
DISCOVERY OF AMINO ACID COMPOSITIONS AND MOTIFS RESPONSIBLE 

FOR TOPOLOGICAL TRANSITIONS IN PROTEIN COMPLEXES  

by  

ERHAN EKMEN 

Submitted to the Graduate School of Engineering and Natural Sciences 

in partial fulfillment of 

the requirements for the degree of 

Master of Science 

Sabancı University 

July 2021



    

 

 DISCOVERY OF AMINO ACID COMPOSITIONS AND MOTIFS RESPONSIBLE 

FOR TOPOLOGICAL TRANSITIONS IN PROTEIN COMPLEXES  

 

APPROVED BY: 

 

     

  

     

  

     

     

     

 

 

 DATE OF APPROVAL: 08/07/2021



    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Erhan Ekmen 2021 

ALL RIGHTS RESERVED 



 iii   

 

ABSTRACT 

 

DISCOVERY OF AMINO ACID COMPOSITIONS AND MOTIFS RESPONSIBLE 

FOR TOPOLOGICAL TRANSITIONS IN PROTEIN COMPLEXES  

Erhan Ekmen 

Molecular Biology, Genetics and Bioengineering, M.Sc. Thesis, July 2021 

Thesis Supervisor: Canan Atılgan 

Thesis Co-supervisor: Ali Rana Atılgan 

Keywords: amino acid composition, secondary/quaternary structure, k-nearest neighbor, 

support vector machine, H/P model, dissipative particle dynamics 

Prediction of structural classes of proteins has been pursued using various features of 

proteins such as amino acid composition (AAC), sequence information, structural motifs 

and amino acid coordinates. In some studies, it has been shown that using only AACs is 

enough to predict structural classes such as α, β, α+β, α/β and being monomer or dimer 

with high accuracy. These studies implicate that evolution has an impact on AAC for 

secondary and quaternary structure preferences of proteins. In this study, we use AACs 

to predict the topological preferences of protein complexes by applying several machine 

learning (ML) models.  We used k-Nearest Neighbor (kNN) and Support Vector Machine 

(SVMs) algorithms utilizing AACs as the only feature for the prediction of secondary and 

quaternary structural classes of proteins. We successfully predicted the five secondary 

structural classes (α, β, α+β, α/β, s) of proteins with average F1-score of 0.65 with 

multiclass model. Different quaternary structural classes of complexes having four 

subunits have also shown that distinctive complexes which have higher symmetry can be 

predicted more robustly, up to an F1-score of 0.86, and proteins in two virus capsid 

structure classes with different symmetry can be predicted up to an F1-score of 0.89, 

proving how a simple feature of proteins is effective for quaternary structure of the protein 

complexes. To gain a physics-based understanding of these findings, we modeled the 

chains at the level of H/P (Hydrophobic/Polar) two-letter alphabet and detected unique 

10-16 letter long sequences belonging to different quaternary topologies. We applied 

coarse-grained Dissipative Particle Dynamics (DPD) simulations on complexes which 

have repetitions of these sequences and found associations unique to the sequences. Thus, 

although the AACs are effective in the formation of quaternary structures, sequences 

creating special hydrophobic patches at the interface determine the topological details.
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ÖZET 

 

PROTEİN KOMPLEKSLERİNDE TOPOLOJİK GEÇİŞLERE SEBEP OLAN AMİNO 

ASİT YÜZDELERİNİN VE MOTİFLERİN KEŞFİ 

Erhan Ekmen 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Yüksek Lisans Tezi, Temmuz 2021 

Tez Danışmanı: Canan Atılgan 

Tez İkinci Danışmanı: Ali Rana Atılgan 

Anahtar Kelimeler: amino asit yüzdesi, ikincil/dördüncül yapı, k en yakın komşu, 

destek vektör makineleri, H/P model, dağılıcı parçacık dinamiği 

Proteinlerin yapısal sınıflarının tahmini için amino asit yüzdeleri (AAY), sekansları, 

yapısal motifleri ve amino asit koordinatları gibi birçok özelliği kullanılmıştır. Bazı 

çalışmalarda, sadece AAY'sinin α, β, α+β, α/β veya bir proteinin monomer ya da dimer 

olması gibi yapısal sınıfların tahmininde yeterli olduğu gösterilmiştir. Bu çalışmalar 

AAY'sinin proteinlerin ikincil ve dördüncül yapı sınıflarına evrimsel etkisini açıkça 

ortaya koymaktadır. Bu çalışmada ise, sadece proteinlerin AAY'lerini kullanarak birçok 

makine öğrenmesi tekniği ile proteinlerin topolojik tercihleri tahmin edilmiştir. İkincil ve 

dördüncül yapı sınıflarının tahminlerinde AAY'leri kullanılarak, k en yakın komşu 

algoritması ve destek vektör makineleri ile tahminler yapılmıştır. 5 farklı ikincil yapı 

sınıfı (α, β, α+β, α/β, s) çoklu sınıf tahmini kullanılarak ortalama 0.65 F1 skoru ile doğru 

tahmin edilmiştir. Farklı dördüncül yapı sınıflarının tahmininde ise dört protein içeren 

komplekslerden simetrisi yüksek ve ayırt edilebilir olan komplekslerin F1 skoru 0.83'e 

kadar ulaşmıştır ve farklı simetrilere sahip iki virüs kapsit sınıfındaki proteinler 0.89 

ortalama F1 skoru ile doğru tahmin edilmiştir. Bu durum AAY'si gibi basit bir özelliğin 

proteinlerin dördüncül yapısını ne kadar etkilediğini kanıtlamaktadır. Sonrasında fizik 

tabanlı bir anlayış elde edebilmek için, ikili alfabe modeli H/P (Hidrofobik/Polar) 

kullanılarak elde edilen zincirlerden komplekslere ait 10-16 harf uzunluğunda birbirinden 

farklı tekrarlayan motifler tespit edilmiştir. AAY'leri ve tespit edilen motiflerle 

oluşturulan zincirlere Dağılıcı Parçacık Dinamiği (DPD) benzetimleri uygulandığında 

oluşturulan bu zincirlerin birbirinden farklı özgün özellikleri gözlemlenmiştir. AAY'leri 

dördüncül yapıların oluşumunda önemli olsalar da sekansların oluşturduğu ve etkileşim 

yüzeylerinde bulunan hidrofobik kısımların topolojik detayları tanımladığı anlaşılmıştır.
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1. INTRODUCTION 

 

In organisms, proteins mostly function in the form of complexes with other proteins; for 

example, 80% of the yeast proteins interact at least with one protein [1]. It is crucial to 

unravel the interactions between these protein complexes to understand which features of 

the proteins are involved in the process of evolution. Most recently, artificial intelligence 

approaches have been extremely successful in predicting the folded three-dimensional 

structures of monomeric proteins with unprecedented accuracy [2]. Nevertheless, 

deciphering the protein-protein interaction (PPI) surfaces remains an enigma. 

Secondary, tertiary, and quaternary structures of proteins rely on the location and the 

proportion of amino acids, final poses are determined by nonbonded interactions acting 

within and between units. Using these features of the proteins, many prediction models 

were generated in the past; some of them rely on the coordinates of each atom to predict 

tertiary structures [3], while others use relatively simple features such as amino acid 

composition to predict secondary structural classes of proteins and protein-protein 

interactions [4-10].  

