (4)

become

P (dα) = λL(RL − lL(dα))−K, (10)

PMSMTO =
E[RV ]− E[CD]−K

E[RV ]
=
P (dα)

λLRL

, (11)

respectively, with no costs arising due to holding stock. Eq. (3) turns into L(dα) =
´∞
d

(x−

dα)w(x)dx with w(x) denoting the probability density function of W for which the LT is

(e.g., Gross and Harris, 1998, p. 226)

w̃(θ) =
(1− λLβ1)θb̃(θ)
θ − λL(1− b̃(θ))

.

Consequently, from Eq. (6) we have

L(dα) = E[W ] + L−1{w̃
′
(θ)

θ
}(dα)− dαL−1{

1− w̃(θ)

θ
}(dα), (12)
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where w̃
′
(θ) is the first derivative of w̃(θ) and the mean delivery time E[W ], that is, the

mean sojourn time of an order in the M/GI/1 queue is (e.g., Kleinrock, 1975, p. 190)

E[W ] = β1 +
λL(1 + c2)β2

1

2(1− λLβ1)
.

Recall that β1 = 1/µ denotes the mean production time. Note that in the M/M/1 case, W

is exponentially distributed with rate µ−λL (e.g., Gross and Harris, 1998, p. 68). Thus, Eq.

(9) can be solved as a strict equality from which we obtain

dα =
− ln(1− α)

µ− λL
, (13)

and from Eq. (5), one arrives at

L(dα) =
1− α
µ− λL

. (14)

We employ the following SMTO (Static price policy in a Make-To-Order system: the

capital letters in bold are used to obtain the acronym) Algorithm in Section 4 to optimize

the arrival rate (with the due-date to quote and the price to charge):

The SMTO Algorithm: This algorithm explains how the optimal SMTO policy parameter

λ∗L and the corresponding d∗α and R∗L are found.

Main Step For the λL considered: Employ Sanajian and Balcıog̃lu (2009) to obtain the

steady-state probabilities of having n production orders (p(n)) in the underlyingM/GI/1

queue. Set LB=0 and UB=dmax, respectively, as the lower and upper limits for the

interval over which the following binary search is conducted to determine the dα value:

Step 1a Set dα = (LB + UB)/2. Using the numerical LT inversion technique of

Abate and Valkó (2004), invert L−1{w̃(θ)/θ}(dα) = P (W ≤ dα). If P (W ≤

dα) = α ± εα for some tolerance εα chosen, then dα is the lead-time to announce

(Instead of numerically inverting the LT, one can use Eq. 13 if the production

time is exponentially distributed). Go to Step 1c. Else go to Step 1b.

Step 1b If L−1{w̃(θ)/θ}(dn) = P (W ≤ dα) < α (implying that a longer lead-time is

needed), then set LB=dα and go to Step 1a. If L−1{w̃(θ)/θ}(dn) = P (W ≤ dα) >

α (implying that a shorter lead-time is needed), set UB=dα and go to Step 1a.
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Step 1c Using λL and dα coming from Step 1a, obtain RL from the λ(R, d) function

and go to Step 2.

Step 2 Compute and store PMSMTO using Eqs.(12) (or Eq. 14 for the exponential

production times), (10) and (11) to be compared in the Final Step (Employ the

numerical LT inversion technique of Abate and Valkó for computing Eq.12).

Final Step Among all the instances with positive P (dα) values coming from the Main Step,

the one with the highest PMSMTO value gives the optimal instance and its parameters

are the optimal λ∗L, R∗L, and d∗α. If none of the instances yields a positive profit, the

SMTO policy is deemed not feasible/profitable.

