
DISCRETIZATION BASED SOLUTION APPROACHES
FOR THE CIRCLE PACKING PROBLEM

by
RABIA TAŞPINAR

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Sciences

Sabancı University
July 2021



DISCRETIZATION BASED SOLUTION APPROACHES
FOR THE CIRCLE PACKING PROBLEM

Approved by:

Approval: July 14, 2021



RABİA TAŞPINAR 2021 ©

All Rights Reserved



ABSTRACT

DISCRETIZATION BASED SOLUTION APPROACHES FOR THE CIRCLE
PACKING PROBLEM

RABIA TAŞPINAR

INDUSTRIAL ENGINEERING M.S. THESIS, 2021

Thesis Supervisor: Assist. Prof. BURAK KOCUK

Keywords: circle packing problem, discretization, global optimization

In this thesis, we study the Circle Packing Problem (CPP), which involves packing
a set of circles into the smallest surrounding container. This problem can be cast
as a nonconvex quadratically constrained quadratic program with reverse convex
constraints, which is difficult to solve in general. The CPP arises in different
application areas such as automobile, textile, food, and chemical industries. For
this problem, we propose an iterative solution approach based on a bisection-type
algorithm on the radius of the surrounding container. At each iteration, the algorithm
solves two different mixed-integer linear programming formulations proposed for
a restricted and a relaxed version of the original problem over the discretized
surrounding container. In the restricted version, the centers of the circles can only
be located at the candidate points in each cell. By changing some properties of the
restricted version, we also construct a relaxed version of the original problem. We
also proposed an enhancement to the algorithm that exploits the special structure of
CPP. We perform a computational study in order to evaluate the performance of our
algorithm. We compare the results from our algorithm with those from commercial
global optimization solvers BARON and Gurobi that solve the original nonlinear
formulation, and also with the results of other methods from the literature. In
addition, we examine a case study from a real life problem from the automobile
industry, which is solved to a small optimality gap.
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ÖZET

ÇEMBER PAKETLEME PROBLEMİ İÇİN
AYRIKLAŞTIRMA TEMELLİ ÇÖZÜM YAKLAŞIMLARI

RABIA TAŞPINAR

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, 2021

Tez Danışmanı: Dr. BURAK KOCUK

Anahtar Kelimeler: çember paketleme problemi, ayrıklaştırma, küresel eniyileme

Bu tezde, verilen bir grup çemberi içeren en küçük konteynerin bulunmasını amaçlayan
çember paketleme problemi ele alınmıştır. Çember paketleme problemi konveks ol-
mayan ikinci dereceden kısıtlı karesel programlama problemi olarak ele alınabilir ve
zor bir problem olarak bilinir. Bu problem gıda, otomotiv, tekstil ve kimya sektör-
leri gibi çok farklı alanlarda uygulamalara sahiptir. İlgili problem için konteynerin
yarıçapı üzerinden yarılama metoduna dayalı yinelemeli bir çözüm yöntemi geliştir-
ilmiştir. Algoritmanın her adımında problemin kısıtlanmış ve gevşetilmiş versiy-
onu için ayrıklaştırılmış konteyner üzerinde tanımlanmış iki farklı karma tamsayılı
doğrusal programlama gösterimi oluşturulmuştur. Kısıtlanmış versiyonda, orijinal
problemde verilen çemberlerin merkezlerinin yerleştirilebileceği sürekli alan ayrık-
laştırma sonucu elde edilen karelerin köşe noktalarına kısıtlanmıştır. Benzer şekilde,
çember merkezlerinin aday kareler tarafından içerildiği varsayılarak gevşetilmiş ver-
siyon inşa edilmiştir. Ayrıca, çember paketleme probleminin kendine özgü özellikleri
kullanılarak bazı analitik çıkarımlar yapılmış ve geliştirilen yönteminin elde edilen bil-
gilerle beslenmesi sağlanmıştır. Geliştirdiğimiz algoritmanın başarımının belirlenmesi
için, literatürdeki örnekler kullanılarak bir deneysel çalışma gerçekleştirilmiş ve elde
edilen sonuçlar raporlanmıştır. Deneysel çalışmada, geliştirilen çözüm yönteminin
başarım analizi için orijinal problem için geliştirilen doğrusal olmayan programlama
gösterimi BARON ve Gurobi çözücüleri kullanılarak çözdürülmüş ve algoritmayla
karşılaştırılmıştır. Ayrıca, otomotiv endüstrisinden bir gerçek hayat problemi için
gerçekleştirilen çalışma detaylandırılmıştır.
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NOMENCLATURE

C set of circles to be packed
n the number of circles to be packed
C set of circles to be packed and the surrounding container, C = C ∪{0}
R the radius of the surrounding circle
(xc,yc) the coordinates of the center of circle c
rc the radius of circle c
δ the side length of each cell in discretization
(θ,θ) the representation of the guiding point in discretization corresponding

to the origin
I set of corner points of the cells in discretization, |I|= 2θ+ 1
Lc set of candidate points for locating circle c
zi,j,c zi,j,c = 1 if the center of circle c is located at a candidate point

denoted by (i, j), 0 otherwise
(ai,c, bj,c) ai,c = 1 and bj,c = 1 if the center of circle c is located at a candidate

point denoted by (i, j)
Nc,k set of the pairs of the minimum required number of cells on x and y

axes between the centers of the circles c and k to avoid overlapping of
these circles

πu1,u2,c,k πu1,u2,c,k = 1 if the centers of circles c and k are located at two points
which have at least u1 cells on x-axis, and u2 cells on y-axis between
them; 0 otherwise

wi,j,c wi,j,c = 1 if the center of circle c is included by the corresponding
region of the candidate point denoted by (i, j), 0 otherwise

Sc set of the candidate points whose corresponding cells include at least
one point where circle c can be located

(qi,c,pj,c) qi,c = 1 and pj,c = 1 if the center of circle c is included by the
corresponding region of the candidate point denoted by (i, j), 0
otherwise

xi



Oc,k set of the pairs of the minimum required number of cells on x and y
axes to locate the circles c and k without overlapping if circles c and
k are located to the farthest points of the corresponding two cells

Πu1,u2,c,k Πu1,u2,c,k = 1 if the centers of the circles c and k are located at two
points included by two cells which have at least u1 cells on x-axis,
and u2 cells on y-axis between the farthest two points of the corres-
ponding cells; 0 otherwise

D(3.1) set of all feasible solutions of the problem (3.1)
D(3.5) set of all feasible solutions of the formulation (3.5)
D(4.2) set of all feasible solutions of the problem (4.2)
Θ Θ = dlog2 (2θ)e
αc vector of binary decision variables corresponding to the x−axis posi-

tion of the candidate point where the center of the circle c is located
βc vector of binary decision variables corresponding to the y−axis posi-

tion of the candidate point where the center of the circle c is located
Fc subset of Lc used for determining all of the points in Lc,

Fc = {(g,h) ∈ Lc : g,h≥ 0,(g,h+ 1) /∈ Lc,(g+ 1,h) /∈ Lc}
ψi,j,c ψi,j,c = 1 if the center of the circle c is located at the point (g,h) such

that 2θ− i≤ g ≤ i and 2θ− j ≤ h≤ j where (g,h) ∈ Lc, 0 otherwise
γc vector of binary decision variables corresponding to the x−axis posi-

tion of the left-lower corner point of the region including the center of
the circle c

ωc vector of binary decision variables corresponding to the y−axis posi-
tion of the left-lower corner point of the region including the center of
circle c

Mc subset of Sc used for determining all of the points in Sc,
Mc = {(g,h) ∈ Sc : g,h≥ 0,(g,h+ 1) /∈ Sc,(g+ 1,h) /∈ Sc}

ηi,j,c ηi,j,c = 1 if the center of the circle c is located at the point (g,h) such
that 2θ− i≤ g ≤ i and 2θ− j ≤ h≤ j where (g,h) ∈ Sc, 0 otherwise

U upper bound for the radius of the surrounding container
L lower bound for the radius of the surrounding container
dc,k,l dc,k,l = 1 if the circles c,k, and l are adjacent to each other, 0 other-

wise for c,k, l ∈ C : c < k < l

fc,k,l fc,k,l = 1 if one of the three rays passing through the center of circle c
(or k or l) and the center of surrounding circle is included by the re-
gion between the other two rays, 0 otherwise for c,k, l ∈ C : c < k < l

∆c,k,l a parameter corresponding to the idle area between the circles c,k,
and l

xii



ρc,k,l the amount of reduction in the idle area if fc,k,l = 1, i.e.,
ρc,k,l = ∆0,c,k +∆0,k,l+ ∆c,k,l+π(rk)2

minc the minimum number of triples circle c can have as neighbours
maxc the maximum number of triples circle c can have as neighbours

xiii



1. INTRODUCTION

The circle packing problem (CPP) is a well-known NP-Hard problem with a wide range
of applications in different areas such as automobile, material cutting, nanotechnology,
wireless communication, and food industries. CPP is concerned with packing a given
number of different circles into a larger container. The shape of the container
can be a square, a rectangle, or a circle. The circles should be packed into the
container in such a way that circles do not overlap and each circle is entirely in the
container. Different objectives are considered depending on the application setting in
the literature including minimizing the area of the surrounding container, maximizing
the number of circles packed into a fixed-size container, or maximizing the minimum
distance between any two circles.

A well-known application area of CPP is packing circular shaped objects such as
bottles, cans, reels, or sheet roles into the smallest box (Castillo, Kampas & Pintér,
2008). Another example can be planting trees in a specific area while trying to
maximize the forest density within this area (Hifi & M’Hallah, 2009). Also, one can
consider facilities as circular areas in a facility location problem (Castillo et al., 2008).
Locating undesirable facilities (e.g., missile silos or nuclear facilities) or fast-food
franchises in a fixed-area while maximizing the minimum distance is also a specific
version of CPP. Another example can be detecting the optimal placement of modules
in a facility such that the cost of interactions is minimized (Castillo & Sim, 2010).
Also, cutting circular objects from a larger plate while trying to increase material
efficiency can be considered as a version of circle packing (Dowsland, Gilbert &
Kendall, 2007; Hifi & M’Hallah, 2004).

Moreover, determining the dimensions of cables, layers or pipes containing smaller
ones with different diameters used by telecommunication/electrical/oil companies is
another application of CPP (Wang, Huang, Zhang & Xu, 2002). A similar example
from the automobile industry is estimating the size of the hole on the body of the
car from which a bundle of wires passes to connect the car’s sensors to the display
board (Sugihara, Sawai, Sano, Kim & Kim, 2004). There are also some example
applications in nanotechnology, for instance, incorporating silver nanoparticles into
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the 3D silica colloidal film while trying to maximize the silver density (Li & Sun,
2009).

In this thesis, we consider CPP with the objective of minimizing the radius of the
surrounding container. Under the feasibility rules of CPP, Figure 1.1a shows a feasible
suboptimal solution for an instance of the problem consisting of three circles with
radii 0.5, 0.75 and 1.0 units where the surrounding container’s radius is 2 units. Two
possible infeasible configurations are also given in Figure 1.1: Figure 1.1b includes
two overlapping circles violating the non-overlapping feasibility rule; and Figure 1.1c
is an example where a circle is not fully contained in the container.

Figure 1.1 Example feasible and infeasible placements of circles for CPP.

(a) A feasible suboptimal
solution for CPP.

(b) An infeasible solution
where two circles overlap.

(c) An infeasible solution with
a partially included circle.

Within this framework, we propose an iterative solution approach based on a bisection-
type algorithm to solve the CPP considering the minimum radius objective. Our
solution procedure relies on discretizing the container into smaller cells, and iteratively
solves two mixed integer linear programming (MILP) formulations designed for a
restricted and a relaxed versions of the original problem. This allows us to utilize
commercial MILP solvers in order to certify upper and lower bounds for the minimum
radius of the surrounding container efficiently.

The remainder of the thesis is organized as follows. In Chapter 2, we review the
literature on different classifications of CPP. In Chapter 3, we give the precise
non-convex quadratically constrained quadratic programming formulation of the
CPP as well as the mixed integer linear programming formulations proposed for the
restricted and relaxed versions of the original problem. In Chapter 4, we explain the
proposed iterative solution approach based on a bisection-type algorithm considering
the minimum radius objective as well as the algorithmic enhancements designed
for this algorithm. Then, Chapter 5 presents a computational study analyzing
the performance of our algorithm and the proposed MILP formulations. Also,
we introduce a solution method to solve a real-life instance with 162 circles from
automobile industry as a case study (Sugihara et al., 2004). Finally, Chapter 6

2



concludes this thesis.
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2. LITERATURE REVIEW

As stated before, the objective of CPP depends on the application setting and is
typically one of the following: “minimizing the radius of the surrounding container”,
“maximizing the number of circles packed into a fixed-size container”, or “maxi-
mizing the minimum distance between any two circles”. In Section 2.1, we will
briefly summarize the circle packing literature considering the objectives mentioned
above, except for minimizing the radius of the surrounding container objective or
its equivalents. Then, we will summarize the studies considering the minimization
of the surrounding container’s radius objective, or equivalent ones in Section 2.2.
The vast majority of the CPP literature focuses on developing heuristic methods.
In particular, most of the studies include a heuristic algorithm designed for first
constructing a feasible packing of the circles, and then improving it with a search
algorithm, see e.g. Francesco, Cerrone & Cerulli (2014); Huang, Li, Jurkowiak, Li &
Xu (2003); Huang, Li, Li & Xu (2006); Zeng, Yu, He, Huang & Fu (2016).

2.1 Circle Packing Literature Considering Other Objectives

In this section, we will review the related literature considering different objectives
such as maximizing the minimum pairwise distance, maximizing the number of
circles placed in a fixed-size container. A common objective in CPP is maximizing
the minimum pairwise distance between circles (Drezner & Erkut, 1995; Locatelli
& Raber, 2002; Stoyan & Yaskov, 2012; Szabó, 2000). Drezner & Erkut (1995)
compare the problem of packing p circles into a fixed-size container by maximizing
pairwise distances between circles and the p-dispersion problem, and proves that
these problems are equivalent (p-dispersion problem is the problem of locating p-
points such that pairwise distance between them is maximized). Maranas, Floudas
& Pardalos (1995) formulate this problem as a max-min optimization problem, and
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generates initial solutions to span a large part of parameter space since their solver
(MINUS 5.3) does not guarantee global optimality. For selecting the initial points,
the unit square is divided into a number of equal rectangles whose sides are equal or
almost equal, and then, uniformly distributed random points are generated inside
every rectangle. These points are initial candidate points for placing the centers of
the circles to construct a solution. Then, the proposed formulation for the max-min
optimization problem is solved for locating n circles through the initial candidate
points to obtain possible configurations. Locatelli & Raber (2002) examine the
structure of optimal solutions of the same problem.

For the same problem, Szabó (2000) uses a grid structure in the stochastic algorithm
they propose. In the algorithm, the unit square is divided into sub-rectangles. Then,
the center of the first circle is placed at one of corners of the rectangles, and others
are placed to the cross corners of the corresponding rectangles one by one. This
study also proves that locating n equal circles into a square while maximizing the
circles’ radius are equivalent to putting n circles in a square such that the minimum
distance between any pair of them is maximized.

