On some normability conditions

Tosun Terzioğlu*1, Murat Yurdakul**2, and Vyacheslav Zahariuta***1

Received 14 April 2003, revised 27 January 2005, accepted 19 May 2005 Published online 6 October 2005

Key words Locally convex spaces, quasi-normability, asymptotic normability, Vogt interpolation classes, Gelfand-Shilov property

MSC (2000) Primary: 46A03, 46A63; Secondary: 46A11, 46A20, 46A45

Various normability conditions of locally convex spaces (including Vogt interpolation classes DN_{φ} and Ω_{φ} as well as quasi- and asymptotic normability) are investigated. In particular, it is shown that on the class of Schwartz spaces the property of asymptotic normability coincides with the property GS, which is a natural generalization of Gelfand–Shilov countable normability (cf. [9, 25], where the metrizable case was treated). It is observed also that there are certain natural duality relationships among some of normability conditions.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The class of quasi-normable locally convex spaces, introduced by Grothendieck [11], was studied intensively in the last two decades (see e.g., [3–7, 18, 27]). In particular, there are various concrete characterizations of quasi-normability for Köthe spaces and their generalizations. Meise and Vogt [18] found that the class of quasi-normable Fréchet spaces coincides with the union of classes Ω_{φ} (see, [28, 29, 31]) with φ running through the set Φ of all strictly increasing functions from \mathbb{R}_+ to itself. The class of asymptotically normable Fréchet spaces was introduced by Terzioğlu and Vogt in [24, 25] as a natural counterpart to the class of quasi-normable spaces; they showed also that asymptotically normable Fréchet spaces are those which admit a DN_{φ} -condition with $\varphi \in \Phi$.

Natural dual relationships among above and some related invariant classes of locally convex spaces are investigated here. Some of the previous results about normability conditions are extended to non-metrizable locally convex spaces. One of them (Theorem 2.14) tells that a Schwartz space is asymptotically normable if and only if it satisfies the condition GS, which is a natural generalization of Gelfand–Shilov's countable normability. The metrizable case was treated by in [9, 25]; we simplify the proof, in particular, we avoid the closed graph theorem considerations (cf. [9, proof of Proposition 5, iii) \Rightarrow i)]).

Finally, a concrete characterization of quasi-normability is considered for locally convex spaces with unconditional bases in terms of the condition (G) (see, [4, Proposition 3.9]; cf. [7]).

2 Interpolational and normability properties

We use the standard terminology of theory of locally convex spaces as in [15, 17]. On a locally convex space E we always consider a *basic system of seminorms* $\{|\cdot|_p, p \in P\}$, which means that the corresponding system of unit balls

$$U_p := \{x \in E : |x|_p \le 1\}, p \in P,$$

¹ Sabancı University, 34956 Tuzla, Istanbul, Turkey

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

^{*} Corresponding author: e-mail: tosun@sabanciuniv.edu, Phone: 90 216 4835010, Fax: 90 216 4839013

^{**} e-mail: myur@metu.edu.tr, Phone: 90 312 2105389, Fax: 90 312 2101282

^{***} e-mail: zaha@sabanciuniv.edu, Phone: 90 216 4839033, Fax: 90 216 4839550

forms a base of neighborhoods of $0 \in E$. The set P is a directed set with the natural partial order

$$p \le q \iff |x|_p \le |x|_q, \ x \in E.$$

On the strong dual E' we have the system of polar norms

$$|x'|_p^* := \sup\{|x'(x)| : x \in E, |x|_p \le 1\}, \quad x' \in E', \quad p \in P.$$

For $p \in P$ the Banach space E_p is a completion of the space $E/ker |\cdot|_p$, considered with the corresponding quotient norm, and $I_{q,p}: E_q \to E_p$ is the natural linking map if $q \ge p$.

We denote by $\mathcal{B}(E)$ the locally convex bornology of E consisting of all absolutely convex bounded sets in E. For each $M \in \mathcal{B}(E)$ we consider its gauge norm $|x|_M$ and its polar norm $|x'|_M^* := \sup\{|x'(x)| : x \in M\}$ on E'

By $\lambda(A)$ we denote the Köthe space defined by the matrix $A=(a_{i,p})$ with $0\leq a_{i,p}\leq a_{i,p+1}$ for all $(i,p)\in\mathbb{N}^2$.

Now we discuss the direct generalization of two important classes, introduced by Vogt for Fréchet spaces ([28, 29, 31]). Suppose $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a strictly increasing function.

Definition 2.1 A locally convex space E satisfies the property DN_{φ} $(E \in (DN_{\varphi}))$ if there is $p \in P$ and a map $\rho \in P^P$ such that for each $q \in P$ there is C = C(q) > 0 such that

$$|x|_q \le C \varphi(t) |x|_p + \frac{1}{t} |x|_{\rho(q)}, \quad x \in E, \quad t > 0.$$
 (2.1)

Definition 2.2 A locally convex space E satisfies the property Ω_{φ} $(E \in (\Omega_{\varphi}))$ if there is a map $\sigma \in P^P$ such that for any $p \in P$ and any $r \in P$ there is C = C(p,r) > 0 such that

$$|x'|_{\sigma(p)}^* \le C \varphi(t) |x'|_r^* + \frac{1}{t} |x'|_p^*, \quad x' \in E', \quad t > 0.$$
 (2.2)

This condition can be written equivalently in terms of neighborhoods as

$$U_{\sigma(p)} \subset C \varphi(t) U_r + \frac{1}{t} U_p, \quad t > 0.$$

$$(2.3)$$

We say that E satisfies the property $\widehat{\Omega}_{\varphi}$ (and write $E \in (\widehat{\Omega}_{\varphi})$) if the constant in Eq. (2.2) can be taken in the form $C = B(p) \cdot D(r)$.

The classes (DN_{φ}) and (Ω_{φ}) have been proved to be of a great importance in the study of linear topological structure of locally convex spaces (see, e.g., [10, 14, 17, 18, 24–26, 28, 29, 31]). Both properties, DN_{φ} and Ω_{φ} , are linear topological invariants; the first is inherited by subspaces, while the latter by quotient spaces ([18], see also [31]).

Remark 2.3 (Cf. [28, 10]) By iterating Definitions 2.1, 2.2 one can easily derive $\Omega_{\varphi} = \Omega_{\psi}$, $DN_{\varphi} = DN_{\psi}$ if $\psi(t) = \varphi(t^{\alpha})$ for any $\alpha > 0$.