Secondary structural classes of proteins are classified as α having a predominant amount 

of α-helices, β having a predominant amount of β-sheets, α+β consisting of separated out 

α and (mainly antiparallel) β regions, α/β consisting of alternating α and (mainly parallel) 

β regions, and small (s) proteins whose tertiary structures are formed by disulfide bridges, 

metal ligands, or cofactors [11]. For the classification of proteins into the set [α, β, α+β, 

α/β, s], there are several studies which reached high accuracy scores by using AACs and 

PPIs as features. First studies which use AACs date back to 1992 [9]. Based on 184 

proteins, Chou and collaborators [5] have reached 100% prediction rate for α, β, and α+β 

classes and 96.7% for α/β proteins by using an algorithm which was later shown to be 

mathematically equivalent to the SVD method [4]. The latter study rationalized the 

success of the AACs by using simplified two-dimensional chain models to argue that the 

amino acid types impose constraints on the coordination number of the individual sites 

and affected the size and geometry of non-bonded clusters which in turn determine the 

fold. Other studies which use AACs as feature for their prediction models: for prediction 

of secondary structural classes, accuracy scores of 68% for α, 64% for β, and 92% for the 

cumulative α+β and α/β, based on 5796 proteins have been reached by combining AACs 
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with evolutionary AA coupling information as features in machine learning (ML) 

algorithms [6] in a study. Another study has employed support vector machines (SVM) 

as a prediction method and achieved 74%, 82%, 88%, and 72% accuracy for α, β, α+β 

and α/β, respectively [12]. However, instead of multiclass prediction like the previous 

studies, they have used the “one-against others” method which we have also implemented 

[13, 14]. These studies demonstrate that even a simple feature such as AACs holds an 

important volume of information on the structural properties of the proteins. This raises 

the question of how proteins have evolved in terms of their AACs, and if its significance 

is also valid for quaternary structural classes of proteins complexes.  

For tertiary structure prediction for instance, iTASSER [3] (Iterative Threading 

ASSEmbly Refinement) first identifies the template proteins that have a similar structure 

or structural motif as the query protein sequence. Then, the secondary structures are 

predicted based on these multiple template proteins. Later, these fragments are used to 

assemble structural conformations. It uses only C atoms and the center of mass of the 

sidechains to converge the models. Lastly, multiple Monte Carlo simulations with 

different temperatures are applied to the predicted structures and they are ranked. This 

algorithm mostly relies on structural motifs, proving their importance as a feature for 

predicting structures.  

For prediction of quaternary structural classes such as being monomer, dimer, trimer, or 

any other oligomer, there has been only one study which use AACs as feature in literature. 

In this study, they used 3174 protein sequences for training set, and 332 protein sequences 

for testing set. In overall, among seven classes, they reached up to 90.5% success 

prediction rate by resubstitution test, however they did not use a validation test set, which 

might interfere the reliability of results and the identity information between sequences 

is not stated [15].  

More complex features of proteins such as relative surface accessibilities of residues have 

been also used for prediction of PPIs: in 2005, among 6170 nonhomologous proteins, 

62616 pairwise interactions were predicted and most of them were verified from various 

databases and literature [16]. Another study which mostly focuses on conserved residues 

on PPIs showed that hotspots discovered via experimental alanine-scanning within these 

interfaces have densely packed, preorganized, and conserved residues which contribute 

significantly to the stability of PPIs [17, 18]. These conserved residues have been found 
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to be mostly hydrophobic, but also there more charged and polar residues on protein 

surfaces compared to protein cores, meaning they also have significant effect. In addition 

to these, structural properties of protein interfaces also have an important role between 

PPIs: a method which predicts PPIs first compares target proteins with known template 

protein-protein interfaces by considering them as rigid-body structures, then ranks the 

candidate structures based on energies calculated from docking simulations [19]. 

Moreover, in 2020, a method called Perturbation Response Scanning (PRS) [20] was used 

to study characteristics of residues which take role in disassociation of protein complexes. 

After perturbing these residues, unbound conformation of the complexes were more 

preferred and they demonstrated that this changes differ in different types of amino acids, 

suggesting the importance of amino acid type in interacting protein pairs [21].  

These studies show that there are key factors such as sequence and structural information 

which differ PPIs with each other. Therefore, first we focus on a simple feature derived 

from sequences: AACs for our prediction model, then we focus on structure of protein 

complexes and their differentiative properties with a coarse-grained simulation technique: 

Dissipative Particle Dynamics. 

 

 

Figure 1 – A graph example of a complex in 3D Complex. These graphs provide 

topology of complexes; number of nodes (subunits), pattern of interfaces, number of 

residues at the interfaces and their symmetry [22]. 

 

In this thesis, we have not focused on classification of being monomer, dimer, trimer, or 

any other oligomer, instead, we focused on subclasses which have same number of 

subunits, however, are topologically totally different. Even though, this would make the 

prediction more complicated compared to previous study [15], it is a chance to unravel 
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distinctive differences between these complexes. For this purpose, we use 3D complex 

database which classifies protein complexes based on their topologies [22]. Information 

such as identities between chains, homologies, and contacts can found in this database 

(Figure 1).  The classification between complexes is based on chain domain architecture, 

the sequence, and the PPIs. Also, they added symmetry information calculated by rotating 

the complex around its center of mass for their classification. All this information is 

represented with a graph model (Figure 1). After creating the database, they found out 

that most of the protein complexes have four or less subunits and they have tendency to 

be homomeric and symmetric. Therefore, for quaternary structural class prediction and 

structural analysis of these complexes, we mostly focused protein complexes having four 

subunits and compare the symmetric ones with less symmetric ones.  

For structural analysis, we first identified structural motifs and then sequences generated 

from these motifs were studied with coarse-grained dynamics simulations. There are 

many approaches to study dynamics of proteins, but the most common way is the all-

atomic molecular dynamics (MD). However, since they are computationally costly, 

coarse-grained (CG) approaches which decrease the number of particles to be considered 

by many orders of magnitude have emerged. One of these CG approaches: DPD is used 

in literature to study proteins for many types of problems. In 2012, a method with DPD 

has been developed to mimic hydrogen bonding that stabilize secondary structure of 

proteins [23]. With this method, different folding characteristic of αSyn polypeptide in 

different pHs have been demonstrated successfully. Another study has showed that 

coating proteins of energy storage devices in different solvents shows different kinds of 

structural properties which can explain the experimental observations [24]. In 2020, 

folding properties of Chignolin and Superchignolin mini-proteins have been studied [25], 

and their characteristic hairpin structures have been observed by using DPD approach. 

These studies show that DPD is a robust tool to study protein structures, and therefore we 

use it to identify different characteristics of selected protein complexes which we 

predicted successfully.  
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Figure 2 – Examples for complexes having four subunits used in the model. Labelling 

is based on the number of direct interactions between each protein in that complex. (PDB 

IDs; 41: 5N8E, 43: 1I4E, 42: 1NI4, 44: 1BQH, 45: 3P45) 

 

In this thesis, we first use several ML techniques for the prediction of secondary structural 

classes of proteins using AACs as the only feature to obtain a parallelism between 

previous studies but using more than 30000 proteins now available in the SCOP database 

[11]. We then use the same models to predict quaternary structural classes of protein 

complexes obtained from the 3D Complex database [22] which classifies them in terms 

of their number of subunits, topological contacts, graph images, and symmetries. Then, 

we choose the protein complexes having four subunits (Figure 2) and make multiclass 

and binary classification between these groups to understand how the topology of protein-

protein contacts affect the success rate of the model. We also obtained virus structures 

from Virus Particle Explorer database (VIPERdb) [26] and applied the same classification 

techniques on proteins complexes in virus capsids which have different symmetry. Lastly, 

to study dynamics and structure of these protein complexes, we used DPD simulations on 

chains constructed from motifs which are reoccurring within these protein complexes. 

The ultimate goal is to develop a physics-based understanding of the oligomerization 

preferences of proteins in terms of their AACs and motifs.  
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2. MATERIALS AND METHODS 

 

2.1 Data preparation and feature extraction 

 

Three different datasets were used in this study. Firstly, for secondary structural classes 

of proteins, the same dataset originally utilized by Chou was used as a benchmark to 

compare against previous findings [5]. Secondly, the SCOP database (build 1.0.6, data 

retrieved on 10th of November 2020) [11] was used. Thirdly, for quaternary structural 

classes of proteins, the 3D complex database (version 6.0, data retrieved on 20th of July 

2020)  [22] which classifies the protein complexes in terms of topological classes was 

used. Lastly, for virus capsid proteins VIPERdb (version 3.0, data retrieved on 24th of 

May 2021) which classify the viruses based on their family, genus, and T-numbers. 

SCOP, 3D complex, and VIPERdb data were randomized and split into three groups; 60% 

for training, 20% for testing, and 20% for validation by using scikit-learn ML library [27] 

and the same datasets were used for different classifiers.  