Maximizing the number of circles placed in a fixed-size container is another objective
considered in CPP. Galiev & Lisafina (2013) try to pack the maximum number of
equal circles into a given circle. In this study, a set of candidate points is constructed
where the centers of the circles to be placed at, after a construction procedure; then, a
maximal number of circles is determined by considering the candidate points. López
& Beasley (2016) consider the CPP where the objective is maximizing the value of
packed circles. If the values of circles are equal; then, the objective is equivalent
to maximizing the number of circles. The proposed solution method starts with
a number of candidate points where the centers of circles are located, and tries
to identify the subset of circles to be packed. This algorithm iteratively solves a
formulation packing the circles to the candidate points and a relaxed version which
is a modified linear programming relaxation with some additional constraints. It
is also proved that an optimal solution for the maximizing the number of circles
consists of the first K circles (for some K) if the circles are listed according to their
radii in an increasing order.

Litvinchev & Ozuna (2014) study the same problem by using an integer programming
formulation. In their work, the surrounding container is divided into cells, and the
centers of cells are considered as candidate points to locate circles’ centers. Two
valid inequalities are given for the introduced integer programming formulation, and
five linear programming relaxations are constructed involving different subsets of
constraints. Then, both the integer programming and linear programming relaxations
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are solved by using CPLEX 12.5. This study considers both the original CPP and
the nested CPP in which packing a circle into another packed circle is possible. In a
follow-up study, Litvinchev, Infante & Ozuna Espinosa (2015b) present a new format
for the constraints to eliminate some of the constraints proposed in a previous study
(Litvinchev & Ozuna, 2014). Another set of valid inequalities are also introduced
in Litvinchev, Infante & Ozuna Espinosa (2015a). These valid inequalities are a
constraint set that ensures each grid point is covered by only one circle and similarly
a new set of constraints to eliminate the nested ones proposed by Litvinchev &
Ozuna (2014).

In the literature, another objective consideered is minimizing the total weighted
pairwise distance between circles. An example of such studies is (Castillo & Sim,
2010). In this study, the authors of the paper formulate the facility layout problem
as a circle packing problem where the departments are circular shaped, and this
problem is formulated as an unconstrained optimization problem by using the
augmented Lagrangian Multiplier method. The proposed method starts with a
penalty multiplier and an initial multiplier vector, and updates these parameters by
using a procedure within the solution method. The solution is found by iteratively
solving the unconstrained problem with different penalty multipliers and multiplier
vectors. Layouts for different instances including up to 30 departments are given in
this paper.

Torres, Marmolejo & Litvinchev (2020) consider CPP where the objective is maximiz-
ing the weighted profit of packed circles; and the authors formulate this problem as
an integer programming. Then, a binary monkey algorithm, an algorithm designed
for the knapsack problems, is presented to solve this problem. The binary monkey
algorithm is a population-based algorithm. It starts with an initial population, and
then the algorithm tries to improve the initial solution by using different methods:
climbing process (in which two random vectors are used to generate two new popula-
tions from the initial population), watch-jump process (in which the better solutions
are detected within the neighborhood of the current population). For the proposed
algorithm, the surrounding container is divided into grids, and the algorithm tries
to locate the centers of circles to the centers of grids. This study proposes that the
final solutions obtained from the algorithm can be used as initial solutions for the
exact solution methods to eliminate some of the initial steps of optimization process.
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2.2 Literature on Minimizing the Radius of the Surrounding Container

In the literature, there are different studies considering the same problem as ours,
or the equivalent maximum density problem which is the problem of maximizing
the density of circles in a surrounding circle (Hifi & M’Hallah, 2009). Most studies
include an algorithm designed for first constructing a feasible packing of the circles,
and then improving the feasible solution with a search algorithm. Huang et al. (2003)
proposes such an algorithm including two-level search strategy for packing unequal
circles. In this study, the authors assume that m of n circles are already placed
into the circular container, and then the remaining (n−m) circles are packed. Any
feasible packing of an unpacked circle is defined as a “legal action”, and the legal
action with maximum benefit is selected to pack the corresponding unpacked circle
accordingly into the last configuration.

Moreover, Huang, Li, Akeb & Li (2005) and Huang et al. (2006) use the same method
to pack unequal circles into rectangular and circular containers, respectively. The
common method in these two studies consists of two algorithms: a basic heuristic
based on the maximal hole degree rule, and a self-look-ahead strategy. Similar to a
previous study (Huang et al., 2003), the method starts with an initial configuration
with a subset of circles, and the first part of this method is also the same. However,
the rest of the method is different. There is a new term, “corner placement”, which
is the term used for the circle with at least two neighbor circles; and the method
selects the configuration for an unpacked circle which corresponds to the corner
placement with the maximum benefit. Sugihara et al. (2004) study a circle packing
problem arising in the automotive industry where design engineers should drill holes
on the body of the automobile through which a bundle of wires passes to connect the
sensors to the display board. These holes should be large enough for the bundle of
wires to pass, however, unnecessary largeness of these holes will weaken the body of
the automobile unnecessarily. In this study, the problem of estimating the smallest
size of the hole is examined.

There are also some studies performing Tabu search to solve CPP. For instance,
Huang, Zeng, Xu & Fu (2012) introduce a population based solution approach. The
algorithm starts with a member of the initial population including the best k-solution,
and perturbs it by adaptive Tabu search, and updates the population accordingly.
As another study, Francesco et al. (2014) propose another algorithm based on a
multi-start technique in which the starting solutions are obtained by a Tabu search
algorithm. In this paper, different instances containing from 5 to 50 circles are solved,
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and the results are compared with the best known solutions which show that the
gaps are less than 1% for all instances.

Zeng et al. (2016) perform a Tabu Search and Variable Neighborhood Descent proce-
dure. The procedure assigns a value for each solution, named as the potential energy,
and compares solutions by using the energy value and the radius of the surrounding
circle for any solution. There are three phases of this approach: continuous opti-
mization, local search, and diversification. Instances with up to 50 circles are solved,
and the results are compared with the best known solutions. The authors manage to
improve the results in some of them.

Another study uses a reduced gradient method, the concept of active inequalities and
the Newton method to pack circles into a strip by starting with different extreme
points (Stoyan & Yas’kov, 2004). For a square container, an action-space-based
global optimization method is introduced in another study, (He, Huang & Yang,
2015). Huang & Ye (2011) propose a quasi-physical global optimization method for
the problem of packing a given set of equal circles into a larger circle.

Among all the discussed literature, none of the algorithms verifies the optimality of
the solutions obtained. The quality of the solutions is determined by only comparing
them against the best-known results from the literature since none of the algorithms
proposes a lower bound for the radius of the surrounding container. According to
our preliminary research, it is hard to determine a tight lower bound for the CPP.
In this study, we introduce a lower bound for the radius of the container as well as
improve it during the iterations of our proposed algorithm.
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3. PROBLEM FORMULATION

In this chapter, we discuss the formulations introduced for the CPP. Within this
chapter, we assume that the surrounding container is circular-shaped; however, our
approach can be applied to other container shapes as well. First, we introduce
the precise mathematical formulation of CPP. We denote the set of circles by
C = {1, · · · ,n}, and the radius of circle c ∈ C by rc. We assume, without loss of
generality, that the center of the surrounding circle is located at the origin, and R is
a decision variable denoting its radius. The center of circle c is represented by the
decision variables (xc,yc). Then, CPP can be modelled as the following non-convex
quadratically constrained program:

min R(3.1a)

s.t. (xc−xk)2 + (yc−yk)2 ≥ (rc+ rk)2 c,k ∈ C : c 6= k(3.1b)

x2
c +y2

c ≤ (R− rc)2 c ∈ C(3.1c)

xc, yc, R ∈ R c ∈ C.(3.1d)

The objective of the problem (3.1) is the minimization of the size of the surrounding
circle. Constraint (3.1b) ensures that circles c and k do not overlap. Constraint (3.1c)
satisfies that circle c is totally included by the surrounding circle where Constraint
(3.1d) is the domain constraint for the decision variables.

In an optimal solution of the problem (3.1), the centers of circles can be located
in anywhere in R2 space. However, this problem is hard to solve in the continuous
space by using the global solvers, such as BARON and Gurobi. Hence, we discretized
the continuous solution space into smaller squares in order to design our algorithm.
Then, we constructed a restricted and a relaxed versions of the problem (3.1). MILP
formulations are introduced based on the discretization of the surrounding circle into
smaller squares for the restricted and relaxed versions whose details are given in the
following sections.
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The corner points of the squares are the guiding points within the MILP formulations
to assign the center of each circle c, and these assignments can be represented by
utilizing linear or logarithmic number of binary decision variables in the size of the
problem.

Figure 3.1 The representation of the guiding points with different number of decision
variables.

(a) Linear number of variables.
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(b) Logarithmic number of variables.
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To clarify the definition of these variables, consider the example given in Figure 3.1.
If these points are represented by using linear number of binary decision variables
like given in Figure 3.1a, then, two decision variables are defined for each row and
each column number, i.e., totally 14 decision variables are defined to represent these
points for each circle. For instance, if a circle is located at the black point in Figure
3.1a, then, the decision variables defined for row 5 and column 4 are assigned as one
where the others are assigned as zero. On the other hand, totally 6 binary decision
variables are defined for each circle for the example given in Figure 3.1b by using
logarithmic number of decision variables. According to this representation, the center
of the corresponding circle is assigned to the black point if the corresponding six
binary decision variables are assigned as ((1,0,1);(1,0,0)).

According to the representation of these points, we will provide two types of MILP
formulations for CPP based on the representation of the points resulting from
discretizing the surrounding circle into small square cells: i) linear-sized discretization
formulations given in Section 3.1 (including linear number of decision variables
and constraints in the number of cells), and ii) logarithmic-sized discretization
formulations introduced in Section 3.2 (including logarithmic number of decision
variables in the number of cells and linear number of constraints).

Each discretization scheme is accompanied by a restricted and a relaxed version
under the assumption that a candidate radius for the surrounding circle is given
as R. In the restricted version, we will consider the corners of each cell as candidate
points to locate the centers of circles. If feasible, this solution will give a feasible
solution for CPP, and an upper bound of at most R for the radius of the surrounding
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circle in problem (3.1). In the relaxed version, we will let the centers of circles to
be located at any point in a cell. In this version, we will allow any pair of circles
to overlap in a well-defined and limited manner so that the resulting model gives a
systematic way to construct a relaxation for CPP. If infeasible, the relaxed model
will give a lower bound of R for the radius of the surrounding circle in problem (3.1).

We will now give the details of each formulation in the following sections.

3.1 Linear-Sized Discretization Formulations

In this formulation, we will first divide the smallest square containing the surrounding
circle into small square-shaped cells. The corners of these cells are “guiding points”
to construct the formulations. The side length of each cell is given by the parameter
δ, and we assume that the diagonal size of each cell is smaller than the radius of
the smallest circle, i.e., δ

√
2<min{r1, · · · , rn}. If a corner of any cell is out of the

surrounding circle, we can eliminate this point from our set of candidate points since
the size of each cell is smaller than each circle. We give an example discretization
for a circular container in Figure 3.2a.

Figure 3.2 Example discretizations of the container and example placements of circles.

(a) Candidate points
in discretization.

(b) An infeasible configura-
tion.

(c) A feasible configuration
with smaller cells.

Remark 3.1. There are two possible definitions of binary variables to represent the
guiding points: (i) introducing a binary variable for each guiding point, (ii) defining a
pair of binary variables to represent x-axis and y-axis positions of each guiding point.
Our preliminary experiments have revealed that the formulations constructed by the
second approach are better in terms of solution times than the naïve formulations
designed by the first approach.

According to the interpretation of the guiding points stated in Remark 3.1, we
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will introduce linear-sized formulations for the restricted and relaxed versions of
problem (3.1).

3.1.1 Restricted Version

In this formulation, we treat the guiding points as candidate points to locate the
centers of circles. We model the cells as square-shaped objects. We define the set I
to represent the corners of the cells on the x-axis (as well as on the y-axis) where
I = {0,1, · · · ,2θ} and |I| = 2θ+ 1. The lower left corner of the discretized region
is denoted by (0,0). To simplify the notation, the center of the surrounding circle
is assumed to be at the origin of the coordinate system which is represented by
(θ,θ). Hence, the coordinates of the candidate point represented by (i, j) are given
with ((i− θ)δ,(j− θ)δ). Also, we select the parameters θ and δ such that θδ = R.
Then, we have a total of (2θ+ 1)2 guiding points within the surrounding circle with
radius R, and a subset of these points are candidate points to locate the center of
circle c ∈ C. An example illustration of the introduced notations is demonstrated
in Figure 3.2c, where δ = 0.1, θ = 18, and I = {0,1, · · · ,36} with corresponding axis
coordinates {−1.8, · · · ,1.7,1.8}, and the smallest circle is located at the candidate
point represented by (9,9) at (−0.9,−0.9).

Let us illustrate the main features of the formulation with an example. By using the
candidate points, subsets of the bullets in Figure 3.2a, we can obtain a restricted
formulation which correctly models all constraints of the original problem. In Figures
3.2b and 3.2c, we will try to pack three circles with radii 1 unit, 0.75 units, 0.5 units,
respectively, into a circle with radius 1.8 units. The cell sizes in these figures are
0.3 and 0.1 units, respectively. Depending on the granularity of the discretization,
it may not be possible to find any feasible configuration for a given radius for the
surrounding circle as given in Figure 3.2b. On the other hand, a finer grid with
smaller cells must enable to find a feasible solution for the original problem, as in
Figure 3.2c, as long as the original problem is feasible on R2.

As we stated in Remark 3.1, we introduce two different perspectives on defining the
binary decision variables to represent each candidate point. In the first perspective,
a binary variable zi,j,c is defined where it is assigned one if the center of circle c is
located at the candidate point (i, j), i, j ∈ I for any circle c ∈ C. It is clear that the
number of decision variables increases linearly with the number of cells, hence, the
name of the formulation.
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Any two circles cannot be placed at two candidate points if the corresponding circles
overlap, i.e., the corresponding binary decision variables cannot be one at the same
time which will be banned in the proposed formulation. Moreover, to conclude with
a feasible configuration for a given circle c, we know that the smallest distance of any
candidate point to the boundary of the surrounding circle should be at least rc units.
Then, the corresponding subset of such candidate points for circle c are denoted by
set Lc, i.e., Lc = {(i, j) ∈ I2 : ((θ− i)δ)2 + ((θ− j)δ)2 ≤ (R− rc)2}. Hence, we can
eliminate the candidate points not included by Lc in this formulation. Then, the
naïve formulation including the binary variables zi,j,c is given as follows:

∑
(i,j)∈Lc

zi,j,c = 1 c ∈ C(3.2a)

zi,j,c+ zg,h,k ≤ 1 c,k ∈ C; (i, j) ∈ Lc,(g,h) ∈ Lk :

∥∥∥∥∥∥
i−g
j−h

∥∥∥∥∥∥
2
<
rc+ rk
δ

(3.2b)

zi,j,c ∈ {0,1} c ∈ C,(i, j) ∈ Lc.(3.2c)

All circles are packed into the surrounding circle with the help of Constraint (3.2a).
Constraint (3.2b) ensures the non-overlapping packing of the circles. Constraint
(3.2c) is the domain constraint for the decision variables zi,j,c.

In the second perspective mentioned in Remark 3.1, we define a pair of binary
decision variables, ai,c and bj,c, to denote the x-axis and the y-axis positions to
represent the candidate points. The decision variable ai,c (bj,c) is assigned one if the
center of circle c is located at a candidate point whose x-axis (y-axis) position is
denoted by i (j). Then, if ai,c and bj,c take value one, it means that the circle c’s
center is located at the candidate point (i, j). In this formulation, the number of
decision variables increases linearly with the sum of the number of cells on x and y
axes. However, the number of decision variables decreases with this perspective. For
instance, the number of decision variables is 18 instead of 69 for the discretization
given in Figure 3.2a.