Definition 2.4 A locally convex space E satisfies the strict Ω_{φ} property $(E \in (s\Omega_{\varphi}))$ if there exist a map $\sigma \in P^P$ and a set $M \in \mathcal{B}(E)$ such that for any $p \in P$ there is a constant C = C(p) > 0 such that

$$U_{\sigma(p)} \subset C \varphi(t) M + \frac{1}{t} U_p, \quad t > 0,$$
(2.4)

(due to the assumption that U_p is a base of neighborhoods of zero in E, we can even assume, without loss of generality, that C(p) = 1).

By Grothendieck ([11], p. 107), a locally convex space E is said to be $\mathit{quasi-normable}$ if there is a map $\sigma \in P^P$ such that for each $p \in P$ and $\varepsilon > 0$ there exists $M \in \mathcal{B}(E)$ such that $U_{\sigma(p)} \subset M + \varepsilon U_p$. We say that E is $\mathit{strictly}$ $\mathit{quasi-normable}$ if there is $M \in \mathcal{B}(E)$ and a map $\sigma \in P^P$ such that for each $p \in P$ and $\delta > 0$ there exists $\Delta > 0$ such that

$$U_{\sigma(p)} \subset \Delta M + \delta U_p$$
. (2.5)

We say that E is $perfectly quasi-normable <math>(E \in (pQN))$ if the constant Δ in Eq. (2.5) can be taken in the form $\Delta = C(p)D(\delta)$. It is well-known that for Fréchet spaces all these properties coincide (see [11, 13]). In general, all inclusions $(QN) \subset (sQN) \subset (pQN)$ are proper; in particular, the space ω^* is quasi-normable, but fails to be strictly quasi-normable. For the dual space E', besides strict quasi-normability, we consider the stronger property \overline{sQN} , demanding in Eq. (2.5) the equicontinuity of M (if E is quasi-barrelled these properties of E' coincide). Meise and Vogt [18] proved that a Fréchet space E is quasi-normable if and only if it belongs to the class (Ω_{φ}) for some φ .

Theorem 2.5 Suppose a metrizable locally convex space E satisfies both properties Ω_{φ} and QN. Then $E \in (s\Omega_{\psi})$ if $\psi(t)/\varphi(t) \to \infty$ as $t \to \infty$.

Proof. Since E is metrizable, we may take $P = \mathbb{N}$. From $E \in (QN)$ we derive

$$U_{\pi(r)} \subset M(r,\varepsilon) + \varepsilon U_r, \quad \varepsilon > 0, \quad r \in \mathbb{N},$$
 (2.6)

with some $\pi \in \mathbb{N}^{\mathbb{N}}$ and $M(r, \varepsilon) \in \mathcal{B}(E)$.

On the other hand, from $E \in (\Omega_{\varphi})$ we derive, without loss of generality, that the relation Eq. (2.3) holds with the constant depending only on r. Otherwise, since in the metrizable case the conditions Ω_{φ} and $\widehat{\Omega}_{\varphi}$ are obviously equivalent, the constant C can be chosen in the form $C = B(p) \cdot D(r)$, $B(p) \geq 1$, and we obtain this property by changing $\sigma \in \mathbb{N}^{\mathbb{N}}$ to $\widetilde{\sigma} \in \mathbb{N}^{\mathbb{N}}$ so that B(p) $U_{\widetilde{\sigma}(p)} \subset U_{\sigma(p)}$, $p \in \mathbb{N}$. Thus, taking in this relation $\pi(r)$ instead r, we get

$$U_{\sigma(p)} \subset C(\pi(r))\varphi(t)U_{\pi(r)} + \frac{1}{t}U_p, \quad t > 0, \quad p, r \in \mathbb{N}.$$

$$(2.7)$$

Now we choose $\tau_r \uparrow \infty$ so that $\varphi(t)C(\pi(r)) \leq \psi(t)$ for $t \geq \tau_r$, and define

$$\varepsilon_r := (C(\pi(r)) \varphi(\tau_{r+1}) \tau_{r+1})^{-1}, \quad M_r := (M(r, \varepsilon_r) \cap 2 U_r), \quad r \in \mathbb{N}.$$

Puting the estimate (2.6) considered with $\varepsilon = \varepsilon_r$ into Eq. (2.7), we obtain, due to our choice of τ_r and ε_r ,

$$U_{\sigma(p)} \subset \psi(t) M_r + \frac{2}{t} U_p, \quad \tau_r \leq t \leq \tau_{r+1}, \quad r \geq p, \quad p \in \mathbb{N}.$$
 (2.8)

Now we construct the set M as a convex hull of the union of the sets M_r , $r \in \mathbb{N}$. It is easy to see that $M \in \mathcal{B}(E)$. From Eq. (2.8) we obtain

$$\frac{1}{2} U_{\sigma(p)} \subset \psi(t) M + \frac{1}{t} U_p, \quad t \ge \tau_p, \quad p \in \mathbb{N}.$$

Finally, choosing $\rho \in \mathbb{N}^{\mathbb{N}}$ so that $U_{\rho(p)} \subset \left(\frac{1}{2} U_{\sigma(p)}\right) \cap \left(\frac{1}{\tau_p} U_p\right)$, we get

$$U_{\rho(p)} \subset \psi(t) M + \frac{1}{t} U_p, \quad t > 0, \quad p \in \mathbb{N},$$

$$(2.9)$$

that is
$$E \in (s\Omega_{\psi})$$
.

Remark 2.6 Without assumption on quasinormability the statement may fail. Namely, Bonet and Dierolf [8] gave an example of a non-quasinormable metrizable (non-complete) locally convex space F, which is a dense linear subspace of a quasi-normable Fréchet space E. Since, by [18], E belongs to some class (Ω_{φ}) , its dense linear subspace F also belongs to this class. But F cannot satisfy any $s\Omega_{\varphi}$, since otherwise it would be quasinormable.

Corollary 2.7 Let a Fréchet space E have the property Ω_{φ} . Then E belongs to the class $(s\Omega_{\psi})$, if $\psi(t)/\varphi(t) \to \infty$ as $t \to \infty$.

Proof. Since in this case, by [18], $E\in (QN)$ is a consequence of $E\in (\Omega_{\varphi})$, we can apply Theorem 2.5. $\ \square$

Under an additional restriction we can prove this fact with $\psi = \varphi$.