The Chou set has 120 proteins for training, 63 proteins for testing. We note that many of 

the proteins in this dataset have been replaced by newer models; there are additional 

amino acids that have been resolved in the new structures and the predictions in this work 

are made on the updated information. Moreover, the protein coded 1PHY which was 

included in the training set for β proteins was later superseded by 2PHY and reclassified 

as α/β type due to misinterpretation of the original data as a β clam fold [28]. We have 

excluded this protein from the training set which has led to the differences between the 

results for the current SVD application against the original study as discussed under the 

Results section. We list the updated dataset with their Protein Data Bank (PDB) [29] 

identifiers in Table S1 for the training set and in Table S2 for the test set. 

FASTA sequences for Chou’s dataset [5] were obtained from the Protein Data Bank [29]. 

FASTA files for proteins in the SCOP, 3D complex and VIPER databases were 

downloaded from the respective websites. Since complexes in 3D complex and VIPERdb 

contain more than one chain, the repeated sequences in the homomers were discarded 

from our analyses. Also, we only selected the chains no higher than 70% identity with 

other chains by using a bioinformatic tool called t_coffee [30].  
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For a set on N proteins, the AAC of each amino acid, i, for a given protein k is 

calculated through,  

𝑥𝑘 = 
𝑥𝑘,𝑖 

𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ𝑘
   (𝑘 = 1,2, … ,𝑁), (𝑖 = 1, 2, … , 19)  (1) 

Thus, a 19-dimensional xk vector was generated for each protein, 

𝑥𝑘 = [𝑥𝑘,1 𝑥𝑘,2 … 𝑥𝑘,19]      (2) 

 

2.2 Singular Value Decomposition (SVD) algorithm 

 

SVD is a supervised learning model and was originally used for the classification of topics 

in a given text based on the frequency of words [31], and later for the prediction of 

secondary structural classes of proteins [4]. We followed the approach in ref. [5], which 

is mathematically identical to the method used in ref. [4]. Thus, we construct the matrices 

x𝑘 = [

𝑥𝑘1

𝑥𝑘2

⋮
𝑥𝑘19

] , 𝐱̅ = [

𝑥1̅̅̅
𝑥2̅̅ ̅
⋮

𝑥19̅̅ ̅̅

] , 𝐒 =

[
 
 
 
𝑆1,1 𝑆1,2 ⋯ 𝑆1,19

𝑆2,1 𝑆2,2 ⋯ 𝑆2,19

⋮ ⋮ ⋱ ⋮
𝑆19,1 𝑆19,2 ⋯ 𝑆19,19]

 
 
 
(𝑘 = 1,2, … ,𝑁)  (3) 

where 

𝑆𝑖,𝑗 = ∑ [𝑥𝑘𝑖 − 𝑥̅𝑖][𝑥𝑘𝑗 − 𝑥𝑗̅]
𝑁
𝑘=1 (𝑖, 𝑗 = 1,2, … ,19)    (4) 

D2(x, x̅) = (x − x̅)TS−1(x − x̅)      (5) 

The AACs are calculated for each of the N proteins. Then, the mean of AACs for each 

class (α, β, α+β, α/β) is calculated to be used for constructing the 19x19 covariance matrix, 

S (Equation 3 & 4). The class that has the minimum Mahalanobis distance to the test data 

is assigned as the predicted class for each test data using Equation 5 (Table S2).    

 

2.3 k-Nearest Neighbor (kNN) algorithm 

 

This method is used for many classification problems in finance, handwriting detection, 

and image recognition [32]. Compared to other ML methods, the training phase of the 
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algorithm is much faster; however, this slows down the testing phase. When the only 

parameter, k, is set low, the model will be more flexible with low bias and high variance, 

when it is high, the decision boundaries will be much smoother resulting in high bias and 

low variance. Normalization of the data is crucial for kNN, since it relies on distance, 

similar to SVD. Since the AACs are already normalized with the chain length for each 

protein, there is no need for normalization in this case. 10-fold cross-validation method 

was used with the range of k values of 1 to 50.  

 

2.4 Support Vector Machine (SVM) algorithm 

 

SVMs are also amongst the supervised learning models used for regression and 

classification [33]. Beside linear classification, SVMs can also perform non-linear 

classification by using different kernels such as polynomial, radial distribution function, 

and sigmoid. The algorithm finds a hyperplane in an N dimensional space between each 

class by maximizing the margin to increase the confidence of the model.   

There are two hyperparameters for SVMs.  adjusts the influence of each training data; 

thus, when it is set to a high value, the classes will have low influence and vice versa. C 

acts as a regulation parameter for SVMs, trading off true classified training examples 

against maximization of the margin.    

The validation method used in kNN was also used for the SVM model. For  and C 

parameters, the sets [0.0002, 0.002, 0.02, 0.2, 1, 10] and [0.01, 0.1, 10, 100, 1000] are 

used respectively. The best performing parameters and kernel were chosen based on the 

F1 score of the fitted models. Radial basis function (RBF) kernel was the best performing 

kernel amongst other kernels for all models.    

 

2.5 Creating H-P letter model and Determining the Motifs within complexes 

 

In the literature there are many studies that utilize the DPD method to describe the 

dynamics of proteins using various degrees of detail in the modeling of the interactions 

[23-25, 34, 35]. In this study, we do not aim to model a particular protein, but rather to 
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determine whether a stretch of selected two letter chain code is able to display 

distinguishing tetramerization profiles. For this purpose, first, chains which contain 20 

letter alphabets of amino acids were transformed into 2 letter alphabets chains as H for 

aromatic and aliphatic residues and P for polar and charged residues. Classification of 

polar/nonpolar residues is based on a previous study [36]. Among 1800 chains in 41 

complex and 577 chains in 45 complex, multiple HP motifs were identified by using 

MEME (Multiple Expectation Maximization Algorithm for Motif Elicitation) software. 

MEME can discover novel gapped motifs within the given sequences. Then, it statistically 

ranks the motifs based on their reoccurrences and widths [37].  

To construct the sequences for DPD part of the project, one motif was chosen for each 

complex based on their significance and reoccurrence sites within chains (Table S4). We 

have selected motif six in 41 and motif five in 45 so that the repeats in the simulations 

would be similar. Then, 200 amino acid long chains were generated by making tandem 

repeats of these motifs (13 repeats for 41 and 12 repeats for 45) and considering AACs of 

these two complexes. The chains are capped with block copolymers of H and P units as 

listed in the Table S4. 

 

2.6 Dissipative Particle Dynamics  

 

DPD is a coarse-grained dynamics technique for mesoscopic systems such as different 

kids of lipid structures, polymers, complex fluids and so on and it is developed by 

Hoogerbrugge and Koelman in 1992 [38]. In this technique, each bead may represent one 

molecule or group of atoms and the motions of these beads are governed by Newton’s 

law of motion.  

𝐹𝑖 = ∑ (𝐹𝑖𝑗
𝐶 + 𝐹𝑖𝑗 

𝐷 + 𝐹𝑖𝑗 
𝑅 )𝑗 ≠ 𝑖    (6) 

There are 3 different forces acting on each bead: a conservative force, a dissipative force, 

and a random force (Equation 6). Conservative forces are soft repulsion that gives a 

chemical identity to each bead [39] and they are only effective within an adjusted cutoff 

radius. Dissipative forces and random forces act as a thermostat which keeps the 

temperature of the system constant. The main difference between DPD and Brownian 
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dynamics is that each bead in DPD is under the effect of a random force independently 

[39].      

In this study, each bead represents one amino acid molecule in the chain. According DPD 

theory, each bead should have similar radiuses to increase the confidence of the systems. 

To achieve this, we chose 5 water molecules to represent 1 solvent bead in the systems. 

Number of water molecules were selected by comparing average van der Waals volumes 

of amino acid molecules from their structure files and water molecules which were run 

200 picoseconds of molecular dynamics simulation with NPT ensemble.    

To calculate the interaction parameters between beads (H: hydrophobic, P: polar, S: 

water) for DPD simulations, first, solubility parameters (δ) should be calculated from MD 

simulations which were made with two different beads (H vs P, H vs S, P vs S).  