3.3 The SDP Policy: The Simple Dynamic Pricing Policy in the

Mn/GI/1 Make-To-Stock Queue

If a dynamic pricing policy is to be implemented in a make-to-stock system, the simplest

policy would be charging two prices: a high price RH , yielding an arrival rate of λH , when

there is stock and a low price RL, yielding an arrival rate of λL, when there is no stock. If the

same RL is to be charged when there is no stock, all backlogged customers must be quoted

the same lead-time dα. Given S, the two prices (s.t. RH > RL), and the corresponding

arrival rates (λH and λL), the following result from Eqs. (1) and (4):

P (S,R, dα) = λHRH

S−1∑
n=0

p(n) + λLRL

∞∑
n=S

p(n)

−h
S−1∑
n=0

(S − n)p(n)− lλL
∞∑
n=S

p(n)L(dα)−K, (15)

PMSDP =
E[RV ]− E[CH ]− E[CD]−K

E[RV ]
,

=
P (S,R, dα)

λHRH

∑S−1
n=0 p(n) + λLRL

∑∞
n=S p(n)

. (16)

Observe that a backlogged customer waits only for customers backlogged earlier to be

served. When all the backlogged customers are cleared, the system produces to stock. A
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customer (to be referred to as the exceptional backlogged customer whereas the others as the

regular backlogged customers) that arrives when there are exactly S(>0) production orders

waits only for the ongoing production to finish for a product to be handed over to her (since

S = 0 reduces the SDP Policy to the SMTO Policy, we do not consider this case again).

If production times are not exponential, this residual production time for an exceptional

backlogged customer is different in distribution from the production times for the regular

backlogged customers.

From Kerner (2008) we obtain the LT h̃n(θ) of the residual service time experienced by

a customer finding n orders upon arrival in the Mn/GI/1 make-to-stock queue operating

under the SDP Policy as

h̃n(θ) =
λn

θ − λn

(
b̃(λn)

1− h̃n−1(θ)
1− h̃n−1(λn)

− b̃(θ)

)
, n = 1, . . . , (17)

with h̃0(θ) = b̃(θ) and

λn =

 λH , for n = 1, . . . , S − 1,

λL, for n ≥ S.

Then, the exceptional backlogged customer finding S production orders upon arrival has

h̃S(θ) as the LT for the exceptional service time she experiences.

Following Kerner again, we employ the following recursive method

E[H1] =
β1

(1− b̃(λ1))
− 1

λ1
,

E[Hn] =
b̃(λn)

1− h̃n−1(λn)
E[Hn−1]−

1

λn
+ β1, n ≥ 2, (18)

from which we obtain E[HS], namely, the mean production time for the exceptional back-

logged customers.

By taking the second derivative of h̃n(θ) in Eq. (17) and substituting 0 for θ, we obtain

the following recursive formulae to compute the second moment of the residual service times
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as

E[H2
1 ] =

β2

(1− b̃(λ1))
− 2β1

λ1(1− b̃(λ1))
+

2

λ21
,

E[H2
n] = β2 +

b̃(λn)

1− h̃n−1(λn)

(
E[H2

n−1]−
2E[Hn−1]

λn

)
− 2β1

λn
+

2

λ2n
, n ≥ 2, (19)

to compute the second moment, E[H2
S], of the exceptional service time. Recall that β2 in

Eq. (19) denotes the second moment of the regular production time.

Now with h̃S(θ), E[HS], and E[H2
S] from Eqs. (17)-(19) in hand, characterizing the

exceptional first service time, we can consider an “exceptional”M/GI/1 queue with arrival

rate λL and a service time LT of b̃(θ) except for the customers initiating the busy cycle who

have an exceptional service time with an LT of h̃S(θ). Observe that the customers of this

queue are probabilistically equivalent to the backlogged customers in a system operating

under the SDP Policy. Then, the system time r.v. WE in the exceptional M/GI/1 queue is

the random delivery time of a product to a backlogged customer (exceptional or not) in the

SDP system. With this, Eq. (2) becomes

P (WE ≤ d) ≥ α, (20)

for all backlogged customers and Eq. (3) becomes L(d) =
´∞
d

(x − d)wE(x)dx where wE(x)

denotes the probability density function of WE for which the LT is provided by Welch (1964)

as

w̃E(θ) =
1− β1λL

1− λL(β1 − E[HS])

λL(h̃S(θ)− b̃(θ))− θh̃S(θ)

λL(1− b̃(θ))− θ
.