Proposition 2.8 *Suppose that a function* φ *is such that*

$$\lim_{t \to \infty} \varphi(t^{\alpha})/\varphi(t) = 0 \tag{2.10}$$

for some $\alpha > 0$. Then a Fréchet space E satisfies Ω_{φ} if and only if $E \in (s\Omega_{\varphi})$.

In the proof of Theorem 2.5 we have basically followed Vogt ([28, Lemma 1.4] and Meise-Vogt [17, Lemma 29.16]), where the case $\varphi(t)=t$, very important for applications, is considered (the property Ω_{φ} in that case is called also D_2 or $\overline{\Omega}$). Those considerations relate to so-called "dead-end spaces", which are useful in studying of bases in certain spaces, especially in finite centers of Hilbert scales and in some spaces of analytic functions (see, e.g., [1, 2, 19–21, 32, 33, 36]).

A locally convex space E is said to be asymptotically normable (cf. [25]) (we write $E \in (AN)$) if there is $p \in P$ and a map $\rho \in P^P$ such that for each $q \in P$ the q-topology coincides with the p-topology on the unit ball $U_{\rho(q)}$, which means that for each $\delta > 0$ there is $\Delta = \Delta(q, \delta) > 0$ such that

$$|x|_q \le \Delta |x|_p + \delta |x|_{\rho(q)}, \quad x \in E.$$
(2.11)

We say that E is perfectly asymptotically normable $(E \in (pAN))$ if the constant Δ in Eq. (2.11) can be taken in the form $C(q) \cdot D(\delta)$. For non-metrizable locally convex spaces these two properties may not coincide.

Terzioğlu and Vogt [24] introduced also the following property, which is a weakening of AN: a locally convex space E is *locally normable* $(E \in (LN))$ if there is $p \in P$ such that on each $M \in \mathcal{B}(E)$ the p-topology coincides with the topology of E.

We say that a locally convex space E is *strictly locally normable* $(E \in (sLN))$ if there is $p \in P$ such that for each $M \in \mathcal{B}(E)$ there is $L \in \mathcal{B}(E)$ such that the p-topology coincides with the L-topology on M, or

$$|x|_L \le \Delta |x|_p + \delta |x|_M, \quad x \in E, \tag{2.12}$$

for arbitrary $\delta > 0$ and $\Delta = \Delta(M, \delta) > 0$.

Proposition 2.9 A locally convex space E is perfectly asymptotically normable if and only if $E \in (DN_{\varphi})$ for some function φ .

This is an easy extension of Terzioğlu-Vogt's result [25] for Fréchet spaces.

The property sLN is intermediate between pAN and LN: the inclusion $(sLN) \subset (LN)$ is obvious, while $(pAN) \subset (sLN)$ will be proved in the next section (Lemma 3.6). For Montel spaces the relations among some of above properties are more transparent.

Theorem 2.10 Let E be a Montel locally convex space. Then

- (a) $E \in (LN)$ if and only if it admits a continuous norm;
- (b) $E \in (sLN)$ if and only if E admits a continuous norm and is co-Schwartz;
- (c) E is quasi-normable if and only if it is Schwartz;
- (d) $E \in (sQN)$ if and only if it is Schwartz and admits a total bounded set.

Proof. Notice first that (c) is due to Grothendieck (see, e.g., [13, Section 10.7]).

- (a) Only the if-part needs a proof. Since E is Montel, any $M \in \mathcal{B}(E)$ considered with the topology $\tau(E)$ induced from E is a compact topological space. Suppose that there is $p \in P$ such that $|\cdot|_p$ is a norm. Then the p-topology is a Hausdorff topology on M coarser than $\tau(E)$, so these topologies must coincide.
- (b) Let $E \in (sLN)$. Since E is Montel, any $M \in \mathcal{B}(E)$ is precompact in E, but by the definition of sLN there are $p \in P$ and $L \in \mathcal{B}(E)$ such that the topology \mathcal{T}_L , as considered on M, coincides with the topology defined by $|\cdot|_p$. Hence M is also precompact with respect to L, which means that E is co-Schwartz. Suppose now that E is co-Schwartz. Then, putting the norm $|\cdot|_L$ instead of $|\cdot|_q$ everywhere in the proof of (a), we obtain, by the same token, that $E \in (sLN)$.
- (d) Let $E \in (sQN)$. Then, due to (c), E is Schwartz, and it is easy to see that the set M from Eq. (2.5) is total. Suppose that E is Schwartz and admits a total set $M \in \mathcal{B}(E)$. Then for any $p \in P$ there is $q \in P$ such that for each δ there is a finite set $T \subset U_q$ such that

$$U_q \subset T + \delta/2 U_p$$
.

Applying the totality of M we get

$$T \subset \bigcup_{n=1}^{\infty} n M + \delta/2 U_p$$
.

Since T is finite, we can find $\Delta \in \mathbb{N}$ so that $T \subset \Delta M + \delta/2 U_p$. Hence the relation (2.5) holds, and $E \in (sQN)$.

The following notion is a natural extension of the concept of *countable normability* (Gelfand–Shilov, see, e.g., [9]).

Definition 2.11 We say that a locally convex space E satisfies the Gelfand–Shilov property $(E \in (GS))$ if there is a basic system of norms $\{\|\cdot\|_k, \ k \in K\}$ defining the topology of E and such that for each $k \in K$ and every $m \in K$ provided $m \geq k$ the linking map $I_{m,k} : E_m \to E_k$ is injective, where E_k stands for a completion of $(E, \|\cdot\|_k)$.

Let $A=(a(t,p))_{t\in T,\,p\in P}$, where T is any set, P is a directed set, $0\leq a(t,p)\leq a(t,q)$ for $p\leq q$. Let $T_p:=\{t\in T:a(t,p)>0\},\,p\in P,$ and $T=\bigcup_{p\in P}T_p$. We use a term weighted sup-space for the space

$$\lambda_{\infty}(T, A) := \left\{ u \in \mathbb{R}^T : |u|_p := \sup \left\{ |u(t)| a(t, p) : t \in T \right\} < \infty, \ p \in P \right\}$$
 (2.13)

endowed with the locally convex topology defined by the system of seminorms $\{|\cdot|_p, p \in P\}$; if a(t,p) is positive for all t, p, the space (2.13) is called a *weighted sup-norm space* (see, e.g., [30]). Denote by $l_{\infty}(a^{(p)})$ the Banach space consisting of all functions $u \in \mathbb{R}^{T_p}$ with a finite sup-norm, defined by the weight $a^{(p)} := a(t,p), t \in T_p$, and consider the map $R_p : \lambda_{\infty}(T,A) \to l_{\infty}(a^{(p)})$ such that $R_p(u) := u|T_p$.