𝛿 = (𝐶𝐸𝐷)1/2     (7) 

Cohesive Energy Density can be calculated from the relationship between solubility 

parameter (δ) which is from Hildebrand’s definition (Equation 7). Then, ΔE mix is the 

mixing energy and it can be found as follows: 

Δ𝐸𝑚𝑖𝑥 = 𝜑𝑖(𝐶𝐸𝐷)𝑖𝑖 +  𝜑𝑗(𝐶𝐸𝐷)𝑗𝑗 − (𝐶𝐸𝐷)𝑖𝑗   (8) 

φi  and φj are the volume fractions of amino acid molecules and solvent in the mixture. 

Then, χij which is the Flory-Huggins interaction parameter and the basis for DPD 

simulations can be calculated with following equation (Vbead is the average volume of the 

bead i and j. ΔEmix is the mixing energy):   

𝜒𝑖𝑗 = (
Δ𝐸𝑚𝑖𝑥
𝑘𝐵𝑇

)𝑉𝑏𝑒𝑎𝑑     (9) 

To transform χij parameter into DPD parameters, a relationship for a system which has 3 

DPD units can be used (𝑎ii = 25) [40]: 

𝑎𝑖𝑗 ≈ 𝑎𝑖𝑖 + 3.27𝜒𝑖𝑗     (10) 

We previously calculated DPD parameters among amino acids and with water, however, 

since in our model we do not use each amino acid, we mostly focused on other studies 

which use H/P model or other hydrophobic and polar molecules, and used similar DPD 

parameter values for H-P, H-S, P-S interactions. Therefore, rather than individually 

parameterizing amino acids as two or three beads with individual parameters for the side 
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chains [23-25, 35], we revert to a single bead representation for each amino acid fine-

tuned for systems with number density ρ = 3 in DPD simulations [41-43]. 

 

Table 1 - DPD parameters for H, P, and water. Parameters were selected based on 

previous studies which also use H/P model for proteins or similar molecules. 𝑎ii = 25 is 

for neutral interaction. Above 25 is considered repulsive, belove 25 is considered 

attractive.  

 H P Water 

H 25.00   

P 30.00 25.00  

Water 35.00 28.00 25.00 

 

For polar amino acid - water interactions, we use the value we had previously calculated 

for PIPOX units in water whereby the helical formations in water for these chains above 

their lower critical solution temperatures were well characterized [44].  

For nonpolar amino acid - water interactions, we use a value typical for a hydrophobic 

monomer and a polar solvent, e.g. for styrene-DMF where 𝑎ij = 35. [45] 

Finally, for polar-nonpolar amino acid interactions, there are two competing interactions: 

All the backbones, irrespective of the identity of the side chains, have a tendency to 

hydrogen bond. On the other hand, the dissimilar side chains do not display a particular 

preference to interact and they tend to distance themselves from each other mainly due to 

the entropic cost of clustering. We therefore take a value intermediate to the above-

mentioned two extremes and we set 𝑎ij = 30. Similar DPD interaction parameters were 

calculated between hydrophobic and polar segments in polyurethanes [46, 47] and arylene 

ether sulphones [48].  

After selecting the parameters between H, P, and water beads (Table 1), DPD chains were 

generated with identified motifs by also considering the AACs of H and P amino acids 

for 41 and 45 complexes. Then, 200 bead long four DPD chains were solvated in 200 x 

200 x 200 Å3 simulation box (800 beads for proteins, 52415 beads for water), and each 

system (5 replicas for each system listed) were run for 280 ns (1100000 DPD steps) with 

254 fs time step at 298.0 K.   
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3. RESULTS AND DISCUSSION 

 

3.1 Prediction of secondary structural classes of monomeric proteins.  

 

We first set out to determine the extent to which kNN and SVM may predict the structural 

class of monomeric proteins. We list the individual Mahalanobis distances and 

assignments in the test set for the SVD method in Table S2; the comparison between the 

summarized results from all the methods are displayed in Table S3. For the original Chou 

dataset [5] these two algorithms display significantly better accuracy than SVD in 

predicting α/β class of proteins, whereas the reverse is true for the β class, although overall 

these models are weaker than SVD. Note that a single missing protein and the added 

residues in updated structures in this data set (see Methods for details) already 

significantly affects the predictions of the original SVD method for the accuracy of the 

α+β proteins. 

 

Table 2 - Accuracy of SVD, kNN, and SVM for multiclass prediction of secondary 

structural classes of proteins with SCOP database. 18289 proteins for training, 6097 

proteins for validation, 6097 proteins for testing were used for the models. 

(hyperparameters; k = 1 for kNN,  = 0.2 and C = 10 for SVM) 

Class 
# of proteins in Accuracy of 

Training set Validation set Test set SVD kNN SVM 

α 3645 1221 1221 0.93 0.67 0.64 

α+β 4970 1645 1645 0 0.55 0.49 

α/β 4707 1630 1630 0 0.74 0.78 

β 3929 1265 1265 0.11 0.60 0.63 

s 1038 336 336 0 0.65 0.81 

Total 18289 6097 6097    

F1-score 

 (macro average) 
   0.29 0.64 0.65 

 

To create a reliable ML model, we used SCOP database which has more than 30000 

proteins. As the data in SCOP is well-balanced (Table 2), we have used accuracy for our 

classification metric; this also allows for comparing with previous studies which used 

accuracy over F1 scores. Finally, unlike the previous studies, the class of small proteins 

have also been included in the assignments, and the results are displayed in Table 2.  
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In this larger set, SVD was not able to distinguish between the structural classes since it 

assigned most proteins to α, decreasing the accuracy of the other classes (Table 2). This 

is because, the SVD model will always assign the class of the nearest protein for the class 

of the new test data due its dependence on the nearest Mahalanobis distance instead of 

selecting the cluster of that certain class. This choice increases the variance of the model 

while decreasing the bias, attested by the fact that when a new data point was added to 

our SVD model, the results changed dramatically. In contrast, modern ML classifiers such 

as kNN and SVM can be adjusted with hyperparameters to manipulate bias and variance 

rate. We find that for the protein structural class assignment, the best performing 

parameter for kNN is k = 1 in 10-fold cross validation. For SVM, the optimized 

hyperparameters are  = 0.02 and C = 10. Both optimized models perform similarly well 

in terms of the average accuracy (Table 2; 0.64 for kNN, 0.65 for SVM).  

 

Table 3 - Accuracies of SVM model for binary prediction of secondary structural 

classes of proteins. SVM was performed with the hyperparameters of  = 0.2 and C = 

10 for α vs. s and β vs. s;  = 0.002 and C = 100 for α/β vs. s;  = 0.2 and C = 1000 for 

α+β vs. s;  = 0.2 and C = 1 for the rest. 

 Accuracy of F1 score of 
 

α β α+β α/β s One against 

others 

α - 
    

0.79 

β 0.91 - 
   

0.79 

α+β 0.82 0.79 - 
  

0.70 

α/β 0.88 0.88 0.78 - 
 

0.78 

s 0.94 0.94 0.94 0.97 - 0.90 

 

For the prediction of secondary structural classes of proteins, the best accuracy was 

obtained for the small proteins by SVM. The tertiary structures of these small proteins 

are formed by disulfide bridges, metal ligands, or cofactors which are highly residue 

specific for interaction; e.g., Cys for disulfide bridges; apparently, SVM is able to learn 

these better than kNN to get an accuracy of 0.81. On the other hand, the lowest accuracy 

attained is for α+β type proteins (0.55 by kNN and 0.49 by SVM), where they are 

frequently mis-assigned to α/β class. In contrast, α/β is amongst the best predicted classes. 
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Both ML techniques are adept in learning the features of amino acids leading to 

alternating patterns of α helices and β sheets, while they fall short of distinguishing a 

protein separated into all α and all β domains. We also carried the analysis with binary 

classification of each structural class with each other and one against others (Table 3). 

The worst performance was again for the classification of α+β and α/β with each other 

with the F1 score and accuracy of 0.78, and the best performance was again achieved with 

the small proteins with the accuracies of 0.96 for α, β, α+β proteins and 0.98 for α/β 

proteins. One against others method was also applied for each class (Table 3), because in 

multiclass prediction, the parameters for the SVM cannot be adjusted for each class 

individually. We then observed that some classes were indeed performing better with 

different   and C values and this gives the information of how much these classes are 

distinguishable compared to other proteins with different classes in overall.  