For ensuring the feasibility of the original problem, the overlap of two circles should
be banned. The candidate points to place the centers of the circles c and k such
that c < k should be far enough to avoid the overlap of these circles. We can focus
on the pairs of the minimum required number of cells on x and y axes between the
centers of the circles c and k to avoid overlapping of these circles. Hence, we will
define another set, Nc,k, defined as follows:
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Nc,k =
{

(u1,u2) : u1,u2 ∈ I, u1,u2 ≥ 0, (u1 δ)2 + (u2 δ)2 ≥ (rc+ rk)2,(
u1 δ− δ

)2
+ (u2 δ)2 < (rc+ rk)2, (u1 δ)2 +

(
u2 δ− δ

)2
< (rc+ rk)2

}
.

In other words, the set Nc,k includes the pairs (u1,u2) such that the diagonal of
the rectangle with side lengths u1 and u2 is larger than the number (rc+ rk)/δ. In
addition to this, there is no other rectangles which is totally included by the rectangle
with side lengths u1 and u2 with a diagonal size larger than (rc+ rk)/δ.

In Figure 3.2b, assume that the largest circle is denoted by index 1, the second
largest circle is denoted by index 2, and the smallest one is denoted by index
3. Example illustration of sets N1,2,N1,3,N2,3 can be given as follows for Fig-
ure 3.2b: N1,2 = {(0,6),(4,5),(5,4),(6,0)},N1,3 = {(0,5),(3,4),(4,3),(5,0)},N2,3 =
{(0,5),(2,4),(3,3),(4,2),(5,0)}. With the help of the set Nc,k, we can eliminate the
set of pairs of the guiding points where the centers of circles c and k cannot be
assigned at the same time.

Before introducing the corresponding formulation, we need one more binary variable:
πu1,u2,c,k. With the help of πu1,u2,c,k and the set Nc,k, we can ensure that any two
circles are non-overlapping by stating the sum of all such variables is equal to 1 for
each c,k ∈ C : c < k, and the decision variable πu1,u2,c,k can be assigned one if the
centers of circles c,k are located at two points which have at least u1 cells on x-axis,
and u2 cells on y-axis between them, i.e., (u1,u2) ∈Nc,k

Then, formulation (3.3) including the binary decision variables ai,c, bj,c and πu1,u2,c,k

is given as follows:

∑
i∈I :∃j,(i,j)∈Lc

ai,c = 1 c ∈ C(3.3a)

∑
j∈I :∃i,(i,j)∈Lc

bj,c = 1 c ∈ C(3.3b)

∑
i∈I

i ai,c −
∑
g∈I

g ag,k ≥
∑

(u1,u2)∈Nc,k

u1πu1,u2,c,k c,k ∈ C : c < k(3.3c)

∑
j∈I

j bj,c −
∑
h∈I

h bh,k ≥
∑

(u1,u2)∈Nc,k

u2πu1,u2,c,k c,k ∈ C : c < k(3.3d)

∑
(u1,u2)∈Nc,k

πu1,u2,c,k = 1 c,k ∈ C, c < k(3.3e)

ai,c ∈ {0,1} c ∈ C, i ∈ I(3.3f)

bj,c ∈ {0,1} c ∈ C, j ∈ I(3.3g)

πu1,u2,c,k ∈ {0,1} (u1,u2) ∈Nc,k.(3.3h)
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All circles are packed into the surrounding circle with the help of Constraints (3.3a)
and (3.3b). Constraints (3.3c)-(3.3e) and the sets Nc,k are introduced for ensuring
the non-overlapping packing of the circles. Constraints (3.3f)-(3.3h) are domain
constraints for the decision variables.

3.1.2 Relaxed Version

In Section 3.1.1, if a circle is assigned to a candidate point, it means that the center
of corresponding circle is located exactly at the corresponding candidate point. In
relaxed version, assigning a circle to a candidate point is interpreted differently
from the interpretation given in Section 3.1.1: Assigning a circle to a candidate
point means locating its center to a point included by the region denoted with the
candidate point. The region represented with a candidate point is the cell whose
lower-left corner point is the corresponding candidate point.

Figure 3.3 Example placements of circles for the relaxed version.

(a) Candidate regions. (b) An infeasible configuration. (c) A feasible configuration.

For instance, the candidate regions indicated with dashed lines are denoted by their
lower-left corner points, i.e., the points at (3,4), (4,4), and (5,3), respectively from
left to right in Figure 3.3a. However, we cannot identify the exact location of the
center of any circle even if we know the containing cell in this version.

The constructed relaxed version will cover all feasible solutions for the original
problem as well as a subset of infeasible solutions; however, we limit the subset of
allowed infeasible solutions. If two circles do not have any feasible configuration for
two candidate regions, locating the circles to the corresponding candidate regions
is banned in this formulation. This is guaranteed as follows: we eliminate locating
two circles to two candidate regions even if the farthest distance between these two
regions is less than the sum of the radii of the corresponding circles to exclude such
infeasible configurations.
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As an example, we can look at the candidate regions given in Figure 3.3a. If we
consider locating the largest circle to the candidate region at the middle and the
second largest circle to the candidate region at the rightmost, it is also an infeasible
configuration for the proposed relaxed version since the farthest distance of these
regions (1.58 units) is smaller than the sum of their radii (1.75 units). However, if the
candidate region containing the center of the largest circle is changed to the candidate
region at the leftmost, then it will be feasible for the relaxed version since the farthest
distance between the corresponding regions (1.8 units) is greater than the sum of
their radii. Although the introduced relaxed version prevents some explicit infeasible
configurations, it only considers two circles at the same time. Hence, placing all
circles without any overlapping may not be possible for a feasible solution of the
relaxed version.

By considering two different perspectives stated in Remark 3.1, we propose two
different formulations for the relaxed version as well. In the first perspective, we
introduce the binary decision variable wi,j,c similar to the variable zi,j,c. If the center
of circle c is contained in the cell denoted by the point (i, j), then, wi,j,c will be
assigned one. We also define the set Sc as follows:

Sc =

i, j ∈ I :

∥∥∥∥∥∥
i− θ
j− θ

∥∥∥∥∥∥
2
≤ R− rc

δ
or

∥∥∥∥∥∥
i− θ+ 1
j− θ+ 1

∥∥∥∥∥∥
2
≤ R− rc

δ

.
In the definition of Sc, we investigate the coordinates of the cell (i, j)’s closest point
to the center of the surrounding circle. More precisely, the set Sc includes the points
corresponding to the cells with at least one point included by this cell whose distance
to the boundary of the surrounding circle is at least rc. Then, the corresponding
formulation containing wi,j,c is given below:

∑
(i,j)∈Sc

wi,j,c = 1 c ∈ C(3.4a)

wi,j,c+wg,h,k ≤ 1 c,k ∈ C; (i, j) ∈ Sc,(g,h) ∈ Sk :

∥∥∥∥∥∥
 |i−g|+ 1
|j−h|+ 1

∥∥∥∥∥∥
2

<
rc + rk

δ
(3.4b)

wi,j,c ∈ {0,1} c ∈ C,(i, j) ∈ Sc.(3.4c)

Similarly, Constraint (3.4a) ensures that all circles are packed. The overlapping of
circles is restricted by Constraint (3.4b) where Constraint (3.4c) is domain constraint
for decision variable wi,j,c.

As stated in Remark 3.1, formulation (3.4) is the naïve formulation. By using the
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second perspective, we introduce the binary decision variables qi,c and pj,c similar
to the variables ai,c and bj,c. If the center of circle c is contained by the candidate
region denoted by the point (i, j), then, the variables qi,c and pj,c will be assigned one.
Similarly, the number of decision variables also increases linearly with the number of
cells in these formulations.

By using a similar idea with the restricted version, we define another set Oc,k similar
to Nc,k for the pairs of circles c,k. The set Oc,k includes the pairs of the minimum
required number of cells where the farthest distance of the cells between the centers
of circles c,k are bigger than the sum of their radii. This set is defined as follows:

Oc,k =
{

(u1,u2) : u1,u2 ∈ I\{θ}, u1,u2 ≥ 0, (u1 + 1)2 + (u2 + 1)2 ≥ ((rc + rk)/δ)2

(u1δ)2 +((u2 +1)δ)2 < (rc +rk)2, ((u1 +1)δ))2 +(u2δ)2 < (rc +rk)2
}

.

The defined set Oc,k includes the pairs (u1,u2) such that the diagonal of the rectangle
with side lengths (u1 + 1) and (u2 + 1) is larger than (rc + rk)/δ. Similarly, there
is no other rectangles with diagonal length larger than (rc+ rk)/δ which is totally
included in this rectangle. Also, if centers of circles c, k ∈ C are included in two
cells whose farthest distance is at least u1 cells on x-axis and u2 cells on y-axis, the
corresponding proposed variable Πu1,u2,c,k will be one. With the help of the sets Oc,k
and the variables Πu1,u2,c,k, we eliminate the obvious infeasible solutions of CPP. In
the second approach, the resulting formulation is as follows:

∑
i∈I:∃j,(i,j)∈Sc

qi,c = 1 c ∈ C(3.5a)

∑
j∈I:∃ i,(i,j)∈Sc

pj,c = 1 c ∈ C(3.5b)
∣∣∣∣∣∣
∑
i∈I

i qi,c −
∑
g∈I

g qg,k

∣∣∣∣∣∣≥
∑

(u1,u2)∈Oc,k

u1Πu1,u2,c,k c,k ∈ C : c < k(3.5c)

∣∣∣∣∣∣
∑
j∈I

j pj,c −
∑
h∈I

h ph,k

∣∣∣∣∣∣≥
∑

(u1,u2)∈Oc,k

u2Πu1,u2,c,k c,k ∈ C : c < k(3.5d)

∑
(u1,u2)∈Oc,k

Πu1,u2,c,k = 1 c,k ∈ C : c < k(3.5e)

qi,c ∈ {0,1} c ∈ C, i ∈ I(3.5f)

pj,c ∈ {0,1} c ∈ C, j ∈ I(3.5g)

Πu1,u2,c,k ∈ {0,1} (u1,u2) ∈ Oc,k.(3.5h)

Constraints (3.5a) and (3.5b) ensure that all circles are packed into the surrounding
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container. Since any two circles can intersect, Constraints (3.5c)-(3.5e) restrict the
allowable intersection by using the same idea which forbids to place circles to two
cells whose maximum distance is less than the sum of the radii of corresponding
circles.

Now, we will prove that this formulation is a relaxed version of the original problem.
Assume that the set of all feasible solutions of the problem (3.1) as D(3.1), and those
of formulation (3.5) as D(3.5).

Theorem 3.1. For each feasible solution in D(3.1), there is a corresponding feasible
solution in D(3.5).

Proof. Take an arbitrary solution {∀c ∈ C,(x∗c ,y∗c )} ⊂ D(3.1) of the problem (3.1).
Construct a solution for formulation (3.5) such that if i∗c ≤ x∗c < (i∗c + 1) and j∗c ≤
y∗c < (j∗c + 1), then assign pi∗c ,c and qj∗c ,c one for each circle c ∈ C.

Consider circles c and k with coordinates (x∗c ,y∗c ) and (x∗k,y∗k) in the feasible solution
of the problem (3.1). In the constructed solution for formulation (3.5), pi∗c ,c = 1,
qj∗c ,c = 1 such that i∗c ≤ x∗c < (i∗c + 1) and j∗c ≤ y∗c < (j∗c + 1); and pg∗k,k = 1, qh∗k,k = 1
such that g∗k ≤ x∗k < (g∗k + 1) and h∗k ≤ y∗k < (h∗k + 1), and the remaining variables are
assigned zero. Hence, Constraints (3.5a)-(3.5b) are satisfied.

The differences between corresponding coordinates are as follows:

i∗c−g∗k−1< x∗c−x∗k < i∗c−g∗k + 1 =⇒ x∗c−x∗k < |i∗c−g∗k|+ 1,

j∗c −h∗k−1< y∗c −y∗k < j∗c −h∗k + 1 =⇒ y∗c −y∗k < |j∗c −h∗k|+ 1.

Since the farthest distance between the candidate regions denoted by the points
(i∗c , j∗c ) and (g∗k,h∗k) will be ‖(|i∗c−g∗k|+1, |j∗c −h∗k|+1)‖2, there is a pair (u1,u2)∈Oc,k
such that i∗c − g∗k ≥ u1, j∗c −h∗k ≥ u2. For the corresponding (u1,u2) value, assign
Πu1,u2,c,k as one. Then, Constraints (3.5c)-(3.5e) are satisfied.

Since the circles c and k are selected arbitrarily, the same results are valid for any
two circles. As a result, the constructed solution is also feasible for formulation (3.5).
Since the feasible solution of formulation (3.1) is arbitrarily selected, then, there is a
corresponding feasible solution of the formulation (3.5) for any feasible solution of
the problem (3.1).

By Theorem 3.1, formulation (3.5) is a relaxed version of problem (3.1).
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3.2 Logarithmic-Sized Discretization Formulations

In this section, we define the logarithmic version of decision variables to decrease the
number of decision variables as introduced in (Vielma, Ahmed & Nemhauser, 2010a)
and (Vielma, Ahmed & Nemhauser, 2010b). In the reformulation, we will define a
parameter; Θ is such that Θ = dlog2 (2θ)e. We will now introduce the logarithmic-sized
formulations corresponding to the restricted and the relaxed versions of problem (3.1).

3.2.1 Restricted Version

In this version, we define two vectors of binary decision variables corresponding to
the candidate points defined in Section 3.1: αc and βc. The binary column vector
corresponds to the corner point of cell on x-axis (y-axis) in base 2 where the center of
circle c is located is denoted by αc = (αc,1,αc,2, · · · ,αc,Θ) (βc = (βc,1,βc,2, · · · ,βc,Θ))
for the circle c ∈ C. We also introduce another set Fc defined as follows:

Fc = {(g,h) ∈ Lc : g,h≥ 0,(g,h+ 1) /∈ Lc,(g+ 1,h) /∈ Lc}.

The set Fc is defined for determining all of the points in Lc with the help of a
subset of the points in Lc. This set is defined with another decision variable ψi,j,c for
ensuring that the circle c is totally included by the surrounding circle. Assume that
the center of circle c is located at the point (g,h). Then, the decision variable ψi,j,c is
assigned value of one if 2θ− i≤ g ≤ i,2θ− j ≤ h≤ j, i.e., (g,h) ∈ Lc. In other words,
the center of circle c is assigned to a point included in the set Lc, i.e., the circle c is
fully contained in the surrounding circle. Then, the corresponding formulation is
given as follows:

Θ∑
t=1

2(t−1) (αc,t−αk,t)≥
∑

(u1,u2)∈Nc,k

u1 πu1,u2,c,k c,k ∈ C : c < k(3.6a)

Θ∑
v=1

2(v−1) (βc,v−βk,v)≥
∑

(u1,u2)∈Nc,k

u2 πu1,u2,c,k c,k ∈ C : c < k(3.6b)

∑
(u1,u2)∈Nc,k

πu1,u2,c,k = 1 c,k ∈ C : c < k(3.6c)
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∣∣∣∣∣∣
Θ∑
t=1

2(t−1) αc,t

∣∣∣∣∣∣≤
∑

(i,j)∈Fc

i ψi,j,c c ∈ C(3.6d)
∣∣∣∣∣∣

Θ∑
v=1

2(v−1) βc,v

∣∣∣∣∣∣≤
∑

(i,j)∈Fc

j ψi,j,c c ∈ C(3.6e)

∑
(i,j)∈Fc

ψi,j,c = 1 c ∈ C(3.6f)

αc,βc ∈ {0,1}Θ c ∈ C(3.6g)

πu1,u2,c,k ∈ {0,1} c,k ∈ C, (u1,u2) ∈Nc,k(3.6h)

ψi,j,c ∈ {0,1} (i, j) ∈ Fc, c ∈ C.(3.6i)

In this formulation, Constraints (3.6a)-(3.6c) satisfy the non-overlapping feasibility
rule, and Constraints (3.6d)-(3.6f) ensure that each circle is fully contained by the
surrounding circle. Finally, Constraints (3.6g)-(3.6i) are the domain restrictions for
the decision variables.