Definition 2.12 Let F be a subspace of the weighted sup-space defined by Eq. (2.13) and F_p be the closure of $R_p(F)$ in $l_{\infty}(a^{(p)})$, $p \in P$. Then we say that a subspace F is *well-imbedded* into this space if, for any $p \leq q$, the conditions $u \in F_q$ and u(t) = 0, $t \in T_p$, imply that $u(t) \equiv 0$ on $t \in T_q$.

The following lemma is a generalization of Vogt's result [30]; we are following basically his proof with some simplifications in the part (ii) \Rightarrow (i).

Lemma 2.13 Let E be a locally convex space and $\{|\cdot|_p, p \in P\}$ be any system of seminorms defining its topology. Then the following statements are equivalent:

- (i) $E \in (GS)$;
- (ii) There exists $p \in P$ and a mapping $\rho \in P^P$ such that for each $q \ge p$ any $|\cdot|_{\rho(q)}$ -Cauchy sequence $\{x_k\} \subset E$ with $|x_k|_p \to 0$ converges to 0 also by $|\cdot|_q$;
- (iii) E is isomorphic to a well-imbedded subspace of some weighted sup-space of the space defined by Eq. (2.13).

Proof. (ii) \Rightarrow (i). Taking p and ρ as in (ii), we define for any $q \ge p$ a new norm by the relation

$$||x||_q := \inf \left\{ \lim_{k \to \infty} |x_k|_{\rho(q)} \right\}, \quad x \in E,$$
 (2.14)

where the infimum is over the set of all $\rho(q)$ -Cauchy sequences (x_k) in E such that $|x_k - x|_q \to 0$. It is obvious that this norm satisfies the estimates

$$|x|_q \le ||x||_q \le |x|_{\rho(q)}, \quad x \in E.$$
 (2.15)

Hence the system of norms $\{\|\cdot\|_q\}_{q\in Q}$ with $Q:=\{q\in P:\ p\leq q\}$ defines the original topology of E.

Denote by \widetilde{E}_q the completion of the normed space $(E,\|\cdot\|_q), q\in Q$, and by $J_{r,q}:\widetilde{E}_r\to \widetilde{E}_q, r\geq q$, the corresponding unique extension of the identity. In particular, since $\rho(p)=p$ is available in Eq. (2.11), we can assume that $\|\cdot\|_p=|\cdot|_p$ and $\widetilde{E}_p=E_p$. By the definition (2.14), we may identify \widetilde{E}_q with the quotient space $E_{\rho(q)}/N_q$, where $N_q=kerI_{\rho(q),q}$. Let $\tau_q:E_{\rho(q)}\to E_{\rho(q)}/N_q$ be the canonical quotient map.

The condition (ii) means that for any q the linking map $I_{q,p}$ is injective as considered on the image $R_q:=I_{\rho(q),q}\big(E_{\rho(q)}\big),\ q\in P$. Therefore the map $\sigma_q:\widetilde{E}_q=E_{\rho(q)}/N_q\to R_q$, such that $I_{\rho(q),q}=\sigma_q\circ\tau_q$, is a bijection, which implies the injectivity of the map $J_{q,p}=I_{q,p}\circ\sigma_q$ for every $q\in Q$. Hence we deduce now the injectivity of the mapping $J_{r,q},\ r\geq q$, from the obvious relation $J_{r,p}=J_{q,p}\circ J_{r,q}$. So, the new equivalent system of norms (2.14), $q\in Q$, on E is constructed, which complies with the property GS (Definition 2.11).

(i) \Rightarrow (iii). Let $E \in (GS)$ and $\{\|\cdot\|_k, k \in K\}, E_k, I_{m,k}$ be as in Definition 2.11; let $\|\cdot\|_k^*$ be the corresponding polar norms on the strong dual E'. Set $T = E' \setminus \{0\}, T_k = \{t \in T : |t|_k^* < \infty\}$, and $a(t,k) := 1/|t|_k^*$ if $t \in T_k$ and a(t,k) := 0 if $t \in T \setminus T_k$.

Consider the operator $S: E \to \lambda_{\infty}(T,A)$ defined by $(Sx)(t) := t(x), t \in T$. Since

$$||x||_k = \sup\{|t(x)| \ a(t,k) : t \in T\}, \quad x \in E, \quad k \in K,$$
 (2.16)

this operator is an isomorphism of E onto its image F. Let F_k be the spaces, derived from F as in Definition 2.12. Then, due to Eq. (2.16), the formula $S_k(x)(t) = t(x), t \in T_k$, defines an isometric surjection $S_k : \widetilde{E}_k \to F_k$ for any k. Hence the natural map $R_{m,k} : F_m \to F_k$, defined as a restriction from T_m onto $T_k, k \leq m$, can be represented in the form $R_{m,k} = S_m^{-1} \circ I_{m,k} \circ S_k$. Since, by the assumption, $I_{m,k}$ is an injection, so is $R_{m,k}$, which means that the subspace F is well-imbedded into $\lambda_{\infty}(T,A)$.

(iii) \Rightarrow (ii). We obtain this inclusion, taking into account that, on the one hand, any well-imbedded subspace of a sup-space (2.13) satisfies obviously the condition (ii) with any p and $\rho(q) \equiv q$ and, on the other hand, the condition (ii) is invariant under isomorphisms.

The next theorem generalizes Terzioğlu–Vogt's result ([24, 25]).

Theorem 2.14 For a locally convex space E to be asymptotically normable it is necessary and, if E is Schwartz, sufficient that $E \in (GS)$.

Proof. Suppose first that $E \in (AN)$ and $\{|\cdot|_q, q \in P\}$ is a basic system of seminorms in it. Then there is $p \in P$ and a non-decreasing map $\rho \in P^P$ such that the condition (2.11) holds. Hence, we get $E \in (GS)$ by Proposition 2.13, since the condition (ii) follows obviously from Eq. (2.11).