Overall, we find that even in the absence of sequence information, the amino acid 

composition of proteins already carries wealthy information on the structural class of a 

protein, with ca. 2/3 of proteins being correctly assigned using this information alone. 

Thus, regardless of having specific motifs, enrichment in certain amino acid types already 

signifies a certain class that will be selected in the three-dimensional structure. This is in 

alignment with the polymeric nature of proteins with the collapse to a given folded state 

being intimately related to the number of hydrophobic residues shielded from the solvent 

[49]. We next seek to determine the extent to which the oligomerization architectures of 

proteins are dictated by their AACs. 

 

3.2 A Survey of AA types distributed in various architectures. 

 

After predicting the five classes of secondary structural classes by only using AACs, we 

wanted to first see the significant differences between monomers, multimers and among 

different complexes. To do that, we have utilized the 3D complex database to make a 

survey of the distribution of AAs that display a tendency to form complexes as compared 

to the dataset of monomers which can be also found in 3D Complex database.  
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Figure 3 – AACs of proteins and their differences. (A) AACs of monomeric proteins 

in 3D Complex database, (B) AACs of multimeric proteins in 3D Complex database, (C) 

differences of AACs between multimeric and monomeric proteins. (p-values: ≤0.0001 = 

****, ≤0.001 = ***, ≤0.01 = **, ≤0.05 = *, >0.05 = ns) 

 

Figure 3 displays the AAC of the monomeric proteins (25437 proteins; Figure 3A) and 

multimeric complexes (48502 proteins; Figure 3B) in the 3D Complex database. The 

difference between each type of AA in monomeric vs. multimeric proteins are also 

displayed in Figure 3C. We find that there is a significant increase in the composition of 

aliphatic residues (e.g., Ala, Val, Leu, Ile) in the multimeric proteins with nonsignificant 

changes in polar residues (e.g., Pro, Ser). On the other hand, there is substantial decrease 

in the amount of charged residues (e.g., Asp, Glu, Lys, His). It was previously shown that 

intermolecular simple salt bridges (a non-bonded or hydrogen-bonded ion-paired 

interaction that joins a single pair of charged amino acid residues) are significantly less 

than intramolecular simple salt bridges [50]. In another study, it was shown that the 

charged residues were less conserved in the protein interaction interfaces compared to 

other amino acid groups [51], which may suggest the necessity to discard charged 

residues from the interface of multimeric proteins to form complexes. In fact, a recent 
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study explains the complexation preferences of proteins by a hydrophobic ratchet model 

where neutral mutations have a tendency to drive interfaces to become more hydrophobic 

than water-exposed surfaces even when there is no apparent functional advantage [52]. 

This process is followed by purifying selection which entrenches the complex, simply 

because reverting to the monomeric form is destabilizing and opens the system to 

aggregation. 

 

 

Figure 4 – Differences in AACs in different complexes. Differences in AAC between 

different subgroups in 3D Complex database. (dark gray = aliphatic residues, gray = 

aromatic residues, white = sulfur containing residues, blue = polar residues, green = 

charged residues) (p-values: ≤0.0001 = ****, ≤0.001 = ***, ≤0.01 = **, ≤0.05 = *, >0.05 

= ns) 

 

We also find differences in the AACs of various complexes of homomers of different 

numbers of subunits (Figure 4). Moreover, the interaction motifs between subgroups also 

contain variations, although some architectures (e.g., 41 vs. 42) have shown similar AACs 

for specific residues (Figure 4). Overall, we find the variations within the types of 

complexes distinctive enough to move on to more sophisticated classification methods.  
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3.3 Prediction of quaternary structural classes of multimeric proteins.  

 

Survey have shown us that monomers, multimers and different protein complexes have 

significantly different AACs when compared. These differences differ one complex to 

another, suggesting that they can be used as feature for more sophisticated classification 

methods such as kNN and SVM.   

  

Table 4 - F1-scores of kNN and SVM for multiclass prediction of quaternary 

structural classes of QS70 and QS100 complexes.  Some classes were predicted with 

higher precision and recall resulting in higher F1-scores. (hyperparameters; k = 1 for 

kNN,   = 0.2 and C = 10 for SVM). 

 

 

 

The data collected from 3D complex database is unbalanced with few types of complexes 

having many representatives and most complexes having few representatives. Also, 

complexes having even numbers of subunits are favored. In our prediction scheme we 

have therefore focused on the types of complexes made of three or more proteins and 
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having more than 300 representatives at the level of 100% identity (labelled QS100 in 

3Dcomplex). This leads to 10 types of complexes on which predictions are performed 

(Table 4). Since QS100 data is highly biased, we also used QS70 data for our model. We 

note that the bias of QS100 comes from the nature itself, meaning it is likely that the 

sequence and structure of proteins which belong same type of quaternary structural class 

would be similar even though they have different functions. We refer this as “resampling 

of nature”.   

Due to the unbalanced nature of the data, we have used the classification metric of F1-

score which considers the proportion of each class in the model. We have optimized and 

performed both kNN and SVM. SVM slightly outperformed kNN with an average F1 

score of 0.48 vs. 0.46 for QS100 data. We both present detailed results for kNN and SVM 

in what follows, for which the optimized parameters are k = 1 for kNN, and  = 0.2 and 

C = 10 for SVM. Both models have similar prediction individual scores for the 10 most 

populated classes of multimeric proteins studied in this work. 

The class 43, 61, 63 and 45 which have lower F1 scores (below 0.4) compared to other 

classes (up to a maximum of 0.67) were mostly classified as class 41, decreasing the 

average F1 score of the overall model. We rationalize this observation by realizing that 

since class 41 proteins interact at least with three other proteins, this may increase the 

AAC variation at the interfaces between the available surfaces in the training set. This 

extra variability is expected to make the 41 complexes in the test set prone to 

misclassification.  

 

3.4 Tetrameric complexes in detail.  

 

Since most of the multimers in nature formed by four or less subunits [22], we decided to 

focus on their prediction and structures. This would narrow down our perspective on 

importance of AACs on quaternary structure of proteins, so that, a better understanding 

can be achieved and would lead us to study their structures more specifically. We 

therefore selected the complexes having four subunits from 3D Complex and used QS70 

and QS100 proteins for prediction with kNN and SVM. We first made a multiclass 

prediction of quaternary classes.  
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Table 5 - F1-scores and accuracy of SVM for multiclass prediction of quaternary 

structural classes of all, homomeric, and heteromeric tetrameric complexes.  Some 

classes were predicted with higher precision and recall resulting higher F1-scores. 

(hyperparameters;  = 0.2 and C = 10) 

 

 

Class 

 

Number of proteins 

(QS70 vs QS100) 

F1 score of 

QS70 N = 4 proteins 

kNN vs SVM 

F1 score of 

QS100 N = 4 proteins 

kNN vs SVM 

41 1815 – 3117 0.38 - 0.47 0.70 - 0.70 

42 1217 – 2391 0.39 - 0.43 0.72 - 0.71 

43 1512 – 1920 0.29 - 0.42 0.49 - 0.39 

44 902 – 1288 0.17 - 0.06 0.42 - 0.45 

45 586 - 770 0.25 - 0.27 0.52 - 0.42 

F1-score 
 

0.30 - 0.33 0.57 - 0.62 

Accuracy 
 

0.32 - 0.40 0.62 - 0.62 

 

We also found out that all possible architectures for tetrameric complexes (Figure 2) have 

high representation in the 3D complex database and are included in the sample set 

analyzed for multiclass classification (Table 4). We therefore further study this subset to 

understand the extent to which AACs are sufficient to classify them to the correct 

architecture. For this subset of multimers that contains five of the 10 classes listed in 

Table 4, the F1 score increases to 0.62 (Table 5).  

To clarify, the number of proteins in common complexes in Table 4 and Table 5 is 

different due to removal of sequences which are present in multiple classes to remove any 

possible bias from our model.  