Consequently, from Eq. (6) we have

L(d) = E[WE] + L−1{w̃
′
E(θ)

θ
}(d)− dL−1{1− w̃E(θ)

θ
}(d)

where w̃
′
E(θ) is the first derivative of w̃E(θ) and the mean delivery time E[WE] is again

provided by Welch as

E[WE] =
λL(E[H2

S]− β2) + 2E[HS]

2(1− λLβ1 + λLE[HS])
+

λLβ2
2(1− λLβ1)

.
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Note that when production times are memoryless, that is, exponentially distributed, dα

and L(d) can be computed using Eqs. (13)-(14), respectively.

We employ the following SDP (Simple Dynamic Pricing policy in a make-to-stock system:

the capital letters in bold are used to obtain the acronym) Algorithm in Section 4 to optimize

the base-stock level and the arrival rates (with the due-date to quote and the prices to charge):

The SDP Algorithm: This algorithm explains how the optimal SDP policy parameters

S∗, λ∗H , λ∗L, and the corresponding d∗α, R∗H , R∗L are found.

Main Step For the (S, λH , λL) values considered: Employ the algorithm provided by Yang

to obtain the steady-state probabilities of having n production orders (p(n)) in the

underlying Mn/GI/1 queue. Using λH obtain the corresponding RH from the λ(R, d)

function. Use Steps 1 and 2 of the SMTO Algorithm replacing w̃(θ) by w̃E(θ) to obtain

dα, RL. With all the parameters determined compute PMSDP in Eq. (16).

Final Step Among all the instances with RH > RL and positive P (S,R, dα) values coming

from the Main Step, the one with the highest PMSDP value gives the optimal instance

and its parameters are the optimal S∗, λ∗H , λ∗L, R∗H , R∗L, and d∗α. If none of the instances

yields a positive profit, the SDP policy is deemed not feasible/profitable.

3.4 The RDP Policy: The Refined Dynamic Pricing Policy in the

Mn/GI/1 Make-To-Stock Queue

This policy classifies backlogged customers in different groups according to how many pro-

duction orders (n) they see upon arrival and announces a different lead-time dn to each group

with dn < dn+1 satisfying Eq. (2). According to the fairness principles, this also stipulates

RH > RS > . . . > RS+N−1 where N is the maximum number of customers to backlog. Then,

with the vectors d = [d0, d1, . . . , dS, dS+1, . . . , dS+N−1]/R = [R0, R1, . . . , RS, RS+1, . . . , RS+N−1]
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where dn = 0/Rn = RH for n = 0, 1, . . . , S − 1, Eq. (1) becomes

P (S,N ; R,d) = λHRH

S−1∑
n=0

p(n) + λL

S+N−1∑
n=S

Rnp(n)

−h
S−1∑
n=0

(S − n)p(n)− l
S+N−1∑
n=S

λnp(n)Ln(dn)−K, (21)

PMRDP =
E[RV ]− E[CH ]− E[CD]−K

E[RV ]
,

=
P (S,N ; R,d)

λHRH

∑S−1
n=0 p(n) + λL

∑N+S−1
n=S Rnp(n)

. (22)

Using the notation introduced in Section 2, for a customer finding n(= S, S + 1, . . . , S +

N − 1) production orders in the system, the random time for this customer to receive her

product, Tn+1, has the LT of g̃n+1(θ) given as

g̃n+1(θ) = h̃n(θ)̃b(θ)n−S, (23)

where h̃n(θ) is given in Eq. (17). Moreover, E[Tn+1] = E[Hn] + (n− S)β1 to be used in Eq.

(6) to compute Ln(dn) with E[Hn] given in Eq. (18).

We employ the following RDP (Refined Dynamic Pricing policy in a make-to-stock

system: the capital letters in bold are used to obtain the acronym) Algorithm in Section 4 to

optimize the base-stock level, the maximum number of customers to backlog and the arrival

rates (with the due-dates to quote and the prices to charge):

The RDP Algorithm: This algorithm explains how the optimal RDP policy parameters

S∗, λ∗H , λ∗L, and the corresponding vectors d∗, R∗ are found.