Suppose now that a Schwartz locally convex space E satisfies the property GS, so that it can be endowed with a basic system of norms from Definition 2.11. Choose $\rho \in K^K$ such that $U_{\rho(q)}$ is precompact in the q-topology for all $q \in K$. It is sufficient to show that, given $p \in K$, for any $q \geq p$ the q-topology coincides with the p-topology on the ball $U_{\rho(q)}$, which will provide $E \in (AN)$. Indeed, supposing the contrary, we get a sequence $\{x_j\} \subset U_{\rho(q)}$ which converges to 0 in the p-topology but $|x_j|_q \geq \delta > 0$ for all j. Then, using the precompactness of $U_{\rho(q)}$ in the q-topology, we find a subsequence $\{x_{j_n}\}$ which is q-Cauchy but does not converge to 0 in the q-topology. The sequence $\{x_{j_n}\}$ generates a non-zero element $z \in E_q$ such that $I_{q,p}(z) = 0$, which is in contradiction with Definition 2.11.

For a given locally convex space E and a fixed $p \in P$ we consider a new system of seminorms defined by

$$||x||_q^{(p)} := \sup\{|t(x)| : |t|_q^* \le 1, |t|_p^* < \infty\}, \quad q \in P, \quad q \ge p,$$
 (2.17)

and denote by $\mathcal{T}_E^{(p)}$ the topology on E generated by it (note that this topology is Hausdorff if and only if $|\cdot|_p$ is a norm). The following two notions, introduced in [22, 23, 30], are defined here in a slightly different equivalent form.

Definition 2.15 E is called

- (a) locally closed $(E \in (LC))$ if the topology $\mathcal{T}_E^{(p)}$ coincides with the original topology of E for some $p \in P$;
- (b) locally admissible $(E \in (y))$ if the topology $\mathcal{T}_E^{(p)}$ is (E, E')-admissible for some $p \in P$.

Vogt proved in [30] that E is locally closed if and only if it is isomorphic to a subspace of some weighted sup-norm space. The following characterization of locally admissible spaces is a simple corollary from this result.

Proposition 2.16 A locally convex space E is locally admissible if and only if it is weakly isomorphic to a subspace of some weighted sup-norm space (2.13).

Now we compare the properties AN and LC.

Proposition 2.17 *If E is asymptotically normable then it is locally closed.*

Proof. Suppose $E \in (AN)$. Then there exist $p \in P$ and $\rho \in P^P$ such that the condition (2.11) holds for every $q \in P$ and each $\delta > 0$ with some $\Delta = \Delta(q, \delta)$. Rewriting this condition in equivalent form in terms polars of neighborhoods, we obtain

$$U_q^{\circ} \subset \Delta U_p^{\circ} + \delta U_{\rho(q)}^{\circ} \subset E_p' + \delta U_{\rho(q)}^{\circ}, \quad \delta > 0, \quad q \in P.$$
 (2.18)

Take an arbitrary $t \in U_q^{\circ}$. Applying Eq. (2.18), we find $t_n \in E_p'$ such that

$$|t(x) - t_n(x)| \le 1/n |x|_{\rho(q)}, \quad x \in E,$$

from where we derive also that $t_n \in (1+1/n)$ $U_{\rho(q)}^{\circ} \subset 2$ $U_{\rho(q)}^{\circ}$. From these considerations we conclude that

$$U_q^\circ \, \subset \overline{E_p' \cap 2\, U_{\rho(q)}^\circ} \,, \quad q \in P \,,$$

where the closure is considered in the weak topology $\sigma(E', E)$. Hence $|x|_q \leq 2 ||x||_{\rho(q)}^{(p)}$, $q \in P$, which means that the topology $\mathcal{T}_E^{(p)}$ coincides with the topology of E. So, $E \in (LC)$.

Using previous considerations and results from [25, 30] we get that, for Schwartz spaces, the above properties have especially simple description.

Theorem 2.18 *Let E be* a *Schwartz space. Then the following are equivalent:*

- (1) *E is asymptotically normable;*
- (2) E has the Gelfand–Shilov property;
- (3) E is locally closed;
- (4) E is isomorphic to a subspace of some weighted sup-norm space.

If E is also Fréchet space then this list may be extended by

- (5) E is locally admissible;
- (6) E is isomorphic to a subspace of $l_{\infty} \widehat{\otimes}_{\pi} \lambda(A)$, where $\lambda(A)$ is a nuclear Köthe space.

3 Duality

Here we study certain dual relationships between some of the properties we have already considered.

Theorem 3.1 If a locally convex space E satisfies DN_{φ} then its strong dual E' satisfies $\widehat{\Omega}_{\varphi}$.

Proof. Suppose that $E \in (DN_{\varphi})$, then Eq. (2.1) is true. Without loss of generality we assume that $r = \rho(q) \ge q, \ q \in P$, hence the system of seminorms

$$\{|x|_r, r \in R := \rho(P)\}$$

defines the original topology on E.

We will use the special base \mathcal{M} of bornology $\mathcal{B}(E)$ consisting of sets

$$M = M_{\alpha} := \{x \in E : |x|_{M} := \sup \{\alpha(r)|x|_{r} : r \in R\} \le 1\}$$

with α running over the set of all functions $\alpha: R \to (0,1]$. Given an arbitrary $M = M_{\alpha} \in \mathcal{M}$, we multiply the inequality Eq. (2.1) by $\frac{\alpha(\rho(q))}{C(q)}$ and take the supremum by q over P. Then we get the estimate (we assume that $C(q) \ge 1$)

$$\sup \left\{ \frac{\alpha(\rho(q))}{C(q)} |x|_q : q \in P \right\} \le \varphi(t) |x|_p + \frac{1}{t} |x|_M, \quad t > 0.$$

$$(3.1)$$

It is clear that the set $A = \{x \in E : |x|_q \le \frac{C(q)}{\alpha(\rho(q))}, \ q \in P\}$ is bounded in E so there is $L = M_\beta \in \mathcal{M}$ such that $A \subset L$, hence Eq. (3.1) implies that

$$|x|_L \le \varphi(t) |x|_p + \frac{1}{t} |x|_M, \quad t > 0.$$

Finally we have that for every $M \in \mathcal{M}$ there is $L \in \mathcal{M}$ and an equicontinuous (hence bounded) set U_p° in E' such that

$$L^{\circ} \subset \varphi(t) U_p^{\circ} + \frac{1}{t} M^{\circ}, \quad t > 0.$$

Since $\mathcal{M}^{\circ} := \{M^{\circ} : M \in \mathcal{M}\}$ is a basis of neighborhoods of E', we have that the space E' satisfies the property $\widehat{\Omega}_{\varphi}$.