As an example illustration of the notation, we can look at the point denoted by (5,8)
where the center of the largest circle is located in Figure 3.2b. Then, the decision
variables α1 and β1 are assigned as α1 = (1,0,1,0) and β1 = (0,0,0,1) where θ = 6
and Θ = dlog2 12e= 4. Also, the decision variables ψ7,8,1 = 1 and ψ8,7,1 = 0 since the
center of circle 1 is assigned to the point (5,8) where the set F1 = {(7,8),(8,7)}.

Theorem 3.2. Formulation (3.3) is equivalent to formulation (3.6).

Proof. Assume that D(3.6) is the set of feasible solutions of formulation (3.6).

For the forward direction, start from a feasible solution of formulation (3.3) where
the center of circle c is located at the point (i∗c , j∗c ) for each circle c ∈ C. Then,
ai∗c ,c = 1, bj∗c ,c = 1 and the remaining decision variables are assigned zero for each
circle c. Then, construct a solution for formulation (3.6) by selecting the decision
variables αc,βc for each circle c as follows:

∑
i∈I

iai,c = ic =
 Θ∑
t=1

2(t−1)αc,t

 ,(3.7a)

∑
j∈I

j bj,c = jc =
 Θ∑
v=1

2(v−1) βc,v

 .(3.7b)

In addition, assign the same values in formulation (3.6) for the variables πu1,u2,c,k

given in formulation (3.3). Since locating circles c and k to candidate points at
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(i∗c , j∗c ) and (i∗k, j∗k) is feasible, Constraints (3.6a)-(3.6c) are satisfied by the equalities
(3.7a) and (3.7b). Moreover, since (i∗c , j∗c ) ∈ Lc for each circle c, assign ψg∗c ,h∗c ,c = 1
such that g∗c = max{i∗c ,2θ− i∗c} and h∗c = max{j∗c ,2θ− j∗c}; and the remaining ones
as zero. Then, by the definition of the sets Lc’s andMc’s, Constraints (3.6d)-(3.6f)
are satisfied. Then, the constructed solution is feasible for formulation (3.6).

For the backward direction, start from a feasible solution for formulation (3.6)
where the vectors α∗c ,β∗c are given, and πu∗1,u

∗
2,c,k

= 1,ψg∗c ,h∗c ,c = 1 for each circle c.
Calculate (i∗c , j∗c ) satisfying the equalities (3.7a) and (3.7b) for αc = α∗c ,βc = β∗c . As a
result, assign one to the decision variables ai∗c ,c, bj∗c ,c corresponding to the coordinates
(i∗c , j∗c ) and zero to other variables in the constructed solution. Then, (i∗c , j∗c ) ∈ Lc
in the constructed solution by the definition of variables ψg∗c ,h∗c ,c and Constraints
(3.6d)-(3.6f) which means that Constraints (3.3a) - (3.3b) are satisfied. Finally, use
the same values for the variables πu∗1,u∗2,c,k in the constructed solution as given in
formulation (3.6). From the feasibility of α∗c ,β∗c ,α∗k,β∗k,πu∗1,u∗2,c,k for circles c and k,
Constraints (3.3c)-(3.3e) are satisfied. Hence, the constructed solution is feasible for
formulation (3.3).

Thus, these formulations are equivalent.

3.2.2 Relaxed Version

For introducing this formulation, we define two decision variables by using a similar
idea with the one used in Section 3.1. The decision variable γc = (γc,1,γc,2, · · · ,γc,Θ)
(ωc = (ωc,1,ωc,2, · · · ,ωc,Θ)) denotes the x-axis (y-axis) coordinate of the left-lower
corner point of the cell in base 2 where the center of circle c is contained. For
instance, if circle c’s center is included by the leftmost region given in Figure 3.3a,
the corresponding variables are assigned as γc = (1,1,0,0) and ωc = (0,0,1,0)). We
also define a setMc as follows:

Mc = {(g,h) ∈ Sc : g,h≥ 0,(g,h+ 1) /∈ Sc,(g+ 1,h) /∈ Sc}.

The setMc is defined for determining all of the points in Sc with the help of a subset
of points in Sc. By forming a rectangle {(i, j) ∈ I2 : 2θ−g ≤ i≤ g, 2θ−h≤ j ≤ h}
for each (g,h) ∈Mc, the union of the rectangles contain all the points given in Sc.
We also define another variable ηi,j,c ensuring that there is at least one point of the
cell where the center of circle c is located. Assume that the center of circle c is
included by the cell corresponding to the point (g,h). Then, ηi,j,c is assigned one
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if (g,h) is included by the rectangle corresponding to the point (i, j) ∈Mc. The
corresponding formulation is as follows:

Θ∑
t=1

2(t−1)(γc,t−γk,t)≥
∑

(u1,u2)∈Oc,k

u1 Πu1,u2,c,k c,k ∈ C : c < k(3.8a)

Θ∑
v=1

2(v−1)(ωc,v−ωk,v)≥
∑

(u1,u2)∈Oc,k

u2 Πu1,u2,c,k c,k ∈ C : c < k(3.8b)

∑
(u1,u2)∈Oc,k

Πu1,u2,c,k = 1 c,k ∈ C : c < k(3.8c)

∣∣∣∣∣∣
Θ∑
t=1

2(t−1) γc,t

∣∣∣∣∣∣≤
∑

(i,j)∈Mc

i ηi,j,c c ∈ C(3.8d)
∣∣∣∣∣∣

Θ∑
v=1

2(v−1) ωc,v

∣∣∣∣∣∣≤
∑

(i,j)∈Mc

j ηi,j,c c ∈ C(3.8e)

∑
(i,j)∈Mc

ηi,j,c = 1 c ∈ C(3.8f)

γc,ωc ∈ {0,1}Θ c ∈ C(3.8g)

Πu1,u2,c,k ∈ {0,1} c,k ∈ C, (u1,u2) ∈ Oc,k(3.8h)

ηi,j,c ∈ {0,1} (i, j) ∈Mc, c ∈ C.(3.8i)

Similarly, in this model, Constraints (3.8a)-(3.8c) satisfy the non-overlapping feasi-
bility condition partially while allowing some intersections. Constraints (3.8d)-(3.8f)
ensure that there is at least one point of the corresponding cell for locating the
center of the circle such that it is fully contained by the surrounding circle. Finally,
Constraints (3.8g)-(3.8i) are the domain constraints for the decision variables.

This problem is introduced for the relaxed version of problem (3.1), since the decision
variables determines the lower-left corners of the cells where the centers of circles are
located, and the exact locations of them is unknown. As a result, it is possible for
circles c and k to overlap in this formulation like formulation (3.5) by the definition
of the set Oc,k.

Theorem 3.3. Formulation (3.5) is equivalent to formulation (3.8).

Proof. By using the same steps in Theorem 3.2, we can show that the relaxed version
of formulation (3.5) is equivalent to formulation (3.8).
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4. SOLUTION METHODS AND ENHANCEMENTS

In this chapter, we discuss our solution methods designed for the CPP. In the following
section, we will introduce a bisection-type solution algorithm which iteratively
consider different values for the radius of the surrounding circle. Our solution
algorithm solves the restricted and relaxed formulations alternately by using the
discretized circle while utilizing the MILP models in Chapter 3. We will also present
our algorithmic enhancements, which significantly improves the performance of our
solution approach.

4.1 Discretized-Space Circle Packer (DCPACK)

In this section, we will explain our solution procedure. DCPACK algorithm depends
on updating the upper and lower bounds for the radius of the surrounding circle
until they are close enough. In this method, we should start by using initial upper
and lower bounds for the surrounding circle. To initialize these bounds, there are
two possible situations. If we know a surrounding circle in which all circles can be
packed, its radius gives an upper bound. Otherwise, the upper bound can be selected
as the summation of the diameters of the circles at the worst case. Similarly, if we
know a surrounding circle into which there is no feasible placement of packing all
circles, then it is a lower bound for the optimal solution; otherwise, the lower bound
can be initialized as the summation of the radii of the largest two circles.

Our algorithm, whose pseudo-code is given in Algorithm 4.1.1, aims to progressively
improve the upper and lower bounds for the radius of the surrounding circle. In
Algorithm 4.1.1, we start by initializing the radius of the surrounding circle as the
half of the summation of the initial upper and lower bounds at Step 1. Then, the
given surrounding circle is divided into smaller squares with side length δ at Step
2. Then, we solve a restricted version formulation defined in Chapter 3, which we
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Algorithm 4.1.1 DCPACK Algorithm
Require: C; rc, ∀c ∈ C; U ; L; δ; ε.
Ensure: (xc,yc), ∀c ∈ C; U ; L.

1: R← U+L
2

2: Divide the container with diameter R into square cells with length size δ.
3: Solve the restriction model.
4: if the restriction model is feasible then
5: U ←R. Go to Step 13.
6: end if
7: Solve the relaxation model for the container with diameter R.
8: if the relaxation model is feasible then
9: δ← δ

2 . Go to Step 2.
10: else
11: L←R. Go to Step 13.
12: end if
13: if 1− L

U > ε then
14: Go to Step 1.
15: else
16: STOP!
17: end if

called as a “restriction model”, to decrease the upper bound. Formulation (3.3) and
formulation (3.6) can be solved as a “restriction model” within this algorithm. If the
restriction model gives a feasible configuration, the corresponding radius value gives
an upper bound for the minimum value of the radius of the surrounding circle. Then,
we update the upper bound at Step 5, and check the gap between the bound at Step
13. If the bounds are close enough, i.e., 1−L/U < ε, Algorithm 4.1.1 terminates with
a solution which is good enough. However, if the relative gap between the bounds
are larger than ε, Algorithm 4.1.1 goes back to Step 1 with the updated upper and
lower bounds.

If the restricted model is infeasible, we solve a relaxed version formulation defined in
Chapter 3, which we called as a “relaxation model”. Formulations (3.5) and (3.8)
are designed for a relaxed version of the original problem, and used as a “relaxation
model”. Since the infeasibility of the relaxed version ensures the infeasibility of the
original problem, the infeasibility of the “relaxation model” for a given R value
indicates that the R value is a lower bound for the optimal value of the radius of the
surrounding circle. Hence, whenever both the restriction model and the relaxation
model are infeasible for a given radius, we update the lower bound for the original
problem at Step 11. Then, Algorithm 4.1.1 checks the relative gap between the
updated lower and upper bounds small enough. If it is small enough, the algorithm
terminates. Otherwise, this algorithm update the radius of the surrounding circle at
Step 1 for restarting the procedure with the new radius.
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If a given radius value for the surrounding circle is feasible in the relaxation model
which is infeasible in the restriction model, we cannot say anything for the radius
value within Algorithm 4.1.1. In that case, we need to decrease the side length of
the cells to get a finer discretization. Then, the algorithm goes back to Step 2 to
solve the restriction model by using the new discretization of the surrounding circle
by updating the length size at Step 9. The restriction model can have a feasible
placement of all circles with the new discretization since there will be more candidate
points to locate the centers of circles.

Within Algorithm 4.1.1, we use the different formulations introduced in Chapter 3
to examine the effect of using different-sized formulations by a computational study
in Chapter 5.

4.2 Algorithmic Enhancements

In this section, we will give the details of some improvements proposed for Algorithm
4.1.1. In Section 4.2.1, we describe the methods for obtaining initial lower bounds
for the radius of the surrounding circle. In Section 4.2.2, we will give the details of
Algorithm 4.2.2 which decreases the number of decision variables by decreasing the
solution space for each circle. Some other improvements are given in Section 4.2.3.

4.2.1 Initializing Lower Bounds

There are different methods for initializing the lower bound in Algorithm 4.1.1. Since
we are given the radii of circles to be packed, we can find lower bounds by using
basic geometrical knowledge. First of all, the sum of the radii of the largest two
circles is a lower bound (LB1) for the radius of the surrounding circle because it is a
requirement that the radius of the surrounding circle should be greater than or equal
to the sum for packing these two circles into it. Moreover, any surrounding circle
should include all of these circles. Hence, the sum of their areas is a lower bound for
the area of the surrounding circle, and another lower bound (LB2) can be determined
by using this area. Also, Algorithm 4.2.2 can be performed iteratively to calculate
another lower bound (LB3) by using a subset of these circles. Algorithm 4.2.2 is
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given at Section 4.2.2, and the method used for obtaining LB3 will be described in
that section.

For any configuration of the circles, there will be idle regions where none of the
circles are packed. The idle regions can be categorized in two groups: the area
between three adjacent circles and the area between the surrounding circle and the
circles adjacent to the surrounding circle. A lower bound for the area of the idle
regions in any configuration of the circles can be calculated where the number of
circles in the instance is greater than three, i.e., n > 3. Then, we can improve LB2
by adding the lower bound for the area of the idle regions to the total area of the
circles. We name the idle region between adjacent circles as “the first idle region”.
For any configuration including the optimal one, there will be idle regions between
the adjacent circles as shown in Figure 4.1.

Figure 4.1 The idle region between adjacent circles

(a) The idle region between three
adjacent circles
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(c) The idle region between four adjacent
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Before investigating these idle regions, we will give some definitions. First of all, we
can consider a configuration of circles as a graph such that the center of each circle
denotes a node, and there is an edge between the centers of any two circles if their
centers can be connected by a line without intersecting with another circle. Assume
that there are k adjacent circles such that circle c is adjacent to circles (c−1) and
(c+1) for any 2≤ c≤ (k−1) as well as the circles 1 and k are adjacent to each other.
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The coordinates of the center of the circle c are given with (xc,yc). Let ec,l denote
the edge length connecting the centers of the circles c and l, where ec,l ≥ rc+ rl by
the non-overlapping rule. For example, for the circles given in Figure 4.1a, there
are three nodes denoted by 1, 2, and 3 with the edges (1,2), (2,3), and (3,1) where
e1,2 = r1 + r2, e2,3 = r2 + r3, and e1,3 = r1 + r3. Other example configurations of four
circles are given in Figure 4.1b with edge lengths equal to the sum of the radii of the
corresponding circles, and Figure 4.1c with edge lengths larger than the sum of the
radii of the corresponding circles.