Main Step For the (S,N, λH , λL) values considered: Employ the algorithm provided by

Yang to obtain the steady-state probabilities of having n production orders (p(n)) in

the underlying Mn/GI/1 queue. Using λH obtain the corresponding RH from the

λ(R, d) function. For each n = S, . . . , S + N − 1 use Step 1 of the SMTO Algorithm

replacing w̃(θ) by g̃n+1(θ) given in Eq. (23) to obtain dn and Rn. With the due-date

and price vectors now in hand, compute PMRDP .
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Final Step Among all the instances withRH > RS > . . . > RS+N−1 and positive P (S,N ; R,d)

values coming from the Main Step, the one with the highest PMRDP value gives the op-

timal instance and its parameters are the optimal S∗, N∗ λ∗H , λ∗L, d∗, and R∗. If none of

the instances yields a positive profit, the RDP policy is deemed not feasible/profitable.

3.5 A Brief Comparison of the Proposed Policies

Before presenting the numerical study in the next section, what can we say about the relative

performances of the proposed policies? When it comes to the static pricing policies, in the

case of having extremely high holding cost rate together with a low tardiness penalty cost

rate, we can foresee that the SMTS policy cannot have a chance of feasibility whereas the

SMTO policy can turn out to be profitable. However, other than visualizing such extreme

cases, without conducting computations, we cannot foretell which policy yields a higher

profit margin.

We cannot also tell, without computations, which of the two dynamic pricing policies is

superior. Due to its ability of reducing the number of backlogs we may think that the RDP

policy can be superior, but we cannot show this merely with arguments. The different lead

times and prices determined for each backlogged customer that the RDP charges make an

easy comparison out of reach. We only have two results that can make pairwise comparison

between a dynamic pricing and a static pricing policy, which lead to a third result showing

that dynamic pricing policies are superior to static pricing policies.

Result 1 The SDP policy is superior to the SMTO policy. In other words,

PMSDP ≥ PMSMTO.

Result 1 follows from the construction of the policies: the SDP policy can always increase

RH to make λH = 0 and S = 0 if that leads to the best solution, which would reduce it
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to the SMTO policy. That is to say the SDP policy cannot perform worse than the SMTO

policy. On the other hand, due to the fairness principle, the SDP cannot increase RL beyond

RH , which would prevent it to yield λL = 0. This implies that the SDP policy cannot reduce

to the SMTS policy in the limit. Thus, we need computations to see which of the SDP and

SMTS policies is better.

The RDP policy can also charge an infinite RH to yield λH = 0 and S = 0 if it is more

profitable. However, it quotes different lead times for backlogged customers seeing different

number of orders upon arrival whereas the SMTO quotes one for all backlogged customers.

This prevents us to foresee how it can perform with respect to the SMTO policy without

making computations. Yet, the following result holds because the RDP can can choose to

have no backlog if that is more profitable, which in turn reduces it to the STMS policy.

Hence, the RDP cannot perform worse than the SMTS policy.

Result 2 The RDP policy is superior to the SMTS policy. In other words,

PMRDP ≥ PMSMTS.

As a direct consequence of Results 1 and 2, we have the following result:

Result 3 One of the dynamic pricing policies gives the highest profit margin. In other

words,

max{PMSDP , PMRDP} ≥ max{PMSMTO, PMSMTS}.

4 Numerical Experiment

In this section, we primarily investigate the relative performances of the policies proposed in

Section 3 via a numerical study. Recall that as stated in Result 3, one of the dynamic pricing

21



policies would give us the highest profit margin. However, we do not know how much these

profit margins would differ from one another, or in which settings the dynamic policies could

be more profitable. The numerical study can shed some light on answers for these questions.

It also helps us explore the impact of production time variability on the profitability of these

policies. Finally, we make a note of whether the profitability would change significantly if

fairness principles were ignored and one could charge a higher price to a customer that would

wait a longer delivery time than a customer who could reach the product immediately.