 

 

 

 

 



 30   

 

Table 6 - F1-scores of SVM for binary prediction of quaternary structural classes 

of all, homomeric, and heteromeric tetrameric complexes. Some protein complexes 

were predicted with higher precision and recall when cross prediction was applied. For 

these results, we used five complexes having four subunits.   and C hyperparameters 

differ in each classification.  

 
F1 score of 

 
4

1
 (2, 2, 2, 2) 4

2
 (3, 3, 3, 3) 4

3 
(1, 2, 2, 1) 4

4 
(2, 3, 3, 2)  4

5
 (1, 3, 2, 2) One against 

others 
4

1
 (2, 2, 2, 2) -     

0.60 

 4
2
 (3, 3, 3, 3) 0.59 -    

0.66 

 4
3 
(1, 2, 2, 1) 0.65 0.73 -   

0.54 

 4
4 
(2, 3, 3, 2) 0.54 0.67 0.52 -  

0.52 

 4
5
 (1, 3, 2, 2) 0.77 0.83 0.54 0.67 - 0.57 

 

For binary prediction, we chose QS70 data due to its low bias and high variance over 

QS100. We think that the QS70 data would give us more statistically significant 

sequences for our structural analysis in the next part. 

To do that, we tested the capacity of our model to make binary predictions on QS70 data, 

i.e. to select between pairs of possible tetrameric arrangements. We find some complexes 

to be more distinguishable by our model, reaching up to 0.83 F1-score (Table 6).  

Interestingly, the capacity of our model to differentiate between two data sets of 

symmetric topology complexes that have the most type of amino acids with insignificant 

ACC differences (41 and 42 in Figure 4 where eight of the 20 amino acids have the same 

composition), is amongst the best performing. In fact, for prediction of quaternary 

structural classes of proteins, we have observed that protein complexes which have higher 

symmetry can be predicted with higher precision and recall. This was also observed for 

the binary classification between these complexes. We suggest that the complexes which 

have low symmetry, for example the 45 complex with the (1,3,2,2) topology, does not 

necessarily have to have similar sequences with other proteins within that complex. 

Because one protein only interacts with one protein, two proteins with two others, another 

one with all the other three, the ACC variation within these proteins is increased, 

adversely affecting the performance of the model. To further study these complexes, we 
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chose 41 and 45 complexes for structural analysis because of their evident different 

symmetry with same total amount of interactions (total of 8) with other proteins. 

 

3.5 Tetramer formation is observed in both complexes, but they have different 

structural properties.  

 

After proving that AACs carry information for quaternary structures of proteins and 

seeing that this information is more pronounced between specific protein complexes, we 

identified the motifs which are reoccurring within these two complexes (41 and 45). Then, 

pseudo sequences (Table 7) were generated with the repetition of these motifs, and DPD 

simulations were applied (See methods for details).  

 

Table 7 – 200 bead long sequences which were used for DPD simulations. Generated 

with tandem repeats of significantly reoccurring motifs within complexes. Tails are added 

to reach 200 bead length. Numbers 13 and 12 represent repetition number of motifs which 

are shown bolded. Other identified motifs can be found in Table S4.  

Complex Sequences 

41 [PPPHHHHHH[HPPHHPHHHPPHPP]13HHHHHHPPP] 

41 reverse loop [HHHHHHPPP[HPPHHPHHHPPHPP]13PPPHHHHHH] 

  

45 [PPPPPPPPPPPHHHHH[HPHHPPPHHHPPPH]12HHHHHPPPPPPPPPPP] 

45 reverse loop [HHHHHPPPPPPPPPPP[HPHHPPPHHHPPPH]12PPPPPPPPPPPHHHHH] 

 

The sequences generated with tandem repeats of the identified motifs within complexes 

have total of 200 beads, thus the length of the chain would not make a structural 

difference. To complete the sequences into 200 bead long, we added H/P loops into both 
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sides. In nature, loops of proteins usually made of polar residues, therefore, our main 

sequences are generated with polar heads on both termini [53].   

 

 

Figure 5 – Example of Tetramer formation in 41 complex. Tetramer formation 

occurred in all of the complexes. Tetramer formation is completed after 30th ns of 

simulation time. 

 

As a result of DPD simulations, tetramer formation was observed in all systems (Figure 

5). Assembly time of the chains differ from one to another with no significant differences, 

however, chains usually assemble one by one, and sometimes all together depending on 

the initial location of each chain. Tetramer formation is completed before 30th ns in all of 

the systems, and systems reach an equilibrium when tetramer is formed, and chains never 

disassemble.  

 

 

Figure 6 – Average Radius of Gyration (RoG) of both complexes and their inverted 

loop versions. (A) Average RoGs and radiuses of both complexes. (B) Peaks are zoomed 

in.  
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When trajectories were analyzed, even though these two complexes have similar amino 

acid compositions, it was observed that they have unique structural properties, suggesting 

motifs are also a significant factor for transitions in protein complexes. We first checked 

the compactness of the complexes with radius of gyration analysis. 41 complexes having 

23.5±2.5 Å radius are significantly more compact when we compare them with 45 

complex which have 24.3±3.4 (Figure 6), and this can be explained by 41’s more 

symmetric structure. However, inreversing the loops into P to H beads make significant 

changes for 45 complex; shifting the structure to similar radius with 41 complex. This 

phenomenon can be explained with the longer polar ends of 45 complex, when not 

reversed, increases the radius of the complex due to free polar loops which make 

interactions with water. This is not observed when the loops of 45 is reversed: instead of 

making interaction with water, loops are more likely to fold into itself, which makes the 

overall structure more compact, however, it still does not reach the compactness of 41 

complex, showing the effect of motifs instead of loops.  

 

 

Figure 7 – Average Radial Distribution Function of both complexes. (A) Average 

RDFs of both complexes. (B) Peaks are zoomed in and g(r) values are shown. 

 

To get an interaction-based information, radial distribution function (RDF) analyses were 

applied on all systems. RDF, g(r) is a function that describes the average density of 

particles around a particle, in our case bead, or some other reference point such as center 

of mass, within varying radiuses at given cutoff.  When g(r) is high, we can estimate that, 

within that radius, the particles are closer to each other, forming a cluster.  
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Intramolecular and intermolecular RDFs have been checked together and separately. 

Also, we later checked interactions between H and P beads to get further information 

from the systems (Figure S1).  

When intramolecular and intermolecular RDFs checked together, results have shown that 

41 complexes have higher total amount of interactions between beads, even when the 

loops are reversed (Figure 7). Even though the total interaction increases when the loops 

of 45 complexes are reversed, they again cannot reach the amount of interactions of 41 

complex.  

 

Figure 8 - Average Intramolecular and Intermolecular Radial Distribution Function 

of both complexes. Average intramolecular and intermolecular RDFs of both complexes. 

(B) Peaks are zoomed in and g(r) values are shown.  

 

Next, we checked intramolecular and intermolecular RDFs separately (Figure 8). Overall 

intramolecular interaction higher in both complexes, proving that chains are more likely 

to fold into itself instead of making interaction with other chains. Comparison of two 

complexes shows that, again, both intermolecular and intramolecular interactions are 

higher in 41 complexes, and there is exception to this phenomenon when the loops are 

reversed.  

Note that the symmetric structure of 41 complex can be again a proof to this result. In 41, 

all proteins make interactions with other two proteins within that complex, however, in 
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45, number of interactions for each protein is different, which lowers the symmetry of this 

complex, and the interactions between proteins (Figure 2).  

 

 

Figure 9 - Distance calculation between center of mass of each chain and center of 

mass of complex. The distance measurement was done throughout the trajectory, after 

tetramer is formed. (after 30th ns)  

 

To check whether these tetramer formations have resemblances with real topologies on 

3D complex, we measured the distance between center of mass of each chain and center 

of max of tetramer throughout the trajectory after the tetramer is formed. From our 

calculation, we saw that the distances between these two reference points are significantly 

smaller in 41 complex compared to 45 complex (p-value < 0.0001). Average distance for 

41 complex is 9.7 ± 3.8 Å, and 11.6 ± 7.1 Å for 45 (Figure 9). This was expected due to 

more symmetric topology of 41 complex compared to 45. Less symmetric topology of 45 

would have longer distances between these reference points, because the chain which 

makes interaction with only one protein would be in a much further distance away from 

center of mass of the complex (see Figure 2).  
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3.6 Virus capsids which follow different symmetry are also distinctive. 