Let Idle∗1,··· ,k denote the area of the idle region between the adjacent circles 1, · · · ,k. In
this notation, each circle can touch their adjacent circles or not, i.e., el−1,l ≥ rl−1 +rl

and el,l+1 ≥ rl+1 + rl for l ∈ {2, · · · ,k− 1} and e1,k ≥ r1 + rk, e1,2 ≥ r1 + r2 and
ek−1,k ≥ rk−1 + rk. For instance, the areas of the idle regions between the circles
1,2,3, and 4 are represented by Idle∗1,··· ,4 for both configurations given in Figures
4.1b and 4.1c. If there are sub-cycles within a cycle like given in Figure 4.2c, the total
area of the idle region is given with the sum of the areas of the idle regions within
the sub-cycles. For instance, there are three sub-cycles between circles 1,2,3,4,5,
and 6 in Figure 4.1d, i.e., the sub-cycles are 1−2−5−6; 2−3−4−5; and 4−5−6
for the cycle of six circles, and corresponding idle region is given as the summation,
Idle∗1,2,5,6 + Idle∗2,3,4,5 + Idle∗4,5,6.

As a special configuration of the adjacent circles 1, · · · ,k, assume that the edge length
connecting the centers of adjacent circles c and l is equal to the sum of their radii,
i.e., ec,l = rc+ rl. The idle region is denoted by Idle1,··· ,k in this configuration. For
instance, the area of the idle region is represented by Idle1,··· ,4 in Figure 4.1b since
the edge lengths are e1,2 = r1 + r2, e1,4 = r1 + r4, e2,3 = r2 + r3, and e3,4 = r3 + r4.

The area of the idle region Idle1,··· ,k is calculated by using the following equalities
for different k values:

Idle1,2,3:
√

(r1 + r2 + r3)(r1)(r2)(r3) − ∑
(c,k,l)∈{(1,2,3),
(2,1,3),(3,1,2)}

(rc)2cos−1
(

rc(rc+rk+rl)−rkrl
(rc+rl)(rc+rk)

)
2 ,

Idle1,2,3,4: Idle1,2,3 + Idle1,3,4,

Idle1,··· ,k: Idle1,2,3 + Idle1,3,4 + Idle1,4,5 + · · ·+ Idle1,k−1,k.

For calculating the idle region Idle1,··· ,k, we divide k circles into groups of three
circles. Then, we consider each group of three circles as adjacent circles as a common
case, and then we calculate the area of the idle regions between each group of three
circles.

Now, we will prove that we can calculate a lower bound for the total area of the idle
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regions located between larger number of adjacent circles as the sum of the area of
the idle regions between the subgroups of three circles as proven in Theorem 4.1.

In addition, Theorem 4.1 ensures that the idle region between any k adjacent circles
without any sub-cycle (where ec,l ≥ rc+ rl) is larger than the idle region between
them when ec,l = rc+ rl for all c, l ∈ C.

Theorem 4.1. The area of the idle regions between k circles if ec,l = rc + rl for
any adjacent circles c and k is less than the area of the idle regions for any other
configuration of these k circles, i.e., Idle1,··· ,k ≤ Idle∗1,2,··· ,k

The proof of Theorem 4.1 is given at Appendix A.

Figure 4.2 The idle region between the surrounding circle and the packed circles for
different configurations.
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Based on a similar idea, we can also detect the idle regions between the surrounding
circle and the circles adjacent to the surrounding circle like given in Figure 4.2a. The
idle region given in Figure 4.2a depends on the radii of two adjacent circles and the
surrounding circle. This idle region is denoted by IdleR0,c,k where index 0 denotes the
surrounding circle with radius R.

This idle region IdleR0,c,k exists if there is an edge between the circles c and k, and
the ray starting from the center of the surrounding circle and containing the center
of circle c (k) do not intersect with another circle after the center of circle c (k).
During this procedure if the configuration of adjacent circles is like in Figure 4.2b,
then, the circles 1 and 3 are not adjacent. Then, the total idle region is given with
the sum of two idle regions: IdleR0,1,2 and IdleR0,2,3. However, if it is like in Figure
4.2c, then, the circles 1 and 3 are adjacent also, but the total idle area in that case
will be the sum of three areas: Idle1,2,3, IdleR0,1,2 and IdleR0,2,3.

The area of the idle region depends on the radius of the surrounding circle, and
will be the minimum value in the optimal solution of problem (3.1). However, the
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minimum radius of the surrounding circle is unknown. Hence, the radius of the
surrounding circle should be selected appropriately such that the resulting idle region
will be still the minimum possible idle region. The best known lower bound for
the radius of the surrounding circle gives the minimum idle region under certain
statements (the best lower bound is equal to the maximum of LB1, LB2 and LB3).
In this notation, the edge length e0,c corresponds to the distance between the circle
c and the surrounding circle which is equal to r0− rc−‖(xc,yc)‖2 where the center
of the surrounding circle is located at origin. These statements are given by the
following theorem:

Theorem 4.2. IdleR0,c,k < IdleR
∗

0,c,k where R∗ is the optimal value of the radius of
the surrounding circle radius if the following statements are valid:

• If R1 ≤R2, then, IdleR1
0,c,k ≥ Idle

R2
0,c,k between L≤R≤ U ,

• ∂2

∂R2 (IdleR0,c,k) has no roots for L≤R≤ U where L and U are the given lower
and upper bounds for the radius of the surrounding circle.

The proof of this theorem is given in Appendix A. If IdleR0,c,k < IdleR
∗

0,c,k; then, we
can use the initial upper bound to calculate the idle regions. Moreover, we can
recalculate a lower bound by using the idle regions between the adjacent circles and
the total area of the given circles.

To calculate a lower bound for the idle region in the optimal packing, we propose
an integer programming formulation. In this formulation, we will define a new set
which is denoted by C = C ∪{0} where 0 is the index of the surrounding circle. We
will also define two binary variables: dc,k,l and fk,l,m where c,k, l,m ∈ C : c < k < l.
If the circles c,k, and l are adjacent to each other, the corresponding binary variable
dc,k,l will be 1. Also, we define a parameter ∆c,k,l corresponding to the idle region
between circles c,k, and l. If circles c,k and l are adjacent to the surrounding circle
as shown in Figure 4.2c (i.e., dc,k,l = 1, d0,c,k = 1, d0,k,l = 1, d0,c,l = 1), the binary
variable fc,k,l will be 1 to handle this case. Assume that circle k is the circle between
the circles c, l and the surrounding circle. Then, the idle region between the circles
c and l includes the circle k, the idle region between the circles c and k, and the
idle region between the circles k and l. Hence, these idle regions are added to the
objective function two times; and they should be eliminated. The parameter ρc,k,l is
defined for this case, which is the amount of decrease in the idle region of the circles
0, c,k, and l; i.e., ρc,k,l = ∆0,c,k + ∆0,k,l+ ∆c,k,l+π(rk)2.

In this section, we also define two other parameters: minc and maxc which are the
maximum and minimum number of circles whereas circle c can have at neighbours,
respectively. The calculation of the parameters minc and maxc will be detailed later.
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Then, the formulation is as follows:

min
∑

c,k,l∈C:c<k<l

(
∆c,k,ldc,k,l−ρc,k,lfc,k,l

)
(4.1a)

s.t.
∑
k,l∈C

dc,k,l+
∑
k,l∈C

dk,c,l+
∑
k,l∈C

dk,l,c ≥minc c ∈ C(4.1b)

∑
k,l∈C

dc,k,l+
∑
k,l∈C

dk,c,l+
∑
k,l∈C

dk,l,c ≤maxc c ∈ C(4.1c)

fc,k,l ≤ dc,k,l c,k, l ∈ C(4.1d)

fc,k,l ≤ d0,c,k, fc,k,l ≤ d0,k,l, fc,k,l ≤ d0,c,l c,k, l ∈ C(4.1e)

fc,k,l ≥ dc,k,l+d0,c,k +d0,k,l+d0,c,l−3 c,k, l ∈ C(4.1f)

dc,k,l,fc,k,l ∈ {0,1} c,k, l ∈ C.(4.1g)

Constraints (5.1c)-(5.1d) ensures that circle c have at least minc and at most maxc
circles as its neighbours. By these constraints, we guarantee that each circle will
create an idle region. Constraints (5.1e)-(5.1g) assign the value of the decision
variable fc,k,l according to the values of the decision variables dc,k,l, d0,c,k, d0,k,l, and
d0,c,l. If all the decision variables dc,k,l, d0,c,k, d0,k,l, and d0,c,l are assigned to one, the
decision variable fc,k,l will be one; 0, otherwise. If one of the decision variables dc,k,l,
d0,c,k, d0,k,l, and d0,c,l are zero, the Constraints (5.1e)-(5.1f) ensures that fc,k,l = 0.
If all of them are one, Constraints (5.1e)-(5.1f) will be redundant. Then, Constraint
(5.1g) assigns fc,k,l the value of one. Finally, Constraints (5.1h) are the domain
constraints for the decision variables.

As we stated before, the number of neighbours of circle c in the optimal solution is
between minc and maxc. To calculate the value of the parameter minc, the largest
circles are considered as the neighbours of circle c to provide a lower bound for the
number of circles adjacent to circle c as seen in Theorem 4.3.

Figure 4.3 Two tangents from an external point.

A

To calculate the value of minc, we perform Algorithm 4.2.1 by selecting k1 = 1.
Selecting k1 = 1 means that the circles are listed according to their radii in decreasing
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Algorithm 4.2.1 minc and maxc Calculation Algorithm
Require: C; rc, ∀c ∈ C; k1.
Ensure: K.

1: sum← 0 and k← k1
2: K← k.
3: if k1 = 1 then
4: k← k+ 1.
5: else
6: k← k−1.
7: end if
8: sum← sum+ cos−1

(
(rc+rk−1)2+(rc+rk)2−(rk−1+rk)2

2rkrk−1

)
.

9: if sum+ cos−1
(

(rc+r1)2+(rc+rk)2−(r1+rk)2

2rkr1

)
≤ 2π then

10: Go to Step 2.
11: else
12: STOP!
13: end if

order. With the help of Cosine Theorem, we will prove that the parameter minc gives
a lower bound for the number of neighbours of circle c in the optimal configuration
of problem (3.1).

Theorem 4.3. The parameter minc is a lower bound on the number of neighbours
of the circle c in the optimal configuration of the problem (3.1) if minc is calculated
by Algorithm 4.2.1 for k1 = 1.

Proof of Theorem 4.3. By Cosine Theorem, the total angle occupied by the adjacent
k circles to circle c is denoted by sum at each step. By the definition of adjacency, if
sum≥ 2π, the angle where all lines started from the center of the circle c intersect
with a neighbour circle l for l < k. Since the k circles are the largest k circles, the
corresponding angles are the largest (obvious from the cosine function). Then, the
number of circles is minimum if the angles are calculated by assigning the largest K
circles adjacent such that the summation of the corresponding angles is less than or
equal to 2π.

The parameter maxc value is calculated by using the smallest circles as neighbours
to maximize the number of circles neighbour to circle c as shown in Theorem 4.4.
Then, k1 is assigned to n in Algorithm 4.2.1. If k1 = n, this means that the circles
are listed in increasing order according to their radii.

Theorem 4.4. If maxc is calculated by Algorithm 4.2.1 for k1 = n, then, the number
of neighbours of the circle c in the optimal configuration of problem (3.1) is less than
maxc.
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Proof. Contrary to Theorem 4.3, the angle of the slice is the smallest where all lines
started from the center of the circle c intersecting with adjacent circle k which are
the smallest. Then, the number of circles is maximum if the angles are calculated
by assigning the smallest K circles such that the summation of the corresponding
angles is less than or equal to 2π.

Theorem 4.5. Formulation (4.1) gives a lower bound for the idle region in the
optimal solution.

Proof. By Theorems 4.3 and 4.4, Constraints (4.1b)-(4.1c) hold for the optimal
configuration. Since the problem is minimization problem and the idle region
calculated for circles c,k, l is a lower bound for the corresponding idle region, the
objective value of the corresponding formulation gives a lower bound for the idle
region in the optimal configuration.

Then, we can find another lower bound (LB4) by using the summation of the objective
function of formulation 4.1 and the total areas of the circles given to be packed.

4.2.2 Solution Space Reductions

So far, the feasible region to place the center of each circle is determined as the
whole surrounding circle. However, we can reduce the feasible region for each circle
by using analytical properties. While determining the feasible regions for the circles,
we start with identifying the reduced feasible regions for the largest two circles.

First, without loss of generality, we assume that the center of the largest circle is
placed to the first quadrant, and the center of the second largest circle is placed
to the half space defined by {(x,y) ∈ R2 : y−x ≥ 0} with the help of symmetry
to eliminate symmetric solutions. Then, the solution space of problem (3.1) with
additional constraints x1 ≥ 0,y1 ≥ 0,y2 ≥ x2 is equal to the first reduced region; the
corresponding formulation is given as follows:

min R(4.2a)

s.t. (3.1b)− (3.1d)(4.2b)

x1,y1 ≥ 0(4.2c)

y2 ≥ x2(4.2d)
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Constraints (4.2b)-(4.2d) ensure the feasibility of the CPP. Constraint (4.2c) restricts
the region for placing the center of the largest circle to the first quadrant. Constraint
(4.2d) limits the region for placing the second largest circle to the half space given
with {(x,y) ∈ R2 : y−x≥ 0}.

Let D(4.2) be the set of all feasible solutions of the problem (4.2).

Theorem 4.6. For any feasible solution in D(3.1), there is a corresponding feasible
solution in D(4.2).

Proof. The reduced region is given in Figure 4.4a. Assume that τ is the counter
clock-wise angle between the lines connecting the center of circle 1 and the center of
circle 2 to the center of the surrounding circle in a feasible solution in D(3.1).

If τ ≤ π, there is a corresponding solution in D(4.2) found by rotating it π
2 degrees or

multipliers according to the placement of the largest circle.

If τ > π, take the reflection of the corresponding feasible solution at first. Then, by
rotating it π

2 degrees or multipliers according to the placement of the largest circle,
we can get the corresponding solution in D(4.2). Hence, there is a corresponding
feasible solution in D(4.2) for each feasible solution in D(3.1).

Figure 4.4 Solution space reductions corresponding to locate the largest two circles
with radii 6 and 7 units into a circle with radius 13.6 units.

(a) First reduced regions.
(b) Improved reduced re-
gions.

(c) The resulting reduced re-
gions.

In Figure 4.4a, the blue-dashed and red undashed regions show the reduced regions
to place the largest and the second largest circles, respectively. The regions in Figure
4.4a are given with {(x1,y1),(x2,y2) ∈R2 : (xc)2 +(yc)2 ≤R2,x1 ≥ 0,y1 ≥ 0,y2 ≥ x2}.
Then, the regions for placing the centers of the largest and second largest circles can
be reduced by using the feasibility rules of the problem (4.2), respectively, as follows:

{(x1,y1) ∈ R2 : (max{2r2 + r1−R,0})2 ≤ (x1)2 + (y1)2 ≤ (R− r1)2,x1 ≥ 0,y1 ≥ 0},

{(x2,y2) ∈ R2 : (max{2r1 + r2−R,0})2 ≤ (x2)2 + (y2)2 ≤ (R− r2)2,y2 ≥ x2}.
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The above regions are obtained by the feasibility rules of the problem (3.1) since all
circles should be packed without overlapping which are given in Figure 4.4b.

The reduced regions given in Figure 4.4b will be combined with the knowledge that
any two circles cannot overlap. Then, the corresponding regions can be decreased
by eliminating the points where there is no feasible point to locate the center of the
other circle. After this elimination step, we get the feasible regions given in Figure
4.4c for the largest two circles. These resulting regions are the minimum possible
feasible regions for these circles within this procedure. Then, by using the reduced
regions for the largest two circles, we can reduce the feasible regions for locating
the centers of other circles by performing an iterative algorithm. Let the set of the
corner points of the reduced regions are called as S1, S2 for the largest two circles,
and Sc be the corner points of the resulting feasible regions obtained by Algorithm
4.2.2 for c < k. The steps of Algorithm 4.2.2 are given below for the kth circle at the
descending order of circles according to their radii:

Algorithm 4.2.2 Identifying Feasible Regions Algorithm (IFRA)
Require: C; rc, ∀c ∈ C; Sc, ∀c ∈ C : c < k; R, k.
Ensure: True or False.