For a given Köthe space $E = \lambda(A)$ and sequence of positive numbers $\gamma = (\gamma_i)$ we introduce the notation

$$\mathbf{B}(\gamma) := \left\{ x = (\xi_i) \in \lambda(A) : \sum_{i=1}^{\infty} |\xi_i| \, \gamma_i \le 1 \right\}.$$

Theorem 3.2 Let a Montel Köthe space $E = \lambda(A)$ admit a continuous norm and satisfy Ω_{φ} . If $\psi(t)/\varphi(t) \to \infty$ as $t \to \infty$, then the strong dual E' satisfies DN_{ψ} . If Eq. (2.10) holds for some $\alpha > 0$, then $E' \in (DN_{\varphi})$.

We need the following quite well-known fact (see, e.g., [4]); its proof is represented here for the sake of completeness.

Lemma 3.3 Let $E = \lambda(A)$ be a Montel space admitting a continuous norm and Π be a family of all non-decreasing positive integer-valued sequences (p_i) tending to ∞ . Then the collection

$$C\{\mathbf{B}((a_{i,p_i}))\}, (p_i) \in \Pi, C > 0,$$
 (3.2)

forms a base of bornology $\mathcal{B}(E)$.

Proof. Denote by Γ the set of all sequences $\gamma = (\gamma_i)$ which can be represented in the form

$$\gamma_i = \sup \{ \alpha(p) a_{i,p} : p \in \mathbb{N} \},$$

where $\alpha = \alpha(p)$ runs over the set of all non-increasing functions such that

$$\lim_{p \to \infty} \alpha(p) a_{i,p} = 0$$

for every $i \in \mathbb{N}$ and $\alpha(p) \leq 1$. Then the collection

$$\{\mathbf{B}(\gamma), \ \gamma \in \Gamma\} \tag{3.3}$$

forms a base of $\mathcal{B}(E)$.

We check first that each set (3.2) is bounded. Indeed, if $(p_i) \in \Pi$ then for each $p \in \mathbb{N}$ there is i_0 such that $p \leq p_i$ for $i \geq i_0$; therefore we get that

$$\mathbf{B}((a_{i,p_i})) \, \subset \, C \, U_p \quad \text{where} \quad C \, = \, \sup \left\{ \frac{a_{i,p}}{a_{i,p_i}} : i < i_0 \right\}.$$

Thus the set $\mathbf{B}(a_{i,p_i})$ is absorbed by any zero neighborhood, hence it is bounded.

Now we show that the collection (3.2) is a base of bornology $\mathcal{B}(E)$. Without loss of generality we assume that $a_{i,p} > 0$ for all $(i,p) \in \mathbb{N}^2$. Since E is Montel, each set (3.3) is precompact, hence for every $p \in \mathbb{N}$ we have

$$\frac{\gamma_i}{a_{i,n}} \longrightarrow \infty \quad \text{as} \quad i \longrightarrow \infty.$$

П

Hence there exists a strictly increasing sequence $k(p) \uparrow \infty$ such that

$$a_{i,p} \leq \gamma_i, \quad i \geq k(p).$$

Define a sequence $(q_i) \in \Pi$ as follows: $q_i := p$ if $k(p) \le i < k(p+1)$ for $p \in \mathbb{N}$ and $q_i := 1$ if $1 \le i \le k(1)$. Then, by the construction,

$$a_{i,q_i} \leq \gamma_i, \quad i \geq k(1).$$

Therefore for every $\gamma \in \Gamma$ there is a sequence $(q_i) \in \Pi$ and a constant C > 0 such that

$$a_{i,q_i} \leq C\gamma_i, \quad i \in \mathbb{N},$$

which means that the collection (3.2) forms a base of bornology $\mathcal{B}(E)$.

Proof of Theorem 3.2. Due to Theorem 2.5, we can assume that there is $M \in \mathcal{B}(E)$ and a strictly increasing function $\rho \in \mathbf{N^N}$ such that for every $p \in \mathbf{N}$ the inclusion (2.9) holds. Applying its dual form to the elements of the canonical basis e_i' we obtain

$$\frac{1}{a_{i,\rho(p)}} \; \leq \; \psi(t) \, \frac{1}{a_{i,M}} + \frac{1}{t a_{i,p}} \, , \quad t \; > \; 0 \, , \quad p \in \mathbf{N} \, ,$$

where $a_{i,M}:=|e_i|_M.$ Hence we can find a map $\sigma\in\mathbf{N^N}$ such that

$$\frac{1}{a_{i,q}} \le \psi(t) \frac{1}{a_{i,M}} + \frac{1}{t a_{i,\sigma(q)}}, \quad t > 0, \quad q \ge \rho(1).$$
(3.4)

For an arbitrary $L \in \mathcal{B}(E)$, by Lemma 3.3, we can choose a sequence $(q_i) \in \Pi$ and a constant D > 0 so that

$$|x'|_L^* \le D \sup \left\{ \frac{|\xi_i'|}{a_{i,q_i}} : i \in \mathbf{N} \right\},\tag{3.5}$$

where $x' = (\xi_i')$. Letting $q = q_i$ in Eq. (3.4) we get

$$\frac{1}{a_{i,q_i}} \le \psi(t) \frac{1}{a_{i,M}} + \frac{1}{t a_{i,r_i}}, \quad i \in \mathbf{N}, \quad t > 0,$$

with $r_i = \sigma(q_i)$. Hence, taking into account Eq. (3.5), we obtain

$$|x'|_L^* < D\psi(t)|x'|_M^* + |x'|_K^*, \quad x' \in E', \quad t > 0,$$
 (3.6)

with $K := D \cdot \mathbf{B}((a_{i,r_i})) \in \mathcal{B}(E)$. So, there is $M \in \mathcal{B}(E)$ such that for any $L \in \mathcal{B}(E)$ there is $K \in \mathcal{B}(E)$ and D > 0 such that Eq. (3.6) holds, which means that $E' \in (DN_{\psi})$. If the condition (2.10) holds, we can take $\psi = \varphi$ here, due to Proposition 2.8.