 

The results we obtained from tetramer complexes showed that along with AACs, motifs 

were also important for specific multimer formation of protein complexes. Thus, we 

wanted to go further with our analysis and see whether virus capsid structures can be also 

predictable with their AACs which might be more pronounced within their complexes 

due to their repetitive oligomer formation. In addition to that, they have also higher 

surface area of protein-protein interfaces which highly affect their AACs.  

 

 

Figure 10 - Two different icosahedral capsid structures classified based on their T 

numbers. T = 3 and T = p3 icosahedral capsid structures. The only difference between 

them is number of different proteins in their basic unit.  

 

Virus capsids are made of repeated protein complexes that act as a shell by enclosing the 

genetic material. In our previous results we stated that the number of amino acids 

interacting with other proteins should be less than the amino acids which form secondary 

structure of proteins. This highly affects the prediction of quaternary structural classes of 

proteins using AACs. However, since virus capsids are made of repeating protein 

complexes, we considered that the evolutionary information of AAC might be carried 

more efficiently in these complexes. Therefore, we also made the prediction of 
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distinguishing from each other two virus capsid structure proteins which were classified 

based on their T number to prove our point.  

 

Table 8 - F1-scores and accuracy of kNN and SVM for prediction of two different 

virus capsid proteins. For kNN, k = 3 for QS70, k = 2 for QS100 were used. For SVM  

= 0.02 and C = 10 were used.   

 

Class 
Number of proteins F1 score of 

QS70 proteins 
kNN vs SVM 

F1 score of 
QS100 proteins 
kNN vs SVM QS70 QS100 

T = 3 90
 

199 0.84 - 0.75
 

0.86 - 0.81
 

T = p3 178
 

580 0.94 - 0.89
 

0.94 - 0.95
 

F1-score (macro average)  
0.89 - 0.82

 
0.91 - 0.88

 
Accuracy   

0.91 - 0.85
 

0. 93 - 0.91
 

 

The triangulation (T) number defines the size and complexity of the capsids. In this 

project, we focused on two different virus capsid proteins: T = 3, and T = p3 (Figure 9). 

The reason we chose these two classes is because the size and the complexity of these 

two capsids are same, however, T = 3 capsid are made of two different chains, while T = 

p3 capsids are made of three different chains. This is the reason why they are called 

pseudo T = 3 capsids. After extracting AACs of these proteins, we applied kNN and SVM 

to see how distinguishable they are. As we expected, the model was performing better 

compared to the binary prediction of protein complexes having four proteins, up to F1-

score of 0.89 with QS70 dataset (Table 8), proving the information of AACs which 

defines the quaternary structure of protein complexes are more pronounced in virus 

capsids compared to regular protein complexes. 
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4. CONLUSION AND FUTURE WORK 

 

In conclusion, we first showed that AAC of proteins are also significant for determining 

the quaternary structure of proteins as it is for secondary structures. The reason we have 

obtained worse results for quaternary structural class prediction compared to secondary 

structural class prediction is because AACs carry information for all residues which 

contribute all secondary structures of proteins; however, quaternary structures mostly 

depend on protein-protein interface residues. Yet, we can classify quaternary structural 

classes with more than 80% F1 score (Table 6), and this suggests AACs residing at the 

protein interaction surfaces are also effective to form different complexes. Moreover, the 

symmetry of these protein complexes is highly related to the proportion of their amino 

acids, which also makes them more predictable with ML models (Table 5). In addition, 

virus capsid proteins which are highly symmetric with different structural classes can be 

distinguished with even better performance with ML models (Table 8). We think that this 

is due to their nature of need to assemble in a host cell, increasing the importance of AACs 

within capsid proteins. We also note that more sophisticated prediction tools such 

convolutional neural networks can be also used to get higher performance. Thus, weight 

of each amino acids in a learning model can be adjusted differently from each other. We 

know that protein-protein interfaces mostly contain nonpolar residues, meaning they 

should have higher weights in a learning model. 

Along with AACs, we discovered that motifs which are reoccurring within same 

quaternary structural class are also significant for transitions of protein complexes. Motifs 

affect the compactness, symmetry, and interaction preferences of complexes, making 

them again distinguishable in structural level (Figure 6-8). Also, we were able to show 

similar topologies for tetramers with our distance calculation which supports this point 

(Figure 9). These discovered motifs can be also used as features for ML models, so that, 

higher performance might be achieved.  

We were able to identify H/P motifs within these virus capsid proteins in QS100 data 

(Table S5), however, we did not want to use them for DPD simulations due to presence 

of homologous proteins in that data. No significant H/P motifs were identified using QS70 

data of virus capsid proteins. We think that the small number of proteins in QS70 data 

was the reason for this.  
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Next, we want to add more virus capsid classes to our data to identify motifs and run DPD 

simulation with them. We are aiming to end up with sphere structures with hollow inside 

in the end like real capsid structures.  
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SUPPLEMENTARY INFORMATION 

 

 

Figure S1 - Average Intra and Intermolecular Radial Distribution Function of H 

and P beads 
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Table S1 – List of proteins used as the training set in ref. [5] and replacements for 

obsolete structures; * indicates unchanged PDB id. 

a reclassified as α/β type in ref. [28]; excluded from current analyses. 

 

 

 

 

 

 

 

 

α β α+β α/β 
ORIGINAL PDB UPDATED PDB ORIGINAL PDB UPDATED PDB ORIGINAL PDB UPDATED PDB ORIGINAL PDB UPDATED PDB 

1AVHA * 1ACX- * 1AAK- 2AAK- 1ABA- * 

1BABB * 1AYH- 2AYH- 1CTF- * 1CIS- * 

1BRD- * 1CD8- * 1DNKA * 1CSEI * 

1C5A- * 1CDTA * 1EAF- * 1CTC- * 

1CPCA * 1CID- * 1HSBA * 1DHR- * 

1CPCL * 1DFNA * 1LTSA * 1DRI- 2DRI- 

1ECO- * 1HILA * 1LTSD * 1ETU- * 

1FCS- * 1HIVA * 1NRCA 1OIAA 1FX1- * 

1FHA- * 1HLEB * 1OVB- * 1GPB- * 

1FIAB * 1MAMH * 1POC- * 1OFV- * 

1HBG- * 1MONA * 1PPN- * 1PAZ- * 

1HDDC * 1OMF- 2OMF- 1PRF- 2PRF- 1PFKA * 

1HIGA * 1PHY- 2PHY-a 1RND- * 1PGD 2PGD 

1LE4- * 1REIA * 1SNC- * 1Q21 * 

1LIG- 2LIG- 1TEN- * 1TFG- * 1S01- * 

1LTSC * 1TLK- * 1TGSI * 1SBP- * 

1MBC- * 1VAAB 2VAAB 2ACHA * 1SBT- * 

1MBS- * 2ALP- * 2ACT- * 1TIMA * 

1RPRA * 2AVIA * 2BPA1 * 1TMD- 2TMD- 

1TROA * 2BPA2 * 2SNS- * 1TREA * 

1UTG- * 2HHRC 3HHRC 2SSI- 3SSI- 1ULA- * 

256BA * 2ILA- * 3IL8- * 1WSYB * 

2CCYA * 2LALA * 3RUBS * 2HAD- * 

2LH1- * 2SNV- * 3SGBI * 2LIV- * 

2LHB- * 3CD4A * 3SICI * 3GBP- * 

2MHBA * 4GCR- * 4BLMA * 4FXN- 2FOX- 

2MHBB * 7APIB * 4TMS- * 5CPA- * 

2ZTAA * 8I1B- * 8CATA * 5P21- * 

4MBA- * 8FABA * 9RNT- * 8ABP- * 

4MBN- * 8FABB * 9RSAA * 8ATCA * 
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Table S2 – List of proteins used as the testing set in ref. [5] and their Mahalanobis 

distances calculated with SVD method. 