1: for {p1, · · · ,pk : ‖(pc,pl)‖2 ≥ (rc+ rl),pc ∈ Sc} where c < k do
2: G = {pk = (xk,yk) ∈ R2 : (R− rk)≥ ‖pk‖2} ≥max{0,2r1 + rk−R}}
3: H =

{
pk = (xk,yk) ∈ R2 : c < k,‖pk,pc‖2 ≥ rc+ rk

}
∩G

4: end for
5: if H = ∅ then
6: return FALSE.
7: else
8: return TRUE.
9: end if

In Algorithm 4.2.2, we discussed the sets G and H which are nonconvex. For this sets,
we did not store the sets as a whole. Instead of this, we find the intersection points
of the circles with radii (rc+ rk) with the corresponding boundary functions for each
pc, c < k. For each intersection point, we check the non-overlapping feasibility rule
for other circles. If there is a feasible intersection point, then, there is a feasible
solution for placing k circles into the circle with radius R. Theorem 4.7 proves the
statement.

Theorem 4.7. If Algorithm 4.2.2 results in False for any k, there is no feasible
configuration of circles in the given surrounding circle; otherwise, there is at least
one feasible placement.

Proof. If Algorithm 4.2.2 results in True for a circle at order k, then, by locating its
center to a point in H and other circles to the corresponding points pc for c < k; this
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configuration is feasible for this problem.

If Algorithm 4.2.2 results in False, we will show that there is no feasible placement
for the first k circles. Assume that there is a feasible configuration for the first k
circles, but H = ∅. From the feasibility of the configuration, there are points pc
such that ‖(pc,pl)‖2 ≥ (rc+ rl) and ‖pc‖2 ≤R− rc hold. Also G 6= ∅, and there is a
corresponding point pk ∈ G which also satisfies ‖(pk,pc)‖2 ≥ rc+ rk from feasibility.
Hence, pk ∈H 6= ∅ which contradicts with our assumption. So, there cannot be any
feasible placement if Algorithm 4.2.2 results in False which completes proof.

By using the resulting reduced regions obtained by Algorithm 4.2.2, we can eliminate
the decision variables corresponding to the candidate points which are not included
by the resulting regions for each circle.

4.2.3 Other Improvements

In addition to the previous section, we introduce a set of procedures handled during
the branching process. First of all, the decision variables are prioritized according
to the radius of the corresponding circle. The variables corresponding larger circles
have the larger priorities.

During the branching process, if there is not enough place to locate the remaining
circles, we use branch and callback to add some cuts which are added on two different
cases: (i) not enough area to place all the remaining circles, (ii) no candidate points
to place all the remaining circles. The idle regions where none of the remaining
circles can be placed is eliminated at first. Then, the remaining idle area is calculated
to compare with the sum of the areas of the remaining circles with the minimum
idle area between them to be packed. If the remaining area is less than the sum
of the areas of the remaining circles, then, the branch is eliminated. To check the
remaining candidate points, if the farthest candidate points within the sets is less
than the sum of the radii, then, the branch is eliminated. Also, according to the
values of the assigned decision variables, the decision variables corresponding to the
points where assigning these variables as one will result in overlapping of circles is
assigned as zero with the help of conditional constraints.

Finally, to obtain better upper bound values, we use the best-known upper bounds
from Circle Packing Contest of Al Zimmermann’s Programming Contests and Packo-
mania website with the algorithm given in Huang et al. (2006).
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5. COMPUTATIONAL STUDY

In this section, we evaluate our algorithm on a series of benchmark instances up to
162 circles from a the Packomania website (Packomania, 2020), the Circle Packing
Contest of Al Zimmermann’s Programming Contests website (Zimmermann’s, 2005),
and instances including equal circles from a paper (Huang & Ye, 2011). We denote
the instances from the Circle Packing Contest of Al Zimmermann’s Programming
with “Zimm−n” which represents the instance with n-circles where 5 ≤ n ≤ 30
(Zimmermann’s, 2005). Also, we will use the same labels for the benchmark instances
given in the Packomania website (Packomania, 2020). Finally, we will denote the
instances including equal circles introduced by Huang & Ye (2011) with “Eq−n”
containing n-circles. Our computing platform is a Windows 10 Laptop with Intel
Core i7-8565U processor and 32 GB of RAM. CPU times are given in minutes, and
all algorithms are coded in Python.

Before analyzing the performance of our algorithm, we will solve problem (3.1) with
the global solvers Baron and Gurobi 9.1 to show the effectiveness of the global
solvers in Section 5.1. Then, in Section 5.2, we will compare the performance of our
algorithm with the different-sized formulations introduced in Chapter 3. Then, we
will analyze the amount of time used for pre-processing within Algorithm 4.1.1. In
Section 5.3, we will compare our algorithm for the equal circle case with a solution
method proposed problem in Huang & Ye (2011). Then, the comparison of our
solution procedure with global optimization method defined in literature for CPP
within different surrounding containers by Stoyan & Yas’kov (2004) in Section 5.4.

5.1 Results Obtained by Baron and Gurobi

In this section, we just use the first six instances given problem in Zimmermann’s
(2005) to analyze the performance of problem (3.1) and its improved version. For the
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basic version, we did not share any knowledge with the global solvers in terms of lower
and upper bounds or solution space reductions. Then, we will solve problem (3.1)
initialized with all knowledge which we had as the improved version. We coded these
formulations in Python, and solve it by solvers Gurobi 9.1 and Baron with time limit
30 minutes. The instances terminated by time limit is represented by “TLE”. The
optimality gap is set to 1%. The results obtained by each solver are given in Table
5.1 as follows:

Table 5.1 Results obtained by the global solvers

Baron Gurobi 9.1
Basic Ver. Improved Ver. Basic Ver. Improved Ver.

Ins.
Upper
Bound

Solution
Time (m) GAP (%)

Upper
Bound

Solution
Time (m) GAP (%)

Upper
Bound

Solution
Time (m) GAP (%)

Upper
Bound

Solution
Time (m) GAP (%)

Zimm−5 9.00 1.26 0.01 9.00 0.01 0.00 9.00 0.50 0.99 9.03 0.72 0.36
Zimm−6 11.06 12.83 0.01 11.11 0.27 0.46 11.06 17.31 0.52 11.06 1.28 0.04
Zimm−7 13.46 TLE 3.43 13.46 10.75 2.28 13.46 TLE 3.44 13.46 TLE 2.28
Zimm−8 16.22 TLE 7.53 16.22 TLE 5.85 16.38 TLE 8.45 16.44 TLE 7.08
Zimm−9 19.28 TLE 11.83 19.28 TLE 9.73 19.84 TLE 14.31 19.75 TLE 11.90
Zimm−10 22.00 TLE 13.64 22.65 TLE 13.73 23.22 TLE 18.16 23.38 TLE 16.40

As one can see easily, the global solvers cannot solve problem (3.1) even for 8-circle
instance for both basic and improved versions. In the improved version, our given
lower bounds are not improved during the solution times by the solvers, but the
global solvers can detect and improve upper bounds for problem (3.1). Hence, this
problem is quite challenging to solve with the help of the global solvers even for
the small-sized instances. For the problems that were terminated by time limit, the
GAP values are calculated according to the final results obtained by the solvers to
compare with Algorithm 4.1.1.

5.2 Performance Analysis of Algorithm 4.1.1

As stated before, Algorithm 4.1.1 solves formulations proposed for a restricted and
a relaxed versions iteratively. We introduced two different-sized formulations for
these versions in Chapter 3, and we first give the results obtained by two versions
of Algorithm 4.1.1 improved by the proposed algorithmic enhancements given in
Section 4.2.

As a reminder, formulations (3.3) and (3.5) are proposed for the restricted and
relaxed versions with linear-number of decision variables, respectively; and the
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formulations (3.6) and (3.8) contain logarithmic number of decision variables designed
for the restricted and relaxed versions, respectively. In this section, the time limit is
30 minutes. In Table 5.2, “With Linear-Sized Formulation” reports the results of
Algorithm 4.1.1 which solves the formulation (3.3) as the restricted version and the
formulation (3.5) as the relaxed version where “With Logarithmic-Sized Formulation”
solves the formulations (3.6) and (3.8), respectively. The linear-sized formulations
are the ones which are not naïve. For this comparison, we used Algorithm 4.1.1 with
the enhancements proposed in Section 4.2.

Table 5.2 Comparison of using different-sized formulations within Algorithm 4.1.1

With Linear-Sized Formulation With Logarithmic-Sized Formulation
Instance Upper Bound Solution Time (m) GAP (%) Upper Bound Solution Time (m) GAP (%)
Zimm−5 9.0084 0.06 0.08 9.0014 0.06 0.76
Zimm−6 11.0749 0.21 0.16 11.0710 0.24 0.13
Zimm−7 13.4623 2.41 0.50 13.4671 1.07 0.64
Zimm−8 16.2217 5.42 0.43 16.2243 2.57 0.81
Zimm−9 22.0046 11.39 0.75 22.0023 5.12 0.39
Zimm−10 25.6901 TLE 3.53 24.9605 8.41 0.91

As seen in Table 5.2, using formulation (3.6) as the restricted version and the
formulation (3.8) as the relaxed version in Algorithm 4.1.1 is better than using other
formulations in terms of solution time. Hence, since working with the formulations
including a logarithmic number of decision variables in terms of the number of cells
improves the performance of Algorithm 4.1.1, we will focus on this version in the
following experiments.

According to the comparison of Tables 5.1 and 5.2, Algorithm 4.1.1 with logarithmic-
sized formulations also dominate the global solvers in terms of the solution time
and solution quality. Even Algorithm 4.1.1 with linear-sized formulations dominates
the global solvers in terms of the solution time and solution quality, although, it
performs worse than Algorithm 4.1.1 with logarithmic-sized formulations.

After comparing the effects of using different formulations within Algorithm 4.1.1,
we investigate the effects of the mechanisms defined in Section 4.2. In Table 5.3, we
will give the results obtained by Algorithm 4.1.1 for two different versions: the basic
version where no algorithmic enhancements are performed and the enhanced version
utilizing the enhancements proposed in Section 4.2.
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Table 5.3 Performance analysis of the enhancements introduced for Algorithm 4.1.1
with logarithmic-sized formulations

Basic Version Improved Version

Instance
Upper
Bound

Total Sol.
Time (m) GAP (%)

Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Zimm−5 9.002 2.07 0.017 9.001 0.04 0.06 0.764
Zimm−6 11.139 9.25 0.727 11.071 0.17 0.24 0.126
Zimm−7 13.471 17.72 0.819 13.467 0.86 1.07 0.641
Zimm−8 16.321 28.20 0.991 16.224 1.59 2.57 0.810
Zimm−9 22.264 39.08 0.923 22.002 2.01 5.12 0.390
Zimm−10 24.961 58.25 0.947 24.961 2.77 8.41 0.907

For advancing Algorithm 4.1.1’s performance, we introduced some algorithmic en-
hancements in Section 4.2. With the help of these enhancements, Algorithm 4.1.1’s
effectiveness increases as seen in Table 5.3 in terms of solution time.

As seen in Table 5.3, the enhancements improve Algorithm 4.1.1’s performance, and
they do not increase the solution time. In fact, solving Algorithm 4.1.1 without the
enhancements is more expensive than performing enhancement methods together
with Algorithm 4.1.1. We also try to understand the effect of introduced enhancement
methods one by one. We proposed four versions of Algorithm 4.1.1 in Tables 5.4
and 5.5: Version 1 is the one without any lower bound improvement (Section 4.2.1),
Version 2 is the one without any upper bound improvement (Section 4.2.3), Version
3 is the one without any solution space reductions (Section 4.2.2), and Version 4 is
the one without any cuts added during the branching process (Section 4.2.3).

Table 5.4 Effects of the qualities of starting lower and upper bounds for Algorithm
4.1.1

Version 1 Version 2

Instance
Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Zimm−5 9.002 0.01 1.43 0.022 9.006 0.03 2.12 0.066
Zimm−6 11.140 0.04 6.63 0.863 11.084 0.14 5.73 0.432
Zimm−7 13.469 0.15 13.56 0.891 13.470 0.68 11.41 0.796
Zimm−8 16.273 0.41 21.32 0.884 16.269 1.11 18.83 0.827
Zimm−9 22.006 0.68 29.53 0.869 22.192 1.33 26.59 0.961
Zimm−10 24.960 0.91 47.21 0.726 24.961 1.88 43.52 0.934

Initializing lower and upper bounds is an important factor in Algorithm 4.1.1 accord-
ing to Table 5.4. The pre-processing time required for initializing the bounds is less
than the necessary time spent in Algorithm 4.1.1 without the pre-processing methods.
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Hence, the methods for initializing the upper and lower bounds are effective since
the solution times do not decrease much without initializing them with pretty good
bounds.

Table 5.5 Effects of other enhancements one by one introduced for Algorithm 4.1.1

Version 3 Version 4

Instance
Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Zimm−5 9.001 0.03 0.06 0.862 9.001 0.04 0.07 0.546
Zimm−6 11.091 0.15 0.26 0.356 11.087 0.17 0.28 0.251
Zimm−7 13.466 0.81 1.04 0.697 13.468 0.84 1.13 0.592
Zimm−8 16.224 1.53 6.48 0.691 16.224 1.56 2.91 0.862
Zimm−9 22.003 1.92 17.21 0.409 22.002 2.04 6.74 0.396
Zimm−10 24.960 2.61 25.03 0.917 24.960 2.79 11.43 0.952

According to Table 5.5, we can say that the decrease in total solution time obtained
by using solution space reductions is less than total time required for obtaining these
solution space reductions since the solution time of each formulation at each iteration
decreases by the elimination of the corresponding decision variables.

Other than observing the effect of the sub-methods designed for enhancing Algorithm
4.1.1’s performance one by one, we want to determine the efficiency of the algorithm
we used for initializing the upper bound if we do not know the best-known value from
the literature. As a result, we will solve the instances by only using the upper bound
initialization algorithm given problem in Huang et al. (2006), and we compare the
results with the results by initializing the upper bounds as equal to the best-known
values in Table 5.6. Similarly, the optimality gap is set to 1%, and Algorithm 4.1.1
terminates after 120 minutes of processing. The instances that terminate due to
time limit is denoted by “TLE”.

Table 5.6 Effects of using best-known values within Algorithm 4.1.1

Upper Bound Initialization Algorithm Initializing with Best-known Values

Instance
Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Upper
Bound

Pre-processing
Time (m)

Total Sol.
Time (m) GAP (%)

Zimm−11 28.371 3.72 14.43 0.591 28.371 2.71 12.92 0.573
Zimm−12 31.546 4.90 20.43 0.988 31.545 3.91 17.26 0.959
Zimm−13 35.096 6.04 37.05 0.426 35.096 5.41 36.43 0.373
Zimm−14 38.839 7.88 54.26 0.906 38.838 6.40 48.13 0.903
Zimm−15 42.457 9.94 63.56 0.851 42.457 8.51 61.30 0.838
Zimm−16 46.291 12.93 73.59 0.683 46.291 10.71 68.73 0.681
Zimm−17 50.129 15.07 99.26 0.833 50.120 12.87 90.36 0.457
Zimm−18 54.240 19.98 111.51 0.934 54.240 17.19 108.09 0.931
Zimm−19 58.401 24.91 TLE 1.974 58.401 21.63 TLE 1.972
Zimm−20 62.791 29.03 TLE 4.289 62.559 25.17 TLE 3.568
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As seen in Table 5.6, Algorithm 4.1.1 performs good enough without knowing the
best-known values by using the upper bound initialization algorithm stated in Section
4.2.3. Although the upper bound initialization algorithm could not found the best-
known radii for some instances, the general performance of Algorithm 4.1.1 is not
effected conspicuously.