Since any Montel space is reflexive, the last theorem may be considered as a partial converse to Theorem 3.1. There is a natural dual relationship between the properties sLN and \overline{sQN} (sQN, if E is quasi-barrelled).

Proposition 3.4 For $E \in (sLN)$ it is necessary and sufficient that $E' \in (\overline{sQN})$.

Proof. Indeed, the relation (2.12) can be expressed equivalently in the form

$$L^{\circ} \subset \Delta U_n^{\circ} + \delta M^{\circ}$$
,

preserving all parameters and quantifiers in the definition of sLN. But this just means that $E' \in (\overline{sQN})$.

Now we deal with the duality for quasi- and asymptotical normability.

Theorem 3.5 If $E \in (pAN)$ then $E' \in (\overline{sQN})$ and, consequently, E' belongs to the classes (sQN) and (QN).

This fact follows from Proposition 3.4 and the next lemma.

Lemma 3.6 If $E \in (pAN)$ then $E \in (sLN)$.

Proof. Since $E \in (pAN)$, the constant Δ in Eq. (2.11) may be chosen in the form $\Delta = C(q)D(\delta)$. Without loss of generality we can assume that $\rho(q) \geq q, \ q \in P$, so that $\{U_r : r \in R := \rho(P)\}$ is a base of neighborhoods of 0. Given $M \in \mathcal{B}(E)$ we choose a function $\alpha(r)$ (we assume that $\alpha(r)C(\sigma(r)) \leq 1$ and $\alpha(q) \to 0$ as $q \to \infty$) so that

$$|x|_M \geq \sup \{\alpha(r)|x|_r : r \in R\}.$$

Then, multiplying the inequality by $\alpha(\rho(q))$ and taking the supremum by q, we obtain

$$|x|_L \le D(\delta) |x|_p + \delta |x|_M, \quad t > 0, \quad x \in E,$$

with
$$L := \{x \in E : \alpha(\rho(q)) | x|_q \le 1, r \in R\} \in \mathcal{B}(E)$$
. Thus, $E \in (sLN)$.

Remark 3.7 If E in Theorem 3.5 is metrizable then pAN can be substituted by AN.

4 Quasi-normability and (G)-condition

We denote by \mathcal{N} the class of all Fréchet spaces E with an unconditional basis $\{e_i\}$ satisfying the following conditions: there is a fundamental non-decreasing sequence of seminorms $\{|\cdot|_p\}$ in E such that

N1: there is a strictly increasing function $h: \mathbb{R}^+ \to \mathbb{R}^+$ such that the inequality $|e_i|_q \le t \, |e_i|_p, t > 0, i \in J \subset \mathbb{N}$, implies the estimate $|x|_q \le Ch(t)|x|_p$ for all $x \in E_J := \overline{\text{span}}\{e_i\}_{i \in J}$ with some constant C = C(p,q), $p \le q$;

N2: there is a strictly increasing function $g: \mathbb{R}^+ \to \mathbb{R}^+$, converging to 0 as $t \to 0$, such that the inequality $|e_i|_p \le t|e_i|_q, t > 0, i \in J \subset \mathbb{N}$, implies the estimate $|x|_p \le Cg(t)|x|_q$ for all $x \in E_J := \overline{\text{span}}\{e_i\}_{i \in J}$ with some constant $C = C(p,q), p \le q$.

It is worth noticing that N1 is related to the condition " $c\Omega$ without the restriction k < t" from [6].

The next statement is a generalization of Bierstedt–Meise–Summers' result (see [4, Theorem 3.4 and Proposition 3.9]) about characterization of quasi-normable Köthe spaces in terms of the condition (G), which is an improvement of the original Grothendieck's claim [12, p. 102] (see also [7]).

Theorem 4.1 A space $E \in \mathcal{N}$ is quasi-normable if and only if

- **(G)** for each $p \in \mathbb{N}$ there is $q \in \mathbb{N}$ such that for any $\varepsilon > 0$ there is $J \subset \mathbb{N}$ providing
 - (a) the induced topology on E_J coincides with the p-topology, and
 - (b) $U_q \subset E_J + \varepsilon U_p$.

Proof. Let $E \in \mathcal{N}$, $\{e_i\}$ be a corresponding unconditional basis in E, and $\{e_i'\}$ be its biorthogonal system in E'. Without loss of generality we can assume that the fundamental system of norms $\{|\cdot|_p\}_{p\in\mathbb{N}}$ satisfies the condition

$$\left| \sum_{i \in J} e_i'(x)e_i \right|_p \le |x|_p \tag{4.1}$$

for any $J \subset \mathbb{N}$.

The "if-part" is quite obvious, so we consider the "only if-part". Suppose that E is quasi-normable. Then, by Meise–Vogt [18], $(E \in \Omega_{\varphi})$ for some strictly increasing function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$. Therefore, applying the condition (2.2) in a multiplicative form ([18, Theorem 7]) to the functionals e'_i , we get that for any p there is q such that for every r one can choose a constant C > 0 so that

$$|e_i'|_q^* \le C\varphi\left(\frac{|e_i'|_p^*}{|e_i'|_q^*}\right)|e_i'|_r^*, \quad i \in \mathbb{N}.$$

Since, due to Eq. (4.1),

$$|e_i'|_p^* = \frac{1}{|e_i|_p},$$

the above inequality can be written as

$$\frac{|e_i|_r}{|e_i|_q} \le C \varphi\left(\frac{|e_i|_q}{|e_i|_p}\right), \quad i \in \mathbb{N}.$$

$$(4.2)$$

For an arbitrary $\varepsilon > 0$ we find $\delta > 0$ such that

$$h(\delta) < \varepsilon$$
. (4.3)

Then we set $J := \{i : \delta | e_i|_q \le |e_i|_p\}$ and $E_J := \overline{\operatorname{span}\{e_i\}_{i \in J}}$. From Eq. (4.2) we get that

$$|e_i|_r \le C \varphi\left(\frac{|e_i|_q}{|e_i|_p}\right) |e_i|_q \le C \varphi\left(\frac{1}{\delta}\right) \delta^{-1} |e_i|_p$$

for each $i \in J$. Therefore, taking into account the condition N1, we obtain that

$$|x|_r \le h\left(C\varphi\left(\frac{1}{\delta}\right)\delta^{-1}\right)|x|_p$$

for all $x \in E_J$. So, the condition (a) is fulfilled for the chosen subspace E_J .