 

PDB code  
(original PDB) 

Mahalanobis Distances  
Observed 

 

𝑫𝟐(𝑿,𝑿𝜶) 𝑫𝟐(𝑿,𝑿𝜷) 𝑫𝟐(𝑿,𝑿𝜶+𝜷) 𝑫𝟐(𝑿,𝑿𝜶/𝜷) Predicted 

1BBL- 1.60 3.09 3.72 10.07 α α 

1HBBA 0.86 4.18 2.02 6.85 α α 

1IFA- 2.45 2.67 3.83 3.61 α α 

1MRRA 0.93 0.54 0.91 0.91 α β 

2PDE- (1PDE-) 3.07 4.00 5.05 5.59 α α 

1PRCM 4.62 4.99 5.23 9.98 α α 

2SAS- (1SAS-) 3.37 3.93 2.98 1.91 α α/β 

2TMVP 2.91 1.51 2.45 12.17 α β 

4CPV- 1.73 7.99 5.15 8.94 α α 

2AAIB (1AAIB) 6.81 2.99 2.31 16.15 β α + β 

1ATX- 25.77 5.20 9.65 68.26 β β 

1COBA 7.02 3.28 4.86 4.17 β β 

1EGF- 18.90 2.79 4.90 38.13 β β 

1EST 7.38 1.46 3.94 9.63 β β 

1GPS- 18.22 5.73 15.45 128.14 β β 

1HCC- 9.49 2.62 4.46 12.30 β β 

1IXA- 18.21 7.17 11.32 73.72 β β 

1MDAA 4.16 2.30 2.61 5.76 β β 

1PPFE 4.44 1.99 7.14 14.50 β β 

1R1A2 3.75 1.22 2.22 2.41 β β 

1SHFA 5.70 0.65 2.55 3.84 β β 

1TIE- 2.77 0.70 1.77 3.67 β β 

1TNFA 2.79 1.08 1.17 5.32 β β 

1ACHB (2ACHB) 8.73 2.58 6.08 29.47 β β 

2CTX- 12.61 3.30 5.99 109.80 β β 

2MEV1 2.43 0.56 2.93 4.71 β β 

2PLV1 1.78 0.39 2.21 1.85 β β 

2SODO 7.19 3.89 5.17 4.67 β β 

3RP2A 1.63 0.61 1.41 3.22 β β 

4SGBI 8.99 4.22 6.63 109.74 β β 

5NN9- 10.35 1.49 1.46 11.83 β α + β 

2ABH- (2ABH-) 2.07 2.00 1.11 1.26 α + β α + β 

1BBPA 6.77 1.75 2.62 7.48 α + β β 

1BW4- 8.28 4.35 1.80 15.53 α + β α + β 

3COX- (1COX-) 3.31 0.79 0.81 1.42 α + β β 

1DNKA 1.02 0.83 0.86 1.57 α + β β 

1GLAG 4.08 0.97 1.01 0.94 α + β α/β 

2MS2A (1MS2A) 3.16 1.77 0.92 6.52 α + β α + β 

1OVOA 3.90 3.83 1.34 52.77 α + β α + β 

1POC- 7.18 2.85 0.69 13.38 α + β α + β 

2PPBA 2.62 1.54 1.75 5.32 α + β β 

1SHAA 1.04 2.59 1.73 6.87 α + β α 

1THO- 2.28 3.44 0.89 4.18 α + β α + β 

1XOB (1TRX-) 2.28 2.84 1.17 5.31 α + β α + β 

2AAA- 4.11 2.22 2.01 5.86 α + β α + β 

2PIA- 2.61 0.77 0.79 6.66 α + β β 

2SN3- 10.75 5.81 3.26 62.67 α + β α + β 

2TAAA 2.67 0.72 0.55 3.90 α + β α + β 

3B5C- 9.23 2.03 2.81 17.62 α + β β 

3SC2A 4.07 0.58 0.42 1.81 α + β α + β 

3SC2B 6.11 1.30 1.32 6.46 α + β β 

8TLN- 3.68 0.45 0.64 2.18 α + β β 

4ENL- 0.50 1.51 0.49 1.15 α + β α + β 

4INSB 6.03 19.73 4.36 13.27 α + β α + β 

4RCRH 2.71 1.12 0.83 0.94 α + β α + β 

1GPB- 0.97 0.62 1.02 0.50 α/β α/β 

2MINA (1MINA) 2.85 1.07 1.20 0.69 α/β α/β 

1NIPB 1.49 1.24 6.49 0.98 α/β α/β 

1SBP- 1.81 1.96 0.75 0.52 α/β α/β 

1BKS (1WSYA) 4.16 1.56 1.00 2.98 α/β α + β 

4ICD 1.36 1.12 1.73 0.82 α/β α/β 

7AATA 0.94 1.34 0.65 0.76 α/β α + β 

9RUBB 2.44 1.28 0.84 0.88 α/β α + β 

1GD1O 2.68 1.10 2.90 0.79 α/β α/β 
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Table S3 - Accuracy of SVD, kNN, and SVM for prediction of secondary structural 

classes of proteins with Chou's data. 119 proteins for training, 64 proteins for testing 

were used for the models. Some proteins structures and sequences had been updated 

throughout the years causing small changes on results for SVD. kNN and SVM display 

similar overall accuracy. 

 
Accuracy 

 reported for SVD 

(Bahar et al., 1997) 

SVD 

(this work) 

kNN SVM 

α 0.67 0.67 0.67 0.67 

α+β 0.81 0.58 0.54 0.63 

α/β 0.67 0.67 0.89 1 

β 0.90 0.91 0.67 0.50 

Average  0.81 0.72 0.63 0.64 

 

 

Table S4 – Motifs identified for each tetramer complex with their width, sites and 

p-values. Nonhomologous QS70 data was used. 

4
1
 (2,2,2,2) Sequence Width Site p-value 

Motif 1 PHHHHHHPPPHHPPHHPPHHPHPHHHHHHH 30 158 9.2e-004 
Motif 2 HHHPPHHHPHHPPHH 15 223 1.1e-003 
Motif 3 HPHPPHHPHHHHHHPPPHPHHPHPHHPHP 29 159 2.1e-003 
Motif 4 HPHHHPPHHPHHHHPPHPH 19 166 1.5e-002 
Motif 5 HPPPPPPPPPPHHHHPHPPHHPHPPH 26 67 1.6e-002 
Motif 6 PPHPPHHPPH 10 517 2.5e-002 
Motif 7 PPPPPPPPHHPHHPPPHPHPH 21 51 3.1e-002 
Motif 8 HPPHHPHHHPPHPP 14 326 4.3e-002 

4
5
 (1,3,2,2) Sequence Width Site p-value 

Motif 1 PPHHHHPHHHHHHPPHPHPP 20 54 9.8e-004 
Motif 2 HHPPHPPPPPHPPPPPPPPPHPHPP 25 68 2.0e-003 
Motif 3 HPPHPHPHPHPPHPHHHPPHPPPP 24 92 3.9e-003 
Motif 4 HPHHPHHPHHPHPPHPHPHHHPH 23 80 5.9e-003 
Motif 5 HPHHPPPHHHPPPH 14 134 5.9e-003 
Motif 6 PHHPPHHPHPHHHPH 15 35 7.8e-003 
Motif 7 PHHPPPHPHPHPHHP 15 33 7.8e-003 
Motif 8 PHPPPHPPPHPHPHHPPPPPHPPPP 25 52 7.8e-003 
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Table S5 – Motifs identified for each virus capsid proteins with their width, sites and 

p-values. QS100 data was used. 

T=3 Sequence Width Sites p-value 

Motif 1 PHPPPPPPHPHPPPPPPPPPHPPHPHPHPPPPPPPPHPPPP  41 219 3.2e-171 

Motif 2 PPPPPPHPPPPPHPHPPPPPPPPPPPHPP  29 13 2.8e-080 

Motif 3 PHHPPPPPPPHPPHPPPHPPPPHPPPPPP  29 2 4.1e-105 

T=p3 Sequence Width Sites p-value 

Motif 1 PHPHPHPHPHPHPHPPPHPHH 21 133 1.9e-004 

Motif 2 PHPHPHPHPPPPHHPHPHHPP 21 178 7.6e-076 

Motif 3 HPPHPHPPPHPPHPPHHHHHH 21 318 1.2e-073 

 