According to Table 5.6, we can also say that Algorithm 4.1.1 can solve problems up
to 18 circles within 120 minutes time limit whether or not the best-known is given
to us. In addition, the solution quality can be increased by solving the problems
containing 19 and 20 circles with a longer time limit. Apart from the size of the
problems, since our algorithm is a global optimization method, the solution quality
is guaranteed in our solution method, especially for such a problem for which finding
a tight lower bound is hard to identify.

5.3 Comparison with an Algorithm Designed for Equal Circle Case

In this section, we will give the results obtained for a subset of the equal circle
instances. In the literature, the circles from 1 to 200 circles are solved where each
circle is a unit circle. For the packing of n-equal circles into a larger circle problem,
an algorithm is proposed by Huang & Ye (2011). In this section, we will compare
our results and solution times with the algorithm given in Huang & Ye (2011).

In the proposed algorithm in Huang & Ye (2011), there are two main procedures:
the local-search procedure and the basin-hopping procedure. During the algorithm,
the non-overlapping constraint is observed by a parameter defined as elastic force
like the other feasibility constraint stating that each circle is fully contained by
the surrounding circle. The local-search procedure tries to find a better packing
by performing small moves from the current positions of the circles, and the basin-
hopping procedure may result in larger moves to explore different regions in the
solution space. They combined these methods to construct the algorithm. The
comparison Algorithm 4.1.1 with the algorithm introduced in Huang & Ye (2011) is
given in Table 5.7. The upper bounds are obtained by the upper bound initialization
algorithm given problem in Huang et al. (2006). The solution times given for the
algorithm in Huang et al. (2006) are the total solution times where the initial solutions
are constructed.
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Table 5.7 Results obtained by Algorithm 4.1.1 and algorithm problem in Huang &
Ye (2011)

Algorithm 4.1.1 Algorithm problem in Huang & Ye (2011)
No. Upper Bound Sol. Time (m) GAP (%) Upper Bound Sol. Time (m)

Eq−20 5.122 4.17 0.64 5.122 4.23
Eq−21 5.251 4.48 0.49 5.252 3.51
Eq−22 5.439 4.85 0.93 5.439 5.17
Eq−23 5.545 5.46 0.84 5.545 5.46
Eq−24 5.650 5.81 0.70 5.651 3.23
Eq−25 5.753 6.34 0.91 5.753 4.14
Eq−26 5.828 7.01 0.53 5.828 4.80
Eq−27 5.906 7.63 0.47 5.906 5.61
Eq−28 6.015 8.28 0.71 6.015 6.17
Eq−29 6.138 9.11 0.96 6.138 6.84
Eq−30 6.198 9.43 0.62 6.198 5.72
Eq−31 6.291 9.21 0.99 6.291 7.09
Eq−32 6.429 9.91 0.87 6.429 7.17
Eq−33 6.486 10.47 0.91 6.486 7.43
Eq−34 6.611 11.22 0.74 6.611 8.91
Eq−35 6.696 12.08 0.97 6.697 7.76
Eq−40 7.123 14.42 0.89 7.124 10.59

Algorithm 4.1.1 presents an upper and a lower bound for the radius of the surrounding
circle. Hence, we can ensure that the obtained circle is at most 1% away from the
optimal-sized circle in which all circles are packed. However, the algorithm introduced
in Huang & Ye (2011) only compares the obtained solutions with the best-known
values (Packomania, 2020). Although the algorithm proposed by Huang & Ye (2011)
solves the instances in shorter times, the increase in the solution time is not crucial.
In fact, Algorithm 4.1.1 also verifies the solution quality and ensures a solution with
1% optimality gap with some additional solution time requirements.

We also observe that Algorithm 4.1.1 can solve the equal circle problem for the
instances with larger number of circles as well as the solution times are shorter than
the unequal circle problem. We believe that the observation is a result of the tighter
initial lower bounds. Since the minimum idle regions between the circles do not
change according to different configurations of circles for the equal circle case, and
the obtained lower bounds are tighter for the equal circle packing problem.
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5.4 Comparison with an Algorithm Given problem in Stoyan & Yas’kov

(2004) within a Rectangle

For the unequal circle packing problems, we compare our algorithm with another
algorithm proposed by Stoyan & Yas’kov (2004). First of all, the surrounding
container is given as a rectangular strip in Stoyan & Yas’kov (2004) where the
authors aim to minimize the length of the strip. To handle this issue, we changed
the feasible region definitions in Algorithm 4.2.2 within the surrounding container a
little bit, and the definitions of the sets Lc,Sc. For the other parts of the solution
procedure, it is the same with the defined procedure.

During the modification process, the guiding points are included by the rectangular
strip whose width is known. To ensure that a corresponding circle is totally included
by the surrounding rectangle, guiding points are included by a rectangle whose
boundary is rc units away from the boundary for circle c. In addition, the idle regions
between the circles and the surrounding container should be updated accordingly. For
that, the idle region is equal to the region between the tangent passing through both
circles. The reduced regions are calculated according to the shape of the container.
For the two largest circles, the center of the first circle is located at the right upper
part of the rectangle, and the center of the second circle is located on the upper
part of the diagonal connecting the right upper and left lower corner points of the
rectangle. Moreover, there are some set definitions within Algorithm 4.2.2 to be
updated for which the distance of a point to the boundary is calculated according to
the rectangular-shape.

With the procedures stated before, Algorithm 4.1.1 is updated. After that, we
compare it with the algorithm proposed by Stoyan & Yas’kov (2004). Stoyan &
Yas’kov (2004) obtain the initial solution by using the best-knowns’ configurations
or one-by-one circle placement algorithm (Stoyan & Yas’kov, 2004). We used the
same labels for the instances which are given in the website (Packomania, 2020).
During the comparisons, the initial upper bounds are obtained by the algorithm
introduced problem in Huang et al. (2006) which is updated accordingly to pack the
circles into rectangular strip since the algorithm introduced problem in Huang et al.
(2006) performs better than their initialization approach.
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Table 5.8 Results obtained by Algorithm 4.1.1 and the algorithm proposed by Stoyan
& Yas’kov (2004)

Algorithm 4.1.1 Algorithm in Stoyan & Yas’kov (2004)

No.
Number of
Circles

Strip
Size (units)

Upper
Bound

Solution
Time (m) GAP (%) Upper Bound Solution Time (m)

SY 1 30 9.5 17.291 47.35 0.91 17.461 34.14
SY 2 20 8.5 14.375 23.07 0.37 15.604 8.11

SY 2−1 20 9.0 13.572 24.16 0.12 13.653 7.64
SY 2−2 20 9.5 12.758 19.83 0.76 12.547 6.01
SY 2−3 20 11.0 11.163 20.49 0.85 11.214 6.69
SY 3 25 9.0 14.321 31.29 0.82 15.171 18.09

SY 3−1 25 8.5 15.904 36.40 0.77 16.463 17.26
SY 3−2 25 9.5 13.691 34.05 0.94 13.713 13.52
SY 3−3 25 11.0 11.564 29.52 0.37 11.827 16.52

According to the results given in Table 5.8, the algorithm problem in Stoyan &
Yas’kov (2004) performs worse in terms of the solution quality, and the optimality
gap is unknown for these solutions. Stoyan & Yas’kov (2004) state that the proposed
algorithm really depends on the initialization procedure, and the initial solution affects
the solution quality of the algorithm. Also, Stoyan & Yas’kov (2004) requires an
initial solution with all corresponding coordinates for the circles; however, Algorithm
4.1.1 requires an upper bound and a lower bound for the strip size during the
initialization procedure which can be assigned as the sum of the radii of the circles
and 0, respectively. Although the initial upper and lower bounds are not well-defined,
Algorithm 4.1.1’s performance is not affected adversely since it is a bisection-type
algorithm and remove the half of the possible values at each iteration. However,
when comparing the algorithms in terms of the solution times, we can say that
our procedure requires more time to solve the instances. However, the strength of
Algorithm 4.1.1 is guaranteeing the solution quality where Stoyan & Yas’kov (2004)
does not propose any optimality gap during the solution procedure. Also, for some
of the instances, Algorithm 4.1.1 finds better upper bounds than the algorithm in
Stoyan & Yas’kov (2004).

5.5 Case Study from a Real Life Instance

Before finalizing the thesis, we will also talk about a case study we perform for
a real life problem from automotive industry (Sugihara et al., 2004). During the
manufacturing of automobiles, there is a problem of determining the dimensions
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of a hole bundle of wires passes through. The dimension of this hole is crucial
since the larger holes result in a decrease in the strength of the automobile. In the
given instance, there are 162 wires passing from the hole, and this problem can be
considered as a circle packing problem. The circles to be packed are given in Table
5.9.

Table 5.9 The dimensions of the 162 circles

Category of wire 23A 20G 31G 44G 45G 51G 25J 28J 30J 31J 22X 10E
Radius of circles (mm) 1.8 0.7 0.8 0.9 1.05 1.3 0.55 0.65 0.75 0.9 0.9 1.75

Number of circles
to be packed 3 11 31 5 9 12 25 54 1 6 4 1

The real life instance includes a set of circles with the same dimensions, and there are
ten different-sized groups of circles. To solve this instance, we design a solution pro-
cedure depending on clustering of these circles to get a small number of larger circles.
Then, we run Algorithm 4.1.1 to pack the larger circles into another surrounding
circle.

The clustering process determines the circles to be packed together into a larger circle.
Hence, the crucial point is the amount of idle region within each cluster as well as
between the resulting larger circles. As a result, we introduce an integer programming
formulation for determining the clustering of the circles with the minimum total idle
region.

Let m be the number of different clusters. For each cluster j, assume that the circles
are divided into v groups, and Hi,j is the set circles located in the ith group of cluster
j. A lower bound for the idle area is determined by formulation (4.1), and let VH〉,|
be the objective function value of formulation (4.1) solved for the circles in set Hi,j .

Denote the number of circles in Hi,j with ti,j , and let Ri,j be the minimum radius of
the circle to pack the circles in Hi,j . Finally, the set of corresponding v new circles
with radii of R1,j , · · · ,Rv,j is denoted by H0,j for the cluster j.

The decision variables di,jc,k,l and f
i,j
c,k,l are defined for formulation 4.1 for each group

Hi,j of cluster j. Hence, the formulation is as follows:

min
j∈{1,··· ,m}

∑
i∈{0,··· ,v}

VHi,j(5.1a)

45



s.t.VHi,j = min
c,k,l∈C


∑

c,k,l∈Hi,j

:c<k<l

(
∆i,j

c,k,ld
i,j
c,k,l−ρ

i,j
c,k,lf

i,j
c,k,l

) i∈{0,··· ,v},
j∈{1,··· ,m}(5.1b)

∑
k,l∈C

di,j
c,k,l +

∑
k,l∈C

di,j
k,c,l +

∑
k,l∈C

di,j
k,l,c ≥minc c ∈Hi,j(5.1c)

∑
k,l∈C

di,j
c,k,l +

∑
k,l∈C

di,j
k,c,l +

∑
k,l∈C

di,j
k,l,c ≤maxc c ∈Hi,j(5.1d)

f i,j
c,k,l ≤ d

i,j
c,k,l c,k, l ∈Hi,j(5.1e)

f i,j
c,k,l ≤ d

i,j
0,c,k, f i,j

c,k,l ≤ d
i,j
0,k,l, f i,j

c,k,l ≤ d
i,j
0,c,l c,k, l ∈Hi,j(5.1f)

f i,j
c,k,l ≥ d

i,j
c,k,l +di,j

0,c,k +di,j
0,k,l +di,j

0,c,l−3 c,k, l ∈Hi,j(5.1g)

di,j
c,k,l,f

i,j
c,k,l ∈ {0,1} c,k, l ∈Hi,j(5.1h)

Hi,j ∈ Lj j ∈ {1, · · · ,m}(5.1i)

In this formulation, the objective is the minimum required idle area for the cluster
j. With the help of Constraint (5.1b), the minimum idle region in each group is
determined. Constraints (5.1c)- (5.1g) are the constraints solved for each group Hi,j

of circles in each cluster j. Constraint (5.1h)-(5.1i) are domain constraints.

Table 5.10 The clusters corresponding to the obtained solution.

Cluster 1 1 : 1.8, 3 : 1.3, 10 : 0.65
Cluster 2 1 : 1.8, 3 : 1.3, 10 : 0.65
Cluster 3 1 : 1.8, 3 : 1.3, 10 : 0.65
Cluster 4 1 : 1.75, 3 : 1.05, 3 : 0.7, 8 : 0.65
Cluster 5 1 : 1.3, 3 : 1.05, 1 : 0.75, 2 : 0.7, 8 : 0.65
Cluster 6 1 : 1.3, 3 : 1.05, 3 : 0.7, 8 : 0.65
Cluster 7 1 : 1.3, 3 : 1.05, 3 : 0.7, 8 : 0.65
Cluster 8 16 : 0.8
Cluster 9 15 : 0.8
Cluster 10 15 : 0.9

By solving the clustering problems, we divided the circles into 10 groups without
considering the circles with the smallest radius, 0.55. The groups are given in Table
5.10 where t is the number of the circles with radius r for the notation given by t : r.
After that, we solve the larger ten circles packing problem with Algorithm 4.1.1.
Then, we finalize the solution by perturbing the idle regions such that the circles
with radius 0.55 can be placed.

The lower bound for the instance is obtained by identifying the minimum possible
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area of the idle regions. To calculate this area, we consider that each circle has
three triples as its neighbours, i.e., there will be at least 486 triples in the optimal
solution. Starting from the group of circles with the smallest radius, we find the
number of triples they can construct such that all three circles are the same as well
as one or two of the three circles have the succeeding radius in the list where the
circles are listed in ascending order. When the number of such triples reach 486, the
corresponding areas for the determined triples are summed. The summation is the
minimum possible area of the idle regions, and the total area of the circles is added
to the summation to find a lower bound for the area of the surrounding circle. By
using this lower bound for the area of the surrounding circle, a lower bound for the
radius of the surrounding circle is determined. Finally, we find a solution with a gap
around 4.15% where the radius of the outer layer is 12.45 mm.

The unequal circle packing problem is difficult to solve even for small number of
circles. Even the instance includes some equal circles as well as the unequal ones,
there is no solution for packing 162 circles into a single container given in the
literature. For instance, Sugihara et al. (2004) packs 162 circles by dividing it into
subgroups, and no solution is provided to pack all circles. In real life application,
there is an analytic method calculated by multiplying a constant (a density factor
assumed to be valid for any packing) with the sum of the areas of the circles. This
analytic method is a basic calculation method which does not exploit any structural
properties of the problem. Indeed, the proposed solution by the analytical model may
not be feasible for a given instance since the density factor is a constant. Although
it is possible for some heuristic to solve larger number of circles, the optimality gap
cannot be provided by any solution. Hence, the solution quality with an optimality
gap 4.15% is unique to our best knowledge in the literature.
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6. CONCLUSIONS

The thesis considers the problem of packing a given set of circles into the minimum
dimension surrounding container. There are two main rules of this problem: the
circles do not overlap and each circle should be fully included in the surrounding
container. Since the problem is hard to solve globally in the continuous space, we
discretized the solution space into smaller cells. On the discretized solution space,
we present a solution approach based on a bisection-type algorithm on the radius of
the surrounding container. With the help of discretized solution space, we propose a
restricted and a relaxed versions of the original problem.