To this end, we consider the linear model λ(R, d) = λ0 − aR − bd to capture different

demand behaviors. Here λ0 > 0 shows the potential market size whereas coefficients a > 0

and b > 0 capture the customer demand sensitivity to price and delay in delivery. Recalling

that make-to-stock queues are just abstract representations of production/inventory systems,

the values we assign to λ0, a, and b (and the values for other parameters to be presented

shortly) do not correspond to factual data. Instead, we assign a high and a low value for

each parameter that appears in the linear demand function. Thus, higher λ0 implies a bigger

market whereas higher a/b indicates a higher customer sensitivity to increase in price/delay

in delivery. In the first four columns of Table 1, we list the eight different demand functions

considered for eight sets of numerical experiments. According to this, sets 1-4 (5-8) cover

the smaller (larger) market examples. In their own market segment, sets 1 and 5 (4 and 8)

are to capture the behavior of the customers who are the least (the most) sensitive to both

price and delay, etc.

To introduce the impact of production time variability, we consider different service time

distributions with unit mean (β1 = µ = 1), but different variances leading to different

squared-coefficient of variation, c2. For our numerical examples, we consider the following

three service time distributions, each presented with its density function LT:

1. The deterministic service time with c2 = 0 and the density function LT b̃(θ) = e−θ.

2. The exponential distribution with µ = 1, c2 = 1, and the density function LT

b̃(θ) =
µ

µ+ θ
.
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3. The 2-stage Hyperexponential (H2) distribution with µ1 = 4, µ2 = 0.6, p = 0.47, c2 = 2,

and the density function LT

b̃(θ) = p
µ1

µ1 + θ
+ (1− p) µ2

µ2 + θ
.

Recall that an H2 distribution is an exponential distribution with rate µ1 (µ2) with prob-

ability p (1-p). Since higher c2 indicates a more variable service time, the cases with H2

distribution would correspond to the most chaotic production facilities whereas the cases

with deterministic service times to the most organized and smooth ones.

In total with 8 different demand functions, 3 service time distributions, and 4 policies,

we have determined the optimal control parameters and PMs of 96 examples. These PMs

are listed in Table 1. In all examples, the proportion of backlogged customers receiving their

orders within the quoted lead-time is α = 0.9. The holding cost, penalty cost rates and K

are set as h = 4, l = 4 and K = 20, respectively. In all examples the highest average holding

cost per unit time is 6.77 (E[CH ] of the SMTS policy when service times are H2 r.v.s) while

the highest average tardiness cost rate is 0.61 (E[CD] of the SMTO policy when service times

are H2 r.v.s). These cost parameters prevent S +N from assuming large values that would,

otherwise, make the numerical LT inversion fail in the Main Step of The RDP Algorithm

while inverting g̃n+1(θ)/θ or g̃
′
n+1(θ)/θ as n increases to N + S − 1 to compute Eq. (6).

In the supplementary document (SD), Tables 1-8 list the optimal results for four policies

for three different service time distributions for data sets 1 to 8, respectively. For the RDP

policy, we present the vectors d and R in SD Table 9. Notice that the last rows in SD

Tables 1-8 are what appear in the corresponding rows of Table 1, which are the optimal

PMs. The empty cells, as in those for the SMTO and the SMTS policies for sets 3 an 4

when service times are H2 r.v.s, indicate that the corresponding policy did not generate a

positive profit, deeming it infeasible for that setting. Based on these results, we make the

following observations:

• As expected, increase in price (a) or delay sensitivity (b) decreases the PM . Higher

production time variability also lowers the PM . The larger market size (λ0), on the
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other hand, increases it.

• For each case (for a given demand set and a production time distribution), we see the

following holds:

PMRDP > PMSDP > max{PMSMTO, PMSMTS}.

Except for three cases (for sets 1, 3, and 7 when the production times are deterministic),

the SMTS policy yields higher PM than the SMTO policy. H2 production times for

sets 3 and 4 render both static pricing policies unprofitable. These cases also give the

lowest PMs for the dynamic policies.

• We define the following to capture the relative increase in PM when the SDP is used

instead of the best static pricing policy for that case (which cannot be computed for

sets 3 and 4 when the production times follow H2 distribution):

∆1 =
PMSDP −max{PMSMTO, PMSMTS}

max{PMSMTO, PMSMTS}
× 100.