On the other hand, $|e_i|_p < \delta ||e_i|_q$ for $i \notin J$. Therefore, using the condition N2 and Eq. (4.3), we obtain that

$$|x|_p \le h(\delta) |x|_q \le \varepsilon |x|_q$$

holds for all $x \in E_{\mathbb{N} \setminus J}$, which means that the condition (b) is true, too.

Acknowledgements The authors are grateful to J. Bonet, L. Frerick, and J. Wengenroth for their important criticism and constructive suggestions.

References

- [1] A. Aytuna, Stein Manifolds M for which $\mathcal{O}(M)$ is isomorphic to $\mathcal{O}(\Delta^n)$ as Fréchet spaces, Manuscripta Math. **62**, 297–315 (1988).
- [2] A. Aytuna, On Stein Manifolds M for which $\mathcal{O}(M)$ is isomorphic to a power series spaces, in: Advances in the Theory of Fréchet Spaces, edited by T. Terzioğlu (Kluwer Academic Publishers, Dodrecht Boston London, 1988), pp. 193–202
- [3] K.-D. Bierstedt, R. Meise, and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272, 108–160 (1982).
- [4] K.-D. Bierstedt, R. Meise, and W. H. Summers, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, edited by J. A. Barroso, North-Holland Mathematics Studies Vol. 71 (North-Holland, Amsterdam, 1982), pp. 27–91.
- [5] J. Bonet, A question of Valdivia on quasi-normable Fréchet spaces, Canad. Math. Bull. 34, 301–304 (1991).
- [6] J. Bonet and J. C. Diaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, Math. Nachr. 150, 109–118 (1991).
- [7] J. Bonet and J. C. Diaz, On the weak quasi-normability condition of Grothendieck, Tr. J. Math. 15, 154–164 (1991).
- [8] J. Bonet and S. Dierolf, On distinguished Fréchet spaces, in: Progress in Functional Analysis, edited by K.-D. Bierstedt et al, North-Holland Mathematics Studies Vol. 170 (North-Holland, Amsterdam, 1992), pp. 201–214.
- [9] E. Dubinsky and D. Vogt, Fréchet spaces with quotients failing the bounded approximation property, Studia Math. 81, 71–77 (1985).
- [10] A. Goncharov and V. Zahariuta, Linear topological invariants and spaces of infinitely differentiable functions, Mat. Anal. i ego Prilozhen. (Rostov State University), 18–27 (1985).
- [11] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brazil Math. 3, 57–122 (1954).

- [12] A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, Memoirs of the American Mathematical Society Vol. 16 (Amer. Math. Soc., Providence, RI, 1955).
- [13] H. Jarchow, Locally Convex Spaces (Teubner, Stuttgart, 1981).
- [14] M. Kocatepe and V. Zahariuta, Köthe space modeled on C^{∞} -spaces, Studia Math. 121, 1–14 (1996).
- [15] G. Köthe, Topological Vector Spaces I (Springer, Berlin-Heidelberg-New York, 1969).
- [16] G. Köthe, Topological Vector Spaces II (Springer, Berlin Heidelberg New York, 1979).
- [17] R. Meise and D. Vogt, Introduction to Functional Analysis (Clarendon Press, Oxford, 1997).
- [18] R. Meise and D. Vogt, A characterization of the quasi-normable Fréchet spaces, Math. Nachr. 122, 141–150 (1985).
- [19] B. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16, 59–127 (1961).
- [20] B. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37, 111–137 (1971).
- [21] B. Mityagin and G. Henkin, Linear problems of complex analysis, Russian Math. Surveys 26, 99–164 (1972).
- [22] S. Önal and T. Terzioğlu, Unbounded linear operators and nuclear Köthe spaces, Arch. Math. (Basel) 11, 576–581 (1990).
- [23] S. Önal and T. Terzioğlu, Concrete subspaces and quotient spaces of locally convex spaces and completing sequences, Dissertationes Math. (Rozprawy Mat.) **118**, 1–36 (1992).
- [24] T. Terzioğlu and D. Vogt, Some normability conditions on Fréchet spaces, Revista Matematica 2, 213–216 (1989).
- [25] T. Terzioğlu and D. Vogt, On asymptotically normable Fréchet spaces, Note Mat. 11, 289–296 (1991).
- [26] M. Tidten, An example of a continuum of pairwise non-isomorphic spaces of C^{∞} -spaces, Studia Math. **78**, 267–274 (1984).
- [27] M. Valdivia, On quasi-normable echelon spaces, Proc. Edinb. Math. Soc. (2) 24, 73-80 (1981).
- [28] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichen Typ und ihre Folgerungen, Manuscripta Math. 37, 269–301 (1982).
- [29] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results II, edited by K.-D. Bierstedt and B. Fuchssteiner, Noth-Holland Mathematics Studies Vol. 90 (North-Holland, Amsterdam, 1984), pp. 349–381.
- [30] D. Vogt, Remarks on a paper of S. Önal and T. Terzioğlu, Tr. J. Math. 15, 200-204 (1991).
- [31] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67, 225–240 (1980).
- [32] V. Zahariuta, Quasi-equivalence of bases in finite centers of Hilbert spaces, Soviet. Math. Dokl. 9, 681–684 (1968).
- [33] V. Zahariuta, Extremal plurisubharmonic functions, Hilbert scales, and isomorphisms of spaces of analytic functions of several variables, I, Teor. Funktsii Funktsional. Anal. i Prilozhen. 19, 133–157 (1974) (in Russian).
- [34] V. Zahariuta, Extremal plurisubharmonic functions, Hilbert scales, and isomorphisms of spaces of analytic functions of several variables, II, Teor. Funktsii Funktsional. Anal. i Prilozhen. 21, 65–83 (1974) (in Russian).
- [35] V. Zahariuta, On isomorphic classification of F-spaces, in: Linear and Complex Analysis Problem Book, 199 Research Problems, Lecture Notes in Mathematics Vol. 1043 (Springer, Berlin – Heidelberg – New York, 1984), pp. 34–37.
- [36] V. Zahariuta, Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis, I, edited by A. Aytuna (METU-TÜBİTAK, Ankara, 1994), pp. 74–146.