In the restricted version, we assume that the centers of circles are located at one of
the guiding points which are the corner points of the cells. For the restricted version,
we introduce three different-sized MILP formulations: two formulations including
linear number of decision variables, and another one containing logarithmic number
of decision variables. Since the restricted version examines a subset of the solution
space, it gives an upper bound for the radius of the surrounding container. Hence,
we propose a relaxed version of the original problem. In the relaxed version, we allow
some intersections of circles while restrain obviously infeasible solutions. Similarly,
we introduce three more MILP formulations to get lower bounds for the surrounding
container’s radius: two formulations with linear number of decision variables, and a
formulation with logarithmic number of decision variables.

Our algorithm solves the formulations designed for the restricted and the relaxed
versions of the original problem at each iteration. Then, we propose some algorithmic
enhancements to improve the performance of Algorithm 4.1.1 by exploiting the
special structure of the original problem. We perform a computational study to
analyze the performance of our algorithm for different configurations. We use three
different type datasets: instances with unequal circles to pack into a circle from
Zimmermann’s (2005), the ones with equal circles packing into a circle from Huang
& Ye (2011), and the instances containing unequal circles to pack into a rectangular
strip with fixed width from Stoyan & Yas’kov (2004).
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By our computational study, we first analyze the performance of the global solvers in
CPP, and observe that the global solvers Baron and Gurobi cannot solve the instance
even with 8-circle within 30 minutes time limit. During the solution process, we
realized that the main problem of the global solvers is determining and improving
the lower bound for the dimension of the surrounding circle. However, Algorithm
4.1.1 with logarithmic-sized formulations performs better for the same instances,
and the instances are solved within 10 minutes with an optimality gap 1%. Even
Algorithm 4.1.1 with linear-sized formulations dominates the global solvers in terms
of the solution time and solution quality although it performs worse than Algorithm
4.1.1 with logarithmic-sized formulations. We also compare our algorithm with the
solution methods given by Huang & Ye (2011) and Stoyan & Yas’kov (2004), where
Huang & Ye (2011) considers the equal circle packing problem and Stoyan & Yas’kov
(2004) tries to pack the circles into a rectangular strip. According to the results,
even if our solution procedure needs more solution time than other algorithms given
in the literature proposing heuristic solutions for the instances, the solution time of
our algorithm does not increase significantly as well as our algorithm guarantees the
solution quality. Thus, our algorithm performs better than or at least can compete
with the proposed solution methods.

We also observe that Algorithm 4.1.1 solves the equal circle problem in shorter
times than the unequal circle problem. The main reason of the observation is that
the lower bound obtained for the equal circle packing problem case is tighter than
the one obtained for the unequal circle packing problem because of the minimum
idle regions between the circles do not change according to the configurations of
circles for the equal circle case, hence, the algorithm starts with a better lower
bound. Based on the literature review and the computational study, our another
observation is that the main strength of our algorithm is providing a lower bound
for the optimal value of the radius of the surrounding circle since there is almost no
study providing this information during the solution procedure. The studies from
literature generally compare the solutions with the best-known values and requires
an initial configuration for positions of the circles to start the algorithms. Proposing
lower bounds is also important for the problems which are solved for the first time
with our algorithm since we can state the quality of our solution with the help of the
obtained lower bound. For instance, there is no best-known for the instance given
in Sugihara et al. (2004) as our best knowledge, but we know that the proposed
solution is at most 4.15% away from the optimal solution.
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APPENDIX A

The proof of Theorem 4.1

Before the proof of Theorem 4.1, we will give some notation and a lemma. Consider
the adjacent circles 1, · · · ,k with edges (1,2), · · · ,(k− 1,k),(k,1). The area of the
polygon connecting the centers of the circles 1, · · · ,k is denoted by A1,··· ,k, and the
angle at the corner point c of this polygon is shown by ac.

Figure A.1 Idle region between 3 adjacent circles where ec,l > rc+ rl

2

1

3

Lemma A.1. For 0≤ a1 ≤ π, f(a1) is a decreasing function of a1 defined as follows
where r1 ≤ r2 ≤ r3:

f(a1) = (r1 + r2)(r1 + r3)sin(a1)− (r1)2a1

−(r2)2 sin−1
( (r1+r3)

e2,3
sin(a1)

)
− (r3)2 sin−1

( (r1+r2)
e2,3

sin(a1)
)
.

Proof of Lemma A.1. f ′(a1) is given as follows:

f ′(a1) = cos(a1)(r1 + r2)(r1 + r3)− (r1)2

−cos(a1) (r2)2(r1+r3)

e2,3

√
1−
(

(r1+r3)sin(a1)
e2,3

)2
− cos(a1) (r3)2(r1+r2)

e2,3

√
1−
(

(r1+r2)sin(a1)
e2,3

)2

= cos(a1)(r1 + r2)(r1 + r3)− (r1)2

−cos(a1)
(

(r2)2(r1+r3)√
(e2,3)2−(r1+r3)2 sin2(a1)

+ (r3)2(r1+r2)√
(e2,3)2−(r1+r2)2 sin2(a1)

)
.

Assume that e2,3 = r2 +r3 +K where K ≥ 0. From the cosine’s theorem, the following
equality is known:

(r1)2 + r1r2 + r1r3− (r1 + r2)(r1 + r3)cos(a1) = r2r3 + r2K+ r3K+K2.

Then, the cos(a1) and sin(a1) values are calculated as follows by using the cosine’s
theorem and the formulations for calculating the area of the triangle:

52



cos(a1) = (r1)2+r1r2+r1r3−r2r3−r2K−r3K−K2

(r1+r2)(r1+r3)

and

sin(a1) =
√

(2r1+2r2+2r3+K)(2r1−K)(2r2+K)(2r3+K)
2(r1+r2)(r1+r3) .

Hence, f ′(a1) can be written as follows:

f ′(a1) = r1r2 + r1r3− r2r3− r2K− r3K−K2

− 2((r1)2+r1r2+r1r3−r2r3−r2K−r3K−K2)(r2)2
√

4(r1+r2)2(r2+r3+K)2−(2r1+2r2+2r3+K)(2r1−K)(2r2+K)(2r3+K)

− 2((r1)2+r1r2+r1r3−r2r3−r2K−r3K−K2)(r3)2
√

4(r1+r3)2(r2+r3+K)2−(2r1+2r2+2r3+K)(2r1−K)(2r2+K)(2r3+K)
.

Name the parts of f ′(a1) as given below:

f ′1(a1) = r1r2 + r1r3− r2r3− r2K− r3K−K2

f ′2(a1) = 2((r1)2 + r1r2 + r1r3− r2r3− r2K− r3K−K2)(r2)2

f ′3(a1) =
√

4(r1 + r2)2(r2 + r3 +K)2− (2r1 + 2r2 + 2r3 +K)(2r1−K)(2r2 +K)(2r3 +K)

f ′4(a1) = 2((r1)2 + r1r2 + r1r3− r2r3− r2K− r3K−K2)(r3)2

f ′5(a1) =
√

4(r1 + r3)2(r2 + r3 +K)2− (2r1 + 2r2 + 2r3 +K)(2r1−K)(2r2 +K)(2r3 +K)

Then, f ′(a1) is written like below:

(A.1) f ′(a1) = f ′1(a1)− f
′
2(a1)
f ′3(a1) −

f ′4(a1)
f ′5(a1) ≤ 0

Finally, since r1 ≤ r2 ≤ r3, we know that a1 ≥ a2 ≥ a3. By using this knowledge,
a1 ≥ π

3 , i.e., −1< cos(a1)≤ 0.5. From this knowledge, the following inequalities are
true:

0≤ 2(r1)2 + 2r1r2 + 2r1r3− r2K− r3K−K2

0≤ 3r2r3 + 2r2K+ 2r3K+ 2K2− (r1)2− r1r2− r1r3

Also, 2r1 ≥K is true from the triangle inequality. By using this knowledge, we can
verify the inequality which is a rewritten version of Equation (A.1) given below:

2
(
f ′1(a1)f ′2(a1)f ′5(a1)

)2
f ′3(a1) + 2

(
f ′1(a1)f ′3(a1)f ′4(a1)

)2
f ′5(a1)
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+2
(
f ′2(a1)f ′4(a1)

)2
f ′3(a1)f ′5(a1)−

(
f ′1(a1)

)4(
f ′3(a1)f ′5(a1)

)2

−
(
f ′2(a1)

)4(
f ′5(a1)

)2
−
(
f ′4(a1)

)4(
f ′3(a1)

)2
≤ 0.

Hence, f ′(a1)≤ 0 is true. Then, f(a1) is a decreasing function of a1 as stated.

Theorem 4.1 Idle1,··· ,k ≤ Idle∗1,··· ,k.

Proof of Theorem 4.1. For k = 3, we will show that Idle1,2,3 ≤ Idle∗1,2,3. For illus-
tration, consider the idle region between circles 1,2, and 3 in Figure A.1. In this
configuration, the length of edge connecting the centers of circles c and l is given
with ec, l. In addition, the area of the triangle with corner points located at the
centers of circles is denoted by B1,2,3 where its angle at the corner located at circle
c′s center is denoted by bc. Then, the idle region Idle∗1,2,3 is calculated as follows:

Idle∗1,2,3 =B1,2,3− (r1)2b1
2 − (r2)2b2

2 − (r3)2b3
2 .

In the following configuration, relocate the center of circle 2 (circle 3) to the point
on the edge connecting circles 1 and 2 (circles 1 and 3) which is r1 +r2 (r1 +r3) units
away from the center of circle 1. The new triangle’s area is denoted by D1,2,3 where
bc shows the angle of the triangle at the center of circle c:

D1,2,3 = (r1+r2)(r1+r3)sin(b1)
2 ≤ (e1,2)(e1,3)sin(b1)

2 =B1,2,3.

Then, the idle region in this configuration is calculated as follows:

D1,2,3− (r1)2b1
2 − (r2)2b2

2 − (r3)2b3
2 ≤B1,2,3− (r1)2b1

2 − (r2)2b2
2 − (r3)2b3

2

In the first configuration, if the length of the edge connecting circles 2 and 3 is
(r2 + r3) units, this concludes with Idle1,2,3 ≤ Idle∗1,2,3. Otherwise, the length of the
edge connecting circles 2 and 3 is larger than (r2 + r3) which results in a1 ≤ b1.

Idle1,2,3 = A1,2,3− (r1)2a1
2 − (r2)2a2

2 − (r3)2a3
2

= (r1+r2)(r1+r3)sin(a1)
2 − (r1)2a1

2 − (r2)2a2
2 − (r3)2a3

2

≤ (r1+r2)(r1+r3)sin(b1)
2 − (r1)2b1

2 − (r2)2b2
2 − (r3)2b3

2

(
by Lemma A.1

)

=D1,2,3− (r1)2b1
2 − (r2)2b2

2 − (r3)2b3
2

≤B1,2,3− (r1)2b1
2 − (r2)2b2

2 − (r3)2b3
2 = Idle∗1,2,3.
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Then, assume that Idle1,··· ,k ≤ Idle∗1,··· ,k.Then, Idle1,··· ,k,(k+1) ≤ Idle∗1,··· ,k,(k+1) is
true for (k+ 1) as follows:

Idle∗1,··· ,k,(k+1) = Idle∗1,··· ,k + Idle∗1,k,(k+1)

≥ Idle1,··· ,k + Idle∗1,k,(k+1)

≥ Idle1,··· ,k + Idle1,k,(k+1) = Idle1,··· ,k,(k+1).

Hence, Idle1,··· ,k ≤ Idle∗1,··· ,k by induction.

The proof of Theorem 4.2

Proposition A.1. Suppose a univariate function f is continuous on [L,U ] and it
is differentiable on (L,U). If the derivative is smaller than or equal to zero for all R
in (L,U), then the function is non-increasing on [L,U ].

Proof of Theorem 4.2. Assume that the idle region between the surrounding circle
with radius R and the circles c and k is denoted by ER0,c,k. Then, the idle region
IdleR0,c,k is calculated with the formula given below for circles rc and rk where the
radius of the surrounding circle is R:

IdleR0,c,k =
(R)2cos−1

(
(R)2−Rrc−Rrk−rcrk
(R)2−Rrc−Rrk+rcrk

)
2 −

√
(R)(rc)(rk)(R− rc− rk)− π((rc)2+(rk)2)

2

−
(rc)2cos−1

(
(rc)2+rcrk−Rrc+Rrk
Rrc+Rrk−(rc)2−rcrk

)
2 −

(rk)2cos−1
(

(rk)2+rcrk−Rrk+Rrc

Rrc+Rrk−rcrk−(rk)2

)
2 .

Since, we do not know the optimal value of R in our problem, we need to show that
the idle region is decreasing function of R between L≤R≤ U . So, we can calculate
the idle regions by using a known upper bound for R. So, we will calculate the
derivatives on R of this area:(

IdleR0,c,k

)′
=Rcos−1

(
(R)2−Rrc−Rrk−rcrk

(R)2−Rrc−Rrk+rcrk

)
+ R2√rcrkR(R−rc−rk)(2R−rc−rk)

2R(R−rc)(R−rk)(R−rc−rk)

+ (rc)2√rcrkR(R−rc−rk)(R−rk)
2R(R−rc)(R−rk)(R−rc−rk) + (rk)2√rcrkR(R−rc−rk)(R−rc)

2R(R−rc)(R−rk)(R−rc−rk)

−
√
rcrkR(R−rc−rk)(R−rc)(R−rk)(2R−rc−rk)

2R(R−rc)(R−rk)(R−rc−rk)

and(
IdleR0,c,k

)′′
= cos−1

(
(R)2−Rrc−Rrk−rcrk

(R)2−Rrc−Rrk+rcrk

)
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+√rcrk−4R5+8rcR
4+8rkR

4−7(rc)2R3−7(rk)2R3−10rcrkR
3+3(rc)3R2+3(rk)3R2

2
√
R(R−r1−r2)(R−rc)2(R−rk)2(R−rc−rk)

+√rcrk 7rc(rk)2R2+7rk(rc)2R2−3rc(rk)3R−6(rcrk)2R−3(rc)3rkR+2(rc)2(rk)3+2(rc)3(rk)2

2
√
R(R−r1−r2)(R−rc)2(R−rk)2(R−rc−rk)

.

We should show that
(
IdleR0,c,k

)
is a non-increasing function between L≤R≤ U to

show IdleR0,c,k < IdleR
∗

0,c,k. Then, if IdleR1
0,c,k ≥ Idle

R2
0,c,k if R1 ≤ R2 and

(
IdleR0,c,k

)′′
has no roots between L≤R≤ U for the given bounds L and U ; it results in that the
direction of the function IdleR0,c,k does not change within the interval L≤R≤ U .

Hence, if
(
Idle

L+U
2

0,c,k

)′
< 0, the function IdleR0,c,k is non-increasing forL≤R≤ U by

Proposition A.1.
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