Table 2 displays the statistics concerning ∆1. Although the PMs are higher in the

larger market examples, the SDP yields a larger relative increase in PM in the smaller

market. The lowest increases are seen for sets 2 and 6 (lower price, higher delay

sensitivity) when production times are H2 r.v.s. The highest increases are seen for sets

3 and 7 (higher price, lower delay sensitivity) when production times are Exponential

and H2 r.v.s, respectively (remember that we could not compute ∆1 for set 3 when

we have H2 production times). We see that the lowest and highest increases in ∆1 are

observed in cases where production times are not deterministic. And, we do not see a

regular pattern for the impact of production time variability on ∆1. In other words,

we fail to say that the SDP gets relatively more (or less) profitable when production

time variability increases.

• We define the following to capture the relative increase in PM when the RDP is used

instead of the SDP:

∆2 =
PMRDP − PMSDP

PMSDP

× 100.
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Table 3 displays the statistics concerning ∆2. We see that the relative advantage of

using the RDP instead of the SDP is higher in the smaller market. The lowest increases

are seen for sets 2 and 6 (lower price, higher delay sensitivity) when production times

are H2 r.v.s. The highest increases are seen for set 4 with determinist production times

and set 7 when production times are H2 r.v.s. We again fail to say that the RDP gets

relatively more (or less) profitable when production time variability increases.

• For each policy, the best performance is obtained when production times are determin-

istic. We compute how much the PM decreases when production times are exponential

or H2 r.v.s instead of being deterministic. For instance, for set 1, the PM decreases by

42.77% (from 38.20% to 21.86%) if service times are exponentially distributed instead

of being deterministic. Let ∆E and ∆H denote the mean reduction in PM for a given

policy when production times follow exponential and H2 distributions, respectively,

instead of having deterministic production times. Table 4 lists ∆E and ∆H for the four

policies studied. The least resilient policy against increase in production time variabil-

ity is the SMTO policy. Although ∆H = −22.25% for the SMTS policy appears better

than those for the dynamic policies, this is because we omit the infeasible cases in the

calculations (for this policy, those in data sets 3 and 4). These results agree with what

Kahveciog̃lu and Balcıog̃lu observe in another setting as dynamic policies mitigating

the worsening impact of production time variability better. Thus, we also recommend

dynamic policies if an immediate solution is not available to reduce the production

time variability.

• From the results presented in Tables 2 and 3, we can conclude that dynamic policies are

relatively more profitable in the smaller market. In the smaller market, the RDP should

be implemented for sure where customized service can be offered more conveniently.

Although the RDP is still the best policy, the SDP, due to its simplicity, can be

considered in the larger market given that it yields PMs closer to those of the RDP.

• Let ∆1 and ∆2 denote the mean values of ∆1 and ∆2 for each set, respectively, which

25



are presented in each row in Table 5. We see that, on average, dynamic policies yield

the highest relative increase in PM , when customers are price sensitive. These relative

increases are the highest when customers are also less delay sensitive. These obser-

vations roughly sketch the environment where dynamic policies become unavoidable.

If a company has competitors, customers can become more price sensitive. In this

environment, if the company can also offer high quality products, customers can tend

to be more willing to wait for the deliveries. This is the setting in which a company

would increase its relative profitability the most by employing dynamic policies.

• As a final note, violating the fairness principle by possibly charging a higher price to a

customer that would wait longer for delivery does not increase the PMs of the SDP and

the RDP significantly. The highest relative increases in PM would occur as follows:

For the set 3 with deterministic production times, the SDP would yield 24.57% as the

PM (instead of 24.00% in Table 1) by charging 36.42 to customers arriving at a rate

of 0.98 when there is stock (controlled by a base-stock level of S = 2) and 41.21 to

customers arriving at a rate of 0.6 when there is no stock.

Again in data set 3, this time with exponential production times, the RDP would yield

17.81% as the PM (instead of 17.00% in Table 1) by keeping a base-stock level of

S = 2 and backlogging at most N = 4 customers by employing the price vector R =

[38.21, 38.21, 43.23, 37.56, 32.42, 27.54] and d = [0, 0, 2.2949, 3.8818, 5.5323, 6.6895] as

the lead-time vector. This policy yields 0.93/0.56 as the customer arrival rate when

there is stock/no stock.
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Table 1: The different demand functions considered and the summary of the results

Deterministic Exponential Hyperexponential

Set λ0 a b SMTO SMTS SDP RDP SMTO SMTS SDP RDP SMTO SMTS SDP RDP

1 2 0.02 0.1 38.20% 37.74% 45.72% 48.88% 21.86% 32.08% 39.50% 40.80% 6.81% 28.32% 34.65% 35.83%

2 0.02 0.2 19.21% 37.74% 43.01% 45.03% 32.08% 35.09% 36.37% 28.32% 29.90% 30.39%

3 0.028 0.1 13.48% 12.84% 24.00% 28.43% 4.92% 15.30% 17.12% 8.51% 10.16%

4 0.028 0.2 12.84% 20.22% 23.18% 4.92% 9.12% 10.92% 1.87% 2.54%

5 2.4 0.02 0.1 55.33% 56.35% 60.79% 63.14% 44.52% 51.85% 56.17% 57.36% 34.33% 48.93% 52.60% 53.64%

6 0.02 0.2 43.61% 56.35% 58.74% 60.62% 19.97% 51.85% 53.30% 54.13% 48.93% 49.20% 49.78%

7 0.028 0.1 37.46% 37.11% 45.10% 48.40% 22.33% 30.68% 38.64% 40.30% 8.06% 26.49% 33.65% 35.10%

8 0.028 0.2 21.05% 37.11% 42.23% 44.86% 30.68% 34.62% 35.78% 26.49% 28.88% 29.69%
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Table 2: The increase in PM (∆1) the SDP generates when compared to a static pricing

policy

λ0 Min Mean Median Max

2 5.58% 52.62% 22.74% 210.99%

2.4 0.56% 11.70% 8.69% 27.02%

Table 3: The increase in PM (∆2) the RDP generates when compared to the SDP

λ0 Min Mean Median Max

2 1.62% 11.98% 9.43% 36.19%

2.4 1.17% 3.52% 3.27% 7.31%

Table 4: The mean reduction in PM due to higher production time variability

SMTO SMTS SDP RDP

∆E ∆H ∆E ∆H ∆E ∆H ∆E H2

-39.23% -66.21% -25.50% -22.25% -21.55% -37.09% -23.16% -38.34%

5 Conclusion and Future Work

In this paper, we propose four practical and fair pricing and lead-time quotation policies for

a company serving price and delay sensitive customers with a single type of product. The

production facility is modeled as an Mn/GI/1/K queue. Three policies quoting lead times

employ numerical inversion of the LT of the sojourn time r.v. of an order to be placed. The

refined dynamic policy appears as the champion among four policies. This is due to its power

of limiting the number of backlogged customers and its ability to quote separate lead times
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Table 5: The mean increases in PM with ∆1 from static pricing policies to the SDP and ∆2

from the SDP to the RDP

λ0 (a, b) ∆1 ∆2

2 (0.02,0.1) 21.72% 4.54%

(0.02,0.2) 9.64% 3.32%

(0.028,0.1) 144.56% 16.57%

(0.028,0.2) 71.50% 23.51%

2.4 (0.028,0.1) 7.91% 2.66%

(0.028,0.2) 2.53% 1.97%

(0.028,0.1) 24.46% 5.31%

(0.028,0.2) 11.91% 4.12%

and charge different prices depending on the number of orders a backlogged customer sees.

Yet, we have a restriction for this policy: The system receives two arrivals rates, one when

there is stock and one when backlogging occurs. In the framework of our research, we could

not overcome this restriction. A policy operating with different arrival rates depending on

the number of backlogged customers can increase the profit margins even more. Although

we provide the formulation of such a policy, the difficulty would arise if the optimal policy

parameters were to be searched. This has led us to focus on the restrictive form. Instead of

a queueing based analysis, a simulation-optimization approach may offer a solution that can

also handle larger ranges of base-stock level and the number of backlogged customers. Our

results and the future efforts would help create a market environment where customers are

served fairly while companies preserve their profitability.
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